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Search for CP violation using T-odd correlations inDþ ! KþK0
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þ�� and
Dþ

s ! KþK0
S�

þ�� decays
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We search for CP violation in a sample of 20 000 Cabibbo-suppressed decays, Dþ ! KþK0
S�

þ��,
and 30 000 Cabibbo-favored decays, Dþ

s ! KþK0
S�

þ��. We use 520 fb�1 of data recorded by

the BABAR detector at the PEP-II asymmetric-energy eþe� collider operating at center of mass energies

near 10.6 GeV. We search for CP violation in the difference between the T-odd asymmetries obtained
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using triple product correlations of the Dþ (Dþ
s ) and D� (D�

s ) decays, respectively. The T violation

parameter values obtained are ATðDþÞ ¼ ð�12:0� 10:0stat � 4:6systÞ � 10�3 and ATðDþ
s Þ ¼

ð�13:6� 7:7stat � 3:4systÞ � 10�3, which are consistent with the standard model expectations.

DOI: 10.1103/PhysRevD.84.031103 PACS numbers: 13.25.Ft, 11.30.Er

In the standard model (SM) of particle physics, the
violation of the charge-conjugation and parity symmetries
(CP) is introduced by the Kobayashi-Maskawa (KM)
phase in the Cabibbo-Kobayashi-Maskawa quark mixing
matrix [1]. The KM ansatz has been tested at high precision
in K and B decays, where the KM phase contributes to the
quark transition amplitude at tree level. However, further
experimental efforts are needed in D meson decays, where
CP-violating amplitudes are predicted to contribute to the
observables at the 10�3 level [2].

The sensitivity to CP violation in D meson decays
reached by the B factories is of the order of 5� 10�3

[3–6]. Although this does not represent a measurement of
SM CP violation, it provides a constraint on possible
effects beyond the SM. New physics models introduce
CP violation in D meson decays through tree and one-
loop diagrams. While predictions for CP violation in tree
diagrams are not different from those in the SM [Oð10�3Þ],
new physics in loop diagrams may enhance CP violation
effects at the order of 10�2 [7].

We report herein a search for CP violation in the decays
Dþ ! KþK0

S�
þ�� and Dþ

s ! KþK0
S�

þ�� using T-odd
correlations [8]. We define a kinematic triple product that
is odd under time reversal using the vector momenta of the
final state particles in the Dþ

ðsÞ rest frame as

CT � ~pKþ � ð ~p�þ � ~p��Þ: (1)

Under the assumption ofCPT invariance, time-reversal (T)
violation is equivalent to CP violation.

We study the T-odd correlations by measuring the ob-
servable expressed in Eq. (1) and then evaluating the
asymmetry

AT � �ðCT > 0Þ � �ðCT < 0Þ
�ðCT > 0Þ þ �ðCT < 0Þ ; (2)

where � is the decay rate for the process under study. The
observable defined in Eq. (2) can have a nonzero value due
to final state interactions, even if the weak phases are zero
[9]. The T-odd asymmetry measured in the CP-conjugate
decay process, �AT , is defined as

�A T � �ð� �CT > 0Þ � �ð� �CT < 0Þ
�ð� �CT > 0Þ þ �ð� �CT < 0Þ ; (3)

where �CT � ~pK� � ð ~p�� � ~p�þÞ. We can then construct

A T � 1
2ðAT � �ATÞ; (4)

which is an asymmetry that characterizes T violation in the
weak decay process [10–12].

