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Abstract 

Since the invention of quantum mechanics, even the simplest example of collisional 

breakup in a system of charged particles, e- + H --+ H+ + e- + e-, has stood as one 

of the last unsolved fundamental problems in atomic physics. A complete solution 

requires calculating the energies and directions for a final state in which three charged 

particles are moving apart. Advances in the formal description of three-body breakup 

have yet to lead to a viable computational method. Traditional approaches, based 

on two-body formalisms, have been unable to produce differential cross sections for 

the three-body final state. Now, by using a mathematical transformation of the 

Schrodinger equation that makes the final state tractable, a complete solution has 

finally been achieved. Under this transformation, the scattering wave function can be 

calculated without imposing explicit scattering boundary conditions. This approach 

has produced the first triple differential cross sections that agree on an absolute scale 

with experiment as well as the first ab initio calculations of the single differential 

cross section [29]. 
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Chapter 1 

The Three-Body Nature of 
Electron-Impact Ionization 

Electron-impact ionization is the process in which a target atom or molecule is ion­
ized by a collision with an electron. Scattering theory calculations have progressed to 
the point of being able to accurately treat non-breakup processes for an electron scat­
tering from relatively complicated target molecules. However, ionization represents a 
fundamentally different class of problems characterized by a final state in which three 
particles that interact via long-range Coulomb potentials are moving apart. Even the 
simplest example of this process, the electron-impact ionization of atomic hydrogen, 
has resisted numerical solution until now. This dissertation presents the first calcu­
lations to produce detailed information about electron-impact ionization that agrees, 
on an absolute scale, with experimentally measured values over a range of energies 
and final directions. 

1.1 A three-body process in electron scattering 

Collisions between electrons and atoms or molecules are governed by none of the 
selection rules that limit optical interactions with matter, primarily because the in­
cident electron is indistinguishable from those of the target. Thus, electron impact is 
an efficient means of exciting or ionizing atoms and molecules. The relative probabil­
ities of the elastic and various inelastic scattering processes following electron impact 
affect the energy distributions of atoms and molecules that determine the chemical 
dynamics of macroscopic systems. Furthermore, electron-impact ionization affects the 
populations of ions and free electrons and is the fundamental mechanism responsible 
for forming and sustaining low temperature plasmas. Detailed information about the 
energy and angular distributions of this process is important for understanding the 
dynamics of plasmas in a wide range of applications. 

In a time-independent formalism the wave function simultaneously contains all 
the information for a scattering event initiated by a collision, at a particular energy, 
between an electron and the target in some specified initial state. Both the initial 
and final states are manifested in the asymptotic boundary conditions on the wave 
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function for large inter-particle separations. The objective of any scattering calcula­
tion is to obtain information about the final state following the collision. For electron 
scattering theory, this means determining the asymptotic boundary conditions of the 
wave function describing the motion of all electrons. 

The final scattering state is typically analyzed in terms of individual "channel" 
components; each corresponding to a particular scattering process usually defined by 
the final state of the target. Scattering theory calculations and experimental mea­
surements attempt to determine probabilities (expressed as scattering cross-sections) 
of the final state being in a particular channel. In calculations, we identify the chan­
nels by separating the asymptotic wave function into individual channel components 
each corresponding to a particular target state. Experimentally these channels are 
identified by the energy of the scattered electron and/or the state of the target. 

Channels not corresponding to ionization are characterized by a single electron 
moving away from the target left behind in either the ground state or some excited 
state. Treatment of these "discrete" channels by various "two-body" formalisms, that 
specify the asymptotic form for each channel as two separate, non-interacting entities 
(the target atom or molecule and a free electron), has been possible for many years. 
Electron-impact ionization, on the other hand, is a three-body process characterized 
by two electrons separating from an ionized target. 

The past 35 years have seen significant progress toward formulating an asymptotic 
form for this process, ranging from the early work of Rudge [34] and Peterkop [25] to 
the very cumbersome, but more complete, form derived by Alt et al. [1]. Despite this 
progress in the formal theory, efforts to explicitly use these asymptotic forms have 
not been successful. Consequently, complete numerical treatment of this process has 
continued to stand as an unsolved problem in electron-scattering theory. 

1.2 Existing methods in scattering theory are 
designed for two-body processes 

Scattering calculations are inherently more difficult than those for bound states 
with the same number of electrons because the wave functions that describe scatter­
ing extend over all space whereas the bound state wave functions are localized near 
the nucleus. Theoretical treatment of systems with two bound electrons began with 
the work of Hylleraas in the 1930s on the bound states of helium which were deter­
mined accurately by Pekeris in the late 1950s. Not until the 1961 work by Schwartz 
would even a rudimentary solution to the simplest two-electron scattering problem, 
an electron scattering from atomic hydrogen, be achieved. 

For scattering of an electron from a target atom or molecule below the ionization 
threshold only two-body channels, characterized by one outgoing electron moving 
away from a neutral target, exist in the final state. In the elastic channel the outgoing 
electron has the same energy as the incident electron and the target is left behind in 
its original state. With the discrete excitation channels the outgoing electron has less 
energy than the incident electron and the target is left in some excited state. The 



energy of the outgoing electron is limited to a set of discrete values that differ from 
the incident energy by the amount needed to raise the target to one of its excited 
states. 

Below the ionization threshold the asymptotic wave function consists entirely of a 
finite set of discrete channels, corresponding to elastic scattering and electron-impact 
excitation, whose number is limited according to which target states are accessible 
with the energy available from the incident electron. These are referred to as the 
"open channels" . 

Calculations on electron-hydrogen scattering for the case where only a few chan­
nels are energetically allowed were carried out by Burke et al. [13J using the "close­
coupling" method. This method uses a physically motivated expansion of the scat­
tered wave function in terms of products of bound states and free-particle functions. 
If the expansion contains terms corresponding to every open channel then it can rep­
resent, exactly, the asymptotic wave function. By including additional short-range 
terms (corresponding to the closed channels) to form a more complete basis in the 
interaction region, accurate discrete channel cross sections could be calculated for 
scattering below the ionization threshold [17J. 

The expansion functions in close-coupling methods are obtained by diagonalizing 
the target Hamiltonian in some suitable numerical basis. As the numerical basis ap­
proaches completeness the negative eigenvalues converge to the physical bound state 
energies of the target and the corresponding eigenstates converge to the bound state 
wave functions. Diagonalization also produces eigenvalues not related to bound state 
energies. The corresponding eigenstates, known as "pseudostates", were thought to 
have no physical meaning themselves, but were included in close-coupling expansions 
to make the basis more complete. Pseudostates corresponding to positive eigenvalues 
are a discretization of what would be the continuum of free-particle states. How­
ever, since they come from representing the Hamiltonian in a set of finite-range basis 
functions they do not have infinite extent like true free-particle states. 

In the early 1970's Burke and Mitchell [15, 14J showed that cross sections for the 
elastic and excitation channels could be calculated at energies above the ionization 
threshold by including positive-energy pseudostates in the expansion. This work was 
extended in the 1980's by Oza and Callaway [23, 22J. However, these calculations were 
marred by the presence of "pseudo-resonances" that prevented accurate calculations 
at certain energies. It was still broadly assumed that the positive-energy pseudostates 
did not give a meaningful representation of ionization. Therefore, they were used 
solely for improving the convergence of discrete channel cross sections and not for 
calculating information specific to electron-impact ionization. 

In the early 1990's Bray and Stelbovics [10, 11 J showed that by including increas­
ing numbers of positive-energy pseudostates a "convergent" close-coupling (CCC) 
method, that eliminated the pseudo-resonances, could be developed for calculating 
not only discrete channel cross sections but total ionization cross sections as well. This 
method represented a significant step forward in treating electron scattering above 
the ionization threshold and has been applied successfully to atoms with several elec­
trons. However, the CCC method has fallen short in its ability to provide details 
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about ionization such as how energy is shared between the two scattered electrons. 

1.3 An entirely new approach designed to 
correctly treat ionization 

In a sense, the ionization component of electron-hydrogen scattering contains 
a continuously infinite number of "channels" because the total available energy is 
shared continuously between the two free electrons. Consequently, ionization cannot 
be satisfactorily represented by a discrete sum of products of one-electron functions. 
In particular, two-body formalisms, such as CCC which 'attempts to attach physi­
cal meaning to positive-energy pseudostates, fail to accurately calculate information 
about how energy is shared between the two electrons. The difficulty lies in the in­
tractable nature of the scattering boundary conditions for ionization. We will look 
more closely at the difficulties of representing ionization boundary conditions with 
the convergent close-coupling method in Chapter 2. 

The failure of CCC, and other methods based on specifying the asymptotic form 
of the wave function, to accurately calculate detailed information about ionization 
points to the need for an entirely new formalism that does not require knowledge 
of the wave function's asymptotic form. The method of exterior complex scaling 
completely avoids the difficulties associated with the asymptotic form for ionization 
by using a mathematical transformation of the Schrodinger equation that simplifies 
the scattering boundary conditions so that the wave function can be calculated using 
standard numerical methods. Exterior complex scaling is introduced, in Chapter 3, 
within the context of a two-dimensional model of electron-hydrogen scattering that 
retains many of the numerical pathologies associated with ionization. 

A method for calculating detailed ionization information for the model problem 
by analyzing the wave functions from Chapter 3 is introduced in Chapter 4. It is 
shown that wave functions calculated with exterior complex scaling produce energy­
sharing differential cross sections that do not have the unphysical characteristics of 
the corresponding CCC results. Extension of the methods introduced in Chapter 3 
to the full electron-hydrogen scattering problem is described in Chapter 5. By using 
exterior complex scaling, six-dimensional wave functions that include an ionization 
component are produced. Differential ionization cross sections, extracted from these 
wave functions by a procedure similar to the one described in Chapter 4, are presented 
in Chapter 6. These results are the first-ever differential cross sections for electron­
impact ionization that agree, on an absolute scale, with experimentally determined 
values over a range of energies and directions. 



Chapter 2 

Barriers to Two-Body Reductions 
of Three-Body Breakup 

Components of the wave function corresponding to elastic and excitation chan­
nels for scattering of an electron from a hydrogen atom have the asymptotic form of 
products of one-electron functions. This fact led to the development of several "two­
body" formalisms for treating electron scattering from atoms and molecules. These 
methods have been able to calculate cross sections for discrete channels at collision en­
ergies both above and below the ionization threshold. The convergent close-coupling 
method, which is limited to atoms, also has succeeded in calculating total, but not 
differential cross sections for ionization. This inability to correctly describe the de­
tails of electron-impact ionization, such as the distribution of energy between the two 
outgoing electrons, indicates a fundamental problem with using two-body formalisms 
to describe a three-body final state. 

2.1 Electronic collisions with hydrogen in a 
time-independent formalism 

Although scattering is an intrinsically time dependent process, the interactions, 
themselves, depend only on distances and not explicitly on time. So, we can cal­
culate complete scattering information using time-independent methods. The wave 
function \lI+ that describes the electron-hydrogen collision is the solution to the time­
independent Schrodinger equation with appropriate boundary conditions. 

(2.1) 

We will be considering an electron with momentum lik i colliding with a hydrogen 
atom in its ground state so the total energy E is the sum of the incident energy and 
the ground state energy Cl of hydrogen. 

(2.2) 
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By approximating the nucleus as infinitely massive, the Hamiltonian iI describes 
the motion of only the two electrons. Their positions, relative to the nucleus, are 
denoted by two three-dimensional vectors iI and is. The wave function 1lJ+ (iI , (2) is 
a six dimensional function and the Hamiltonian, defined below, is a six dimensional 
differential operator. 

(2.3) 

The symbols 'Vi and 'V~ are the three-dimensional Laplacians for the coordinates iI 
and is and represent the kinetic energies of the two electrons. The three particles 
interact via an attractive Coulomb potential between the nucleus and each electron 
and a repulsive Coulomb potential between the two electrons. 

Electrons are indistinguishable, spin-~ particles so the overall wave function of 
both space and spin coordinates must be anti-symmetric with respect to interchange 
of the two electrons. Total spin S of the system can be either zero or one. The 
"singlet" S = 0 spin eigenfunction is anti-symmetric while the three "triplet" S = 1 
spin eigenfunctions are symmetric. Thus, the proper symmetry for the spatial wave 
function under interchange of electron coordinates is 1lJ+ (f2, rI) = (-1)5 1lJ+ (iI, r2). 
Since the Hamiltonian in Equation 2.3 does not depend on spin we can perform 
independent calculations for the singlet and the triplet cases. The S index is usually 
suppressed, so it is to be understood that separate calculations are always performed 
for both spin symmetries. Ultimately, we will sum the results for the two values of S 
with statistical weights of ~ for singlets and ~ for triplets. 

Both the initial and final states are described in the asymptotic region of the wave 
function. The first step in simplifying the asymptotic boundary conditions for 1lJ+ 
is to remove a term 'lI~, representing the initial state, from the total wave function 
leaving a function 'lI~ t'hat is identified, asymptotically, as the scattered wave. 

(2.4) 

We specify the initial state to be one electron in the hydroge'n ground state <I>ls(i:') 
and the other to be a plane wave e ikiZ with momentum tiki in the z direction. 

'liD (i i) = _1_ (<I> (i )eikiZ2 + (-1)5<I> (i )eikiZl) ki 1 ,2 V2 Is 1 Is 2 (2.5) 

To preserve the indistinguishability of the electrons, the initial state 'lIZ
i 

is anti­
symmetrized according to the total spin S. 

We derive an inhomogeneous differential equation for 1lJ;tc(iI, is) in terms of the 
known function 'lI~i (iI, ( 2) by rearranging the Schr6dinger equation (Equation 2.1). 

(2.6) 

Since 'lI~ (iI, is) represents the scattered part of the wave function at large distances it 
must be an outgoing wave in rI and r2. Thus, we define 1lJ~(fI' r2) to be the outgoing 
solution to Equation 2.6. 



2.2 Analyzing the asymptotic form of the 
scattered wave 

We can separate the scattered wave into individual "channel" components that 
are identified according to the final state of the hydrogen atom. Hydrogen states can 
be written as <Pnlm(r) = ~<Pnl(r)Yl,m(f) where the Yl,m is a spherical harmonic and 1 
and m are the usual angular momentum quantum numbers. The functions <Pnl satisfy 
the radial Schrodinger equation for hydrogen with Hamiltonian iIl and energy En. 

(2.7) 

Bound states of hydrogen are those <Pnlm that are finite-range and have an energy 
that is one of the discrete values En = _I326 eV. The ground state, previously denoted 

n 
by <PIs, is <P100 in this notation. 

In the elastic scattering channel one electron is left bound in the hydrogen ground 
state while the other scatters away. Since no energy was exchanged in the collision 
the scattered electron will have the same energy as the incident electron. In the 
excitation channels one electron is left bound to the proton in some excited hydrogen 
state. The momentum hkn of the outgoing electron is reduced according to the 
amount of energy required to raise the atom to its excited state. Since the bound 
state energies are quantized, the scattered momenta hkn in the elastic and excitation 
channels are limited to a discrete set of values. 

h2 h2 

_k2 = _k2 +EI - En 
2m n 2m z 

(2.8) 

For scattering below the ionization threshold i. e., ;~ k; < IEII, the number of 

discrete channels that are "open" are limited to those for which the quantity ;~ k~, 
defined in Equation 2.8, is positive. In this case, the asymptotic form of the scattered 
wave is completely described by an expansion in terms of two-body functions, each 
corresponding to an energetically open channel. 

,T,+(- -) '" 1 (.'F. (- )fnlm(f2) ikiT2 + sfnlm(fI ) ikiTj.'F. (-)) 
'l'sc rI, r2 ----t ~ y2 '¥nlm rl e (-1) e '¥nlm r2 

2 r2 rl 
rl,r2--t(X) n,l,m 

(2.9) 
In every term the scattered electron is represented by a radially outgoing wave with 
angular dependence determined by the channel scattering amplitude fnlm(f). 

Equation 2.9 does not completely describe the asymptotic form of 1ft for scatter­
ing above the ionization threshold. In this case, all excitation channels are open so 
the asymptotic form is an infinite sum over all n. More importantly, ionization is now 
possible so an additional term, 1f~n(rI' is), must be included to describe ionization. 
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The ionization "channel" is really a continuum of final states that cannot be satisfac­
torily represented by a discrete sum of products of one-electron functions. 

Many efforts have been made to derive the asymptotic form of w~n' with the 
work of Alt et al. [1] being the most complete to date. We will, instead, look at the 
relatively simple form derived by Rudge [34] that is valid when all three particles are 
widely separated. This form is expressed in terms of hyperspherical coordinates where 

the two radial coordinates rl and r2 are replaced by a hyperradius p = Jr? + r~ and 
a corresponding hyperangle a = tan- l (r2/rl). 

w:+- (r r) - j·(r r a) M ei [II;P+((h,f2,a)/II;) in(211;p)] 
IOn 1, 2 --t z 1, 2, V ---;;'5 (2.11) 

p--+ 00 

In Equation 2.11, the angular function multiplying the logarithmic phase is de­
fined as ((rl' r2, a) = (sin a)-l + (cos a)-l - (1 - rl . r2 sin 2a)-1/2. The scattering 
amplitude for ionization fi(rl, r2, a) contains all of the angular distribution (the rl, r2 
dependence) and energy sharing (related to the a dependence) information about the 
ionization final state. Equation 2.11 describes the asymptotic form of w~n as an out­
going wave in the hyperradius p rather than in the two radial coordinates. This very 
fact indicates that w~n cannot be adequately represented by a finite sum of two-body 
terms i.e., products of a function of rl and a function of r2. 

2.3 Two-body approach to calculating integral 
cross sections for ionization 

The convergent close-coupling (eee) method is a particular implementation of 
close-coupling that has been successfully applied to calculating discrete channel cross 
sections for electron-atom scattering over a wide range of energies. eee does not cor­
rectly treat the details of ionization [30] but still has remarkable success at calculating 
total ionization cross sections, as well as cross sections for discrete channels, in atoms 
of several electrons [2]. In order to understand the shortcomings of eee at calculat­
ing detailed ionization information we will look briefly at a simplified application of 
eee specific to hydrogen [9]. 

Like all close-coupling formalisms, the eee method is based upon a physically 
motivated expansion of the wave function. This expansion is in terms of products 
of one-electron functions similar to Equation 2.9, but the actual hydrogen states are 
replaced by functions Y nlm (f'), called pseudostates. The Y nlm are generated by diago­
nalizing the hydrogen Hamiltonian represented in a set of square-integrable numerical 
basis functions. 

(2.12) 

As the size of the numerical basis is increased the negative eigenvalues and corre­
sponding pseudostates in Equation 2.12 converge to the bound state energies and 
eigenfunctions of hydrogen i. e., Ani ~ En and Y nlm (f') ~ <Pnlm (f'). 



Within the eee formalism, the wave function W6cc is expanded, analogously 
to Equation 2.9, in terms of the 1 nlm rather than exact hydrogenic functions. The 
number of terms that are included in the expansion is increased until convergence of 
the cross-sections is observed. 

W6cdr1' r2) = L (1 nlm(r} )f~m(r2) + (_1)5 f~m(r1)1 nlm(f2)) (2.13) 
n,l,m 

The eee expansion coefficients f ~lm (11 for all energetically open (Ani < E) pseu­
dostate channels have the asymptotic form of an outgoing wave similar to the indi­
vidual terms in Equation 2.9. In the actual implementation, W6cc approximates the 
total wave function W+ rather than the scattered wave 'lit. This has little conse­
quence on the discussion here since both the total and scattered wave functions can 
be expanded similarly with only the elastic channel terms being different. 

Pseudostates with positive eigenvalues are a sort of discretization of the continuum 
of Coulomb waves representing the ionized hydrogen states. These positive-energy 
pseudostates, unlike true continuum functions, are finite-range because the underlying 
numerical basis is square-integrable. Although they do not, themselves, have physical 
meaning, the positive-energy pseudostates do "overlap" with true Coulomb waves. 
From a numerical point of view, all pseudostates, including those corresponding to 
closed channels and those with positive eigenvalues, must be included in the eee 
expansion to form a complete set of basis functions. 

Like other close-coupling formalisms, eee is essentially exact below the ionization 
threshold. It can also produce accurate discrete channel cross sections for scatter­
ing at higher energies. The advantage of eee over earlier close-coupling methods is 
that it has been shown to also produce convergent total ionization cross sections [10J. 
Convergence of the total ionization cross sections was considered by some to be a sur­
prising result since ionization must be represented by the positive-energy terms in the 
pseudostate expansion and those were believed to have no physical meaning. How­
ever, success at calculating total ionization cross sections does not necessarily require 
that the the eee basis accurately describe the details of the ionization component 
of the scattered wave. 

The success of eee in calculating total ionization cross sections is a consequence 
of the ability of the expansion to both represent, exactly, each of the discrete channel 
components of the wave function in the asymptotic region and to accurately describe 
the entire wave function within a finite interaction region. With an expansion basis 
that is effectively complete over the interaction region, we can assume that the eee 
formalism is properly representing all of the collision dynamics. Since each energet­
ically open term in the expansion is constructed to be an outgoing wave we know 
that any outgoing flux generated in the interaction region will successfully escape to 
infinity. Therefore, it is not as surprising as originally believed that the eee method 
can calculate accurate total cross sections. Since we already know that the eee 
method can accurately calculate discrete channel cross sections it is clear that by 
simply subtracting all discrete channel cross sections from the total cross section we 
can obtain a reasonably accurate estimate of the total ionization cross section. 
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Figure 2.1: SDeS for e-H calculated by eee at 20eV incident energy, so that the 
total energy is E=6.4eV. The actual calculated cross sections, which are not symmetric 
about E/2, are shown on the left. The total "raw" cross section is the sum of the 
singlet and triplet "raw" cross sections. A symmetrized SDeS is formed by adding the 
raw total to its mirror image. The eee method removes the unphysical oscillations 
in the calculated cross sections by replacing the symmetrized SDeS with a smooth, 
integral-preserving guess. 

2.4 Two-body approaches fail to provide detailed 
ionization information 

Shortcomings of the eee method in treating ionization are most evident in the 
energy-sharing or single differential cross section (SDeS) for ionization. The SDeS 
is a differential cross section with respect to the energy of one of the electrons C1 and 
describes how energy is shared between the two outgoing electrons. The energy C1 can 
range from zero to the total energy E. Because the two electrons are indistinguishable 
the SDeS should have the same value at E - C1 as at C1' It is, therefore, symmetric 
about C1 = E /2. By convention, the SDeS is normalized so that it gives the total 
ionization cross section when integrated from zero to E /2. An example SDeS calcu­
lated by Igor Bray with the eee method [12] is plotted in Figure 2.1. The actual 
calculated cross sections are shown in the left panel. Two striking features of these 
curves are (1) they are definitely not symmetric about E /2 and (2) they contain large 
amplitude oscillations. 

The asymmetry of the calculated SDeS is a consequence of the way the wave 
function is analyzed [30]. In the eee method physical meaning is attached to the 
terms in the expansion with pseudostates l' nlm for which 0 < Anl < E. Each of these 
terms is said to correspond to one electron being ejected from the target with energy 
Anl and the other scattering away from the target with energy E - Anl' The SDeS 
is constructed over the continuous range of C1 by applying appropriate quadrature 
weights to the discrete set of positive pseudostate energies [8]. Since the scattered 
electron is actually represented in these terms by a plane wave, this assertion is based 
on the rather gross assumption that the slower, ejected electron completely shields the 



nucleus from the faster, scattered electron. There is some controversy in the literature 
over whether the asymmetric method of extracting the SDeS in the eee method 
imposes distinguishability of the two electrons [5], but it is claimed by Bray [7] that 
this issue is addressed by post-symmetrizing the result. 

The more troubling aspect of the SDeS calculated by eee is the oscillations. 
Since the true SDeS is known to be a very smooth function, Bray constructs a 
smooth curve, shown in the right panel of Figure 2.1, that is an integral-preserving 
average of the symmetrized oscillatory curve. It is claimed that this curve approxi­
mates what the eee calculated SDeS would converge to in the limit of an infinite 
eee basis [6]. Convergence of the calculated SDeS to a smooth function has never 
been demonstrated and there is much uncertainty about whether the smooth curve 
generated in this ad hoc fashion is correct. It is widely believed that the oscillations 
in the SDeS calculated by eee indicate a fundamental problem with the formalism. 

Looking for the source of the unphysical oscillations requires scrutinizing the abil­
ity of the eee basis to adequately describe the ionization component of the scattered 
wave. The set of negative-energy pseudostates in the eee expansion (Equation 2.13) 
generate the discrete channel terms in the expansion of the asymptotic form (Equa­
tion 2.10). It is then up to the positive-energy pseudostate terms to construct the 
ionization component in Equation 2.10. This is potentially a source of trouble in two 
ways. First, and most obvious, is the possibility that the eee basis cannot ade­
quately represent the ionization component of the scattered wave at large distances. 
Second, and probably most significant, is the way that the eee wave function is 
analyzed by attaching physical meaning to the positive-energy pseudostates. 

From the Rudge asymptotic form (Equation 2.11) it is clear that the ionization 
component is an outgoing wave in the hyperradius p. The positive-energy terms in 
Equation 2.13, on the other hand, are an outgoing wave for one electron (the required 
asymptotic form of f;zm) and a positive-energy pseudostate for the other. It is claimed 
that in the limit of an infinite set of numerical basis functions we can think of the 
positive-energy pseudostates as true Coulomb waves. Even in this idealized case we 
have a task similar to trying to represent a spherical wave with a sum of products 
of plane waves. As the number of plane wave products increases the spherical wave 
will be represented fairly well over an increasingly large region of space. However, 
forming a spherical wave, in this manner, that is accurate over all space is a hopeless 
task. Knowing the asymptotic form of the wave function is effectively the ultimate 
goal of scattering calculations, so there is legitimate concern about the ability of the 
eee basis to adequately represent the ionization component of the scattered wave. 

The eee method certainly has trouble correctly representing the ionization com­
ponent of the scattered wave. It is conceivable, although by no means certain, that 
with a sufficiently large eee basis the wave function may be adequately constructed 
over a large enough region of space to produce meaningful ionization information. 
However, there is still a problem with the analysis because the product of a plane 
wave and a Coulomb wave is not a very good representation of a state with two elec­
trons in the continuum. Although the eee basis could conceivably be used as an 
adequate numerical basis it is incorrect to attach physical meaning to the individual 
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positive-energy pseudostate terms. Another problem is that this analysis implicitly 
treats the electrons as distinguishable. 

In a recent study [30] the effects of the eec energy analysis for ionization were 
examined in isolation from other potential sources of error. Accurate scattering wave 
functions that contain an ionization component were constructed using the method 
presented in Chapter 3, thus removing the uncertainties associated with construct­
ing a eee wave function. These wave functions were constructed for several two­
dimensional model problems and smooth, accurate single differential cross sections 
were extracted from them by using the method described in Chapter 4. However, 
a eee style analysis produced oscillatory cross sections similar to those in the left 
panel of Figure 2.1. It was shown that, at least for examples with short range po­
tentials, the eee calculated SDeS at Cl = E /2 converges to exactly one fourth of 
the correct value. Although no formal proof has been given, it appears that this is at 
least approximately the case for electron-hydrogen scattering. However, the relation­
ship between the eee calculated SDCS and the correct SDCS for all other energy 
distributions is completely unpredictable. 

The two-body formalism of ecc is very well suited for discrete channels, but not 
for ionization. Its shortcomings point to the need for an entirely new formalism to 
calculate differential cross sections for ionization that is not tied to any particular 
asymptotic form. The method of exterior complex scaling, introduced in the next 
chapter, can produce scattering wave functions that are accurate over a finite region 
of space and correctly describe the details of ionization without appeal to any asymp­
totic form. In Chapter 4, a procedure is introduced that extracts differential cross 
sections for ionization from these wave functions, again, without explicitly invoking 
any particular asymptotic form. 



Chapter 3 

Exterior Complex Scaling Avoids 
the Three-Body Asymptotic Form 

The fundamental difficulty that traditional, "two-body" methods have with electron­
impact ionization is in representing a wave function with two outgoing electrons. 
These methods have the same difficulty even when applied to the two-dimensional 
Temkin-Poet model of electron-hydrogen scattering that also supports an "ioniza­
tion" final state with two electrons in the continuum. This model presents difficulties 
similar to those of the full problem of electron-hydrogen scattering. It is, therefore, 
a useful test-bed for any method intended to be applied to a true electron-impact 
ionization problem. Thus, the Temkin-Poet model is an ideal context for presenting 
the method of exterior complex scaling as a means of generating wave functions for 
electron-hydrogen scattering while avoiding, entirely, the difficulty in specifying the 
Coulomb three-body asymptotic form. 

3.1 Temkin-Poet Model Problem 

The S-wave, or Temkin-Poet, model of electron-hydrogen scattering has been 
used for many years to develop and test calculational methods intended for more 
realistic electron-scattering problems. This two-dimensional problem, that supports 
ionization, was first presented in 1962 by Aaron Temkin [38] in a variational study 
of the S-wave component of electron-hydrogen scattering. In 1978, R. Poet [26] 
produced the first accurate cross-sections for inelastic processes in the model. Just 
like the complete electron-hydrogen system, this model contains an infinite number 
of bound states as well as an ionization continuum, but without the complexities 
of angular dependence. Therefore, it allows one to isolate and study the difficulties 
arising from the radial dependence of three-body breakup. 

