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1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

2Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, 
California 90095, USA

3Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA

Abstract

The dialkyl-ortho-biaryl class of phosphines, commonly known as Buchwald-type ligands, are 

among the most important phosphines in Pd-catalyzed cross-coupling catalysis. These ligands 

have also been successfully applied to several synthetically valuable Ni-catalyzed cross-coupling 

methodologies, and as demonstrated in this work, are top performing ligands in Ni-catalyzed 

Suzuki Miyaura Coupling (SMC) and C–N coupling reactions, even outperforming commonly 

employed bisphosphines like dppf in many circumstances. However, little is known about 

their structure-reactivity relationships (SRRs) with Ni, and limited examples of well-defined, 

catalytically relevant Ni complexes with Buchwald-type ligands exist. In this work, we report the 

analysis of Buchwald-type phosphine SRRs in four representative Ni-catalyzed cross-coupling 

reactions. Our study was guided by data-driven classification analysis, which together with 

mechanistic organometallic studies of structurally characterized Ni(0), Ni(I), and Ni(II) complexes 

allowed us to rationalize reactivity patterns in catalysis. Overall, we expect that this study will 

serve as a platform for further exploration of this ligand class in organonickel chemistry, as well as 

in the development of new Ni-catalyzed cross-coupling methodologies.
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Introduction

Transition metal-catalyzed cross-couplings are among the most practical and widely used 

bond-forming reactions in the construction of small molecules.1,2 The modern-day success 

of these methodologies is due in large part to ancillary ligand and precatalyst development, 

aided by thorough mechanistic investigations.1,3 For Pd-catalyzed cross-couplings, the 

dialkyl-ortho-biaryl phosphines developed by Buchwald, Beller, and others has emerged 

as the ligand class of choice for many C–C and C–N bond-forming transformations.4–8 

Extensive mechanistic studies have been carried out to elucidate the structure-reactivity 

relationships (SRRs) of these phosphines with Pd (Figure 1A).6,9–13 In brief, due to their 

large size, Buchwald-type ligands promote the formation of highly reactive monoligated 

(L1)14 Pd by positioning the “B ring” within the metal’s first coordination sphere, which 

prevents binding of multiple ancillary ligands. Additionally, they also can stabilize the 

unsaturated Pd center via interactions with the phosphine’s π-system (a pseudobidentate 

binding mode).11,12,15,16 Most members of this ligand class are also characterized by a 

high degree of conformational flexibility, resulting in a wide range of attainable steric 

environments around the metal center (Figure 1B),12,13 which can be limited by introducing 

groups on the A ring or increasing the size of the alkyl groups bound to phosphorus.13,17 

Overall, the design elements of these ligands promote challenging elementary steps while 

minimizing off-cycle speciation, and allow for deactivated electrophiles such as aryl 

chlorides to be employed in catalysis with high levels of efficiency.6,11

Over the past decade, Buchwald-type phosphines have also found successful application 

in a number of synthetically valuable Ni-catalyzed cross-coupling methodologies (Figure 

1C).18–26 One of the first reports came from our lab in 2011 with the development of a 

Ni-catalyzed cross-coupling of styrenyl epoxides and boronic acids, where BrettPhos was 

identified to be the most effective ligand in the transformation.19 The Watson and Crudden 

labs have also reported the use of Buchwald-type phosphines in Ni-catalyzed-cross coupling 

reactions of naphthylic pseudohalides.20,21 More recently, researchers at Bristol Myers 

Squibb identified CyJohnPhos as the most effective ligand for the Ni-catalyzed borylation 

of aryl halides, with other examples of the ligand class amongst the top performers.22 

Additionally, in a recent collaborative project carried out by our lab, the Sigman lab, and 

Merck & Co., Inc., we identified certain Buchwald-type phosphines as top performing 

among 90 diverse monophosphines and commonly used bisphosphines for several Suzuki–
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Miyaura Coupling reactions (SMC) of aryl chlorides, and even outcompete commonly used 

bisphosphines.26

While these examples illustrate that Buchwald ligands are capable of imparting desirable 

reactivity in Ni-catalyzed methodologies, little is known about their SRRs in Ni catalysis, 

or how their unique structure and binding modes interface with Ni more generally. Two 

computational studies have included Buchwald phosphines in their analyses, but the focus 

was not on the ligand class specifically.27,28 Nicasio and coworkers have structurally 

characterized dialkylterphenyl phosphines on Ni; these ligands share certain attributes with 

Buchwald-type ligands.29–31 However, to the best of our knowledge, only one example 

exists in the literature of a structurally-characterized Ni complex bound by a Buchwald 

phosphine: an off-cycle, cyclometalated adduct of BrettPhos formed during the cross-

coupling of styrenyl epoxides.19 Given the scarcity of relevant studies, insights into the 

SRRs and mechanism of Buchwald and CataCXium P phosphines in Ni catalysis, along 

with access to well-defined Ni complexes bearing these ligands, would be of great value 

both in the discovery of new methodologies and in the further understanding/optimization of 

existing ones.

Herein, we report findings into the mechanism and SRRs of Buchwald-type phosphines 

in Ni cross-coupling catalysis, guided by data science-driven classification analysis, 

organometallic studies, and density functional theory (DFT). Five Ni-catalyzed cross-

coupling datasets where Buchwald-type phosphines are active to varying degrees were 

used as case studies to explore catalyst structure and mechanism. Each of these cases 

provided insights into different elementary organometallic processes, and the identification 

of percent buried volume (%Vbur) reactivity threshold in several of these datasets allowed 

for interrogation of the specific ligand structural components that led to active (and inactive) 

catalysts.26,32–34 Structural characterization and reactivity studies of new well-defined Ni 

complexes bound by Buchwald and CataCXium P phosphines were carried out for each of 

the reactions, allowing us to rationalize the observed reactivity patterns (Figure 1D). The 

findings of this study should serve as a platform for the further exploration of organonickel 

chemistry with Buchwald-type ligands, and the prinicples relating ligand structure to 

speciation and reactivity will further enable the rational use of this ligand class in Ni 

catalysis.

Results and Discussion

%Vbur reactivity thresholds and catalytic case studies.

