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Abstract

Data with multiple responses is ubiquitous in modern applications. However, few tools are 

available for regression analysis of multivariate counts. The most popular multinomial-logit model 

has a very restrictive mean-variance structure, limiting its applicability to many data sets. This 

article introduces an R package MGLM, short for multivariate response generalized linear 

models, that expands the current tools for regression analysis of polytomous data. Distribution 

fitting, random number generation, regression, and sparse regression are treated in a unifying 

framework. The algorithm, usage, and implementation details are discussed.

Introduction

Multivariate categorical data arises in many fields, including genomics, image analysis, text 

mining, and sports statistics. The multinomial-logit model (Agresti, 2002, Chapter 7) has 

been the most popular tool for analyzing such data. However, it is limiting due to its specific 

mean-variance structure and the strong assumption that the counts are negatively correlated. 

Models that address over-dispersion relative to a multinomial distribution and incorporate 

positive and/or negative correlation structures would offer greater flexibility for analysis of 

polytomous data.

In this article, we introduce an R package MGLM, short for multivariate response 

generalized linear models. The MGLM package provides a unified framework for random 

number generation, distribution fitting, regression, hypothesis testing, and variable selection 

for multivariate response generalized linear models, particularly four models listed in Table 

1. These models considerably broaden the class of generalized linear models (GLM) for 

analysis of multivariate categorical data.
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MGLM overlaps little with existing packages in R and other softwares. The standard 

multinomial-logit model is implemented in several R packages (Venables and Ripley, 2002) 

with VGAM (Yee, 2010, 2015, 2017) being the most comprehensive. We include the 

classical multinomial-logit regression model in MGLM not only for completeness, but also 

to complement it with various penalty methods for variable selection and regularization. If 

invoked by the group penalty, MGLM is able to perform variable selection at the predictor 

level for easier interpretation. This is different from the elastic net penalized multinomial-

logit model implemented in glmnet (Friedman et al., 2010), which does selection at the 

matrix entry level. Although MGLM focuses on regression, it also provides distribution 

fitting and random number generation for the models listed in Table 1. VGAM and dirmult 
(Tvedebrink, 2010) packages can estimate the parameters of the Dirichlet-multinomial (DM) 

distribution using Fisher’s scoring and Newton’s method respectively. As indicated in the 

manual (Yee, 2017), the convergence of Fisher’s scoring method may be slow due to the 

difficulty in evaluating the expected information matrix. Further the Newton’s method is 

unstable as the log-likelihood function may be non-concave. As explained later, MGLM 
achieves both stability and efficiency via a careful algorithmic design. In SAS, PROC 

LOGISTIC can fit multinomial-logit model. In Matlab, the mnrfit function fits multinomial-

logit regression. Alternative link functions (probit, loglog, complementary loglog) are 

implemented only for ordinal responses. Other regression models in Table 1 are not 

implemented in either SAS or Matlab.

There are some limitations to the MGLM. First, MGLM only handles nominal responses; 

ordinal responses are not incorporated in current implementation. MGLM also does not 

allow covariates to take a different value for each category, which can be useful in 

applications such as modeling consumer choice among a discrete number of products (Yee, 

2015, Chapter 14). Lastly, current implementation of MGLM does not permit parameter 

constraints.

MGLM provides standard errors for all estimates, reports significance of regression 

covariates based on the Wald test (default) or the likelihood ratio test (LRT), and outputs the 

AIC (Akaike information criterion) and BIC (Bayesian information criterion) of the fitted 

model to aid model choice by users. Model selection via regularization is automated by 

computing the solution path on a grid of tuning parameter values and then reporting the 

regularized estimate with minimal BIC. With large data sets in mind, we pay particular 

attention to computational efficiency. For numerical examples in this article, we report the 

run times whenever possible. The results are obtained on a laptop with Intel Core i7 CPU @ 

2.9GHz and 16G memory using MGLM 0.1.0 under R 3.4.3.

Multivariate generalized linear models (MGLM)

This section details the models implemented in MGLM. Table 1 summarizes the 

multivariate models implemented in the R package. They are multivariate analogs of 

binomial, beta-binomial, and negative binomial models. For each model, we specify the 

probability mass function of the response vector y, the link function that relates distribution 

parameters to covariates, and the log-likelihood function of a finite sample. We start from 

the classical multinomial-logit model.
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Multinomial (MN) model

The probability mass function of a d dimensional multinomial sample y = (y1,…,yd)T with 

batch size m = ∑j = 1
d yj and parameter p = (p1,…, pd) is

f(y | p) = m
y ∏

j = 1

d
pj
yj .

The parameter p is linked to the covariate vector x ∈ ℝp via the multinomial-Poisson 

transformation (Baker, 1994; Lang, 1996)

pj = exTβj

∑j′exTβj′
, j = 1, …, d,

where β1, …, βd ∈ ℝp are the regression coefficients. For identifiability, we constrain βd = 0 

and only estimate β1,…, βd−1, which are collected in the regression coefficient matrix 

B ∈ ℝp × (d − 1). Given independent observations (yi, xi), i = 1,…, n, the log-likelihood is

ℓ(B) = ∑
i = 1

n
∑

j = 1

d
yij xiTβj − ln ∑

j′ = 1

d
exiTβj′ + ∑

i = 1

n
ln

mi
yi

.

