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Electron-Impact Ionization of Atomic Hydrogen
Abstract

Since the invention of quantum mechanics, even the simplest example of collisional
breakup in a system of charged particles, e~ + H - H* + e~ + e, has stood as one
of the last unsolved fundamental problems in atomic physics. A complete solution
requires calculating the energies and directions for a final state in which three charged
particles are moving apart. Advances in the formal description of three-body breakup
have yet to lead to a viable computational method. Traditional approaches, based
on two-body formalisms, have been unable to produce differential cross sections for
the three-body final state. Now, by using a mathematical transformation of the
Schrodinger equation that makes the final state tractable, a complete solution has
finally been achieved. Under this transformation, the sc'attering wave function can be
calculated without imposing explicit scattering boundary conditions. This approach
has produced the first triple differential cross sections that agree on an absolute scale
with experiment as well as the first ab initio calculations of the single differential

cross section [29].
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Chapter 1

The Three-Body Nature of
Electron-Impact Ionization

Electron-impact ionization is the process in which a target atom or molecule is ion-
ized by a collision with an electron. Scattering theory calculations have progressed to
the point of being able to accurately treat non-breakup processes for an electron scat-
tering from relatively complicated target molecules. However, ionization represents a
fundamentally different class of problems characterized by a final state in which three
particles that interact via long-range Coulomb potentials are moving apart. Even the
simplest example of this process, the electron-impact ionization of atomic hydrogen,
has resisted numerical solution until now. This dissertation presents the first calcu-
lations to produce detailed information about electron-impact ionization that agrees,
on an absolute scale, with experimentally measured values over a range of energies
and final directions.

1.1 A three-body process in electron scattering

Collisions between electrons and atoms or molecules are governed by none of the
selection rules that limit optical interactions with matter, primarily because the in-
cident electron is indistinguishable from those of the target. Thus, electron impact is
an efficient means of exciting or ionizing atoms and molecules. The relative probabil-
ities of the elastic and various inelastic scattering processes following electron impact
affect the energy distributions of atoms and molecules that determine the chemical
dynamics of macroscopic systems. Furthermore, electron-impact ionization affects the
populations of ions and free electrons and is the fundamental mechanism responsible
for forming and sustaining low temperature plasmas. Detailed information about the
energy and angular distributions of this process is important for understanding the
dynamics of plasmas in a wide range of applications.

In a time-independent formalism the wave function simultaneously contains all
the information for a scattering event initiated by a collision, at a particular energy,
between an electron and the target in some specified initial state. Both the initial
and final states are manifested in the asymptotic boundary conditions on the wave



function for large inter-particle separations. The objective of any scattering calcula-
tion is to obtain information about the final state following the collision. For electron
scattering theory, this means determining the asymptotic boundary conditions of the
wave function describing the motion of all electrons.

The final scattering state is typically analyzed in terms of individual “channel”
components; each corresponding to a particular scattering process usually defined by
the final state of the target. Scattering theory calculations and experimental mea-
surements attempt to determine probabilities (expressed as scattering cross-sections)
of the final state being in a particular channel. In calculations, we identify the chan-
nels by separating the asymptotic wave function into individual channel components
each corresponding to a particular target state. Experimentally these channels are
identified by the energy of the scattered electron and/or the state of the target.

Channels not corresponding to ionization are characterized by a single electron
moving away from the target left behind in either the ground state or some excited
state. Treatment of these “discrete” channels by various “two-body” formalisms, that
specify the asymptotic form for each channel as two separate, non-interacting entities
(the target atom or molecule and a free electron), has been possible for many years.
Electron-impact ionization, on the other hand, is a three-body process characterized
by two electrons separating from an ionized target.

The past 35 years have seen significant progress toward formulating an asymptotic
form for this process, ranging from the early work of Rudge [34] and Peterkop [25] to
the very cumbersome, but more complete, form derived by Alt et al. [1]. Despite this
progress in the formal theory, efforts to explicitly use these asymptotic forms have
not been successful. Consequently, complete numerical treatment of this process has
continued to stand as an unsolved problem in electron-scattering theory.

1.2 Existing methods in scattering theory are
designed for two-body processes

Scattering calculations are inherently more difficult than those for bound states
with the same number of electrons because the wave functions that describe scatter-
ing extend over all space whereas the bound state wave functions are localized near
the nucleus. Theoretical treatment of systems with two bound electrons began with
the work of Hylleraas in the 1930s on the bound states of helium which were deter-
mined accurately by Pekeris in the late 1950s. Not until the 1961 work by Schwartz
would even a rudimentary solution to the simplest two-electron scattering problem,
an electron scattering from atomic hydrogen, be achieved.

For scattering of an electron from a target atom or molecule below the ionization
threshold only two-body channels, characterized by one outgoing electron moving
away from a neutral target, exist in the final state. In the elastic channel the outgoing
electron has the same energy as the incident electron and the target is left behind in
its original state. With the discrete excitation channels the outgoing electron has less
energy than the incident electron and the target is left in some excited state. The



energy of the outgoing electron is limited to a set of discrete values that differ from
the incident energy by the amount needed to raise the target to one of its excited
states.

Below the ionization threshold the asymptotic wave function consists entirely of a
finite set of discrete channels, corresponding to elastic scattering and electron-impact
excitation, whose number is limited according to which target states are accessible
with the energy available from the incident electron. These are referred to as the
“open channels”.

Calculations on electron-hydrogen scattering for the case where only a few chan-
nels are energetically allowed were carried out by Burke et al. [13] using the “close-
coupling” method. This method uses a physically motivated expansion of the scat-
tered wave function in terms of products of bound states and free-particle functions.
If the expansion contains terms corresponding to every open channel then it can rep-
resent, exactly, the asymptotic wave function. By including additional short-range
terms (corresponding to the closed channels) to form a more complete basis in the
interaction region, accurate discrete channel cross sections could be calculated for
scattering below the ionization threshold [17].

The expansion functions in close-coupling methods are obtained by diagonalizing
the target Hamiltonian in some suitable numerical basis. As the numerical basis ap-
proaches completeness the negative eigenvalues converge to the physical bound state
energies of the target and the corresponding eigenstates converge to the bound state
wave functions. Diagonalization also produces eigenvalues not related to bound state
energies. The corresponding eigenstates, known as “pseudostates”, were thought to
have no physical meaning themselves, but were included in close-coupling expansions
to make the basis more complete. Pseudostates corresponding to positive eigenvalues
are a discretization of what would be the continuum of free-particle states. How-
ever, since they come from representing the Hamiltonian in a set of finite-range basis
functions they do not have infinite extent like true free-particle states.

In the early 1970’s Burke and Mitchell [15,14] showed that cross sections for the
elastic and excitation channels could be calculated at energies above the ionization
threshold by including positive-energy pseudostates in the expansion. This work was
extended in the 1980’s by Oza and Callaway [23, 22]. However, these calculations were
marred by the presence of “pseudo-resonances” that prevented accurate calculations
at certain energies. It was still broadly assumed that the positive-energy pseudostates
did not give a meaningful representation of ionization. Therefore, they were used
solely for improving the convergence of discrete channel cross sections and not for
calculating information specific to electron-impact ionization.

In the early 1990’s Bray and Stelbovics [10, 11] showed that by including increas-
ing numbers of positive-energy pseudostates a “convergent” close-coupling (CCC)
method, that eliminated the pseudo-resonances, could be developed for calculating
not only discrete channel cross sections but total ionization cross sections as well. This
method represented a significant step forward in treating electron scattering above
the ionization threshold and has been applied successfully to atoms with several elec-
trons. However, the CCC method has fallen short in its ability to provide details



about ionization such as how energy is shared between the two scattered electrons.

1.3 An entirely new approach designed to
correctly treat ionization

In a sense, the ionization component of electron-hydrogen scattering contains
a continuously infinite number of “channels” because the total available energy is
shared continuously between the two free electrons. Consequently, ionization cannot
be satisfactorily represented by a discrete sum of products of one-electron functions.
In particular, two-body formalisms, such as CCC which attempts to attach physi-
cal meaning to positive-energy pseudostates, fail to accurately calculate information
about how energy is shared between the two electrons. The difficulty lies in the in-
tractable nature of the scattering boundary conditions for ionization. We will look
more closely at the difficulties of representing ionization boundary conditions with
the convergent close-coupling method in Chapter 2.

The failure of CCC, and other methods based on specifying the asymptotic form
of the wave function, to accurately calculate detailed information about ionization
points to the need for an entirely new formalism that does not require knowledge
of the wave function’s asymptotic form. The method of exterior complex scaling
completely avoids the difficulties associated with the asymptotic form for ionization
by using a mathematical transformation of the Schrédinger equation that simplifies
the scattering boundary conditions so that the wave function can be calculated using
standard numerical methods. Exterior complex scaling is introduced, in Chapter 3,
within the context of a two-dimensional model of electron-hydrogen scattering that
retains many of the numerical pathologies associated with ionization.

A method for calculating detailed ionization information for the model problem
by analyzing the wave functions from Chapter 3 is introduced in Chapter 4. It is
shown that wave functions calculated with exterior complex scaling produce energy-
sharing differential cross sections that do not have the unphysical characteristics of
the corresponding CCC results. Extension of the methods introduced in Chapter 3
to the full electron-hydrogen scattering problem is described in Chapter 5. By using
exterior complex scaling, six-dimensional wave functions that include an ionization
component are produced. Differential ionization cross sections, extracted from these
wave functions by a procedure similar to the one described in Chapter 4, are presented
in Chapter 6. These results are the first-ever differential cross sections for electron-
impact ionization that agree, on an absolute scale, with experimentally determined
values over a range of energies and directions.



Chapter 2

Barriers to Two-Body Reductions
of Three-Body Breakup

Components of the wave function corresponding to elastic and excitation chan-
nels for scattering of an electron from a hydrogen atom have the asymptotic form of
products of one-electron functions. This fact led to the development of several “two-
body” formalisms for treating electron scattering from atoms and molecules. These
methods have been able to calculate cross sections for discrete channels at collision en-
ergies both above and below the ionization threshold. The convergent close-coupling
method, which is limited to atoms, also has succeeded in calculating total, but not
differential cross sections for ionization. This inability to correctly describe the de-
tails of electron-impact ionization, such as the distribution of energy between the two
outgoing electrons, indicates a fundamental problem with using two-body formalisms
to describe a three-body final state.

2.1 Electronic collisions with hydrogen in a
time-independent formalism

Although scattering is an intrinsically time dependent process, the interactions,
themselves, depend only on distances and not explicitly on time. So, we can cal-
culate complete scattering information using time-independent methods. The wave
function ¥+ that describes the electron-hydrogen collision is the solution to the time-
independent Schrodinger equation with appropriate boundary conditions.

HY* = Fut (2.1)

We will be considering an electron with momentum #hk; colliding with a hydrogen
atom in its ground state so the total energy E' is the sum of the incident energy and
the ground state energy €, of hydrogen.

h?
E= %kf + &1 (2.2)



By approximating the nucleus as infinitely massive, the Hamiltonian H describes
the motion of only the two electrons. Their positions, relative to the nucleus, are
denoted by two three-dimensional vectors 7, and 7. The wave function U (7, 75) is
a six dimensional function and the Hamiltonian, defined below, is a six dimensional
differential operator.

L W, K_, & e o2

H(r,75) = Vi—-—V;————

= (2.3)
2m 2m r Te |1 — T3

The symbols V2 and V3 are the three-dimensional Laplacians for the coordinates
and 7% and represent the kinetic energies of the two electrons. The three particles
interact via an attractive Coulomb potential between the nucleus and each electron
and a repulsive Coulomb potential between the two electrons.

Electrons are indistinguishable, spin-% particles so the overall wave function of
both space and spin coordinates must be anti-symmetric with respect to interchange
of the two electrons. Total spin S of the system can be either zero or one. The
“singlet” S = 0 spin eigenfunction is anti-symmetric while the three “triplet” S =1
spin eigenfunctions are symmetric. Thus, the proper symmetry for the spatial wave
function under interchange of electron coordinates is ¥t (75, 7)) = (—1)SUT (7, 7).
Since the Hamiltonian in Equation 2.3 does not depend on spin we can perform
independent calculations for the singlet and the triplet cases. The S index is usually
suppressed, so it is to be understood that separate calculations are always performed
for both spin symmetries. Ultimately, we will sum the results for the two values of S
with statistical weights of § for singlets and 2 for triplets.

Both the initial and final states are described in the asymptotic region of the wave
function. The first step in simplifying the asymptotic boundary conditions for ¥+
is to remove a term \Ilzi, representing the initial state, from the total wave function
leaving a function ¥ that is identified, asymptotically, as the scattered wave.

WH(, 7o) = Wy, (71, 72) + WL (7, 72) (2.4)

We specify the initial state to be one electron in the hydroge(n ground state ®4(7)
and the other to be a plane wave € with momentum hk; in the 2 direction.
0 /(=7 = 1 =\ _ik;zo =\ _ik;z1
Wy, (71, 72) = V2 ((I)ls('rl)e + ()5 P17 )e™ ) (2.5)

To preserve the indistinguishability of the electrons, the initial state \Ilgi 1s anti-
symmetrized according to the total spin S.

We derive an inhomogeneous differential equation for ¥} (7,72) in terms of the
known function W}, (71, 72) by rearranging the Schrédinger equation (Equation 2.1).

(E - H) (7, 7) = (H - B) U3, (7, 7) (2.6)

Since W[ (7, ) represents the scattered part of the wave function at large distances it
must be an outgoing wave in 7, and ro. Thus, we define ¥ (7, 75) to be the outgoing
solution to Equation 2.6.



2.2 Analyzing the asymptotic form of the
scattered wave

We can separate the scattered wave into individual “channel” components that
are identified according to the final state of the hydrogen atom. Hydrogen states can
be written as ®pim (7) = L¢n(r)Y,m(7) where the Y,,, is a spherical harmonic and !
and m are the usual angular momentum quantum numbers. The functions ¢, satisfy
the radial Schrodinger equation for hydrogen with Hamiltonian H, and energy €y,.

. ( R d? 11+ 1)R? e2>

H, =
i) 2m dr? 2mr? T

(2.7)
Bound states of hydrogen are those ®,,,, that are finite-range and have an energy
that is one of the discrete values ¢, = —13eV. The ground state, previously denoted
by ®y, is P19 in this notation.

In the elastic scattering channel one electron is left bound in the hydrogen ground
state while the other scatters away. Since no energy was exchanged in the collision
the scattered electron will have the same energy as the incident electron. In the
excitation channels one electron is left bound to the proton in some excited hydrogen
state. The momentum hk, of the outgoing electron is reduced according to the
amount of energy required to raise the atom to its excited state. Since the bound
state energies are quantized, the scattered momenta hk, in the elastic and excitation
channels are limited to a discrete set of values.

h? h?
%kQ %kf +é&1—€n (2.8)

For scattering below the ionization threshold i.e., —hikZ < |e1], the number of

discrete channels that are “open” are limited to those for which the quantity 2 3o k2
defined in Equation 2.8, is positive. In this case, the asymptotic form of the scattered
wave is completely described by an expansion in terms of two-body functions, each
corresponding to an energetically open channel.

- o nlm gikir Jnlm T iksr —
\IJS_E(T'DTQ) Z \/— ( nlm )fl ( ) ki -+ (—1)Sf—l—(—l)‘€ ki l@nlm(r2)>

ri,rg—oo0 N,l,m T2 ™1
(2.9)
In every term the scattered electron is represented by a radially outgoing wave with
angular dependence determined by the channel scattering amplitude [y, (7).
Equation 2.9 does not completely describe the asymptotic form of ¥} for scatter-
ing above the ionization threshold. In this case, all excitation channels are open so
the asymptotic form is an infinite sum over all n. More importantly, ionization is now

possible so an additional term, ¥;5 (7}, 7), must be included to describe ionization.

- = f 3 ,f ke =
(M, 7)) — Y = ( ntm 1)L77"_(_226 kirz 415 (1= 2) | + Ut (7, 72)
71,792 —+00 ’I’le 2

(2.10)



The ionization “channel” is really a continuum of final states that cannot be satisfac-
torily represented by a discrete sum of products of one-electron functions.

Many efforts have been made to derive the asymptotic form of Wit | with the
work of Alt et al. [1] being the most complete to date. We will, instead, look at the
relatively simple form derived by Rudge [34] that is valid when all three particles are

widely separated. This form is expressed in terms of hyperspherical coordinates where
the two radial coordinates 7, and ry are replaced by a hyperradius p = /7% + r2 and
a corresponding hyperangle a = tan™! (ry/r)).

\Ili—gn(’f_"l, ’FQ) — = fi(TA], f‘27 ()[)1 /i_:‘;ei[l‘ip'f'(c(?:l,f?,a)/’i) In{2kp)] (211)

p—roo

In Equation 2.11, the angular function multiplying the logarithmic phase is de-
fined as ((1,7,a) = (sina) ™ + (cosa)™' = (1 — ;- Fasin 2a) /2. The scattering
amplitude for ionization f;(7y, 7, @) contains all of the angular distribution (the 7, 7
dependence) and energy sharing (related to the o dependence) information about the
ionization final state. Equation 2.11 describes the asymptotic form of ¥t as an out-
going wave in the hyperradius p rather than in the two radial coordinates. This very
fact indicates that ¥ cannot be adequately represented by a finite sum of two-body

terms i.e., products of a function of 7 and a function of 7.

2.3 Two-body approach to calculating integral
cross sections for ionization

The convergent close-coupling (CCC) method is a particular implementation of
close-coupling that has been successfully applied to calculating discrete channel cross
sections for electron-atom scattering over a wide range of energies. CCC does not cor-
rectly treat the details of ionization [30] but still has remarkable success at calculating
total ionization cross sections, as well as cross sections for discrete channels, in atoms
of several electrons [2]. In order to understand the shortcomings of CCC at calculat-
ing detailed ionization information we will look briefly at a simplified application of
CCC specific to hydrogen [9)].

