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ABSTRACT

A method for reducing the size of finite element systems in dynamics
is presented. The technique is based upon a variational theorem in which it
is admissible to describe the inertial properties of structures by way of 1in-
dependent displacement, velocity and momentum fields. This theorem allows
us to construct reduced systems for problems in structural mechanics which
retain the full rate of convergence of systems employing "consistent" mass
matrices. In particular, we are able to make precise the engineering intui}ion
regarding the "inefficiency" of rotatory degrees of freedom in dynamics, i.e.,
for the common beam, plate and shell elements, rotatory degrees of freedom
may be entirely eliminated while retaining full rate of convergence. An error

analysis of the scheme and numerical examples are presented.
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1. Introduction.

In this paper we investigate a finite element method for dynamics
problems in which there exists considerable flexibility in the definition
of the mass matrix. The technique emanates from a variational formula-
tion in which the displacement, velocity and momentum fields may be taken
to be independent. In the next section we present some variational theorems
of this sort for application to linear elastodynamics. Based upon specific
forms of these results, in which the momentum field is eliminated, we set
up the spatially discretized finite element equations in Section 3. If
the number of velocity degrees of freedom is less than the number of dis-
placement degrees of freedom, then the fintte element equations may be com-
bined to form reduced systems involving fewer unknowns. An essentially
identical approach can be used in reducing the size of problems of heat
transfer. In Section 4 we include an error analysis of the scheme for eigen-
value problems as well as a wide class of hyperbolic and parabolic problems.
»The main result is that the rate of convergence of the consistent mass mo-
del is maintained as long as k > k -m, where 2m is the order of the spatial
differential operator and k (Q, resp.) is the degree of the complete poly-
nomial contained in the displacement (velocity, resp.) interpolation assump-
tion. 1In addition, the boundedness property of frequencies, characteristic
of the consistent mass model, is maintained by the reduced system.

These developments imply, in particular, that reduced systems may be
constructed, for the common beam, plate and shell elements, in which rotation-
al degrees of freedom are eliminated, and for which the rate of convergence
of the consistent mass matrix is retained. Some examples along these lines

are discussed in Section 5. Numerical corroboration of these results is

presented in Section 6.



2. Variational Theorems for Linear Elastodynamics.

Variational theorems can be constructed for problems of linear elasto-
dynamics (and, in fact, other and more general theories) in which displace-
ment, velocity and momentum fields are taken to be independent. Ideas along
these lines go back, at least, to the work of Livens (see Section 26.2 of
Pars [12] and Appendix I of Lanczos [10])pertaining to the dynamics of mass
points and rigid bodies. In the present work we analyze further the tech-
nique suggested in [9]. However, we have recently realized that our approach
may be viewed under the general heading of dual complementary variational
principles as extensively developed by Oden and Reddy [11]. We do not ex-
ploit the techniques or results of this subject in the present work. i

We consider here the standard initial-boundary-value problem of linear

elastodynamics. Namely let u; represent the displacements, v, the veloci-

j

ties, P the momenta, Ciij the elastic stiffness coefficients, f. the body

force and p the mass density. Define a functional

T

_ 1 . 1

F o= J {JQ (- 5 PViVy - pi(u1~vi) * 5 ik Ui U
- fiui) dx - J Tiui da} dt,
BQT

where Q is a bounded region in R3 with nice boundary 3%, BQT is that part of
30 on which there exists prescribed tractions %1, BQU = 30 ~ BQT is the com-
plement of aQT in 30, upon which displacements u, are prescribed, dx

is the volume element for ¢, da is the area element for 30, t de-

notes time, T > 0, a superposed dot indicates time differentiation (i.e.,

u, = auj/at) a comma indicates differentiation with respect to the coordinates

(i.e., = Bui/axj) and, finally, the summation convention is employed for

T
i,J
repeated indices. In (1) Uiy Vs and p, are considered to be independent.

Assume Uy = Di on aQu‘ Then the first variation of F is zero, i.e.,



vy + g - g uy ) 5 - fy) ag)dx

0
“ [ oy “ijke Yk,p T Tilagdal dt,
!

where nj denotes the unit outward normal vector with respect to 3¢, for all
ai’Bi and Y; such that ai=0 on aQu and at t=0 and t=T, if and only if Uss

v, and P satisfy the equations of linear elastodynamics:

p; = pvi 2

Pi = Cigie Yends 5+ Fy

and -

Ti = N5Ci5kg

uk,ﬂ, on BQT
(1) can be generalized in the usual way to include the initial conditions as
Euler-Lagrange equations (see [8]), However, this is peripheral to our main

purpose here,

A suitable functional for the case of free vibration may be deduced
from (1). Namely, assume harmonic dependence, f.=0 and homogeneous boundary
conditions; then