Because the log-sum-exponential mapping η1, …, ηd
T ln∑jeηj is convex (Boyd and 

Vandenberghe, 2004, p72), the log-likelihood function is concave. This nice feature makes 

maximum likelihood estimation relatively easy for multinomial-logit model. Unfortunately, 

convexity is lost in other models listed in Table 1.

Dirichlet-multinomial (DM) model

The mean-variance structure of the MN model does not allow over-dispersion, which is 

common in real data. DM distribution models the probability parameter p in the MN model 

by a Dirichlet distribution. The probability mass of a d-category count vector y over 

m = ∑jyj trials under DM with parameter α = (α1,…, αd), αj > 0 and proportion vector 

p ∈ Δd = {(p1, …, pd): pj ≥ 0, ∑j pj = 1} is

f(y |α) = ∫Δd
m
y ∏

j
pj
yj Γ ∑jαj

∏jΓ αj
∏

j
pj
αj − 1

dp

= m
y ∏

j = 1

d Γ αj + yj
Γ αj

Γ ∑jαj
Γ ∑jαj + ∑jyj

= m
y

∏j = 1
d αj yj
∑jαj m

,

where (a)k = a(a + 1)···(a + k − 1) for nonnegative integer k denotes the rising factorial. The 

last equality is due to the identity Γ(a + k)/Γ(a) = (a)k (Graham et al., 1994). Because the 
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data yj and parameter αj are intertwined in the gamma (or rising factorial) terms and do not 

factorize, the DM distribution does not belong to the exponential family. To incorporate 

covariates, the inverse link function

αj = exTβj, j = 1, …, d

relates the parameter α = (α1,…, αd) of the DM distribution to the covariates x. The log-

likelihood for independent data points (yi, xi), i = 1,…, n, takes the form

ℓ(B) = ∑
i = 1

n
∑

j = 1

d
∑

k = 0

yij − 1
ln exiTβj + k − ∑

i = 1

n
∑

k = 0

mi − 1
ln ∑

j = 1

d
exiTβj + k + ∑

i = 1

n
ln

mi
yi

with B = β1, …, βd ∈ ℝp × d collecting all regression coefficients. The log-likelihood, as a 

difference of two convex terms, is not concave in general.

Negative multinomial (NegMN) model

The counts Υj in both MN and DM models are negatively correlated, restricting their use for 

counts with positive correlation. The NegMN distribution provides a natural model for 

positively correlated count data. The probability mass of a count vector y under a NegMN 

distribution with parameter p1, …, pd + 1, ϕ , ∑j = 1
d + 1 pj = 1, pj, ϕ > 0, is

f(y | p, ϕ) = ϕ + m − 1
m

m
y ∏

j = 1

d
pj
yjpd + 1

ϕ =
(ϕ)m
m!

m
y ∏

j = 1

d
pj
yjpd + 1

ϕ ,

where 
ϕ + m − 1

m =
(ϕ)m
m!  is the general binomial coefficient. The parameter ϕ and the data m 

do not factorize. Therefore, NegMN does not belong to the exponential family when ϕ is 

unknown. We use the inverse link functions

pj = exTαj

1 + ∑j = 1
d exTαj

, 1 ≤ j ≤ d, pd + 1 = 1
1 + ∑j = 1

d exTαj
, ϕ = exTβ

to relate the covariates x to distribution parameter (p1,…, pd+1, ϕ). Let 

B = α1, …, αd, β ∈ ℝp × (d + 1) collect all the regression coefficients. Given n independent 

data points (yi, xi), i = 1,…, n, the log-likelihood is

ℓ(B) = ∑
i = 1

n
∑

k = 0

mi − 1
ln exiTβ + k − ∑

i = 1

n
exiTβ + mi ln ∑

j = 1

d
exiTαj + 1

+ ∑
i = 1

n
∑

j = 1

d
yijxiTαj − ∑

i = 1

n
∑

j = 1

d
lnyij!,
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which in general is not concave in αj and β.

In some applications the over-dispersion parameter ϕ may not depend on the covariates x. 

MGLM offers the option to model the responses yi to share a common dispersion parameter 

ϕ, without linking it to the covariates. In this case, the log-likelihood is

ℓ α1, …, αd, ϕ = ∑
i = 1

n
∑

k = 0

mi − 1
ln(ϕ + k) − ∑

i = 1

n
ϕ + mi ln ∑

j = 1

d
exiTαj + 1

+ ∑
i = 1

n
∑

j = 1

d
yijxiTαj − ∑

i = 1

n
∑

j = 1

d
lnyij! .

The model size is pd + 1 and MGLM outputs the estimates α1, …, αd, ϕ  and their standard 

errors.

Generalized Dirichlet-multinomial (GDM) model

In the previous three models, the multivariate counts have either pairwise negative 

correlation (MN and DM) or pairwise positive correlation (NegMN). It is possible to relax 

these restrictions by choosing a more flexible mixing distribution for the probability vector p 
in MN model. Connor and Mosimann (1969) suggest a generalization of the Dirichlet 

distribution that meets this challenge. The resulting admixed distribution, called the GDM 

distribution, provides a flexible model for multivariate categorical data with a general 

correlation structure (Bouguila, 2008; Zhou and Lange, 2010).

