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Summary

oroetions of materiasls of

&3
i" E

The thermodynsmics o
firgt-order quasilinesar differentisl type is studied on the basis of the

essumption that the strain is the sum of & "rg pendent” and a "rate-

?ﬁ

dependent” part, and that the wmaberisl btime
of the former, is e kinematlical variable of
shown to lead tu the most general isothermel constitubive equation of
such a materlal. Furthermore, non-isothermsl behsvior can be predicted
from the isothermal cherscteristic functions at various temperatures. A
distinction is made between viscoelastic and viscoplsstic meteriasls on
the basis of the contimuity (or lack of it) of the rate equation with
respect to strain rate, For viscoelastic materisls the functional

form of the free-energy density is determined completely, snd specific
examples of such materials are discussed., Viscoplastic materiasls are
discussed with regerd to yield condition smd relationship to plastic
materials. The validity of the development for three-dimensional deforma-

tions is remarked upon.
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of the form

while the super-

with respect to time, has

al derivatives

visc

wtic and vigcoplastic

materials, in both gquasi-st treatments. Materials

! described by Eq. (1]} may exhibit solid-like behavior both instan-

3

tanecusly end in eguilibriam {though special forms of the functions

() and g( Y may correspond to fluid-like behavior), creep,

relaxation, and, with & slight modification lasticity,
E 3 £ ]

near differential

fois

The form of 11 a guasi-1;

equation of the first ords

treatment of problems of weve propa

equations continmuity,

{provided £( ) > o).

When BEg. (1) is i.e., when

N s ~ -
b é 8] y & /y g (;‘ O 5 I } s ¢ E_.}l

with E, E' and M «

linear sol of the two

= O charac-

models

and Maxwell materials,




N

same - 1s also
a Bolitzmenn material with a special form of the relaxation function,

fading memory {see Coleman
-~

olems of wave propagation

}-.J

of standard-linesr-so.

in bodies

authors too numerous to 1igt,

id material have besn treated by

A semilinear form of Eq. (1), i.e., one with f{ ) constant but
gl ) noniinear, has long been used (with € usually denoting loga~-

rithmic strain) by investigators of cresp in metals, and was introduced

into the theory of wave propagation by Malvern {1951) who was like-

wise followsd by many others.

The general form of Eg. (1) has been used in wave-propagation
problem by Simmons, Hauser & Dorn (1962}, Cristesecu (196L), Lubliner
(1964), and Greenaberg (19671, A three dimensional constitubive
i eguation of which REg. (}) weuld be the one-dimensional reduction would

be of the form

Hers E, ., S,. are cartesian coumporents of the Green strain tensor B
b &

and the Kirchhoff sor 5. A material described by Eg. (2)

Noli (1958}, of differ-

ney be called guasilinear. A semilinear

small deformations,was used by Perzyna

iiscoplastic materials; recently, Perzyna




of such mat is. How-

thermodynamics of the
; e .
Type. The

P
LY 5

2. Kinemabtics and the

We are concecr

[l

a one-dimensional state of deformation, i.

only alone one

coordinate, X, and in which only one cartesian spatial coordinate,
b J 2

.
£
ay
=
o

1 may be parallel or perpendicular to X) is variable, so that the

deformation is
y(X, %), (3)
The deformation gradient ¥ ig given by

Flx,t) = 3£ (%)

Let T denote the ing to F, P_ the density
o}

in the reference ‘gy density, N the entropy

density, ©

and g the X-component of the

heat-flow vactor

Fbj which

a function everal conventional ways; for example,

Witness
as the aut ¥
thermodynanicy ©
of the diffare




£=F . 1, (5a)

{5b)

- 1>Q (50)

y

T34, i1 S . e H - e Y, o
The "conjugate stress” o (to be

stress"” henceforth) is

then determined as a nd €) in such a way

that

where () = 5 ()

Hence, corresponding respectively to (53)7 (Sb)) and (5c¢) we fing

o= (62)

U - FF o “fge . (6b>

The Clausius-Duhen - now takeg the form

. e >, q 36 ) .
o€ - plw+ng ) . > 0, {7)

- 7 ’fév “g;{ ot

which is valid for

leformations.