The Temkin-Poet model can be thought of as a spherical average of the full 
electron-hydrogen problem. It is defined by a two-dimensional, radial Schrodinger 
equation. 

(3.1) 

The total energy E is the sum of the kinetic energy of the incident electron and the 
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ground state energy of hydrogen i.e., E = ;~k; + Cl. With no angular dependence, 
the Laplacians from the Hamiltonian in Equation 2.3 reduce to second derivatives 
with respect to the two radial coordinates. 

A n? rF ti2 d2 e2 e2 e2 
H(rl, r2) == ---2 - --2 - - - - + - (3.2) 

2m drl 2m dr2 rl r2 r> 

The quantity r> is defined below. 

(3.3) 

The attractive potentials between the nucleus and each electron are the same in 
the model Hamiltonian as they are in Equation 2.3. The repulsive potential between 
the two electrons is replaced by a non-analytic potential £ which is the zero angular 

T> 

momentum term in the multipole expansion of 1_ e
2 

_ 1 (see Equation F.13). Just as in 
TI -T2 

Equation 2.4 we separate the wave function '¢+ in to two terms: ,¢2i representing the 
initial state and '¢j;p having outgoing wave boundary conditions. 

(3.4) 

The Temkin-Poet scattered wave, '¢j;p, is the outgoing wave solution to a scattered 
wave equation similar to Equation 2.6. 

(3.5) 

We want '¢+ to represent an electron scattering from a hydrogen atom in the ground 
(Is) state. The bound electron is represented by the ground state radial function ¢l. 

2r 
A. (r) = _e-T

/ ao 
'PI 3/2 

ao 
(3.6) 

An incident electron with momentum tiki is represented by sin(kir) which comes from 
the zero angular momentum term of the multipole expansion of eikiZ (see Equation 
F.17). The initial state ,¢2i is an anti-symmetrized product of these two functions. 

(3.7) 

Singlet (S = 0) wave functions are symmetric with respect to interchange of the 
coordinates rl and r2 while triplet (S = 1) wave functions are anti-symmetric. As 
mentioned in Chapter 2, we perform separate calculations for the two spin symmetries. 

3.2 Asymptotic Form 

We can write the asymptotic form of the Temkin-Poet scattered wave by direct 
analogy with Equation 2.10. It contains a sum of "two-body" terms corresponding 
to the discrete channels as well as an additional term for ionization. 

,¢j;p(rl,r2) ---7 f ~ (¢n(rl)eiknT2 + (_1)seiknTl¢n(r2)) +,¢ion(rl,r2) (3.8) 
TI ,r2~CX> n=l 2 



Since the Temkin-Poet model supports only the zero angular momentum states of 
hydrogen the discrete channels are restricted to elastic scattering and excitations into 
other s-states of hydrogen. The s-state radial functions <Pn satisfy the l = 0 radial 
equation for hydrogen bound states. 

(3.9) 

The energies Cn are the bound state energies of hydrogen, Cn = -1~26eV. Energy 
conservation determines the momentum nkn of the scattered electron. 

1 2 2 1 2 2 "2 n kn + Cn = "2n ki + co = E (3.10) 

The ionization term 'l/Jion accounts for all of the "three-body" nature of the scat­
tered wave. By analogy with the Rudge asymptotic form of the ionization wave 
function in Equation 2.11 we can write an asymptotic form in hyperspherical coordi­
nates p and a (rl = psin a, r2 = pcos a) for 'l/Jion, keeping in mind that the scattered 
wave radial function used here includes a factor of rlr2. 

0/'. (r r) - f.(a)J iK 3 ei [Kp+((!K)ln(2Kp)] 
'f/JOn 1, 2 ----+ z p (3.11) 

p-+oo 

The ionization scattering amplitude Ii and the phase factor ( are both functions of 
only the hyperangle a. 

While the discrete channel components are outgoing waves in one of the radial 
coordinates, the ionization component is an outgoing wave in the hyperradius p that 
cannot be written as a sum of products of one-dimensional functions of rl and r2. The 
presence of both of these two very different types of outgoing waves in 'l/Jion provides 
the motivation for a calculational method that is applicable to any outgoing wave 
without regard to any specific asymptotic form. 

3.3 Exterior Complex Scaling 

The method of exterior complex scaling (ECS) uses a mathematical transformation 
of the scattered wave equation to simplify the outgoing wave boundary conditions. 
Here we will introduce ECS in the context of the Temkin-Poet model. In Appendix 
A, it is applied to the simpler problem of one-dimensional potential scattering. Under 
ECS, the scattered wave equation (Equation 3.5) is solved with the radial coordinates 
mapped on to a complex contour that is real for small values but, beyond a certain 
distance, is bent into the upper-half of the complex plane. 

The simplest such contour is one where the coordinates are defined to be real 
out to some finite radius Ro and beyond that are rotated into the upper-half of the 
complex plane at a scaling angle TJ from the real axis. Let Ro 2: 0 and 0 < TJ < 900 

define acorn plex contour z (r) parametrized by the real coordinate r. 

z(r) {R (r R) i1) 0+ r- 0 e 
r < Ro 
r 2: Ro 

(3.12) 
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Figure 3.1: On the left is an illustration of the contour z( r) rotated into the upper­
half of the complex plane beyond Ro. On the right is a depiction of exterior complex 
scaling for two radial coordinates. 

In the Temkin-Poet model this transformation is applied to both rl and r2 as il­
lustrated in Figure 3.1. Both coordinates are real on an interior box of length Ro. 
Outside that box there are three distinct regions where one or both of the coordinates 
is complex. 

3.3.1 Outgoing waves become finite-range functions 

We can most easily see the effect of ECS on an outgoing wave by considering an 
outgoing spherical wave eikr evaluated on the contour z(r) defined in Equation 3.12. 

(for r > Ro) (3.13) 

The infinite-range outgoing wave is transformed into a function that decays exponen­
tially beyond Ro, provided that 7] > o. Exterior complex scaling has the same effect 
on any outgoing wave (other one-dimensional examples are shown in Appendices A 
and C), including those with logarithmic phase terms, although the exact analytic 
expression is more complicated. As a result, every outgoing wave (including the two­
dimensional scattered wave 'l/Jtp) is transformed into a function that goes to zero at 
large distances. 

In Figure 3.2 we see the effect of ECS on the eigenvalue spectrum of the Hamil­
tonian for a hydrogen atom. The characteristics of eigenvalue spectra under ECS 
were originally described by Barry Simon [36J. Bound state energies of hydrogen are 
unaffected by ECS because the bound state eigenfunctions remain bound under ECS. 
The positive eigenvalues, which correspond to the continuum of ionized states of hy­
drogen, have been rotated into the lower-half of the complex plane. This is directly 
linked to the transformation of the infinite-range continuum states to finite-range 
functions under ECS. The eigenvalue spectrum for the two-electron Hamiltonian is 
more complicated but, has these same general features. 
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Figure 3.2: The eigenvalue spectrum of an exterior complex scaled radial Hamiltonian 
for hydrogen. All of the eigenvalues with positive real parts lie below the real axis. 
Numerical values for the bound state eigenvalues are compared with the exact hydro­
gen bound state energies. The grid spacings used in this example are also given. The 
Coulomb potential was truncated at 50ao. Beyond 50ao the coordinates are complex 
with a scaling angle of 30° and extend another 30ao. 

3.3.2 Application to long-range potentials 

The presence of Coulomb, or any other long-range potentials, in the Hamiltonian 
precludes straight-forward application of ECS to the scattered wave equation. Under 
ECS, outgoing waves become finite-range functions and bound states remain bound. 
However, incoming waves become exponentially increasing functions as can be easily 
seen by changing the sign of k in Equation 3.13. This is a problem because the 
definition of the initial state 'l/J~i contains sin(kir) which can be written as the sum of 
an incoming and an outgoing wave. Thus, 'l/J~i' which appears in the driving term of 
the scattered wave equation, is an exponentially increasing function under ECS. 

Since 'l/J~i is acted on by the operator (H - E) in the scattered wave equation we 
need to consider the entire right-hand side of Equation 3.5. 

A 1 (e
2 

e
2
). (-1)5 (e

2 
e

2
) . (H - E) 'l/J2 = - - - - sm(ki rd<p1(r2) + -- - - - <P1(Td sm(ki T2) , .J2 T> T1 .J2 T> T2 

(3.14) 
The unscaled right-hand side decays like ~ due to the Coulomb potentials left over 

after (H - E) acts on 'l/J~i' The damping from the Coulomb potentials is not enough 
to counteract the exponential increase in 'l/J~ after the ECS transformation. Thus, 

" under ECS the driving term in Equation 3.5 diverges for large r] or r2. 
The prescription for getting around this limitation is demonstrated in Appendices 

A and B. Long-range potentials are truncated at Ro, efIectively replacing them by 
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artificially short-range potentials and making the driving term in Equation 3.5 vanish 
where the coordinates are complex. Obviously, in order for the calculated results to 
be meaningful Ro must be large enough that truncating the potentials has little effect 
on the collision dynamics. The purely outgoing nature of'l/Jfp minimizes the error in 
the calculated wave function due to truncating the potentials. 

3.3.3 Wave function unaffected where coordinates are real 

In the region where the coordinates are real the scattered wave equation is unaf­
fected by the ECS transformation. Assuming the numerical methods used are accu­
rate, we expect the scaled wave function to be the same as the un scaled (physical) 
wave function in the region where both coordinates are real. 

(3.15) 

However, we cannot claim true equality in Equation 3.15 because the Coulomb 
potentials are truncated at r = Ro. Since 'l/Jfp is an outgoing wave, we can expect 
that truncating the potentials at Ro has little effect on 'l/Jfp for r < Ro. Truncating 
the potential does affect the higher-energy hydrogen bound states so Ro needs to be 
large enough that all bound states that contribute significantly to 'l/Jfp are essentially 
confined to the region where the coordinates are real. For now, we will assume that 
the scaled wave function is physically meaningful on the real coordinates, provided 
that Ro is sufficiently large, and that we may extract various physical quantities by 
analyzing the numerically generated wave function on the region inside Ro. 

3.4 Finite Difference Implementation 

Exterior complex scaling makes the scattered wave equation solvable. We now 
need a numerical implementation for accurately calculating the scaled wave function. 
The simple ECS contour described in Equation 3.12 has a discontinuous derivative 
at Ro. Consider what this means for an outgoing spherical wave. For r < Ro the 
outgoing wave is e ikr and the second derivative as r ---+ Ro from smaller r is _k2eikRo. 

However, for r > Ro we must use the functional form given in Equation 3.13. The 
second derivative as r ---+ Ro from larger r is _k2ei27JeikRo. Thus, the second derivative 
is discontinuous at r = Ro by a factor of ei27J . Consequently, standard basis set 
methods that expand the wave function in some set of analytic functions cannot be 
used with this contour. As described in Appendix B, analytic basis set methods can 
be made to work if a "smooth" contour is used instead. However, using a smooth 
contour rather than the "sharp" contour from Equation 3.12 adds significantly to the 
cost of solving the scattered wave equation. 

Two types of methods that can correctly represent a function under ECS with 
the sharp contour are finite difference and finite elements. Finite element methods 
divide space into finite regions and expand the wave function in each region with 
a set of basis functions that are defined to be zero outside their particular region. 
If Ro lies on the boundary between two regions then finite element methods can 



be designed to produce wave functions with exactly the right discontinuity in their 
first derivatives. Finite elements have been successfully applied to the Temkin-Poet 
model [20]. However, producing the matrices for this method is expensive, making it 
less suitable for the full electron-hydrogen problem. 

Finite difference methods map the wave functions directly on to a numerical grid 
and can produce wave functions with the correctly discontinuous first derivatives. The 
matrices involved are much simpler to construct than those for finite elements. For 
this and other reasons, finite difference is more easily extended to the full electron­
hydrogen problem and will be the method of choice throughout this dissertation. 

3.4.1 ECS on a grid 

Under ECS, the scattered wave '¢fp(z(rl)' z(r2)) is a continuous function but has 
discontinuous first derivatives along the lines rl or r2 equal to Ro. There is no problem 
representing the wave function on a two-dimensional grid in rl and r2, but in order 
to correctly approximate its derivatives on each grid point we will require that Ro be 
one of the grid points. The scattered wave will be calculated directly on to the ECS 
contour by solving Equation 3.5 on the two-dimensional, complex-scaled grid., 

Functions whose analytic forms are known, such as the right-hand side of Equation 
3.5 and the potentials in the Hamiltonian, are mapped on to the ECS contour by 
simply evaluating them on the contour z( r) for both rl and r2. The non-analytic 
two-electron potential ~ is scaled in this way by noting that it is piece-wise analytic 

T> 
and scaling the rl < r2 and rl > r2 regions separately. The potential is unchanged 
on the real part of the grid and, as will be demonstrated later in this chapter, the 
potentials beyond Ro have very little effect on the wave function in the interior region. 

3.4.2 Finite difference approximations to derivatives 

We replace the kinetic energy term in Equation 3.2 by finite difference formulas 
given in Appendix C. The second derivative with respect to rl or r2 at some grid 
point is represented by a formula involving the value of the wave function at that 
point and at three points on either side. For a uniform grid, the seven-point finite 
difference formula is accurate to sixth order in the grid spacing. The sum of the two 
second derivatives forms the cross-shaped, 13-point "stencil" shown in Figure 3.3. 

At one or two grid points away from rl = 0 or r2 = 0 the seven-point formulas 
cannot be used because they would require terms for grid points at negative r. Less 
accurate five-point formulas are used at these points instead. A very small grid 
spacing near r = 0 is required because the Coulomb potentials are singular at zero, so 
five-point finite difference near r = 0 still provides good accuracy. There is no such 
issue at the large r boundary, r = Rmax. If (Rmax - Ro) is large enough that '¢fp 
is effectively zero at Rmax then we can define the wave function to be zero at Rmax 
and beyond and thus implicitly include the value of the wave function at any point 
beyond the extent of the grid. 

Application of exterior complex scaling to finite difference is very straight forward. 
To understand how ECS is applied to the kinetic energy term, let us consider what 
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Figure 3.3: The sixth order finite difference representation of the two-dimensional 
Laplacian uses a 13-point stencil based on the 7-point formulas for the second deriva­
tive in one dimension as illustrated on the left. Along the grid boundaries the func­
tion'svalue is fixed to be zero and the edge points are included in the finite difference 
formulas implicitly. If the center of the stencil is two grid points from an edge then 
the 5-point formula replaces the 7-point formula in one dimension. If the center is 
one grid point from an edge then a special, asymmetric 5-point formula is used. 

scaling the derivatives means. 

d
2 

d2 (dZ(r))-2 d2 -i21) d2 

dr2 --+ dz(r)2 = ~ dr2 = e dr2 (3.16) 

If all points included in the finite difference formula lie on the complex part of the grid 
then we simply multiply the formula by e-i21). By examining the formulas in Appendix 
C we see that this is equivalent to multiplying the grid spacings by ei 1). This view 
is consistent with the fundamental concept expressed in Equation 3.16 that after the 
ECS transformation the derivatives with respect to r become derivatives with respect 
to the complex contour z(r). 

In general, we apply ECS to finite difference by multiplying all grid spacings for 
r > Ro by ei 1). The finite difference formulas for r < Ro and r > Ro differ by a factor 
of ei21) , exactly the discontinuity factor that we found when considering the outgoing 
spherical wave. This is why finite difference is well-suited for a sharp ECS contour 
provided that Ro is one of the grid points. Finite difference formulas for grid points 
at or near Ro will straddle Ro so that some of the grid "spacings" in these formulas 
are real and some are complex. Therefore, we cannot assume a uniformly spaced 
grid when using ECS. Specialized finite difference formulas designed for the interface 
between two regions of different grid spacings are given in Appendix C. 

3.4.3 System of linear equations 

We will solve for 'l/Jtp(rl' r2) directly on to a two-dimensional Cartesian grid of 
discretized radial coordinates that is defined in terms of a one-dimensional grid of ng 

grid points spanning the space between zero and some radius Rmax > Ro. Rmax must 
be large enough that the exterior complex scaled scattered wave can be assumed to be 
zero for rl, r2 ~ Rmax. Referring to Equation 3.13, we see that an outgoing wave with 



momentum lik decays like e-ksinT/(r-Ro) for l' > Ro. That means we should choose 1] 

and Rmax so that e-ksinT/(Rmax-Ro) is effectively zero. 

The total number of grid points, and thus the number of values calculated for 
'lj;.j;p, is N = n~. We calculate the scattered wave by casting Equation 3.5 as a matrix 
equation of the form Ax = b where x is a vector of the N unknown values of 'ljJ.j;p on 
the grid, b is a vector of N values obtained by evaluating Equation 3.14 on the grid, 
and A is the N x N matrix representation of the operator (E - H). The vectors x and 
b are ordered so that the values of 'Ij;.j;p(1'l' 1'2) for the same 1'2 are stored contiguously. 
To form the matrix we add together the matrix representations of each individual 
term from the Hamiltonian definition in Equation 3.2. One consequence of using 
exterior complex scaling, or using any grid with multiple grid spacings, is that the 
Hamiltonian matrix will not be Hermitian or even complex-symmetric. 

Potentials are simply evaluated on the grid and those N values, along with the 
constant term E, are added to the diagonal. The finite difference formulas provide all 
of the non-zero off-diagonal matrix elements. As shown in Figure 3.3, the Laplacian 
at each grid point is determined by function values from no more than 13 grid points. 
This means that each row of the matrix will have at most 13 nonzero matrix elements, 
so the matrix is very sparse. The sparsity structure of the finite difference matrix 
representation of (E - H) is shown in Figure D .1. 

3.4.4 Dimension of the problem 

The size of the calculation needed to obtain 'Ij;.j;p is governed by the total number 
of grid points. Deciding how to distribute a fixed number of grid points requires 
striking a balance between the higher accuracy of closely spaced grid points and the 
greater information content of a grid covering a larger region. An advantage of using 
the sixth order finite difference formulas is that we get a large payoff in accuracy from 
small increases in grid density. In general, we can represent 'Ij;.j;p accurately if there 
are several grid points per oscillation. Most of the calculations presented here used 
five grid points per atomic unit, sufficient for incident energies less than 50 eV. 

However, the Coulomb potentials are singular at l' = 0 so a spacing of 0.2ao is 
inadequate for representing the potentials at small 1'. We can evaluate how well a 
particular grid represents the Coulomb potential by diagonalizing the finite difference 
approximation to the one-dimensional radial hydrogenic Hamiltonian of Equation 3.9 
and comparing the negative real eigenvalues with the known bound state energies of 
hydrogen. A spectrum from a complex scaled Hamiltonian is shown in Figure 3.2. 
In this example a spacing of O.Olao near l' = 0 and 0.05ao out to l' = 2ao gives the 
ground state energy and excited state energies up to n = 4 correct to better than 
0.05% and we can assume that the corresponding eigenstates are good approximations 
to the true hydrogen states. Note that the calculated ground state energy is below 
the exact value. With finite difference there is no variational principle that forces the 
calculated ground state energy to be larger than the exact value. 

Beyond l' = Ro the wave function is particularly insensitive to grid spacing and we 
can use very large (but still less than lao) grid spacings near l' = Rmax. Specialized 
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finite difference formulas valid for "stencils" that span regions of two different grid 
spacings are listed in Appendix C. These formulas allow us to use grid spacings of 
0.2ao over most of the grid, a tight grid spacing for small r, and a very large grid 
spacing for large r with only a moderate cost in accuracy. These specialized formulas 
also make application of ECS possible. 

A typical grid that spans 100ao in real coordinates and an additional 25ao in 
complex coordinates requires 458 grid points in one dimension. The total number 
of grid points in two dimensions, and the dimension of the matrix equation, is then 
209,764. The largest calculation presented here was for a grid that is real out to 450ao 
with 1,339 grid points giving a system of 1,792,921 equations. 

3.4.5 Solving linear equations 

We have cast Equation 3.5 into a linear matrix equation that must be solved in 
order to generate the scattered wave. The size of the matrix for the Temkin-Poet 
model is large enough to warrant developing an efficient algorithm for solving the 
system of linear equations, especially since we ultimately want to solve the much 
larger six-dimensional problem of electron-hydrogen scattering. 

Most of the matrix elements are zero and there is a huge savings in computer 
memory if the matrix representation of (E - H) is stored in the sparse format described 
in Appendix D. In a sparse matrix storage scheme only the nonzero matrix elements 
are stored. Sparse matrix algorithms are more difficult to write and almost never 
generate impressive MFLOPS ratings. However, if the matrix is truly sparse then the 
reduction in the number of required arithmetical operations more than makes up for 
this and the sparse matrix algorithms typically take significantly less time than their 
dense matrix counterparts. Setting up the finite difference matrix equations is trivial 
so most of the computational time is used for solving the large matrix equations. 

The canonical "direct method" for solving a system of linear equations is Gaussian 
elimination. Solving systems of equations of the size needed here requires highly 
optimized software running on modern, high-performance computers. At present, the 
only numerical software capable of directly solving matrix equations this large is a 
package of LU-factorization routines, called SuperLV [19], that is designed for sparse 
matrices. Time and memory costs of using SuperLV to solve linear equations with 
two-dimensional finite difference matrices are discussed in Appendix D. 

The time and memory requirements for LU-factorization of the low-order finite 
difference matrix are much less than those for the high-order matrix. An iterative 
algorithm which arrives at the solution to the high-order equations by repeatedly 
using SuperLV to directly solve the low-order equations is described in Appendix E. 
This iterative algorithm gives substantial savings in memory and time compared with 
directly solving the high-order finite difference matrix equations. 
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Figure 3.5: Sample scattered wave for the Temkin-Poet model with triplet spin sym­
metry at an incident energy of 20.4 eV. Real parts of the wave fun ctions are shown. 
Upper picture shows wave function calculated on a grid that was real to 60ao. Lower 
picture shows the same wave function after projecting out the elastic; channel. 



3.5 Properties of the Calculated Wave Functions 

Figures 3.4 qn page 23 and 3.5 on page 24 show examples of the real part of 
the Temkin-Poet scattered wave for an incident energy 6.8 eV above the ionization 
threshold. The singlet wave function is symmetric while the triplet wave function 
is anti-symmetric with a characteristic "trough" down the ray rl = r2. Different 
asymptotic components of the scattered wave, as identified in Equation 3.8, are visible. 
Discrete channel components are products of outgoing waves, which span the length 
of the grid, and bound states, which extend over small distances. These components 
appear as oscillations localized along the rl and r2 axes. The ionization component has 
both electrons in the continuum and appears as circularly outgoing waves spanning 
the space between the two axes. It is this part of the wave function that is difficult to 
represent in traditional, "two-body" formalisms. The exponentially damped "fringe" 
where the coordinates are complex is visible in each picture. 

Figure 3.4 shows the singlet wave function calculated on two different sized grids. 
Two distinct components of the singlet wave function are visible on the smaller grid. 
Peaks along the edges are due to elastic scattering. The wavelength of those oscilla­
tions is equal to the wavelength of the incident wave, and the shape of the peaks is 
proportional to the ground state radial function for hydrogen. Circular waves corre­
sponding to ionization span the space between the two coordinate axes. These have 
a longer wavelength because ionization requires a loss of kinetic energy equal to the 
ionization potential of hydrogen (13.6 eV). More components of the wave function are 
visible on the larger grid. At larger distances, excitation channel components emerge. 
These look like products of excited states of hydrogen, which extend further from the 
axes, and plane waves with longer wavelengths. The presence of different wavelengths 
causes a "beat" pattern in the wave function along the edges of the grid. 

The upper picture in Figure 3.5 shows the triplet wave function calculated on 
a grid that is real out to 60ao. Elastic scattering dominates this wave function so 
much that almost nothing else is visible. The lower picture in Figure 3.5 shows the 
same wave function but with the elastic scattering component projected out using 
the projection operators defined in Equations 4.10 and 4.11. With the elastic channel 
removed the wave function on the edges of the grid is dominated by excitation of the 
n = 2 state. By comparing the upper and lower pictures we can see the difference in 
the wavelengths of the elastic (n = 1) and the n = 2 components. Also, the shape 
of the peaks in the lower picture is proportional to the n = 2 radial function for 
hydrogen. Because the triplet wave function is anti-symmetric, the ionization waves 
have a "trough" along the ray rl = r2. 

In the examples shown in Figures 3.4 and 3.5 the ionization component forms well­
defined outgoing waves in the hyperradius p within about 20ao. As the scattered wave 
propagates away from the origin the discrete channel components remain confined to 
a certain distance from each edge so they occupy a continuously decreasing range of 
the hyperangle Lt. The ionization wave, however, continues to span the full range of 
D:. Thus, as the scattered wave propagates outward the discrete channel components 
spatially separate from the ionization wave so that an increasingly larger fraction of 
the ionization wave is "uncovered" by the discrete channel components. 
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Figure 3.6: The absolute value of the scattered wave radial functions along arcs of 
a constant hyperradius. At each hyperradius two wave functions corresponding to 
incident energies Ei = 14.1eV and 54.4eV are shown. For each energy the vertical 
scale is the same at every hyperradius. 

This uncovering of the ionization wave is visible in Figure 3.6 which shows cross­
sections of the scattered wave for two incident energies along six different arcs of 
constant hyperradius. Looking at either wave function, we can see initially that for 
a hyperradius of 20ao there are two well-defined peaks corresponding to elastic scat­
tering with a smooth curve between them. As the hyperradius increases the elastic 
scattering peak becomes confined to a smaller region of the hyperangle. Also, peaks 
corresponding to the excitation components begin to emerge as they, too, become con­
fined to smaller regions of the hyperangle. The heights of the discrete channel peaks 
remain essentially constant, aside from small fluctuations due to the beat pattern 
mentioned previously, while the height of the ionization curve decreases monotoni­
cally with increasing hyperradius. 

Although, formally, there are an infinite number of excitation channels present, 
their importance relative to ionization decreases for increasing energy quantum num­
ber. For a given incident energy there are a finite number of discrete channel com­
ponents that need to be removed from the scattered wave to isolate the majority of 
the ionization wave to acceptable accuracy. The number of these components that 
cannot be ignored determines how far from the origin we must look in order to see the 
uncovered ionization wave. As can be seen in Figure 3.6, for incident energies near 
the ionization threshold the uncovering of the ionization wave happens much more 
slowly. This is because the ionization wave is much smaller relative to the discrete 



channel components at scattering energies slightly above the ionization threshold. 

3.6 Accuracy of the Calculated Wave Functions 

Accuracy of the calculated wave functions can be affected by numerical error in 
the calculations as well as systematic error due to the formalism. Numerical error 
can come from round-off errors in solving the large systems of linear equations but is 
mainly due to error in the finite difference representation. The primary grid spacing 
is typically O.2ao, so by using sixth order finite difference formulas the error should 
be no more than 10-4 . Thus, we expect the numerical error in the wave functions to 
be better than a tenth of a percent. 

In terms of systematic error, the main concern is the effect from truncating the 
Coulomb potentials. We are trying to use artificially short-range potentials to calcu­
late information for systems with long-range potentials. In order for these calculations 
to be meaningful, it is necessary that on the interior region the wave function be un­
affected by truncating the potentials. We can check this by comparing two wave 
functions calculated on different grids, with the size of the grid determining where 
the potentials are truncated. 

Figure 3.7 shows several comparisons performed along arcs of constant hyperradius 
p, similar to Figure 3.6. For the most part, the relative differences in the wave 
functions are no more than 0.01 % which is less than the estimated numerical error for a 
primary grid spacing of 0.35ao. The differences are somewhat greater for comparisons 
done at larger p but are still acceptable, especially considering that the grid spacing 
used for these comparisons was wider than what would normally be used. 

Plots in Figure 3.7 compare results from potentials truncated at different distances. 
Ideally, we would compare to results for truly infinite range Coulomb potentials. 
Of course, this is impossible. Instead, we can see if the calculated wave functions 
are approaching the asymptotic form for ionization given in Equation 3.11. This 
two-dimensional form was presented by analogy with the Rudge asymptotic form in 
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Figure 3.7: Comparison of 14.4eV incident energy, singlet, Temkin-Poet wave func­
tions along a constant hyperradius p for calculations using grids that were real out 
to different values of Ro. The primary grid spacing used in these calculations was 
0.35ao. All distances are in units of ao. 
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Figure 3.8: Demonstration of the logarithmic phase term in the singlet Temkin-Poet 
scattered waVE? for 54.4e V incident energy. All four figures show the real part of 
'lj;j;p(Tl' T2) (solid line) along the ray Tl = T2. The wave function is complex scaled 
beyond 283ao. The upper figures show a function (dashed line) with a logarithmic 
phase fit to 'lj;j;p. The fit was done for large values of the hyperradius p and the 
two curves are distinguishable only for p > 283ao where 'lj;j;p is complex Scaled. The 
upper right compares the same functions for a region of smaller p where there are 
slight differences in the amplitudes between the two. The lower figures make the same 
comparison, but fit to a functional form without a logarithmic phase. The fit is again 
done at large p, but this time there is a noticeable difference in phase at smaller p. 