At the outset of this study, we sought to use molecular features to describe the structure 

of Buchwald-type ligands in relation to their reactivity in Ni-catalyzed cross-couplings. To 

this end, Gensch et al. recently developed a comprehensive organophosphorus descriptor 

database, kraken, which contains conformationally informative electronic, steric, and whole-

molecule DFT descriptors for 1558 unique monophosphines, including Buchwald-type 

ligands.35 The descriptors generated for each ligand include the minimum, maximum, and 

Boltzmann-weighted average value for each feature across the phosphine’s energetically 

accessible conformational ensemble, allowing for accurate representations of ligand 

structure relevant in coordination chemistry and organometallic catalysis (see SI for more 
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information). In our 2021 collaborative study with the Sigman lab and Merck & Co., Inc., 

we found that one of these conformationally representative descriptors, minimum percent 

buried volume (%Vbur (min)), enabled the discovery of reactivity threshold in Ni- and 

Pd-catalyzed cross-coupling datasets. These univariate reactivity cliffs were defined by a 

threshold value, wherein, for Ni, all monodentate phosphine ligands that had a %Vbur (min) 

greater than this value afforded no reactivity.26 Mechanistic studies revealed that a given 

phosphine’s %Vbur (min) was linked to the formation of monoligated (L1M) vs. bisligated 

(L2M) catalysts,14 wherein the former was generally required for successful Pd catalysis, 

and the latter for successful Ni catalysis.3,26,36

While this workflow could be used to predict and rationalize the ligation state of the 

metal with Buchwald-type phosphines (typically L1), it was not effective at capturing the 

catalytic reactivity behavior of these ligands. The large range of %Vbur values (Figure 

2) and different binding modes (Figure 1B) attainable by these ligands explained their 

complex behavior in the Pd-catalyzed case studies,37 but an understanding of their activity 

was less obvious for Ni. Indeed, despite Buchwald-type ligands preferentially forming 

L1Ni(substrate) species, members of the class with relatively low %Vbur (min) values 

were the best or second-best performing ligands for many of the SMCs studied (see 

SI for histograms), even outperforming commonly used bisphosphines like dppf.38–40 No 

other phosphines that enforced L1Ni(substrate)14 ligation states were found to be sucessful 

ligands. These observations raised questions about how Buchwald-type ligands interact with 

Ni from both a structural and catalytic perspective.

Guided by reactivity threshold analysis, we assembled four Ni-catalyzed cross-coupling 

datasets as case studies (Figure 3A, Reactions I-IV), combining previously published 

(Reactions I, II, IV)19,26 and newly collected (Reaction III) datasets, wherein at least some 

Buchwald-type ligands were found to promote reactivity. These case studies, consisting of 

Csp2–Csp2 Suzuki–Miyaura couplings (Reactions I and II), a Csp2–N coupling (Reaction 

III) of aryl chlorides, and a Csp3–Csp2 SMC of p-tol styrene oxide (Reaction IV), highlight 

several different reactivity patterns of Buchwald-type ligands in Ni catalysis, especially in 

the context of %Vbur (min) thresholds.

Case Study 1: Investigation of Ni(0) and oxidative addition in Suzuki–Miyaura Couplings.

In the first case study, we examined Reaction I, an electronically mismatched SMC, wherein 

only four of the smallest Buchwald-type ligands screened (CyJohnPhos, CataCXium PCy, 

CataCXium PInCy, and CataCXium POMeCy) promoted reactivity. Notably, CataCXium 

PCy was the second best of 90 monophosphines screened in this reaction. These four ligands 

fell on the left (reactive) side of a 32% Vbur (min) reactivity threshold (Figure 3B), but the 

descriptor alone did not distinguish the ligands from inactive Buchwald-type ligands with 

similar %Vbur (min) values, such as SPhos and XPhos. This is in contrast with Reaction 

II, where all Buchwald-type ligands screened with %Vbur (min) values less than 32% were 

reactive above the control with no phosphine ligand (Figure 3B). Since the reaction partners 

in Reaction II are activated, the difference in ligand response between Reactions I and II 
suggested to us that the four active ligands in Reaction I enabled the formation of a Ni 

species that could undergo a challenging elementary step of the catalytic cycle.
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Examining Reaction Ib, a SMC employing the same 4-chloroanisole electrophile as 

Reaction I but an electron neutral phenyl boronic acid (Scheme 1), we found that the 

same four ligands as those identified in Reaction I were the only reactive Buchwald-type 

phosphines (see SI for threshold analysis). This observation suggets that the challenging 

step is oxidative addition into the electron-rich electrophile.41,42 Therefore, we postulated 

that this step must require the preformation of a phosphine-ligated Ni(0) species in situ 

and only the four reactive phosphines are capable of reacting with the Ni(COD)2 (COD = 

1,5-cyclooctadiene) precursor to result in its formation.

To test this hypothesis, we subjected 18 Buchwald and CataCXium P ligands to 

stoichiometric reactions with Ni(COD)2. The spectra were analyzed to determine if the 

phosphine could form a new ligated complex (Figure 4A). In these studies, we found 

that only the four active Buchwald-type ligands of Reaction I and Ib displaced COD to 

any appreciable degree.43,44 None of the inactive Buchwald-type phosphines in Reaction 

I—those containing either t-Bu groups (e.g., JohnPhos) or significant steric bulk at the B 

ring ortho positions (e.g., SPhos, XPhos)—were found to bind. We then investigated the 

ability of ligand steric descriptors to rationalize COD displacement/complex formation. In 

alignment with the catalytic results for Reaction I, %Vbur (min) alone could not distinguish 

ligands that formed complexes from those that did not. However, %Vbur (Boltz)—an energy-

weighted representation of the ligand’s average overall size—was quite successful: only 

ligands with %Vbur (Boltz) values less than 52% formed complexes under the conditions 

(Figure 4A).

We sought to structurally characterize a representative example of these species using 

single crystal X-ray diffraction (SCXRD) analysis. Despite the low conversion, we obtained 

single crystals of the CyJohnPhos Ni complex (co-crystallized with unreacted Ni(COD)2) 

by cooling a reaction solution in pentane to −78 °C. The crystal structure of 1 revealed 

two CyJohnPhos ligands bound to Ni: one with a relatively low %Vbur conformation (36.8 

%) with κ1-P (monodentate) binding, and the other as a high %Vbur conformation (53.4%) 

with κ1-P,η2-Carene (pseudobidentate) binding and evidence of substantial backbonding 

into the arene (Figure 4B), resulting in a formally 16 e− [PR3]2Ni(0) species.30,45,46 The 

Ni-arene interaction in 1 is significantly more pronounced than that of the analagous 

(CyJohnPhos)2Pd(0) complex reported by Fink and coworkers,16 as judged by X-ray crystal 

structure bond metrics and distortions (see SI for comparison of bond metrics).