At least four different particles are required in the final
state so that the triple product may be defined using
momentum vectors only [13]. The D meson decays suit-
able for this analysis method are Dþ ! KþK0

S�
þ��,

Dþ
s ! KþK0

S�
þ��, and D0 ! KþK��þ��. The search

for CP violation using T-odd correlations in D0 !
KþK��þ�� has recently been carried out by the
BABAR Collaboration, and no evidence of CP violation
has been observed [3].
Following the suggestion by Bigi [14], the FOCUS

Collaboration [15] first applied this technique to a sample
of approximately 500 reconstructed Dþ and Dþ

s events,
respectively. No evidence of CP violation was found. In
the present analysis, we perform a similar measurement
using approximately 2:1� 104 Dþ and 3:0� 104 Dþ

s

meson decay candidates.
The analysis is based on a 520 fb�1 data sample re-

corded mostly at the �ð4SÞ peak and at center of mass
(CM) energy 40 MeV below the resonance by the BABAR
detector at the PEP-II asymmetric-energy eþe� collider.
Contributions to the data sample have been recorded near
the �ð3SÞ resonance (�31 fb�1), and near the �ð2SÞ
resonance (�15 fb�1). In addition, two large samples of
Monte Carlo (MC) simulated events have been analyzed.
In these samples, the eþe� ! c �c production process is
generated using JETSET 7.4 [16], and the detector response
is simulated by GEANT 4 [17]. About 1:1� 109 generic
eþe� ! c �c MC events, corresponding to 846 fb�1, were
generated to include the previously measured intermediate
resonances in the Dþ

ðsÞ decays, while 4:0� 106 eþe� !
Dþ

ðsÞX MC signal events ( � 1025 fb�1), where X repre-

sents any system of charged and neutral particles compat-
ible with the relevant conservation laws, were generated in
which the Dþ

ðsÞ signal decays to KþK0
S�

þ�� uniformly

over the phase space. Both MC samples were processed
using the same reconstruction and analysis chain as that
used for real events.
The BABAR detector is described in detail elsewhere

[18]. We mention here only the subsystems used in the
present analysis. Charged-particle tracks are detected, and
their momenta measured, with a combination of a cylin-
drical drift chamber (DCH) and a silicon vertex tracker
(SVT), both operating within the 1.5-T magnetic field of a
superconducting solenoid. The information from a ring-
imaging Cherenkov detector, combined with specific
energy-loss measurements in the SVT and DCH, provides
identification of charged kaon and pion candidates.
The Dþ and Dþ

s meson decay candidates are recon-
structed in the production and decay sequence:
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eþe� ! XDþ
ðsÞ; Dþ

ðsÞ !KþK0
S�

þ��; K0
S !�þ��;

(5)

using the events with at least five charged particles. We
reconstruct K0

S ! �þ�� candidates using a vertex and

kinematic fit with the K0
S mass constraint [19], and requir-

ing a �2 probability greater than 0.1%. We accept only K0
S

candidates that decay at least 0.5 cm from the eþe�
interaction region (IR) and have a mass before the fit within
15 MeV=c2 of the nominal K0

S mass. The K0
S candidate is

then combined with three charged-particle tracks with total
net charge þ1, to form a Dþ

ðsÞ candidate. We require the

tracks to originate from a common vertex, and the �2 fit
probability (P1) to be greater than 0.1%. In order to im-
prove discrimination between signal and background, an
additional fit is performed that constrains the three charged
tracks to the IR. The �2 probability (P2) of this fit is large
for most of the background events, whose tracks originate
from the IR, while it is smaller for Dþ

ðsÞ signal events,

whose tracks originate from a secondary vertex detached
from the IR, due to the measurable Dþ

ðsÞ flight distance.
Particle identification is applied to the three charged-
particle tracks, and the presence of a Kþ is required.
Charged kaon identification has an average efficiency of
90% within the acceptance of the detector, and an average
pion-to-kaon misidentification probability of 1.5%. We
require the CM momentum of the Dþ

ðsÞ candidate, p
�, to

be greater than 2:5 GeV=c. This requirement reduces the
large combinatorial background from B decays, and im-
proves the signal-to-background ratio significantly despite
some loss in signal efficiency.

We first study backgrounds from charm meson decay
processes which yield the same event topology.

