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Harnessing Sheaf Theory for Enhanced Air Quality
Monitoring: Overcoming Conventional Limitations with

Topology-Inspired Self-Correcting Algorithm

Anh-Duy Pham1, An Dinh Le2 Chuong Dinh Le3, Hoang Viet Pham3, and Hien Bich
Vo3

1 Hochschule Bonn-Rhein-Sieg, Sank Augustin, Germany,
duy.pham@smail.inf.h-brs.de

2 University of California San Diego, California, USA
3 Vietnamese-German University, Binh Duong, Vietnam

Abstract. Sheaf theory is a potent but intricate tool that is supported by topo-
logical theory. It offers more accuracy and adaptability than traditional graph
theory when modeling the connections between several characteristics. This is
especially valuable in air quality monitoring, where sudden changes in local dust
particle density can be hard to measure accurately using commercial instruments.
Conventional air quality measurement techniques often depend on calibrating the
measurement with standard instruments or calculating the measurement’s mov-
ing average over a fixed period. However, this can result in an incorrect index at
the measurement location, as well as an excessive smoothing effect on the sig-
nal. To address this issue, this study proposes a self-correcting algorithm that
employs sheaf theory to account for vehicle counts as a local air quality change-
causing factor. By deducing the number of vehicles and incorporating it into the
recorded PM2.5 index from low-cost air monitoring sensors, we can achieve real-
time self-correction. Additionally, the sheaf-theoretic approach enables straight-
forward scaling to multiple nodes for further filtering effects. By integrating sheaf
theory into air quality monitoring, we can overcome the limitations of conven-
tional techniques and provide more precise and dependable results.

Keywords: sheaves, consistency structure, low-cost sensors, air quality monitor-
ing, causality

1 Introduction

Air quality, impacting global health, is influenced by factors like weather and traffic.
Worldwide monitoring stations and legislation help mitigate pollution. Various sen-
sors collect atmospheric contaminant data to analyze pollution patterns and develop
solutions. Handling heterogeneous data is vital in air quality monitoring, as multiple
sources provide partial information, such as PM10, PM2.5 indices, video footage, vehi-
cle counts, and social media data. A model integrating diverse data types optimizes sen-
sor resources and delivers comprehensive information. This study demonstrates mathe-
matical sheaves as an effective processing framework for integrating supplementary fac-
tors and enabling fine-grained analytics tailored to specific deployments. The research
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focuses on multi-sensor fusion and simulations of related methodologies, including air
monitoring and vehicle tracking systems.

Vehicle to PM2.5 concentration. A 2018 study from Bangkok, Thailand, explored
the relationship between PM2.5 levels and traffic flow on various roadsides using linear
regression and path analysis [30]. The results suggest a direct impact of traffic flow on
particle levels in both open and enclosed areas, with path analysis offering more accu-
rate and efficient outcomes than linear regression at different PM concentration levels.
The European Environment Agency’s guidelines [3] address exhaust emissions, includ-
ing PM2.5, N2O, CO2, and NH3, considering factors such as total distance driven,
technology-specific equipment, and vehicle numbers to estimate emissions more ac-
curately. The study also produced tables with estimated emission factors for each com-
mercial vehicle technology in Europe. For Ho Chi Minh City, Vietnam, a formula calcu-
lates a vehicle’s PM2.5 emissions [23], based on a 2020 California Air Resource Board
guidebook [20] detailing the relationship between various vehicle model technologies
and pollutant emissions like NOx, PM2.5, CO, and ROG.

Multi-sensor fusion and sheaf-theoretical approach. Data fusion involves com-
bining data from multiple sources [34], with various experimental programs demon-
strating that merging sensor detections improves coverage and performance [5, 13, 18,
21,31,32]. Techniques like [36] use a heterogeneous sensor collection, but often require
sensor registration to a common coordinate system [4, 10, 12, 16, 33, 35]. Changes in
sensor placement can impact such methods due to the lack of a standard coordinate sys-
tem. An alternative is ”possibilistic” information theory [6–8], which encodes sensor
models as propositions and inference rules. Although these methods can handle het-
erogeneous sensor collections, they lack theoretical guarantees for homogeneous col-
lections and face combinatorial complexity issues. The proposed methodology, which
uses local consistency models and sheaves, requires careful modeling before examin-
ing observations, reducing sample requirements. Sheaves offer a canonical and practical
formalization for merging local data sets into more consistent global data [19]. They are
an effective tool for organizing heterogeneous sensor deployments [15] and addressing
data fusion questions [24]. Consistency radius [27] quantifies the relationship between
sheaf geometry and observation sets, leading to practical data fusion algorithms [29].
Sheaves enable finer-grained consistency analysis through consistency filtration [28].
Cohomology, a technique for understanding local observation fusion, has applications
in various fields like network structure [11,22,26] and quantum information [1,2], with
straightforward computation [25] and efficient methods [9].