Like all close-coupling formalisms, the CCC method is based upon a physically
motivated expansion of the wave function. This expansion is in terms of products
of one-electron functions similar to Equation 2.9, but the actual hydrogen states are
replaced by functions Y, (7), called pseudostates. The Y, are generated by diago-
nalizing the hydrogen Hamiltonian represented in a set of square-integrable numerical
basis functions.

B2 e?
(——V2 - 7) Tt (F) = At Lot (7) (2.12)

As the size of the numerical basis is increased the negative eigenvalues and corre-
sponding pseudostates in Equation 2.12 converge to the bound state energies and
eigenfunctions of hydrogen i.e., Ay =~ &, and Yy (7) & Py (7).



Within the CCC formalism, the wave function ¥ is expanded, analogously
to Equation 2.9, in terms of the Y,;,, rather than exact hydrogenic functions. The
number of terms that are included in the expansion is increased until convergence of
the cross-sections is observed.

Voo, 72) = 30 (Tatm(72) F3m (72) + (1% £ (7)) Tt (72) ) (2.13)

n,l,m

The CCC expansion coefficients f> (7) for all energetically open (A, < E) pseu-
dostate channels have the asymptotic form of an outgoing wave similar to the indi-
vidual terms in Equation 2.9. In the actual implementation, ¥, approximates the
total wave function W' rather than the scattered wave ¥ . This has little conse-
quence on the discussion here since both the total and scattered wave functions can
be expanded similarly with only the elastic channel terms being different.

Pseudostates with positive eigenvalues are a sort of discretization of the continuum
of Coulomb waves representing the ionized hydrogen states. These positive-energy
pseudostates, unlike true continuum functions, are finite-range because the underlying
numerical basis is square-integrable. Although they do not, themselves, have physical
meaning, the positive-energy pseudostates do “overlap” with true Coulomb waves.
From a numerical point of view, all pseudostates, including those corresponding to
closed channels and those with positive eigenvalues, must be included in the CCC
expansion to form a complete set of basis functions.

Like other close-coupling formalisms, CCC is essentially exact below the ionization
threshold. It can also produce accurate discrete channel cross sections for scatter-
ing at higher energies. The advantage of CCC over earlier close-coupling methods is
that it has been shown to also produce convergent total ionization cross sections [10].
Convergence of the total ionization cross sections was considered by some to be a sur-
prising result since ionization must be represented by the positive-energy terms in the
pseudostate expansion and those were believed to have no physical meaning. How-
ever, success at calculating total ionization cross sections does not necessarily require
that the the CCC basis accurately describe the details of the ionization component
of the scattered wave. :

The success of CCC in calculating total ionization cross sections is a consequence
of the ability of the expansion to both represent, exactly, each of the discrete channel
components of the wave function in the asymptotic region and to accurately describe
the entire wave function within a finite interaction region. With an expansion basis
that is effectively complete over the interaction region, we can assume that the CCC
formalism is properly representing all of the collision dynamics. Since each energet-
ically open term in the expansion is constructed to be an outgoing wave we know
that any outgoing flux generated in the interaction region will successfully escape to
infinity. Therefore, it is not as surprising as originally believed that the CCC method
can calculate accurate total cross sections. Since we already know that the CCC
method can accurately calculate discrete channel cross sections it is clear that by
simply subtracting all discrete channel cross sections from the total cross section we
can obtain a reasonably accurate estimate of the total ionization cross section.
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Figure 2.1: SDCS for e-H calculated by CCC at 20eV incident energy, so that the
total energy is E=6.4eV. The actual calculated cross sections, which are not symmetric
about E/2, are shown on the left. The total “raw” cross section is the sum of the
singlet and triplet “raw” cross sections. A symmetrized SDCS is formed by adding the
raw total to its mirror image. The CCC method removes the unphysical oscillations
in the calculated cross sections by replacing the symmetrized SDCS with a smooth,
integral-preserving guess.

2.4 Two-body approaches fail to provide detailed
ionization information

Shortcomings of the CCC method in treating ionization are most evident in the
energy-sharing or single differential cross section (SDCS) for ionization. The SDCS
is a differential cross section with respect to the energy of one of the electrons €; and
describes how energy is shared between the two outgoing electrons. The energy €; can
range from zero to the total energy E. Because the two electrons are indistinguishable
the SDCS should have the same value at E — ¢, as at ;. It is, therefore, symmetric
about £; = E/2. By convention, the SDCS is normalized so that it gives the total
ionization cross section when integrated from zero to /2. An example SDCS calcu-
lated by Igor Bray with the CCC method [12] is plotted in Figure 2.1. The actual
calculated cross sections are shown in the left panel. Two striking features of these
curves are (1) they are definitely not symmetric about E/2 and (2) they contain large
amplitude oscillations.

The asymmetry of the calculated SDCS is a consequence of the way the wave
function is analyzed [30]. In the CCC method physical meaning is attached to the
terms in the expansion with pseudostates T, for which 0 < A,;; < E. Each of these
terms is said to correspond to one electron being ejected from the target with energy
Ani and the other scattering away from the target with energy E — A,;. The SDCS
is constructed over the continuous range of €, by applying appropriate quadrature
weights to the discrete set of positive pseudostate energies [8]. Since the scattered
electron is actually represented in these terms by a plane wave, this assertion is based
on the rather gross assumption that the slower, ejected electron completely shields the



nucleus from the faster, scattered electron. There is some controversy in the literature
over whether the asymmetric method of extracting the SDCS in the CCC method
imposes distinguishability of the two electrons [5], but it is claimed by Bray [7] that
this issue is addressed by post-symmetrizing the result.

The more troubling aspect of the SDCS calculated by CCC is the oscillations.
Since the true SDCS is known to be a very smooth function, Bray constructs a
smooth curve, shown in the right panel of Figure 2.1, that is an integral-preserving
average of the symmetrized oscillatory curve. It is claimed that this curve approxi-
mates what the CCC calculated SDCS would converge to in the limit of an infinite
CCC basis [6]. Convergence of the calculated SDCS to a smooth function has never
been demonstrated and there is much uncertainty about whether the smooth curve
generated in this ad hoc fashion is correct. It is widely believed that the oscillations
in the SDCS calculated by CCC indicate a fundamental problem with the formalism.

Looking for the source of the unphysical oscillations requires scrutinizing the abil-
ity of the CCC basis to adequately describe the ionization component of the scattered
wave. The set of negative-energy pseudostates in the CCC expansion (Equation 2.13)
generate the discrete channel terms in the expansion of the asymptotic form (Equa-
tion 2.10). It is then up to the positive-energy pseudostate terms to construct the
ionization component in Equation 2.10. This is potentially a source of trouble in two
ways. First, and most obvious, is the possibility that the CCC basis cannot ade-
quately represent the ionization component of the scattered wave at large distances.
Second, and probably most significant, is the way that the CCC wave function is
analyzed by attaching physical meaning to the positive-energy pseudostates.

From the Rudge asymptotic form (Equation 2.11) it is clear that the ionization
component is an outgoing wave in the hyperradius p. The positive-energy terms in
Equation 2.13, on the other hand, are an outgoing wave for one electron (the required
asymptotic form of f5,) and a positive-energy pseudostate for the other. It is claimed
that in the limit of an infinite set of numerical basis functions we can think of the
positive-energy pseudostates as true Coulomb waves. Even in this idealized case we
have a task similar to trying to represent a spherical wave with a sum of products
of plane waves. As the number of plane wave products increases the spherical wave
will be represented fairly well over an increasingly large region of space. However,
forming a spherical wave, in this manner, that is accurate over all space is a hopeless
task. Knowing the asymptotic form of the wave function is effectively the ultimate
goal of scattering calculations, so there is legitimate concern about the ability of the
CCC basis to adequately represent the ionization component of the scattered wave.

The CCC method certainly has trouble correctly representing the ionization com-
ponent of the scattered wave. It is conceivable, although by no means certain, that
with a sufficiently large CCC basis the wave function may be adequately constructed
over a large enough region of space to produce meaningful ionization information.
However, there is still a problem with the analysis because the product of a plane
wave and a Coulomb wave is not a very good representation of a state with two elec-
trons in the continuum. Although the CCC basis could conceivably be used as an
adequate numerical basis it is incorrect to attach physical meaning to the individual
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positive-energy pseudostate terms. Another problem is that this analysis implicitly
treats the electrons as distinguishable.

In a recent study [30] the effects of the CCC energy analysis for ionization were
examined in isolation from other potential sources of error. Accurate scattering wave
functions that contain an ionization component were constructed using the method
presented in Chapter 3, thus removing the uncertainties associated with construct-
ing a CCC wave function. These wave functions were constructed for several two-
dimensional model problems and smooth, accurate single differential cross sections
were extracted from them by using the method described in Chapter 4. However,
a CCC style analysis produced oscillatory cross sections similar to those in the left
panel of Figure 2.1. It was shown that, at least for examples with short range po-
tentials, the CCC calculated SDCS at ey = E/2 converges to exactly one fourth of
the correct value. Although no formal proof has been given, it appears that this is at
least approximately the case for electron-hydrogen scattering. However, the relation-
ship between the CCC calculated SDCS and the correct SDCS for all other energy
distributions is completely unpredictable.

The two-body formalism of CCC is very well suited for discrete channels, but not
for ionization. Its shortcomings point to the need for an entirely new formalism to
calculate differential cross sections for ionization that is not tied to any particular
asymptotic form. The method of exterior complex scaling, introduced in the next
chapter, can produce scattering wave functions that are accurate over a finite region
of space and correctly describe the details of ionization without appeal to any asymp-
totic form. In Chapter 4, a procedure is introduced that extracts differential cross
sections for ionization from these wave functions, again, without explicitly invoking
any particular asymptotic form.



Chapter 3

Exterior Complex Scaling Avoids
the Three-Body Asymptotic Form

The fundamental difficulty that traditional, “two-body” methods have with electron-

impact ionization is in representing a wave function with two outgoing electrons.
These methods have the same difficulty even when applied to the two-dimensional
Temkin-Poet model of electron-hydrogen scattering that also supports an “ioniza-
tion” final state with two electrons in the continuum. This model presents difficulties
similar to those of the full problem of electron-hydrogen scattering. It is, therefore,
a useful test-bed for any method intended to be applied to a true electron-impact
ionization problem. Thus, the Temkin-Poet model is an ideal context for presenting
the method of exterior complex scaling as a means of generating wave functions for
electron-hydrogen scattering while avoiding, entirely, the difficulty in specifying the
Coulomb three-body asymptotic form.

3.1 Temkin-Poet Model Problem

The S-wave, or Temkin-Poet, model of electron-hydrogen scattering has been
used for many years to develop and test calculational methods intended for more
realistic electron-scattering problems. This two-dimensional problem, that supports
ionization, was first presented in 1962 by Aaron Temkin [38] in a variational study
of the S-wave component of electron-hydrogen scattering. In 1978, R. Poet [26]
produced the first accurate cross-sections for inelastic processes in the model. Just
like the complete electron-hydrogen system, this model contains an infinite number
of bound states as well as an ionization continuum, but without the complexities
of angular dependence. Therefore, it allows one to isolate and study the difficulties
arising from the radial dependence of three-body breakup.

The Temkin-Poet model can be thought of as a spherical average of the full
electron-hydrogen problem. It is defined by a two-dimensional, radial Schrodinger
equation. X

H(T17T2)1/1+(T1,T'2) = E¢+(7'1,7"2) (31)

The total energy E is the sum of the kinetic energy of the incident electron and the
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ground state energy of hydrogen i.e., £ = %kf + &1. With no angular dependence,
the Laplacians from the Hamiltonian in Equation 2.3 reduce to second derivatives
with respect to the two radial coordinates.

. B2 R 2 e &2 e?
Hrmn=z=-————ow — — — — + — 3.2
(r1,72) 2mdr? 2mdri r, + TS (3-2)
The quantity r- is defined below.
ry = { 71, TL > T2 (33)

T2, 71 < T9

The attractive potentials between the nucleus and each electron are the same in
the model Hamiltonian as they are in Equation 2.3. The repuls1ve potential between
the two electrons is replaced by a non-analytic potentlal £ Wthh is the zero angular

momentum term in the multipole expansion of —r' (see Equa,tlon F.13). Just as in

Equation 2.4 we separate the wave function %* in to two terms: ngi representing the
initial state and vfp having outgoing wave boundary conditions.

¥ (ry,ma) = 93, (r1, 72) + Ydp (71, 72) (3-4)

The Temkin-Poet scattered wave, 95, is the outgoing wave solution to a scattered
wave equation similar to Equation 2.6.

(E — H(r, 7'2)) Yip(ri,m) = (ﬁ(rl, ) — E) P, (r1,72) (3.5)

We want 9+ to represent an electron scattering from a hydrogen atom in the ground
(1s) state. The bound electron is represented by the ground state radial function ¢;.

¢1 (’f') = —3—/56_"/“0 (36)
Qg

An incident electron with momentum hk; is represented by sin(k;r) which comes from
the zero angular momentum term of the multipole expansion of ¢*i* (see Equation
F.17). The initial state 1), is an anti-symmetrized product of these two functions.

1/}21 (7”1, ’f'g) = % (sin(kirl)gbl (7“2) + (~1)S¢1 (7'1) Sin(k‘i’rg)) (37)

Singlet (S = 0) wave functions are symmetric with respect to interchange of the
coordinates r; and 7, while triplet (S = 1) wave functions are anti-symmetric. As
mentioned in Chapter 2, we perform separate calculations for the two spin symmetries.

3.2 Asymptotic Form

We can write the asymptotic form of the Temkin-Poet scattered wave by direct
analogy with Equation 2.10. It contains a sum of “two-body” terms corresponding
to the discrete channels as well as an additional term for ionization.

Yip(ri,re) — Z i (¢n 1) iknr2+(—1)seiknrl¢n(72)) + tion(T1,72) (3.8)

7r1,72—=00 N= 1



Since the Temkin-Poet model supports only the zero angular momentum states of
hydrogen the discrete channels are restricted to elastic scattering and excitations into
other s-states of hydrogen. The s-state radial functions ¢, satisfy the | = 0 radial
equation for hydrogen bound states.

R? 42 e?

('—'—— i ¢n(7") = Enqﬁn(r) (39)
The energies ¢, are the bound state energies of hydrogen, €, = —

conservation determines the momentum £k, of the scattered electron.
1
2
The ionization term );,, accounts for all of the “three-body” nature of the scat-
tered wave. By analogy with the Rudge asymptotic form of the ionization wave
function in Equation 2.11 we can write an asymptotic form in hyperspherical coordi-
nates pand « (11 = psina, 1y = pcos &) for ¥, keeping in mind that the scattered

wave radial function used here includes a factor of r{rs.

Yion(r1,72) —y — fi(a)\/%ei[K”(C/K)ln(?KP)] (3.11)

p—r00

eV. Energy

1
RPk2 + e, = §h2ki2 +e=FE (3.10)

The ionization scattering amplitude f; and the phase factor { are both functions of
only the hyperangle .

While the discrete channel components are outgoing waves in one of the radial
coordinates, the ionization component is an outgoing wave in the hyperradius p that
cannot be written as a sum of products of one-dimensional functions of r; and 7. The
presence of both of these two very different types of outgoing waves in ., provides
the motivation for a calculational method that is applicable to any outgoing wave
without regard to any specific asymptotic form.

3.3 Exterior Complex Scaling

The method of exterior complex scaling (ECS) uses a mathematical transformation
of the scattered wave equation to simplify the outgoing wave boundary conditions.
Here we will introduce ECS in the context of the Temkin-Poet model. In Appendix
A it is applied to the simpler problem of one-dimensional potential scattering. Under
ECS, the scattered wave equation (Equation 3.5) is solved with the radial coordinates
mapped on to a complex contour that is real for small values but, beyond a certain
distance, is bent into the upper-half of the complex plane.

The simplest such contour is one where the coordinates are defined to be real
out to some finite radius Ry and beyond that are rotated into the upper-half of the
complex plane at a scaling angle 1 from the real axis. Let Ry > 0 and 0 < n < 90°
define a complex contour z(r) parametrized by the real coordinate r.

r r < Ry

2(r) = { Ro+ (r— Ro)e" 1> Rq (3-12)
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Figure 3.1: On the left is an illustration of the contour z(r) rotated into the upper-
half of the complex plane beyond Ry. On the right is a depiction of exterior complex
scaling for two radial coordinates.

In the Temkin-Poet model this transformation is applied to both r; and 7, as il-
lustrated in Figure 3.1. Both coordinates are real on an interior box of length Ry.
Outside that box there are three distinct regions where one or both of the coordinates
is complex.

3.3.1 Outgoing waves become finite-range functions

We can most easily see the effect of ECS on an outgoing wave by considering an
outgoing spherical wave ¢*" evaluated on the contour z(r) defined in Equation 3.12.

eik'r N eikz(r) — ekRo sinneikRo(l—cosn)6ikrcosne—krsin7) (fOI‘ r> RO) (313)
The infinite-range outgoing wave is transformed into a function that decays exponen-
tially beyond Ry, provided that n > 0. Exterior complex scaling has the same effect
on any outgoing wave (other one-dimensional examples are shown in Appendices A
and C), including those with logarithmic phase terms, although the exact analytic
expression is more complicated. As a result, every outgoing wave (including the two-
dimensional scattered wave 17p) is transformed into a function that goes to zero at
large distances.