.  Constitubive A

LAY

We proceed to

of materials which possess

an isothermal stre in relstion of the form (i)} but in which

o
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£ ) and gl ) depend on temperature. Consequently, we assume the
constitubive equation to be

0 = const. (8

Congider the materisl characterized by the model in Fig, la. We

167}
&)
».é..

£ = €Y 4 g™ {(9)

P

0 . e \ . , ,
where €7 and € are, respectively, the strains of the spring and the
Kelvin-Volgt elements. The congtitutive eguation is derived from two

o o . e o)
independent relations: (a) Hookse's law linking O and €, and (b) a

. T 1 . el iy q s
"rate equation” linking 9, ®7, and £, Both relations may be assumed
to depend on temperature and temperature gradient as well.

We shall now assume that our non-linear material can likewise be

mcdeled as in Fig. la, but with the elements non-linear and coupled.

1

1 el
, and are

o ; . . - o e s P s S
This means that Eg. (9) is still valid, and that &, ©
the kinematical variables of state, If the thermodynamical variables
are 9 and Y = 90/9%, then the constitutive hypothesis is that ¥, mn,

O o1

and 0 are all fumetions of € £ £, 8, and Y. This hypothesis
s 2%

> b4 kS

oy

¢

leads to the following form of the Clausius-Duhem inequality {7):

{O - 0 ?}{N)g/{) o+ (O - P ““3‘}3‘3’;"‘36‘{‘ = {Y] K g}i) é
0 4.0 o 5€¢' o 36

(10)




(1964) we note that the inequality

Following Coleman

. ) . B . =D » .(,’1
gns or magnitudes of £, 6, €

2,

must be obeyed independently of the

and vy, since thesz are, by hypothesis, not variables of state. Conse-

and we obtair

- s

nust varnd

#

BB (11

®

g 9y

[
e

so that

furthermore

n=- o (13)

and

O p w«v% R ( TLL;’
O BFQ

Hence the Clausius-Dubem inequality reduces to

A B

Equation {13} is

analogue of the

need, therefore,

the most

i

jas
—
S
it
<
@
o~
bt
B}
e

‘\(b(\j . E -

howe v toat, in order to be compatible with Eg.

Tt isg easy Lo



On the .8

independent

ineguallt

and

- qy/@ > 0. (19)

ipation and the heat-conduc-
crih not be concerned with heat

ig the only remaining thermodynamical

L., Development of t

o~

iminating & and 7 between

We ghalil now

Egs. (97, (14) a (ibbs free-energy density o
as
2 -

4 by Coleman (1964) for

mewmory. Tt does not hold for
te-independent” strain €9, i.e,
It is this type of material

sse thermodynamics was studied
on at the end of the paper




where H{ ) = 0 09750,

We consider

M
o
§
et
e
o
Q
-
i
v
D
S
"
Py
[\
N2
—

which we solve for &,

a?:ld E\Q = B - J{“ g & ¥ [):} @ ((: h‘ )

Wit s

(9, €, 8) +u(0, 86, (26)

tharmal case,




functions £ boand gl ) are obtained from the two indepen=

dent functions H{ ) ¥ ce they are, in turn, independent.

The functions f{ ) and h( ), however, are both derived from H{ );

elation be after some

B L r
seg 1o the next sectlon, knowledge of £( }

In fact, ws we
leads te a unique solution for H( J, and hence to h( ). Conse-

guently, we can determine the non-isothermal behavior of a material

obeying the constitutive assumptions of Section 3 from its isothermal

behavior over a range of temperatures.

5. Derivation of the Free-Energy Density for Viscoelastic Materials

problem inverse to that of Section h:

stitutive equation (26) subject to

i, C Pt e o - . o N
the restriction (27), find the partial strains € and EJ, the free-

0), and the rate equation (17).

The equivslence between Egs. (25) and (26) furnishes a partial

differential equation for #{g, ¢

e A
of Cand £, so that

multansous vani
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view ig consistent with the

o, . .
€7 is viewed as an
linear analogues.

L a . ., T )
We may treat €7 and 9 in Egs. (28-29) as parameters. so that on
a4 q ‘ s

we find the ordipary 417

which we solve for

£ - E(O; gl; 8) (32)
subject to the initisl condition

T(o; et 6y = el (33)
Hence

Hg, alj 8) = £lg; aly 8) - El° (34)

The existence and unigueness of H{ ) are subject only to the
classical conditions for first-order ordinary differential equations:

single-valuedness, hitz condition of f£( ).