This study introduces a unique framework for air quality monitoring using mathe-
matical sheaves to integrate various data types, such as PM2.5 indices, video footage,
and vehicle counts. Highlighting the substantial impact of traffic flow on particle levels,
the research leverages data fusion techniques, necessitating careful initial modeling, to
optimize sensor use and generate comprehensive pollution data. The contributions of
this study are twofold: (1) it demonstrates how to build a sheaf on a simplicial complex
using data from cameras and sensor streams; (2) it applies filtration as a self-adjusting
sensor fusion technique to calculate the most reliable air quality value.
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2 Overview

This study mainly focuses on the algorithm, simulating hardware results for better input
signal control, and explores the sheaf modeling’s increased flexibility and accuracy in
air quality monitoring. Our sheaf-theoretic approach is profoundly guided by the work
of Joslyn et al. [14]. However, we modify this methodology to exploit the correlation
between vehicle count and air quality indices, fusing data from various sensor types
such as cameras and dust sensors.

Table 1. Emission factors of typical vehicles in Vietnam

Emission Factor (g∗ km−1)

Two-wheeled vehicle 0.047
Four-wheeled vehicle 0.117

Vehicle counting and PM2.5 concentration conversion algorithms. We simulate
the vehicle counting algorithm, adapted from Le et al.’s work [17], which accurately
and efficiently counts vehicles in real-time, offering valuable data to analyze the rela-
tionship between PM2.5 concentration and traffic density. Based on the vehicle counts,
a formula exists for calculating the PM2.5 emissions from vehicles, as described by
Phung, Nguyen Ky, et al. [23]:

Em = Nm×EFm×V KTm, (1)

where Em represents the mass of emitted PM2.5 (g), Nm denotes the number of vehicles
of type m, EFm is the emission factor for vehicle type m (g∗km−1), and V KTm signifies
the length of the recorded street segment (km). The emission factor utilized in our calcu-
lations can be found in the California Air Resources Board Emission Factor Table [20],
which is condensed into two typical vehicle types in Vietnam for our implementation,
as shown in Table 1. By using this factor and formula 1, we can compute the PM2.5
concentration by dividing the emission rate by the volume of air in which the particles
are dispersed. In our calculations, we assume that the PM2.5 particles are uniformly
distributed in a cube with a side length equal to the vehicle kilometers traveled (VKT).
This enables us to accurately estimate the PM2.5 concentration in a specific area and
time period as follows:

Cm = Em×106/(V KTm×1000)3, (2)

where Cm is the target PM2.5 concentration (µg/m3).
We have a formula linking vehicle numbers to PM2.5 concentration, but PM2.5

from vehicles isn’t immediately detected by sensors; there’s a delay. Le et al. [17]
developed a method calculating the average delay, and we refine this approach using
cross-correlation to determine the lag between vehicle and PM2.5 signals. After each
24-hour period, the signals are associated to find the most viable lag, which is then used
for shifting the converted signal the next day. Vehicles aren’t the sole PM2.5 source,
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so we estimate other sources’ contributions, assuming they remain constant for a given
hour. We calculate the pattern for one day and use it for the following day. The total
PM2.5 concentration is derived by adding the pattern to the PM2.5 concentration from
vehicles. The following algorithm summarizes the process of converting vehicle counts
to the total PM2.5 concentration.

Algorithm 1 Vehicle2PM2.5 (VI2PM) algorithm
Require: Nm: Number of vehicles of every type m
Ensure: Pv,t,h: PM2.5 concentration of emission from vehicles in the current day t of an hour h

PT,t,h: aligned total PM2.5 concentration from the number of vehicles in the image in
the current day t of an hour h
{Em}← Nm×EFm×V KTm for m in M
{Cm}← Em×106/(V KTm×1000)3 for m in M
Pv,t,h← ∑

M
m Cm

PT,t,h← Pb,t−1,h +Pv,t,h−L
return Pv,t,h, PT,t,h

Specifically, the algorithm takes inputs such as an image, a vector of target vehi-
cle types, the lag between camera-converted and sensor PM2.5 index, and the base
PM2.5 concentration of other emission sources from the previous day. It then outputs
the PM2.5 concentration of emissions from vehicles and the aligned total PM2.5 con-
centration for the current day t and hour h. The latter two arguments are recalculated
once at the end of the day based on Algorithm 2 to prepare for the next calculation round
of Algorithm 1. In Algorithm 1, there are some intermediate variables that have not been
specified, such as O, which is the vector of extracted foreground objects, and Mi : O j,
which represents a dictionary listing desired vehicle types and their corresponding list
of belonging objects. Nm, Em, and Cm are the previously introduced factors, which repre-
sent the number of vehicles of type m, the corresponding preliminary PM2.5 emission,
and the target PM2.5 concentration over a given area and time, respectively.