In Figure 3.2 we see the effect of ECS on the eigenvalue spectrum of the Hamil-
tonian for a hydrogen atom. The characteristics of eigenvalue spectra under ECS
were originally described by Barry Simon [36]. Bound state energies of hydrogen are
unaffected by ECS because the bound state eigenfunctions remain bound under ECS.
The positive eigenvalues, which correspond to the continuum of ionized states of hy-
drogen, have been rotated into the lower-half of the complex plane. This is directly
linked to the transformation of the infinite-range continuum states to finite-range
functions under ECS. The eigenvalue spectrum for the two-electron Hamiltonian is
more complicated but, has these same general features.
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Figure 3.2: The eigenvalue spectrum of an exterior complex scaled radial Hamiltonian
for hydrogen. All of the eigenvalues with positive real parts lie below the real axis.
Numerical values for the bound state eigenvalues are compared with the exact hydro-
gen bound state energies. The grid spacings used in this example are also given. The
Coulomb potential was truncated at 50ay. Beyond 50a, the coordinates are complex
with a scaling angle of 30° and extend another 30ayg.

3.3.2 Application to long-range potentials

The presence of Coulomb, or any other long-range potentials, in the Hamiltonian
precludes straight-forward application of ECS to the scattered wave equation. Under
ECS, outgoing waves become finite-range functions and bound states remain bound.
However, incoming waves become exponentially increasing functions as can be easily
seen by changing the sign of k in Equation 3.13. This is a problem because the
definition of the initial state 1}, contains sin(k;) which can be written as the sum of
an incoming and an outgoing wave. Thus, ngi, which appears in the driving term of
the scattered wave equation, is an exponentially increasing function under ECS.

Since vy, is acted on by the operator (ﬁ — E) in the scattered wave equation we
need to consider the entire right-hand side of Equation 3.5.

N 2 2 Y 2 2
(H - E) wgz = \/—15 (% — %) Sin(kiT1)¢1('f’2) + (\/122— <}e—‘ - e—‘> d)l(’f'l) Sin(k}ﬂ'g)
(3.14)

> T
The unscaled right-hand side decays like % due to the Coulomb potentials left over

after (I:I — E) acts on wgi. The damping from the Coulomb potentials is not enough
to counteract the exponential increase in w,?.’_ after the ECS transformation. Thus,
under ECS the driving term in Equation 3.5 diverges for large r; or 7s.

The prescription for getting around this limitation is demonstrated in Appendices
A and B. Long-range potentials are truncated at Ry, effectively replacing them by
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artificially short-range potentials and making the driving term in Equation 3.5 vanish
where the coordinates are complex. Obviously, in order for the calculated results to
be meaningful Ry must be large enough that truncating the potentials has little effect
on the collision dynamics. The purely outgoing nature of 1p minimizes the error in
the calculated wave function due to truncating the potentials.

3.3.3 Wave function unaffected where coordinates are real

In the region where the coordinates are real the scattered wave equation is unaf-
fected by the ECS transformation. Assuming the numerical methods used are accu-
rate, we expect the scaled wave function to be the same as the unscaled (physical)
wave function in the region where both coordinates are real.

Yip(2(r1), 2(r2)) = Yip(r1,72) (for 71,79 < Rp) (3.15)

However, we cannot claim true equality in Equation 3.15 because the Coulomb
potentials are truncated at » = Ry. Since v is an outgoing wave, we can expect
that truncating the potentials at Ry has little effect on ¢7p for r < Ry. Truncating
the potential does affect the higher-energy hydrogen bound states so Ry needs to be
large enough that all bound states that contribute significantly to ¥+, are essentially
confined to the region where the coordinates are real. For now, we will assume that
the scaled wave function is physically meaningful on the real coordinates, provided
that Ry is sufficiently large, and that we may extract various physical quantities by
analyzing the numerically generated wave function on the region inside Rj.

3.4 Finite Difference Implementation

Exterior complex scaling makes the scattered wave equation solvable. We now
need a numerical implementation for accurately calculating the scaled wave function.
The simple ECS contour described in Equation 3.12 has a discontinuous derivative
at Ry. Consider what this means for an outgoing spherical wave. For r < Ry, the
outgoing wave is e’*" and the second derivative as r — Ry from smaller r is —k2e* o,
However, for r > Ry we must use the functional form given in Equation 3.13. The
second derivative as r — Ry from larger r is —k2e®?7¢**Ro. Thus, the second derivative
is discontinuous at r = Ry by a factor of ¢7. Consequently, standard basis set
methods that expand the wave function in some set of analytic functions cannot be
used with this contour. As described in Appendix B, analytic basis set methods can
be made to work if a “smooth” contour is used instead. However, using a smooth
contour rather than the “sharp” contour from Equation 3.12 adds significantly to the
cost of solving the scattered wave equation.

Two types of methods that can correctly represent a function under ECS with
the sharp contour are finite difference and finite elements. Finite element methods
divide space into finite regions and expand the wave function in each region with
a set of basis functions that are defined to be zero outside their particular region.
If Ry lies on the boundary between two regions then finite element methods can



be designed to produce wave functions with exactly the right discontinuity in their
first derivatives. Finite elements have been successfully applied to the Temkin-Poet
model [20]. However, producing the matrices for this method is expensive, making it
less suitable for the full electron-hydrogen problem.

Finite difference methods map the wave functions directly on to a numerical grid
and can produce wave functions with the correctly discontinuous first derivatives. The
matrices involved are much simpler to construct than those for finite elements. For
this and other reasons, finite difference is more easily extended to the full electron-
hydrogen problem and will be the method of choice throughout this dissertation.

3.4.1 ECS on a grid

Under ECS, the scattered wave ¢fp(2(r1), 2(r2)) is a continuous function but has
discontinuous first derivatives along the lines r; or ry equal to Ry. There is no problem
representing the wave function on a two-dimensional grid in r; and 7, but in order
to correctly approximate its derivatives on each grid point we will require that Ry be
one of the grid points. The scattered wave will be calculated directly on to the ECS
contour by solving Equation 3.5 on the two-dimensional, complex-scaled grid. .

Functions whose analytic forms are known, such as the right-hand side of Equation
3.5 and the potentials in the Hamiltonian, are mapped on to the ECS contour by
simply evaluating them on the contour z(r) for both r; and r;. The non-analytic
two-electron potential fi— is scaled in this way by noting that it is piece-wise analytic
and scaling the r; < r9 and r; > ry regions separately. The potential is unchanged
on the real part of the grid and, as will be demonstrated later in this chapter, the
potentials beyond Ry have very little effect on the wave function in the interior region.

3.4.2 Finite difference approximations to derivatives

We replace the kinetic energy term in Equation 3.2 by finite difference formulas
given in Appendix C. The second derivative with respect to r; or ro at some grid
point is represented by a formula involving the value of the wave function at that
point and at three points on either side. For a uniform grid, the seven-point finite
difference formula is accurate to sixth order in the grid spacing. The sum of the two
second derivatives forms the cross-shaped, 13-point “stencil” shown in Figure 3.3.

At one or two grid points away from 7, = 0 or ro = 0 the seven-point formulas
cannot be used because they would require terms for grid points at negative r. Less
accurate five-point formulas are used at these points instead. A very small grid
spacing near r = 0 is required because the Coulomb potentials are singular at zero, so
five-point finite difference near r = 0 still provides good accuracy. There is no such
issue at the large r boundary, 7 = Rpa. If (Rpax — Ro) is large enough that e
is effectively zero at R,.x then we can define the wave function to be zero at R,
and beyond and thus implicitly include the value of the wave function at any point
beyond the extent of the grid.

Application of exterior complex scaling to finite difference is very straight forward.
To understand how ECS is applied to the kinetic energy term, let us consider what
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Figure 3.3: The sixth order finite difference representation of the two-dimensional
Laplacian uses a 13-point stencil based on the 7-point formulas for the second deriva-
tive in one dimension as illustrated on the left. Along the grid boundaries the func-
tion’s value is fixed to be zero and the edge points are included in the finite difference
formulas implicitly. If the center of the stencil is two grid points from an edge then
the 5-point formula replaces the 7-point formula in one dimension. If the center is
one grid point from an edge then a special, asymmetric 5-point formula is used.

scaling the derivatives means.

d&? 2 (dz(r)>_2 &, &

e \dr ) a2 aE (3.16)

If all points included in the finite difference formula lie on the complex part of the grid
then we simply multiply the formula by e~*"7. By examining the formulas in Appendix
C we see that this is equivalent to multiplying the grid spacings by €. This view
is consistent with the fundamental concept expressed in Equation 3.16 that after the
ECS transformation the derivatives with respect to r become derivatives with respect
to the complex contour z(r).

In general, we apply ECS to finite difference by multiplying all grid spacings for
r > Ry by €. The finite difference formulas for r < Ry and 7 > R, differ by a factor
of e, exactly the discontinuity factor that we found when considering the outgoing
spherical wave. This is why finite difference is well-suited for a sharp ECS contour
provided that Ry is one of the grid points. Finite difference formulas for grid points
at or near I, will straddle Ry so that some of the grid “spacings” in these formulas
are real and some are complex. Therefore, we cannot assume a uniformly spaced
grid when using ECS. Specialized finite difference formulas designed for the interface
between two regions of different grid spacings are given in Appendix C.

3.4.3 System of linear equations

We will solve for ¥fp(r1,72) directly on to a two-dimensional Cartesian grid of
discretized radial coordinates that is defined in terms of a one-dimensional grid of ng
grid points spanning the space between zero and some radius Ry, > Ry. Rmax must
be large enough that the exterior complex scaled scattered wave can be assumed to be
zero for 71,79 > Rpax. Referring to Equation 3.13, we see that an outgoing wave with



momentum hk decays like e~*¥sinn(r—Fo) for r > Ry. That means we should choose 7

and Ry so that e #sinn(Fmax—Fo) i effectively zero.

The total number of grid points, and thus the number of values calculated for
Yip, is N = ng. We calculate the scattered wave by casting Equation 3.5 as a matrix
equation of the form Ax = b where x is a vector of the N unknown values of ¥Fp on
the grid, b is a vector of IV values obtained by evaluating Equation 3.14 on the grid,
and A is the N x N matrix representation of the operator (E — H ). The vectors x and
b are ordered so that the values of w;fp (r1,72) for the same 75 are stored contiguously.
To form the matrix we add together the matrix representations of each individual
term from the Hamiltonian definition in Equation 3.2. One consequence of using
exterior complex scaling, or using any grid with multiple grid spacings, is that the
Hamiltonian matrix will not be Hermitian or even complex-symmetric.

Potentials are simply evaluated on the grid and those N values, along with the
constant term F, are added to the diagonal. The finite difference formulas provide all
of the non-zero off-diagonal matrix elements. As shown in Figure 3.3, the Laplacian
at each grid point is determined by function values from no more than 13 grid points.
This means that each row of the matrix will have at most 13 nonzero matrix elements,
so the matrix is very sparse. The sparsity structure of the finite difference matrix
representation of (E — H) is shown in Figure D.1.

3.4.4 Dimension of the problem

The size of the calculation needed to obtain ¢ is governed by the total number
of grid points. Deciding how to distribute a fixed number of grid points requires
striking a balance between the higher accuracy of closely spaced grid points and the
greater information content of a grid covering a larger region. An advantage of using
the sixth order finite difference formulas is that we get a large payoff in accuracy from
small increases in grid density. In general, we can represent 1ip accurately if there
are several grid points per oscillation. Most of the calculations presented here used
five grid points per atomic unit, sufficient for incident energies less than 50 eV.

However, the Coulomb potentials are singular at r = 0 so a spacing of 0.2a, is
inadequate for representing the potentials at small 7. We can evaluate how well a
particular grid represents the Coulomb potential by diagonalizing the finite difference
approximation to the one-dimensional radial hydrogenic Hamiltonian of Equation 3.9
and comparing the negative real eigenvalues with the known bound state energies of
hydrogen. A spectrum from a complex scaled Hamiltonian is shown in Figure 3.2.
In this example a spacing of 0.01ay near r = 0 and 0.05ay out to r = 2aq gives the
ground state energy and excited state energies up to n = 4 correct to better than
0.05% and we can assume that the corresponding eigenstates are good approximations
to the true hydrogen states. Note that the calculated ground state energy is below
the exact value. With finite difference there is no variational principle that forces the
calculated ground state energy to be larger than the exact value.

Beyond r = Ry the wave function is particularly insensitive to grid spacing and we
can use very large (but still less than lag) grid spacings near r = Ry.,. Specialized
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finite difference formulas valid for “stencils” that span regions of two different grid
spacings are listed in Appendix C. These formulas allow us to use grid spacings of
0.2ag over most of the grid, a tight grid spacing for small 7, and a very large grid
spacing for large r with only a moderate cost in accuracy. These specialized formulas
also make application of ECS possible.

A typical grid that spans 100ay in real coordinates and an additional 25ay in
complex coordinates requires 458 grid points in one dimension. The total number
of grid points in two dimensions, and the dimension of the matrix equation, is then
209,764. The largest calculation presented here was for a grid that is real out to 450ag
with 1,339 grid points giving a system of 1,792,921 equations.

3.4.5 Solving linear equations

We have cast Equation 3.5 into a linear matrix equation that must be solved in
order to generate the scattered wave. The size of the matrix for the Temkin-Poet
model is large enough to warrant developing an efficient algorithm for solving the
system of linear equations, especially since we ultimately want to solve the much
larger six-dimensional problem of electron-hydrogen scattering.

Most of the matrix elements are zero and there is a huge savings in computer
memory if the matrix representation of (£ -H ) is stored in the sparse format described
in Appendix D. In a sparse matrix storage scheme only the nonzero matrix elements
are stored. Sparse matrix algorithms are more difficult to write and almost never
generate impressive MFLOPS ratings. However, if the matrix is truly sparse then the
reduction in the number of required arithmetical operations more than makes up for
this and the sparse matrix algorithms typically take significantly less time than their
dense matrix counterparts. Setting up the finite difference matrix equations is trivial
so most of the computational time is used for solving the large matrix equations.

The canonical “direct method” for solving a system of linear equations is Gaussian
elimination. Solving systems of equations of the size needed here requires highly
optimized software running on modern, high-performance computers. At present, the
only numerical software capable of directly solving matrix equations this large is a
package of LU-factorization routines, called SuperLU [19], that is designed for sparse
matrices. Time and memory costs of using SuperL.U to solve linear equations with
two-dimensional finite difference matrices are discussed in Appendix D.

The time and memory requirements for LU-factorization of the low-order finite
difference matrix are much less than those for the high-order matrix. An iterative
algorithm which arrives at the solution to the high-order equations by repeatedly
using SuperLU to directly solve the low-order equations is described in Appendix E.
This iterative algorithm gives substantial savings in memory and time compared with
directly solving the high-order finite difference matrix equations.
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Figure 3.5: Sample scattered wave for the Temkin-Poet model with triplet spin sym-
metry at an incident energy of 20.4 eV. Real parts of the wave functions are shown.
Upper picture shows wave function calculated on a grid that was real to 60ay. Lower
picture shows the same wave function after projecting out the elastic channel.



3.5 Properties of the Calculated Wave Functions

Figures 3.4 on page 23 and 3.5 on page 24 show examples of the real part of
the Temkin-Poet scattered wave for an incident energy 6.8 eV above the ionization
threshold. The singlet wave function is symmetric while the triplet wave function
is anti-symmetric with a characteristic “trough” down the ray r; = r9. Different
asymptotic components of the scattered wave, as identified in Equation 3.8, are visible.
Discrete channel components are products of outgoing waves, which span the length
of the grid, and bound states, which extend over small distances. These components
appear as oscillations localized along the r; and ry axes. The ionization component has
both electrons in the continuum and appears as circularly outgoing waves spanning
the space between the two axes. It is this part of the wave function that is difficult to
represent in traditional, “two-body” formalisms. The exponentially damped “fringe”
where the coordinates are complex is visible in each picture.

Figure 3.4 shows the singlet wave function calculated on two different sized grids.
Two distinct components of the singlet wave function are visible on the smaller grid.
Peaks along the edges are due to elastic scattering. The wavelength of those oscilla-
tions is equal to the wavelength of the incident wave, and the shape of the peaks is
proportional to the ground state radial function for hydrogen. Circular waves corre-
sponding to ionization span the space between the two coordinate axes. These have
a longer wavelength because ionization requires a loss of kinetic energy equal to the
ionization potential of hydrogen (13.6 eV). More components of the wave function are
visible on the larger grid. At larger distances, excitation channel components emerge.
These look like products of excited states of hydrogen, which extend further from the
axes, and plane waves with longer wavelengths. The presence of different wavelengths
causes a “beat” pattern in the wave function along the edges of the grid.

The upper picture in Figure 3.5 shows the triplet wave function calculated on
a grid that is real out to 60ag. Elastic scattering dominates this wave function so
much that almost nothing else is visible. The lower picture in Figure 3.5 shows the
same wave function but with the elastic scattering component projected out using
the projection operators defined in Equations 4.10 and 4.11. With the elastic channel
removed the wave function on the edges of the grid is dominated by excitation of the
n = 2 state. By comparing the upper and lower pictures we can see the difference in
the wavelengths of the elastic (n = 1) and the n = 2 components. Also, the shape
of the peaks in the lower picture is proportional to the n = 2 radial function for
hydrogen. Because the triplet wave function is anti-symmetric, the ionization waves
have a “trough” along the ray r; = 7.

In the examples shown in Figures 3.4 and 3.5 the ionization component forms well-
defined outgoing waves in the hyperradius p within about 20ay. As the scattered wave
propagates away from the origin the discrete channel components remain confined to
a certain distance from each edge so they occupy a continuously decreasing range of
the hyperangle «. The ionization wave, however, continues to span the full range of
a. Thus, as the scattered wave propagates outward the discrete channel components
spatially separate from the ionization wave so that an increasingly larger fraction of
the ionization wave is “uncovered” by the discrete channel components.
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Figure 3.6: The absolute value of the scattered wave radial functions along arcs of
a constant hyperradius. At each hyperradius two wave functions corresponding to
incident energies E; = 14.1¢V and 54.4eV are shown. For each energy the vertical
scale is the same at every hyperradius.