Equation 2.11 which is valid only when the two electrons are well separated from 
each other. It is unclear exactly what this means in the Temkin-Poet model so we 
certainly cannot use the form in Equation 3.11 to match to the entire wave function. 
However, if we look only along the ray r·l = T2 then we can expect 'lj;fp to have the 
essential features of Equation 3.11: a logarithmic term in the phase and a )p decay 
in the amplitude. 

In Figure 3.8 the real part of the wave function along the ray Tl = T2 is compared 
to a function of the form )p sin ("'p + Bin 2",p + C) where ;~ ",2 = E, which in this 
example is 54.4 eV. The wave function was calculated on a grid that was real on a box 
of length 200ao so the coordinates are real out to p = 282.8ao along the ray Tl = T2. 

Coefficients A, B, and C were chosen to fit 'lj;fp locally over a range of p between 
270ao and 280ao. This functional form fits 'lj;fp in this region so well that it is visible 
only beyond 283ao where 'lj;fp is exponentially damped by the complex coordinates. 
Even at smaller p it fits 'lj;j;p very well, with only a slight difference in amplitude but 
still very good agreement in phase. 

For comparison, the same type of fit was done without the logarithmic phase term 
i. e., forcing the coefficient B to be zero. Coefficients A and C were chosen to match 
'~;;j;p over the same range of p between 270ao and 280ao. Even without the logarithmic 
phase we can match 'lj;j;p well over a small region, but there is a significant difference 
in phase when we examine a different range of p. Logarithmic phase terms are char-



........ _-
10-3L..-_ ......... __ "--_--..... -..... --------... ---;,;;;-,;;;-.;;;-~ ....... ~ 

o 50 100 150 200 250 300 
hyperradius (units of ao) 

Figure 3.9: The figure on the left shows the absolute value of 'ljJfp (T1' T2) along the ray 
T1 = T2 for incident energies of 54.4eV and 14.14eV. Several dashed lines proportional 
to )p are provided for reference. On the right is an attempt to fit 'lj;fp for 14.14eV 

to the same functional form as in Figure 3.8, with a logarithmic phase term. 

acteristic of Coulomb potentials and the fact that a logarithmic phase is present in 
our calculated wave functions suggests that truncating the Coulomb potentials has 
not caused fundamental damage. 

The other feature we expect to see in the wave function is a ;." decay in the 
, yP 

amplitude. It is clear from Figure 3.8 that this is indeed the case, at least for 54.4 e V ' 
incident energy. The .)p decay is a consequence of having both electrons in the con­

tinuum. Discrete channel components have just one electron in the continuum and do 
not decay as the radial coordinate for the continuum electron increases. Thus, the )p 
dependence requires the absence of discrete channel components. From Figure 3.6 we 
know that for very low incident energies the discrete channels contribute significantly 
to 'ljJfp over a much larger region. 

The absolute value of'ljJfp for incident energies of 54.4 eV and 14.14 eV is plotted 
on a logarithmic scale in Figure 3.9. We can see that along the ray T1 = T2 the 54.4 
eV wave function decays like .)p beyond about 20ao. On the other hand, the 14.14 

eV wave function does not exhibit this behavior even at 280ao. An attempt to fit the 
14.14 eV wave function to the same functional form as in Figure 3.8 confirms that 
this wave function still has not reached its asymptotic form. 

So, exterior complex scaling provides a means for calculating the scattering wave 
function to arbitrary accuracy, but only on a finite region. We can extract physical 
quantities from the calculated wave functions if we are able to limit our analysis to 
the region in which both coordinates are real. To get meaningful results for ionization 
we need to make the complex scaling point large enough so that a significant portion 
of the ionization wave has been "uncovered" before the coordinates become complex. 
Incident energies very near the ionization threshold will require huge calculations 
so there is an effective lower limit in energy for which this method works. In the 
next chapter we will investigate the validity of extracting scattering information from 
calculated wave functions that are known on only a finite region of space. 

29 



30 

Chapter 4 

Calculating Cross Sections for 
Electron-Impact Ionization 

Having calculated wave functions that describe ionization, we need a procedure 
for extracting from them differential cross sections for ionization. The total scatter­
ing cross section is the sum of discrete cross sections for elastic scattering, for each 
excitation, and for ionization. In the elastic and excitation channels the energy of the 
outgoing electron is quantized. However, when ionization occurs energy is shared con­
tinuously between two outgoing electrons. Single differential cross sections describe 
this energy sharing. Although differential cross sections for ionization are intrinsically 
tied to the asymptotic form for three-body breakup, they can be extracted from a 
wave function known only over a finite region by directly calculating the scattered 
flux and then using an extrapolation procedure. This method has produced accurate 
single differential cross sections in the Temkin-Poet model [3J. 

4.1 Total Cross Section 

Scattering cross sections are defined in terms of the probability current density for 
the scattered wave. For consistency with the full electron-hydrogen problem we will 
treat the Temkin-Poet wave 'ljJfp(rI' r2) as the radial function for a six-dimensional 
scattered wave that happens to have no angular dependence. The six-dimensional 
scattered wave 'lit and the three-dimensional ground state function <PIS are related, 
in the Temkin-Poet model, to their radial function counterparts (defined in Equations 
3.4 and 3.6) by multiplication by appropriate factor(s) of ~ Yo,o(il 

( 4.1) 

Scattering processes are quantified by scattering cross sections defined as the scat­
tered flux divided by the incident flux density. The flux density of some wave function 
W through a surface 5 is defined as the probability current density js along the surface 
normal ns. 

(4.2) 



The gradient in Equation 4.2 is the one appropriate for the coordinate space in which 
\[I is defined. 

For a plane wave eikiZ the flux density is ki in the i direction. We need to relate 
sin kir in the Temkin-Poet initial state (Equation 3.7) to the expansion of a plane 
wave in terms of Ricatti-Bessel functions 3l(ki r} 

(4.3) 

Since 3o(ki r) = sin(kir) the initial state defined in Equation 3.7, after multiplication 
by the ~ Yo,o(f) factors, is equal to the I = 0 term of the expansion in Equation 
4.3 anti-symmetrized with the hydrogen ground state and multiplied by An. Thus, 
the incident flux density in the Temkin-Poet model, with the initial state defined in 

Equation 3.7, should be ~. 
Measuring the scattered flux requires a closed surface S in six-dimensional space 

that surrounds the interaction region. The discrete channel flux is outgoing in fl and 
r2 while the ionization flux is outgoing in the hyperspherical radius p. Since discrete 
channel flux remains localized near the fl and r2 axes in a two-dimensional radial 
coordinate system (see Figure 3.6) we can say that, in the limit p ---t 00, all scattered 
flux is outgoing in p. Thus, the appropriate surface S is a hypersphere of radius p = Po 
in the limit Po ---t 00. 

We define the probability current density jpo through a hypersphere of radius Po 
by Equation 4.2 with surface normal ns = p. In general, jpo is a function of the two 
sets of angular coordinates fl and f2 and the hyperspherical angle CY. 

(4.4) 

The total cross section is obtained by integrating jpo (in the limit Po ---t (0) over the 
surface of the hypersphere and dividing by the incident flux. 

(4.5) 

The differential dS represents the surface differential of a hypersphere such that it is re­
lated to the full six-dimensional volume element by dSdp = dfrdf~ = rir~dfIdf2drIdf2' 

(4.6) 

We can now write an expression for the total cross section as a surface integral in 
terms of the scattered wave \[It. For later convenience, the Jacobian factor (fl' r2)2 
is associated with the scattered wave. We will take Equation 4.7 as our working 
definition of the total cross section. 

31 



32 

The normalization in Equation 4.7 is for the initial state defined in Equation 3.7. 
A more numerically stable method for calculating the total cross section comes 

from converting the surface integral in Equation 4.7 to a volume integral by applying 
Green's theorem. 

(4.8) 

The operator \72 is the 6-dimensional Laplacian and the integration is over all space 
for both coordinates. For the case of the Temkin-Poet model, integration over the 
angular coordinates merely removes the spherical harmonics contained in \II~ leaving 
just the radial scattered wave 7f;.j;p. 

Equation 4.9 is the volume integral expression for the Temkin-Poet total cross section. 
Integration is from zero to infinity in both radial coordinates. 

4.2 Channel Cross Sections 

Channel cross sections an correspond to elastic scattering or excitations with one 
electron left behind in the ¢n bound state. To define them we will use the two­
dimensional projection operator Pn(rl, r2). 

(4.10) 

Each one-dimensional projection operator P n (r) projects on to the bound state ¢n (r). 

00 

Pn(r)f(r) ¢n(r) J ¢n(r')f(r')dr' (4.11) 
o 

As indicated in Equation 3.8, the scattered wave can be completely described asymp­
totically as components for ionization and each bound state. Thus, the ionization 
component is the piece of the wave function that remains after all bound state com­
ponents have been removed so we can in principle define a projection operator cor­
responding to ionization. 

00 

Pion(rl, r2) - 1 - L Pn(rl, r2) (4.12) 
n=l 

In order to use the projection operators we need an alternate expression for the 
total cross section. Any real potential can be added to the second derivatives inside 
the integrand in Equation 4.9 without changing the value of the cross section. For 



Is ---* Is elastic cross section (units of a6) 

I incident energy (eV) II 16.5 I 19.6 I 23.1 I 27.2 I 30.6 

Ees (Ro = 100ao) 3.093 2.433 1.978 1.644 1.449 
Poet [26] 3.103 2.443 1.987 1.651 1.456 
Burke and Mitchell [14] 2.878 2.428 1.938 1.663 1.509 

Is ---* 2s excitation cross section (units of a6) 

I incident energy (eV) II 16.5 I 19.6 I 23.1 I 27.2 I 30.6 I 
Ees (Ro = 100ao) 0.441 0.355 0.277 0.211 0.172 
Poet [26] 0.444 0.356 0.276 0.211 0.172 
Burke and Mitchell [14] 0.627 0.347 0.302 0.211 0.157 

Table 4.1: Elastic and first excitation cross sections for the Temkin-Poet model with 
singlet spin symmetry. Values calculated using exterior complex scaling (EeS) beyond 
Ro = 100ao are given along with "exact" values calculated by Poet using a method 
specialized for the Temkin-Poet model. Results from an early close-coupling calcula­
tion by Burke and Mitchell are also shown. These values have not been multiplied by 
spin statistics factors. 

instance, we can write an equivalent expression in terms of the S-wave hydrogen radial 
Hamiltonian in Equation 3.9 which will be denoted here by iIo so that iIotPn = cntPn. 

(4.13) 

To arrive at the channel cross sections, we insert the identity operator 1 as the 
sum of all projection operators P n including the ionization projection operator Pion' 

Since the projection operators all commute with the hydrogen Hamiltonian iIl and 
Pn(rl, r2)Pn,(rl, r2) = 6n,n,Pn(rl, r2) the total cross sectIon is now a sum of individual 
"channel" cross sections. 

00 

(ltotal = L (In + (lion 

n=l 
( 4.14) 

Each discrete channel cross section (In can be calculated via an expression analogous 
to Equation 4.9 but with the projection operator P n acting on the scattered wave. 

( 4.15) 

We can immediately identify (l1 as the elastic scattering cross section and each (In for 
n > 1 as the cross section for excitation into the tPn bound state. 

The channel cross sections provide our first opportunity to judge the accuracy 
of the scattered wave calculated by exterior complex scaling. Accurate values for 
the channel cross sections have been calculated by R. Poet [26, 27]. Table 4.1 lists 
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singlet Cln (in units of a6) for 14.14eV incident energy 

I ECS beyond Ro = I 40ao I 50ao 70ao I 100ao I 150ao 

total: 4.53915 4.53914 4.53914 4.53913 4.53914 
n = 1: 3.88524 3.88523 3.88523 3.88522 3.88523 
n = 2: 0.50096 0.50096 0.50097 0.50096 0.50096 
n = 3: 0.09453 0.09453 0.09453 0.09453 0.09453 
n = 4: 0.02781 0.02839 0.02844 0.02844 0.02844 
n = 5: 0.00483 0.00963 0.01131 0.01134 0.01134 
n = 6: 0.00190 0.00152 0.00473 0.00544 0.00545 

triplet Cln (in units of a6) for 14.14eV incident energy 

I ECS beyond Ro = I 40ao 50ao 70ao I 100ao I 150ao 

total: 11.6240 11.6240 11.6241 11.6240 11.6241 
n = 1: 11.6142 11.6142 11.6143 11.6142 11.6143 
n = 2: 0.00938 0.00938 0.00939 0.00939 0.00939 
n = 3: 0.00027 0.00027 0.00027 0.00027 0.00027 
n = 4: 0.00003 0.00003 0.00003 0.00003 0.00003 

Table 4.2: Total and several discrete channel cross sections for 14.14eV incident 
energy. Results are given for both singlet and triplet spin symmetries (spin statistics 
factors not included) from calculations using different size grids. 

some of these for the elastic channel and first excitation channel along with values 
calculated using complex scaling beyond 100ao. Values are given for several energies 
above the ionization threshold. In all cases, the difference between Poet's values and 
those calculated here is better than 0.1 %. This suggests that at least some scattering 
information can be obtained from a finite range, ECS transformed scattered wave. 

The only systematic error in the ECS formalism comes from truncating the Coulomb 
potentials where the coordinates become complex. We expect that truncating the po­
tentials might affect only those channels corresponding to bound states that extend 
beyond the range of the real coordinates. Total and several channel cross sections for 
an incident energy just 0.5 eV above the ionization threshold are listed in Table 4.2. 
Results from calculations using several values of the complex scaling point Ro are 
given. The total and elastic scattering (n = 1) cross sections as well as the excitation 
cross sections up to n = 3 are essentially identical for Ro = 40ao and beyond. For 
the singlet case the n = 4 cross section changes slightly for Ro larger than 40ao while 
the n = 5 and n = 6 cross sections change significantly. 

Error in the wave function is mainly in the excitation channels for states that 
extend beyond where the Coulomb potential is truncated. Looking at Table 4.2, we 
see that if Ro is 100ao or larger the discrete channels up to n = 5 are accurately 
represented. The relative contributions of the excitation channels to the total wave 
function decrease rapidly as n increases. Note that this decrease in the relative 



contribution from the excitation channels is especially rapid in the triplet case. This is 
a unique characteristic of the Temkin-Poet model and will not be a feature of electron­
hydrogen scattering. Channel cross sections converge rapidly as Ro increases and we 
can assume that for Ro of at least 100ao the error from truncating the potentials is 
no worse than numerical error from using finite difference. 

The rapid decrease in the channel cross sections as n increases suggests that we 
might obtain accurate total ionization cross sections by subtracting the elastic and 
excitation channel cross sections from the total cross section. As we will see later, the 
ionization cross section is a small fraction of the total and, in some cases, subtracting 
channel cross sections up to n = 6 may not be enough to produce an accurate ioniza­
tion cross section. If enough discrete channels can be accurately represented on the 
grid then subtracting channel cross sections from the total is the most accurate way 
to calculate a total ionization cross section. However, this does not lead to a method 
for producing differential cross sections. For that we will need a different approach. 

4.3 Differential Cross Section for Ionization 

The surface integral expression for the total cross section in Equation 4.7 provides 
a natural means for defining a differential cross section with respect to the four an­
gular coordinates and the hyperspherical angle 0:. We will soon see that the angle 0: 

parametrizes energy sharing between the two outgoing electrons. Consequently, the 
integrand in Equation 4.7 will lead to a cross section that is differential with respect 
to the energy of one electron as well as the directions of both electrons. 

The greatest challenge in treating ionization is correctly describing energy shar­
ing between the two outgoing electrons. Since there is no directional dependence 
in the Temkin-Poet model we can perform the trivial integration over the angular 
coordinates in Equation 4.7 and look at just the 0: dependence. 

(4.16) 

p--+oo 

The integrand in Equation 4.16 defines a differential cross section with respect to 0:, 

but only in the limit P -t 00. Under exterior complex scaling we know the wave 
function only on a finite region, so we need a means of extracting the P -t 00 limit 
from a finite region of space. To this end, let us first define a generalized flux fpo(O:) 
evaluated at a finite hyperradius Po. 

( 4.17) 

The fpo(O:) are always symmetric about 0: = 45° just like the absolute value of the 
scattered wave plotted along arcs of constant p in Figure 3.6. Examples offpo (0:) cal­
culated from the same wave function, but at different values of Po are shown in Figure 
4.1. The plots in Figure 4.1 show the behavior of the two distinctive components of 
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Figure 4.1: Flux, as a function of the hyperangle, calculated for various values of the 
hyperradius P in the Temkin-Poet model with incident energy of 20.4 eV. The flux is 
symmetric about 45°. The upper figures zoom in on the discrete channel contributions 
near the edges while the lower figures show the smaller ionization component. 

the flux (discrete channel peaks near the edges and the ionization component in the 
middle) as the flux surface moves outward in the hyperradius. 

As Po increases the width of the discrete channel peaks decrease and more of the 
ionization component is uncovered. Unlike the peaks shown in Figure 3.6, the peaks 
in the flux increase monotonically with Po due to the factor of P in Equation 4.17. 
This must be so because conservation of flux in each channel requires that the areas 
under the peaks remain constant. In the limit Po -t 00 the discrete channel flux will 
become delta functions in a at zero and 90° and fpo will consist only of ionization flux 
except for infinitesimally small regions near the edges. Thus, we can use fpo(a) to 
define a differential cross section dO"id~(a) for ionization that is valid everywhere except 
very near a equals zero and 900

• 

"/2 
(J' = J dO"ion(a) da 

IOn da 
o 

(4.18) 

This differential cross section is supposed to give the total ionization cross section 
when integrated over the full range of a. The conditional equality in the definition 
of dO"id~(a) reflects the fact that fpo(a) formally contains discrete channel contributions 
at a equals zero and 900

• In principle, we could eliminate the discrete channel con­
tributions by forcing dO"id~(a) to be zero at a equal to zero and 900 after taking the 
Po -t 00 limit. 

To obtain the differential cross section defined in Equation 4.18 we need to some­
how take the Po -t 00 limit of the flux from a wave function known only on a finite 
region of space. If we substitute the asymptotic form for the ionization part of the 
scattered wave given in Equation 3.11 for 'I/J;fp in Equation 4.17 we see that the ion­
ization part of the flux fpo (0:) approaches its asymptotic limit like .l.. 

Po 

for large p : fp(O:) rv foo(a) + A(a) 
p 

(4.19) 

Thus, if we calculate fpo(a) for two or more values of Po that are large enough for this 
form to apply we can estimate the flux in the Po -t 00 limit by fitting Equation 4.19 
to the calculated fpo. 



hyperangle = 15° hyperangle = 30° hyperangle = 45° 

Figure 4.2: Comparison of calculated flux to a 1. extrapolation curve in the Temkin-
p 

Poet model with incident energy of 20.4 e V. The comparision is done for three different 
values of the hyperangle. The solid line is the ~ least-squares fit and the markers are 
the values of the flux from the wave function. The values of the flux that were used 
to produce the least-squares fit are circled. 

Examples of fitting the functional form in Equation 4.19 to the fpo from a particular 
scattered wave are shown in Figure 4.2. In this example the function A(ex) and the 
Po ---7 00 limit of the flux were estimated by a least-squares fit using fpo calculated at 
five evenly spaced values of Po ranging from 180ao to 200ao. The curves in Figure 4.2 
are the resulting fits, as functions of p, plotted for three different values of ex. For 
comparison, fpo calculated at several values of Po are also shown. Only the last five 
directly calculated fpo shown in Figure 4.2 were used for the least-squares fit. 

Other fpo (evaluated at smaller Po) are plotted to show how well the fpo fit Equation 
4.19 for different hyperangles. At hyperangles of 30° and 45° the flux fits the form 
in Equation 4.19 very well beyond p ~ 100ao. However, at a hyperangle of 15° the 
flux does not reach this form until somewhere beyond 150ao. In general, the form 
in Equation 4.19 is reached more slowly for ex near zero and 90°. This is primarily 
due to "contamination" from discrete channels, which do not extrapolate in this way, 
near the edges of the grid. 

In the true p ---7 00 limit, as Po increases the discrete channel peaks in the fpo 

become confined to infinitesimal regions of ex near the endpoints. This behavior 
cannot be replicated by extrapolation. Consequently, the region over which d(]"id~(Q) is 
valid is restricted to the range of ex over which the fpo used for the extrapolation do 
not contain appreciable amounts of discrete channel contributions. In other words, 
extrapolation does not provide a means for further "uncovering" the ionization flux. 
Thus, we cannot calculate d(]"id~(Q) in this manner over the full range of ex. Figure 4.3 

shows three different d(]"id~(Q) obtained by extrapolation from fpo from three different, 
disjoint ranges of Po. They all have large oscillations near the edges that come from 
trying to extrapolate the discrete channel components using Equation 4.19. Each 
extrapolated curve is valid only over the region of ex where it is smooth. 

One might think that we could use the projection operators defined in Equation 
4.10 to remove the discrete channel components from the scattered wave leaving 
behind a pure ionization wave. However, if we were to actually try projecting out 
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Figure 4.3: Comparision of flux extrapolated from different ranges of the hyperradius 
in the Temkin-Poet model at two different incident energies. Each extrapolation was 
from flux calculated at three different values of the hyperradius over a 10ao range. The 
curves are identified by the largest hyperradius that was used for the extrapolation. 

all of the discrete channel components (or, at least all of those that fit on the grid) 
we would find that the remaining wave function does not have the expected smooth 
behavior over the full range of D:. This is because the discrete channel projection 
operators project out states that are not eigenfunctions of the full Hamiltonian. They 
are, instead, eigenfunctions of an "asymptotic" Hamiltonian describing a hydrogen 
atom and a free electron. All of the dynamics of the true ionization wave are governed 
by the full Hamiltonian and it cannot be assumed to be orthogonal to the asymptotic 
forms for the discrete channels. For this reason, distinguishing between the ionization 
wave and the discrete channels really does rely on spatial separation of the different 
components. Because we know the wave function only over a finite region of space, 
projecting out discrete channels from the scattered wave will not improve our ability 
to calculate dai~~(Q) near D: equals zero and 90°. 

Formally, there are an infinite number of discrete channels present in the scattered 
wave. The larger the energy quantum number n the greater the extent of the bound 
state. That means for any finite grid, no matter how large, we can always find a 
maximum n for which the nth and higher bound states extend beyond the range 
of the grid. These bound states cannot be correctly represented on the grid and the 
corresponding discrete channel components of the scattered wave cannot be accurately 
removed using projection operators. 

Removing the first few discrete channel components would certainly make the os­
cillations in Figure 4.3 much less dramatic, but they would still exist over the same 
range of D: because it is actually the higher excitation channels that are the limiting 
factor. Furthermore, the rate at which the ionization component reaches the asymp­
totic form in Equation 3.11 is no faster than the rate at which the discrete channel 
components "uncover" the ionization wave. This means that even after as many dis­
crete channels as possible are removed, the flux from the "uncovered" ionization wave 



may still not fit Equation 4.19. 
We can see in Figure 4.3 that the size of the region over which dUi~~(a) is valid 

depends on the distance at which the fpo used in the extrapolation were calculated. 
For the lower energy example in Figure 4.3 the dUi~~(a) extrapolated from 100ao and 

200ao are valid between ex = 15° and ex = 75°, while the dUi~~(a) extrapolated from 
50ao is valid only between ex = 30° and ex = 60°. In the higher energy example the 
regions of validity are somewhat larger. Over the range of ex in which all of the dUi~~(a) 
are valid there is quite good agreement among the different extrapolated results. The 
plots in Figure 4.3 suggest that, within the range of ex that extrapolation is valid, the 
error due to extrapolation in p is about 5%. 

4.4 Single Differential Cross Section 

The hyperspherical angle ex has no direct physical meaning so differential cross 
sections with respect to ex are of little practical use. Instead, we are interested in a 
differential cross section that describes how energy is shared between the two outgoing 
electrons. The single differential cross section (SDCS) is a differential cross section 
with respect to the energy of one electron. It is directly related to dUi~~(a) because ex 
parametrizes the energy distribution between the two electrons. ' 

We associate two momenta k1 and k2 with the two outgoing electrons. The mo­
menta are constrained by conservation of energy so that ;~ (ki + k~) = E. Looking at 
the final state semi-classically, we know that the electron with the larger momentum 
is moving faster so, at some time following ionization, that electron will be further 
from the nucleus than the "slow" electron will be. If we trace the trajectory at large 
distances for this semi-classical picture in the two-dimensional radial plane it should 
follow a fixed ray for some hyperspherical angle ex. 

So, intuitively we expect that for large p the hyperspherical angle ex parametrizes 
the energy sharing between the two outgoing electrons. 

lim tan-1 (kk2) ----+ tan-1 (r2) = ex 
p-HY;) 1 r1 

( 4.20) 

The relation in Equation 4.20 was shown formally by Rudge [34] by a stationary 
phase argument. Using this relation, a differential cross section for electron-impact 
ionization that is a function of ex can be converted to a cross section that is differential 
in the energy of one of the two electrons. 

The individual electrons' momenta are proportional to sin ex and cos ex for large 
p and their kinetic energies are C1 = E cos2 ex and C2 = E sin2 ex. To convert from a 
differential with respect to ex to a differential with respect to the energy of the second 
electron we divide dUi~~(a) by the quantity ~ = 2E sin ex cos ex. Energy differential 
cross sections dUiOJl(C) will be symmetric about c = Ii J'ust as the dUiOJl(a) are symmetric 

~ 2 . ~ 

about ex = 45°. By convention, the SDCS is the energy differential cross section 
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Figure 4.4: Differential cross sections in the Temkin-Poet model for 54.4 eV incident 
energy. The upper plots are the singlet cross section multiplied by a spin statistics 
factor of ~, the lower are the triplet multiplied by ~. The "raw" ~~ (dashed lines on 
the right) come directly from extrapolating the flux in p and are converted to "raw" 
~~ (dashed lines on the left). The noise at the edges of the "raw" ~~ is replaced by 
a linear extrapolation in c to produce the final SDCS (solid lines on the left). The 
final SDCS were transformed back to a final daid~(Q) (solid lines on the right). 

defined for c between zero and ~. 

E/2 - J d(Jion (e) d 
(Jion - de e (4.21) 

o 

The total ionization cross section is obtained by integrating the SDCS over half of 
the energy range so there is an additional factor of two contained in the conversion 
from daion(O') to the SDCS daion(e:). 

dO' ' de: 

1 d(Jion ( 0; ) 

E sin 0; cos 0; do; 
( 4.22) 

Equation 4.22 along with Equations 4.18 and 4.17 define the energy sharing SDCS in 
terms of a flux calculated as a function of 0;. 

We are still faced with the problem that extrapolation in p produces a differential 
cross section that is invalid near 0; = 0 and 0; = 900

• This means that we cannot 
calculate the SDCS for the case where one of the electrons carries most of the energy. 
We know that the correct SDCS should be a very smooth function of e. In fact, the 
SDCS can be assumed to be linear near c = o. 

The two differential cross sections daid~(e:) and daid~(Q) for both singlet and triplet 
spin symmetries at an incident energy of 54.4 e V are shown in Figure 4.4. The 
dashed lines are the "raw" results obtained directly from extrapolation in p. These 
lines contain large amplitude noise from the discrete channels near the edges. In both 
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Figure 4.5: Examples of the singlet, triplet, and total SDCS at incident energies of 
27.2 eV and 81.6 eV. The singlet and triplet cross sections have been multiplied by 
the appropriate spin statistics factors. 

spin symmetries the SDCS is essentially linear near where the discrete channel noise 
begins. This suggests that we can estimate the SDCS for small c by replacing the 
discrete channel noise with a linear extrapolation in c. The solid lines in the left 
panels of Figure 4.4 are the final SDCS obtained by replacing the "raw" SDCS for 
small c with a linear fit in c that is matched to the "raw" SDCS at the lowest value 
of c where the extrapolated results can be assumed to be reasonably accurate. 

Choosing the value of c at which to perform the linear match is, admittedly, a 
somewhat arbitrary process and there is really no way to quantify the accuracy of 
the procedure. In practice, we choose the matching point by looking at plots similar 
to Figure 4.4 and choosing a value of c just inside where the oscillations are visible. 

In Figure 4.4 we see that the fraction of the energy range occupied by discrete 
channel noise in the "raw" SDCS is much smaller than the fraction of the total a 
range occupied by the noise in the "raw" dUid~(o). This is because converting from a 
function of a to a function of c compresses the function .near the ends. Consequently, 
the fraction of the SDCS that comes from the linear fit is much smaller than might 
be expected from looking at plots of the "raw" dUid~(Q). Converting the final SDCS 

back to a differential with respect to a shows what the true dUid~(Q) should look like 
over the full range of a. 

4.5 Temkin-Poet Results 

Examples of the final SDCS for both singlet and triplet spin symmetries are shown 
in Figure 4.5. The total SDCS is the sum of the singlet and triplet SDCS with statis­
tical weights of ~ multiplying the singlet cross section and ~ multiplying the triplet 
cross section. All of the SDCS are symmetric and very smooth with the minimum 
value at ~ and the maximum value at zero and E. These general characteristics of 
the SDCS will carryover to electron-hydrogen scattering. The SDCS for the triplet 
case are zero at c = ~ because the triplet radial wave functions are anti-symmetric. 

41 



42 

c 
o 
TI 
Q) 2· 
C/) 

singlet SDCS 

'j - ECS 
I • CCC .. : ................ ; .......... j. 