*

_ 12 2 1
G = { L7 whovgvy + wpy (ug-vy) + 5 Cigke Yi,3 Yk,p) 9 (4)
{2

where w is the circular frequency, is stationary, i.e.,

- 2 2 2
0= [ Lu(pvi-pi)g; + w (ui=vidy; = (-upy + (Ci5kg Uk o) eyl dx,
£
(5)
* f "5 Cijke Yk,g ¥ da,
BQT |
for all s Bi and Y; such that ai=O on aQu, if and only if Uis Vs and P;

satisfy the equations of free vibrations:

*Strictly speaking, one should introduce time-independent functions U., (cont'd )



V. = 4. , in Q (6)

and

In the sequel we consider the special case in which it is assumed that P

= pv, ab initio. Substituting this constraint into (1), we obtain

- [ (1 - ovia. + 4 ] (7

H { { J ( 7 PViVi - pViUL t 5 Ciske Yi,5Y%. ¢ fiui) dx T.u, da} dt, (7)
0 Q BQT

Assuming the same conditions which lead to (2), we obtain all but (3)] as

Euler-Lagrange equations for H.

In a similar fashion, we obtain from (4)

_ 1 2 2 1
L= ( g w” pvivy + o ovus + 3 Gy Uy Ut 4% (8)
Q2
for which all but (6)1 are Euler-Lagrange equations.
Similar results for beam, plate and shell theories are easily obtained.
With independent interpolatory assumptions for us and Vi, We are able to

create finite element methods with mass matrices other than those which have

been termed "consistent."

3. Finite Element Formulation.

The variational theorems presented in the preceding section may be used

to derive finite element models in which alternative descriptions of the mass
*
matrix are possible. Consider an individual element. Select shape functions

Vi and‘Ei, defined by u; = U} sin wt, v, = QVi cos wt and p; = wﬁi cos wt,

when discussing the case of free vibration. To keep down the proliferation

of notations, we shall retain the use of u., Vs and P, for this case also.
There should be no confusion as the context makes the meaning of the variables
clear,

* . . .
Warning: We shall not introduce new notations for the approximate finite
element fields which we employ in the present section,



U-] V.,
42 T % Y ’ V2 = Ve Ve , (9)
43 3 )

where u_ and v, are the eth element's nodal displacement and velocity vectors,
respectively. Note that ¢e and Y, are in general not the same. Assume, for
simplicity, that Fi and Ti are zero. Substitute (9) into (7) and perform the

integrations:

T
- 1.7 T ) 1.7
H = g f L7 Ve We Vo = Ve g U T 7 U Ko Ug T dt, (10)
0
where ) indicates summation over all elements, Qg 1s the volume of the eth
e
element, We= J pwg we dx, Ee is the element stiffness matrix, and a,=
Qe

J pgg @e dx. Employing the obvious notation, the global equations, including
Qe
the imposed kinematic constraints, are obtained by setting the first variation

of H to zero:

T, (1)
ATy +

I

= 0.

In a similar fashion, we can use I to generate the matrix equations of

free vibration (or, equivalently, we can assume harmonic dependence in (11)):

U=Wu

¢ <<

3

(12)

V may be eliminated from (11) and (12) in the obvious way (assuming det

Lj# 0): .
MU+ KU=0 |,

~

and (13)



T -1

* -
respectively, where M = AW 'A is the mass matrix in the present theory.

Note that if the velocity degrees of freedom are not coupled from element to

*
element, then M can be directly assembled from the element contributions

- -1

The case of main interest to us is when the number of entries in U
exceeds the number in V. In this case it is possible to define reduced sys-
tems (i.e., ones involving fewer degrees of freedom). For example, assuming
det K # 0, we can eliminate U:

* ..
KEvV+wys o ,
-(14)
*
(W - KW=0

~

1,7

where 5* = ﬁf' @ is the reduced stiffness. In (14), W is banded whereas 5*
is full. The solution of these equations may be obtained by any number of
available algorithms.

Another possibility for constructing reduced systems is to employ global
approximations for v in conjunction with the usual finite element approxi-
mations of u. The reduced systems would have the same form as those in
(14). An approach such as this might be useful when the geometric complexity
of the structure in question necessitates a fine discretization to define
the stiffness, but only very low mode response is of interest.

To convert the reduced systems to forms which can be solved by standard
algorithms, the following procedures may be employed.