This uncovering of the ionization wave is visible in Figure 3.6 which shows cross-
sections of the scattered wave for two incident energies along six different arcs of
constant hyperradius. Looking at either wave function, we can see initially that for
a hyperradius of 20aq there are two well-defined peaks corresponding to elastic scat-
tering with a smooth curve between them. As the hyperradius increases the elastic
scattering peak becomes confined to a smaller region of the hyperangle. Also, peaks
corresponding to the excitation components begin to emerge as they, too, become con-
fined to smaller regions of the hyperangle. The heights of the discrete channel peaks
remain essentially constant, aside from small fluctuations due to the beat pattern
mentioned previously, while the height of the ionization curve decreases monotoni-
cally with increasing hyperradius.

Although, formally, there are an infinite number of excitation channels present,
their importance relative to ionization decreases for increasing energy quantum num-
ber. For a given incident energy there are a finite number of discrete channel com-
ponents that need to be removed from the scattered wave to isolate the majority of
the ionization wave to acceptable accuracy. The number of these components that
cannot be ignored determines how far from the origin we must look in order to see the
uncovered ionization wave. As can be seen in Figure 3.6, for incident energies near
the ionization threshold the uncovering of the ionization wave happens much more
slowly. This is because the ionization wave is much smaller relative to the discrete



channel components at scattering energies slightly above the ionization threshold.

3.6 Accuracy of the Calculated Wave Functions

Accuracy of the calculated wave functions can be affected by numerical error in
the calculations as well as systematic error due to the formalism. Numerical error
can come from round-off errors in solving the large systems of linear equations but is
mainly due to error in the finite difference representation. The primary grid spacing
is typically 0.2aq, so by using sixth order finite difference formulas the error should
be no more than 10~*. Thus, we expect the numerical error in the wave functions to
be better than a tenth of a percent.

In terms of systematic error, the main concern is the effect from truncating the
Coulomb potentials. We are trying to use artificially short-range potentials to calcu-
late information for systems with long-range potentials. In order for these calculations
to be meaningful, it is necessary that on the interior region the wave function be un-
affected by truncating the potentials. We can check this by comparing two wave
functions calculated on different grids, with the size of the grid determining where
the potentials are truncated. v

Figure 3.7 shows several comparisons performed along arcs of constant hyperradius
p, similar to Figure 3.6. For the most part, the relative differences in the wave
functions are no more than 0.01% which is less than the estimated numerical error for a
primary grid spacing of 0.35a4. The differences are somewhat greater for comparisons
done at larger p but are still acceptable, especially considering that the grid spacing
used for these comparisons was wider than what would normally be used.

Plots in Figure 3.7 compare results from potentials truncated at different distances.
Ideally, we would compare to results for truly infinite range Coulomb potentials.
Of course, this is impossible. Instead, we can see if the calculated wave functions
are approaching the asymptotic form for ionization given in Equation 3.11. This
two-dimensional form was presented by analogy with the Rudge asymptotic form in
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Figure 3.7: Comparison of 14.4eV incident energy, singlet, Temkin-Poet wave func-
tions along a constant hyperradius p for calculations using grids that were real out
to different values of Ry. The primary grid spacing used in these calculations was
0.35aq. All distances are in units of ag.
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Figure 3.8: Demonstration of the logarithmic phase term in the singlet Temkin-Poet
scattered wave for 54.4eV incident energy. All four figures show the real part of
Ytp(r1,m2) (solid line) along the ray r; = 5. The wave function is complex scaled
beyond 283ay. The upper figures show a function (dashed line) with a logarithmic
phase fit to ¥fp. The fit was done for large values of the hyperradius p and the
two curves are distinguishable only for p > 283ay where 17, is complex scaled. The
upper right compares the same functions for a region of smaller p where there are
slight differences in the amplitudes between the two. The lower figures make the same
comparison, but fit to a functional form without a logarithmic phase. The fit is again
done at large p, but this time there is a noticeable difference in phase at smaller p.

Equation 2.11 which is valid only when the two electrons are well separated from
each other. It is unclear exactly what this means in the Temkin-Poet model so we
certainly cannot use the form in Equation 3.11 to match to the entire wave function.
However, if we look only along the ray r; = r, then we can expect ¥fp to have the
essential features of Equation 3.11: a logarithmic term in the phase and a \/iﬁ decay
in the amplitude.

In Figure 3.8 the real part of the wave function along the ray r; = ry is compared
to a function of the form '\% sin (kp + Bln2kp + C) where 2%&2 = FE, which in this
example is 54.4 eV. The wave function was calculated on a grid that was real on a box
of length 200aq so the coordinates are real out to p = 282.8a, along the ray r, = 72.
Coefficients A, B, and C were chosen to fit 17 locally over a range of p between
270ag and 280a,. This functional form fits 9fp in this region so well that it is visible
only beyond 283ay, where i, is exponentially damped by the complex coordinates.
Even at smaller p it fits ¢fp very well, with only a slight difference in amplitude but

still very good agreement in phase.

For comparison, the same type of fit was done without the logarithmic phase term
i.e., forcing the coefficient B to be zero. Coeflicients A and C were chosen to match
yip over the same range of p between 270aq and 280ay. Even without the logarithmic
phase we can match 1p well over a small region, but there is a significant difference
in phase when we examine a different range of p. Logarithmic phase terms are char-
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Figure 3.9: The figure on the left shows the absolute value of ¥ (71, 72) along the ray
r1 = 7o for incident energies of 54.4eV and 14.14eV. Several dashed lines proportional

to \/L’_) are provided for reference. On the right is an attempt to fit ¢fp for 14.14eV

to the same functional form as in Figure 3.8, with a logarithmic phase term.

acteristic of Coulomb potentials and the fact that a logarithmic phase is present in
our calculated wave functions suggests that truncating the Coulomb potentials has
not caused fundamental damage.

1

The other feature we expect to see in the wave function is a N/ decay in the

amplitude. It is clear from Figure 3.8 that this is indeed the case, at least for 54.4 eV -

incident energy. The \/Lﬁ decay is a consequence of having both electrons in the con-

tinuum. Discrete channel components have just one electron in the continuum and do
not decay as the radial coordinate for the continuum electron increases. Thus, the 7.17_)
dependence requires the absence of discrete channel components. From Figure 3.6 we
know that for very low incident energies the discrete channels contribute significantly
to ¢fp over a much larger region.

The absolute value of ¥fp for incident energies of 54.4 eV and 14.14 eV is plotted
on a logarithmic scale in Figure 3.9. We can see that along the ray r; = ry the 54.4
eV wave function decays like \/Lﬁ beyond about 20ay. On the other hand, the 14.14
eV wave function does not exhibit this behavior even at 280ay. An attempt to fit the
14.14 eV wave function to the same functional form as in Figure 3.8 confirms that
this wave function still has not reached its asymptotic form.

So, exterior complex scaling provides a means for calculating the scattering wave
function to arbitrary accuracy, but only on a finite region. We can extract physical
quantities from the calculated wave functions if we are able to limit our analysis to
the region in which both coordinates are real. To get meaningful results for ionization
we need to make the complex scaling point large enough so that a significant portion
of the ionization wave has been “uncovered” before the coordinates become complex.
Incident energies very near the ionization threshold will require huge calculations
so there is an effective lower limit in energy for which this method works. In the
next chapter we will investigate the validity of extracting scattering information from
calculated wave functions that are known on only a finite region of space.
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Chapter 4

Calculating Cross Sections for
Electron-Impact Ionization

Having calculated wave functions that describe ionization, we need a procedure
for extracting from them differential cross sections for ionization. The total scatter-
ing cross section is the sum of discrete cross sections for elastic scattering, for each
excitation, and for ionization. In the elastic and excitation channels the energy of the
outgoing electron is quantized. However, when ionization occurs energy is shared con-
tinuously between two outgoing electrons. Single differential cross sections describe
this energy sharing. Although differential cross sections for ionization are intrinsically
tied to the asymptotic form for three-body breakup, they can be extracted from a
wave function known only over a finite region by directly calculating the scattered
flux and then using an extrapolation procedure. This method has produced accurate
single differential cross sections in the Temkin-Poet model [3].

4.1 Total Cross Section

Scattering cross sections are defined in terms of the probability current density for
the scattered wave. For consistency with the full electron-hydrogen problem we will
treat the Temkin-Poet wave 1fp(r1,72) as the radial function for a six-dimensional
scattered wave that happens to have no angular dependence. The six-dimensional
scattered wave ¥} and the three-dimensional ground state function ®;5 are related,
in the Temkin-Poet model, to their radial function counterparts (defined in Equations
3.4 and 3.6) by multiplication by appropriate factor(s) of +Yg ().

D1, (7) = 7o1(r)Yool7)  WE(7, 7o) = ootbitp(r1,72) Yoo(r1) Yoo(r2) (4.1)

Scattering processes are quantified by scattering cross sections defined as the scat-
tered flux divided by the incident flux density. The flux density of some wave function
¥ through a surface S is defined as the probability current density js along the surface
normal 7ng.

js = Im { TV} - i (4.2)



The gradient in Equation 4.2 is the one appropriate for the coordinate space in which
¥ is defined.

For a plane wave e*** the flux density is k; in the 2 direction. We need to relate
sin k;r in the Temkin-Poet initial state (Equation 3.7) to the expansion of a plane
wave in terms of Ricatti-Bessel functions jl(kﬂ)

— ﬁl(lﬁﬂ”)

e = 3" 4w (20 + 1)
1=0 ki

Yio(7) (4.3)

Since jo(k;iv) = sin(k;r) the initial state defined in Equation 3.7, after multiplication
by the %YO,O(f) factors, is equal to the [ = 0 term of the expansion in Equation
4.3 anti-symmetrized with the hydrogen ground state and multiplied by f—& Thus,
the incident flux density i 1n the Temkin-Poet model, with the initial state defined in

Equation 3.7, should be —L

Measuring the scattered flux requires a closed surface S in six-dimensional space
that surrounds the interaction region. The discrete channel flux is outgoing in vy and
ro while the ionization flux is outgoing in the hyperspherical radius p. Since discrete
channel flux remains localized near the r; and r axes in a two-dimensional radial
coordinate system (see Figure 3.6) we can say that, in the limit p — oo, all scattered
flux is outgoing in p. Thus, the appropriate surface S is a hypersphere of radius p = Po
in the limit py — oo.

We define the probability current density j,, through a hypersphere of radius pg
by Equation 4.2 with surface normal s = p. In general, j,, is a function of the two
sets of angular coordinates 7#; and 75 and the hyperspherical angle a.

*x d

jpo(fl,f'z,a)zIm{(\If:C(Fl,Fz)) & (w7 3))} (4.4)

p=p0

The total cross section is obtained by integrating j,, (in the limit py — oco) over the
surface of the hypersphere and dividing by the incident flux.

Ototal — hrn /Jpo T1,T2, & S (4-5)

The differential dS represents the surface differential of a hypersphere such that it is re-

lated to the full six-dimensional volume element by dSdp = dr3dr3 = riridf,drydridrs.

dS = riridfdfypda (4.6)

We can now write an expression for the total cross section as a surface integral in
terms of the scattered wave W} . For later convenience, the Jacobian factor (ry,r,)?
is associated with the scattered wave. We will take Equation 4.7 as our working
definition of the total cross section.

v L onwx d L. .
Ototal = F/SIIH{(H,M‘I’:C(H,TQ)) i (7‘1,7“2‘11;(7"1,7"2))}Pdrldﬁda (4.7)

p—r00
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The normalization in Equation 4.7 is for the initial state defined in Equation 3.7.

A more numerically stable method for calculating the total cross section comes
from converting the surface integral in Equation 4.7 to a volume integral by applying
Green’s theorem.

47 L L \* LS
Ciotal = e /Im {(\11;(7"1,7'2)) VQ\IJ:C(Tl,TQ)} dr:{’drg (4.8)

The operator V2 is the 6-dimensional Laplacian and the integration is over all space
for both coordinates. For the case of the Temkin-Poet model, integration over the
angular coordinates merely removes the spherical harmonics contained in ¥ leaving
just the radial scattered wave ¥fp.

S . sfd A\
Ototal = = /Im (¢TP(7"1,7"2)) d_rf + ar? wTP(T1>T2) dridry (4-9)
o

2

Equation 4.9 is the volume integral expression for the Temkin-Poet total cross section.
Integration is from zero to infinity in both radial coordinates.

4.2 Channel Cross Sections

Channel cross sections o, correspond to elastic scattering or excitations with one
electron left behind in the ¢, bound state. To define them we will use the two-
dimensional projection operator P, (r1, 7).

Pn(r1,72) = Pu(r1) + Pn(r2) — Po(ry)Pa(rs) (4.10)

Each one-dimensional projection operator P, (r) projects on to the bound state ¢, ().

(o]

Po(r) f(r) = ¢n(r) / () f ()" (4.11)

0

As indicated in Equation 3.8, the scattered wave can be completely described asymp-
totically as components for ionization and each bound state. Thus, the ionization
component is the piece of the wave function that remains after all bound state com-
ponents have been removed so we can in principle define a projection operator cor-
responding to ionization.

o

Pion(r1,m2) =1 — > Py(ry,72) (4.12)

n=1

In order to use the projection operators we need an alternate expression for the
total cross section. Any real potential can be added to the second derivatives inside
the integrand in Equation 4.9 without changing the value of the cross section. For



1s — 1s elastic cross section (units of a3)

| incident energy (eV) ]| 16.5 | 19.6 [ 23.1 [ 27.2 | 30.6 |
ECS (Ry = 100ao) 3.093 | 2.433 | 1.978 [ 1.644 [ 1.449
Poet [26] 3.103 | 2.443 [ 1.987 | 1.651 | 1.456
Burke and Mitchell [14] || 2.878 | 2.428 | 1.938 | 1.663 | 1.509

1s — 2s excitation cross section (units of a3)

| incident energy (eV) [ 165 | 19.6 | 23.1 | 27.2 | 30.6 |
ECS (Ry = 100ao) 0.441 | 0.355 [ 0.277 [ 0.211 [ 0.172
Poet [26] 0.444 | 0.356 [ 0.276 | 0.211 | 0.172
Burke and Mitchell [14] [ 0.627 [ 0.347 | 0.302 | 0.211 | 0.157

Table 4.1: Elastic and first excitation cross sections for the Temkin-Poet model with
singlet spin symmetry. Values calculated using exterior complex scaling (ECS) beyond
Ry = 100ay are given along with “exact” values calculated by Poet using a method
specialized for the Temkin-Poet model. Results from an early close-coupling calcula-
tion by Burke and Mitchell are also shown. These values have not been multiplied by
spin statistics factors.

instance, we can write an equivalent expression in terms of the S-wave hydrogen radial
Hamiltonian in Equation 3.9 which will be denoted here by HO so that Hoqﬁn = €,Pn.

Ototal — —

i;r/?; /Im { (7/1:;?(7“1, 7‘2))* [ﬁo(ﬁ) + ﬁo(m)] Yip(r1, 7"2)} dridri (4.13)
K} )

To arrive at the channel cross sections, we insert the identity operator 1 as the
sum of all projection operators P, including the ionization projection operator Piqp,.
Since the projection operators all commute with the hydrogen Hamiltonian H, and
Pn(r1,72)Prr (11, 72) = 65 n/Pn(r1,72) the total cross section is now a sum of individual
“channel” cross sections. -

Ototal — Z On + Oion (414)
n=1
Each discrete channel cross section o, can be calculated via an expression analogous
to Equation 4.9 but with the projection operator P,, acting on the scattered wave.

_ 47T + * d2 dQ +
Op = F /III’I (Pn,lr/}TP(Tla 7'2)) d—’f'% + W (inTP(TbTQ)) dTldTQ (415)

2

We can immediately identify o, as the elastic scattering cross section and each o,, for
n > 1 as the cross section for excitation into the ¢, bound state.

The channel cross sections provide our first opportunity to judge the accuracy
of the scattered wave calculated by exterior complex scaling. Accurate values for
the channel cross sections have been calculated by R. Poet [26,27]. Table 4.1 lists
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singlet o, (in units of a%) for 14.14eV incident energy
I@CS beyond Ro = I 40a, ] 50(1,0 | 70&0 | 100ay I 150(1,0 l
total : | 4.53915 | 4.53914 | 4.53914 | 4.53913 | 4.53914
n=1:13.88524 | 3.88523 | 3.88523 | 3.88522 | 3.88523 |-
n =2 :{0.50096 | 0.50096 | 0.50097 | 0.50096 | 0.50096
n=23:1]0.09453 | 0.09453 | 0.09453 | 0.09453 | 0.09453
n=4:10.02781 | 0.02839 | 0.02844 | 0.02844 | 0.02844
n=25:[0.00483 | 0.00963 | 0.01131 | 0.01134 | 0.01134
n==6:0.00190 | 0.00152 | 0.00473 | 0.00544 | 0.00545

triplet o, (in units of a3) for 14.14eV incident energy
| ECS beyond Ry = | 40ap | 50ag | 70a, [ 100aq | 150a, |
total : | 11.6240 | 11.6240 | 11.6241 | 11.6240 | 11.6241
n=1:]11.6142 | 11.6142 | 11.6143 | 11.6142 | 11.6143
n=2:10.00938 | 0.00938 | 0.00939 | 0.00939 | 0.00939
n=3:|0.00027 | 0.00027 | 0.00027 | 0.00027 | 0.00027
n =4 :1]0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003

Table 4.2: Total and several discrete channel cross sections for 14.14eV incident
energy. Results are given for both singlet and triplet spin symmetries (spin statistics
factors not included) from calculations using different size grids.

some of these for the elastic channel and first excitation channel along with values
calculated using complex scaling beyond 100aq. Values are given for several energies
above the ionization threshold. In all cases, the difference between Poet’s values and
those calculated here is better than 0.1%. This suggests that at least some scattering
information can be obtained from a finite range, ECS transformed scattered wave.