The probability mass of a count vector y over m = ∑jyj trials under GDM with parameter 

(α, β) = (α1,…, αd−1, β1,…, βd−1), αj, βj > 0, is

f(y |α, β) = m
y ∏

j = 1

d − 1 Γ αj + yj
Γ αj

Γ βj + zj + 1
Γ βj

Γ αj + βj
Γ αj + βj + zj

= m
y ∏

j = 1

d − 1 αj yj βj zj + 1
αj + βj zj

,
(1)

where zj = ∑k = j
d yk. Again it is clear that the GDM distribution does not belong to the 

exponential family, since the parameter αj, βj and data yj, zj do not factorize.

We propose the inverse link functions

αj = exTαj, βj = exTβj, 1 ≤ j ≤ d − 1,

to relate the covariates x and parameter (α1,…, αd−1, β1,…, βd−1) of the GDM distribution 

(1). Let B = α1, …, αd − 1, β1, …, βd − 1 ∈ ℝp × 2(d − 1) collect all the regression coefficients. 

Given n independent data points (yi, xi), the log-likelihood is
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ℓ(B) = ∑
i = 1

n
∑

j = 1

d − 1
∑

k = 0

yij − 1
ln exiTαj + k + ∑

k = 0

zi, j + 1 − 1
ln exiTβj + k

− ∑
k = 0

zij − 1
ln exiTαj + exiTβj + k + ∑

i = 1

n
ln

mi
yi

.

Again the log-likelihood is not concave in general.

Which model to use?

When there are no covariates, multinomial model is a special case of the DM models, which 

in turn is a sub-model of the GDM model. That is, MN ⊂ DM ⊂ GDM. The distribution 

fitting function MGLMfit reports the p-value of the LRT for comparing the fitted model with 

the most commonly used multinomial model. NegMN model does not have such a 

relationship with any of the other three models. Therefore, no LRT is performed when 

dist=“NegMN” in the distribution fitting function MGLMfit.

For regression, there is no nesting structure among the models in Table 1. The regression 

function MGLMreg outputs AIC and BIC of the fitted model to aid users in choosing an 

appropriate regression model for their data.

Standard errors and testing

Standard errors for both distribution fitting (MGLMfit) and regression estimates 

(MGLMreg) are calculated based on the observed information matrix, as it provides a 

reasonable approximation to the expected information matrix and is even preferred as argued 

by Efron and Hinkley (1978).

Unlike regression for univariate responses, the MGLM regression parameter is a matrix 

B = β1, …, βde ∈ ℝp × de with each row Bk, corresponding to the effects of one predictor. 

Here de = d − 1 (MN), d (DM), d + 1 (NegMN), or 2(d − 1) (GDM). Therefore, the 

hypotheses for testing the significance of the k-th covariate are:

H0 : Bk,
T ⋅ 2 = 0 vs Ha : Bk,

T ⋅ ≠ 0.

By default, MGLMreg assesses the significance of each predictor by the Wald test. Let

Σ = Iobs
−1(B) = − ∇2ℓ(B) −1 ∈ ℝpde × pde

be the inverse of the observed information matrix at the maximum likelihood estimate 

(MLE) B. Then the Wald statistic is computed as

W k = Bk, ⋅ Σk, kBk, ⋅
T ,
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where Σk, k is the sub-matrix of Σ obtained by selecting rows and columns corresponding to 

the entries of Bk,·. Wk is asymptotically distributed as a chi-square distribution with de 

degrees of freedom under the null distribution, yielding the p-values reported by MGLMreg. 

Users can also easily invoke the LRT by calling MGLMreg with option LRT=TRUE. LRT 

requires more computation than Wald test as it needs to perform MLE on p sub-models.

Regularization

The number of parameters, pde, in the multivariate response models can be unwieldy with a 

moderate to large number of predictors. When the sample size n is limited or even smaller 

than pde, regularization is necessary for variable selection, model interpretation, and 

improving the risk property of the estimate. In general, the MGLMsparsereg function solves 

the regularized problem

min
B

− ℓ(B) + J(B),

where ℓ is the log-likelihood function and J is a penalty term. The choice of J depends on 

specific applications. We implemented three classes of penalties. Below, S is an index set for 

the set of predictors subject to regularization, which can be selectively specified by the users.

In elementwise regularization (penalty=‘sweep’),

J(B) = ∑
k ∈ S

∑
j = 1

de
Pη |βkj|, λ ,

where P is a scalar penalty function, λ is the penalty tuning constant, and η is a parameter 

indexing member of a penalty family. Choices of the penalty families include: power family 

(Frank and Friedman, 1993), where Pη(|x|, λ) = λ|x|η, η ∈ (0, 2], and in particular lasso 

(Tibshirani, 1996) (η = 1) and ridge (η = 2); elastic net (Zou and Hastie, 2005), where Pη(|x|, 

λ) = λ[(η − 1)x2/2 + (2 − η)|x|], η ∈ [1, 2]; SCAD (Fan and Li, 2001), where 

∂ / ∂ |x |Pη( |x | , λ) = λ 1 |x | ≤ λ + (ηλ − |x | )+/(η − 1)λ1 |x | > λ , η > 2; and MC+ penalty 

(Zhang, 2010), where Pη(|x|, λ) = {λ|x| − x2/(2η)}1{|x|<ηλ} + 0.5λ2η1{|x|≥ηλ}. The special 

case of elastic net for the multinomial-logit model is also implemented in the popular 

glmnet package by Friedman et al. (2010) using coordinate descent algorithm. MGLM 
implements a generic accelerated proximal gradient method that applies to the following two 

penalties too.