.: - - - CCC (est) 
~ 1 ... ·H....' ....j ...•......... H .. 

e j+ 
u 0o~--~--~~~I~.~~~~~~ 

5 10 15 20 25 
energy of one electron (eV) 

:;-
Q) 

C\Jb 2 co 

c 1 
.Q 
13 
Q) 

C/) 0.5 
C/) 
en 
o 

triplet SDCS 

HH'I'~ ~g~ I 
......... 1.. .. : 

I 
'H'j' 

U O~--~--~~~~~~~~-.~ 
o 5 10 5 20 2 

energy of one electron (e V) 

Figure 4.6: Comparison of convergent close-coupling [6] and exterior complex scaling 
results for the singlet and triplet SDeS in the Temkin-Poet model at 40.8 eV incident 
energy. The EeS results (solid lines) are shown over the full energy range (0 to 27.2 
eV) to illustrate the symmetry in the method. They are normalized so that the total 
ionization cross section is the integral from 0 to E/2 = 13.6 eV. The eee data 
(diamonds) are not symmetric about E/2. In the singlet case the eee data has large 
oscillations so it is replaced by an integral preserving estimate (dashed line) which is 
defined between 0 and E /2. 

Overall, the triplet SDeS is much smaller than the singlet SDeS. In fact, all inelas­
tic processes, including ionization, in the Temkin-Poet model are dominated by the 
singlet spin symmetry. This characteristic is unique to two-dimensional models such 
as Temkin-Poet and will not carryover to electron-hydrogen scattering. 

Singlet and triplet SDeS for 40.8 eV incident energy are compared in Figure 4.6 
with results calculated by Igor Bray [6] using the convergent close-coupling (eee) 
method. eee is very good for calculating discrete channel cross sections for electron­
atom scattering. It also has shown promise for calculating total ionization cross 
sections. However, it has, so far, been unable to produce correct differential ionization 
cross sections, even in the Temkin-Poet model, for incident energies below 100 eV. 
The SDeS produced by eee are always asymmetric. If the method produced SDeS 
that were correct only from zero to f then the calculated cross section in the upper­
half of the energy range would be irrelevant. This is the case for the triplet spin 
symmetry, but not for the singlet spin symmetry. 

Bray claims that the calculated values in the singlet case oscillate about the correct 
SDeS and he replaces them with a smooth estimate of the true SDeS between zero 
and f. The properties of the singlet and triplet SDeS calculated in the eee method 
for two-dimensional models is discussed in reference [30]. The ability of the eee 
method to calculate the triplet SDeS is made possible only because the triplet SDeS 
is zero at f. This does not provide much hope for eee being generally successful at 
calculating differential ionization cross sections because no SDeS in a real system is 
zero for equal energy sharing. 



Eo II 20.4eV I 27.2eV I 40.8eV I 54.4eV I 68.0eV I 81.6eV I 
O"total II 2.9989 I 2.2373 I 1.4816 I 1.0842 I 0.8381 I 0.6713 I 

0"1 2.3077 1.6437 1.0826 0.8106 0.6421 0.5256 
0"2 0.3354 0.2113 0.1008 0.0580 0.0375 0.0263 
0".3 0.0865 0.0565 0.0267 0.0151 0.0096 0.0067 
0"4 0.0343 0.0223 0.0109 0.0061 0.0039 0.0027 
0"5 0.0170 0.0116 0.0055 0.0031 0.0019 0.0013 
0"6 0.0097 0.0066 0.0031 0.0018 0.0011 0.0008 

6 

O"total - L O"n 0.2083 0.2846 0.2520 0.1896 0.1420 0.1080 
n-1 

E/2 J daion(e) de 0.2028 0.2849 0.2520 0.1899 0.1423 0.1077 o de 

Table 4.3: Integral cross sections for the Temkin-Poet model with singlet spin symme­
try, spin statistcs factors are not included. Total and discrete channel cross sections 
are shown. Also listed are total ionization cross sections calculated both by subtract­
ing discrete channel cross sections from the total and by integrating the SDCS. 

Having calculated the SDCS we can now integrate them to obtain total ionization 
cross sections. First, it should be noted that volume integral formulations for calcu­
lating integral cross sections are much less susceptible to numerical error than first 
producing, then integrating differential cross sections. Still, integrating the calculated 
SDCS allows for interesting comparisons using the channel cross sections discussed 
earlier in this chapter. 

Total cross sections O"total and channel cross sections O"n up to n = 6 for several 
incident energies are listed in Table 4.3. As mentioned before, we can obtain the total 
ionization cross section O"ion by subtracting all of the O"n from O"total. The remainders 
after subtracting the first six O"n from the O"total are listed in Table 4.3. These provide 
an upper bound for the O"ion, assuming the O"n themselves are accurate. We can see 
from Table 4.3 that in order to obtain the O"ion to three or more significant figures 
we will probably need O"n beyond n = 6. However, for n this high the accuracy of 
the O"n is in doubt. For comparison, the O"ion obtained by integrating the SDCS are 
also listed. The O"ion obtained in the two different ways compare quite well with most 
differences being less than 0.3% and the largest difference being less than 3%. 
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Chapter 5 

Six-Dimensional Wave Function for 
Electron-Hydrogen Scattering 

Theoretical treatment of electron-hydrogen scattering requires computing a six­
dimensional scattered wave function with outgoing wave boundary conditions. As in 
the two-dimensional Temkin-Poet model, the scattering boundary conditions can be 
simplified by using exterior complex scaling of the radial coordinates. Methods used 
to calculate the Temkin-Poet wave function are readily extended to a partial wave ex­
pansion of the six-dimensional scattered wave. Computing the scattered wave requires 
calculating a large number of two-dimensional radial functions to form its partial wave 
expansion. These are solutions to sets of coupled differential equations that are solved 
using an iterative algorithm on a distributed memory parallel computer. 

5.1 Coupled Equations for the Scattered Wave 

Scattering of an electron from a hydrogen atom is described by the six-dimensional, 
two-electron scattered wave WicWI, r2) defined in Equation 2.6. Just as in the Temkin­
Poet model, the asymptotic boundary condition on Wic (Equation 2.10) can be sim­
plified by exterior complex scaling (ECS) of the radial coordinates. Extending the 
methods from Chapter 3 to the six-dimensional scattered wave equation is straight­
forward after first expanding the wave functions in partial waves. 

5.1.1 Partial wave expansion of the wave function 

We expand the wave functions W2i and wic in terms of two-particle, coupled spher­
ical harmonics y l

LM
l which are functions of the four angular coordinates. The y l

LM
l. 1, 2 1, 2 

are eigenfunctions of total angular momentum, L, of the system and its projection, 
M, along the z axis as well as the individual electron angular momenta 11 and 12 , 

Yl~~ (TI, r2) = L (hl2m]m2ILM)Yhm] (rI)Yl2m2 (r2) (5.1) 
m],m2 

They are related to ordinary spherical harmonics by the Clebsch-Gordan coefficients 
(l]12m]m2ILM). Clebsch-Gordan coefficients are discussed in Zare [39J and most quan-



tum mechanics text books. Some properties of the yt~ useful for this particular 
application are mentioned in Appendix F. 

The term representing the initial state is w2;, defined in Equation 2.5 as the 
anti-symmetrized product of a plane wave and the ground state of hydrogen. Using 
the expansion, in ordinary spherical harmonics, of a plane wave (Equation 4.3) we 
immediately write an analytic expression for the partial wave expansion of w2

i
. 

Since the coordinate system is chosen so the z axis lies along the incident direction, 
only m = 0 spherical harmonics are present in Equation 4.3. Also, the ground state 
of hydrogen <PIs (see Equation 4.1) is spherically symmetric. So, the projections along 
the z axis of both individual electron angular momenta lr and l2 as well as the total 
angular momentum L are zero and Equation 5.2 contains only terms with M = O. 
This is a consequence of the cylindrical symmetry of the system for scattering from 
a spherically symmetric target. 

Solving the scattered wave equation means calculating the two-dimensional radial 
functions 'If;fl in a partial wave expansion of wtc. This expansion also contains only 

1 2 

terms for which M = 0 because M is a conserved quantum number of the system. 

(5.3) 

Four continuous angular variables have been replaced by three discrete angular mo­
mentum quantum numbers lI' l2' and L. That leaves only two continuous variables, 
rl and r2, the same as for the model problem in Chapter 3. However, there are an in­
finite number of the radial functions 'If;t12 and they will be solutions to sets of coupled, 
two-dimensional differential equations. 

Since wtc(iI, is) is an outgoing wave each individual radial function 'If;t12 (rl' r2) in 
its partial wave expansion has outgoing wave boundary conditions similar to those in 
the Temkin-Poet model. Application of exterior complex scaling, as given in Equation 
3.12 and illustrated in Figure 3.1, to the partial wave expansion simplifies the bound­
ary conditions on each individual radial function. Under ECS, every 'If;t12 (rl' r2) is 
transformed in to a function that decays exponentially for either rl or r2 larger than 
the complex scaling point Ro. 

5.1.2 Coupled differential equations 

Total angular momentum of the system is a conserved quantity so there will be 
no coupling between partial waves with different values of L. For each total angular 
momentum L and spin S there is a separate, independent set of coupled equations. 
In most of what follows the quantum numbers Land S are treated as parameters 
that are frequently suppressed. Calculating physical quantities requires assembling 
all of the separate Land S components of the wave functions and/or cross sections. 
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To arrive at the coupled equations we substitute the partial wave expansions 
for 'lit (Equation 5.3) and 'lI~i (Equation 5.2) into the scattered wave equation in 
Equation 2.6. We then multiply both sides of the equation on the left by some 
spherical harmonic Y[fOl' and integrate over the four angular variables. The attractive 

'1' 2 

potentials between the nucleus and each electron have no angular dependence and the 
Yl~~b are eigenfunctions of the kinetic energy operators. So, integration is trivial for 

all terms of the operator (E - H) except the repulsive, two-electron potential. Since 
the y 1

L OI are orthonormal all of the one-electron terms are non-zero only when I~ = h 
1, 2 

and I; = 12 . Together, when acting on a radial function, they can be expressed as a 
• ••• A n2 d2 1(1+I)n2 2 

partIal wave radial Hamiltoman for hydrogen, Hl(r) == -2mdr2 + 2mr2 -~. 

(/~ I;LOIHI/1/2LO) = (Hh (rl) + Hl2 (r2)) 61Il~ 6121; + (h/211/~ I;h (5.4) 

Dirac notation is used to represent integration over only the angles and not over 
the radial coordinates. Shorthand notation (/1/211/~ I;h in the last term of Equation 
5.4 represents the multipole expansion of the two-electron potential 1_ e

2 
_I. It is a r1-r2 

function of both r1 and r2 and is discussed, in more detail, in Appendix F. 

Here, r < refers to the smaller and r> to the larger of r1 or r2. Formulas for calculating 
the coefficients ClLiAl'I' are given by Percival and Seaton [24]. The index A ranges over 

1 2 1 2 

a finite subset of the non-negative integers. For the special case 11 = I~ = 12 = I; = 0, 
(001100)0 = £ which is the two-electron potential in the Temkin-Poet model. 

r> 

Two radial functions 1/Jlf'I' and 1/Jfl are coupled only if (/1/2LOII_e2_11/~/;L'0) is 
1 2 1 2 r1 -T2 

nonzero. This term is nonzero only if L' = L. When L' = L it is always nonzero for 
any (/1,/2) and (/~, I;) pairs for which the sums 11 +/2 and I~ +/~ are either both even 
or both odd integers. So, all partial waves for a particular L with the same parity 
are coupled together. Using Equations 5.4 and 5.5 we write, for each L, the coupled 
radial differential equations that come from the scattered wave equation. 

(E - Hh (r1) - HI2 (r2)) 1/JtI2(r1,r2) - L(/1/211/~/;h1/J~,I;(rl,r2) = xt I2(r1,r2) (5.6) 
l~ ,I; 

We now define the radial functions 1/Jt12 as the outgoing solutions to the coupled 
equations in Equation 5.6. The functions xt l 2' defined in Equation 5.7, are radial 

functions from the partial wave expansion of (H - E) 'lI~i. 

L i
L 

{ ( e
2

) A. } Xld2 = k
i 

J27r(2L+1) (lr /2110Lh - r26[10612L ¢nl(r1)JL(kir2) + (-1)5 (1 <=} 2) 

(5.7) 
Since only Xtl2 with even parity exist (see Appendix F), the (lr,/ 2) pairs that con­
tribute to the expansion of 'lit are restricted to those for which 11 + 12 + L is an even 
integer. The sum in Equation 5.6 involving the coupling potential (/II2111~/;h is over 
all/~, l; pairs in the expansion, including the case I~ = 11 and I~ = 12 . 
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Block-matrix structure of the 
coupled equations (Equation 
5.6) using L = 0 as an exam­
ple. The off·diagonal blocks 
d l1 h are diagonal matrices 
representing the coupling po­
tential. The diagonal blocks 
Al,l are sparse, not diagonal, 
matrices similar to those in 
the Temkin-Poet problem. 

Figure 5.1: Block structure for the coupled equations 

5.2 Iterative Solution of the Coupled Equations 

There is an infinite number of sets of coupled equations for the different values of 
L and each of these couples an infinite number of partial waves with different (h, l2) 
pairs. In practice, of course, we solve the coupled equations for only as many L values 
as needed for numerical convergence. Likewise, each individual L coupled equation is 
limited to a finite number of (h, l2) pairs. Coupling even a few partial waves produces 
a very large system of linear equations that must be solved by an iterative algorithm. 

5.2.1 Matrix equation 

Just as was done for the Temkin-Poet wave function in Chapter 3, each complex 
scaled radial function is calculated directly onto a two-dimensional radial grid using 
finite difference approximations for the differential operators. The finite difference 
representation of the coupled equations forms a matrix with the block structure illus­
trated in Figure 5.1. That example shows the case L = 0 where II = l2 for all partial 
waves and there is an obvious ordering for the (l1, l2) pairs. Each block in the array 
of radial functions corresponds to the values of 'ljJtl2 on the two-dimensional radial 
grid for a particular (h, l2) pair. Likewise, the blocks in the array on the right-hand 
side are the xt Z2' defined in Equation 5.7, evaluated on the grid. 

The diagonal blocks are finite difference matrix representations of the operators 
E - Hdr1) - Hz2 (r2) - (hl2iih, l2h. These matrices have exactly the same sparsity 
structure, shown in Figure D.1, as the Temkin-Poet matrix. In fact, the L = II = 
l2 = 0 diagonal block is the Temkin-Poet matrix. The off-diagonal blocks, on the 
other hand, are just the coupling potentials evaluated on the grid so each of these is 
a diagonal matrix. 

If we remove the off-diagonal blocks i.e., set (lll2iil~l~h = 0 for (l~,l~) -I (ll,l2), 
then the matrix is block diagonal and we have a large set of uncoupled equations for 
each 'ljJt l2· Solving each of these uncoupled equations is comparable to solving the 
Temkin-Poet model problem. In Chapter 4 we found that we need the radial functions 
at distances of at least 100ao to get meaningful ionization information. Calculating 
accurate radial functions that extend this far requires on the order of 240,000 grid 
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points. Solving a Temkin-Poet problem of this size already uses substantial compu­
tational resources. Solving the entire set of uncoupled equations is merely a matter of 
performing multiple calculations of that same size. However, keeping ten or so partial 
waves in a set of coupled equations forms a linear system of two or three million. 

5.2.2 Iterative algorithm with pre-conditioner 

Linear systems this large must be solved using an iterative algorithm. Convergence 
properties of iterative algorithms are governed largely by the eigenvalue spectrum of 
the matrix. Since the six-dimensional Hamiltonian should have a spectrum similar to 
that of the Temkin-Poet Hamiltonian we can apply the lessons learned in using an 
iterative algorithm for solving the Temkin-Poet model toward developing a method 
for iteratively solving the coupled equations. In particular, it is reasonable to expect 
the conjugate gradient squared (CGS) algorithm to converge to the solution provided 
an effective pre-conditioner is used. 

The matrix structure shown in Figure 5.1 suggests using the uncoupled equations 
as a block-diagonal pre-conditioner. That means that each pre-conditioning step in 
the CGS algorithm, given in Figure E.2, requires solving the uncoupled equations, but 
with different right-hand sides. The effectiveness of using the uncoupled equations 
as a pre-conditioner depends upon the two-dimensional radial Hamiltonians in the 
diagonal blocks having an eigenvalue spectrum similar to that of the six-dimensional 
Hamiltonian. This is a reasonable expectation because the basic characteristics of 
the eigenvalue spectrum is determined by the radial dependence of the Hamiltonian. 
For instance, the bound state energies of hydrogen are determined solely by the one­
dimensional radial Hamiltonians for hydrogen. With exterior complex scaling, the 
movement of the continuum spectrum into the lower-half of the complex plane is de­
termined by the scaling of the radial coordinates. Therefore, the uncoupled equations 
should have the same inelastic thresholds as, and a similar eigenvalue spectra to, the 
coupled equations. 

5.2.3 Convergence of iterative algorithm 

Indeed, the uncoupled equations are a sufficiently robust pre-conditioner to make 
the CGS algorithm converge to solution to the coupled equations for any value of L 
over the range of incident energies considered here. Convergence of the CGS algorithm 
on the coupled equations for a few representative L at two different energies is shown 
in Figure 5.2. 

Error in the iterative solutions is measured by substituting the calculated radial 
functions at each iteration into the left side of Equation 5.6. The difference between 
the left and right sides of Equation 5.6 gives a two-dimensional "residual" function for 
each partial wave. Integrating the modulus-square of each residual produces "partial 
wave errors". Total error for a set of coupled partial waves is defined to be the 
sum of these partial wave errors. In all cases, convergence of the CGS algorithm is 
well behaved with very little sign of instability and the solution can be improved to 
arbitrary accuracy. 
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Figure 5.2: Convergence of the CGS algorithm for the coupled equations with singlet 
spin symmetry for various total angular momenta L. Error of the calculated scattered 
wave is plotted for incident energies of 17.6 e V (asterisks) and 25 e V (diamonds). 

In principle, the convergence rate depends on the number of partial waves kept in 
the coupled equations. However, once the most important partial waves are included 
adding a few more that are less important has little effect on convergence. All of the 

A 

coupling potentials are built from terms that look like :~l and are peaked along the 
T> 

ray r1 = r2. Therefore, the strength of the coupling depends on the magnitudes of 
the radial functions near r1 = r2 as well as on the coupling potentials themselves. 

Less important radial functions i. e., ones with relatively small magnitudes near 
r1 = r2, add only a small amount of coupling to the other partial waves. Triplet 
radial functions with h = l2 have significantly smaller ionization components than 
do their singlet counterparts. For this reason, convergence of the coupled equations 
is typically more rapid for the triplet spin symmetry. Convergence also tends to be 
faster at higher energies. 

Solution to the uncoupled equations with the original right-hand side is used as 
the starting point for the iterative algorithm. Typically, the error actually increases 
slightly for the first few iterations before reaching a point where it then decreases 
fairly reliably. This is due to an initial redistribution of flux in the ionization region 
of the radial functions. This can be seen in Figure 5.3 which shows solutions to the 
uncoupled equations along with converged solutions to the coupled equations. 

In the L = ° uncoupled equations the (l1,l2) = (0,0) radial function (i.e., the 
Temkin-Poet wave function) carries most of the ionization flux. Iterating to arrive 
at a solution to the coupled equations removes flux from this partial wave and re­
distributes it to the higher angular momentum partial waves. Ultimately, the (1,1) 
radial function has the largest ionization component of the singlet, L = ° partial 
waves. We see similar behavior for L = 2 where the (1,1) radial function is largest 
initially. The magnitude of the (1,1) radial function decreases while the magnitudes 
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Figure 5.3: Comparison of solutions to the coupled and uncoupled equations for 
singlet spin symmetry and 25 e V incident energy. The magnitudes of the radial 
functions at a hyperradius of 100ao are shown. Dashed lines are the solutions to the 
uncoupled equations and solid lines are the solutions to the coupled equations. 

of the others increase. Eventually the combination of (0,2) and its mirror image (2,0) 
is the dominate L = 2 partial wave. 

5.2.4 Parallel implementation 

Each iteration of the CGS algorithm requires two applications of the pre-conditioner 
and two matrix-vector multiplies with the full matrix representation of the coupled 
equations. A key advantage of solving for the radial functions directly onto a grid 
is that potentials are represented by diagonal matrices. This means that inclusion 
of the coupling potentials in the full matrix-vector multiply is relatively inexpensive. 
Each coupling term requires exactly N (complex) multiplies and adds, where N is 
the number of two-dimensional radial grid points. 

Most of the time used for solving the coupled equations is spent on applying the 
pre-conditioner. Each application of the pre-conditioner is equivalent work to solving 
the Temkin-Poet model problem for each partial wave. As mentioned in Chapter 3 
and Appendix E, the Temkin-Poet model was also solved using the CGS iterative 
algorithm. Therefore, the method for solving the coupled equations actually uses the 
CGS algorithm at two levels. The coupled equations are solved iteratively using the 
CGS algorithm with the two pre-conditioning steps for each outer iteration requiring 
solutions to two-dimensional radial equations. These are, themselves, solved using 
low-order finite difference matrices as pre-conditioners to iteratively solve high-order 
finite difference matrix equations. 

Since the work needed to couple partial waves is a small fraction of the total work, 
this method makes efficient use of distributed memory, massively parallel supercom-



puters. The block structure of the full matrix suggests a natural level of parallelism 
for solving the coupled equations. Each partial wave is assigned to a separate group 
of processors. Application of the pre-conditioner and the block-diagonal portion of 
the matrix-vector multiply are then accomplished independently within each group 
of processors. Significant communication between groups of processors is needed only 
when adding the coupling terms in the full matrix-vector multiplies. 

By solving the uncoupled equations in parallel, application of the pre-conditioner 
takes the same amount of time required to solve just one uncoupled equation . Accord­
ing to the table in Figure E.1 the most time-consuming step in solving each uncoupled 
equation is the LU factorization. The LU factors depend only on the matrix and not 
on the right-hand side so they will be the same for each iteration. Saving the LU 
factors after the first pre-conditioning step significantly reduces the work required for 
each subsequent application of the pre-conditioner. 

5.3 Partial Wave Radial Functions 

Formally, calculating the complete wave function requires solving an infinite num­
ber of coupled equations, each of which couples an infinite number of partial waves. 
In practice, of course, we must put a maximum on the values of L for which we solve 
the coupled equations and we must limi t the number of partial waves coupled for 
each individual L. The number of partial waves coupled together determines the cost 
of solving the coupled equations. It is, therefore, beneficial to make sure that the 
most important partial waves are the ones included first in the calculation. For this 
reason , we want to choose partial waves , at least roughly, in their order of relative 
importance. To choose an ordering for the partial waves we should understand the 
basic properties of the different radial functions. 

In the Temkin-Poet model the scattered wave was either symmetric or anti­
symmetric with respect to interchange of the radial coordinates . The same symmetry 
property for the six-dimensional scattered wave, IJI t (rS ,""d = (_1)5 IJIt (""1 , ""2), leads 
to more complicated symmetry rules for the radial functions (see Appendix F). 

(5.8) 

\i\Then h = l2 the radial function 'lj;tl2 has the same symmetry property as the 
Temkin-Poet wave function. A symmetric and an anti-symmetric example of L = 2 
radial functions are shown in Figure 5.4. For both examples l) = l2 = 2 so the 
dominant discrete channel component that can be seen along the rj and r2 axes is 
excitation of the 3d state of hydrogen. As in the Temkin-Poet model, any triplet 
partial wave with h = l2 contributes negligibly to ionization because of a "trough" 
that exists along the ray T1 = T2. Since l, = 12 for every L = 0 partial wave, the 
entire set of L = 0 triplet partial ·waves plays an insignificant role in ionization. 

Unlike the Temkin-Poet model , there exist radial functions in the partial wave 
expansion of 1JI ~(""1 ' ""2) that have no symmetry themselves. Examples of these are 
shown in Figure 5.5. In these examples the discrete channels are noticeably different 
on the two axes. The dominant discrete channel component along the T2 axis is 
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Figure 5.4: L = 2 and 11 = 12 = 2 radial functions for electron-hydrogen scattering 
at 17.6 e V incident energy. The upper picture shows the symmetric singlet radial 
function and the 10'wer picture shows the anti-symmetric triplet radial function. 



o 

o 0 

o 

o 0 

Figure 5.5: Asymmetric radial functions for electron-hydrogen scattering at 17.6 e V 
incident energy and singlet spin symmetry. The upper picture shows L = 1, h = 1, 
l2 = 2 and the lower picture shows L = 3, it = 0, 12 = 3. 
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Figure 5.6: L = 2 symmetric radial functions for electron-hydrogen scattering at 17.6 
e V incident energy. The upper picture shows the lJ = l2 = 1 radial fun ction and the 
lower picture shows t he lJ = l2 = 3 radial function. 
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Figure 5.7: L = 4 radial functions for electron-hydrogen scattering at 17.6 e V incident 
energy and singlet spin symmetry. The upper picture shows the 11 = 12 = 5 radial 
function and the lower picture shows the 11 = 1, 12 = 5 radial function. 
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Figure 5.8: Magnitudes of several L = 2 radial functions along an arc of hyperradius 
100ao. Examples shown are for singlet spin symmetry and 25 eV incident energy. 

determined by t he value of II and vice-versa. For instance, the upper picture in 
Figure 5.5 corresponds to II = 1 and l2 = 2 so excitation of the 2p state is visible 
along t he '("2 axis and excitation of the 3d state is visible along the '("1 axis. Similarly, 
t he lower picture with II = 0 and l2 = 3 has an elast ic scattering component along 
the T2 axis with an emerging 4f excitation component barely visible along the Tl axis. 

For any 'lh~l2 with h i: l2 there is a complementary radial function 'l/Jl~h such that 
the sum of the two is either symmetric or ant i-symmetric. If we include some 'l/Jtl2 for 
l ] i: l2 then vve must be sure to also include 'l/Jtll in order to maintain the symmetry 
of the ent ire partial wave expansion. However, the radial functions 'l/Jtl2 and 'l/Jt ll 
contain the same information so there is no need to explicitly store both . 

When solving the coupled equations on a parallel computer ' each group of proces­
sors is assigned an (l l ' l2) pair with II :::; l2' If II i: l2 then that group is responsible 
for adding the couplings from both 'l/Jtl2 and 'ljJtll Thus, except for L = 0, the number 
of partial wave terms coupled is actually larger than the number of processor groups 
used for the calculation. Also , when gauging the importance of an (ll , l2) partial wave 
with l( i: l2 it is best to consider the combined contribution from 'l/Jtl2 and 'l/Jtll ' 

The relative importance of different partial waves for L = 2 is illustrated in Figure 
5.8. A "rule-of- t humb" for ordering partial waves is that those corresponding to larger 
angular momentum have less importance, this does not necessarily hold for very small 
angular momenta. This "rule" applies similarly to both the total and the individual 
angular momenta. For the energies considered here, the L = 2 sets of partial waves 
contribute most for the sillglet spin symmetry and the L = 3 sets contribute most for 
triplet spin symmetry. As L increases beyond these maxima the relative importance 
of the corresponding sets of partial waves decreases monotonically. This suggests that 
orderillg sets of partial waves for each L by increasing L is reasonable assuming that 



more than the first four values of L will be used. 
Obtaining each set of L partial waves is an independent calculation so, deciding 

where to truIlcate the expansion in L is a matter of adding calculations for increasingly 
large L until sufficient convergence is achieved. Deciding which (h, 12 ) pairs to keep 
in the coupled equations for each L requires more thought. All partial waves for a 
particular L are coupled so one cannot easily add another term to the expansion to 
see if the results change. If more partial waves are added to an already converged set 
then the iterative algorithm must be re-applied to the full, larger set of partial waves. 

If an individual angular momentum for a partial wave is large then the dominant 
discrete channel component along the appropriate axis is excitation to a high-energy 
state. These components have much smaller magnitudes than those for elastic scat­
tering and excitation of low-energy states. Examples of symmetric radial functions for 
two different individual angular momenta are pictured in Figure 5.6. The h = 12 = 1 
case has excitation of the 2p state clearly visible along both axes while the II = 12 = 3 
case does not appear to have any discrete channel components. In actuality, excita­
tion of the 4f state is present, but is not strong enough to have "emerged" from the 
ionization component before 120ao. Examples with individual angular momenta of 
five are shown in Figure 5.7. In the symmetric case (II = 12 = 5) no discrete channels 
are visible and the radial function appears to be purely ionization. The asymmetric 
example has h = 1 so excitation of the 2s state is visible along the '("2 axis. 