The decayD�þ ! �þD0 produces a significantD0 peak
in the K0

SK
þ�� mass distribution. A fit with a Gaussian

signal function yields a mass resolution of �D0!K0
S
Kþ�� ¼

4:6 MeV=c2. Selecting D0 candidates within
�3�D0!K0

S
Kþ�� of the D0 mass, we observe a clear D�þ

peak in the distribution of the mass difference �m ¼
mðKþK0

S�
þ��Þ �mðK0

SK
þ��Þ. This contribution is

reduced to a negligible level by requiring �m>
0:1465 GeV=c2.

We also observe background from the decay Dþ !
KþK0

SK
0
S, with one of the K0

S decaying into the bachelor

pions of Eq. (5). This contribution is removed by requiring
the �þ�� invariant mass to lie outside a �8:7 MeV=c2

mass window around the nominal K0
S mass [19]. We look

for backgrounds from Dþ ! K0
S�

þ�þ�� decays by as-

signing a pion mass hypothesis to the kaon candidate. We
observe a Dþ signal over a large background. Simulation
shows that this background produces a broad structure in
the high-mass region of the Dþ

s mass distribution. We also
looked for background from �þ

c ! pK0
S�

þ�� decay by

assigning the proton mass to the kaon candidate. We see a

signal over a large background. We find it impossible to
remove the Dþ ! K0

S�
þ�þ�� and �þ

c ! pK0
S�

þ��
events without biasing our mass distributions. Our MC
simulations, however, show that the presence of these
backgrounds does not bias the extraction of theDþ

ðsÞ meson

yields. As a further check, we select a high purity data
sample (87.5%) of Dþ ! K0

S�
þ�þ�� decays and assign

the Kþ mass alternatively to both �þ. We compute the
asymmetries on the resulting integrated distributions and
find that they are all consistent with zero. A similar result is
obtained when we perform the test on MC events.
We divide the KþK0

S�
þ�� mass spectrum into

two regions in order to extract separately the Dþ and Dþ
s

signal yields. For the former we require 1:81<
mðKþK0

S�
þ��Þ< 1:92 GeV=c2, while for the latter we

require 1:91<mðKþK0
S�

þ��Þ< 2:02 GeV=c2.
For further signal-to-background optimization, we ex-

plore three variables: the CM momentum, p�, the differ-
ence in probability, P1 � P2, and the signed transverse

decay length, LT ¼ ~d� ~pT

j ~pT j , where
~d is the distance vector

between the IR and the Dþ
ðsÞ decay vertex in the transverse

plane, and ~pT is the Dþ
ðsÞ transverse momentum vector.

Signal events are expected to be characterized by larger
values of p� [20], due to the jetlike topology of eþe� ! c �c
events, and larger values of LT and P1 � P2, due to the
measurable Dþ

ðsÞ decay length.

Figure 1 shows the p�, P1 � P2, and LT distributions for
signal and background in the Dþ and Dþ

s mass regions,
respectively. The signal distributions are obtained from
Dþ ! K0

S�
þ�þ�� and Dþ

s ! K0
SK

��þ�þ decays in

data after background subtraction. These decay modes
are kinematically similar to the signal modes, but have
higher signal yields and better signal-to-background ratios.
The background distributions in Fig. 1 are obtained from
Dþ

ðsÞ ! KþK0
S�

þ�� sidebands in the mass distributions

for data.
The normalized probability distribution functions (P ) of

the three variables for signal and background are combined
in a likelihood-ratio test

L ¼ Y

i

P sig
i ðxiÞ

P bkg
i ðxiÞ

; ~x ¼ ðp�; P1 � P2; LTÞ (6)

to optimize the signal yields separately for Dþ and Dþ
s .