Algorithm 2 PM2.5 concentration base from other sources than vehicles and lag be-
tween camera-converted and sensor PM2.5 index calculation algorithm
Require: Pv,0...23: PM2.5 concentration of emission from vehicles spreading over 24 hours,

Ps,0...23: PM2.5 concentration of emission from an air sensor spreading over 24 hours
Ensure: lag: lag between camera-converted and sensor PM2.5 index

Pb,0...23: base PM2.5 concentration of other emission sources spreading over 24 hours
{lag}← Cross-correlation(Pv,0...23,Ps,0...23)
lagmax←max({lagi})
Pb,0...23← Ps,0...23−Pv,0−lagmax...23−lagmax

return lag, Pb,0...23
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3 Sheaf-theoretic self-filtering network modeling

Various tracking methods exist for integrating heterogeneous information, with aggre-
gation being common but imprecise for highly dissimilar data points. Sheaf-based track-
ing models offer an alternative, aggregating specific quantities and enabling accurate
heterogeneous information calculation by individually evaluating data points. This sim-
plifies the process compared to pooling models, as evaluating a point in a sheaf only
requires locating the corresponding point in space.

A sheaf is a data structure storing information over a topological space, with the
space outlining sensor relationships and the sheaf mapping sources into a common com-
parison framework. An abstract simplicial complex (ASC) represents sensors as vertices
and their multi-way interactions as higher-order faces. The ASC forms the sheaf’s base,
while the faces of the stalks store information. Restriction functions model interactions
between sensor combinations and data, completing the sheaf model. Assignments are
defined as recorded readings, sections as consistent assignments based on the sheaf
model, and partial assignments and sections over a subset of sensors.

Then, we present the following strategies for sheaf modeling. Specifically, when
global or partial sections suggest entirely consistent data, we add consistency structures
to describe data that are only partially consistent. Consistency structures instantiated for
the sensor nodes model take the form of n-way standard deviations, albeit being speci-
fied entirely broadly. In turn, consistency structures enable us to create approximation
sections that can quantify the degree of sensor consistency. The consistency radius is a
native global measure of the uncertainty among the sensors present in any given read-
ing. Moreover, consistency filtration [27] provides a comprehensive description of the
contributions of individual sensors and sensor combinations to the total uncertainty.

3.1 Sheaf simplicial constructions

We start by defining an abstract simplicial complex, the type of topological space used
to represent our sensor network. Usually, specifying all of the simplices in a simplicial
complex is laborious. Rather, it is much more efficient to provide a generating set X of
subsets of the vertex set. The abstract simplicial complex formed by X is the unique
smallest simplicial complex containing the generating set, and formally defined, ac-
cording to [14], as follows.

Definition 1 (Abstract Simplicial Complex). An abstract simplicial complex X on a
set VX is a collection of subsets of VX , where if σ ∈X and γ ⊆σ , then γ ∈X. Each σ ∈X
is a simplex of X, and each element of VX is a vertex of X. Any subset γ of a simplex
σ is called a face of σ . More generally, each σ ∈ X with d+1 elements is referred to
as a d-face of X, where d represents its dimension. Vertices are zero-dimensional faces
(singleton subsets of VX ), and edges are one-dimensional faces.

The following explains how an abstract simplicial complex can be used to represent
connections within a sensor network. Let the base set VX be the set of sensors in the
network, and let X include every set of sensors that measure the same quantity. Based on
the sensor network configuration, the following labels are assigned to the four sensors,
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Fig. 1. Simplicial complex of our network of air monitoring sensors.

including two camera nodes and two dust particle sensory nodes, which are connected
to monitor the local air quality signal: C1, C2, S1, and S2, respectively. Since all four
sensors contribute to a single final piece of information, the PM2.5 index, we define
U = C1,C2,S1,S2 as our base sensor set, where C = C1,C2 is the set of cameras that
count and classify traffic, and S = S1,S2 includes two air sensor devices that measure
the PM2.5 index of the air. In this manner, our air-monitoring network’s ASC X has a
total of ten faces, counting both C and S and their subsets:

X = {{C1,C2},{S1,S2},
{C1,S1},{C2,S2},{C1,S2},{C2,S1},

{C1},{S1},{C2},{S2}}
(3)

The remaining pairwise sensor interaction faces are represented as CS1 = C1,S1,
CS2 = C2,S2, CS3 = C1,S2, CS4 = C2,S1; therefore, the entire sheaf diagram is illus-
trated in Fig. 1, where the highest dimensional face (the final air PM2.5 index K) and
all sub-faces are shown. The sensors are displayed as black singleton faces, while the
higher-dimensional faces are shown in red. Additionally, the solid rectangle represents
the three-way interaction I.

The Abstract Simplicial Complex (ASC) represents a topological space that de-
scribes complex interactions among sensor data. It consists of hypertetrahedrons that
form a single connected component, but the complexity can vary depending on the
quantity and configuration of observables. Sheaf theory accounts for all interactions
and provides a directed acyclic graph (DAG) 2 with nodes representing the faces of the
ASC and directed edges ascending from a face to its corresponding higher-dimensional
co-face.

In essence, a sheaf of vector spaces assigns a vector space to each face and a linear
map to every attachment analogously. Moreover, a sheaf of groups designates a group to
each face and a group homomorphism to every attachment. Specifically, the stalk above
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Fig. 2. Corresponding attachment diagram of our network of air monitoring sensors.

a face constitutes the locus where data associated with that face is situated. Restriction
functions establish the foundation upon which interacting data can be deemed consistent
or inconsistent.