To study the reactivity of 1 further, along with the analogous [PR3]2Ni complexes of 

the three other reactive ligands from Reaction I, we tested synthetic strategies to afford 

the complexes in the absence of COD or other pi-accepting ligands that commonly 

support Ni(0) precursors.3,47–49 We found that the reduction of Ni(acac)2 with AlMe3 

in the presence of 2 equivalents of ligand gave 1 in good yield. The strategy was 

successfully applied to synthesize (CataCXium PCy)2Ni (2), (CataCXium PInCy)2Ni (3), 

and (CataCXium POMeCy)2Ni (4) (Scheme 2). 2-4 were also characterized using SCXRD, 

and their structure and bonding were similar to 1 (see SI for structural details).

Based on these structures, the %Vbur (Boltz) threshold for complex formation can be 

rationalized, as the ligand with κ1-P,η2-Carene (pseudobidentate) binding must not be so 
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large that it crowds Ni’s first coordination sphere to prevent the κ1-P (monodentate) 

ligand from favorably binding. Indeed, 3 was the only example of this complex class we 

were able to access with any ortho-substitution on the B ring. Furthermore, the reduction 

strategy did not allow us to access analogous structures with bulkier phosphines, with only 

decomposition or formation of unidentified/non-isolable species observed by NMR. Thus, 

the %Vbur (Boltz) [PR3]2Ni complex-formation threshold observed in Figure 4A seems to 

extend beyond reaction with Ni(COD)2, and may reflect complex stability more generally.

Testing 1-4 in catalysis, we found that all four complexes were active precatalysts in 

Reaction I, consistent with the requirement for attaining the pre-ligated Ni(0) species to 

initiate the catalytic cycle (see SI for details). Isolation of these species also gave us the 

ability to study oxidative addition stoichiometrically. We hoped that a better understanding 

of this step, in addition to identification of Buchwald-type ligand-bound Ni(II) species that 

formed after oxidative addition, would allow us to mechanistically rationalize the %Vbur 

(min) reactivity threshold observed across Reactions I-III.

Studying oxidative addition with CyJohnPhos2Ni(0).

Using 1 as a model complex, we performed a stoichiometric oxidative addition reaction with 

2 equivalents of 2-chloro-5-fluorotoluene at room temperature and monitored the reaction 

by 31P and 19F NMR. A 31P resonance consistent with a new diamagnetic CyJohnPhos-

bound Ni species was observed within minutes, and conversion of the aryl chloride 

was concurrently observed by 19F NMR. Unexpectedly, the new 19F resonance for the 

predominant species that formed (with good mass balance) matched that of 3-fluorotoluene. 

Minimal conversion to other species that would be consistent with aryl-bound Ni was 

observed. Furthermore, after one hour and complete conversion of 1, > 50% (relative to Ni) 

of the aryl chloride remained, and a substantial amount of Ni black and free phosphine were 

observed (Figure 5A). By 1H NMR, a new paramagnetic speicies was also observed, albeit 

in relatively small amounts.50

The effects of ligand stoichiometry on oxidative addition were then examined by conducting 

the reaction in the presence of 10 equivalents of free CyJohnPhos. The addition of free 

ligand did not substantially affect the overall conversion of 1 and aryl chloride, and the same 

species and products were observed by NMR. This suggests that excess free ligand does not 

stabilize or trap reactive species to prevent decomposition to a great extent. However, the 

additional free ligand substantially increased the time needed to reach full conversion of 1 
(and maximum conversion of the aryl chloride) compared with the reaction where no free 

ligand was added, implicating the intermediacy of L1Ni(0) species prior to and/or during the 

oxidative addition step (see SI).

Density functional theory (DFT) studies were used to supplement our experimental results of 

the oxidative addition of 1 into aryl chlorides. Given the observation that excess free ligand 

inhibits oxidative addition, we found that the dissociation of one equivalent of CyJohnPhos 

from 1 led to an 18 e− LhNi(0) species with an η6-arene interaction between the Ni 

and the CyJohnPhos B ring (intermediate i, Scheme 3).51,52 A ΔGdissoc of 13.9 kcal/mol 

was found at the M06/def2-TZVP//B3LYP-D3/6-31G(d,p) (SDD for Ni) level of theory. 
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Following complexation of the aryl chloride to the L1Ni species, a C–Cl bond cleavage 

transition state was found with an energy of 25.9 kcal/mol relative to 1 (12.0 kcal/mol 

relative to i), with η2-Carene interactions between the Ni and B ring stabilizing the otherwise 

unsaturated L1Ni species. Despite the high degree of unsaturation of the resulting 14 e− 

oxidative adduct ii (Scheme 3), no stabilizing interaction between the Ni and arene was 

observed computationally. Dimerization of ii and formation of the L2Ni(II) oxidative adduct 

were both computed to proceed to species slightly downhill of ii. However, given that none 

of these species were consistent with the spectroscopic analysis of the resulting oxidative 

addition product, we postulated that ii must decompose in the absense of other substrates or 

smaller donor ligands.

To identify the new diamagnetic Ni species observed in situ by 31P NMR, oxidative 

addition of 1 with 2-chlorotoluene was then carried out on larger scale. We isolated and 

crystallized the resulting air-stable species (5, Figure 5B) and analyzed it by SCXRD 

(Figure 5C). The crystal structure of 5 confirmed that the aryl from the electrophile 

was not bound to Ni, and that one equivalent of CyJohnPhos had undergone a C–H 

activation and concurrent cyclonickelation, consistent with the detection of protodemetalated 

3-fluorotoluene in situ (vide supra). This type of catalyst deactivation is well known in 