(35)
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gle™, £7; 8) =0 (36)

as a varlable

and not a paramster) we find

W_ 5 +el, ety ). (37)

bo(e°, eh0) <2 | Ty, e 0)au +9 (e, B), (38)

WithAW“( ) undetermined at this noeint.
Once we know H( ) we can also, in principle, determine J( ),

50 that we can mzke a}Ugg" a function of 0, &, and.e, whence we find

GO, § 9 (39)

7

We shall proceed to determire ¥ ¥ ) for materials for which

. . Ca s . ool <1
solution for ¢ that 1s continuous In €7 at €7 = O,

Eg. (17) posse

and that therefcrs has the foram
7 Y 76(}‘ ﬁl
0 =K, 8) +oe™) as £7 =+ 0, (LO)

s". (We shall csll such materials

to viscoplastic materials which

man & Mizel (1964) we insert
vanish. Since the

approached zero through positive



iz

or negative values, we must have

We note, however, that the left-hand and right-hand sides of this

equation are not funcoions of the same variables. This is because

L}

it 1s valid only when € = 0, i.e. when

o= Kie, 0 ), (k1)
Cowbining Egs. (35) and (41), we obtain

K(e,6) = 5(e, £50) (42)
which we solve for €

e = A5, 8) (43)

We sgee that at equilibrium the total strain (and hence the "rate-
Oy . . iy ; .
independent" strain €) is determined by the "rate-dependent’ strain
1
£ e

We now differentiate Bg. (38) with respect to El:

O, —3 = 9l& v &, ey 6) 4 ] = (u, 5 0) du (L)
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Congeguently
) N

o W 99 (u, €15 8) au (45)
Iy i : 7 ’
3e+ O de ™

whence ¥ ' ) may be obtained by quadrature, subject to an arbitrary

5

initial conditicn., If we let this bhe
v (0,0) =0 (46)

then we obtain, finally,

o. 1
€+ £

P, Wi, gl}e) = jc;&'(u_y gl;e)du - {3% g—%(u, v; 0 )du dv. (47

6. Examples of Viscoelastic Materials

(a) "Separable-fres-energy” materials. The analysis of Sections

L and 5 is greatly simplified if the free-energy density of the

material is of the form
VES, et 8) <u0E® 8y wultet, 6, (148)

A necessary and sufficient condition for this form is

2
_,aa_.,wmjic“; B s ( )4'9 )

e e L

From Eg. (38) it is clear that Eq. (49} is equivalent to



1k

90, 30

b i (M\

. (50)
e aet

ki

wnlch in turn implies

TS B, |
O(e e+, O{e-g> 9)

¥

. (51)

a5
o

Since Egs. (32) and {35) are equivalent, we have

fmd

L

B

1
N

o

FHas e, 6) = ¢ +%lg, 0),

so that, from Eg. (3k4)

(o, et, 8) = £(a, 8), (53)

Hence,

£(9, €, 6) = £(0, 8) (5h)
and

n{o, €, 6) = h(o, 8), (55)

with £( ) = 96/30 and n( ) = DE/38,

so that

% _om
——— 3T ~-—~=—ME . (56)
28 1o}
Furthermore
glo, e, 8) =¢(o, &, 6), (57)
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The special cass

?(Oﬁ £y 6) = éiUﬁ 6)3 (58>
with
glo, 8) = 0, (59)
characterizes the nonlinear Maxwell material
f £( ) is given, we determine O( ) by solving
Gu-—
JyF(v, ©) av (60)
for
o = olu, p). (61)
For the partial free-energy densities we have
0
—f S(u, ) au, (62)
1
1 © =
PV =L 50y, €) -v, ) av. (63)

For the nonlinear Maxwell material K(el, 9) = €7, so that vl

The linear material has

(64)

and

K(e, 6) = mie,
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with E and E' functions of 9, and £E > E'. We find that

5(u, 0) = Eu (66)
and

Met, 8y - ﬁ%T el (67)
g0 that

o = £ me) 4 BB D7 . (68)

(b) Nonlinear materials corresponding to Fig. 1b. We shall now

derive the constitutive equation for a material represented by the model
of Fig. 1b with nonlinear but uncoupled elements. TFor simplicity we
shall treat isothermal behavior only and omit the dependence cn 6. We

then have

O - O + O (69)

with

0, = Xle) (70)

describing the nonlinear spring, and

£ = (oy)é, + (o) (11)

describing the nonlinear Maxwell element in accord with the preceding

subsection. On eliminating O and Ob we obtain
=3



iy

£ _ m'( ) : nf ) :
Sl ke )m' () oty + k(e )m () (72)

the argument of m'{ ) and n( } being o- k(e). Equation (72) is
clearly of the Torm (1).