The only systematic error in the ECS formalism comes from truncating the Coulomb
potentials where the coordinates become complex. We expect that truncating the po-
tentials might affect only those channels corresponding to bound states that extend
beyond the range of the real coordinates. Total and several channel cross sections for
an incident energy just 0.5 eV above the ionization threshold are listed in Table 4.2.
Results from calculations using several values of the complex scaling point Ry are
given. The total and elastic scattering (n = 1) cross sections as well as the excitation
cross sections up to n = 3 are essentially identical for By = 40ay and beyond. For
the singlet case the n = 4 cross section changes slightly for Ry larger than 40a, while
the n = 5 and n = 6 cross sections change significantly.

Error in the wave function is mainly in the excitation channels for states that
extend beyond where the Coulomb potential is truncated. Looking at Table 4.2, we
see that if Ry is 100aq or larger the discrete channels up to n = 5 are accurately
represented. The relative contributions of the excitation channels to the total wave
function decrease rapidly as m increases. Note that this decrease in the relative



contribution from the excitation channels is especially rapid in the triplet case. This is
a unique characteristic of the Temkin-Poet model and will not be a feature of electron-
hydrogen scattering. Channel cross sections converge rapidly as Ry increases and we
can assume that for Ry of at least 100ay the error from truncating the potentials is
no worse than numerical error from using finite difference.

The rapid decrease in the channel cross sections as n increases suggests that we
might obtain accurate total ionization cross sections by subtracting the elastic and
excitation channel cross sections from the total cross section. As we will see later, the
ionization cross section is a small fraction of the total and, in some cases, subtracting
channel cross sections up to n = 6 may not be enough to produce an accurate ioniza-
tion cross section. If enough discrete channels can be accurately represented on the
grid then subtracting channel cross sections from the total is the most accurate way
to calculate a total ionization cross section. However, this does not lead to a method
for producing differential cross sections. For that we will need a different approach.

4.3 Differential Cross Section for Ionization

The surface integral expression for the total cross section in Equation 4.7 provides
a natural means for defining a differential cross section with respect to the four an-
gular coordinates and the hyperspherical angle «. We will soon see that the angle «
parametrizes energy sharing between the two outgoing electrons. Consequently, the
~ integrand in Equation 4.7 will lead to a cross section that is differential with respect
to the energy of one electron as well as the directions of both electrons.

The greatest challenge in treating ionization is correctly describing energy shar-
ing between the two outgoing electrons. Since there is no directional dependence
in the Temkin-Poet model we can perform the trivial integration over the angular
coordinates in Equation 4.7 and look at just the o dependence.

w/2

Ototal = i—g / Im {(I/J:I"_P(Tla 7’2))* dip (’%tp(?“l, 7‘2))} pda (4.16)
b

P00

The integrand in Equation 4.16 defines a differential cross section with respect to «,
but only in the limit p — oc. Under exterior complex scaling we know the wave
function only on a finite region, so we need a means of extracting the p — oo limit
from a finite region of space. To this end, let us first define a generalized flux f, ()
evaluated at a finite hyperradius py.

o) = 1 o (v ra)) 51 (i)} (@17)

p=p0

The f,,(«) are always symmetric about o = 45° just like the absolute value of the
scattered wave plotted along arcs of constant p in Figure 3.6. Examples of f,;(a) cal-
culated from the same wave function, but at different values of p; are shown in Figure
4.1. The plots in Figure 4.1 show the behavior of the two distinctive components of
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Figure 4.1: Flux, as a function of the hyperangle, calculated for various values of the
hyperradius p in the Temkin-Poet model with incident energy of 20.4 eV. The flux is
symmetric about 45°. The upper figures zoom in on the discrete channel contributions
near the edges while the lower figures show the smaller ionization component.

the flux (discrete channel peaks near the edges and the ionization component in the
middle) as the flux surface moves outward in the hyperradius.

As po increases the width of the discrete channel peaks decrease and more of the
ionization component is uncovered. Unlike the peaks shown in Figure 3.6, the peaks
in the flux increase monotonically with py due to the factor of p in Equation 4.17.
This must be so because conservation of flux in each channel requires that the areas
under the peaks remain constant. In the limit py — oo the discrete channel flux will
become delta functions in « at zero and 90° and f,, will consist only of ionization flux
except for infinitesimally small regions near the edges. Thus, we can use f, (a) to

define a differential cross section d"ﬁi‘;(a) for ionization that is valid everywhere except
very near o equals zero and 90°.

7/2 ) . ‘
Oion = [ ipldar, L) = lim 35, (0) (4.18)

This differential cross section is supposed to give the total ionization cross section
when integrated over the full range of a. The conditional equality in the definition
of ﬂ% reflects the fact that f,,(a) formally contains discrete channel contributions
at o equals zero and 90°. In principle, we could eliminate the discrete channel con-
tributions by forcing d”i;—’&(“) to be zero at a equal to zero and 90° after taking the
po — oo limit. »

To obtain the differential cross section defined in Equation 4.18 we need to some-
how take the py — oo limit of the flux from a wave function known only on a finite
region of space. If we substitute the asymptotic form for the ionization part of the
scattered wave given in Equation 3.11 for ¢ in Equation 4.17 we see that the ion-
ization part of the flux f, (a) approaches its asymptotic limit like pl—o.

for large p: (@) ~ feola) + % (4.19)

Thus, if we calculate f, () for two or more values of p, that are large enough for this
form to apply we can estimate the flux in the pg — oo limit by fitting Equation 4.19
to the calculated f,,.
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Figure 4.2: Comparison of calculated flux to a % extrapolation curve in the Temkin-
Poet model with incident energy of 20.4 eV. The comparision is done for three different
values of the hyperangle. The solid line is the % least-squares fit and the markers are
the values of the flux from the wave function. The values of the flux that were used
to produce the least-squares fit are circled.

Examples of fitting the functional form in Equation 4.19 to the f,, from a particular
scattered wave are shown in Figure 4.2. In this example the function A(«) and the
po — oo limit of the flux were estimated by a least-squares fit using f,, calculated at
five evenly spaced values of py ranging from 180ay to 200ay. The curves in Figure 4.2
are the resulting fits, as functions of p, plotted for three different values of . For
comparison, f,, calculated at several values of p, are also shown. Only the last five
directly calculated f,, shown in Figure 4.2 were used for the least-squares fit.

Other f,, (evaluated at smaller py) are plotted to show how well the f,; fit Equation
4.19 for different hyperangles. At hyperangles of 30° and 45° the flux fits the form
in Equation 4.19 very well beyond p ~ 100a,. However, at a hyperangle of 15° the
flux does not reach this form until somewhere beyond 150a¢. In general, the form
in Equation 4.19 is reached more slowly for o near zero and 90°. This is primarily
due to “contamination” from discrete channels, which do not extrapolate in this way,
near the edges of the grid.

In the true p — oo limit, as py increases the discrete channel peaks in the f,
become confined to infinitesimal regions of a near the endpoints. This behavior
cannot be replicated by extrapolation. Consequently, the region over which dm—;’(‘)‘(a—) is
valid is restricted to the range of « over which the f,; used for the extrapolation do
not contain appreciable amounts of discrete channel contributions. In other words,
extrapolation does not provide a means for further “uncovering” the ionization flux.
Thus, we cannot calculate g{%ga_) in this manner over the full range of a. Figure 4.3

shows three different %ﬁl obtained by extrapolation from f,, from three different,
disjoint ranges of py. They all have large oscillations near the edges that come from
trying to extrapolate the discrete channel components using Equation 4.19. Each
extrapolated curve is valid only over the region of o where it is smooth.

One might think that we could use the projection operators defined in Equation
4.10 to remove the discrete channel components from the scattered wave leaving
behind a pure ionization wave. However, if we were to actually try projecting out
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Figure 4.3: Comparision of flux extrapolated from different ranges of the hyperradius
in the Temkin-Poet model at two different incident energies. Each extrapolation was
from flux calculated at three different values of the hyperradius over a 10ay range. The
curves are identified by the largest hyperradius that was used for the extrapolation.

all of the discrete channel components (or, at least all of those that fit on the grid)
we would find that the remaining wave function does not have the expected smooth
behavior over the full range of a. This is because the discrete channel projection
operators project out states that are not eigenfunctions of the full Hamiltonian. They
are, instead, eigenfunctions of an “asymptotic” Hamiltonian describing a hydrogen
atom and a free electron. All of the dynamics of the true ionization wave are governed
by the full Hamiltonian and it cannot be assumed to be orthogonal to the asymptotic
forms for the discrete channels. For this reason, distinguishing between the ionization
wave and the discrete channels really does rely on spatial separation of the different
components. Because we know the wave function only over a finite region of space,
projecting out discrete channels from the scattered wave will not improve our ability
to calculate d"ﬁ—"a(a) near « equals zero and 90°.

Formally, there are an infinite number of discrete channels present in the scattered
wave. The larger the energy quantum number n the greater the extent of the bound
state. That means for any finite grid, no matter how large, we can always find a
maximum 7 for which the n** and higher bound states extend beyond the range
of the grid. These bound states cannot be correctly represented on the grid and the
corresponding discrete channel components of the scattered wave cannot be accurately
removed using projection operators.

Removing the first few discrete channel components would certainly make the os-
cillations in Figure 4.3 much less dramatic, but they would still exist over the same
range of o because it is actually the higher excitation channels that are the limiting
factor. Furthermore, the rate at which the ionization component reaches the asymp-
totic form in Equation 3.11 is no faster than the rate at which the discrete channel
components “uncover” the ionization wave. This means that even after as many dis-
crete channels as possible are removed, the flux from the “uncovered” ionization wave



may still not fit Equation 4.19.

We can see in Figure 4.3 that the size of the region over which d‘”;;&(a) is valid
depends on the distance at which the f,, used in the extrapolation were calculated.
doion(a) extrapolated from 100ay and

do
200aq are valid between a = 15° and o = 75°, while the 19%“—) extrapolated from

50ay is valid only between o = 30° and o = 60°. In the higher energy example the
regions of validity are somewhat larger. Over the range of « in which all of the d”—‘;‘(‘l(—al
are valid there is quite good agreement among the different extrapolated results. The
plots in Figure 4.3 suggest that, within the range of « that extrapolation is valid, the
error due to extrapolation in p is about 5%.

For the lower energy example in Figure 4.3 the

4.4 Single Differential Cross Section

The hyperspherical angle o has no direct physical meaning so differential cross
sections with respect to a are of little practical use. Instead, we are interested in a
differential cross section that describes how energy is shared between the two outgoing
electrons. The single differential cross section (SDCS) is a differential cross section
with respect to the energy of one electron. It is directly related to 9Ze(®)

da(a) because «
parametrizes the energy distribution between the two electrons. ‘

We associate two momenta k; and k; with the two outgoing electrons. The mo-
menta are constrained by conservation of energy so that {%(k% +k2) = E. Looking at
the final state semi-classically, we know that the electron with the larger momentum
is moving faster so, at some time following ionization, that electron will be further
from the nucleus than the “slow” electron will be. If we trace the trajectory at large
distances for this semi-classical picture in the two-dimensional radial plane it should
follow a fixed ray for some hyperspherical angle a.

So, intuitively we expect that for large p the hyperspherical angle a parametrizes
the energy sharing between the two outgoing electrons.

lim tan™" (%) — tan™! <T—2> =a (4.20)

The relation in Equation 4.20 was shown formally by Rudge [34] by a stationary
phase argument. Using this relation, a differential cross section for electron-impact
ionization that is a function of o can be converted to a cross section that is differential
in the energy of one of the two electrons.

The individual electrons’” momenta are proportional to sin & and cos « for large
p and their kinetic energies are &; = E cos’ @ and €, = F'sin? . To convert from a
differential with respect to « to a differential with respect to the energy of the second
electron we divide d—“"(‘jl;& by the quantity % = 2Esinacosa. Energy differential

cross sections fl”i—gg(—a—) will be symmetric about € = % just as the d”ﬁ(“—) are symmetric

about o = 45°. By convention, the SDCS is the energy differential cross section
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Figure 4.4: Differential cross sections in the Temkin-Poet model for 54.4 €V incident
energy. The upper plots are the singlet cross section multiplied by a spin statistics
factor of , the lower are the triplet multiplied by 2. The “raw” 92 (dashed lines on
the right) come directly from extrapolating the flux in p and are converted to “raw”
27 (dashed lines on the left). The noise at the edges of the “raw” % is replaced by
a linear extrapolation in ¢ to produce the final SDCS (solid lines on the left). The

final SDCS were transformed back to a final -d”%;}g—) (solid lines on the right).

defined for £ between zero and %

E/2
d ion
Gion = / id 8(5)(15 (4.21)
0

d

The total ionization cross section is obtained by integrating the SDCS over half of

the energy range so there is an additional factor of two contained in the conversion
from en(®) ¢4 the SDCS, @ienle),

daion (8)
de

. 1 doion (Oj)
- Esinacosa da

(4.22)

e=FEsin® o

Equation 4.22 along with Equations 4.18 and 4.17 define the energy sharing SDCS in
terms of a flux calculated as a function of a.

We are still faced with the problem that extrapolation in p produces a differential
cross section that is invalid near & = 0 and « = 90°. This means that we cannot
calculate the SDCS for the case where one of the electrons carries most of the energy.
We know that the correct SDCS should be a very smooth function of €. In fact, the
SDCS can be assumed to be linear near € = 0.

The two differential cross sections d”igg(’s) and d"‘g'&(a) for both singlet and triplet
spin symmetries at an incident energy of 54.4 eV are shown in Figure 4.4. The
dashed lines are the “raw” results obtained directly from extrapolation in p. These
lines contain large amplitude noise from the discrete channels near the edges. In both
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Figure 4.5: Examples of the singlet, triplet, and total SDCS at incident energies of
27.2 €V and 81.6 eV. The singlet and triplet cross sections have been multiplied by
the appropriate spin statistics factors.

spin symmetries the SDCS is essentially linear near where the discrete channel noise
begins. This suggests that we can estimate the SDCS for small € by replacing the
discrete channel noise with a linear extrapolation in €. The solid lines in the left
panels of Figure 4.4 are the final SDCS obtained by replacing the “raw” SDCS for
small € with a linear fit in € that is matched to the “raw” SDCS at the lowest value
of ¢ where the extrapolated results can be assumed to be reasonably accurate.
Choosing the value of € at which to perform the linear match is, admittedly, a
somewhat arbitrary process and there is really no way to quantify the accuracy of
the procedure. In practice, we choose the matching point by looking at plots similar
to Figure 4.4 and choosing a value of ¢ just inside where the oscillations are visible.
In Figure 4.4 we see that the fraction of the energy range occupied by discrete
channel noise in the “raw” SDCS is much smaller than the fraction of the total «
range occupied by the noise in the “raw” %2. This is because converting from a
function of « to a function of ¢ compresses the function near the ends. Consequently,
the fraction of the SDCS that comes from the linear fit is much smaller than might

be expected from looking at plots of the “raw” d”fl—;(a). Converting the final SDCS

back to a differential with respect to a shows what the true d-"%l should look like
over the full range of a.

4.5 Temkin-Poet Results

Examples of the final SDCS for both singlet and triplet spin symmetries are shown
in Figure 4.5. The total SDCS is the sum of the singlet and triplet SDCS with statis-
tical weights of i multiplying the singlet cross section and % multiplying the triplet
cross section. All of the SDCS are symmetric and very smooth with the minimum
value at % and the maximum value at zero and E. These general characteristics of
the SDCS will carry over to electron-hydrogen scattering. The SDCS for the triplet
case are zero at € = % because the triplet radial wave functions are anti-symmetric.
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Figure 4.6: Comparison of convergent close-coupling [6] and exterior complex scaling
results for the singlet and triplet SDCS in the Temkin-Poet model at 40.8 eV incident
energy. The ECS results (solid lines) are shown over the full energy range (0 to 27.2
eV) to illustrate the symmetry in the method. They are normalized so that the total
ionization cross section is the integral from 0 to E/2 = 13.6 eV. The CCC data
(diamonds) are not symmetric about E/2. In the singlet case the CCC data has large
oscillations so it is replaced by an integral preserving estimate (dashed line) which is
defined between 0 and E/2.

Overall, the triplet SDCS is much smaller than the singlet SDCS. In fact, all inelas-
tic processes, including ionization, in the Temkin-Poet model are dominated by the
singlet spin symmetry. This characteristic is unique to two-dimensional models such
as Temkin-Poet and will not carry over to electron-hydrogen scattering.

Singlet and triplet SDCS for 40.8 eV incident energy are compared in Figure 4.6
with results calculated by Igor Bray [6] using the convergent close-coupling (CCC)
method. CCC is very good for calculating discrete channel cross sections for electron-
atom scattering. It also has shown promise for calculating total ionization cross
sections. However, it has, so far, been unable to produce correct differential ionization
cross sections, even in the Temkin-Poet model, for incident energies below 100 eV.
The SDCS produced by CCC are always asymmetric. If the method produced SDCS
that were correct only from zero to % then the calculated cross section in the upper-
half of the energy range would be irrelevant. This is the case for the triplet spin
symmetry, but not for the singlet spin symmetry.