Pd catalysis with Buchwald ligands with unsubstituted B rings. However with Ni, it is 

notable that this C–H activation occurs rapidly, under such mild conditions, and with a 

non-chelating ligand.53–61 Furthermore, this cyclometalation occured significantly faster 

than in the analagous CyJohnPhos/Pd system reported by Fink.16 Computationally, we were 

unable to locate a reasonable transition state from ii, the L2Ni(II) structure, or the μ-Cl Ni(II) 

dimer that would lead to 5.62

Despite only forming in trace amounts, we were also able to obtain single crystals of 

the paramagentic species observed in situ during the oxiative addition experiments of 1 
to 2-chloro-5-fuorotoluene. The solid state structure of 6 revealed a μ-Cl bridged Ni(I) 

dimer species (Figure 5B), with one CyJohnPhos boound per Ni center and minimal (if 

any) interaction between either Ni and CyJohnPhos B ring (Figure 5C).45 The Ni–Ni 

distance was found to be 2.5530(3) Å, consistent with a weak Ni–Ni bond.63 To the 

best of our knowledge, 6 represents the first structurally characterized L1Ni(I) halide 

dimer with a monophosphine, analagous to Sigman’s dimer with NHCs.64–66 The 1H 

NMR spectrum of the crystals matched that of the species detected in situ during the 

oxidative addition reactions. We were unable to isolate enough 6 to reliably perform Evans’ 

Method measurements, but only minimal signal was detected by EPR spectroscopy (see SI), 

consistent with an integer spin dimer as the predominant species in solution. Additional 

mechanistic studies into the formation of off-cycle species 5 and 6 and their implications in 

catalysis are underway.

In summary, only the smallest Buchwald-type ligands—those that possess minimal B 

ring substitution and alkyl groups smaller than t-Bu—are capable of displacing COD 

from Ni(COD)2 and forming Ni[PR3]2 species. The ability to form these complexes in 
situ in Reaciton I was required to activate the electron-rich aryl chloride and undergo 

oxidative addition. However, in the absense of other reaction components, the resulting 
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coordinatively unsaturated Ni(II) complex is susceptable to decomposition and off-cycle 

pathways, particularly with the lack of protective B ring 2,6-substitution.9,10

Case Study 2: Investigation of SRRs at Ni(II) in Ni-catalyzed SMCs.

While the stoichiometric oxidative addition with the aryl chloride partner alone proceeded 

inefficiently and ultimately led to deactivation/decomposition of the Ni catalyst, the catalytic 

SMC reactions proceeded with turnover numbers (TONs) greater than 30. This suggests 

that other components of the reaction can trap intermediate ii, prevent decomposition 

pathways, and ultimately drive the reaction to turnover. Unfortunately, we were unable to 

study the transmetalation step experimentally due to difficulties synthesizing the relevant 

CyJohnPhos-bound Ni(II) oxidative adducts containing halides (vide supra) or hydroxide, 

coupled with the highly reactive nature of boronic acid/boronate–Ni complexes. However, 

we were able to computationally study the elementary step, along with the remainder of the 

catalytic cycle (Scheme 3).67

By DFT, the reaction of intermediate ii and trihydroxy(phenyl)borate to displace chloride 

was found to proceed favorably (−2.4 kcal/mol from II) to intermediate iii, a four-coordinate, 

16 e− 8-B-4 species (Scheme 3).67–69 The transition state of B-to-Ni transmetalation was 

found at 12.3 kcal/mol above ii, resulting in L1Ni(aryl)2 intermediate iv, which was 

computed to readily undergo reductive elimination to regenerate i and drive the reaction 

forward. Additionally, a four-coordinate, 16 e− L1 μ-OH dimer complex with CyJohnPhos 

was investigated computationally.67,70 While it is likely an off-cycle species that must be 

broken up prior to transmetalation, its stability (43.3 kcal/mol lower than ii+ −OH) may 

serve to trap ii and prevent cyclonickelation during catalysis.71

Re-examining the proposed SMC cycle in the context of the %Vbur (min) reactivity 

thresholds observed in Reactions I and II, we calculated the %Vbur values of CyJohnPhos 

in the DFT-generated intermediates and transition states. The %Vbur values of CyJohnPhos 

in the intermediates prior to and after transmetalation were near to or greater than 50%, 

consistent with the B ring fully occupying a coordination site on Ni. However, during the 

steps of transmetalation, the boronic acid (or OH− in the case of the μ-OH dimer) occupied 

two of four coordination sites in the square plane, forcing the B ring to swing away from Ni, 

lowering the %Vbur of the ligand to 35-39% (Figure 6A).72 Thus, the mechanistic rationale 

most consistent with the observed reactivity thresholds is that the ligand must be able to 

attain conformations wherein it will occupy only one of Ni’s coordination sites, allowing for 

both the stabilization of Ni(II) by additional σ-donor ligands and the key binding events of 

the substrates.

Buchwald-type ligands with B ring substitution and %Vbur (min) values less than 33% (e.g., 

SPhos and XPhos) were also reactive in Reaction II, despite their inability to react with 

Ni(COD)2 on their own. Given the high amount of background reactivity of Ni(COD)2 in 

the absense of phosphine in this reaction and the activated, electron-deficient nature of the 

aryl chloride, it is likely that the electrophile reacts directly with Ni(COD)2. The phosphine 

would then bind later in the catalytic cycle (i.e., at Ni(II)) to facilitate transmetalation and 

reductive elimination. In studying SPhos and XPhos computationally at Ni(II), their ability 

to adopt conformations with the substituted B ring rotated entirely behind the phosphorus 
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lone pair/cyclohexyl rings (%Vbur values ~32%) enabled favorable boronic acid binding and 

transmetalation (Figure 6B) with the phosphine bound.

While we were unable to obtain X-ray structures of these intermediates with Ni, this 

analysis and interpretation is consistent with structural evidence of SPhos and XPhos on Pd, 

wherein they often adopt low %Vbur-conformations on Pd(II) with an additional σ-donor 

ligand bound.73,74 However, for Buchwald-type ligands that possess either t-Bu groups 

bound to phosphorus (e.g., JohnPhos) and/or substitution on the A ring (e.g., BrettPhos)

—both modifications reflected by increased %Vbur (min) values—the inability to adopt 

truly monodentate structures appears to impede their successful use in Ni-catalyzed SMC 

reactions of aryl halides and boronic acids.

Case Study 3: Buchwald-type ligand reactivity in a Ni-catalyzed C–N coupling.

Over the past decade, significant advancements have been made in methodology 

development of Ni-catalyzed C–N couplings, which are most commonly facilitated by 

bisphosphines.39,75–80 While monophosphines generally do not promote reactivity in 

these reactions, a screen of monophosphines in Reaction III—a C–N coupling of 4-

chlorobenzotrifluoride and morpholine (Figure 3A)—revealed that that several Buchwald-

type ligands were uniquely capable of promoting catalytic reactivity. The reaction exhibited 

a similar %Vbur (min) reactivity threshold with Buchwald-type phosphines as Reaction 

II, though no background reactivity from Ni(COD)2 in the absense of phosphine was 

observed, resulting in a much more pronounced reactivity threshold (Figure 3B). Other 

than Buchwald and CataCXium P ligands, only the smallest monophosphines screened 

(e.g., PEt3) promoted the reaction to any appreciable degree (<20%).81 This indicates 

that Buchwald-type ligands are priviledged amongst monophosphines in this reaction, with 

CyJohnPhos the top performer using Ni(COD)2.