In groupwise regularization (penalty=‘group’),

J(B) = λ ∑
k ∈ S

Bk, ⋅ 2 = λ ∑
k ∈ S

∑
j = 1

de
βkj

2
1/2

.

The group penalty (Yuan and Lin, 2006; Meier et al., 2008) achieves variable selection at the 

predictor level and leads to a more interpretable model.

Kim et al. Page 7

R J. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shrinkage and sparsity in terms of the rank of B is achieved by the nuclear norm 
regularization (penalty=‘nuclear’)

J(B) = ‖B‖* = λ∑
i

σi(B),

where σi(B)’s are the singular values of the matrix B. The nuclear norm ||B||∗ is a suitable 

convex relaxation of the rank of a matrix parameter. It encourages low rank of the parameter 

matrix estimate and has been successfully employed in the matrix completion problem 

(Mazumder et al., 2010), regression with matrix covariates (Zhou and Li, 2014) and 

predicting at-bat results in baseball (?).

The wrapper function MGLMtune facilitates the tuning procedure by performing the 

regularized estimation over a grid of 30 (default) tuning parameter values using warm start 

and reports the optimal tuning parameter according to BIC. Users can also supply their own 

grid points.

Optimization algorithms and implementation

As the DM, NegMN, and GDM distributions do not belong to the exponential family, the 

usual iteratively reweighted least squares method for maximum likelihood estimation of 

GLM does not apply. The main issue lies in the difficulty of calculating the expected 

information matrix, which involves evaluating numerous tail probabilities of the marginal 

distribution (Paul et al., 2005; Zhou and Lange, 2010; Zhou and Zhang, 2012). On the other 

hand, Newton’s method suffers from instability since the log-likelihood functions are non-

concave in general.

For distribution fitting, Zhou and Lange (2010) derive stable algorithms based on the 

minorization-maximization (MM) principle (Lange et al., 2000). Similar to the classical 

expectation-maximization algorithm, MM algorithm increases the objective value at each 

iteration and converges to a stationarity point of objective function under mild regularity 

conditions.

For regression models, Zhang et al. (2017) propose an iteratively reweighted Poisson 

regression (IRPR) method for maximum likelihood estimation. Their derivation again hinges 

upon the MM principle, resulting in the much desirable stability of the IRPR algorithm 

which is critical as the number of parameters is potentially large.

In practice, MM algorithm may suffer from slow convergence especially in the proximity of 

the optimum. MGLM organically combines the MM algorithm and the Newton’s method. 

At each iteration, it computes both MM and Newton updates and chooses the one that results 

in a higher log-likelihood. Thus, stability is ensured as the log-likelihood always increases. 

When sufficiently close to the optimum, Newton’s method takes over and quickly converges 

to the MLE in just a few iterations.

An added advantage of the MM algorithm is that it separates parameters and embraces 

parallel computing (Zhou et al., 2010). Each iteration of the IRPR algorithm involves 
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solving de independent Poisson regressions (Zhang et al., 2017) that can be carried out in 

parallel. Building upon the parallel package in R, the MGLMreg regression function 

supports multi-threading on a multi-core machine.

For sparse regression in the MGLMsparsereg function, we implemented the accelerated 

proximal gradient (Nesterov) method (Zhang et al., 2017). Each iteration only involves 

evaluation of the gradient of the negative log-likelihood, followed by the elementwise, 

groupwise, or singular value thresholding according to the regularization being used, and 

thus scales well with the problem size.

The R package aspect

Three main functions of the MGLM package are MGLMfit for fitting multivariate 

distributions, MGLMreg for fitting multivariate response regressions, and MGLMsparsereg 

for fitting sparse regressions. The package adopts S4 object system. In this section, we 

demonstrate their basic usage using a simulated RNA-seq data set. The R vignette included 

in the package provides more extensive examples.

The rnaseq data that comes with the package is simulated from the isoform package (Sun, 

2014; Sun et al., 2015) and mimics the real counts generated by the RNA-seq platforms. The 

simulation mechanism follows the biological process and has nothing to do with the models 

in Table 1.

In this example, 6 exons are expressed in a gene. Each observation consists of the expression 

levels (represented by counts) of each exon along with covariates totalReads, treatment, 

gender, and age of an individual. 200 observations are simulated. In the generative model, 

exon expression levels are affected by intercept, number of total reads (on log scale), and 

treatment. Age and gender are unrelated to the exon counts.

R> library(”MGLM”)

R> data(”rnaseq”)

R> data <- rnaseq[, 1:6]

R> head(rnaseq, n = 3)

   X1  X2 X3  X4 X5 X6 totalReads treatment gender age

1 295  65 19 114 54 20   28317494         0      0  57

2 213 126 12  96 50  4   20015549         0      0  67

3 322 147 23 245 42 19   35318251         0      1  37

R> dim(rnaseq)

  [1] 200  10
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Distribution fitting

We first ignore covariates and demonstrate distribution fitting and model selection with BIC 

and LRT. The multi-categorical distribution fitting is performed by the function MGLMfit.