Bray claims that the calculated values in the singlet case oscillate about the correct
SDCS and he replaces them with a smooth estimate of the true SDCS between zero
and % The properties of the singlet and triplet SDCS calculated in the CCC method
for two-dimensional models is discussed in reference [30]. The ability of the CCC
method to calculate the triplet SDCS is made possible only because the triplet SDCS
is zero at % This does not provide much hope for CCC being generally successful at
calculating differential ionization cross sections because no SDCS in a real system is
zero for equal energy sharing.



| Eo | 20.4eV | 27.2eV | 40.8¢V | 54.4eV | 68.0eV | 81.6eV |
| Oww ]| 2.9989 ] 2.2373 | 1.4816 | 1.0842 [ 0.8381 | 0.6713 |
oy 2.3077 | 1.6437 | 1.0826 | 0.8106 | 0.6421 | 0.5256
2 0.3354 | 0.2113 | 0.1008 | 0.0580 | 0.0375 | 0.0263
o3 0.0865 | 0.0565 | 0.0267 | 0.0151 | 0.0096 | 0.0067
o4 0.0343 | 0.0223 | 0.0109 | 0.0061 | 0.0039 | 0.0027
os 0.0170 | 0.0116 | 0.0055 | 0.0031 | 0.0019 [ 0.0013
06 0.0097 | 0.0066 | 0.0031 | 0.0018 | 0.0011 [ 0.0008
Ttotal — %1 op || 0.2083 | 0.2846 | 0.2520 | 0.1896 | 0.1420 | 0.1080
E/2
f/ doion(elge || 0.2028 | 0.2849 | 0.2520 | 0.1899 | 0.1423 | 0.1077
0

Table 4.3: Integral cross sections for the Temkin-Poet model with singlet spin symme-
try, spin statistcs factors are not included. Total and discrete channel cross sections
are shown. Also listed are total ionization cross sections calculated both by subtract-
ing discrete channel cross sections from the total and by integrating the SDCS.

Having calculated the SDCS we can now integrate them to obtain total ionization
cross sections. First, it should be noted that volume integral formulations for calcu-
lating integral cross sections are much less susceptible to numerical error than first
producing, then integrating differential cross sections. Still, integrating the calculated
SDCS allows for interesting comparisons using the channel cross sections discussed
earlier in this chapter.

Total cross sections o2 and channel cross sections ¢, up to n = 6 for several
incident energies are listed in Table 4.3. As mentioned before, we can obtain the total
ionization cross section oj,, by subtracting all of the o, from oyy,. The remainders
after subtracting the first six o, from the oy, are listed in Table 4.3. These provide
an upper bound for the oy,,, assuming the o, themselves are accurate. We can see
from Table 4.3 that in order to obtain the oy, to three or more significant figures
we will probably need o, beyond n = 6. However, for n this high the accuracy of
the o, is in doubt. For comparison, the o, obtained by integrating the SDCS are
also listed. The o;,, obtained in the two different ways compare quite well with most
differences being less than 0.3% and the largest difference being less than 3%.
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Chapter 5

Six-Dimensional Wave Function for
Electron-Hydrogen Scattering

Theoretical treatment of electron-hydrogen scattering requires computing a six-
dimensional scattered wave function with outgoing wave boundary conditions. As in
the two-dimensional Temkin-Poet model, the scattering boundary conditions can be
simplified by using exterior complex scaling of the radial coordinates. Methods used
to calculate the Temkin-Poet wave function are readily extended to a partial wave ex-
pansion of the six-dimensional scattered wave. Computing the scattered wave requires
calculating a large number of two-dimensional radial functions to form its partial wave
expansion. These are solutions to sets of coupled differential equations that are solved
using an iterative algorithm on a distributed memory parallel computer.

5.1 Coupled Equations for the Scattered Wave

Scattering of an electron from a hydrogen atom is described by the six-dimensional,
two-electron scattered wave V1 (7, 7) defined in Equation 2.6. Just as in the Temkin-
Poet model, the asymptotic boundary condition on ¥ (Equation 2.10) can be sim-
plified by exterior complex scaling (ECS) of the radial coordinates. Extending the
methods from Chapter 3 to the six-dimensional scattered wave equation is straight-
forward after first expanding the wave functions in partial waves.

5.1.1 Partial wave expansion of the wave function

We expand the wave functions ¥? and ¥Z in terms of two-particle, coupled spher-
k S

i C

ical harmonics Y}4! which are functions of the four angular coordinates. The Y%
are eigenfunctions of total angular momentum, L, of the system and its projection,

M, along the z axis as well as the individual electron angular momenta /; and Is.

yﬁ% (7217 'f'2) = Z (lll2m1m2ILM)X/llm1 (f'l)lemg (f‘g) (51)

my,m2

They are related to ordinary spherical harmonics by the Clebsch-Gordan coefficients
(almims|LM). Clebsch-Gordan coefficients are discussed in Zare [39] and most quan-



tum mechanics text books. Some properties of the Y/}! useful for this particular
application are mentioned in Appendix F.

The term representing the initial state is \Ilgi, defined in Equation 2.5 as the
anti-symmetrized product of a plane wave and the ground state of hydrogen. Using
the expansion, in ordinary spherical harmonics, of a plane wave (Equation 4.3) we
immediately write an analytic expression for the partial wave expansion of \Ilg

2

il foriyD) ¢n1(7“1)JL(k 7"2)yo L(T1a7'2) + )
(7, 7) Z 71r2k < (-5 71 (ki 7“1)¢nl(7”2)yL (71, 72) 52

Since the coordinate system is chosen so the z axis lies along the incident direction,
only m = 0 spherical harmonics are present in Equation 4.3. Also, the ground state
of hydrogen @, (see Equation 4.1) is spherically symmetric. So, the projections along
the z axis of both individual electron angular momenta [; and [, as well as the total
angular momentum L are zero and Equation 5.2 contains only terms with M = 0.
This is a consequence of the cylindrical symmetry of the system for scattering from
a spherically symmetric target.

Solving the scattered wave equation means calculating the two-dimensional radial
functions z/){;lg in a partial wave expansion of 1. This expansion also contains only
terms for which M = 0 because M is a conserved quantum number of the system.

\Il:_C(’F]-’ F2) - z ’l/)lllg T1, 7r2));l1 A2 (7'1, TQ) (53)

172 Lyl

Four continuous angular variables have been replaced by three discrete angular mo-
mentum quantum numbers [y, ls, and L. That leaves only two continuous variables,
r1 and 7y, the same as for the model problem in Chapter 3. However, there are an in-
finite number of the radial functions ¢1L1 1, and they will be solutions to sets of coupled,
two-dimensional differential equations.

Since W (7, 7) is an outgoing wave each individual radial function ¢/, (r1,72) in
its partial wave expansion has outgoing wave boundary conditions similar to those in
the Temkin-Poet model. Application of exterior complex scaling, as given in Equation
3.12 and illustrated in Figure 3.1, to the partial wave expansion simplifies the bound-
ary conditions on each individual radial function. Under ECS, every ¢f, (r1,72) is
transformed in to a function that decays exponentially for either r; or ro larger than
the complex scaling point R,.

5.1.2 Coupled differential equations

Total angular momentum of the system is a conserved quantity so there will be
no coupling between partial waves with different values of L. For each total angular
momentum L and spin S there is a separate, independent set of coupled equations.
In most of what follows the quantum numbers L and S are treated as parameters
that are frequently suppressed. Calculating physical quantities requires assembling
all of the separate L and S components of the wave functions and/or cross sections.
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To arrive at the coupled equations we substitute the partial wave expansions
for U} (Equation 5.3) and ¥} (Equation 5.2) into the scattered wave equation in
Equation 2.6. We then multiply both sides of the equation on the left by some
spherical harmonic Vi ‘1 and integrate over the four angular variables. The attractive
potentlals between the nucleus and each electron have no angular dependence and the
YVE . 1, are eigenfunctions of the kinetic energy operators. So, integration is trivial for
all terms of the operator (F — H ) except the repulsive, two-electron potential. Since
the y{;?,2 are orthonormal all of the one-electron terms are non-zero only when l{ = [
and [, = l. Together, when acting on a radial function, they can be expressed as a

partial wave radial Hamiltonian for hydrogen, I:Il( )= —%;: l(l;rzr)f — %
(151 LO|H |11 1, LO) = (H,, (r1) + f{lz(@)) Sutr Oyt + (Ila|150) L (5.4)

Dirac notation is used to represent integration over only the angles and not over
the radial coordinates. Shorthand notation (I1l5||/1l}), in the last term of Equation

5.4 represents the multipole expansion of the two-electron potential Ir__l It is a
function of both r; and 7, and is discussed, in more detail, in Appendix F.
o2 A
(hialllyly)r = (a2 L0)——— = |1}15L0) = ? Zcflljlllz Ail (5.5)

Here, r. refers to the smaller and - to the larger of r; or ro. Formulas for calculating
the coefficients ClL f‘l, y, are given by Percival and Seaton [24]. The index A ranges over
a finite subset of the non-negative integers. For the special case [y =] =ly =1) =
{00][00)¢ = £ which is the two-electron potential in the Temkin-Poet model

Two radlal functions wl, y, and Y[, are coupled only if (lllgLOIV |l' ILL'0) is
nonzero. This term is nonzero only if L' = L. When L' = L it is always nonzero for
any (I3,1s) and (I, ;) pairs for which the sums [, + [ and /] 4[5 are either both even
or both odd integers. So, all partial waves for a particular L with the same parity
are coupled together. Using Equations 5.4 and 5.5 we write, for each L, the coupled
radial differential equations that come from the scattered wave equation.

(B = Hi,(r1) = Hiy(r2)) ¥, (r1,m2) = Y (bl 1 1 (r1,m0) = Xy, (r1,72) (5.6)
15k

We now define the radial functions wlle as the outgoing solutions to the coupled
equations in Equation 5.6. The functions X1L1l2> defined in Equation 5.7, are radial

functions from the partial wave expansion of (I:I - E) \Ilgi.

L

% 27(2L+1) { ((l112||OL>L -

2

e ~
E5510512L) ()70 (kir2) + (-1)5 (1 <= 2)}

(5.7)
Since only xf, with even parity exist (see Appendix F), the (/;,l;) pairs that con-
tribute to the expansion of W} are restricted to those for which [; + s+ L is an even
integer. The sum in Equation 5.6 involving the coupling potential (I;15||l115),, is over
all 11,1}, pairs in the expansion, including the case I{ = {; and [}, = [,.

L _
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Block-matrix structure of the

7/’8,0 X0,0 coupled equations (Equation
0 o 5.6) using L = 0 as an exam-
Y11 X1 ple. The off-diagonal blocks
W — [, d;, ;, are diagonal matrices
i - ” representing the coupling po-
@/;373 ng tential. The diagonal blocks
A, are sparse, not diagonal,
matrices similar to those in

the Temkin-Poet problem.

Figure 5.1: Block structure for the coupled equations

5.2 Iterative Solution of the Coupled Equations

There is an infinite number of sets of coupled equations for the different values of
L and each of these couples an infinite number of partial waves with different (I, l5)
pairs. In practice, of course, we solve the coupled equations for only as many L values
as needed for numerical convergence. Likewise, each individual L coupled equation is
limited to a finite number of (/1,ly) pairs. Coupling even a few partial waves produces
a very large system of linear equations that must be solved by an iterative algorithm.

5.2.1 Matrix equation

Just as was done for the Temkin-Poet wave function in Chapter 3, each complex
scaled radial function is calculated directly onto a two-dimensional radial grid using
finite difference approximations for the differential operators. The finite difference
representation of the coupled equations forms a matrix with the block structure illus-
trated in Figure 5.1. That example shows the case L = 0 where l; = I, for all partial
waves and there is an obvious ordering for the (i1, ls) pairs. Each block in the array
of radial functions corresponds to the values of ¢1L112 on the two-dimensional radial
grid for a particular (I1,[l5) pair. Likewise, the blocks in the array on the right-hand
side are the X{} 1,» defined in Equation 5.7, evaluated on the grid.

The diagonal blocks are finite difference matrix representations of the operators
E — H,, (1) — Hy,(r3) — (ily||l1, o). These matrices have exactly the same sparsity
structure, shown in Figure D.1, as the Temkin-Poet matrix. In fact, the L = [} =
lo = 0 diagonal block is the Temkin-Poet matrix. The off-diagonal blocks, on the
other hand, are just the coupling potentials evaluated on the grid so each of these is
a diagonal matrix.

If we remove the off-diagonal blocks i.e., set (l1l2||l1l5), = 0 for (I},15) # (L, 12),
then the matrix is block diagonal and we have a large set of uncoupled equations for
each wlL]l ,- Solving each of these uncoupled equations is comparable to solving the
Temkin-Poet model problem. In Chapter 4 we found that we need the radial functions
at distances of at least 100aq to get meaningful ionization information. Calculating
accurate radial functions that extend this far requires on the order of 240,000 grid
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points. Solving a Temkin-Poet problem of this size already uses substantial compu-
tational resources. Solving the entire set of uncoupled equations is merely a matter of
performing multiple calculations of that same size. However, keeping ten or so partial
waves in a set of coupled equations forms a linear system of two or three million.

5.2.2 Iterative algorithm with pre-conditioner

Linear systems this large must be solved using an iterative algorithm. Convergence
properties of iterative algorithms are governed largely by the eigenvalue spectrum of
the matrix. Since the six-dimensional Hamiltonian should have a spectrum similar to
that of the Temkin-Poet Hamiltonian we can apply the lessons learned in using an
iterative algorithm for solving the Temkin-Poet model toward developing a method
for iteratively solving the coupled equations. In particular, it is reasonable to expect
the conjugate gradient squared (CGS) algorithm to converge to the solution provided
an effective pre-conditioner is used.

The matrix structure shown in Figure 5.1 suggests using the uncoupled equations
as a block-diagonal pre-conditioner. That means that each pre-conditioning step in
the CGS algorithm, given in Figure E.2, requires solving the uncoupled equations, but
with different right-hand sides. The effectiveness of using the uncoupled equations
as a pre-conditioner depends upon the two-dimensional radial Hamiltonians in the
diagonal blocks having an eigenvalue spectrum similar to that of the six-dimensional
Hamiltonian. This is a reasonable expectation because the basic characteristics of
the eigenvalue spectrum is determined by the radial dependence of the Hamiltonian.
For instance, the bound state energies of hydrogen are determined solely by the one-
dimensional radial Hamiltonians for hydrogen. With exterior complex scaling, the
movement of the continuum spectrum into the lower-half of the complex plane is de-
termined by the scaling of the radial coordinates. Therefore, the uncoupled equations
should have the same inelastic thresholds as, and a similar eigenvalue spectra to, the
coupled equations.

5.2.3 Convergence of iterative algorithm

Indeed, the uncoupled equations are a sufficiently robust pre-conditioner to make
the CGS algorithm converge to solution to the coupled equations for any value of L
over the range of incident energies considered here. Convergence of the CGS algorithm
on the coupled equations for a few representative L at two different energies is shown
in Figure 5.2.

Error in the iterative solutions is measured by substituting the calculated radial
functions at each iteration into the left side of Equation 5.6. The difference between
the left and right sides of Equation 5.6 gives a two-dimensional “residual” function for
each partial wave. Integrating the modulus-square of each residual produces “partial
wave errors’. Total error for a set of coupled partial waves is defined to be the
sum of these partial wave errors. In all cases, convergence of the CGS algorithm is
well behaved with very little sign of instability and the solution can be improved to
arbitrary accuracy.
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Figure 5.2: Convergence of the CGS algorithm for the coupled equations with singlet
spin symmetry for various total angular momenta L. Error of the calculated scattered
wave is plotted for incident energies of 17.6 eV (asterisks) and 25 eV (diamonds).

In principle, the convergence rate depends on the number of partial waves kept in
the coupled equations. However, once the most important partial waves are included
adding a few more that are less important has little effect on convergence. All of the

coupling potentials are built from terms that look like <S¢ >\+1 and are peaked along the

ray 71 = ro. Therefore, the strength of the coupling depends on the magnitudes of
the radial functions near r; = ro as well as on the coupling potentials themselves.

Less important radial functions i.e., ones with relatively small magnitudes near
71 = 79, add only a small amount of coupling to the other partial waves. Triplet
radial functions with [ = [, have significantly smaller ionization components than
do their singlet counterparts. For this reason, convergence of the coupled equations
is typically more rapid for the triplet spin symmetry. Convergence also tends to be
faster at higher energies.

Solution to the uncoupled equations with the original right-hand side is used as
the starting point for the iterative algorithm. Typically, the error actually increases
slightly for the first few iterations before reaching a point where it then decreases
fairly reliably. This is due to an initial redistribution of flux in the ionization region
of the radial functions. This can be seen in Figure 5.3 which shows solutions to the
uncoupled equations along with converged solutions to the coupled equations.

In the L = 0 uncoupled equations the (l,l;) = (0,0) radial function (i.e., the
Temkin-Poet wave function) carries most of the ionization flux. Iterating to arrive
at a solution to the coupled equations removes flux from this partial wave and re-
distributes it to the higher angular momentum partial waves. Ultimately, the (1,1)
radial function has the largest ionization component of the singlet, L = 0 partial
waves. We see similar behavior for L = 2 where the (1, 1) radial function is largest
initially. The magnitude of the (1, 1) radial function decreases while the magnitudes
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Figure 5.3: Comparison of solutions to the coupled and uncoupled equations for
singlet spin symmetry and 25 eV incident energy. The magnitudes of the radial
functions at a hyperradius of 100aq are shown. Dashed lines are the solutions to the
uncoupled equations and solid lines are the solutions to the coupled equations.

of the others increase. Eventually the combination of (0,2) and its mirror image (2, 0)
is the dominate L = 2 partial wave.