It 1s easy to show that
'-f' l = “lw " Nl B
0fe, e7) =k(e) +m (& - A(e7) ) (73)

and

Aeh) et Con- keh) ). (7h)

Hence, 1f we define partial free-~energy densitieslba( ); wb( )

oy
W) =0, L 0 (), m () =0 L (o) (75)
T o dz ety M RELEE a7 TplE ?

with
v (0) =¥ (0) =0, (76)

then
PEO e S (0 wEhy w29 b (o k(G ) (77)

A material of this type will also be of the "separable-free-

i

energy  ‘type if

d mt{ )
T OIFEEwW Y T (78)

which leads fo

e ey e [w()] 2o (79)

1
1.
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kit{e) m' (z)
et = L= ¢ (80)
k() @“(4)]

with ¢ constant. FEguation (80) yields ordinary differential equations

for k() and m( ), which may be solved subject to

k(0) = wl(0) =0 (81)
to give

; B c

s(e) = 2 (%% - 1), (82)

m(z) = & o (1 + B2 (83)

o c U E-ETY :

with E and E' constant, E > E' > 0. We thus have

F(0) = =t | (84)

E + ¢0
cE
E'e B', ct ) -
g{o,e) = (1 - Eﬁgg“)ﬂ(g - z;(e T ), (85)
and
1 ( cgi 0
Qow = !E(e - cge - 1)
c ‘ .
(86)
@ 5 7
+ (B - B Qﬁ(WME,E =) - E75£*J
E-E'e ~

We shall now consider maberials Tor which Eg. (17) does not

possess a solution for O whose behavior near €7 = 0 is described by
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Eq. (40), but for which, instead, the solution of
c(o, g, 8) =0 (87)
takes the form of an inequality:
- K (g, 9) gog Kle, 9). (88)

Furthermore, for 0 > K{ ) and 0 < - K ( ) we have G( ) > 0 and

af ) < O, respectively. Such materials will be called viscoplastic.

We chall write
G(o, £, 8) = G(t, &, 0), (89)

where T =0 - Ky( ) if 0>k ), T=0+K( )ifro<-x( ),

and T = O whenever inequality (88) holds. Hence the equation

— ol
¢(t, g, 0) = ¢ (90)
has a solution
°1
T = M(e, €7, 8) (91)

. . - =1 , )
which ig continuous at € = O, with

M(e, 0, 8) = 0, (92)

ki

The solution for O therefore has the form

1

0 = K(e,8) +L(c,0)sen £ +M(e, €F,8), (93)

where

ya_( )] (o)

=
p—
et
H
I+
g . i
s
Es
S
S
§
o
St
=
—~—
—
i
nof
1
e
+
o~



A viscoplastic material for which L( ) vanishes identically
is consequently viscoelastic,

A plastic material may be defined as a viscoplastic one whosge
function M( } becomes vanishingly small, In the limit, however, the
Punction Gf } ceases to axist, so that a plastic material thus
defined is not represented by the class of constitutive equations
treated here. An alternative definition of plasticity may be obtalined

20

from a generalization of this class which takes instantanecus or rate-
independent plastic deformation into effect; that is,the "rate-independent"

o}

strain € is assumed to consiet of an

If a material obeying this

‘ ; , 1
a 'rate-dependent” strain € governed by a rate

be called plastic-viscoplastic. If there is no

is elasgtic-plas
regtrictive assumptions, was treated by Green &

alsc studied its thermodynamics.

agssumption can undergo,

elastic and a plastic part.

in addition,
equation, then it will

El, then the material

tic; this 1s the type of material which, with some

Naghdi (1965), who

For the plastic-viscoplastic material the constitutive equation
is no longer strictly guasilinear but piecewise gquasilinear. That is,
the term

{o,g,8)0

€, 8) G+ fI(O’E @)< sgn O

where
\ lf %

b

\
/
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The Zsothermal constitutive equation of the plastic-viscoplastic

material was used as the basis of studies ¢f wave propagation by

e

o]

ristescu (1963) and Lubliner (1964). A thermodynamical study which

wouid lead to a non-iscothermal constitutive equation is in progress.