The primary inputs of the function are the multi-categorical count data in the format of data 

frame or matrix and the distribution intended to fit. The user can also use the weight 

argument to specify the weight of each observation. Initial values of the iterative algorithm 

can also be determined by the user using init argument. The function also has epsilon, 

maxiters, and display to control the convergence threshold, maximum number of iterations 

to run, and whether to display the result from each iteration, respectively.

The outputs are returned in a list of class “MGLMfit”, including parameter estimates, their 

standard errors, log-likelihood, AIC, BIC, number of iterations to converge. The inversed 

information matrices and gradients are also returned, but are not printed, in order to keep the 

printed output concise. When fitting DM and GDM distribution, we also perform LRT, 

testing against the null hypothesis of using multinomial model. p-values of the LRTs are 

returned.

The following snippets fit the DM

R> system.time (

+   dmFit <- MGLMfit(data, dist = ”DM”)

+ )

 user  system elapsed

0.255   0.007   0.263

R> dmFit

         estimate       SE 

alpha_X1 6.128117 0.327888 

alpha_X2 2.413647 0.139676 

alpha_X3 1.625627 0.099424 

alpha_X4 6.822929 0.362568 

alpha_X5 2.214236 0.129233 

alpha_X6 0.784028 0.051369

Distribution: Dirichlet Multinomial

Log-likelihood: −4968.666

BIC: 9969.121

AIC: 9949.331

LRT test p value: <0.0001 

Iterations: 6 
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and the GDM model

R> system.time(

+    gdmFit <- MGLMfit(data, dist = ”GDM”)

+ )

    user  system elapsed

   0.380   0.019   0.399

R> gdmFit

          estimate       SE 

alpha_X1  3.741846 0.367088 

alpha_X2  2.400909 0.815431 

alpha_X3  1.558396 0.233136 

alpha_X4  6.988354 1.164764 

alpha_X5 20.689398 0.149279 

beta_X1   8.026379 0.966502 

beta_X2  11.038376 0.725978 

beta_X3   8.961428 0.264520 

beta_X4   2.702723 2.871718 

beta_X5   4.854816 0.648271

Distribution: Generalized Dirichlet Multinomial

Log-likelihood: −4841.231

BIC: 9735.446

AIC: 9702.463

LRT test p value: <0.0001

Iterations: 59

Both dmFit and gdmFit give the LRT p-value for comparing the fitted model with the MN 

model. In this example, both are significantly better than MN, with p-values ≪ 0.05. To 

compare DM and GDM, we can either compare their BICs or perform a formal LRT.

R> LRT <- −2 * (logLik(dmFit) - logLik(gdmFit))

R> pchisq(LRT, ncol(data) - 2, lower.tail = FALSE)

 [1] 5.817352e-54

Both suggest that GDM provides a significantly better fit than DM.

The NegMN model
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R> system.time(

+   negmnFit <- MGLMfit(data, dist = “NegMN”)

+ )

 user  system elapsed

0.006   0.002   0.009

R> print(negmnFit)

      estimate       SE

p_X1  0.311486 0.001362 

p_X2  0.106491 0.000850 

p_X3  0.098373 0.000819 

p_X4  0.350496 0.001425 

p_X5  0.094263 0.000803 

p_X6  0.021220 0.000389 

phi  12.232569 1.229253

Distribution: Negative Multinomial

Log-likelihood: −20673.71

BIC: 41384.52

AIC: 41361.43 

LRT test p value: 

Iterations: 3

yields a much larger BIC than those of DM and GDM. LRT does not apply here, since 

NegMN is not a sub-model of the other three.

Regression

The more interesting question is whether the covariates have a significant relationship to the 

responses. Regressions are performed using function MGLMreg. First, the regression 

formula is required by the MGLMreg function. When specifying the regression formula, the 

response matrix is on the left hand side and the covariates on the right, following the 

convention in lm and glm. The model is specified using the dist argument. The input 

argument data is optional. When specified, the formula is built based on the supplied data 

frame; otherwise, the function searches through the global environment for the data 

elements. Similar to the distribution fitting function, weights of the observations can be 

specified by the weight argument, and initial values can be supplied using init arguments. 

Parallel computing is also implemented in the package. Setting parallel=TRUE and giving 

the number of cores using the argument core invokes multi-threading. The other arguments 

used to control the algorithm convergence and display include epsilon, maxiters, display, and 

LRT.
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The output of MGLMreg is a list of class “MGLMreg”, containing the estimated regression 

coefficients, their standard errors, Wald test statistics and their corresponding p-values for 

each predictor, log-likelihood, AIC, BIC, gradient and Hessian matrix at the estimate, 

number of iterations, and fitted values.

We fit the four regression models in Table 1 with all 5 covariates: intercept, number of total 

reads (on log scale), treatment, age, and gender.

A few observations can be made from the following output. BIC indicates the GDM model 

as the best fit, followed by the DM model. This is consistent with the distribution fitting 

results. Note that the hypothesis testing results in the four models are different. In the MN 

model, all covariates are significant; however, this is not true because age and gender have 

no effects in the generative model. DM also wrongly identifies age as a significant predictor. 

Only the GDM model correctly identifies true significant predictors.