Given that the first steps of the catalytic cycle of Reaction III should be nearly identical 

to those of SMC Reactions I and II, we began by studying the effects of the amine on 

complexation following oxidative addition. Specifically, we were interested to observe if the 

presence of the σ-donor ligand could trap ii (Scheme 3) and form a stable 16 e− complex, 

preventing cyclonickelation, comproportionation, and other decomposition pathways. We 

found that the stoichiometric oxidative addition reaction of 1 with 4-chlorobenzotrifluoride, 

as well as with 2-chloro-5-fluorotoluene (vide supra), proceeded efficiently to a new Ni 

complex that was spectroscopically consistent with a Ni(II) oxidative adduct containing both 

the phosphine and the aryl group. No evidence of off-cycle cyclonickelated species 5 or 

Ni(I)-Cl dimer 6 was found spectroscopically, indicating that the σ-donating morpholine was 

indeed capable of trapping ii, preventing decomposition (Figure 7A).

Due to the presence of excess free phosphine when starting from 1, we opted to 

isolate a representative morpholine-bound Ni complex from Ni(COD)2, two equivalents 

4-boromobenzotrifluoride, and a slight excess of both CyJohnPhos and morpholine. This 

reaction successfully afforded 7 (Figure 7B) in 57% yield. We were able to characterize 7 
by SCXRD, structurally confirming that morpholine had trapped the oxidative adduct as a 

stable four-coordinate 16 e− complex,73,82 preventing the cyclonickelation pathway. Similar 
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to the DFT-optimized structures during SMC transmetalation, the B ring of CyJohnPhos in 7 
had rotated out of the first coordination sphere almost entirely and adopted a relatively low 

%Vbur conformation of 37.3%. A favorable C–H … π interaction between the Ni-bound aryl 

and the B Ring of CyJohnPhos stabilized this slightly higher %Vbur conformation (see SI for 

details).

Access to 7 gave us a unique opportunity to stoichiometrically observe and study N–H 

deprotonation and subsequent C–N reductive elimination from an on-cycle amine-bound 

Ni complex.83,84 We found that combining 7 with a slight excess of NaOt-Bu in a 

stoichiometric NMR study under inert atmosphere gave C–N coupled product in 89% NMR 

yield (Figure 8A), which had reached maximum conversion by the time the spectrum was 

taken (< 5 minutes). This indicates that the deprotonation and reductive elimination steps 

occurred rapidly, even at room temperature, suggesting that the C–N bond-forming transition 

state barrier from the deprotonated complex is low. We also tested 7 as precatalyst in 

Reaction III. We found that it was a reactive precatalyst in the reaction, with about 30 

turnovers observed within minutes, even at room temperature (Figure 8B).

DFT studies showed that the reductive elimination barrier from the Ni amido species 

(intermediate GS28, Figure 8C) was 13.3 kcal/mol, consistent with the experimental 

observation of rapid reductive eliminaiton at room temperature in the presence of base. 

The B ring of the arene rotated back to block the fourth coordination site during reductive 

elimination, ultimately forcing the coupling partners cis on Ni’s square plane. The Ni–C 

distances between Ni and the B ring were all >2.75 Å for GS28 and TS10 (Figure 8C), 

indicative of highly reactive 14 e− intermediates. Overall, the full free energy profile for the 

C–N coupling reaction with CyJohnPhos (Figure 8C) demonstrates the very low transition 

state barriers for all steps. The importance CyJohnPhos’ hemiliability in this catalytic cycle 

is also evident, as the B ring stabilizes Ni(0), but enforces coordinatively unsaturated, highly 

reactive Ni(II) species. To this end, in comparing the computed C–N reductive eliminaiton 

barriers of Buchwald ligands and chelating bisphosphines, we found that CyJohnPhos 

and XPhos had notably lower ΔG‡ values (13.3 and 10.7 kcal/mol, respectively) than 

bisphosphine dppf and PhPAdDalPhos (15.8 kcal/mol and 14.3 kcal/mol, respectively).

Attempts to isolate complexes analogous to 7 with SPhos and XPhos were unsuccessful 

despite their reactivity in Reaction III. For both, in situ NMR studies of the stoichiometric 

oxidative addition in the presence of morpholine did indicate that a new phosphine-ligated 

Ni(II) complex formed, albeit in low yields (see SI). By DFT, these complexes likely had 

phosphines bound with %Vbur values close to 32%, allowing for the fourth coordination 

site to be accessed by the amine. While these phosphine-ligated complexes are attainable 

in solution and in catalysis, the only species that we could isolate and crystallize was 8 
(Figure 7).85 This catalytically inactive bis-morpholine ligated complex was the exclusive 

oxidative addition product observed with Buchwald-type phosphines possessing %Vbur 

(min) values >32%. In addition to allowing access to the additional coordination site for 

amine binding, the %Vbur (min) reactivity threshold in Reaction III could also be reflective 

of congested transition states during substrate deprotonation and/or ligand substitutions with 

tert-butoxide, where Ni’s first coordination sphere may be required to be unencumbered by 

the phosphine.
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To summarize our findings from this case study, σ-donating amine substrates can bind to 

and stabilize L1Ni oxidative adducts with Buchwald-type ligands. However, the B ring of 

the phosphine must rotate out of the first coordination sphere in order for the coordination 

site to be accessed by the amine, which requires no A-ring substitution and alkyl groups 

smaller than t-Bu. The resulting 16 e− complexes, such as 7, rapidly undergo deprotonation 

and C–N bond-forming reductive elmination at room temperature in the presence of base, 

and are promising precatalysts for this reaction class.

Case study 4: Structural studies of Ni(0) aldehyde complexes with Buchwald-type ligands.