8. Materials of n th order

If instead of Bg. {9) we postulated
o, 1 T o
E=cg" +e" + .., +e¢ (95)
3 ) s -~ o] 1 n ":l e}l
with ¥, n, and 0 assumed as functionsof € 5 EL,OQOGE PR
0, and Yy, the Clausius-Duhem ineguality would tell ug that
b= W, e, L e (96)
= Y(e”, €7, ,,..€, 6) 9

and that Egs. (13) and (14) are velid. If, in addition, we had n

rate equations
0 s} 1 n 21 n . -
(0, e, e .8, e, .,.e.08)=0,1i=1,....n, (97)

then we would obtain, in principle, a single constitutive equation by

. . 2 -
eliminating the (n + 1)° quantities
EO E‘l gﬁ
s S e
[ o s
go gt. . E: L8
, T, ..

@0 ® o o8 koo oo

Low 8L . . N L . .
from the set (n + 1)7 + 1 equation consisting of the following:
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9. (95) ]

J.,h.d"_ﬂg(» \9// P A R L R R R I I TN TS S R S R S 2 e
H oy

95) differentiated 1 yeeeo,t Bimes coceo.. D

Eq. (LM) 9o 0w a oo s s a0 @ s e ue a6 08 oa s oo ea o s as 0

- -
Eg. (9‘) T ¢

Eq. (97) differentisted 1,.c..,n=-1 times ,.... n(n-1)

2 - 2
n~en+e=(n+1)"+1
Moreover, the eguation thus obtained would be gquasilinear.

9. Remarks
{a) It is emsy to show that, had the entropy density N been used
as a state variable in place of the temperature 9, the treatment would

have proceeded analogously, leading to a non-isentroplc constitutive

equation:
= F(9,5,0) T+ §(9,5,0) + H(T,E,m)n (98)
with

3F (99)

This form would be of particular use in the study of shock waves.

n

1 it P

material the entropy density n is

n

In & "separable-free-ener

Is
)

7

o)

. . L e P . y
alsc separable: N =71~ + 0. For such a material n  would probably

be a more convenient state variable than n.

e
oy

} It would be a simple matter to extend the analysis to three-

dimensional deformationes if these were infinitesimal; Eg. (9) would be



i
!
i
i
|
!
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replaced by

o

s =7 P+ : :
“i3 7 Tigel Qi T8y Ty 0 (101)

with fijkl’ gij and hij symmetric tencsor function of gij’ aiﬂ, and 6,

and with the resgtriction

ﬁi&l + Bmhij_ T - 9 tijkl + 0 iijkl . o
90, . 9€_ “mnkl 38 3 oo, (102)
k1 mn mn

Viscoplastic materials could be included by defining a yield surface.
In principle there would be no obstacle to performing the same

analysis with finite deformations if, for example, we replaced the

infinitesimal strain E%j by the Green strain Eij’ and the stress <€

by the Kirchhoff-Piols stresgs Siiu However, a hypothesls such as
W

g =8, +E" (103)
13 1 L1
with superscripte interpreted as bzfore, seems highly questionsble

on physical grounds. In particular, a preliminsry study of thermo-

dynamics based on Eg. (103) showed that an isotropic material of the

"separable-free-energy" type could not, at the same time, be a fluid
i

as defined by Noll {1958). For this and other reasons I believe that

for finite three-dimensional deformations a bettsr hypothesis would be



. e 1 .
Eo=8 (Z7 ., 27 ) (10k)
i ij ki Kl
\ 0 ) 1 . . . . . ] L
where Z 1K1 and Z ., are hidden variables which describe, respectively,
A noL

"rate-independent" and "rate-dependent’ deformatione, and whose

choice is determined by additional physical requirements.
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FIG | "STANDARD LINEAR SOLID" MODELS