MN regression

R> system.time(

+    mnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ 

log(totalReads) +

+                    treatment + age + gender, data = rnaseq, dist = ”MN”) 

+ )

    user  system elapsed

   0.142   0.006   0.149

R> print(mnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 

    treatment + age + gender, data = rnaseq, dist = ”MN”)

Coefficients:

            X1        X2        X3        X4        X5

[1,]  4.942732  5.009649 −3.792216  4.435434  4.027689

[2,] −0.112845 −0.170222  0.219277 −0.107260 −0.120928

[3,] −0.022655 −0.043099  2.745277  1.405742  0.092246

[4,] −0.006187 −0.009709 −0.005907 −0.010945 −0.009599

[5,]  0.032676  0.100389  0.020663  0.103859  0.009514

Hypothesis test: 

                  wald value    Pr(>wald) 

(Intercept)        144.88789 1.634268e-29 

log(totalReads)     69.92572 1.061922e-13 

treatment        18364.13260 0.000000e+00 
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age                 79.91023 8.762650e-16 

gender              52.33670 4.601575e-10

Distribution: Multinomial

Log-likelihood: −7506.393

BIC: 15145.24

AIC: 15062.79

Iterations: 6

DM regression

R> system.time(

+    dmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ 

log(totalReads) +

+                    treatment + age + gender, data = rnaseq, dist = “DM”) 

+ )

    user  system elapsed

   0.182   0.004   0.187

R> print(dmreg)

 Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 

     treatment + age + gender, data = rnaseq, dist = ”DM”)

Coefficients:

            X1        X2        X3        X4        X5       X6

[1,] −0.895850 −1.096921 −8.997414 −1.736871 −1.774227 −5.646822

[2,]  0.221988  0.186919  0.536572  0.252679  0.216672  0.347271

[3,] −0.679291 −0.686881  1.835585  0.707954 −0.546469 −0.543134

[4,]  0.010245  0.005227  0.009134  0.004252  0.006090  0.011642

[5,] −0.026177  0.040244 −0.052842  0.023178 −0.058339 −0.039139

Hypothesis test:

                 wald value Pr(>wald) 

(Intercept)       14.579069  0.023796 

log(totalReads)    8.502549  0.203547 

treatment       1851.437449  0.000000 

age               13.131512  0.040994 

gender             4.133364  0.658634

Distribution: Dirichlet Multinomial

Log-likelihood: −4386.941

BIC: 8932.831
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AIC: 8833.882

Iterations: 9

GDM regression

R> system.time(

+    gdmreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ 

log(totalReads) +

+                treatment + age + gender, data = rnaseq, dist = “GDM”) 

+ )

    user  system elapsed

   0.219   0.003   0.224

R> print(gdmreg)

  Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 

      treatment + age + gender, data = rnaseq, dist = ”GDM”)

Coefficients:

      alpha_X4  alpha_X1  alpha_X2  alpha_X3   alpha_X5   beta_X4 

[1,]  5.987993 −7.056673  0.456088 −10.120738  2.639396  4.661089

[2,] −0.215099  0.555973  0.039553   0.720358 −0.016121 −0.140896

[3,] −0.047691 −0.329320  0.979359   0.099958  0.063393  0.628878

[4,]  0.006661 −0.004343  0.019361   0.008173  0.012397  0.003224

[5,]  0.233006  0.374838 −0.186420  −0.202417  0.144289  0.212071 

       beta_X1   beta_X2   beta_X3   beta_X5 

[1,] −9.789127  7.095061 −9.530008 −1.687615

[2,]  0.713819 −0.222984  0.743146  0.133985

[3,]  0.746198 −1.591630 −0.923712 −0.042441

[4,]  0.000453  0.015945  0.012541  0.019188

[5,]  0.273256 −0.233121 −0.270428  0.122062

Hypothesis test:

                wald value Pr(>wald)

(Intercept)       15.40109  0.118109 

log(totalReads)   11.04187  0.354265 

treatment       2549.23829  0.000000 

age               16.42846  0.088007 

gender            10.72122  0.379646

Distribution: Generalized Dirichlet Multinomial

Log-likelihood: −4289.281

BIC: 8843.479
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AIC: 8678.563

Iterations: 46

NegMN regression

There are two variants of NegMN regression, depending on whether to link over-dispersion 

parameter to covariates. The default setting regBeta=FALSE instructs MGLMreg to fit the 

NegMN regression with all observations sharing the same over-dispersion parameter value. 

There are pd + 1 parameters.

R> system.time(

+    negmnreg2 <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~

+                    log(totalReads) + treatment + age + gender,

+                  data = rnaseq, dist = “NegMN”, regBeta = FALSE) 

+ )

     user  system elapsed

    0.196   0.004   0.201

R> print(negmnreg2)

 Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 

     treatment + age + gender, data = rnaseq, dist = “NegMN”, 

     regBeta = FALSE)

Coefficients:

$alpha

                        X1         X2         X3         X4

(Intercept)     −13.587385 −13.521818 −22.380101 −14.131348 

log(totalReads)   0.907716   0.850412   1.242922   0.915258 

treatment        −0.753113  −0.773507   2.014641   0.675195 

age               0.002583  −0.000938   0.002916  −0.002141 

gender           −0.060696   0.007022  −0.069502   0.012499

                        X5         X6

(Intercept)     −14.507698 −18.526425

log(totalReads)   0.899918   1.020360 

treatment        −0.638296  −0.730410 

age              −0.000824   0.008766 

gender           −0.083681  −0.093397

$phi

    phi

31.6062
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Hypothesis test:

                wald value    Pr(>wald) 