In the final case study, we investigated Reaction IV, which was reported by our laboratory 

in 2011. In the original study, it was found that the use of Buchwald-type ligands was 

necessary to enable high reactivity, and that bulky BrettPhos was the highest performing 

example tested.19 Re-evaluating the ligands screened in the reaction, no %Vbur (min) 

reactivity threshold was observed, and Buchwald-type ligands of all steric profiles were 

active above background reactivity (Figure 3B). Unlike the previous case studies, this 

transformation is an example of a cross-coupling reaction of an unconventional electrophile, 

where the standard elementary steps of Csp2–X activation/oxidative addition do not 

necessarily apply. Specifically, the mechanism of styrene oxide activation was proposed by 

Nielsen and Doyle to first proceed through isomerization, generating phenylacetaldehyde in 
situ, followed by Ni complexation and arylation; notably, the reaction was found to proceed 

directly from phenylacetaldehyde (Figure 8A), though from a methodological standpoint, 

styrene oxide was the preferred electrophile.19

In our 2011 report, an off-cycle intermediate of the isomerization pathway was isolated, 

with Ni(II) bound to the 4-position of the dearomatized B ring of BrettPhos. To the best of 

our knowledge, this represented the only other structurally characterized Ni complex with a 

Buchwald ligand before this study. However, subsequent trapping of the aldehyde was not 

investigated, and it remained unclear how the ligand interacted with Ni structurally during 

this step. Recently, we used 4-flurobenzaldehyde to spectroscopically determine the ligation 

state of Ni with various phosphines, including Buchwald-type phosphines. The stability of 

the complexes in solution suggested that benzaldehyde derivatives may provide a stable trap 

for both L2Ni and L1Ni species, allowing for the study and isolation of L1Ni(aldehyde) 

complexes with Buchwald ligands.26 Indeed, we found that most Buchwald-type ligands, 

regardless of their %Vbur values, could form L1Ni(4-Fluorobenzaldehyde) complexes from 

Ni(COD)2 (Figure 9) as detected by NMR. The two exceptions were (t-Bu)BrettPhos and 

(t-Bu)XPhos, whose considerable steric bulk prevented ligation altogether. However, certain 

Buchwald ligands with t-Bu groups bound to phosphorus that had no B ring substitution 

(e.g., JohnPhos) or mono B ring substitution (e.g., (t-Bu)MePhos) could form complexes in 

the experiments as determined by NMR.

Given that no %Vbur (min) steric threshold was observed in Reaction IV or in the 

spectroscopic experiments with 4-Fluorobenzaldehyde, we hypothesized that the ligands 

would adopt high %Vbur conformations (with the B ring fully occupying a coordination 

site) when bound to Ni-aldehyde complexes. For ease of synthesis and crystallization, 

2-naphthaldehyde was chosen to isolate complexes bearing a selection of phosphines: 
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CyJohnPhos, SPhos, and BrettPhos (9-11, Figure 8C). For each of the three complexes, 

the X-ray structure revealed that the B ring of the phosphine was indeed fully occupying a 

coordination site on Ni, with ligand %Vbur values of 53.2%, 56.0%, and 60.7% for 9, 10, 

and 11, respectively. Thus, for these complexes, the phosphine occupies more than 50% of 

Ni’s first coordination sphere/two of four coordination sites, preventing additional ligand or 

substrate equivalents from binding. While less π-basic than the Ni centers of 1-4, stabilizing 

η2-Carene interactions (η1-Carene in the case of 10 with SPhos) are still present to result in 16 

e− Ni(0) species, with indications of backbonding into the B ring evident through C–C bond 

elongations and distortions (see SI).

We found that the BrettPhos complex 11 was an active precatalyst in Reaction IV, which 

suggests that this species is relevant in catalysis and supports the mechanistic proposal of 

Nielsen and Doyle. While the exact mechanism of aldehyde arylation from the boronic acid 

coupling partner is still unclear, the observation that the most active ligands were those that 

enforce occupation of two coordination sites suggests the 1,2 arylation pathway may not 

proceed through a traditional B-to-Ni transmetallation (vide supra).86

Reactivity of Buchwald ligands with Ni(stb)3 precursors.

The observed stability of 9-11 with a monodentate π-accepting ligand (i.e., 2-

naphthaldehyde), combined with the challenges associated with Buchwald-type ligand 

displacement of bidentate COD from Ni(COD)2, led us to examine the structure and 

reactivity of Buchwald ligand-bound Ni(0) complexes derrived from Ni(stb)3.47,48 The 

Cornella lab has recently shown that these 16 e− Ni(0) complexes are versatile catalytic 

precursors, and are even air-stable as solids, particularly when the stilbene ligands are 

decorated with bulky groups at the para positions.47,48

We selected six Buchwald ligands (CyJohnPhos, SPhos, XPhos, DavePhos, JohnPhos, and 

BrettPhos) and studied their stoichiometric reactivity with Ni(stb)3 using a 1:1 L:Ni ratio. 

Unlike with Ni(COD)2, high conversion to an L1Ni(stb) complex was observed using in situ 
1H and 31P NMR spectroscopy for all ligands but BrettPhos (less than 10% conversion to 

LNi(stb), Figure 10A). Similar results were observed for the commercially available and 

more air-stable Ni(t-Bustb)3, though the conversions were generally slightly lower, likely due 

to the increased stability of the precursor afforded by the 4-t-Bu groups.48

We obtained SCXRD characterization of the CyJohnPhos, SPhos, and JohnPhos LNi(stb)3 

complexes, confirming the pseudobidentate binding of the phosphines to Ni with strong 

η2-arene interactions observed between Ni(0) and the phosphine B ring in each case (Figure 

10B). As judged by bond metrics from the X-ray crystal structures, the η2-arene interaction 

in (CyJohnPhos)Ni(stb) (12) was stronger than that of (CyJohnPhos)Ni(2-naphthaldehyde) 

(9), but weaker than that of Ni(CyJohnPhos)2 (1) (see SI for compiled table), which is 

rationalized well by the σ-donor/π-acceptor abilities of the second ligand bound.

The catalytic competency of these complexes was tested on Reactions I, II, and III (Table 

1). Overall, we found that the reactivity trends and active/inactive ligands in the threshold 

analysis were similar between the Ni(stb)3 precursors and Ni(COD)2. Consistent with 

the threshold analysis, the two ligands with %Vbur (min) values >32% (JohnPhos and 
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BrettPhos) that were tested with Ni(stb)3 precursors gave trace product, despite JohnPhos 

forming a ligated complex in situ with high conversions. While BrettPhos did not form 

an L1Ni(stb) complex efficiently, the ligated (BrettPhos)Ni(2-naphthaldehyde) complex (11) 

was tested in Reactions I-III as a precatalyst, also only yielding trace product. Overall, these 

data indicate that generating a ligated precatalyst in situ is necessary but not sufficient to 

give catalytic turnover, consistent with the %Vbur (min) threshold analysis (vide supra).