The optimization of the cut is performed by maximizing

the value of S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S is the number of signal

events and Sþ B is the total number of events in the signal
region. The purity S=ðSþ BÞ of the peak improves from
11.2% to 51.4% and from 16.6% to 60.6% for Dþ and Dþ

s ,
respectively.
Figure 2 shows the KþK0

S�
þ�� mass spectra in the Dþ

and Dþ
s regions before [(a) and (c)] and after [(b) and (d)]

the likelihood-ratio test. For each region, the signal is
described by the superposition of two Gaussian functions
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with a common mean value. The background is parame-
trized by a first-order polynomial in the Dþ region, and by
a second-order polynomial in the Dþ

s region. The fitted
functions are superimposed on the data in Fig. 2, and the
fit residuals, shown above each distribution, are repre-
sented by Pull ¼ ðNdata � NfitÞ=

ffiffiffiffiffiffiffiffiffiffi
Ndata

p
. From these

binned extended maximum likelihood fit, we extract the
integrated yields NðDþÞ ¼ 21 210� 392 and NðDþ

s Þ ¼
29 791� 337 from the fits, where the uncertainties are
statistical only. The mean value and width of the main
Gaussian are �Dþ ¼ 1869:8� 0:1 MeV=c2, �Dþ ¼
3:76�0:08MeV=c2 for Dþ, and �Dþ

s
¼ 1969:0�

0:1 MeV=c2, �Dþ
s
¼ 3:67� 0:18 MeV=c2 for Dþ

s .

We next divide the data sample into four subsamples
depending onDðsÞ charge and whetherCT ( �CT) is greater or

less than zero. We define

NðDþ
ðsÞ; CT > 0Þ ¼ NðDþ

ðsÞÞ
2

ð1þ ATÞ;

NðDþ
ðsÞ; CT < 0Þ ¼ NðDþ

ðsÞÞ
2

ð1� ATÞ;

NðD�
ðsÞ; �CT > 0Þ ¼ NðD�

ðsÞÞ
2

ð1� �ATÞ;

NðD�
ðsÞ; �CT < 0Þ ¼ NðD�

ðsÞÞ
2

ð1þ �ATÞ;

(7)

and fit the corresponding mass spectra simultaneously to
extract the yields and the values of the asymmetry parame-
ters AT and �AT . In this fit, the shape parameters are shared
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FIG. 2. The KþK0
S�

þ�� mass spectrum in the Dþ mass
region (a) before and (b) after the cut on the likelihood ratio.
Similar plots (c) and (d) are drawn for Dþ

s . The curves in (b) and
(d) result from the fits described in the text. The distributions of
the pull values are also shown. The �2=ndof values from the fits
are 0.87 (Dþ) and 0.95 (Dþ

s ).
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þ�� sidebands.
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among the four samples and are fitted together with the
yields, NðDþ

ðsÞÞ and NðD�
ðsÞÞ, and the asymmetries, AT and

�AT . The T-violating parameterAT is then computed using
Eq. (4).

We validate the method by using the generic MC sam-
ple. We find that the fit results for AT , �AT , and the computed
value of AT are in good agreement with those in the
simulation, both for Dþ and Dþ

s .
All event selection criteria are determined before the

final fit in order to avoid any potential bias. The true central
values of AT and �AT are masked by adding unknown
random offsets.

After removing the offsets, we measure the following
asymmetries:

ATðDþÞ ¼ ðþ11:2� 14:1stat � 5:7systÞ � 10�3;

�ATðD�Þ ¼ ðþ35:1� 14:3stat � 7:2systÞ � 10�3;
(8)

and

ATðDþ
s Þ ¼ ð�99:2� 10:7stat � 8:3systÞ � 10�3;

�ATðD�
s Þ ¼ ð�72:1� 10:9stat � 10:7systÞ � 10�3:

(9)

We observe values of AT and �AT which differ signifi-
cantly from zero only for Dþ

s decay. This may indicate the
presence of final-state-interaction effects for this decay
process, perhaps as a result of the slightly different reso-
nant substructure betweenDþ andDþ

s decay. For example,
the K�0K�þ final state can contribute only to Dþ

s through a

doubly Cabibbo-suppressed decay process. In the case of
Dþ decay we find AT and �AT to be consistent with zero, in
contrast with the results of a similar analysis performed on
the corresponding D0 decay sample [3]:

ATðD0Þ ¼ ð�68:5� 7:3stat � 5:8systÞ � 10�3;