Concerning our air monitoring network, we have two cameras that encode vehicle
counts over time from the input video stream; thus, the stalks above vertices C1 and C2
are R. Similarly, the stalks above the vertices of the sensory nodes are also R, as they
directly monitor PM2.5 levels. With the stalks for the vertices defined, the stalks for
the higher-order faces and the restriction maps must be determined. Nevertheless, the
data formats are incompatible. Consequently, to compare these measures, the informa-
tion should first be transformed into standard units along the edges, and subsequently
conveyed to the rectangular face. We opted for PM2.5 as our common coordinate sys-
tem, given that most sensors report their readings in this format. Hence, R serves as the
foundation for the higher-order facets of the rectangle. Utilizing a guide book in [23],
we non-linearly convert vehicle counts from the camera vertices to the common unit in
all other faces. Consequently, the attachment diagram in Fig. 2 evolves into our sheaf
model for the air monitoring network, depicted in Fig. 3.

The sheaf model characterizes the temporal alignment of sensors as delineated be-
low. At a specific time t, each vertex is assigned the most recent sensor reading, a
data point from its stalk space. These measurements are subsequently transmitted to
the higher-order faces for comparison through the restriction maps. If the two measure-
ments obtained by an edge are identical, this single value is attributed to that edge, and
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Fig. 3. Sheaf model of the air monitoring network. GB stands for guide book, which is used to
translate from the vehicle numbers to PM2.5. The other abbreviation, id, stands for ”identity”,
which then refers to the identity transformation, or in the sheaf language, the identity restriction
map.

the algorithm advances. During this process, an agreement occurs when a single value
is established for faces of the same type, e.g., Cameras (the same value is set for C, C1,
and C2). When there is the potential for a complete assignment, we refer to it as a global
section. The possibility of disagreement always exists, which is where the concept of an
assignment originates. This lays the foundation for the following definition, according
to [14].

Definition 2 (Assignment and global section). Let S be a sheaf on an abstract sim-
plicial complex X. A function γ : X → Πx∈XS (x) that assigns a value γ(x) ∈S (x) to
each face x ∈ X is defined as an assignment. Subsequently, the definition of a partial
assignment is constrained by that of an assignment: a function α : X ′ → Πx∈X ′S (x)
that assigns a value γ(x) ∈S (x) to each face x ∈ X ′ ⊂ X. An assignment s is denoted
as a global section if, for every inclusion x⇝ β of faces, S (x⇝ β )(s(x)) = s(β ).

At a specific instant, a global section of our tracking model corresponds to the sensor
data concurrently concurring. The equality condition of a global section might be overly
restrictive for certain applications, including our tracking model.

3.2 Loosening Section constraints with Consistency Structures

Consistency structures relax the constraint of matching sensor data by allowing agree-
ment between data points rather than demanding a singular global section. This ap-
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proach uses a boolean function for each face to assess the level of agreement, forming
a consistency structure when combined with a sheaf. Formally, a consistency structure
is defined, according to [14], as follows:

Definition 3 (Consistency structures). A consistency structure is defined as a triple
(X, S , C) in which X is an abstract simplicial complex, S is a sheaf over X, and C is
the assignment to each non-vertex d-face β ∈ X ,d > 0, of the following function:

Cβ :
((

S (β )

dimβ +1

))
→{0,1},

where the double bracket pairs derive the set of subsets with length β +1 over S (β ).

The multiset in the domain of Cβ represents the various sheaf values to be com-
pared for all vertices impinging on a non-vertex face β , while the codomain 0,1 indi-
cates whether or not they match ”sufficiently.” Formally, a conventional consistency
structure for a sheaf S applies an equality test to each face that is not a vertex
β = v1,v2, . . . ,vk, according to [14]:

Cβ ([z1,z2, . . . ,zk]) =

{
1, i f z1 = z2 = · · ·= zk

0, otherwise,
(4)

where the square bracket pair represents the multiset and z j = S (vi ⇝ β )(s(v j)). A
consistency structure extends the equality criterion inherently available in a sheaf to
encompass classes of values that are considered equivalent. Moreover, each stalk in our
tracking model is a metric space. As such, we can use the natural metric to determine
if two points are merely ”close enough” rather than entirely congruent or comparable.
Utilizing ε to represent the amount of error present or acceptable in an assignment,
we construct the ε-approximate consistency structure for a sheaf S and each of the
non-vertex β = v1,v2, . . . ,vk,k > 1, according to [14], as follows:

Cβ ([z1,z2, . . . ,zk]) =

{
1, i f δ ([z1,z2, . . . ,zk])≤ ε

0, otherwise,
(5)

where the function δ serves to measure the consistency as a general dispersion of the
multivariate data. Specifically, it is defined, according to [14], as:

δ (Y ) =

√
1
|Y |

Tr(ΣY ), (6)

where ΣY represents the covariance matrix of the multidimensional data Y .
Subsequently, a consistency structure’s counterpart to a global section for sheaves

is referred to as a pseudosection. A pseudosection assignment s ensures that, for each
non-vertex face β , (i) the restrictions of its vertices to the face are adequate, and (ii)
the value assigned to the face is congruent with the restricted vertices. Formally, the
pseudosection definition can be delineated, according to [14], as follows:
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Definition 4 (Pseudosection). For each non-vertex β = {v1,v2, . . . ,vk}, an assignment
s ∈Πx∈XS (x) is defined as a (X ,S ,C)-pseudosection if

i. Cβ ([S ({vi}⇝ β )s({vi}) : i = 1, . . . ,k]) = 1, and
ii. Cβ ([S ({vi}⇝ β )s({vi}) : i = 1, . . . , j−1, j+1, . . . ,k])∪ s({vi})) = 1,

f or j in 1,2, . . . ,k.