The ordering used for L = 2,3 and 4 is indicated in Figure 5.9. Two selection 
rules, that govern which (h,12 ) partial waves exist for a particular L, determine the 
patterns formed on the h, 12 matrices. First, the sum of hand 12 must have the same 
even/odd parity as L (see Appendix F). Second, the difference between II and l2 
must not exceed L i. e., Il2 - hi::; L. The parity rule means there are never pairs 
with h = l2 for any odd value of L, while the second rule requires that only h = 12 
pairs exist for L = O. For even values of L greater than zero the coupled equations will 
contain some partial waves with h = l2 and some with h =f. l2. For L = 0 the pattern 
in the h, l2 matrix is particularly simple, only the "diagonal" (l1 = l2) partial waves 
exist. In this case, as well as for L = 1, there is an obvious ordering for the partial 

o 
1 

2 

3 

4 

L=1 
o 1 234 

1 

1 2 

2 3 

3 4 

4 

o 
1 

2 

3 

4 

L=2 
o 1 234 

2 

1 4 

2 3 6 

4 5 

6 7 

o 
1 

2 

3 

4 

L =3 
o 1 234 

2 

1 4 

1 3 

2 3 5 

4 5 

o 
1 

2 

3 

4 

L=4 
o 1 234 

4 

2 

1 5 

2 3 

4 5 6 

Figure 5.9: Illustration of how partial waves were chosen for L = 1,2,3 and 4. The 
rows and columns of each matrix correspond to the values of II and l2. Empty 
matrix cells indicate (h,12 ) pairs that do not exist for that value of L. Non-empty 
cells indicate (h, l2) pairs that are included and the numbers in those cells give the 
orderining in which the pairs were chosen. 
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I L = II 0 1 2 3 4 5 6 7 8 9 

1 0,0 0,1 1,1 1,2 2,2 2,3 0,6 0,7 0,8 0,9 
2 1,1 1,2 0,2 0,3 1,3 1,4 1,5 1,6 1,7 1,8 
3 2,2 2,3 2,2 2,3 3,3 3,4 2,4 2,5 2,6 2,7 
4 3,3 3,4 1,3 1,4 0,4 0,5 3,3 3,4 3,5 3,6 
5 4,4 4,5 3,3 3,4 2,4 2,5 1,7 1,8 4,4 4,5 
6 5,5 5,6 2,4 2,5 4,4 4,5 2,6 2,7 1,9 1,10 
7 6,6 6,7 4,4 4,5 1,5 1,6 3,5 3,6 2,8 2,9 
8 7,7 7,8 3,5 3,6 3,5 3,6 4,4 4,5 3,7 3,8 
9 8,8 8,9 5,5 5,6 5,5 5,6 2,8 2,9 4,6 4,7 
10 9,9 9,10 4,6 4,7 2,6 2,7 3,7 3,8 5,5 5,6 
11 10,10 10,11 6,6 6,7 4,6 4,7 4,6 4,7 2,10 2,11 
12 11,11 11,12 5,7 5,8 6,6 6,7 5,5 5,6 3,9 3,10 
13 12,12 12,13 7,7 7,8 3,7 3,8 3,9 3,10 4,8 4,9 
14 13,13 13,14 6,8 6,9 5,7 5,8 4,8 4,9 5,7 5,8 
15 14,14 14,15 8,8 8,9 7,7 7,8 5,7 5,8 6,6 6,7 
16 15,15 15,16 7,9 7,10 4,8 4,9 6,6 6,7 3,11 3,12 

Table 5.1: The order in which partial waves were chosen for each value of L. 

waves. Since including (ll, l2) implicitly means also including (l2, ll)' complementary 
matrix cells are assigned the same number. 

In deciding which (ll, l2) partial waves to keep in the coupled equations we need 
to order them according to their relative importance. This can be done precisely only 
after actually calculating the radial functions. Relative magnitudes of several radial 
functions for L = 2 are compared in Figure 5.8. Of course, we need to choose the 
ordering before calculating the radial functions. The basic algorithm, which should 
be reasonable if enough partial waves are coupled, is to select partial waves in the 
order of increasing individual angular momenta. This ordering is complicated when 
highly asymmetric radial functions with a large 12 and small h are involved. 

The orders in which the (l}, h) pairs were chosen for calculations at particular 
values of L are listed in Table 5.1. In general, the pairs are ordered so that smaller 
angular momentum terms are included first. The ordering in Table 5.1 was computer 
generated by an algorithm that sometimes chooses the pairs in the order of increas­
ing min(h, 12 ) and sometimes in order of increasing max(ll, 12 ) and is probably not 

total angular momentum 0 1 2 3 4 5 6 7 8 9 
number of (l1, 12) pairs 6 6 10 10 16 16 14 13 10 10 

Table 5.2: The number of (h, l2) pairs that were included for each value of L using 
the ordering in Table 5.1. Each pair with II -# l2 actually adds two partial waves. 



optimal. Handpicking which terms to include, or perhaps using a diflerent algorithm, 
might provide a better ordering. Usually, the number of different pairs to include is 
chosen so that all pairs with either h or 12 below some minimum are included. 

The number of partial waves that need to be kept depends upon the physical 
quantity being calculated. The more detailed the scattering information, the more 
partial waves that must be included to converge the results. In the next chapter we will 
extract differential cross sections for ionization from the radial functions calculated 
here. It was found that generating radial functions up through L = 9 was sufficient. 
The numbers of partial waves (with h S 12 ) that needed to be included for each L in 
order to converge the most detailed cross sections are listed in Table 5.2. 
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Chapter 6 

Differential Cross Sections for 
Electron-Impact Ionization 

A complete theoretical treatment of electron-impact ionization means obtaining 
differential cross sections that give detailed information about the two outgoing elec­
trons. The triple differential cross section gives angular distributions for both elec­
trons and describes how energy is shared between them. Results presented in this 
chapter represent the first calculated triple differential cross sections that agree, on 
an absolute scale, with experiment [29J. The single differential cross section provides 
information only about how energy is shared between the two electrons. Both types 
of differential cross sections are obtained from the outgoing flux of the scattered wave. 
Since the wave function is known only on a finite region, an extrapolation procedure 
is used to calculate the asymptotic limit of the flux. 

6.1 Scattered Flux 

Differential cross sections for electron-impact ionization of hydrogen can be calcu­
lated from the scattered flux by a straightforward extension of the procedure devel­
oped for the Temkin-Poet model problem. The same characteristics and limitations 
encountered in Chapter 4 will apply here. In addition, there are further complications 
due to the directional dependence of the flux. 

6.1.1 Flux at finite distances 

The total cross section is related to the integral of the probability current density 
jpo through a hypersphere of radius Po in the limit Po -+ 00. For electron-hydrogen 
scattering, jpo is a function of the scattering directions i\ and r2 for both electrons as 
well as the hyperspherical angle 00. 

(6.1) 

Equation 4.5 gives the total cross section in terms of an integral over the probability 
current density in the Temkin-Poet model. A similar expression gives the total cross 



section for electron-hydrogen scattering. 

(6.2) 

Po---'>OO 

Equation 6.2 differs from Equation 4.5 in that it is an integral over the hyperangle 
and both directions. Also, the normalization factor is different because the initial 
state w~, defined in Equation 2.5, is normalized differently from the one used for the 
Temkin-Poet model. In Equation 2.5 the incident electron is represented by eikiZ so 
the incident flux density consistent with Equation 6.1 is simply ki . 

We will work with a generalized, dimensionless flux fpo (a,i\,i2) that includes a 
factor of k i and the Jacobian factor rir~p from the volume element in Equation 6.2. 

(6.3) 

Total scattered flux is related to fpo in the limit Po ~ 00 by integration over the 
hyperspherical angle and both directions. 

n/2 

O"total = :2 ! ! ! fpo (a,i],i2 ) di1di2da 
1 0 4n 4n 

(6.4) 

Po---'>OO 

Just as in the two-dimensional model problem, the flux is directly related to differen­
tial cross sections for ionization, except in the cases where one of the electrons carries 
nearly all of the energy (see Section 4.4). 

Equation 6.4 shows that, in the limit Po ~ 00, fpo(a, iI, i 2) gives the distribution 
of the scattering probability over the directions i l and i2 and the hyperangle a. We 
will need the asymptotic limit of the flux to calculate differential cross sections for 
ionization. With exterior complex scaling we know the wave function only on a finite 
region so we can directly calculate fpo only for finite Po. That means we will need 
to employ an extrapolation procedure similar to the one used in Chapter 4 to obtain 
the Po ~ 00 limit. Unlike in Chapter 4, the scattered wave is a function of the 
hyperradius and five angles and it must be constructed from as many of the partial 
wave terms from Equation 5.3 as necessary to converge the final results. 

(6.5) 

P=Po 

6.1.2 Coplanar geometry 

The flux is a function of five variables: the hyperangle a and the four spherical 
polar angles ()l, <PI, ()2, and <P2. In examining properties of the calculated flux we 
will restrict the two final directions so that they and the incident direction all lie 
within a plane. This "coplanar" geometry is illustrated in Figure 6.1. All available 
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Figure 6.1: Diagram of coplanar geometry. Two electron detectors and the incident 
electron beam all lie within a plane. 

experimental data is for these types of geometries. In an experiment, the two electron 
detectors and the incident electron beam all lie in a single plane. The angle between 
one of the detectors and the incident beam is denoted by ()l and the angle between 
the two detectors by ()12' 

6.1.3 Adding partial waves 

Computing the flux requires constructing the complete scattered wave from its 
partial wave terms as shown in Equation 6.5. That means we need to be concerned 
about the convergence of the calculated flux with respect to the number of partial 
waves kept in the expansion of \lit. This is an issue at two levels: the number of 
(ll, [2) pairs kept for each total angular momentum L and the maximum value of L 
kept in the expansion. The minimum number of (h, [2) pairs kept for each particular 
L is shown in Table 5.2. These numbers were chosen mainly by determining at what 
point adding more partial waves to a pre-existing solution to the coupled equations 
stopped affecting the previously computed radial functions. 

Examples of the flux at Po = 120ao, shown in Figure 6.2, illustrate the effect that 
including partial waves with increasingly large values of L in the expansion of \lit 
has on the calculated flux. Flux in Figure 6.2 were calculated for a hyperangle of 
45° with the two scattering directions chosen so that the incident direction always 
bisects the angle between them. The solid line in the upper part of each panel is the 
flux constructed by keeping partial waves only up to the particular value of L < 9 
indicated. The dashed line in every panel is the flux calculated when keeping partial 
waves up to L = 9. 

Comparing flux calculated using different numbers of partial waves is a good 
method for measuring the convergence of the flux with respect to adding more partial 
waves. For each panel the relative difference between the solid and dashed lines in 
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Figure 6.2: Convergence of flux when including partial waves up to increasingly large 
L. Flux at Po = 120ao is shown for coplanar geometries with (h = -(h. The dashed 
line in each panel shows the flux when partial waves up to L = 9 are included. 

the upper part is plotted on a log scale in the lower part. This gives an indication of 
the error due to prematurely truncating the expansion in L. Convergence in L is very 
slow when the scattering directions are close together and much more rapid when the 
electrons are moving directly apart from each other. 

6.2 Differential Cross Sections for Ionization 

The cross section definition in Equation 6.4 requires the Po -+ 00 limit of f pO' 

Since the wave function calculated under exterior complex scaling is equivalent to the 
unscaled wave function only on a finite region we can calculate fpo only for finite Po. 
Thus, in order to obtain differential cross sections for ionization from flux calculations 
we must use an extrapolation in Po similar to the procedure described in Chapter 4 
for calculating single differential cross sections in the Temkin-Poet model. 

6.2.1 Extrapolating ionization flux 

According to the asymptotic form for ionization in Equation 2.11, the ionization 
flux is expected to approach its asymptotic limit like .l... 

Po 

large Po: (6.6) 
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Figure 6.3: Extrapolation in P of ionization flux for coplanar geometries with fixed 
()12 at 20 e V incident energy. In each panel flux calculated at P = 100, 105, 110, 115 
and 120ao are shown along with the extrapolated flux. The line for the extrapolated 
flux always lies below the others. 

Fitting Equation 6.6 to several fpo calculated directly from the wave function gives 
the Po ----+ 00 limit of the flux provided that the calculated fpo are in the region where 
the flux behaves according to Equation 6.6. 

The flux can, of course, be calculated only in the region where both coordinates 
are not complex-scaled i.e., for TI, T2 < Ro. That restricts the fpo used for the ex­
trapolation to those for which Po :::; Ro if the fpo are needed over the full range of 
the hyperangle ex. However, if the cross section is only needed for values of ex near 
45° then we can also calculate fpo for hyperradii in the range Ro < po < J2Ro. In 
Chapter 4 we found that the quality of the extrapolated results depended on the 
hyperangle ex because of contamination from bound states. With a flux that is also 
a function of the two directions we can expect that the extrapolation behavior will 
depend upon the four angular coordinates as well. 

Three examples of calculated and extrapolated flux for both singlet and triplet spin 
symmetries with ex = 45°, where contamination from bound states has the least effect, 
are shown in Figure 6.3. These examples are restricted to coplanar geometries (see 
Figure 6.1) with a fixed angle ()12 between the two scattering directions. In all cases, 
the line for the extrapolated flux lies below the lines for the flux calculated at finite 
Po. Relative differences between the calculated and extrapolated flux are largest when 
the angle between the two directions is smallest. This is sensible because a particular 
hyperradius Po corresponds to a distance of 2po between the two electrons when they 
are moving directly away from each other whereas the actual distance between the 
two electrons is smaller when the angle between their directions is less than 180°. 

A general property of the flux shown in Figure 6.3 is that there are always local 
minima at ()I = ~()12 and ()1 = ~()12 + 180°. Both of these correspond to cases where 
the incident direction bisects the angle between the two detectors. In fact, in these 
cases the Pauli exclusion principle requires that the triplet contribution be identically 
zero because of the cylindrical symmetry of the system. 



6.2.2 Triple differential cross section 

For large p the hyperangle ex parametrizes energy sharing between the two elec­
trons as C1 = E cos2 ex and C2 = E sin2 ex. It is simple to convert a quantity that is 
differential in ex to one that is differential in the energy of one electron. 

(6.7) 

For ionization, the most detailed quantity of interest is the so-called triple differen­
tial cross section (TDCS) defined in Equation 6.7. It gives the distribution of the 
ionization cross section over energy sharing between the two electrons and the two 
directions r1 and r2' 

The conditional equality in Equation 6.7 was discussed in Chapter 4. We are 
interested in only the flux due to ionization, but we are calculating flux from the full 
scattered wave that contains discrete channel components as well as ionization. Thus, 
the region of validity for the TDCS obtained by extrapolation is limited to the range 
of c (or ex) where the directly calculated flux fpo were composed only of ionization. 
This means that we cannot calculate the TDCS for single-electron energies smaller 
than 20%, or so, of the total energy. 

By convention, the TDCS is normalized so that the total ionization cross section 
is related to it by integration over the one-electron energy c from zero to E /2 and 
integration over the full range of both directions r1 and r2' 

E/2 A A 

a· - 1 11 daion(c,T1,T2) d A d A d 
JOn - d d A d A T1 T2 c c ,T1 T2 o 47r 47r 

(6.8) 

Any energy sharing cross-section must be symmetric about E /2 because of the im­
possibility of distinguishing which electron has energy C1 and which has energy C2 = 
E - C1' Since the differential cross section is defined for only half the energy range 
there is a factor of two included in Equation 6.7. 

6.3 Comparison With Experiment 

Measuring the TDCS requires two electron detectors. One is tuned to detect 
electrons of some energy C1 and the other is tuned to detect electrons of energy 
C2 = E - C1' Although the basic experimental apparatus is simple to envisage, 
accurate and detailed measurements are apparently quite difficult and, unfortunately, 
there is very little absolute experimental data available. 

The best collection of TDCS data for electron-impact ionization of hydrogen at 
low energies comes from "symmetric, coplanar" measurements performed by Roder et 
al. and published in 1996 [33]. For these measurements both detectors were tuned to 
detect electrons with energy E /2 and arranged in the coplanar geometry depicted in 
Figure 6.1. In this geometry the electron source, the two detectors, and the interaction 
region all lie on the same plane. For most of the comparisons presented here the angle 
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Figure 6.4: Symmetric coplanar TDCS for 17.6 eV incident energy with ()12 fixed. 1996 
data [33] normalized by comparison with 1997 data [32] for ()12 = 180°. Normalization 
factor = 0.23. 



()12 between the two detectors is held fixed while the angles between the detectors and 
the incident direction are varied. Unfortunately, this data was originally presented in 
unknown units and must be multiplied by an overall scaling factor to compare with 
calculated cross sections. This scaling factor is dependent on energy, but supposedly 
not on the geometry, and is expected to be the same for all data sets of different 
geometries but the same energy. 

6.3.1 TDCS for 17.6 eV 

Roder et al. presented a small set of measurements in 1997 [32J that attempted 
to put the previously measured TDCS data on an absolute scale. They gave experi­
mentally normalized data for incident energies of 15.6 eV and 17.6 eV, but only for 
the case where ()12 = 180°. We have calculated wave functions for 17.6 eV incident 
energy so we can compare with absolute experimental data at this one energy [29J. 
We normalized the set of 17.6 eV measurements by comparing the ()12 = 180° data 
from 1996 to the corresponding data from 1997 and choosing a normalization factor 
that scales the 1996 data to coincide with the 1997 data. 

Absolute data from 1997 and normalized 1996 data with ()12 = 180° are shown 
together, along with the TDCS calculated with exterior complex scaling, in the top 
panel of Figure 6.4. The cross section in this case is strongly peaked at angles of 
0° and 180°, where one electron is scattered forward and the other "recoils" in the 
backward direction. Unfortunately, experimental measurements were not possible 
near these points. A normalization factor of 0.23 scales the 1996 data to coincide 
with the 1997 data in units of 1O-18cm2eV-1 . 

The remaining four panels in Figure 6.5 show the calculated TDCS at different ()12 

compared with 1996 data using the same normalization factor. Agreement between 
the calculated TDCS and experimental data is excellent, particularly for ()12 of 120°, 
100°, and 90° where measured values exist for the cross section peaks. The largest 
discrepancy is at the minimum for ()12 = 90°. Since this is the smallest value of all 
the data sets we expect the measurement to be less accurate there. Also, converging 
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Figure 6.5: Symmetric coplanar TDCS for 17.6 eV incident energy with ()2 fixed. 
Measurements [33J scaled to fit calculated cross section. Normalization factor = 1.15. 
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Figure 6.6: Symmetric coplanar TDCS for 20 eV incident energy with ()12 fixed. 
Measurements [33] scaled to fit calculated cross section. Normalization factor = 0.20. 
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Figure 6.7: Symmetric coplanar TDCS for 25 eV incident energy with (}12 fixed. 
Measurements [33] scaled to fit calculated cross section. Normalization factor = 0.16 
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Figure 6.8: Symmetric coplanar TDCS for 30 eV incident energy with ()12 fixed. 
Measurements [33] scaled to fit calculated cross section. Normalization factor = 0.16 



calculated TDCS in terms of partial waves was more difficult for (}12 = 90 than for 
the other geometries. 

Additionally, there are two sets of 1996 measurements at 17.6 eV where the posi­
tion of one detector was held fixed while the other was rotated independently. This 
data is normalized differently than the fixed (}I2 measurements. A single normaliza­
tion factor for these two sets of data was chosen to give the best fit to the calculated 
cross section. Normalized experimental data and the calculated TDCS for these two 
cases are shown in Figure 6.5. 

6.3.2 TDCS for 20, 25, and 30 e V 

Comparisons between the calculated TDCS and measured value's for incident en­
ergies of 20, 25, and 30 eV are shown in Figures 6.6, 6.7 and 6.8. Experimental 
values were presented by Roder et al. [33]. As with the 17.6 eV measurements, the 
data is presented in arbitrary units and must be normalized. However, for these 
energies there are no absolute measurements available with which to normalize the 
data. Therefore, we normalized the experimental values by choosing a scaling factor 
for each energy that best fits the experimental data to the calculated cross section. 

With these results, experimental data at these energies has been put, for the first 
time, on an absolute scale. It is important to emphasize that a single scaling factor 
was used for all data at a particular energy, Overall, the agreement between the 
present calculations and measured values is excellent. The largest discrepancy is for 
(}I2 = 800 at 20 e V incident energy. We should expect larger disagreement for the 
smallest value of (}12 because converging the calculated cross section in terms of partial 
waves is more difficult when the two scattering directions are closer together. 

6.4 Single Differential Cross Sections 

The single differential cross section (SDCS) gives only the energy distribution 
between the two electrons and is related to the TDCS by integration over the two 
scattering directions TJ and T2' 

(6.9) 

Constructing the TDCS from a partial wave expansion requires a double sum over all 
angular momentum quantum numbers as in Equation 6.5. Because of the orthonor­
mality of the spherical harmonics, Yl~~2 (TI' T2), integration over TI and T2 collapses 
this into a single sum over each angular momentum quantum number. 

Consequently, the SDCS is a simple sum of partial wave terms for each set of 
L, h, 12 quantum numbers. Each individual term is calculated from a single partial 
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Figure 6.9: Components of the SDCS (with spin factors included) for electron­
hydrogen scattering at 25 e V incident energy corresponding to particular total spin 
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(6.10) 
Calculating each term in Equation 6.10 is equivalent to calculating the SDCS in 
the Temkin-Poet model. So, calculating the SDCS for electron-impact ionization of 
hydrogen is a trivial extension of the procedure described in Chapter 4. 

In general, significantly fewer partial wave terms are needed to converge the SDCS 
than are needed to converge the TDCS. For the incident energies treated here there 
is never a need to include contributions for L > 6. Also, the number of partial waves 
needed for any particular L component is generally smaller than the number needed 
to converge the TDCS. Individual total angular momentum components of the SDCS 
at 25 eV incident energy are shown in Figure 6.9 for both singlet and triplet spin 
symmetries. For the singlet case the L = 2 component is the most important with 
the relative importance of each component decreasing with increasing L for L > 2. 
For the triplet case it is the L = 3 component that is most important. The L = 0 
radial functions must all have the same symmetry properties as in the Temkin-Poet 
model. That means the L = 0 component of the triplet SDCS is insignificant because 
those radial functions must vanish in the middle of the ionization region. 

6.4.1 Contamination from bound states 

At finite Po the discrete channel components of w:C extend over a nonzero range 
of the hyperangle 0:. The discrete channel components of the flux do not behave 
like Equation 6.6 so the extrapolated flux is not valid over the full range of 0:. For 
the Temkin-Poet model we found that the asymptotic flux extrapolated from Po near 
100ao was valid for 0: between 15° and 75°. We expect the same qualitative behavior 
here. The range of 0: over which we may extrapolate the ionization flux is limited 



according to which discrete channel components have non-negligible magnitudes. This 
will be slightly different for each partial wave as can be seen in Figure 5.8. 

For the most significant partial waves the discrete channels are still confined within 
15° of the edges. Partial waves with larger angular momenta have longer-range dis­
crete channels that are visible. In the cases with the largest angular momenta it 
is really not even possible to distinguish between ionization and higher excitations. 
However, the partial waves for which the discrete channels obscure a larger portion 
of the ionization wave are less significant so we can still assume that the sum of the 
extrapolated flux for all partial waves is reasonable over the same range of a as was 
found in the Temkin-Poet model. 

We estimate the SDCS over the full range of c by using the same extrapolation 
in energy introduced in Chapter 4 for the Temkin-Poet model. We assume that the 
SDCS behaves linearly near the edges and replace the calculated values in a small 
region near c = 0 (and c = E) with a linear extrapolation. There is some ambiguity 
about whether this should be done to each partial wave term individually or whether 
it should be applied to the sum, but in practice this makes little difference. For the 
results presented here the extrapolation in energy was applied to L-components of 
the singlet and triplet SDCS. These were formed by adding together all partial wave 
terms from Equation 6.10 with the same values of Land S. End-regions of the L­
components were then replaced by linear extrapolations in energy, producing SDCS 
components such as those shown in Figure 6.9. 

6.4.2 SDCS for 17.6, 20, 25, and 30 eV 

Results for the calculated SDCS at all four energies treated here are shown in 
Figures 6.10 and 6.11. In each case, the singlet and triplet components of the SDCS 
are shown along with the total SDCS. Spin factors are included in the spin components 
so the total SDCS is simply the sum of the singlet and triplet SDCS. All of the curves 
are very smooth and symmetric about E /2. Unlike in the Temkin-Poet model, the 
triplet SDCS is not zero in the middle. The only experimentally determined values 

.... .loial -
............ 

00 0.5 1 1.5 2 2.5 3 3.5 2 3 4 5 
energy of one electron (eV) energy of one electron (eV) 

Figure 6.10: Single differential cross sections for electron-hydrogen scattering at 17.6 
eV (left) and 20 eV (right) incident energies. The cross sections for singlet and triplet 
spin symmetries (with spin factors included) are shown along with the total. 
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17.6 eV 20 eV 25 eV 30 eV 
c/E S=O S=l S=O S=l S=O S=l S=O S=l 
0.0 2.97 0.58 2.70 0.55 2.15 0.63 1.68 0.61 
0.1 2.90 0.57 2.64 0.53 2.02 0.54 1.53 0.49 
0.2 2.84 0.55 2.58 0.51 1.88 0.45 1.39 0.37 
0.3 2.80 0.54 2.53 0.49 1.79 0.38 1.31 0.29 
0.4 2.78 0.53 2.49 0.48 1.74 0.34 1.25 0.24 
0.5 2.77 0.53 2.48 0.47 1.72 0.33 1.24 0.23 

Table 6.1: Numerical values for the singlet and triplet components of the SDCS, spin 
factors are not included, in units of 10-17 cm2eV- 1 . Values are given at different one­
electron energies c for incident energies of 17.6, 20, 25, and 30 eV. Total energy E is 
equal to the incident energy minus 13.6 eV. 

for the SDCS are those obtained by Shyn [35] at 25 e V incident energy. They are 
compared with the calculated SDCS in Figure 6.11. These values were determined by 
integrating measurements of the double differential cross section that depends upon 
the polar angle as well as the energy of one electron. Numerical values for the SDCS 
at all four energies are listed in Table 6.1 for six different ratios of the one-electron 
energy to the total energy. 

6.5 Integral Ionization Cross Sections 

As a final means of measuring the ionization component present in the wave 
functions calculated using exterior complex scaling, we will consider spin asymmetries 
and integral cross sections for ionization. The integral ionization cross section aion 

is obtained by integrating the SDCS. Spin asymmetry is a measure of the relative 
contributions of the singlet and triplet spin components to aion. Both are given in 
terms of the individual ionization cross sections for singlet, as, and triplet, aT, spin 

·········iriplei····· 

2 4 6 8 10 00 2 4 6 8 10 12 14 16 
energy of one electron (eV) energy of one electron (eV) 

Figure 6.11: Same as Figure 6.10, but for 25 eV (left) and 30 eV (right) incident 
energies. Experimentally determined values due to Shyn [35] are shown for 25 eV 
incident energy. 



I incident energy 1117.6 eV 1 20 eV 1 25 eV 1 30 eV 1 
singlet 2.027 2.741 3.807 4.036 
triplet 0.389 0.538 0.885 1.047 
total 0.798 1.089 1.616 1.794 

asymmetry 0.513 0.506 0.452 0.416 

Table 6.2: Singlet, triplet and total ionization cross sections and the spin asymmetry. 
Cross sections are in units of a6, asymmetry is dimensionless. Spin factors are not 
included in the singlet and triplet cross sections. 

symmetries that are defined without including spin statistical factors. 

1 
O"ion = 4" (0"8 + 30"T) 

. 0"8 - O"T 
SPIll Asymmetry ----

0"8 + 30"T 
(6.11) 

Values for 0"8, O"T, O"ion, and the spin asymmetry are listed in Table 6.2. The 
comparisons between measured and calculated TDCS earlier in this chapter indicate 
that exterior complex scaling is successful in correctly describing the details of at 
least part of the ionization final state. The values in Table 6.2 provide the coarsest 
measure of the ionization final state and may be useful for future comparisons with 
experiment or other theoretical methods. 
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Chapter 7 

The Quest for a General Solution 
to Electron-Impact Ionization 

7.1 Significance of this work 

Electron-impact ionization is the aspect of electron-hydrogen collisions most diffi­
cult to treat theoretically and has stood as the last unsolved problem in the quantum 
mechanics of two-electron systems. With the work reported here, a complete solu­
tion to electron-hydrogen scattering above the ionization threshold has finally been 
realized nearly thirty years after the first meaningful calculations were performed on 
the system. Triple differential cross sections for electron-impact ionization are now 
known, for the first time, on an absolute scale. These detailed cross sections can be 
calculated for a range of geometries and energy sharing ratios where no experimental 
data is available and that is currently inaccessible to other theoretical methods. 

The real impact of this work is that it signifies the first solution to a particular 
class of fundamental problems in atomic physics. Never before has a detailed descrip­
tion of a quantum mechanical system of three charged particles moving apart been 
possible. These results enable an understanding of the details of three-body breakup 
processes that will carry forward to systems more complicated than electron-hydrogen 
scattering. Combined with the existing formal theory of ionization, they provide a 
solid basis for thoroughly understanding the dynamics of three-body breakup. 

Also, this dissertation provides the first demonstration of exterior complex scal­
ing as a viable approach to electron collision theory. Currently, ECS stands alone 
in its ability to produce wave functions describing two electrons in the continuum. 
The spectacular agreement between experimental values and calculated cross sections 
validates the correctness of these wave functions. This is strong evidence in support 
of the claim that exterior complex scaling c~n represent any final scattering state, no 
matter how complicated the boundary conditions. Unlike other methods proposed to 
study ionization, this method involves no uncontrolled approximations. Accuracy of 
the results is limited only by the finite size of the grid used and the number of terms 
retained in the partial wave expansion. 