�ATð �D0Þ ¼ ð�70:5� 7:3stat � 3:9systÞ � 10�3:
(10)

The fit results for the four data samples are shown in
Figs. 3 and 4. Using Eq. (4) we obtain the T violation
parameter values:

A TðDþÞ ¼ ð�12:0� 10:0stat � 4:6systÞ � 10�3 (11)

and

A TðDþ
s Þ ¼ ð�13:6� 7:7stat � 3:4systÞ � 10�3: (12)

For comparison, the value obtained for D0 decay was [3]

A TðD0Þ ¼ ðþ1:0� 5:1stat � 4:4systÞ � 10�3: (13)

The sources of systematic uncertainty considered in this
analysis are listed in Table I, and were derived as follows:
(1) We checked for possible asymmetries resulting from

the detector response using large statistics signal
MC samples in which the Dþ

ðsÞ decays uniformly

over phase space. These events are then weighted
according to the resonant structures observed in the
data (the resonances that contribute most are
�0 ! �þ��, K�0 ! Kþ��, and K�� ! K0

S�
�).

Small variations with respect to the generated values
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FIG. 3. Fits to the four Dþ ! KþK0
S�

þ�� data subsamples.
The pull values are shown above each mass distribution. The
�2=ndof values from the fit are 1.07 (Dþ, CT > 0), 1.10 (Dþ,
CT < 0), 1.19 (D�, �CT > 0), and 0.95 (D�, �CT < 0).
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FIG. 4. Fits to the four Dþ
s ! KþK0

S�
þ�� data subsamples.

The pull values are shown above each mass distribution. The
�2=ndof values from the fit are 1.05 (Dþ

s , CT > 0), 1.03 (Dþ
s ,

CT < 0), 1.15 (D�
s , �CT > 0), and 1.02 (D�

s , �CT < 0).
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are included in the evaluation of the systematic
uncertainties. Using the same samples, we studied
the effect of the forward-backward asymmetry
caused by the interference between the electromag-
netic current amplitude eþe� ! �� ! c �c and the
weak neutral current amplitude eþe� ! Z0 ! c �c.
This interference results in a Dþ

ðsÞ=D
�
ðsÞ production

asymmetry that varies linearly with the cosine of the
quark production angle ��, with respect to the e�
direction. Since the BABAR detector is asymmetric,
the final Dþ

ðsÞ and D�
ðsÞ yields are not equal. To

include this asymmetry in the MC samples, we
weighted them for the cos�� dependence measured
in a previous analysis [4]. This study showed that the
forward-backward asymmetry does not affect our
measurements.

(2) We modified the likelihood-ratio selection criteria,
and considered the observed deviations from the
central parameter values as sources of systematic
uncertainty.

(3) In order to check for final state radiation effects, we
modified the fitting model by allowing the second
Gaussian which describes the signal to have a free
mean value. The background description was also
modified by using higher order polynomials.

(4) The particle identification algorithms used to iden-
tify kaons and pions were modified to more stringent
or looser conditions in different combinations.

In the evaluation of the systematic uncertainty for each
category, we keep the largest deviation from the reference

value, and assume that the uncertainty is symmetric. It
should be noted that the systematic uncertainty on AT is
not evaluated as the sum in quadrature of the errors on AT

and �AT . Instead, it is evaluated directly from the deviation
of AT resulting from the fits. This is why the error from
the likelihood ratio or from particle identification is much
smaller for AT than would be expected from the uncer-
tainties on AT and �AT .
In conclusion, we have searched for CP violation using

T-odd correlations in high statistics samples of Cabibbo-
suppressed Dþ ! KþK0

S�
þ�� and Cabibbo-favored

Dþ
s ! KþK0

S�
þ�� decays. We obtained T-violating

asymmetries consistent with zero for both Dþ and Dþ
s

decays with sensitivities of � 1:0% and � 0:8%, respec-
tively. We found that possible final-state-interaction effects
in the KþK0

S�
þ�� final state are larger for Dþ

s decay than

for Dþ decay.
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