Consequently, the pseudosections of a conventional consistency structure corre-
spond to the global sections of its associated sheaf because when C represents the
conventional consistency structure, the condition for an assignment for each non-vertex
face β = v1,v2, . . . ,vk to become a pseudosection is as follows:

s(β ) = S (v1⇝ β )s(v1) = S (v2⇝ β )s(v2) = · · ·= S (vk⇝ β )s(vk).
In contrast, if C represents an ε-approximate consistency structure, pseudosections

for each non-vertex face β = v1,v2, . . . ,vk are defined as:
δ ([S ({vi}⇝ β )s({vi}) : i = 1, . . . ,k])≤ ε

δ ([S ({vi}⇝ β )s({vi}) : i = 1, . . . , j−1, j+1, . . . ,k])∪ s({vi}))≤ ε,

f or j in 1,2, . . . ,k.
(7)

A pseudosection of our tracking model’s ε-approximate consistency structure allo-
cates the PM2.5 signals in a manner that the ”spread” of all measurements attributed to
each face is constrained by ε . As per the subsequent theorem found in [14], the minimal
ε for which a pseudosection arises is exclusively determined by constraining the images
of the vertices.

Theorem 1 (Consistency Radius). Let S be a sheaf on an abstract simplicial com-
plex X where each stalk is a metric space and let s be an assignment belonging to
the set Πx∈XS (x). The minimal ε such that s is a pseudosection of the ε-approximate
consistency structure (X ,S ,C) is given by

ε
∗ = max

β∈X\{{v}:v∈V}
δ ([S (w⇝ β )s({w}) : w ∈ β ]),

where V represents the set of vertices of the sheaf, and the proof can be found in [14].

Lemma 1 (Consistency Radius). Should a set of real numbers Z = {z1,z2, . . . ,zk} that
has a mean of µZ , ∀z ∈ Z,δ (Yz)≤ δ (Z), where Yz = Z \ z∪µZ .

The consistency radius prompts the examination of the network system’s consis-
tency as ε varies from its minimum to the defined radius, given data from multiple
sources. Identifying maximally consistent sections enables the introduction of key met-
rics like consistency filtration and cover measures.

Theorem 2 (Maximally Consistent Subcomplexes). Let a consistency structure (X ,
S ,C) be with a sheaf partial assignment s on vertices U . There exists a unique group
of subsets {Wi} of U that leads to subcomplexes {XWi} of X with the following charac-
teristics:
i. The assignment s is consistent within each XWi , and any subcomplex where s is con-
sistent also has at least one XWi as a supercomplex.
ii.

⋃
star(XWi) is a cover of X, where star(XWi) is defined as the set of faces containing

XWi , formally star(XWi) = {k ∈ X : XWi ⊆ k}.
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Lemma 2 (Maximally Consistent Subcomplexes). Let a consistency structure (X ,
S ,C) be with a sheaf partial assignment s on U . if for some non-vertex face β inX
such that Cβ (S ({v}⇝ β )s({v})) = 0, there exists subsets {Wi} of U which leads to
the subcomplexes {XWi} of X such that:
i. β /∈ {XWi} for all i
ii. The assignment s is consistent within each XWi , and any subcomplex where s is con-
sistent also has at least one XWi as a supercomplex.
iii.

⋃
star(XWi) is a cover of X, where star(XWi) is defined as the set of faces containing

XWi , formally star(XWi) = {k ∈ X : XWi ⊆ k}.

Theorem 2 offers a maximal vertex cover for our tracking model when supplied
with an assortment of sensor readings and a specific ε value, ensuring that each corre-
sponding subcomplex maintains approximate consistency within a predetermined error
margin. To establish a measure for the vertex cover associated with a collection of max-
imal consistent subcomplexes, we regard the set of covers as a graded poset and employ
the poset’s rank function as a metric.

Definition 5 (Graded posets and rank function). Let P = ⟨P,⊴⟩ be a poset, it is
graded if there exists a rank function r : P→N∪{0} such that r(s) = 0 if s is a minimal
element of P as well as r( j) = r(k)+1 if j◁ k in P. s is said to have rank i, if r(s) = i
and the maximum rank, which is defined as max

p∈P
{r(p)}, stands for the rank of P .

Ultimately, the rank function can be employed to quantify the vertex cover con-
nected to a collection of maximally consistent subcomplexes, as elaborated in the com-
prehensive proof presented in [14]. The subsequent definition delineates the manner in
which this process unfolds.