The wave functions presented in Chapter 5 are the first verified to correctly de-



scribe scattering with two electrons in the continuum. They stand as a benchmark 
with which to test new methods designed to study breakup in more complicated sys­
tems. Developing a methodology suitable for calculating electron-impact ionization 
cross sections for more complicated atoms and molecules is the real challenge to the 
electron-scattering theory community. The present work is a significant step toward 
being able to obtain detailed information for the ionization of multi-electron targets. 
Other promising methods are currently under development, and the ultimate solution 
will undoubtedly draw on methods and concepts from several of these efforts. 

7.2 Shortcomings of this method 

Although these calculations were remarkably successful, there is still room for. 
improvement. The most obvious shortcoming is their inability to calculate differential 
cross sections over the range where one of the outgoing electrons carries most of 
the total energy. Linear extrapolation, in energy, of the SDCS is only marginally 
satisfactory, and, that procedure is useless for extending the energy sharing range 
over which we can calculate the TDCS. 

The present method relies too heavily on being able to calculate the wave function 
at large distances. Extending the energy sharing range over which cross sections can 
be calculated, or simply improving the accuracy of the results, requires knowing the 
wave function at even larger distances. This "brute force" approach is unsatisfactory 
because perceptible improvements in the quality of the results require substantially 
increasing the size of the calculations. 

Knowing the wave function at large distances is necessary mainly because of the 
extrapolation in the hyperradius used to obtain differential cross sections. Flux used 
in the extrapolation must be calculated in the near-asymptotic region where the 
aysmptotic form in Equation 2.11 holds. Furthermore, the procedure for extracting 
differential ionization cross sections from the wave functions is unable to distinguish 
between excitation of the atom into higher energy states and ionization with one 
electron carrying most of the energy. Thus, it relies on a significant portion of the 
ionization component being spatially separate from the discrete channels at the values 
of the hyperradius where the flux is actually calculated. Finally, since the procedure is 
based on direct calculations of the flux rather than integral expressions it is accurate 
only to first-order in wave function error. 

Also, there are limitations to the range of incident energies for which we can calcu­
late wave functions. Calculations for scattering very near the ionization threshold are 
problematic because all of the difficulties mentioned previously are magnified at lower 
energies. Numerical error in using finite difference over large distances for incident 
energies above 50 eV creates an upper bound to the range of energies accessible by 
the present implementation. 
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7.3 Improving the Method 

An integral expression for the ionization flux would significantly improve the 
method. Some preliminary work toward developing such an expression [34] has al­
ready been done. An integral expression has the potential to be variational and, thus, 
less sensitive to wave function error which might allow the use of numerical methods 
that produce less accurate wave functions, but require fewer computational resources. 
A key promise of this approach is the possibility of extracting information only about 
ionization. Being able to better distinguish between ionization and discrete channels 
might extend the energy sharing range over which we can calculate differential cross 
sections. Also, we could expect the cross sections to converge much more rapidly as 
a function of grid size. 

Changing the formalism to reduce the distances over which the wave function 
must be known is the best path to improving the method. We could also improve the 
results by using more efficient numerical methods to increase the range over which 
the wave function can be calculated. One promising approach is to replace finite 
difference with a finite element method using a set of discrete variable representation 
(DVR) basis functions. Finite elements have already been shown to work well with 
exterior complex scaling [20]. A DVR basis will lead to matrices that are smaller than 
those for finite difference, but with matrix elements that are just as easy to calculate. 

Another possibility for increasing the distances at which the wave function can be 
calculated comes from noting that obtaining ionization cross sections by calculating 
flux requires the wave function only at large distances. ECS produces an arbitrarily 
accurate wave function on a finite region. If we want the wave function at larger 
distances we could employ a "marching" algorithm that uses the wave function already 
calculated on an interior region as a boundary condition for calculating the wave 
function on an exterior region. The outgoing nature of the scattered wave should 
allow for propagating it outward in this manner without significant numerical error. 

7.4 Going beyond hydrogen 

The primary motivation for improving on the present formalism is not to obtain 
better results for hydrogen but to move toward being able to calculate ionization cross 
sections for multi-electron atoms and even molecules. Although, in principle, ECS 
can be applied to arbitrarily complex systems, the present implementation is suitable 
only for two electron systems. Applying it to the ionization of one-electron ionic 
targets such as e- +He+ --t 2e- +He++ requires only straight-forward modifications. 
To extend it to multi-electron atoms one could treat the atom as having just one 
"active" electron with the inner electrons accounted for by a pseudo-potential. This 
approximation will work best for the alkalis, whose inner electrons form a closed shell. 

The next great challenge to theoretical treatment of ionizing collisions is the com­
plete solution to a true three-electron system. Simple extension of the methods used 
here is not feasible because of the increase in dimensionality that comes from adding 
a third electron. The first step will be solving some three-dimensional radial model 



problem analogous to the Temkin-Poet model. Using the methods described in Chap­
ter 3, this means directly solving for the scattered wave onto a three-dimensional grid. 
With currently available computational hardware, we cannot expect to be able to cal­
culate a three-dimensional wave function, in this way, beyond about 25ao. 

Another approach to the three-dimensional problem might be to reformulate it as 
a set of coupled two-dimensional problems where a known square integrable function 
represents one electron and a two-dimensional scattered wave describes the other two. 
This requires that we are willing and/or able to ignore double-ionization. Care must 
be taken to be sure that linear dependence is not introduced into the expansion of 
the three-dimensional wave function. 

Moving from a three-dimensional model problem to a nine-dimensional, three­
electron problem will be an imposing computational challenge. Converging the par­
tial wave expansion of a three-electron wave function will probably require retaining 
many more terms than were necessary for the two-electron system. The barriers 
to computing three-dimensional radial functions combined with the requirements for 
converging a three-electron partial wave expansion ensure that calculation of an exact, 
three-electron scattering wave function will not be possible in the immediate future. 
The first useful results for electron-impact ionization in a three-electron system may 
very well come from some sort of coupled-channel approach. 

Ultimately, the scattering theory community will develop theoretical methods that 
can calculate cross sections for electron-impact ionization of molecules. The imple­
mentation described here specifically assumes that the nucleus is located at the origin 
of the coordinate system and it cannot be used for molecular targets. Any method 
developed for molecules should be designed so that it can be interfaced with an exist­
ing quantum chemistry package. This suggests the need for a formalism that can be 
implemented by a basis set expansion. Sharp exterior complex scaling is incompatible 
with ordinary basis sets. One alternative is to use a smooth contour, another is to 
devise a finite element scheme that can be interfaced with quantum chemistry codes 
but still use a sharp exterior complex scaling contour. 
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Appendix A 

One Dimensional Potential 
Scattering Examples 

Potential scattering provides an simple context for studying the method of exte­
rior complex scaling without the complications from inelastic processes and multiple 
dimensions. The l = 0 components of partial wave expansions for scattering from 
spherical potentials provide simple test problems for any method in quantum colli­
sion theory. There already exist a variety of ways to treat potential scattering that 
can calculate scattering information to arbitrary accuracy. Thus, we can thoroughly 
evaluate exterior complex scaling by comparing its results with calculations from 
other methods. We will examine the effects of changing the complex scaling angle 
and the complex scaling point for both a short-range and a long-range potential. 

A.I Potential scattering 

One-dimensional potential scattering describes the scattering of two particles in­
teracting via a central potential V (r) that depends on only the inter-particle distance. 
For incident momentum tiki we write the wave function w+ as the sum of an outgoing 
wave w:C and a plane wave representing the initial state. 

(A.I) 

The scattered wave w:C is obtained by calculating the radial functions 'l/JT (r) for 
each angular momentum quantum number l in a partial wave expansion. 

+(--» _ ~ .1 "hlr(2l+1)y (~)"/,+(.) W se r - ~ 1, k LO r 'Yl r 
1=0 i r 

(A.2) 

With no angular dependence in V(r), the 'l/JT are all independent of each other. They 
are outgoing solutions to one-dimensional scattered wave equations with reduced mass 
f.L and regular Riccati-Bessel functions )1 from the expansion of eikiZ . 

(A.3) 
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Each 1/Jt is a radially outgoing wave that, asymptotically, is proportional to a 
Hankel function hi nz + i3z where nz is an irregular Riccati-Bessel function. For 
I = 0, ht(x) = eix

. 

(A.4) 
r-+oo 

The proportionality factor in the asymptotic form of 1/Ji has the form given in Equa­
tion A.4 where the phase shift 6z is a real number. 

The total cross section is the sum of partial wave cross sections (ll, each of which 
is directly related to the phaseshift Ol. 

(lz = 47r(21 + 1) k12 sin2 (6z) , (A.5) 

Thus, the 6z provide a complete description of the final state. We can obtain them 
from the amplitude iz defined below. 

(A.6) 

Since iz is proportional to eiOI sin (6z) (see, for example, Taylor [37]), the tangent of 
the phase shift is equal to the imaginary part of iz divided by the real part. 

1m eft) 
tan (6l) = Re (fz) (A.7) 

The integral expression in Equation A.6 is less sensitive to wave function error than is 
directly calculating scattered flux, but still provides complete scattering information. 

A.2 Complex Kohn method 

In this appendix we will examine the accuracy of results calculated using com­
plex scaling by comparing with results calculated using the more established com­
plex Kohn [31] variational method. Complex Kohn has been successfully applied 
to electron-scattering from relatively large molecules [18]. However, like most other 
methods in scattering theory, it is suited only for discrete scattering processes and 
can not be applied to ionization. 

The complex Kohn method expands the scattered wave in a set of basis functions 
consisting of one function that has the exact asymptotic form of an outgoing wave 
hi (kiT) and as many square-integrable functions as needed to converge the calculated 
wave function. Thus, the complex Kohn method produces the correct scattered wave 
over all space. We can gauge the accuracy of results in the complex Kohn method 
by observing the convergence of calculated phase shifts as more square-integrable 
functions are added to the expansion basis. 

To devise one-dimensional scattering problems with which to study and test nu­
merical methods we need consider only the I = 0 partial wave. For this case the term 



V(r) = 125r2e-T V(r) = (1 + r)-4 

N k = 0.15 k = 0.35 k = 0.55 k = 0.15 k = 0.35 k = 0.55 

5 -1.2683674 0.3121880 -0.9936457 -0.0611095 -0.1004421 -0.1187034 
10 -1.2679899 0.3286518 -1.0021799 -0.0611092 -0.1004424 -0.1187109 
15 -1.2679887 0.3286586 -1.0021589 -0.0611095 -0.1004425 -0.1187108 
20 -1.2679887 0.3286588 -1.0021585 -0.0611095 -0.1004425 -0.1187109 
25 -1.2679887 0.3286588 -1.0021585 -0.0611095 -0.1004425 -0.1187109 

Table A.1: Convergence, in number of square-integrable basis functions N, of l = 0 
phase shifts calculated with the complex Kohn method. 

from the plane wave initial state is 30(ki r) = sin(kir) and asymptotically the radial 
function 'l/Jt.o is an outgoing spherical wave proportional to eikiT

. For later convenience 
we will rewrite the expression for the amplitude h as the sum of two integrals. 

Once 'l/Jt.o is calculated by solving Equation A.3 for l = 0 we use Equation A.8 to 
compute fo and then obtain the l = 0 phase shift. 

In the remainder of this appendix we will examine the application of complex 
scaling to potential scattering with a short-range potential, V(r) = 125r2e-T, and a 
long-range potential, V(r) = (1 + r)-4. Values of the phase shifts calculated using 
the complex Kohn method for both potentials at three different energies are listed 
in Table A.1. Convergence of the calculated phase shifts as more square-integrable 
functions are added to the basis is very rapid. 

A.3 Uniform complex scaling 

We will first consider the simplest complex contour, r ----+ re i1J • Under this uniform 
complex scaling transformation the wave function is complex-scaled everywhere so 
there is no region where the calculated 'l/J( is equal to the "physical", unscaled scat­
tered wave function. However, we can can still extract scattering information from 
it. The first integral in Equation A.8 involves sin( kir) and the potential V. It exists 
provided the potential decays to zero faster than ~ for large r. Since the integrand 
in the first term is a known function, that term can simply be integrated numerically 
along the real axis. So, no complex scaling should be used for the first term. 

The second integral, on the other hand, involves the unknown scattered wave. 
Again, this integral exists provided the potential goes to zero fast enough. However, 
if we use complex scaling to evaluate the scattered wave then we know 'l/J( only on 
the complex contour and the integration must be done along that contour. Under 
complex scaling, with a scaling angle TJ in the range 0 < TJ < 900

, the scattered wave 
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decays exponentially, but sin(kir) increases exponentially. The product of the two, 
however, remains bounded. 

r-+oo 

(A.9) 
Asymptotically, the second integrand from Equation A.8 decays exactly as the po­
tential V evaluated on the contour. 

Thus, the second integral from Equation A.8 exists along any uniform complex 
contour provided that V(rei1/) decays sufficiently fast. Since the potential will force 
the integrand to zero as r -+ 00 the integral along any complex contour is identical 
to the integral along the real axis. Therefore, if we know the scattered wave function 
along some contour z(r) then we can calculate the correct amplitude by evaluating 
sin(kiz(r)) and V(z(r)) and then integrating along that contour. 

Knowing that the integral involving the scattered wave exists along some complex 
contour is not useful unless the scattered wave can be calculated on that contour. The 
scattered wave is obtained by solving the scattered wave equation in Equation A.3 
whose driving term, V(z(r)) sin (kiz(r)), is well behaved only if the potential decays 
more rapidly than the exponential increase of sin (kiei1/). This requires the potential 
to be exponentially decreasing. Suppose the potential decays like e-ar

, then the 
requirement that V(rei1/) sin (kirei1/) go to zero restricts the complex scaling angle to 
o < tan(7]) < ~. So, uniform complex scaling is more problematic at higher energies. , 

Phase shifts for scattering from a potential with decay constant a = 1aol that 
are calculated using several scaling angles are listed in Table A.2. For energies with 
k i of 0.15 and 0.35 ao

l it is possible to use scaling angles as large as 60°. However, 
when ki = .55aol a scaling angle of 60° causes numerical instability that comes from 
having to evaluate sin(z) for arguments with large imaginary parts. The results are 
essentially independent of the complex scaling angle, and agree with the correct values 
calculated using complex Kohn, provided that the angle lies within the allowed range. 
One caveat is that with smaller scaling angles the scattered wave decays more slowly 
which requires that it be calculated over a larger range of r. 

I scaling angle II k = 0.15 k = 0.35 k = 0.55 

20° -1.2679889 0.3286587 -1.0021581 
40° -1.2679887 0.3286587 -1.0021584 
60° -1.2679884 0.3286587 -1.4261539 

I complex Kohn II -1.2679887 I 0.3286588 I -1.0021585 I 

Table A.2: Phase shifts for V(r) = l25r2e-r calculated with uniform complex scaling 
using different scaling angles. 



I scaling point II Ie = 0.15 Ie = 0.35 Ie = 0.55 

Oao -1.2679887 0.3286587 -1.0021585 
20ao -1.2679887 0.3286588 -1.0021585 
40ao -1.2679887 0.3286588 -1.0021585 

I complex Kohn II -1.2679887 I 0.3286588 I -1.0021585 I 

Table A.3: Phase shifts for ll(r) = 1;r2e- r calculated using exterior complex scaling 
with a scaling angle of 30° and three different complex scaling points. 

A.4 Exterior complex scaling 

For exterior complex scaling (ECS) we generalize the definition of the contour so 
that the coordinates are complex only beyond some distance Ro. Uniform complex 
scaling is then the special case of Ro = O. 

z(r) {R (~ R ) i1) .0+ r .oe 
r < Ro 
r ? Ro 

(A.I0) 

The second integral in Equation A.8 is still well-defined on this contour for the same 
reasons as for uniform complex scaling and it is possible to calculate the phase shift as 
long as the scattered wave is known on the contour. Since the potential will decrease 
more rapidly on the real axis than on a complex contour one advantage of using ECS 
rather than uniform complex scaling is that Ro can be chosen so the potential is 
already close to zero before the complex scaling begins. Also, ECS allows the use of 
potentials that are known only numerically for small r. 

Values of the phase shift for a short-range potential calculated using ECS with 
different complex scaling points Ro are listed in Table A.3. The accuracy of the results 
is essentially independent of Ro. However, the size of the required calculation does 
depend on Ro. In a finite difference implementation, the extent of-the grid needed 
depends upon the length beyond Ro necessary for the 'lj}( (z(r)) to decay effectively 
to zero. This distance is independent of Ro so increasing Ro increases the number of 
real grid points while the required number of complex grid points remains the same. 

One advantage of using ECS is that 'l/J((z(r)) is the same as 'l/J((r) between zero 
and the complex scaling point Ro. So, with ECS we obtain the actual wave function, 
but only on a finite region. Scattered waves calculated with ECS for different Ro are 
compared, in Figure A.l, with one calculated by the complex Kohn method. In the 
region where the ECS contour is real the two wave functions are identical within the 
accuracy of the numerical methods used. The accuracy of the wave function over the 
region where the coordinates are real is independent of the complex scaling point Ro. 

A.5 Long-range potentials 

Implementing ECS for potentials that do not decay exponentially is more difficult. 
The problem is not in calculating the phase shift (the second integral in Equation 
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Figure A.I: Scattered waves for V(r) = lir2e-r calculated using ECS for three 
different Ro compared with one calculated using the complex Kohn method. The 
incident momentum is ki = 0.55ao1 and the complex scaling angle is 30°. Differences 
between ECS and complex Kohn wave functions are plotted on a log scale. 

A.8 is still defined on the complex contour) instead the problem is in calculating 
the scattered wave. With long-range potentials the driving term in Equation A.3 
diverges on the contour and the scattered wave equation cannot be solved without 
modification. In Appendix B it is shown that this limitation can be overcome by 
truncating the potential at (or before) the complex scaling point Ro. 

Truncating the potential makes it possible to solve the scattered wave equation 
on the complex contour, but the potential is now different. Changing the potential 
will, of course, affect the solution so the calculated wave functions and phase shifts 
will be less accurate. Accuracy of the calculated phase shifts depends on how close 
to zero the potential is at Ro. As can be seen in Table A.4, the calculated phase 
shifts for a long-range potential are more sensitive to Ro than they were for short­
range potentials. However, they do converge to the correct, "physical" value as Ro 
increases. The effect of truncating the potential on the calculated wave function is 
illustrated in Figure A.2 where wave functions calculated with ECS are compared to 
those calculated by the complex Kohn method. 

Figure A.2: Scattered waves for V(r) = (1 + r)-4 calculated using ECS for three 
different Ro compared with one calculated using the complex Kohn method. The 
incident momentum is ki = O.55ao1 and the complex scaling angle is 30°. Differences 
between ECS and complex Kohn wave functions are plotted on a log scale. 



I scaling point II k = 0.15 k = 0.35 k = 0.55 

10ao -0.0562652 -0.0989343 -0.1179933 
20ao -0.0607733 -0.1002030 -0.1185759 
30ao -0.0609288 -0.1003711 -0.1186671 
40ao -0.0610577 -0.1004141 -0.1186939 
50ao -0.0610715 -0.1004289 -0.1187025 
60ao -0.0610932 -0.1004349 -0.1187057 
70ao -0.0610959 -0.1004378 -0.1187076 
80ao -0.0611025 -0.1004393 -0.1187088 
90ao -0.0611033 -0.1004402 -0.1187095 

I complex Kohn II -0.0611095 I -0.1004425 I -0.1187109 I 

Table A.4: Phase shifts for V(T) = (1 + r )-4 calculated using exterior complex scaling 
with a scaling angle of 30° and several different complex scaling points. In each case, 
the potential is truncated at the complex scaling point. The complex Kohn values 
were calculated with a potential truncated at 250ao. 
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Appendix B 

ECS and Long-Range Potentials 

"Making complex scaling work for long-range potentials" , originally published in 
Physical Review A [28], shows that exterior complex scaling can be used to calculate 
phase shifts for one-dimensional potential scattering with long-range potentials by 
performing the calculations with the potential truncated at the complex scaling point. 
The calculated results are meaningful if the complex scaling point is large enough so 
that the truncated potential is physically indistinguishable from the original long­
range potential. Although the potential treated in this article is not as long-range 
as a Coulomb potential, the ideas developed here laid the groundwork for applying 
exterior complex scaling to electron-impact ionization. Also, this article demonstrates 
how to implement exterior complex scaling with an analytic basis set. The "sharp" 
contour of Equation A.I0 is replaced by a "smooth" contour that has continuous first 
and second derivatives. 
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I. INTRODUCTION 

The method of complex coordinates or complex scaling 
(i.e., the idea of treating the Hamiltonian as a function of 
complex position variables) is well known in physics. The 
idea was first used over 30 years ago in the theory of poten­
tial scattering to extend the region of analyticity of the lost 
function into the lower half k plane [I]. It also has a long 
history in atomic and molecular physics as the basis for vari­
ous methods used in computational scattering theory dating 
back to the early seventies [2,3]' Most of the applications 
have centered on the calculation of resonances in atoms and 
molecules whose energies and lifetimes, under complex scal­
ing, are related to the real and imaginary parts of the discrete 
eigenvalues of an analytically continued Hamiltonian [4]. 
Nevertheless, as Reinhardt pointed out in his 1982 review 
[5], it is important to bear in mind that the original motiva­
tion for interest in the method, and indeed the principal mo­
tivation for this study, was the prospect of calculating scat­
tering cross sections without explicit enforcement of 
asymptotic boundary conditions. In contrast to the develop­
ment of "direct" methods for evaluating resonances based 
on complex scaling [6], this other aspect has received far less 
attention [7,8] and, apart from applications to photoioniza­
tion [9-12], has met with only partial success. The reason? 
A solution of the full scattering problem requires matrix el­
ements of the resolvent between continuum functions. Un­
fortunately, the method of complex scaling as originally pre­
sented only provides convergent expressions for these 
quantities in the case of interaction potentials that fall off 
exponentially [2,13], which would appear to exclude most of 
the problems encountered in atomic and molecular physics. 
Although methods based on complex scaling or, more accu­
rately, on the use of complex basis functions [8] have been 
proposed to tackle this harder problem, it is probably fair to 
say that, after many years, no definitive method for entirely 

circumventing the specification of boundary conditions has 
emerged. 

One notable extension of the complex coordinate method 
was Simon's exterior complex scaling procedure [14], in 
which the coordinates are only scaled outside a (hyper)­
sphere of radius I rl = R o. The motivation for this develop­
ment was the desire to treat Hamiltonians that have non ana­
Iyticities in the interior region, such as the Bom­
Oppenheimer Hamiltonian whose electron-nuclear attraction 
tenns are not dilatation analytic when viewed solely as a 
function of the electronic coordinates [IS]. In computational 
applications, exterior complex scaling has been used mainly 
in direct numerical integration methods [16-18], although 
there have been a few attempts, in connection with resonance 
evaluations, to implement the method in a basis [19-21]' 

The purpose of this paper is to show that exterior scaling 
can be used to formulate a procedure for solving the full 
scattering problem using only square-integrable functions 
and that, unlike the original complex scaling method, the 
method is not restricted to exponentially bounded potentials. 
To be able to implement the method with arbitrary basis 
functions, we have found it necessary to generalize Simon's 
procedure to a broader class of transfonnations, where the 
transition from real to scaled coordinates is smoothly carried 
out over a finite range. 

The method is outlined in the following sections, after a 
brief review of the earlier techniques. We then make some 
comments on the connection between complex scaling and 
complex basis function methods. Section V presents some 
numerical examples and Sec. VI has some concluding re­
marks. 

II. COMPLEX SCALING 

For notational simplicity, we will use the symbol r to 
refer collectively to all the interparticle coordinates in an 
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N -body system. The starting point for a definition of the 
complex coordinate method is to introduce a scaling of r by 
a real factor e fl E R under which the wave function is mapped 
as 

(1) 

where the factor eN8
(2 must be included to preserve the nor­

malization of the wave function. Since () is real, this corre­
sponds to a unitary transformation of the Hamiltonian, H 8 

= U ( (})H U - 1 ( ()), and the spectrum of H 8 is independent of 
(). 

The complex coordinate method analytically continues 
H 8 by considering a broader class of (nonunitary) scaling 
transformations eO,(}EC. In this paper, we use the terms 
"uniform" or "ordinary" complex scaling to denote this 
transformation which scales all interparticle coordinates by a 
complex constant. There is a considerable literature on the 
properties of the Hamiltonian under this (nonunitary) trans­
formation for the class of dilatation analytic potentials 
[5,22], the principal results of which can be summarized as 
follows. 

(1) The bound-state eigenvalues of Hoare the same as 
those of H for larg (}1"';7T/2. 

(2) The segments of the continuous spectrum of He be­
ginning at each scattering threshold are rotated into the lower 
half plane by an angle 2 Im() (1m (}>O). 

(3) H 0 may have isolated complex eigenvalues (reso­
nances), and corresponding L 2 eigenfunctions, in the wedge 
formed by the continuous spectra of Hand He. They are 
independent of () as long as they are not covered by branches 
of the continuous spectrum of He. 

Property 3 has accounted for the attractiveness of uniform 
complex scaling as a means for finding resonances. Con­
sider, for example, the case of s-wave scattering from a 
spherically symmetric potential VCr). One simply chooses a 
basis of L 2 functions, forms a (complex symmetric) matrix 
representation of the operator 

(2) 

diagonalizes it and varies () to find those eigenvalues which 
are roughly independent of the scaling angle. In practice, the 
eigenvalues may depend strongly on the rotation angle for 
basis sets that are not carefully optimized and modifications 
of the method, which need not concern us here, are needed to 
make the method practical for many-electron systems [23]. 
We refer the interested reader to several reviews for further 
details [5,6,24]' 

It is property 2 that has stimulated interest in complex 
scaling as a way to implement scattering theories that do not 
rely on explicit enforcement of asymptotic boundary condi­
tions. The idea is to express the quantity of interest, such as 
a scattering amplitude, as a matrix element of the resolvent 
or full Green's function lime~o(E - H + ie)-1 and to use the 
fact that the latter can be approximated as the inverse of the 
matrix representation of E - H 0 in an L 2 basis, i.e., as (if 
- if 0) -1 [2,8]' Because the continuous spectrum of He has 
been rotated off the real axis, the matrix (if - jj e) -1 is a 
meaningful approximation to the resolvent for real values of 

E. To evaluate the scattering amplitude or T matrix, we re­
quire matrix elements of the resolvent between continuum 
functions. Specifically, what is required is lime~o(if/olV(E 
-H+ie)-IVll//o), where 1//0 is a continuum function. Un­
fortunately, with ordinary complex scaling, these so-called 
"free-free" elements only converge for exponentially 
bounded potentials V [2,13]. Our main purpose here will be 
to show how such a construction can be made to work even 
in the case of a Hamiltonian with long-range interactions. 

The method of exterior complex scaling was proposed by 
Simon [14] as a logical extension of uniform complex scal­
ing to deal with potentials that may have interior nonanalyt­
icities, but are well behaved outside some (hyper)sphere of 
finite volume [25]. Specifically, Simon suggested the map­
ping 

(3) 

The spectral properties of the Hamiltonian under this more 
general scaling transformation are the same as those listed 
above for uniform complex scaling. The particular example 
that prompted Simon's work was the Born-Oppenheimer 
Hamiltonian with fixed, real nuclear coordinates. The 
nonanalyticity of the electron-nuclear attraction terms spell 
trouble for uniform scaling [15], but are readily accommo­
dated under exterior complex scaling. 

The slope of the contour defined by Simon's exterior 
complex scaling changes discontinuously at R 0, which can 
complicate its implementation in certain applications [26]. 
We will therefore first consider a more general class of trans­
formations which pass smoothly from real to complex rand 
then return to exterior complex scaling as a limiting case. We 
will use the term smooth exterior scaling to distinguish this 
class of mappings from Simon's original prescription, which 
we call sharp exterior scaling, while the term "complex scal­
ing" without modifiers can refer to any method which allows 
the position variables to take on complex values. 

Consider some smooth complex contour R(r) which has 
the properties 

{
r, r--tO 

R r = . () re"", r--+ OO 
(4) 

but is otherwise arbitrary. We first need to determine the 
explicit form of the transformed Schrodinger equation as a 
function of the real coordinate r. 

The implementation of complex scaling requires that one 
take into account the metric which accompanies the scaling 
operator. In analogy with Eq. (I), we define the operator that 
does the scaling as 

U'Jf(r) =J(r)'Jf(R(r», (5) 

where the Jacobian is 

(
dR) 1/2 

J(r)= -d 
r 

(6) 

and the scaled Schrodinger equation is 

UHU-1U'Jf=EU'Jf. (7) 



The inverse of U is given by 

(8) 

where R -I (r) is the inverse of the function defining the 
contour. 