(Intercept)      385.75540 3.223413e-80 

log(totalReads)  368.08485 2.017976e-76 

treatment      18377.52958 0.000000e+00 

age               79.70906 4.103065e-15 

gender            54.84662 4.978098e-10

Distribution: Negative Multinomial

Log-likelihood: −8746.689

BIC: 17657.63

AIC: 17555.38

Iterations: 35

regBeta=TRUE instructs MGLMreg to link over-dispersion parameter to covariates and 

there are p(d + 1) regression coefficients. Small likelihood, larger AIC/BIC and slow 

convergence reflects the lack of fit of this model.

R> system.time(

+      negmnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~

+                  log(totalReads) + treatment + age + gender,

+                data = rnaseq, dist = “NegMN”, regBeta = TRUE) 

+ )

     user  system elapsed

    9.866   0.023   9.898

R> print(negmnreg)

Call: MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 

    treatment + age + gender, data = rnaseq, dist = “NegMN”, 

    regBeta = TRUE)

Coefficients:

                       X1         X2         X3         X4

(Intercept)    −17.648355 −17.582555 −26.462109 −18.204282 

log(totalReads)  1.192057   1.134742   1.528500   1.200309 

treatment       −0.877324  −0.897715   1.890375   0.550944 

age             −0.013397  −0.016918  −0.013072  −0.018127 

gender          −0.101456  −0.033730  −0.110253  −0.028252

                       X5         X6       phi

(Intercept)    −18.569609 −22.587821  7.543157 
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log(totalReads)  1.184315   1.304725 −0.285737 

treatment       −0.762503  −0.854624  0.125412 

age             −0.016804  −0.007213  0.015871 

gender          −0.124433  −0.134173  0.041254

Hypothesis test: 

                  wald value    Pr(>wald) 

(Intercept)        291.48017 3.987668e-59 

log(totalReads)    371.39226 3.232075e-76 

treatment        18377.18774 0.000000e+00 

age                 81.70350 6.187095e-15 

gender              54.79955 1.633654e-09

Distribution: Negative Multinomial

Log-likelihood: −8745.162

BIC: 17675.77

AIC: 17560.32

Iterations: 140

Sparse regression

The function MGLMsparsereg performs regularized estimation. Similar to MGLMreg, the 

inputs of the sparse regression function include formula, data, dist, and the convergence 

controlling arguments. The function also requires the tuning parameter lambda, and the 

penalty type argument penalty. The outputs include the coefficient estimates, log-likelihood, 

AIC, BIC, degrees of freedom, and the number of iterations.

We simulate 100 data points from a 5-variate DM model using 10 covariates. Only three of 

them (1, 3, and 5) have non-zero effects. For each 5-variate data point, batch size, or the total 

number of objects that are put into 5 categories, is drawn from Bin(200, 0.8).

R> dist <- ”DM”

R> n <- 100

R> p <- 10

R> d <- 5

R> set.seed(118)

R> m <- rbinom(n, 200, 0.8)

R> X <- matrix(rnorm(n * p), n, p)

R> alpha <- matrix(0, p, d)

R> alpha[c(1, 3, 5), ] <- 1

R> Alpha <- exp(X %*% alpha)

R> Y <- rdirmn(size = m, alpha = Alpha) 

R> length(m)

  [1] 100
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R> head(m)

  [1] 167 160 162 159 156 157 

R> head(Y)

     [,1] [,2] [,3] [,4] [,5]

[1,]  24    7   112   15    9

[2,]  34   33    31   38   24

[3,]   0    0     0    0  162

[4,]   7   17    84   29   22

[5,]   0   33     0  123    0

[6,]   0    0     3  154    0

R> head(rowSums(Y))

  [1] 167 160 162 159 156 157

We demonstrate the regularized estimation by group, nuclear norm, and element-wise 

penalization.

Variable selection by group penalty

With input lambda=Inf, MGLMsparsereg returns λmax, the maximum value the tuning 

parameter can take such that not all regression coefficient estimates are 0.

R> pen <- “group”

R> ngridpt <- 30

R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,

+                    lambda = Inf, penalty = pen)

R> maxlambda <- maxlambda(spmodelfit)

R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),

+                 length.out = ngridpt))

Tuning is performed on 30 grid points. The left panel of Figure 1 displays the BIC trace 

along the solution path.

R> BICs <- rep(0, ngridpt)

R> AICs <- rep(0, ngridpt)

R> LogLs <- rep(0, ngridpt)

R> Dofs <- rep(0, ngridpt)

R> ptm <- proc.time()

R> for (j in 1:ngridpt) {
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+   if (j == 1) {

+     B0 <- matrix(0, p, ncol(coef(spmodelfit)))

+   }

+   else B0 <- B_hat

+   select.fit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,

+                                      lambda = lambdas[j], penalty = pen, 

init = B0)

+   B_hat <- coef(select.fit)

+   BICs[j] <- BIC(select.fit)

+   LogLs[j] <- logLik(select.fit)

+   AICs[j] <- AIC(select.fit)

+   Dofs[j] <- dof(select.fit)

+  }

R> proc.time() - ptm

    user  system elapsed

   4.469   0.026   4.500

R> pen <- ”group”

R> ngridpt <- 30

R> spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,

+                           lambda = Inf, penalty = pen)

R> maxlambda <- maxlambda(spmodelfit)

R> lambdas <- exp(seq(from = log(maxlambda), to = log(maxlambda / nrow(Y)),

+                        length.out = ngridpt))

The right panel of Figure 1 displays the regularized estimate B(λ) at the tuning parameter 

value with minimal BIC.