Definition 6 (Graded posets and rank function). Let a consistency structure (X ,S ,C)
that has the number of vertices |V |= n and A = {Wi} be a vertex cover obtained from
Theorem 2. The measure of such vertex cover is defined as

r̄(A ) = | ↓A |− (n+1)

Note that 0 ≤ r̄(A ) ≤ 2n− (n+ 1), and a bigger number suggests subcomplexes
with more consistency and given ↓A1 ⊆↓A2 entails r̄(A1)≤ r̄(A2).

Ultimately, the rank function can be employed to quantify the vertex cover con-
nected to a collection of maximally consistent subcomplexes, as elaborated in the com-
prehensive proof presented in [14]. The subsequent definition delineates the manner in
which this process unfolds.

3.3 Consistency Filtrations

Thus far, we have established a simplicial complex X , a sheaf S on the simplicial
complex, a partial assignment s to the vertices of X , and an ε-approximate consistency
structure (X ,S ,Cε). These components facilitate the construction of a consistency fil-
tration by varying ε and, owing to Theorem 2, enable the acquisition of the set of max-
imal consistent subcomplexes. The filtration of vertex covers corresponds to landmarks
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spanning over ε values enumerated as ε0 = 0 < ε1 < · · ·< εt−1 < εt = ε∗ – the consis-
tency radius, which represents the smallest feasible ε such that it renders the assignment
s a (X ,S ,Cε)-pseudosection. The series of vertex covers, C0 ⊴C1 ⊴ · · ·⊴Ct−1⊴Ct ,
can be refined such that each set comprises subcomplexes whose union constitutes X .
Furthermore, the sequence of cover measures, p0 ⊴ p1 ⊴ · · ·⊴ pt−1 ⊴ pt , can be com-
puted for each set of covers, Ci. The consistency filtration serves as a technique for
assessing the consistency among a group of sensors. If the distance between two con-
secutive landmark values, εi and εi+1, is considerably larger than the other distances,
this suggests a disagreement between at least two groups of sensors. By contrasting the
covers Ci and Ci+1, it becomes straightforward to identify which sensors are responsible
for the disagreement.

4 Integrated algorithm

The algorithm delineated in this section constitutes a crucial step in comprehending
the temporal behavior of our system. Utilizing the information from the nodes at a
specific time, we can ascertain the system’s consistency filtration, a metric indicative
of coherence and stability at that instance. This enables tracking the system’s evolution
and pinpointing potential issues or instabilities.

The system asynchronously populates data to each node in the set C1,C2,S1,S2,
with camera nodes receiving data every 10 minutes and air sensor nodes every 15 sec-
onds. The data is initially retrieved by the sheaf’s lowest-ranking face and subsequently
disseminated, or ”lifted up,” to higher faces level by level until reaching the highest-
ranking face. Pertaining to the sheaf model depicted in Fig. 3, the second level encom-
passes the set of edges CS1,CS2,CS3,CS4,C,S, while the highest level is K. It is impor-
tant to note that K is represented as a 3-dimensional space constituted by 2-dimensional
surfaces I and L. Each time the data is lifted within the sheaf model, the corresponding
conventional consistency structure must exhibit pairs of adjacent nodes/edges that are
strictly equal. Consequently, the values of all high-level faces in the sheaf model must
be zero, forming a pseudosection of the conventional consistency structure or a global
section of the sheaf model. However, as previously mentioned, achieving a global sec-
tion in real-world applications is unrealistic due to the inherent imperfections of any
working system; thus, an ε-approximate consistency structure is employed to permit a
degree of errors among the faces. The propagated values along the faces in the consis-
tency structure are described in Eq. 6.

Owing to the definition of consistency radius and consistency filtration, it is possible
to determine which sensor groups are consistent with one another. Similar to the work
of Joslyn et al. [14], we can employ the consistency measure to identify faulty sensing
nodes and decide to isolate their results prior to examining their status. In summary, the
entire process can be determined through the following algorithm, specifically tailored
for the sheaf model in Fig. 3.

The algorithm uses data aggregation to evaluate sheaf model consistency with a
mean operator. However, it’s not a simple aggregation method as it (i) integrates data
from heterogeneous sensors at different times, and (ii) applies the mean operator hierar-
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Algorithm 3 Self-consistency management from heterogeneous input sources algo-
rithm
Require: S : sheaf model, {C1,C2,S1,S2}: vertices set
Ensure: εc: consistency threshold,