Next, we need an expression for the radial kinetic-energy 
operator under this transfonnation. The algebra simplifies 
considerably if we represent the contour in the following 
fonn [26]: 

R(r)= 1: q(r')dr', (9) 

with 

(10) 

so that 

(11) 

for functions q that are continuous. Finally, if we define 
cp(r) as the original wave function on the contour, i.e., 

U'JI(r )=J(r )cp(r) = q 1/2(r) cp(r), (12) 

then it can be shown that 

d 2 I q' 
U -0 U- I(r)qI/2(r)cp(r) = - ql/2cp" __ q1/2cp' 

dr q2 q3 , 
(13) 

where the primes denote differentiation with respect to the 
real coordinate r. The transfonned radial Schrodinger equa­

tion if cp(r) = E cp(r) involves the Hamiltonian operator 

, I [I d
2 

q' d 1 H(r)=-- ----- +V(R(r». 
2 q2 dr2 q3 dr 

(14) 

This representation of the second derivative operator now 
allows us to derive a symmetric matrix representation of the 
scaled Schrodinger equation in a basis. The idea is to expand 
just cp(r)='JI(R(r», and not U'JI(r) which contains the 
Jacobian factor, in a basis 

cp(r)= L CnXn(r). (15) 
n 

Inserting this expression into Eq. (14), multiplying from the 
left with q(r)Xm(r) and integrating over r gives 

L iimnCn=EL SmnCn' (16) 
n n 

with 

(17) 

- - -
l-lmn=Tmn+ V mn' (18) 

Vmn = r x",(r)V(R(r»Xn(r)q(r)dr, (19) 

(20b) 

where the last expression comes from integration by parts 
and the assumption that the basis functions vanish at the 
origin and infinity. Note that the kinetic-energy elements 
given by Eq. (20b) obviously define a complex symmetric 
matrix. 

Equations (17)-(20) which, together with the transformed 
Hamiltonian in Eq. (14), are the principal results of this sec­
tion, show how to represent the transformed radial Schro­
dinger equation in a basis. In the limiting case of sharp ex­
terior scaling, q(r) changes discontinuously from I to e iq' at 
r = R 0 and some care is needed to properly define the kinetic­
energy elements. It can be shown that Eq. (20b) still gives 
the correct representation of the kinetic-energy operator in 
this instance. Note that, unlike Kurasov, Scrinzi, and Elander 
[26], we have not included the Jacobian factor ~q(r) in the 
definition of the scaled wave function in Eq. (5) so that, 
under sharp exterior scaling, 'JI(R(r» is not discontinuous at 
Ro. However, the derivatives of 'JI(R(r» (with respect to 
r) are discontinuous. The implication is that, even with the 
kinetic-energy operator properly defined via Eq. (20b), an 
analytic basis set cannot give uniform convergence with 
sharp exterior scaling because such an expansion cannot rep­
resent the cusp discontinuity in the wave function at R 0 . 

III. COMPLEX SCALING VS COMPLEX BASIS 
FUNCTIONS 

At this point, it is possible to establish a connection be­
tween complex scaling and another class of techniques com­
monly referred to as complex basis function methods. For 
some implementations of complex scaling, it is possible to 
reinterpret the prescription of using real L 2 functions in con­
nection with a complex Hamiltonian as being entirely 
equivalent to using complex basis functions with a real 
Hamiltonian. For example, with uniform scaling, we have 
q(r)=ei</>Vr and thus have to construct matrix elements of 
the fonn 

(21) 

It is easy to see that if we make the change of variable 
r--+re- i</> in the above integral and use Cauchy's theorem to 
distort the integration contour back to the real axis, we get 

(22) 

so that we can view the case of uniform scaling as being 
equivalent to using a real Hamiltonian and working with 
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complex basis functions X n( re - i <P) and a scalar product de­
fined without complex conjugation of the radial functions. 
While complex scaling and complex basis functions are 
equivalent in this simple case, the complex basis function 
interpretation turned out to be more flexible, since it allowed 
one to mix real and complex basis functions in many-body 
problems where the wave functions are represented as orbital 
products. The inner-core orbitals in a heavy atom become 
highly oscillatory under uniform complex scaling which 
causes severe convergence problems. With complex basis 
function methods, one can use real basis functions to expand 
the core orbitals and complex functions only for the outer 
orbitals [23]. The method is then no longer the same as uni­
form complex scaling and may well not correspond to an 
easily derived variable scaling of the Hamiltonian operator. 
The "method of complex basis functions" [23,24] played an 
important role in the evolution of numerical scattering meth­
ods, since it enabled practical calculations to be performed 
on many-electron atoms as well as molecules. In fact, some 
progress was made in establishing a relationship (but not an 
identity) between computations carried out with complex ba­
sis functions and the exterior complex scaling concept [27]. 

The development of the preceding section enables us to 
make a clearer connection between complex scaling and 
complex basis functions. The matrix elements we have to 
consider [Eqs. (17), (19), and (20)] have the form 

(00 dR 
= Jo Xm(r)H(R(r))xn(r) dr dr. (23) 

If we can construct R -I, the inverse of the function which 
defines the contour, then we can make the change of variable 
from r to x, where r= R- 1 (x) and again use Cauchy's theo­
rem to carry out the integration along the real x axis. The 
result is 

which establishes the desired connection between complex 
scaling and an equivalent complex basis. For the case of 
uniform complex scaling, as well as sharp exterior scaling, 
the inverse map is simply R-1(r)=r*. In fact, any smooth 
mapping that satisfies 

(25) 

and has a smooth inverse can be used to define a set of 
complex basis functions to use in Eq. (24). Note that with 
exterior scaling, there is no need for mixing real and com­
plex basis functions; the inner-core orbital problem in many­
electron systems is automatically handled in a natural way, 
since tight functions that do not extend beyond R o are effec­
tively left real. 

IV. SCATTERING 

We will next investigate the question of applying the for­
malism outlined above to a collision problem. For simplicity, 
we will consider the case of s -wave scattering from a spheri­
cally symmetric potential. The scattering cross section is pro­
portional to the squared modulus of the T matrix, which is 
defined as 

T(E)= fooo 

!/'o(r)V(r)!/,t(r)dr 

== fooo 

!/'o(r)V(r)(I/Io(r)+!//.c;a'(r»dr, (26) 

where I/Isca
'( r) is the scattered wave part of the full scattering 

wave function. The T matrix can also be expressed in terms 
of the full Green' s function 

= lim ( I/IoW + VeE + it; - H) -I vi 1/10)' (27) 
e~O 

with 

I/Io=.J2ik sin(kr), E=e/2. (28) 

Note that with these definitions, T= eiosin8, where 8 is the 
phase shift. The scattered wave part of the T -matrix is now 
approximated as 

where the matrices Sand ii are defined in Eqs. (17)-(20) 
and f is a vector with elements 

fm=.J2ik D Xm(r)V(R(r»sin(kR(r»q(r)dr, (30) 

Since the continuous spectrum of H 0 has been rotated into 
the lower half plane, this representation should converge for 
real E if V is sufficiently well behaved. Unfortunately, as 
Baumel, Crocker, and Nuttall [13] have pointed out, Veri 
must be exponentially bounded for Eg. (29) to converge 
since sin(kr) diverges exponentially under coordinate rota­
tion. This will be formally true both for uniform scaling or 
exterior scaling. With exterior complex scaling, however, 
there is a way around this problem. 

Although the development to this point allows any 
switching function q(r) that satisfies Eq. (10), we will see 
that there are distinct advantages to having a contour that 
coincides exactly with the real axis over a finite range O:S:r 
~Ro. We can then replace the original potential VCr) by a 
finite range potential V Ro(r) that vanishes beyond R o and is 

identical to VCr) for r<Ro 

_ (V(r), r:S:Ro 
VR (r)- 0 >R o ,r 0 

(31) 

We can use exterior scaling to calculate the T matrix corre­
sponding to this potential T Ro relying on Eq. (29) to approxi-



mate the scattered wave part in a basis set of N square­
integrable functions with Eqs. (17)-(20) defining the 
required matrix elements. Since VRo(r) is a finite-range po­

tential, the method will converge for any value of Ro if N is 
large enough. This truncation of the potential allows us to 
define a process that limits to the correct physical result as 
Ro->oo. Thus, by choosing the interior region large enough, 
we can insure that the truncated potential differs insignifi­
cantly from the physical potential under consideration [28]. 

We can contrast the above procedure to the situation that 
pertains to uniform complex scaling with a truncated lorig-
range potential. In the latter case, it is convenient to use the 
"complex basis set" interpretation of uniform scaling [i.e., 
Eq. (22)], so that we can continue to use the same real, 
finite-range potential V Ro(r). The matrix elements of the po­

tential would then be of the form 

In contrast to the case of exterior scaling with V Ro(r), uni­

form scaling will not yield physically meaningful results as 
Ro is increased. Indeed, in the limit Ro->oo, the matrix ele­
ments defined in Eq. (32) become, after the change of vari­
able r->reiq, 

which is precisely the case that Baumel, Crocker, and Nuttall 
[13] showed to be divergent. 

We will now give the specific form of the transformation 
we used to implement smooth exterior scaling. We chose 

(

1, r<Ro-h 
q(r)= fer), Ro-h<r<Ro+h, 

e iq" r>Ro+h 
(34) 

where fer) is a smooth switching function defined on [Ro 
-h<r<Ro+h]' To insure uniform convergence with an 
analytic basis, we wantf(r) to be continuously differentiable 
at r=Ro::!:h. We thus chose fer) to be the lowest order 
polynomial needed to make q( r) and q' (r) continuous at 
Ro-h and Ro+h. If we define 

(
r-R ) 

f(r)=I+(e iq,-l)P T ' (35) 

then the requirement is that P( - 1 ) = 0, P(I) = 1, P' ( - 1 ) 
=0 and P'(l)=O. These conditions uniquely define P(x) 

P(x)= ~(2+3x-X3). 

The truncated potential V Ro is defined as 

{ 
V(R(r»= VCr), 

V -
Ro- 0, r'3R o-h 

(36) 

(37) 

We reiterate that by zeroing the potential on the complex 
portion of the contour, we eliminate any numerical difficul-

TABLE I. Phase shift for s-wave scattering by an exponential 
potential. N refers to the number of Laguerre-Iype functions used in 
the calculation. Results are given for both unifoml complex scaling 
and smoolh exterior scaling. See text for basis sel and contour pa-
rameters. 

N Unifoml Smooth Exterior 

k=O.l5 

5 - 0.89R 511 72 - 0.000 003 17 

10 - 1.046 15320 0.54894806 

15 - 1.058 928 49 - 0.950 252 63 

20 - Ul47 232 52 - 1.027 465 88 

25 -1.051 19581 - 1.062 783 68 

30 - 1.050 256 94 -1.04671628 

35 - 1.050 417 02 - 1.051 22459 

40 - 1.050 403 3)1 -1.050281 54 

45 - 1.050 400 37 . - 1.050 404 85 

50 - 1.050 402 26 - 1.050 406 59 

55 - 1.050 401 68 - 1.050 400 28 

60 - 1.050 401 80 - 1.050 402 73 

k=0.35 

5 1.42393379 0.00000838 

10 1.46033720 0.212813 71 

15 1.461 22277 1.43632377 

20 1.461 24716 1.45572439 

25 1.461 24757 1.46107610 

30 1.461 24756 1.46124573 

35 1.461 24756 1.461 24805 

40 1.461 24756 1.461 24837 

k=0.35 
45 1.461 24756 1.46124845 

50 1.461 24756 1.461 247 59 

55 1.461 24756 1.461 247 64 

60 1.461 24756 1.461 24759 

k=0.55 

5 1.15583718 - 0.000027 24 

10 1.144 12789 0.22636078 

IS 1.144 235 25 0.92234522 

20 1.144 234 35 1.14172379 

25 1.144 234 36 1.14299929 

30 1.144 234 36 1.144 086 07 

35 1.144 234 36 1.144 226 53 

40 1.144 234 36 1.144 232 62 

45 1.144 234 36 1.144 23218 

50 1.144 234 36 1.144 234 34 

55 1.144 234 36 1.144 23416 

60 1.144 234 36 1.144 234 22 

ties associated with a less than exponential fall off of the 
potential at large distances, but have no measurable effect on 
the cross section. 

We do not expect this remedy to come without a price. 
It's obvious that the basis set one chooses must have ele­
ments that extend beyond the complex turning point R 0; if 
not, the eigenvalues of if B would effectively be real and Eq. 
(29) would not yield a sensible result. Even for a short­
ranged potential then, we expect that a larger number of 
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FIG. I. Unitarily of the calculated S matrix 
(S=e 2i8

) for s-wave scattering by an exponential 
potential at k = 0.55. Upper curve is for smooth 
scaling; lower curve is for exterior scaling. 
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functions will be required to achieve a given level of accu­
racy with exterior scaling than with uniform scaling and that 
the number of functions required will grow as R 0 increases. 

We can recover Simon's original exterior complex scaling 
contour by letting h->O in Eq. (34), in which case q changes 
discontinuously at R o. Equation (20b) can still be used to 
define the kinetic-energy matrix, but analytic basis functions 
will not give uniform convergence with this prescription 
since the derivative of the wave function (with respect to 
r) is discontinuous at R o. However, the cusp discontinuity in 
the wave function at the point Ro that occurs with sharp 
exterior scaling can be accommodated by using a nonana­
lytic set of basis functions that are only defined on finite 
intervals. The continuous variable r is replaced by a grid of 
nodes 0<rl<r2<···<rn<oo. Finite element basis nmc­
tions ~j,m(r) are defined to be identically zero outside a 
given interval 

(38) 

We use the label m to indicate the boundary conditions im­
posed on the basis functions at the nodes, for example, zero 
or unity at the right or left end of the interval. The finite 
element functions are then combined into a smaller set of 
continuous basis functions on which the Hamiltonian is pro­
jected. To accommodate exterior scaling, we simply require 
the point R 0 to coincide with one of the nodes. To construct 
the required Hamiltonian matrix elements, we have to con­
sider terms of the form 

(39) 

where, by construction, the point Ro never lies within the 
interval [rj,ri+l] and, hence, R(r) is always smooth over 
the integration range. To underscore the fact that the finite 

30 35 

element basis functions depend explicitly on the interval 
boundaries, we write them as ~j./r)=jj(r,rj,rj+l)' In our 
implementation of the method, we used Hermite interpolat­
ing polynomials f/r,rj,rj+l), which are uniquely defined 
on the interval [rj,rj+l] from the conditions 

dk 

drkf/r,rj,ri+l)=/ij,k, r=rj, 

dk 

drkf/r,rj,ri+l)=O, r=rj+l' (40) 

For these functions, there is a simple proportionality between 
f/r,rj,rj+l) and f/R(r),R(rj),R(rj+l», where R(r) is 
any linear function of r. Since the exterior scaling contour is 
a linear transformation on r, we can thus write 

X H(R(r) )fn«r) ,R( r;),R(rj+ I) )dR. (41) 

This relation is remarkable for two reasons. Firstly, it shows 
that the finite elements naturally scale onto the rotated con­
tour and thus can handle any step discontinuity in the wave 
function at the point Ro. Moreover, if analytic forms are 
available for the matrix elements for real intervals, then the 
right-hand side of Eq. (41) shows that those same formulas, 
evaluated for complex nodal points, give the correct values 
for the matrix elements of the Hamiltonian on the complex 
part of the contour. This would not be true if the turning 
point R 0 fell between two nodes. It is important to bear in 
mind that the identity expressed in Eq. (41) does not in any 
sense represent a contour distortion of the integral defined in 
Eq. (39). 



V. EXAMPLES 

In this section we will illustrate some of the ideas we have 
outlined with several numerical examples. We will lirst re­
port the results of calculations using analytic basis functions 
on a smoothly scaled contour. To examine questions of con­
vergence, it is convenient to work with a set of L 2 functions 
that can be systematically increased toward completeness 
without running into problems of numerical linear depen­
dence. We chose the set of functions 

where L~C),.r) is an associated Laguerre polynomial. These 
functions are orthonormal on [0,00] and give simple analytic 
expressions for matrix elements of the s-wave kinetic energy 

o[ (2m
3
+9m

2
+ 13m+6) 1 

=),.- - Om n/8+ . 
. 12v!(n+ 1)(n+2)(m+ 1)(m+2) 

(43) 

These analytic formulas can even be used to simplify the 
evaluation of matrix elements earned out on a complex con­
tour where numerical quadrature is required, i.e., where we 
use 

J Xm,) .. (r)H(R(r»xn.J..(r)q(r)dr 

We can make use of the fact that q(r) = e iq, for r>Ro+ h to 
simplify evaluation of the overlap and kinetic-energy matrix 
elements. In the case of the overlap matrix, for example, we 
write 

=ei¢Om.n+ L Xm.J..(I)Xn.J..(r)(q(I)-ei'/')wi' 
J 

(45) 

where the quadrature points only cover the interval [O,R o 
+h]' 

We first considered s-wave scattering from the short­
range potential 

V(r)= -e- r (46) 

TABLE II. Phase shift for ",-wave scattering by truncated long 
range potential. N refers to the number of Laguerre-type functions 
used in a smooth exterior scaling calculation. See text for basis set 
and contour parameters. 

N Ro=25 Ro=35 

k=O.l5 
10 -0.010 1100 94 -0.00000015 

20 -0.06956168 -0.164 917 53 

30 - 0.060 820 42 -0.06141067 

40 - 0.060917 40 - 0.060926 53 

50 - 0.060 944 40 -0.06102523 
60 - 0.060 945 59 - 0.061 03083 

70 - 0.060945 56 - 0.061 03078 

80 - 0.060945 58 - 0.061 03078 
90 - 0.060945 59 - 0.061 03079 

100 - 0.060 945 59 - 0.061 03078 

k=0.35 

10 -0.00038421 - 0.00000001 

20 - 0.099 657 09 - 0.037 669 36 

30 -0.10031907 -0.10017726 

40 -0.10033619 -0.10040443 

50 -0.10033628 -0.10041117 
60 - 0.100 336 39 -0.10041098 . 
70 - 0.10033648 -0.100 410 97 -, 

80 - 0.100 336 48 -0.100410 97 

90 -0.10033648 -0.100411 06 

100 -0.10033649 -0.10041109 

k=0.55 

10 -0.00036134 - 0.00000001 
20 - 0.132 563 05 -0.043013 91 

30 -0.11884509 -0.11473708 

40 -0.11866569 - 0.118511 86 

50 - 0.11865889 - 0.11866929 

60 - 0.11865868 - 0.11868969 
70 -0.11865854 -0.11869113 

80 -0.11865859 - 0.118 691 33 

90 - 0.118 658 57 -0.11869137 

100 -0.11865856 -0.118 6lJI 29 

and compared the results obtained from uniform complex 
scaling, i.e., H(r)-">H(re iq,), with smooth exterior scaling 
f/(r)->H(R(r». The contour used the polynomial switch­
ing function described in Sec. IV. For these calculations, we 
chose R 0 = 20.0 and h = 4.0. The Laguerre scale factor A was 
set to 2.0 and the rotation angle was 30° for both sets of 
calculations. Table I shows the behavior of the s-wave phase 
shift (defined here as the phase of the calculated T matrix) 
for several values of k. The convergence is faster with uni­
form scaling than with smooth exterior scaling, as we con­
jectured, because with smooth exterior scaling one lirst needs 
to span the region from the origin to R 0 before one begins to 
see convergence. This can be seen in Fig. I, which compares 
uniform and smooth exterior scaling for k = 0.55. The mea­
sure of convergence for this comparison is the unitarity of 
the S matrix (S = e 2i 8), which is computed from the T ma­
trix as S= I +2iT. 

The next case we consider is s-wave scattering from the 
long-range potential 
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(47) 

for which unifonn complex scaling diverges. We again stud­
ied convergence with the smooth exterior scaling transfonna­
tion, this time zeroing the potential beyond R 0 - h, where the 
contour begins to tum off the real axis. Results are shown in 
Table II for several k values and two different values of 
R o. All other parameters of the contour and basis are the 
same as in the preceding case. The rate of convergence is 
similar to what was found with the exponential potential, but 
the converged phase shifts show a slight dependence on 
R 0, reflecting their dependence on the point beyond which 
the potential is truncated. For comparison, we also show, in 
Fig. 2, the results of a calculation in which the long-range 
potential is not truncated. It is noteworthy that calculations 
using the untruncated potential can provide useful results for 
a range of basis set values, before they ultimately begin to 
diverge. 

We also implemented sharp exterior scaling in a finite 
element basis of fifth-order Hennite interpolating polynomi­
als. In each interval [ri,I"i+I], we can uniquely define six 
independent polynomials Pj)r) and Qj,;(r), j=0,1,2 from 
the conditions 

dk 

dr k Pj)r;) = oj.k 
d k j,k=0,1,2 

dr k Pj.i(ri+I)=O 

dk 

dr k Qj.i(ri+I)=°j.k 

d k j,k=0,1,2 (48) 

dr k Qj.i(ri)=O 

The explicit fonnulas for the Pj .; are 

FIG. 2. Unitarity of the calculated S matrix 
(S=e 2iO

) for s-wave scattering by a long-range 
potential at k = 0.55. The divergent upper curve is 
for a potential which is not truncated on the com­
plex part of the integration contour. 

( 
r-ri+1 )2[ (r-r i+ I )2 

Pl.i(r)=(ri+l-r;) -_-- 3 -_--
rj r;+1 rj ri+1 

for ri<i';r<i';ri+1 and zero elsewhere. The functions Qj.i are 
obtained by interchanging r i and r i + 1 in the fonnulas for 

Pj,i' 
We can use these polynomials to define three basis func­

tions at each node ri which span the interval [ri-l ,ri+d, 
and have vanishing value, first and second derivative at the 
end points. The basis functions are defined as 

(50) 

and are plotted in Fig. 3. It is obvious from Eq. (49) that the 
basis functions defined in Eq. (50) scale onto the contour as 
described in Sec. IV. In particular, at the point ri=Ro, we 
see that 

lim (Xj,i(Ro+ e) = (e i1')jXj)Ro - e». (51) 
<-0 

Thus the function XO,i guarantees continuity of the wave 
function at r i = R 0, while X l.i and X2,i impose the proper 
discontinuity conditions on the first and second derivatives, 
respectively. To impose boundary conditions that the wave 
function vanish at the origin and last grid point, we simply 
omit the functions XO,l and XO,N and remove Pj,1 and Qj,N' 
j = 1,2 from the definition of the basis functions. 
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FIG. 3. Basis functions for finite element calculations. Upper 
panel: Xj.O; center panel: Xj.!; lower panel: Xj.2' See text for 
definition of the functions. 

The exterior scaled finite element method was also ap­
plied to the long-range potential problem previously consid­
ered. For these calculations, the grid points were evenly 
spaced from 0 to rN= 100 with Ro fixed at 25 and the rota­
tion angle was set at 20°. Once again, the potential was set 
equal to zero along the complex portion of the contour. Table 
III shows the behavior of the computed phase shifts at sev­
eral energies as a function of the grid spacing. Evidently, the 
method converges very rapidly. 

VII. DISCUSSION 

We have shown that, with exterior complex scaling, we 
can answer the question posed by the title of this paper in the 
affirmative. Exterior complex scaling was originally intro­
duced as a generalization of uniform complex scaling to deal 
with potentials that suffered interior nonanalyticities, but 
were analytic outside a sphere of finite radius. What we have 
shown is that by making this radius large enough so that the 
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potential can be truncated at this distance without physical 
consequence, then exterior scaling can be implemented in an 
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Appendix C 

Finite Difference Formulas 

Using finite difference approximations of derivatives has the advantage of produc­
ing very sparse matrices whose matrix elements are trivial to evaluate. Additionally, 
finite difference is one of the few numerical methods than can handle a non-analytic 
exterior complex scaling contour such as the one defined in Equation 3.12. Seven­
point finite difference approximations of the second derivative give significantly more 
accurate solutions than the standard three-point formulas, particularly when multiple 
grid spacings and/or exterior complex scaling are used. Formulas for three, five and 
seven-point finite difference approximations are listed in this appendix. Derivations 
of just the three-point formulas are presented to illustrate the general procedure for 
generating finite difference formulas and applying them to exterior complex scaling. 

C.l Uniform grid spacing 

Consider an evenly spaced grid with grid points Xn nh where h is the spacing 
between grid points. Let fn be the values of some function f(x) such that fn = f(xn). 
Now suppose we wish to approximate f~i d~2 f(x)lx=x

n
, the second derivative of 

f at the point .Tn . The values of f (x) at the grid points on either side of Xn can be 
expressed with a Taylor series in terms of f(x) and its derivatives evaluated at Xn-

f . = f ± hfi + ~h2fii ± ~h3jiii + ~h4jiV + ... n±l n . n 2 . n 6 n 24 n (C.1) 

When the Taylor series expansions of fn+l and fn-l are added together the first 
derivative terms cancel. 

f f 2 f' h2jii 1 h4 fiv n-l + n+l = . n + n + 12 . n + ... (C.2) 

Equation C.2 can be rearranged to give a formula for i~i that uses the function value 
at three grid points Un-I, in and in+d as well as higher derivatives evaluated at xn· 

f ii . 1 ( f f ) 1 h2jiv ,n = h2 -2, n + n+l - 12' n + .. , (C,3) 
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error term I 

fn-l - 2fn + fn+l ~h2 fiv 
12 n 

- 1
1
2fn-2 + ~fn-l - ~fn + ~fn+l - 112fn+2 ~h4ri 

90 n 

11f 5f If If If 
12 n-l - :3 n + 2 n+l +:3 n+2 - 12 n+3 ~h3r 

12 n 

1 f 3 f 3 f 49 f 3 f 3 f 1 f 
90 n-3 - 20 n-2 + 2. n-l - 18 n + 2 n+l - 20. n+2 + 90 n+3 ~h6lviii 

25200 . n 

Table C.1: Finite difference formulas for evenly spaced grids. 

Equation C.3 is a three-point formula for the second derivative with a leading error 
term that is second order in the grid spacing h. By following the same procedure, but 
using more grid points on either side of X n , we can derive more accurate formulas for 
the second derivative. A five-point formula with fourth order error and a seven-point 
formula with sixth order error are listed in Table C.l. An "asymmetric" five-point 
formula is also given in Table C.l. This formula is used for grid points adjacent to 
the boundary i.e., n = 1, (see Figure 3.3) and approximates the second derivative to 
third order in the grid spacing h. 

C.2 Two different grid spacings 

The formulas in Table C.1 require that the grid be evenly spaced. In practice, we 
may wish to use different spacings in different regions of the grid. Suppose that a grid 
consists of two different grid spacings 9 and h with a uniform spacing of 9 to the left 
of the point xp and a uniform spacing of h to the right of the point xp. For any grid 
point .Tn where n =I p we can use the formula in Equation C.3 with grid spacing 9 for 
n < p and grid spacing h for n > p. However, we need a new formula to approximate 
the second derivative at the interface point xp' 

Consider the Taylor series expansions for fp+l and f p-l about the point xp. 

fp + hf; + ~h2 f;i + ~h3 f;ii + '" 

fp - gf; + ~lf;i - ~lf;'ii + ... (C.4) 

We now add these two formulas together after multiplying each by the appropriate 
grid spacing such that the first derivative terms cancel. 

1 ., 1 - 2 2 ... 
hfp-l + gfp+l = (g + h)fp + 29h(g + h)f;Z - "69h(g - h )f;Z~ + ... (C.5) 

As before we rearrange to get a formula for f;i. Now the first nonzero higher deri vati ve 



II n=p-1 n=p n=p+1 

fn-2 
-1 h(2h-3g) -2h2 

3g(3g+h) 2g2(2g+h)(g+h) g(g+h)(g+2h)(g+3h) 

fn-1 
3g+h 4h(3g-h) h+3g 

g2(2g+h) g2(g+2h)(g+h) 3gh2 

fn 
-(3g+2h) 2h2+2(i-9qh -(3h+2g) 
g2(g+h) 2g2h2 h2(g+h) 

fn+1 
g+3h 4g(3h-g) 3h+9 
3g2h h2(h+2g)(g+h) h2(2h+g) 

fn+2 
-2[/ g(2g-3h) -1 

h(g+h)(h+2g)(h+3g) 2h2(2h+g)(g+h) 3h(3h+g) 

error 1 2h fV 
60 g . n-1 {ogh(g - h)f~ 6

1
0 h2 (g - h)f~+l 

Table C.2: Five-point finite difference formulas for the "interface" between two dif­
ferent grid spacings. Special formulas are needed for the second derivative at the 
interface point xp as well as the point on either side. The three columns of the table 
give the coefficients needed to approximate f~i for n = p - 1, n = p and n = p + 1. 

term is f~ii rather than f~v so the leading error term is .first order in (g - h). 

.. 2 1 ... 
f;! = gh(g + h) (hfp-1 - (g + h)fp + gfp+l) + 6(g - h)f;!! + ... (C.6) 

It is generally true that finite difference formulas that straddle two regions of 
different grid spacings will be less accurate by one order than their uniform grid 
counterparts. For the three-point approximations we need a special formula only for 
the derivative at xp. The five and seven-point approximations sample from a wider 
area so they require special formulas for one and two points, respectively, on either 
side of the interface point xp' Special formulas for five-point approximations near an 
interface are listed in Table C.2 and the seven-point formulas are listed in Table C.3. 