5.2.4 Parallel implementation

Each iteration of the CGS algorithm requires two applications of the pre-conditioner
and two matrix-vector multiplies with the full matrix representation of the coupled
equations. A key advantage of solving for the radial functions directly onto a grid
is that potentials are represented by diagonal matrices. This means that inclusion
of the coupling potentials in the full matrix-vector multiply is relatively inexpensive.
Each coupling term requires exactly N (complex) multiplies and adds, where N is
the number of two-dimensional radial grid points.

Most of the time used for solving the coupled equations is spent on applying the
pre-conditioner. Each application of the pre-conditioner is equivalent work to solving
the Temkin-Poet model problem for each partial wave. As mentioned in Chapter 3
and Appendix E, the Temkin-Poet model was also solved using the CGS iterative
algorithm. Therefore, the method for solving the coupled equations actually uses the
CGS algorithm at two levels. The coupled equations are solved iteratively using the
CGS algorithm with the two pre-conditioning steps for each outer iteration requiring
solutions to two-dimensional radial equations. These are, themselves, solved using
low-order finite difference matrices as pre-conditioners to iteratively solve high-order
finite difference matrix equations.

Since the work needed to couple partial waves is a small fraction of the total work,
this method makes efficient use of distributed memory, massively parallel supercom-



puters. The block structure of the full matrix suggests a natural level of parallelism
for solving the coupled equations. Each partial wave is assigned to a separate group
of processors. Application of the pre-conditioner and the block-diagonal portion of
the matrix-vector multiply are then accomplished independently within each group
of processors. Significant communication between groups of processors is needed only
when adding the coupling terms in the full matrix-vector multiplies.

By solving the uncoupled equations in parallel, application of the pre-conditioner
takes the same amount of time required to solve just one uncoupled equation. Accord-
ing to the table in Figure E.1 the most time-consuming step in solving each uncoupled
equation is the LU factorization. The LU factors depend only on the matrix and not
on the right-hand side so they will be the same for each iteration. Saving the LU
factors after the first pre-conditioning step significantly reduces the work required for
each subsequent application of the pre-conditioner.

5.5 | Partial Wave Radial Functions

Formally, calculating the complete wave function requires solving an infinite num-
ber of coupled equations, each of which couples an infinite number of partial waves.
In practice, of course, we must put a maximum on the values of L for which we solve
the coupled equations and we must limit the number of partial waves coupled for
each individual L. The number of partial waves coupled together determines the cost
of solving the coupled equations. It is, therefore, beneficial to make sure that the
most important partial waves are the ones included first in the calculation. For this
reason, we want to choose partial waves, at least roughly, in their order of relative
importance. To choose an ordering for the partial waves we should understand the
basic properties of the different radial functions.

In the Temkin-Poet model the scattered wave was either symmetric or anti-
symmetric with respect to interchange of the radial coordinates. The same symmetry
property for the six-dimensional scattered wave, Ul (7, 7)) = (—1)SWL (7, 7), leads
to more complicated symmetry rules for the radial functions (see Appendix F).

Digt, (r2,71) =~ (r1,72) (5.8)

When [, = [, the radial function 'lf‘/’lL,lz has the same symmetry property as the
Temkin-Poet wave function. A symmetric and an anti-symmetric example of L = 2
radial functions are shown in Figure 5.4. For both examples [, = [, = 2 so the
dominant discrete channel component that can be seen along the r; and ry axes is
excitation of the 3d state of hydrogen. As in the Temkin-Poet model, any triplet
partial wave with [; = [ contributes negligibly to ionization because of a “trough”
that exists along the ray r; = r5. Since [, = [, for every L = 0 partial wave, the
entire set of L = 0 triplet partial waves plays an insignificant role in ionization.

Unlike the Temkin-Poet model, there exist radial functions in the partial wave
expansion of Wl (7,7,) that have no symmetry themselves. Examples of these are
shown in Figure 5.5. In these examples the discrete channels are noticeably different
on the two axes. The dominant discrete channel component along the ry axis is
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Figure 5.4: L = 2 and [, = [, = 2 radial functions for electron-hydrogen scattering
at 17.6 eV incident energy. The upper picture shows the symmetric singlet radial
function and the lower picture shows the anti-symmetric triplet radial function.
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Figure 5.5: Asymmetric radial functions for electron-hydrogen scattering at 17.6 eV
incident energy and singlet spin symmetry. The upper picture shows L =1, [; =1,
lo = 2 and the lower picture shows L =3, 1; =0, [, = 3.
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Figure 5.6: L = 2 symmetric radial functions for electron-hydrogen scattering at 17.6
eV incident energy. The upper picture shows the [, = [, = 1 radial function and the
lower picture shows the [, = [, = 3 radial function.
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Figure 5.7: L = 4 radial functions for electron-hydrogen scattering at 17.6 eV incident
energy and singlet spin symmetry. The upper picture shows the [; = [ = 5 radial
function and the lower picture shows the [} = 1, [ = 5 radial function.
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Figure 5.8: Magnitudes of several L = 2 radial functions along an arc of hyperradius
100ag. Examples shown are for singlet spin symmetry and 25 eV incident energy.

determined by the value of [, and vice-versa. For instance, the upper picture in
Figure 5.5 corresponds to [y = 1 and [y = 2 so excitation of the 2p state is visible
along the 75 axis and excitation of the 3d state is visible along the r; axis. Similarly,
the lower picture with /; = 0 and [y = 3 has an elastic scattering component along
the 7, axis with an emerging 4f excitation component barely visible along the r; axis.

For any ¢, with l; # I, there is a complementary radial function ¢/, such that
the sum of the two is either symmetric or anti-symmetric. If we include some ’@'/’lleg for
1 # [, then we must be sure to also include "r"’lﬁh in order to maintain the symmetry
of the entire partial wave expansion. However, the radial functions l/)zL,zz and wtﬁh
contain the same information so there is no need to explicitly store both.

When solving the coupled equations on a parallel computer each group of proces-
sors is assigned an (ly,[ly) pair with {; < l,. If [} # [, then that group is responsible
for adding the couplings from both u’:fl ;, and 'g/)ﬁ_),l Thus, except for L = 0, the number
of partial wave terms coupled is actually larger than the number of processor groups
used for the calculation. Also, when gauging the importance of an (y,[5) partial wave
with I, # I, it is best to consider the combined contribution from ¢, and Wk, .

The relative importance of different partial waves for L = 2 is illustrated in Figure
5.8. A “rule-of-thumb” for ordering partial waves is that those corresponding to larger
angular momentum have less importance, this does not necessarily hold for very small
angular momenta. This “rule” applies similarly to both the total and the individual
angular momenta. For the energies considered here, the L = 2 sets of partial waves
contribute most for the singlet spin symmetry and the L = 3 sets contribute most for
triplet spin symmetry. As L increases beyond these maxima the relative importance
of the corresponding sets of partial waves decreases monotonically. This suggests that
ordering sets of partial waves for each L by increasing L is reasonable assuming that



more than the first four values of L will be used.

Obtaining each set of L partial waves is an independent calculation so, deciding
where to truncate the expansion in L is a matter of adding calculations for increasingly
large L until sufficient convergence is achieved. Deciding which (I, ls) pairs to keep
in the coupled equations for each L requires more thought. All partial waves for a
particular L are coupled so one cannot easily add another term to the expansion to
see if the results change. If more partial waves are added to an already converged set
then the iterative algorithm must be re-applied to the full, larger set of partial waves.

If an individual angular momentum for a partial wave is large then the dominant
discrete channel component along the appropriate axis is excitation to a high-energy
state. These components have much smaller magnitudes than those for elastic scat-
tering and excitation of low-energy states. Examples of symmetric radial functions for
two different individual angular momenta are pictured in Figure 5.6. The |} =1, =1
case has excitation of the 2p state clearly visible along both axes while the [; =[5 = 3
case does not appear to have any discrete channel components. In actuality, excita-
tion of the 4f state is present, but is not strong enough to have “emerged” from the
ionization component before 120ag. Examples with individual angular momenta of
five are shown in Figure 5.7. In the symmetric case (I; = Iy = 5) no discrete channels
are visible and the radial function appears to be purely ionization. The asymmetric
example has [y = 1 so excitation of the 2s state is visible along the ry axis.

The ordering used for L = 2,3 and 4 is indicated in Figure 5.9. Two selection
rules, that govern which (I,1,) partial waves exist for a particular L, determine the
patterns formed on the [;, [ matrices. First, the sum of {; and [, must have the same
even/odd parity as L (see Appendix F). Second, the difference between [; and I,
must not exceed L i.e., |l —l;] < L. The parity rule means there are never pairs
with Iy = [, for any odd value of L, while the second rule requires that only l; = Iy
pairs exist for L = 0. For even values of L greater than zero the coupled equations will
contain some partial waves with I; = [y and some with [; # [,. For L = 0 the pattern
in the [y, lo matrix is particularly simple, only the “diagonal” (I; = l5) partial waves
exist. In this case, as well as for L = 1, there is an obvious ordering for the partial

L=1 L=2 L=3 L=4

1 2 3 01 2 3 4 01 2 3 01 2 3 4
0 1 0 2 0 2 0 4
1 2 1 1 4 1 1 1 2
2 2 3 2 2 3 6] 2 1 3 2 1 5
3 3 3 4 5 3| 2 3 3 2 3
4 4 4 6 71 4 4 5 4| 4 5 6

Figure 5.9: Illustration of how partial waves were chosen for L = 1,2,3 and 4. The
rows and columns of each matrix correspond to the values of [ and l,. Empty
matrix cells indicate (ly,l3) pairs that do not exist for that value of L. Non-empty
cells indicate (l1,ls) pairs that are included and the numbers in those cells give the
orderining in which the pairs were chosen.
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(=] o0 [ 1 [2]3]4[5]6[7[8]09]

1 [ 00 | 01 J1,1] 12 [22]23]06] 0,71 0,8 09
9 11 | 1.2 |02] 03 |13 [14[15] 1,6 | 1,7 | 1,8
3 1 22 | 23 (22123 |33 [34(24] 25 | 26 | 2,7
4 | 33 | 34 |13 1.4 040533 3.4 | 35 | 3,6
5 | 44 | 45 |33 3.4 [242511,7] 1,8 | 44 | 45
6 | 55 | 56 24| 25 |44145(26] 2,7 1,9 | 1,10
7 | 6,6 | 6,7 |44 4,5 | 1,516 3,5 3,6 | 2.8 | 2,
8 | 7.7 | 7.8 |35 36 |35 36|44 45 | 3,7 | 38
9 || 88 | 89 |55 5,6 | 555628 29 | 46 | 4,7
10 | 99 | 9,10 |46 4,7 |26 ]273,7] 38 | 55 | 56
11 [[10,10 | 10,11 | 6,6 | 6,7 | 4,6 | 4,7 4,6 | 4,7 | 2,10 | 2,11
12 [ 11,11 [ 11,12 5,7 5.8 | 666,755 | 5,6 | 3,9 | 3,10
13 12,12 [ 12,13 | 7,7 | 7,8 | 3,7 |38 |3,9 (3,10 | 48 | 4,9
14 (13,13 | 13,14 (6,8 | 6,9 | 5,7 |58 |48 | 49 | 5,7 | 5,38
15 | 14,14 | 14,15 [ 88| 8,9 | 7,7 |78 5,7 | 58 | 6,6 | 6,7
16 | 15,15 | 15,16 | 7,9 | 7,10 | 4,8 | 49 | 6,6 | 6,7 | 3,11 | 3,12

Table 5.1: The order in which partial waves were chosen for each value of L.

waves. Since including (I, l) implicitly means also including (Is,[;), complementary
matrix cells are assigned the same number.

In deciding which (I, 1) partial waves to keep in the coupled equations we need
to order them according to their relative importance. This can be done precisely only
after actually calculating the radial functions. Relative magnitudes of several radial
functions for L = 2 are compared in Figure 5.8. Of course, we need to choose the
ordering before calculating the radial functions. The basic algorithm, which should
be reasonable if enough partial waves are coupled, is to select partial waves in the
order of increasing individual angular momenta. This ordering is complicated when
highly asymmetric radial functions with a large [, and small /; are involved.

The orders in which the (I,1s) pairs were chosen for calculations at particular
values of L are listed in Table 5.1. In general, the pairs are ordered so that smaller
angular momentum terms are included first. The ordering in Table 5.1 was computer
generated by an algorithm that sometimes chooses the pairs in the order of increas-
ing min(ly, ;) and sometimes in order of increasing max(ly,l») and is probably not

total angular momentum |0 (1| 2 |3 |4 | 5|6 |7 819
number of (I;,l3) pairs 616|10(10{16 1614113 {10{10

Table 5.2: The number of (I1,[,) pairs that were included for each value of L using
the ordering in Table 5.1. Each pair with {; # 5 actually adds two partial waves.



optimal. Handpicking which terms to include, or perhaps using a different algorithm,
might provide a better ordering. Usually, the number of different pairs to include is
chosen so that all pairs with either /; or [, below some minimum are included.

The number of partial waves that need to be kept depends upon the physical
quantity being calculated. The more detailed the scattering information, the more
partial waves that must be included to converge the results. In the next chapter we will
extract differential cross sections for ionization from the radial functions calculated
here. It was found that generating radial functions up through L =9 was sufficient.
The numbers of partial waves (with [; < l3) that needed to be included for each L in
order to converge the most detailed cross sections are listed in Table 5.2.
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Chapter 6

Differential Cross Sections for
Electron-Impact Ionization

A complete theoretical treatment of electron-impact ionization means obtaining
differential cross sections that give detailed information about the two outgoing elec-
trons. The triple differential cross section gives angular distributions for both elec-
trons and describes how energy is shared between them. Results presented in this
chapter represent the first calculated triple differential cross sections that agree, on
an absolute scale, with experiment [29]. The single differential cross section provides
information only about how energy is shared between the two electrons. Both types
of differential cross sections are obtained from the outgoing flux of the scattered wave.
Since the wave function is known only on a finite region, an extrapolation procedure
is used to calculate the asymptotic limit of the flux.

6.1 Scattered Flux

Differential cross sections for electron-impact ionization of hydrogen can be calcu-
lated from the scattered flux by a straightforward extension of the procedure devel-
oped for the Temkin-Poet model problem. The same characteristics and limitations
encountered in Chapter 4 will apply here. In addition, there are further complications
due to the directional dependence of the flux.

6.1.1 Flux at finite distances

The total cross section is related to the integral of the probability current density
Jpo through a hypersphere of radius pg in the limit py — co. For electron-hydrogen
scattering, j,, is a function of the scattering directions 7; and 7, for both electrons as
well as the hyperspherical angle a.

(e Pr,f2) = p- Im { (W (7, 7)) VLR, | (6.1)

Equation 4.5 gives the total cross section in terms of an integral over the probability
current density in the Temkin-Poet model. A similar expression gives the total cross



section for electron-hydrogen scattering.

wf2

Crotal = k ///Jpo o, T1,T9) rlr 2df 1 drypodo (6.2)

0 474w Po—00

Equation 6.2 differs from Equation 4.5 in that it is an integral over the hyperangle
and both directions. Also, the normalization factor is different because the initial
state ‘1’2,-, defined in Equation 2.5, is normalized differently from the one used for the
Temkin-Poet model. In Equation 2.5 the incident electron is represented by e*i% so
the incident flux density consistent with Equation 6.1 is simply £;.

We will work with a generalized, dimensionless flux f, (e, 71, 7) that includes a
factor of k; and the Jacobian factor 72r2p from the volume element in Equation 6.2.

. N Lo
fo(, 71,72) = Im {kip (T1r2\11:c(7“1,r2)) c—i; (7"17"2\1!;(7"1,7“2»}

p=po

Total scattered flux is related to f,, in the limit py — oo by integration over the

hyperspherical angle and both directions.

Ototal = k2 /// (a, 71, o) didfada (6.4)

4n 47 Po—00

Just as in the two-dimensional model problem, the flux is directly related to differen-
tial cross sections for ionization, except in the cases where one of the electrons carries
nearly all of the energy (see Section 4.4).

Equation 6.4 shows that, in the limit py — o0, f,,(c, 71, 72) gives the distribution
of the scattering probability over the directions 7; and 79 and the hyperangle a. We
will need the asymptotic limit of the flux to calculate differential cross sections for
ionization. With exterior complex scaling we know the wave function only on a finite
region so we can directly calculate f,, only for finite py. That means we will need
to employ an extrapolation procedure similar to the one used in Chapter 4 to obtain
the pg — oo limit. Unlike in Chapter 4, the scattered wave is a function of the
hyperradius and five angles and it must be constructed from as many of the partial
wave terms from Equation 5.3 as necessary to converge the final results.

(6.5)

10y 00 Ll
Lll,l 1502 p=p0

fpo(Oz,f'l,fé):Im{ TIDDEDY ( m') dip("ﬁfltz)( 'z') yzl,lz}

6.1.2 Coplanar geometry

The flux is a function of five variables: the hyperangle o and the four spherical
polar angles 81, ¢, 05, and ¢,. In examining properties of the calculated flux we
will restrict the two final directions so that they and the incident direction all lie
within a plane. This “coplanar” geometry is illustrated in Figure 6.1. All available

(6.3)
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Figure 6.1: Diagram of coplanar geometry. Two electron detectors and the incident
electron beam all lie within a plane.

experimental data is for these types of geometries. In an experiment, the two electron
detectors and the incident electron beam all lie in a single plane. The angle between
one of the detectors and the incident beam is denoted by 6; and the angle between
the two detectors by 64,.