Vc: value of the face at εc,
Sc: a set of consistent sensors

0- f aces←{C1,C2,S1,S2} ▷ Original vertices, or 0- f aces
CS1()←{S (C1⇝ 1- f aces)s({C1}),S (S1⇝ 1- f aces)s({S1})}
CS2()←{S (C2⇝ 1- f aces)s({C2}),S (S2⇝ 1- f aces)s({S2})}
CS3()←{S (C1⇝ 1- f aces)s({C1}),S (S2⇝ 1- f aces)s({S2})}
CS4()←{S (C2⇝ 1- f aces)s({C2}),S (S1⇝ 1- f aces)s({S1})}
C()←{S (C1⇝ 1- f aces)s({C1}),S (C2⇝ 1- f aces)s({C2})}
S()←{S (S1⇝ 1- f aces)s({S1}),S (S2⇝ 1- f aces)s({S2})}
1- f aces←{CS1,CS2,CS3,CS4,C,S} ▷ Configuring 1- f aces
I ← {S (CS1 ⇝ 2- f aces)s({CS1}),S (CS2 ⇝ 2- f aces)s({CS2}), S (CS3 ⇝
2- f aces)s({CS3}),S (CS4⇝ 2- f aces)s({CS4})}
L←{S (C⇝ 2- f aces)s({C}),S (S⇝ 2- f aces)s({S})}
2- f aces←{I,L} ▷ Configuring 2- f aces
K←{S (I⇝ 2- f aces)s({I}),S (L⇝ 2- f aces)s({L})}
3- f aces←{K} ▷ Configuring 3- f aces
V ←{} ▷ Initializing an empty dictionary that stores complexes’ values
ε ←{} ▷ Initializing an empty dictionary that stores complexes’ corresponding ε threshold
while d ≤ 3 do

Ω ← d- f aces
if d > 0 then

for ω ∈Ω do
{ω1,ω2 . . . ,ωn}← ω()
V [ω]←{ω1,ω2, . . . ,ωn}
ε[ω]← δ ({ω1,ω2, . . . ,ωn}) ▷ δ (.) is determined in Eq. 6

end for
else

V [ω]← s(ω) ▷ Initializing with partial assignment
ε[ω]← 0

end if
end while
Sc← []
εc← 0
Vc← 0
for ω ∈Ω do

if ε[ω]≤ mean(ε)+0.5∗ std(ε) then ▷ Checking if the consistency threshold belong to
such part of the filtration

Sc.append(ω)
εc← ε[ω]
Vc←V [ω]

end if
end for
return εc, Vc, Sc
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chically to the most consistent sensors based on the filtration distribution. More details
can be found in Section 5.

5 Toy Examples

This section uses toy examples with simulated sensor measurements and generated data
to illustrate sheaf modeling, helping readers grasp the main concepts and practical ap-
plications in data analysis and interpretation.

5.1 Example 1: Sheaf Global Section or Consistency Structure Pseudo-section

In this example, we demonstrate the sheaf behavior with a global section or pseudo-
section, considering the consistency structure, where all assignments seamlessly fit to-
gether, forming a cohesive global structure. This scenario provides insight into how the
sheaf represents and analyzes data when local assignments perfectly align.

Specifically, we code up our sensor network sheaf model, illustrated in Fig. 3. We
use the Python networkx package to visualize the sheaf in Fig. 4.

Fig. 4. Sheaf model of the air monitoring network, drawn by the Python networkx package.
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Table 2. Sheaf consistency structure pseudo-section assignment

C1 C2 S1 S2
Assignments [200,30] [200,30] 12.91 12.91

Then, we give assignments to the vertices, such that all of them can be inferred to
match perfectly with each other. The assignments are demonstrated in Table 2, where
we have two unique assignments such as 12.91 and [200,30], in which 200 stands for
the number of motorbikes and 30 stands for the number of cars and they then can be
inferred as exactly 12.91 by the numbers of emission factors shown in Table 1. Because
the values are perfectly matched right on the vertices, the values propagated to the
higher faces are also consistent and therefore completely matched. This situation is
called a global section of the sheaf model or the pseudo-section of the consistency
structure of the sheaf. All the consistency thresholds in the consistency filtration equal
to 0 as a result. Hence, the filtration in this case is a dictionary, as such

{ ’C ’ : 0 . 0 ,
’S ’ : 0 . 0 ,
’CS1 ’ : 0 . 0 ,
’CS2 ’ : 0 . 0 ,
’CS3 ’ : 0 . 0 ,
’CS4 ’ : 0 . 0 ,
’L ’ : 0 . 0 ,
’ I ’ : 0 . 0 ,
’K’ : 1 .8553442084620055 e −15
}

5.2 Example 2: Sheaf Data Aggregation with simulated signals

In this example, there are four nodes that are being used to measure a simulated signal.
These nodes consist of two cameras and two sensors. The cameras have a sampling
frequency rate of once every 600 seconds, while the sensors have a sampling frequency
rate of once every 15 seconds. The goal is to demonstrate how sheaf-based data fusion
outperforms naive data aggregation, providing more accurate results.

We create a simulation of the actual PM2.5 signal by using a sinusoidal function
that varies over time, with the unit of time being seconds, and limited in the range
between 100 and 200 by incorporating coefficients to the sinusoidal function, such as
y = 50sin(x)+ 150. The simulation covers a period of 48 hours, illustrated in Fig. 5.
Then, to simulate the measurement of the sensor signals, we add different levels of
Gaussian noise to each type of sensor. The noise levels for the sensor nodes C1, C2,
S1, and S2 are 2.8%, 8.3%, 11.7%, and 16.9%, respectively. Additionally, the sensors
have different resolutions, so their measurements are not in sync. To ensure that we
can propagate the values across the sheaf faces, we need to fill in the values for the
vertices every time we update the measurements. To handle the misalignment of the
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measurements, we assign the previous values to the vertices that have not received a
new measurement when we update. The data from the sensors are depicted in Fig. 6.