With regards to active Buchwald ligands with Ni(stb)3 precursors (those with relatively 

low %Vbur (min) values), CyJohnPhos was generally the best overall in the SMC reactions 

(Table 1). Furthermore, in a head-to-head comparison with dppf, one of the most widely 

utilized bisphosphines for Suzuki couplings and C–N couplings of secondary amines, 

CyJohnPhos performed significantly better under the reaction conditions with the air-stable 

Ni(stb)3 precatalysts. Ligands with ortho-substitution still only gave trace product in 

Reaction I with the electron-rich 4-chloroanisole electrophile. However, for Reactions 

II and III with 4-chlorobenzotrifluoride, XPhos performed comparably to CyJohnPhos, 

significantly better with the Ni(stb)3 precursors than Ni(COD)2. Indeed, an 80% boost in 

yield was observed for XPhos with Ni(stb)3 compared with Ni(COD)2 in Reaction III, 

where it outperformed both CyJohnPhos and dppf under the reaction conditions. These 

results demonstrate the importance of precatalyst design and utilization with Buchwald 

ligands in Ni catalysis, which with further development, should unlock the full potential of 

the ligand class in Ni catalyzed cross-coupling.

Summary & Conclusion

Using %Vbur threshold analysis alongside mechanistic organometallic investigations, we 

have elucidated the structure-reactivity relationships of Buchwald-type ligands in four 

representative Ni-catalyzed cross-coupling reactions. A summary of our findings related 

to the bonding, speciation, and SRRs of Buchwald-type ligands at Ni(0) and Ni(II) is below.

Ni(0):

• π-basic Ni(0) readily forms stabilizing η2-arene interactions with the B ring of 

Buchwald-type ligands.

• Ligands that posess minimal B ring substitution and alkyl groups smaller than 

t-Bu—reflected by both relatively low %Vbur (min) and %Vbur (Boltz) values—

can form [PR3]2Ni complexes in situ from Ni(COD)2. These complexes can 

undergo oxidative addition to aryl halide electrophiles.

• In these 16 e− complexes, one of the two phosphines adopts a high %Vbur 

conformation with pseudobidentate (κ1-P,η2-Carene) binding, and the other 

adopts a low %Vbur conformation with monodentate (κ1-P) binding. Because 

of this arrangement, the ligands must be small enough to not overcrowd the 

complex.

• In the presence of π-accepting substrates like aldehydes that can react with 

Ni(COD)2 on their own, most Buchwald-type ligands, including those that have 

B ring substitution and/or t-Bu groups, readily bind to form L1Ni(substrate) 
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complexes. Similarly, Buchwald-type ligands can form L1Ni(stb) complexes 

upon reaction with commercially availble, air-stable Ni(stb)3 precursors, which 

can serve as precatlaysts.

• In these scenarios, the ligand adopts a high %Vbur conformation, with stabilizing 

η2-Carene interactions observed between the π-basic Ni center and B ring, 

resulting in 16 e− Ni(0). No %Vbur (min) steric threshold is observed in complex 

formation. However, ligands that have both 2,6-substitution on their B ring and 

t-Bu alkyl groups are too bulky to form stable complexes.

Ni(II):

• For less π-basic Ni(II), stabilizing interactions between the Ni and B ring arene 

are weak or non-existent, thus making pseudobidentate binding insufficient to 

stabilize coordinatively unsaturated oxidative addition complexes.

• A σ-donating substrate must bind to the L1Ni(II) oxidative adduct to both 

stabilize the otherwise 14 e− complex and to facilitate catalytic turnover. In the 

absense of these σ-donors, or if the ligand prevents their binding, decomposition 

to Ni(I) or cyclonickelation occurrs.

• The B ring of the phosphine must rotate out of the first coordination sphere to 

enable substrate binding. Buchwald-type phosphines with alkyl groups smaller 

than t-Bu and no A ring substitution—reflected by relatively low %Vbur (min) 

values—are required to enable conformations where the ligand only occupies 

one of four coordination sites of Ni’s square plane.

In the context of the catalytic reactions studied, ligands with minimal substitution, such 

as CyJohnPhos and CataCXium PCy, were the most effective Buchwald-type phosphines 

at promoting cross-coupling of aryl halides. The ability of these ligands to readily adopt 

both high and low %Vbur conformations gives rise to hemilability (pseudobidentate at Ni(0) 

and monodentate at Ni(II)), which appears to be desirable in these Csp2–Csp2 and Csp2–N 

bond-forming reactions. For reactions of unconventional cross-coupling electrophiles that 

involve π-complexes, larger, less conformationally flexible ligands like BrettPhos are viable 

candidates to promote a successful transformation.

We anticipate that the %Vbur classification analysis and SRR principles presented in this 

work will be useful in the prediction of new stoichiometric and catalytic reactivity of 

Buchwald-type ligands with Ni, and that it can be readily applied to Pd catalysis where 

the ligand class is ubiquitous. In this light, the study should serve as a guide to chemists 

who wish to access well-defined organonickel complexes with Buchwald-type ligands, the 

further employment of the ligand class in catalysis, as well as in the design of new ligands 

and precatalysts for Ni. Additionally, we expect that access to well-defined Buchwald-type 

ligand-bound Ni precursors will enable studies into the many other manifolds of Ni catalysis 

yet to be explored with the ligand class. Additional mechanistic organometallic studies of 

the Buchwald-type ligand class with Ni, well as their applications in catalysis, are underway 

in our lab.
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Figure 1. 
Introduction.
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Figure 2. 
%Vbur range for select Buchwald and CataCXium P phosphines as defined by %Vbur (min) 

and %Vbur (max) from the kraken database. The Boltzmann-weighted %Vbur value is shown 

on the range as a blue dot. See SI for more information.
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Figure 3. 
(A) Catalytic reactions studied. See SI for complete reaction conditions and procedures. 