6.1.3 Adding partial waves

Computing the flux requires constructing the complete scattered wave from its
partial wave terms as shown in Equation 6.5. That means we need to be concerned
about the convergence of the calculated flux with respect to the number of partial
waves kept in the expansion of ¥}. This is an issue at two levels: the number of
(I1,12) pairs kept for each total angular momentum L and the maximum value of L
kept in the expansion. The minimum number of (I;,ls) pairs kept for each particular
L is shown in Table 5.2. These numbers were chosen mainly by determining at what
point adding more partial waves to a pre-existing solution to the coupled equations
stopped affecting the previously computed radial functions.

Examples of the flux at py = 120ay, shown in Figure 6.2, illustrate the effect that
including partial waves with increasingly large values of L in the expansion of W}
has on the calculated flux. Flux in Figure 6.2 were calculated for a hyperangle of
45° with the two scattering directions chosen so that the incident direction always
bisects the angle between them. The solid line in the upper part of each panel is the
flux constructed by keeping partial waves only up to the particular value of L < 9
indicated. The dashed line in every panel is the flux calculated when keeping partial
waves up to L = 9.

Comparing flux calculated using different numbers of partial waves is a good
method for measuring the convergence of the flux with respect to adding more partial
~waves. For each panel the relative difference between the solid and dashed lines in
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Figure 6.2: Convergence of flux when including partial waves up to increasingly large
L. Flux at py = 120a, is shown for coplanar geometries with 8, = —#;. The dashed
line in each panel shows the flux when partial waves up to L = 9 are included.

the upper part is plotted on a log scale in the lower part. This gives an indication of
the error due to prematurely truncating the expansion in L. Convergence in L is very
slow when the scattering directions are close together and much more rapid when the
electrons are moving directly apart from each other.

6.2 Differential Cross Sections for Ionization

The cross section definition in Equation 6.4 requires the py — oo limit of f,,.
Since the wave function calculated under exterior complex scaling is equivalent to the
unscaled wave function only on a finite region we can calculate f,, only for finite p.
Thus, in order to obtain differential cross sections for ionization from flux calculations
we must use an extrapolation in py similar to the procedure described in Chapter 4
for calculating single differential cross sections in the Temkin-Poet model.

6.2.1 Extrapolating ionization flux

According to the asymptotic form for ionization in Equation 2.11, the ionization
flux is expected to approach its asymptotic limit like pl—o.

1
large po: fola, 71,72) ~ feola,71,72) + O (p_> (6.6)
0
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Figure 6.3: Extrapolation in p of ionization flux for coplanar geometries with fixed
015 at 20 eV incident energy. In each panel flux calculated at p = 100,105,110,115
and 120agy are shown along with the extrapolated flux. The line for the extrapolated
flux always lies below the others.

Fitting Equation 6.6 to several f,, calculated directly from the wave function gives
the py — oo limit of the flux provided that the calculated f,, are in the region where
the flux behaves according to Equation 6.6.

The flux can, of course, be calculated only in the region where both coordinates
are not complex-scaled i.e., for 71,79 < Ry. That restricts the f,, used for the ex-
trapolation to those for which py < Ry if the f,, are needed over the full range of
the hyperangle o. However, if the cross section is only needed for values of o near
45° then we can also calculate f,, for hyperradii in the range Ry < pp < V2R;. In
Chapter 4 we found that the quality of the extrapolated results depended on the
hyperangle « because of contamination from bound states. With a flux that is also
a function of the two directions we can expect that the extrapolation behavior will
depend upon the four angular coordinates as well.

Three examples of calculated and extrapolated flux for both singlet and triplet spin
symmetries with o = 45°, where contamination from bound states has the least effect,
are shown in Figure 6.3. These examples are restricted to coplanar geometries (see
Figure 6.1) with a fixed angle ;5 between the two scattering directions. In all cases,
the line for the extrapolated flux lies below the lines for the flux calculated at finite
po- Relative differences between the calculated and extrapolated flux are largest when
the angle between the two directions is smallest. This is sensible because a particular
hyperradius py corresponds to a distance of 2pg between the two electrons when they
are moving directly away from each other whereas the actual distance between the
two electrons is smaller when the angle between their directions is less than 180°.

A general property of the flux shown in Figure 6.3 is that there are always local
minima at ¢, = %012 and 6, = %012 + 180°. Both of these correspond to cases where
the incident direction bisects the angle between the two detectors. In fact, in these
cases the Pauli exclusion principle requires that the triplet contribution be identically
zero because of the cylindrical symmetry of the system.



6.2.2 Triple differential cross section

For large p the hyperangle o parametrizes energy sharing between the two elec-
trons as €, = Fcos’a and €5, = E'sin? . It is simple to convert a quantity that is
differential in « to one that is differential in the energy of one electron.

doion (€, 71, T2) 1

~ oo (0, 71, 7 7
d&dfld’fQ pognoo k2ESan’COSa Po(aarlaTQ) (6 )

e=FEsin? «

For ionization, the most detailed quantity of interest is the so-called triple differen-
tial cross section (TDCS) defined in Equation 6.7. It gives the distribution of the
ionization cross section over energy sharing between the two electrons and the two
directions 7#; and 75.

The conditional equality in Equation 6.7 was discussed in Chapter 4. We are
interested in only the flux due to ionization, but we are calculating flux from the full
scattered wave that contains discrete channel components as well as ionization. Thus,
the region of validity for the TDCS obtained by extrapolation is limited to the range
of € (or @) where the directly calculated flux f,, were composed only of ionization.
This means that we cannot calculate the TDCS for single-electron energies smaller
than 20%, or so, of the total energy.

By convention, the TDCS is normalized so that the total ionization cross section
is related to it by integration over the one-electron energy ¢ from zero to £/2 and
integration over the full range of both directions 7; and 5.

dUlon € T17T2) N N
- / / / g didiade (6.8)

Any energy sharing cross-section must be symmetric about E/2 because of the im-
possibility of distinguishing which electron has energy €; and which has energy ¢, =
E — 1. Since the differential cross section is defined for only half the energy range
there is a factor of two included in Equation 6.7.

6.3 Comparison With Experiment

Measuring the TDCS requires two electron detectors. One is tuned to detect
electrons of some energy e; and the other is tuned to detect electrons of energy
€9 = E — ;. Although the basic experimental apparatus is simple to envisage,
accurate and detailed measurements are apparently quite difficult and, unfortunately,
there is very little absolute experimental data available.

The best collection of TDCS data for electron-impact ionization of hydrogen at
low energies comes from “symmetric, coplanar” measurements performed by Roder et
al. and published in 1996 [33]. For these measurements both detectors were tuned to
detect electrons with energy £/2 and arranged in the coplanar geometry depicted in
Figure 6.1. In this geometry the electron source, the two detectors, and the interaction
region all lie on the same plane. For most of the comparisons presented here the angle
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612 between the two detectors is held fixed while the angles between the detectors and
the incident direction are varied. Unfortunately, this data was originally presented in
unknown units and must be multiplied by an overall scaling factor to compare with
calculated cross sections. This scaling factor is dependent on energy, but supposedly
not on the geometry, and is expected to be the same for all data sets of different
geometries but the same energy.

6.3.1 TDCS for 17.6 eV

Roder et al. presented a small set of measurements in 1997 [32] that attempted
to put the previously measured TDCS data on an absolute scale. They gave experi-
mentally normalized data for incident energies of 15.6 eV and 17.6 eV, but only for
the case where 6,5, = 180°. We have calculated wave functions for 17.6 eV incident
energy so we can compare with absolute experimental data at this one energy [29].
We normalized the set of 17.6 eV measurements by comparing the 6,5 = 180° data
from 1996 to the corresponding data from 1997 and choosing a normalization factor
that scales the 1996 data to coincide with the 1997 data.

Absolute data from 1997 and normalized 1996 data with 615 = 180° are shown
together, along with the TDCS calculated with exterior complex scaling, in the top
panel of Figure 6.4. The cross section in this case is strongly peaked at angles of
0° and 180°, where one electron is scattered forward and the other “recoils” in the
backward direction. Unfortunately, experimental measurements were not possible
near these points. A normalization factor of 0.23 scales the 1996 data to coincide
with the 1997 data in units of 107 *¥cm2eV 1.

The remaining four panels in Figure 6.5 show the calculated TDCS at different 6,
compared with 1996 data using the same normalization factor. Agreement between
the calculated TDCS and experimental data is excellent, particularly for 6,5 of 120°,
100°, and 90° where measured values exist for the cross section peaks. The largest
discrepancy is at the minimum for #;5 = 90°. Since this is the smallest value of all
the data sets we expect the measurement to be less accurate there. Also, converging
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Figure 6.5: Symmetric coplanar TDCS for 17.6 eV incident energy with 6y fixed.
Measurements [33] scaled to fit calculated cross section. Normalization factor = 1.15.
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calculated TDCS in terms of partial waves was more difficult for 8,5 = 90 than for
the other geometries.

Additionally, there are two sets of 1996 measurements at 17.6 eV where the posi-
tion of one detector was held fixed while the other was rotated independently. This
data is normalized differently than the fixed #;, measurements. A single normaliza-
tion factor for these two sets of data was chosen to give the best fit to the calculated
cross section. Normalized experimental data and the calculated TDCS for these two
cases are shown in Figure 6.5.

6.3.2 TDCS for 20, 25, and 30 eV

Comparisons between the calculated TDCS and measured values for incident en-
ergies of 20, 25, and 30 eV are shown in Figures 6.6, 6.7 and 6.8. Experimental
values were presented by Roder et al. [33]. As with the 17.6 eV measurements, the
data is presented in arbitrary units and must be normalized. However, for these
energies there are no absolute measurements available with which to normalize the
data. Therefore, we normalized the experimental values by choosing a scaling factor
for each energy that best fits the experimental data to the calculated cross section.

With these results, experimental data at these energies has been put, for the first
time, on an absolute scale. It is important to emphasize that a single scaling factor
was used for all data at a particular energy. Overall, the agreement between the
present calculations and measured values is excellent. The largest discrepancy is for
012 = 80° at 20 eV incident energy. We should expect larger disagreement for the
smallest value of 6, because converging the calculated cross section in terms of partial
waves is more difficult when the two scattering directions are closer together.

6.4 Single Differential Cross Sections

The single differential cross section (SDCS) gives only the energy distribution
between the two electrons and is related to the TDCS by integration over the two
scattering directions 7; and 7s. :

dalon dalon € 7'1,7“2) " g
drid 6.9
/ / dedidi, 0" (6.9)

Am An

Constructing the TDCS from a partial wave expansion requires a double sum over all
angular momentum quantum numbers as in Equation 6.5. Because of the orthonor-
mality of the spherical harmonics, Y9, (71, 72), integration over 7, and 7, collapses
this into a single sum over each angular momentum quantum number.

Consequently, the SDCS is a simple sum of partial wave terms for each set of
L,ly,ls quantum numbers. Each individual term is calculated from a single partial
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Figure 6.9: Components of the SDCS (with spin factors included) for electron-
hydrogen scattering at 25 eV incident energy corresponding to particular total spin
and angular momentum quantum numbers.

wave component of the scattered wave.

dai;;(g) = Z Im {(wllb T1, 7'2))* % (¢{Iz2(7'1, 7”2))}
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(6.10)
Calculating each term in Equation 6.10 is equivalent to calculating the SDCS in
the Temkin-Poet model. So, calculating the SDCS for electron-impact ionization of
hydrogen is a trivial extension of the procedure described in Chapter 4.

In general, significantly fewer partial wave terms are needed to converge the SDCS
than are needed to converge the TDCS. For the incident energies treated here there
is never a need to include contributions for L > 6. Also, the number of partial waves
needed for any particular L component is generally smaller than the number needed
to converge the TDCS. Individual total angular momentum components of the SDCS
at 25 eV incident energy are shown in Figure 6.9 for both singlet and triplet spin
symmetries. For the singlet case the L = 2 component is the most important with
the relative importance of each component decreasing with increasing L for L > 2.
For the triplet case it is the L = 3 component that is most important. The L = 0
radial functions must all have the same symmetry properties as in the Temkin-Poet
model. That means the L = 0 component of the triplet SDCS is insignificant because
those radial functions must vanish in the middle of the ionization region.

6.4.1 Contamination from bound states

At finite po the discrete channel components of ¥} extend over a nonzero range
of the hyperangle a. The discrete channel components of the flux do not behave
like Equation 6.6 so the extrapolated flux is not valid over the full range of «. For
the Temkin-Poet model we found that the asymptotic flux extrapolated from py near
100ay was valid for o between 15° and 75°. We expect the same qualitative behavior
here. The range of a over which we may extrapolate the ionization flux is limited



according to which discrete channel components have non-negligible magnitudes. This
will be slightly different for each partial wave as can be seen in Figure 5.8.

For the most significant partial waves the discrete channels are still confined within
15° of the edges. Partial waves with larger angular momenta have longer-range dis-
crete channels that are visible. In the cases with the largest angular momenta it
is really not even possible to distinguish between ionization and higher excitations.
However, the partial waves for which the discrete channels obscure a larger portion
of the ionization wave are less significant so we can still assume that the sum of the
extrapolated flux for all partial waves is reasonable over the same range of o as was
found in the Temkin-Poet model.

We estimate the SDCS over the full range of € by using the same extrapolation
in energy introduced in Chapter 4 for the Temkin-Poet model. We assume that the
SDCS behaves linearly near the edges and replace the calculated values in a small
region near ¢ = 0 (and € = F) with a linear extrapolation. There is some ambiguity
about whether this should be done to each partial wave term individually or whether
it should be applied to the sum, but in practice this makes little difference. For the
results presented here the extrapolation in energy was applied to L-components of
the singlet and triplet SDCS. These were formed by adding together all partial wave
terms from Equation 6.10 with the same values of L and S. End-regions of the L-
components were then replaced by linear extrapolations in energy, producing SDCS
components such as those shown in Figure 6.9.

6.4.2 SDCS for 17.6, 20, 25, and 30 eV

Results for the calculated SDCS at all four energies treated here are shown in
Figures 6.10 and 6.11. In each case, the singlet and triplet components of the SDCS
are shown along with the total SDCS. Spin factors are included in the spin components
so the total SDCS is simply the sum of the singlet and triplet SDCS. All of the curves
are very smooth and symmetric about E/2. Unlike in the Temkin-Poet model, the
triplet SDCS is not zero in the middle. The only experimentally determined values
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Figure 6.10: Single differential cross sections for electron-hydrogen scattering at 17.6
eV (left) and 20 eV (right) incident energies. The cross sections for singlet and triplet
spin symmetries (with spin factors included) are shown along with the total.
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17.6 eV 20 eV 25 eV 30 eV

e/E]S=0]5=1]|5=0[5=1]5=0|5=1]S=0]S5=1
0.0 || 297 | 058 || 2.70 [ 0.55 | 2.15 | 0.63 || 1.68 [ 0.61
0.1 || 290 [ 057 [| 2.64 [ 0.53 [ 2.02 | 0.54 [| 1.53 [ 0.49
0.2 || 284 | 055 || 258 | 0.51 | 1.88 | 045 | 1.39 | 0.37
0.3 || 280 | 054 || 253 [ 0.49 [ 1.79 | 0.38 [ 1.31 [ 0.29
04 [ 2.78 | 053 | 249 | 048 | 1.74 | 034 | 1.25 | 0.24
05 | 277 ] 053 || 248 [ 047 | 1.72 | 033 || 1.24 [ 0.23

Table 6.1: Numerical values for the singlet and triplet components of the SDCS, spin
factors are not included, in units of 10~"cm?eV~!. Values are given at different one-
electron energies ¢ for incident energies of 17.6, 20, 25, and 30 eV. Total energy E is
equal to the incident energy minus 13.6 eV.

for the SDCS are those obtained by Shyn [35] at 25 eV incident energy. They are
compared with the calculated SDCS in Figure 6.11. These values were determined by
integrating measurements of the double differential cross section that depends upon
the polar angle as well as the energy of one electron. Numerical values for the SDCS
at all four energies are listed in Table 6.1 for six different ratios of the one-electron
energy to the total energy.

6.5 Integral Ionization Cross Sections

As a final means of measuring the ionization component present in the wave
functions calculated using exterior complex scaling, we will consider spin asymmetries
and integral cross sections for ionization. The integral ionization cross section oion
is obtained by integrating the SDCS. Spin asymmetry is a measure of the relative
contributions of the singlet and triplet spin components to oj,,. Both are given in
terms of the individual ionization cross sections for singlet, o, and triplet, o, spin
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: et _ _ n triplet : :
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0 2 4 6 8 10 0 2 4 6 8 10 12 14 16

energy of one electron (eV) energy of one electron (eV)

Figure 6.11: Same as Figure 6.10, but for 25 eV (left) and 30 eV (right) incident
energies. Experimentally determined values due to Shyn [35] are shown for 25 eV
incident energy.



| incident energy [[ 17.6 eV [20 eV [ 25 eV [ 30 eV |

singlet 2.027 | 2.741 | 3.807 | 4.036
triplet 0.389 | 0.538 | 0.885 | 1.047
total 0.798 | 1.089 | 1.616 | 1.794
asymmetry 0.513 | 0.506 | 0.452 | 0.416

Table 6.2: Singlet, triplet and total ionization cross sections and the spin asymmetry.
Cross sections are in units of a3, asymmetry is dimensionless. Spin factors are not
included in the singlet and triplet cross sections.

symmetries that are defined without including spin statistical factors.

1 . 05 — O
Oion = = (05 + 307) Spin Asymmetry = S T

—_ 6.11
4 0'5+30T ( )

Values for og, o1, Oion, and the spin asymmetry are listed in Table 6.2. The

comparisons between measured and calculated TDCS earlier in this chapter indicate
that exterior complex scaling is successful in correctly describing the details of at
least part of the ionization final state. The values in Table 6.2 provide the coarsest
measure of the ionization final state and may be useful for future comparisons with
experiment or other theoretical methods.
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Chapter 7

T