Fig. 5. Simulated PM2.5 signal by using a sinusoidal function that varies over time.

Fig. 6. Simulated PM2.5 sensor measurement over time.

In this comparison, we analyze the sheaf data averaging with cut-off along with
baseline methods including naive data averaging and Kalman filter using simulated
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sensor signals. The outcomes presented in both Table 3 and Fig. 7 indicate that the
performance of the Kalman Filter is inferior (with an error rate of (22.81%) to that
of all individual sensors when juxtaposed with the actual value. The naive approach
averages sensor values at each update, while the sheaf modeling system aggregates
only consistent faces based on a threshold. Both methods improve overall errors (mea-
sured by Mean Absolute Percentage Error), but the sheaf with cut-off reduces errors by
12.43% more than naive averaging. Figure 7 highlights the lower error values for the
sheaf approach (orange line) compared to naive averaging (blue line) over an extended
simulation period, which is more evident in their moving averages.

MAPE =
1
N

N

∑
i=1

|y− ŷ|
y
×100 (8)

Table 3. Average errors of individual sensors and data aggregation approaches

MAPE (%)
C1 11.74%
C2 16.93%
S1 2.83%
S2 8.25%
Kalman Filter 22.81%
Naive Averaging 5.92%
Sheaf Averaging with cut-off 5.18%

Apparently, by cutting off the inconsistent face out of the consistency structure of
the sheaf model would reduce the overall errors of the system. We would like to demon-
strate how cutting off inconsistent faces would decrease the error by analyzing the most
spread filtration among the consistency filtration sets of the sheaf model over the simu-
lation time, illustration in Fig. 8.

5.3 Example 3: Sheaf Filtration at the minute 1545.5

In Fig. 8, over time, the consistency of the filtration tends to align with the errors that
each sensor produces. Usually, the face sensors CS2, CS4, and C are the most prone to
errors, and these correspond to the two least accurate nodes, C1 and C2. At the second
#92730, or the minute #1545.5, there is a maximum in the data spread as measured by
the consistency filtration. We would like to demonstrate the impact of removing faces
with high consistency thresholds. At that point of time, the filtration is a dictionary, as
such

{ ’CS1 ’ : 8 .283882338353894 ,
’S ’ : 33 .620082580239966 ,
’CS3 ’ : 41 .903964918593864 ,
’K’ : 50 .105373654118516 ,
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Fig. 7. Error values of Data Aggregation Approaches.

Fig. 8. Sheaf filtration of the sensor network over time.

’ I ’ : 51 .284484945400095 ,
’C ’ : 52 .72299262385046 ,
’L ’ : 55 .393574797089926 ,
’CS4 ’ : 61 .00687496220436 ,
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’CS2 ’ : 94 .62695754244432}

, where the cut-off point is defined as the mean plus half a standard deviation of the fil-
tration distribution, which is in this case equalled to 60.71. Figure 9 illustrates the faces
in the filtration along with their values and also the cut-off value in order to visualize
how the distribution is spread.

Fig. 9. Sheaf filtration spread of the sensor network at the minute 1545.5.

Visually, it seems that only the face CS2 is eliminated off the sheaf averaging pro-
cess, but the threshold actually is 60.71, which means that the face CS4 lying exactly on
the threshold line but it has the value of 61.0 and thus is also eliminated. This gives the
results in Table 4, where sheaf averaging without the cut-off is exactly the same with the
naive averaging approach. This again stresses the importance of using the consistency
filtration to filter out the inconsistency faces off the averaging process.

Table 4. Filtration errors assessment

MAPE (%)
Kalman Filter 16.07%
Naive Averaging 11.03%
Sheaf Averaging without cut-off 11.03%
Sheaf Averaging with cut-off 8.05%
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6 Conclusion and Outlook

Sheaf theory provides increased accuracy and adaptability for modeling connections be-
tween multiple features, particularly in air quality monitoring, compared to traditional
graph theory. This study introduced a self-correcting algorithm utilizing sheaf theory to
account for vehicle counts affecting local air quality, achieving real-time self-correction
and enabling straightforward scaling to multiple nodes. Integrating sheaf theory into
air quality monitoring provides several advantages such as effectively handling het-
erogeneous data, reducing sample requirements, and ensuring global data consistency.
However, the complexity of sheaf theory and the challenges associated with careful
pre-observation modeling can serve as drawbacks.

As for future research, there’s potential in merging deep learning with sheaf the-
ory to optimize real-time monitoring and predictive analysis. Leveraging deep learning
could help simplify the complex models associated with sheaf theory, improving pre-
diction accuracy by learning intricate patterns in the data. Future work could also focus
on integrating more varied data sources into the sheaf-deep learning model, such as
weather and traffic data, thereby enhancing the comprehensiveness of air quality fore-
casts.
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