(B) Buchwald-type ligand reactivity threshold analysis. Green circles are Buchwald-type 

ligands. Grey triangles (faded) are all ligands other than Buchwald-type screened. The 

location of the horizontal gray box represents either background reactivity of Ni(COD)2 

(i.e., with no phosphine ligand) or 10% yield, whichever is higher. The location of the 

vertical grey box represents the %Vbur (min) threshold decision. No threshold was located 

for Reaction IV.
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Figure 4. 
(A) Ligation experiments of Buchwald-type phosphines with Ni(COD)2 (Reaction 
V). Complex formation determined by 1H and 31P NMR. (B) Characterization of 

Ni(CyJohnPhos)2, 1. 31P{1H} NMR of the complex at 25 °C (top) and −73 °C (bottom). 

Solid state structure with thermal ellipsoids at 50% probability shown. Hydrogen atoms 

omitted for clarity. Selected bond distances (Å): Ni–P1: 2.1905(5); Ni–P2: 2.1887(6); Ni–

C2: 1.972(1); Ni–C3: 2.075(1); C1–C2: 1.444(2); C1–C6: 1.368(2); C2–C3: 1.426(2); C3–

C4: 1.436(2); C4–C5: 1.361(2); C5–C6: 1.430(2).
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Figure 5. 
(A) Oxidative addition of 1 to 2-chloro-5-fuorotoluene, monitored by 1H, 19F, and 31P 

NMR. 2.0 equiv of 2-chloro-5-fluorotoluene used relative to 1. a Conversion and yield are 

relative to 1.0 equiv of 1 and were determined using 19F NMR using a 2-Fluorobiphenyl 

internal standard. (B) Isolation of cyclometalated CyJohnPhos Ni(II) adduct. (C) Solid state 

structures of 5 and 6, with thermal ellipsoids displayed at 50% probability and hydrogen 

atoms omitted for clarity. Selected bond distances (Å) for 5: Ni–P1: 2.1863(4); Ni1–P2: 
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2.2628(4); Ni1–C1: 1.908(1); Ni1–Cl1: 2.2192(3). Selected bond distances (Å) for 6: Ni2–

Ni3: 2.5530(3); Ni2–P3: 2.1749(4); Ni2–Cl2: 2.2478(3).
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Figure 6. 
(A) %Vbur of CyJohnPhos during the DFT-optimized steps of the SMC catalytic cycle at 

the M06/def2-TZVP//B3LYP-D3/6-31G(d,p) [SDD] level of theory (see SI for details). Blue 

dots represent conformers where B ring is occupying second coordination site, gray dots 

represent a conformation of CyJohnPhos where the B ring is > 3.0 Å away from Ni (κ1-P, 

monodentate). (B) DFT-optimized B-to-Ni transmetalation transition state structures with 

SPhos and XPhos. All %Vbur calculations performed using Sam-bVca 2.1.
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Figure 7. 
(A) Oxidative addition of 1 to 4-chlorobenzotrifluoride in the presence of morpholine. 

Yield determined by 19F NMR with a 2-fluorobiphenyl internal standard. (B) Isolation 

of morpholine-trapped oxidative addition product with CyJohnPhos. (C) Observation of 

off-cycle bis-morpholine bound oxidative addition product. See SI for isolation conditions 

of the authentic product. (D) Solid state structures of 7 and 8. Hydrogens bound to carbon 

omitted for clarity. Selected bond distances (Å) for 7: Ni1–P1: 2.1906(5); Ni1–N1: 1.993(1); 
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Ni–C1: 1.881(1); Ni–Br1: 2.4119(5). Selected bond distances (Å) for 8: Ni2–N2: 1.947(1); 

Ni2–N3: 1.949(2); Ni2–C2: 1.881(2); Ni2–Br2: 2.4204(4).
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Figure 8. 
(A) Stoichiometric reductive elimination studies with 7. (B) Room temperature precatalyst 

reactivity studies with 7 in Reaction III. aNMR (19F) yields determined relative to a 

2-fluorobiphenyl internal standard. (C) Free energy profile of the C–N coupling reaction 

catalyzed by 7. DFT calculations performed at the M06/def2-TZVP//B3LYP-D3/6-31G(d,p) 

[SDD for Ni] level of theory with a SMD solvation model (THF).
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Figure 9. 
(A) Activation of styrene oxide in Reaction IV proposed by Nielsen and Doyle. (B) 

Synthesis of L1Ni(2-naphthal-dehyde) complexes with Buchwald ligands from Ni(COD)2. 

(C) X-ray crystal structures of L1Ni(2-naphthaldehyde) complexes with CyJohnPhos, SPhos, 

and BrettPhos. Thermal ellipsoids displayed at 50% probability for 9 and 10, and 30% 

probability for 11. Hydrogen atoms omitted for clarity.
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Figure 10. 
NMR studies with 4-F-benzaldehyde (Reaction VI). Complex formation determined by 1H, 
19F, and 31P NMR.
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Figure 11. 
(A) Stoichiometric reaction of Ni(stb)3 with Buchwald ligands, analyzed by 1H and 31P 

NMR spectroscopy. CyJohnPhos, SPhos, DavePhos, and JohnPhos reacted with conversions 

greater than 80% (green), XPhos 66% (orange), and BrettPhos 20% (red) as determined 

by 31P{1H} NMR. (B) Solid state structures of L1Ni(stb) complexes with L = CyJohnPhos 

(12), SPhos (13), and JohnPhos (14). Thermal ellipsoids displayed at 50% probability and 

hydrogen atoms omitted for clarity.
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Scheme 1. 
Ni-catalyzed SMC Reaction Ib
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Scheme 2. Synthesis and isolation of [PR3]2Ni(0) complexesa.
aX-ray structures of 2-4 can be found in the SI.
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Scheme 3. Proposed catalytic cycle for Ni-catalyzed SMCs with CyJohnPhos.a
aSee SI for reaction free energy profile.
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Table 1.

Catalytic reactivity studies with Ni(stb)3 as a precursor.

Ligand Reaction I Reaction II Reaction III

dppf a 2% (16%) 1% (16%) 16% (83%)

CyJohnPhos 45% (67%) 49% (89%) 74% (68%)

CyJohnPhos b 82% (94%) 87% (98%) 72% (56%)

XPhos 3% (6%) 56% (49%) 92% (12%)

JohnPhos 1% (5%) 11% (19%) 1% (0%)

a
2 mol % dppf used.

b
2 mol% CyJohnPhos used, and the reactions were run for 2.5, 18, and 18 hr for Reaction I, II, and III, respectively. Yields in parentheses are with 

Ni(COD)2 under otherwise same reaction conditions.
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