R> chosen.lambda <- lambdas[which.min(BICs)]

R> select <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist,

+                                        lambda = chosen.lambda, penalty = 

pen)

Alternatively, the function MGLMtune automates the tuning procedure and reports the 

regularized estimate at the optimal tuning parameter value according to BIC.

R> selectTune <- MGLMtune(Y ~ 0 + X, dist = dist, penalty = pen, ngridpt = 

30,

+                                       display = FALSE)

The option ngridpt sets the number of grid points ngrid and the sequence of tuning 

parameters is equally spaced on the log scale within the interval [λmax/ngrid, λmax].
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Low rank regression by nuclear norm regularization

Nuclear norm regularization is invoked by setting penalty=”nuclear”.

R> system.time (

+    select <- MGLMtune(Y ~ 0 + X, dist = ”DM”, penalty = ”nuclear”,

+                              ngridpt = 30, display = FALSE))

    user  system elapsed

   4.475   0.037   4.528

Figure 2 displays the BIC trace plot and the regularized estimate at optimal λ from the same 

data by the nuclear norm penalty.

Select by entries

R> system.time (

+    select <- MGLMtune(Y ~ 0 + X, dist = ”DM”, penalty = ”sweep”, ngridpt = 

30,

+                              display = FALSE))

    user  system elapsed

   4.448   0.038   4.504

Figure 3 displays the BIC trace plot and the regularized estimate at optimal λ from the same 

data by the element-wise lasso penalty.

Discussion

This article introduces the MGLM package for analysis of multivariate categorical data. 

Distribution fitting, regression, sparse regression, and random number generation are 

implemented in a simple and unified framework. It timely responds to the current challenge 

of multivariate categorical data analysis arising from modern technology such as RNA-seq. 

The R package is available on CRAN.

There are several possible extensions that would be useful to the package. Some of them 

include:

1. Alternative parameterization. Some models in Table 1 admits alternative 

parameterization. For instance, the DM distribution can be re-parameterized as

θ = 1
∑jαj

, pj =
αj

∑j′αj′
, j = 1, …, d .

in terms of the proportion vector p = (p1,…, pd) ∈ Δd and the overdispersion 

parameter θ > 0. Appropriate inverse link function can be
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pj = exTβj

1 + ∑j′ = 1
d − 1 exTβj′

, j = 1, …, d − 1,

θ = exTβd .

The multinomial-logit model can be treated as a special case with βd = 0. Zhou 

and Lange (2010) discuss an algorithm for distribution fitting using this 

parameterization. Corresponding estimation algorithm for the regression model 

needs to be devised and implemented. Similar re-parameterization applies to the 

GDM model.

2. Alternative link function. Current version only implements the log link function 

for positive distribution parameter and logit link for the probability vector. 

Inclusion of alternative link functions such as probit and cloglog would expand 

the flexibility of the models.

3. Ordinal categorical responses. Multinomial-logit model can be adapted to ordinal 

categorical responses (Agresti, 2002, Chapter 7). Parallel developments and 

implementation for the DM, NegMN, and GDM models are worth considering.

4. Parameter constraints. Current version does not allow constraints among 

regression parameters. MGLMreg calls glm.fit functions to fit weighted Poisson 

regressions in each iteration; we may call functions from glmc package 

(Chaudhuri et al., 2006) instead to incorporate parameter constraints.

5. The xij argument (Yee, 2015, Chapter 14). Current version assumes the same set 

of covariates for all categories. Allowing covariates to take different values for 

each category can be useful, e.g., for discrete choice modeling in econometrics. 

The corresponding algorithm and implementation are worth exploring.

The MGLM package for R is continually being developed.
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Figure 1: 
Variable selection by the group penalty. Left: BIC trace. Right: Regularized estimate B(λ) at 

the optimal λ displayed in gray scale.
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Figure 2: 
Low rank regression by the nuclear norm penalty. Left: BIC trace. Right: Regularized 

estimate B(λ) at the optimal λ displayed in gray scale.
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Figure 3: 
Select by parameter matrix entries with L1 norm penalty. Left: BIC trace. Right: 

Regularized estimate B(λ) at the optimal λ displayed in gray scale.
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Table 1:

Multivariate generalized linear model implemented in the MGLM package.

Model No. regress. param. Correlation MGLM code

Multinomial p(d − 1) Negative dist=‘MN’

Dirichlet-multinomial pd Negative dist=‘DM’

Negative multinomial p(d + 1) or pd + 1 Positive dist=‘NegMN’

Gen. Dirichlet-multinomial 2p(d − 1) Negative and positive dist=‘GDM’

d is the number of categories and p is the number of predictors in the regression model.
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