C.3 Application to exterior complex scaling 

Applying the finite difference formulas to exterior complex scaling is straight­
forward. The same formulas are used but grid spacings in the region where the 
coordinates are complex are multiplied by eiTJ where 'TJ is the complex scaling angle. 
In the cases where the finite difference formulas straddle the complex scaling point Ro 
some of the grid "spacings" will be real and some will be complex. This means that 
even for an evenly spaced grid the specialized finite difference formulas in Equation 
C.6 or in Tables C.2 and C.3 are necessary for implementing exterior complex scaling. 
Finite difference is well-suited to handle the non-analyticity of the exterior complex 
scaling contour provided that Ro is one of the grid points. The transition from a real 
to a complex grid at Ro does mean that the error in the finite difference formulas 
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Figure C.1: On the left is the analytic function given in Equation C.7 evaluated on a 
grid that is complex beyond Ro = 20ao with a scaling angle of 30°. On the right is the 
numerical error in wave functions calculated by solving Equation C.S using 3-point, 
5-point and 7-point finite difference formulas. In this example the grid spacing was 
O.05ao between r = 0 and r = 5ao, 0.2ao between r = 5ao and r = 25ao, and O.5ao 
beyond r = 25ao. 

will be larger than for a real, uniformly spaced grid. For this reason, the higher-order 
seven-point finite difference formulas should be used. 

C.4 Analytic example 

We can test finite difference applied to exterior complex scaling by solving an 
inhomogeneous differential equation that is similar to a one-dimensional scattered 
wave equation but has a known analytic solution. 

(C.7) 

The function defined in Equation C.7 is an outgoing radial wave similar to a scattered 
wave for one-dimensional potential scattering such as the examples in Appendix A. It 
is a solution to an inhomogeneous differential equation of the form (iI - E) 'ljJ (r) = 

X( r) with an attractive exponential potential. 

(C.S) 

The exact solution to Equation C.S, evaluated on a contour that is complex beyond 
Ro = 20ao, is shown in the left panel of Figure C.l. In this example k = a = 1aol 

and the complex scaling angle is 30°. The grid extends to 40ao which is far enough 
that 'ljJ is effectively zero at the end of the grid. 

Most of the grid has a grid spacing of 0.2ao which is sufficient to describe an 
oscillatory function with this wavelength. A much smaller grid spacing of 0.05ao is 
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used for small r. The smaller grid spacing is unnecessary for this example but it is 
needed when Coulomb potentials are involved. For large r at some distance beyond 
the scaling point Ro the wave function is sufficiently damped that representing it 
accurately is unnecessary so we can use a larger grid spacing of 0.5ao at the large r 
end of the grid. The numerical errors in the calculated solutions for three, five and 
seven-point finite difference formulas are shown on the right in Figure C.l. The effect 
of using higher-order finite difference formulas is clearly evident. In particular, using 
a higher-order formula makes the calculated solution more accurate on the real part 
of the grid even if there is little or no improvement in the solution on the complex 
part of the grid. 



Appendix D 

LU Factorization of Sparse 
Matrices Using SuperLU 

The finite difference matrix representations of the Hamiltonian consist mostly of 
matrix elements that are zero. We can greatly improve the computational efficiency 
of the methods for solving the scattered wave equation by taking advantage of the 
sparsity of the matrices. Packed array storage schemes for sparse matrices minimize 
the amount of memory required to store a sparse matrix. Specialized routines for 
matrix operations involving sparse matrices minimize the number of required floating 
point operations. An essential component to the completion of the calculations for 
this thesis was a software package called SuperLU which solves a matrix equation for 
a sparse matrix very efficiently by LU factorization. 

D.I Two-dimensional finite difference matrices 

Only a small fraction of the matrix elements in the finite different matrix represen­
tation of the Hamiltonian are nonzero. The sparsity structure for the two-dimensional 
Temkin-Poet matrices are shown in Figure D.l. Each row or column corresponds to 
a particular point on the grid. The same number of grid points is used for both radial 
coordinates so the dimension of the matrix is N = n; with the wave function rep­
resented by an array of N numbers corresponding to the value of the wave function 
at each grid point. Potentials are represented by matrices whose diagonal matrix 
elements are the values of the potential at each grid point and whose off-diagonal 
matrix elements are zero. The finite difference formulas link each grid point to one 
or more neighboring grid points on all sides. 

All of the nonzero off-diagonal elements of the Hamiltonian matrix are due to 
the finite difference formulas. The number of nonzero elements for any row of the 
matrix is determined by the number of points used in the two-dimensional finite 
difference stencil (see Figure 3.3) centered at the grid point corresponding to that 
row. The low-order finite difference matrix, based on three-point formulas, has at 
most five nonzero matrix elements on each row and the high-order matrix, based on 
seven-point formulas, is limited to 13 nonzeros per row. Rows of the matrix that 
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low-order finite difference matrix 

0l\.~ ........ . 

48 

72 

96 

120 
•.•.•.•... ~~~ ........ . 

....... 
144~----------~----~--~~-3 

o 24 48 72 96 120 
672 nonzero matrix elements 

144 

high-order finit~ difference matrix 
Om-~~~~--~--~--~---' 

. •...•............ 

72 

96 

120 

144~------~----------~~~~ 
o ~ ~ n ~ 1~ 1M 

1560 nonzero matrix elements 

Figure D.l: Sparsity structure of the finite difference matrix representations of the 
two-dimensional Hamiltonian in the Temkin-Poet model. On the left is the low-order 
matrix which uses 3-point formulas for the second derivates. On the right is the 
high-order matrix which uses 7-point formulas. These examples are very small (144 
total gridpoints extending only to 2ao) so that the basic structure can be seen. 

correspond to points near an edge of the grid will have fewer nonzero elemnts. The 
total number of nonzero matrix elements is given in Equation D.l. 

b f { 
ng (ng + 2ng (2ng - 2)) 3-point formulas 

num er 0 nonzeros = . 
ng(ng + 6ng(2ng - 4)) 7-pomt formulas 

(D.l) 

Both matrices pictured in Figure D.l have a very particular structure. The two­
dimensional grid points are ordered such that the grid points for a fixed r2 are con­
tiguous. Each of the ng groups of ng fixed r2 points is ordered from smallest r2 to 
largest r2. Within each group the points are ordered from smallest rl to largest rl. 
Finite difference formulas in rl connect neighboring points in rl. These fill out the 
seven inner-most diagonals for the high-order matrix and the three inner-most diag­
onals for the low-order matrix. Neighboring points in r2 are ng apart in the matrix 
ordering so the r2 finite difference formulas form nonzero diagonals at ng intervals. 

The low-order matrix has non zeros on the three inner diagonals and on the n~h 
super and sub-diagonals with an overall bandwidth of 2ng -1. The high-order matrix 
has nonzeros on the seven inner diagonals and at three super and sub-diagonals at 
strides of ng with an overall bandwidth of tng - 1. The notch visible in the 3n~h 
super-diagonal is due to using five-point finite difference formulas for grid points that 
are two points from the edge. There are no "missing" super-diagonals for the grid 
points right next to the edge because a "lop-sided" five-point formula was used. This 
same feature exists on the inner diagonals which also have a segmented appearance 
marking the separations between groups of fixed r2 points. 



D.2 Storing sparse matrices 

We substantially reduce the amount of computer memory used to store a sparse 
matrix by storing only the nonzero matrix elements. A sparse matrix is stored in 
an array of length nnz where nnz is the number of nonzero matrix elements. The 
number of nonzero elements scales linearly with the dimension of the matrix N (less 
than 5N for the low-order and 13N for the high-order matrices) compared with N 2 

total matrix elements so the savings in memory increases rapidly with matrix size. 
The cost of this savings is that row and column index information for each nonzero 

matrix element must also be stored. The simplest way to do this would be to also 
store two arrays of length nnz for the row and column indices of each nonzero ma­
trix element. We can achieve a further savings in memory by using a packed storage 
scheme. Row indices are still stored in a length nnz array, but column index in­
formation is stored implicitly by requiring that all nonzero matrix elements from a 
particular column be stored together. An array oflength N + 1 denotes the beginning 
and end of each column's group of matrix elements. A simplistic algorithm for stor­
ing a matrix in this way is provided on page 111. That algorithm is for illustrative 
purposes only and should never be used in practice because it is extremely inefficient. 

The sparse matrix storage scheme also provides for a significant savings in com­
puter time by reducing the number of floating point calculations required to perform 
matrix operations. For instance, a matrix-vector multiply involving a dense matrix 
of order N requires N 2 individual multiplications. If the matrix is sparse then we 
can eliminate all of the mulitplications for matrix elements that are zero so that only 
nnz individual multiplications are required. In cases like the finite difference matri­
ces where the number of nonzero elements per row is fixed the cost of matrix-vector 
multiplies is linear rather than quadratic in N. This fact is very important when 
iterative methods are used for solving large matrix equations. 

D.3 LU factorization of sparse matrices 

Gaussian elimination is the canonical method for solving a matrix equation of the 
form Ax = b. The majority of the operations in Gaussian elimination depend only 
on the matrix A and not on the righthand side b. These operations turn out to be 
identical to factoring the matrix into the product of an upper-triangular matrix V 
and a lower-triangular matrix L so that A = LV. LU factorization algorithms solve 
linear matrix equations by first factoring the matrix into its L and V factors and 
then solving two linear equations with the triangular matrices Land V. 

The factorization step accounts for the vast majority of the required calculations. 
Assuming no sparsity in the matrix A, the number of operations in the factorization 
step scales like N 3 while those for the triangular solves scale like N 2

. The advantage 
of LU factorization comes in to play when linear equations with the same matrix A 
must be solved many times. The LU factors can be reused each time so that the cost 
of solving linear equations with the same matrix multiple times is relatively low. 

Writing LU factorization algorithms for sparse matrices is very difficult because 
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sum of LU factors for low-order matrix 

144~------~----~--~--~~ 
o ~ ~ n ~ 1W 1M 

3334 nonzero matrix elements 
o 

sum of LU factors for high-order matrix 

24 48 72 96 120 144 
8699 nonzero matrix elements 

Figure D.2: Sparsity structure of the LU factors of the matrices in Figure D.l. The 
factors U and L are upper and lower-triangular matrices, respectively. The sparsity 
of the sum L + U is shown here. 

the Land U matrices will not have the same sparsity structure as A. In general, the 
combination of Land U will have many more nonzero matrix elements than A. Figure 
D.2 shows the sparsity structure of L + U for both matrices pictured in Figure D.l. 
Basically, factorization has filled in all of the zeros between the outermost nonzero 
diagonals. This is typical of the "fill" that occurs in LU factorization. Storing the 
LU factors requires significantly more computer memory for the high-order than for 
the low-order finite difference matrix. 

Currently, the only available software package that can LU factor a sparse matrix 
with complex matrix elements is SuperLU [19] written by Xiaoye "Sherri" Li. This 
package takes a matrix stored in the packed array storage scheme described previously 
and decomposes it into its Land U factors that are also stored as sparse matrices. 
It then performs triangular solves with these factors to solve the original matrix 
equation. SuperLU is parallelized so that it can simultaneously utilizes several CPUs 
on a massively parallel computer. Also, SuperLU includes a re-ordering step which 
permutes the matrix A in such way as to reduce the amount of storage required for 
the LU factors. Some time and memory usage information with the two types of 
finite difference matrices are listed in Figure E.l. 



Simplistic Algorithm for Storing a Sparse Matrix 

N = dimension of matrix 

dimension of storage arrays: 

(integer nnz is the number of nonzero matrix elements) 

integer rowind (1 :nnz) 

integer colptr(O:N) 

complex values(l:nnz) 

nnz = 0 

colptr(O) = { ~ one-based indexing 
zero-based indexing 

for j = 1 to N 

end 

colptr(j) = 0 

for i = 1 to N 

compute A( i, j) 

end 

if abs(A(i,j)) > 0 then 

nnz = nnz + 1 

values(nnz) = A(i,j) 

. d( ) {z one-based indexing 
rOWln nnz = . 1 b d· d . z - zero- ase m exmg 

colptr(j) = colptr(j) + 1 

endif 

colptr(j) = colptr(j) + colptr(j - 1) 

Figure D.3: SuperLU uses a packed storage scheme that stores only the nonzero 
elements of a matrix. This simplistic algorithm will create the appropriate packed 
storage structure for any matrix. It is extremely inefficient because it loops over every 
matrix element (including those that are zero) and is provided for illustrative purposes 
only. In practice, the loop structure should be designed so that the algorithm tests 
only those matrix elements which are expected to be nonzero. 
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Appendix E 

Conjugate Gradient Squared 
Iterative Algorithm 

The conjugate gradient squared (CGS) iterative algorithm was used to solve the 
linear equations arising from the scattered wave equation. Iterative algorithms at­
tempt to arrive at a solution to a linear system Ax = b using a series of matrix-vector 
multiplies rather than by using a "direct" method such as Gaussian elimination. If an 
iterative algorithm converges for some matrix A then it may require significantly less 
computer time and memory than do direct methods. However, iterative algorithms 
are guarunteed to converge to the solution only for certain special cases. For "ill­
conditioned" matrices, such as those produced by exterior complex scaling, another 
matrix M is needed as a "pre-conditioner" to make iterative algorithms converge. 

E.l Convergence of iterative algorithms 

The measure of an iterative algorithm's effectiveness is the rate at which it con­
verges (assuming that it does converge) to the correct solution. Let x(i) be the ap­
proximate solution vector computed in the ith iteration. To measure how close x(i) is 
to the exact solution we substitute it for x in the system of equations b - Ax = O. 
The norm of the residual rei) b - Ax(i) will be zero if x(i) is the exact solution. 

error = Ilr(i) /I = I/b - Ax(i) /I (E.l) 

The rate of convergence is then the rate at which I/r(i) /I approaches zero. Iterative 
algorithms are preferable to Gaussian elimination if they converge and the rate of 
convergence is reasonably fast. 

For a system of N linear equations the number of numerical operations required 
for a matrix-vector multiply scales as N 2 while Gaussian elimination scales as N 3

. 

Thus, if the number of matrix-vector multiplies required for the iterative solution does 
not increase significantly with increasing N then it is guarunteed that for sufficiently 
large N an iterative· algorithm will take less time than Gaussian elimination. The 
time savings are even more significant if the matrix is sparse i. e., most of the matrix 



elements are zero. Calculating the matrix-vector product Ax for a sparse matrix A 
requires many fewer numerical operations. In the case of a finite difference matrix, the 
number of nonzero matrix elements per row is fixed and the matrix-vector multiply 
scales linearly with N. 

Krylov subspace methods are a class of iterative algorithms designed to rapidly 
converge to a solution. The most efficient and best understood of these algorithms is 
the conjugate gradient (CG) method (see, for example, reference [16] section 6.6.3). 
The CG method is guarunteed to converge only for symmetric, positive definite ma­
trices. The finite difference matrix representation of (E - if) with exterior complex 
scaling is complex non-symmetric and non-Hermitian. There are several Krylov sub­
space methods designed for this more general class of matrices. Whether or not 
these methods work for a particular matrix and how fast they converge depends on 
the eigenvalue spectrum of the matrix and cannot, in general, be predicted. If the 
spectrum covers a large region in the complex plane then an iterative algorithm will 
converge slowly or possibly not at all. Such a matrix is said to be "ill-conditioned". 

E.2 Pre-conditioners 

If a matrix A is ill-conditioned then an iterative algorithm might be made to 
converge or to converge more rapidly by using a "pre-conditioner" matrix M chosen 
so that the matrix product M-1 A is better conditioned than the matrix A. The 
solution to Ax = b is then obtained by instead solving the pre-conditioned equation 
M-1 Ax = M-1b. Within the algorithms the pre-conditioner is actually applied 
by solving linear equations with the matrix M rather than A. In order for a pre­
conditioned iterative algorithm to still be preferable to Gaussian elimination it is 
necessary that solving linear systems with the matrix M require significantly fewer 
computations than solving linear systems with A. We can see how this works by 
looking at a very simple (not a Krylov subspace method) iterative algorithm. 

In this simple example we start with an initial guess of zero i. e., xeD) = o. At each 
iteration we update the approximate solution vector by adding the residual vector. 

X(i+l) = xCi) + rei) = b + (1 - A) xCi) (E.2) 

In this case we can write down an exact algebraic expression for the ith solution vector 
and the ith residual vector. 

(E.3) 

Clearly this algorithm will converge if and only if the eigenvalues of A lie inside a unit 
circle centered at 1. To remove this restriction we instead solve the pre-conditioned 
equation M- 1 Ax = M-1b. By appropriate substitution into Equation E.3 we directly 
write down an algebraic solution for the ith residual vector in this case. 

(EA) 

Now the requirement for convergence is that the eigenvalues of the matrix product 
M-1 A lie within a unit circle centered at 1. In other words, we require that M ~ A. 
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The degree to which M approximates A determines the rate of convergence of the 
simple algorithm. If M were exactly equal to A then the algorithm would converge 
in just one iteration, but it would reduce to a direct solution of the original matrix 
equation so no savings in time or memory would have been achieved. The goal is to 
find a pre-conditioner M that produces a reasonable rate of convergence but for which 
solving linear systems with M is substantially easier than solving linear systems with 
A. For Krylov subspace methods the effect of the pre-conditioner is more complicated, 
but the basic ideas are the same. In general, choosing M to approximate A is one 
way, but not the only way, to form a pre-conditioner. 

E.3 Conjugate gradient squared for ECS 

The eigenvalue spectrum of an exterior complex scaled Hamiltonian populates 
much of the lower half of the complex plane. Thus, the matrix representation of 
(E - iI) is very ill-conditioned and finding an iterative method that will solve the 
scattered wave equation involves testing various algorithms and pre-conditioners to 
see which converge. Various iterative algorithms were tested with one-dimensional 
potential scattering problems such as those in Appendix A. Exterior complex scaled 
finite difference matrices for a one-dimensional problem are relatively simple and 
small but they are ill-conditioned in the same manner as the Temkin-Poet matrices 
of Chapter 3 and the electron-Hydrogen matrices <;:>f Chapter 5. 

Every known iterative algorithm failed to converge for these test problems without 
pre-conditioning. Furthermore, all pre-conditioners created by standard methods in 
numerical linear algebra failed to cause any of the iterative algorithms to converge. 
The only successful pre-conditioner was the low-order finite difference matrix repre­
sentation of the same operator. Using the low-order matrix as a pre-conditioner for 
solving the high-order matrix equation caused a few of the Krylov subspace methods 
(CGS, Bi-CGStab, and GMRES) to converge. 

All had about the same stability and convergence rate when using this pre­
conditioner. In fact, this pre-conditioner caused even the simple iterative algorithm 
in the previous section to converge, although much more slowly than the Krylov sub­
space methods. The CGS algorithm, given in Figure E.2 on page 116, was chosen 
because it required the least amount of computer memory to implement. 

Solving the scattered wave equation (Equation 3.5) for the Temkin-Poet model 
problem is a more concrete and pertinent example. Let the matrix A represent 
the two-dimensional operator (E - iI) using "high-order", 7-point finite difference 
formulas for the second derivatives and let the matrix M be the "low-order", 3-point 
finite difference representation of the same operator. The driving vector b is the 
function (iI - E) 1f;Zi evaluated on the grid. The vector x will be the scattered wave 

1f;:t:P on the grid, we'll choose x(O) = 0 as the starting guess for the iterative algorithm. 
As shown in Figure E.l, the rate of convergence for the algorithm in Figure E.2 

applied to the Temkin-Poet mode is fairly rapid and well-behaved. Each CGS itera­
tion requires two matrix-vector multiplies with the matrix A and two applications of 
the pre-conditioner M. The matrix-vector multiplies were performed without explic-
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Figure E.1: Convergence of the CGS algorithm for the Temkin-Poet model for three 
grids which are real out to different values of Ro is shown on the left. The time 
required for the Ro = 70ao calculation on a 332Mhz Power2 CPU is shown on the 
top right. In this case, the grid extends to 95ao and the total number of grid points 
(and matrix dimension) is 114,244. The pre-conditioner is applied by first factoring 
the matrix M and then solving with the LU-factors twice in each CGS iteration. So, 
the total number of solves is twice the number of iterations. The time required to 
factor the matrix A and solve Ax = b directly is shown on the bottom right. 

itly storing A. This provides a significant savings in memory compared to a direct 
solution which requires enough memory to both store the matrix and perform Gaus­
sian elimination. Application of the pre-conditioner means solving linear equations 
with the matrix M. Here we have no choice but to solve the system directly. This is 
done via an LU-factorization (see Appendix D) of M. By saving the LU factors of 
M repeated applications of the pre-conditioner are fairly inexpensive. 

For comparison, the time required for a direct solution via an LU-factorization of 
A is also shown. In this example the iterative solution took 31 % of the time that the 
direct solution did. This is because the factorization of M takes significantly less time 
than does the factorization of A. A single solve using the LU factors takes much less 
time for M than for A. However, the total time spent in the CGS algorithm after 
the LU-factorization of M is larger than the solve time using the LU factors of A. 
This means that if many solutions to an equation of the form Ax = b are required 
then the iterative algorithm is actually more time consuming than direct solution. 
However, there is still a significant savings in memory using the iterative algorithm. 
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Preconditioned Conjugate Gradient Squared Method 

Start with initial guess x(O) 

Compute reO) = b - Ax(O) 

for i = 1 to maxjterations 

Pi-l = bT r(i-l) 

. if Pi-l = 0 method fails 

if i = 1 then 

end 

U(l) = reO) 

p(1) = reO) 

else 

(3i-1 = Pi-I! Pi-2 
u(i) = r(i-l) + (3i_Iq(i-l) 

p(i) = u(i) + (3i-1 (q(i-l) + (3i_IP(i-I)) 

end if 
solve Mp = p(i) 

v= Ap 
(Xi = Pi_l/bT V 
q(i) = U(i) - (XiV 

solve Mu = u(i) + q(i) 

xci) = x(i-l) + (XiU 
rei) = b - Ax(i) 

error = Ilr(i) II 

if error < tolerance exit 

Figure E.2: The preconditioned conjugate gradient squared algorithm based on the 
one given in Templates for the Solution of Linear Sytems [4], page 26. The arbitrary 
vector r in [4] is defined here to be the driving term b. Also the full residual r(i) is 
computed in each iteration rather than updating the previous residual. 



Appendix F 

Expansions in Spherical Harmonics 

The calculations described in this dissertation all involved partial wave expansions 
of wave functions in terms of spherical harmonics. Some properties of both the ordi­
nary and coupled spherical harmonics that are important to the derivations presented 
in the preceding chapters are given in this appendix. 

F.1 Spherical Harmonics 

One-electron functions are expanded in terms of ordinary spherical harmonics Yl,m 
defined in Equations F.1 and F.2 where the Pzm are associated Legendre functions. 

(21+1)(I-m)! pm(cos o)eim</J 
47r(I+m)! I m;:::=: 0 (F.1) 

(F.2) 

The Yl,m (0, <p) are orthonormal functions of the usual spherical polar angles 0 and 
<P and are eigenfunctions of the total angular momentum quantum number I and its 
projection m along the z axis. 

2 ( I (I + 1) 1 8
2 

) 
\7 (f(r)YI,m(O, <p)) = r2 f(r) - -:;: 8r2 (rf(r)) YI,m(O, <p) (F.3) 

Two-electron functions are expanded in terms of coupled spherical harmonics 
YFAf (Ol, <PI, O2, <P2) that are functions of two spherical polar angles for each electron. 

1, 2 

YI~~(OI' <PI, O2, <P2) = L (hI2m1m2ILM)Yhm1 (Ol, <PI)YI2m2 (02, <P2) (F.4) 
m1,m2 

The Yl~~ can be written as a finite sum of products ofYI,m, as shown in Equation F.4, 
where the (IJl2m1m2ILM) are the well-known Clebsch-Gordan coefficients. Procedures 
for calculating Clebsch-Gordan coefficients can be found in standard references such 
as Messiah [21] and Zare [39]. 

From Equation F.4, it is obvious that the Yl~~ are eigenfunctions of the individual 
angular momenta II and 12 for each electron. Clebsch-Gordan coefficients are real 
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numbers chosen so the ylLA11[ are also orthonormal eigenfunctions of the total angular 
1, 2 

momentum L of the two-electron system and its projection M along the z axis. 

(F.5) 

The orthonormality of the Yl~~ is expressed in Equation F.5 using Dirac braket no­
tation with the scalar product denoting integration over all four angular coordinates. 

Clebsch-Gordan coefficients are zero unless ml + m2 = M. So, the double sum 
over ml and m2 in Equation FA could be rewritten as a single sum over either ml 
.or m2· Also, only terms for which Imll ::; hand Im21 ::; l2 are nonzero. These 
restrictions can be used to specify the summation limits. 

In this dissertation only M = 0 partial waves were necessary. For these coupled 
spherical harmonics the expansion in Equation F.4 can be simplified. 

YI~~2 (Ol, (h, O2, (h) = L (ld2m-mILM)Yhm(OI, (h)YI2 - m (02, cP2) (F.6) 
m 

The limits in the summation over m in Equation F.6 are ±min(ll' l2)' We can see 
the cylindrical symmetry in an M = 0 system (such as an electron scattering from a 
spherically symmetric target) by using the explicit forms for the Yl,m from Equations 
F.l and F.2 in Equation F.6. Dependence on the azimuthal angles cPI and cP2 in the 
mth term simplifies to eim/::;.<jJ where 6cP - cPI - cP2. The YI~~2 are not functions of the 
cP1 and cP2 independently. Instead, they are functions of the relative angle 6cP. 

Clebsch-Gordan coefficients obey the following symmetry relation with respect to 
interchange of the single-particle quantum numbers. 

(F.7) 

An important symmetry relation for the Yl~~ follows immediately from Equation F.7 
and the expansion in Equation FA. 

(F.8) 

When the sum l1 + l2 + L is even the yl
LM

I are said to have 'even parity and when 
1,2 

it is odd they are said to have odd parity. This property is important because only 
partial waves with the same parity will be coupled by the two-electron potential. 

F.2 Two-Electron Potential 

Of particular relevence to the topic of this dissertation are matrix elements of the 
I . I e2 b yLO two-e ectron potentla ifl-r21 etween two hh' 

These form the two-dimensional potentials in the coupled equations (Equation 5.6) 
and are functions of the radial coordinates TI and T2. Formal expressions were worked 
out by Percival and Seaton [24J and are also given in Application 4 of Zare [39J. 



Deriving formulas for these matrix elements can be done using an expansion of 

1
_ e2 _ 1 that makes use of the spherical harmonic addition theorem. 
1'1-1'2 

(F.IO) 

), 

The radial dependence is then contained in the non-analytic factors :'tl where T> is 
1'> 

the larger and r < is the smaller of r} and r2. From Equation F.IO it is clear that the 
matrix elements have the following form, previously given in Equation 5.5. 

(F.11) 

The values of A over which the Gtl~l; l; are nonzero range from max (I h - l~ I, Il2 - l~ I) 
to min ((h + lD, (l2 + l~)). Specifically, the GlLl'Allll are equal to the following integral. 

1 2 1 2 

A 

Gl~l~l;l; = L (-IF J J Yl:~Jfl' r2)*Y A,_q(fdYA,q(f2)Ylt~; (i;1,T2)drl dr2 (F.12) 
q=-A 47r 47r 

This integral can be expressed in terms of Clebesch-Gordan coefficients and the 
so-called Racah coefficients [24]. These formulas will not be given here, but one 
consequence of the Clebesch-Gordan factors involved is that matrix elements between 
Yl~Yz of different parity (see Equation F.8) are zero. For this reason, there is no 
coupling between partial waves of different parity. One special case where we can 
easily evaluate Equation F.11 is when all quantum numbers are zero. This gives the 
two-electron potential used in the Temkin-Poet model. 

(F.13) 

F.3 Partial wave expansions 

We use the various spherical harmonics for partial wave expansions of the wave 
functions. The multipole expansion of a plane wave is expanded in terms of the 
ordinary spherical harmonics. 

(F.14) 

The .Jl are regular Riccati-Bessel functions. By choosing the momentum vector to be 
along the z axis, only terms for which m = 0 are included in the expansion. 

Next we will consider the type of partial wave expansion needed for the "initial 
state" wt(r}, r2) defined in Equation 2.5. This wave function is made of two terms 
with the form e'ikiZl f(r2) where f has no angular dependence. To expand a function 
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like this, it is necessary to evaluate Clebsch-Gordan coefficients for the cases where 
either h or l2 is equal to L and the other is zero. 

(LOMOILM) = (OLOMILM) = 1 (F.15) 

An immediate consequence of Equation F .15 is that the Yl~~ with either h or l2 equal 
to L have a very simple form. 

(F.16) 

Since Yo,o(O, ¢) = vk we can write f(r) = v'47f f(r)Yo,o(O, ¢). Using Equations 
F.16 and F.14 it is trivial to write down the partial wave expansion of eikiZl f(r2) in 
terms of coupled spherical harmonics. 

(F.17) 

Only M = 0 terms are included in Equation F.17 because only m = 0 terms exist 
in the multipole expansion of the plane wave and in the function f(r). This basic 
derivation leads directly from the definition of 'lIt in Equation 2.5 to its partial wave 
expansion in Equation 5.2. 

One feature of Equation F.17 is that it contains only terms with even parity 
(ll + l2 + L = L + 0 + L = 2L). Since the two-electron potential only couples partial 
waves with the same values of Land M and the same parity the scattered wave 'l1~ will 
contain only terms with the parity and values of Land M that exist in the expansion 
of 'l1~i' For this reason, the partial wave expansion of 'l1t in Equation 5.3 contains 
only terms with M = 0 and for which h + l2 + L is an even integer. Consequently, 
the symmetry relation given in Equation 5.S for the partial wave radial functions in 
the expansion of 'l1~ follows directly from Equation F .S. 
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