For implicit algorithms for (14)1 or generalized eigenvalue form algo-

rithms for (14)2:

(i) Factor K * K =1L LT, where L is lower triangular,

(11) Solve L Z = A" for Z.
*

~ ~

*
(iii) Form K = ZTZ, making use of the symmetry of K.

~ ~

Solve (14)1 or (14)2.



(iv) To recover U, solve:
LTy = -20 for (19), ;

For explicit algorithms for the time-dependent case or standard eigen-

value form algorithms, repeat steps (i) and (ii) above, then:

(iii)' Reduce Z : 1= QR where QTQ

T

I and
= 8 R,

R is upper triangular. Note K

(iv)" Solve R'SR = W for S.

~ o~

(v)' Solve for Y :

resreo,
or (5 1)Y= 0,
where Y =RV

(vi)

Recover U by solving:

LT = -qv,
LY = -

or LU = w7y,

4, Error Analysis.

In this section we establish the error estimates for the reduced sys-
tems. Ample background for the ensuing analyses +s provided by the book of
Strang and Fix [13].

Throughout this section we adopt much of the standard error analysis
notation. The way the preceding variational formulations fit into the general
scheme to follow should be obvious. In the sequel, c denotes a general con-
stant whose value may change from line-to-line in the inequality in question.

By Ck we mean the space of functions u:+R" whose (classical) derivatives
of order 2, O<fxk, exist and are continuous throughout Q. Here we assume Q
is a bounded region in R" with boundary 32 of class c”.

Let L2 denote the space of (equivalence classes of) mappings w:R" which

are lLebesgue square integrable, i.e., { u-u dx <=, The L2 inner product and
Q



norm are defined in the usual way: (u,v) = J u-v dx, and |lul| = (u,u)1/2,

respectively. £
Let H> denote the Sobolev space of mappings u: >R which have (distribu-

tational) derivatives of order £, 0<2<s, 1in L2. HS is a Hilbert space with
s
inner product and norm:  (u,v)_ = ) (0%u,0*v), and [!u}xs = (u,u)s]/2
2=0
spectively, where D2 indicates the total derivative of order 2.

, re-

Let A be a linear partial differential operator of order Zm, with smooth
(i.e., C) coefficients,having dense domain DA inL,. We assume A is ellip-
tic and that there exist positive constants ¢, and c, such that c, |!u]|i <

(Au,u) < c,l[ul]2, for all u in D,.

To fix ideas we shall consider the case of the boundary value problem

Au + qu = f, (15)
where q is a smooth positive function defined on the closure of Q,f is in L2
and u is required to satisfy appropriate conditions on oafi. Without loss of
generality, we may assume these boundary conditions to be homogeneous. In this

case it is well known from the theory of partial differential equations that

Hulleem < 1TF1
where ¢ is a constant. In particular, if f is in ¢” then u is in c”.
We are primarily interested in the eigenvalue problem
Au = Au, (16)

where again u is required to satisfy the boundary conditions. For this

case it is well known that there exists an infinite sequence of real,

positive eigenvalues,

O<A] oAy S

. o0
and corresponding orthonormal eigenvectors Uy, Up,..., of class C .

The enerqy inner product is defined by integfation by parts:

alu,v) = (Au,v),



where u,v satisfy the boundary conditions. The Galerkin equations correspond-
ing to (15) and (16) are

alu,v) + (qu,v) = (f,v), (17)

alu,v) = 1 (u,v), (18)
respectively, where u and v are in E = {u: u is in H™ and satisfies certain
essential boundary conditions}. A weak solution of (15) or (16) is a function
u in E which satisfies (17) or (18), respectively, for all v in E. The Galer-
kin equations are the basis of finite element approximations to (15) and (16).

Let Sh and gh be closed, finite-dimensional subspaces of E. Let N =

h h

dim S" and N = dim §". These spaces are to be thought of as finite-element

spaces with mesh parameter h. Let

T L2+Sh and T : L2+§h,

denote orthogonal projection operators with respect to the L2 inner product.
We assume Shj) P, and ) p;,
of degree k. In addition we assume that the following approximation theorems

h

where Pk is the space of complete polynomials

hold for S and 8" (cf. Ciarlet-Raviart [3]):

k+1-2
v - v, < cyh NiPR¥F

v - mvl, <c pK*1-2 vl
p < S k+1?

for all v in E, where )vlg = (DQV,DQV)]/Z.

h h

4.1 Definition. wu" in S is the consistent finite element approximation to

u, the solution of (15), if and only if

h h h h)

a(u',w') + (qu ,w') = (f,wh), (20)

for a1l W' in s,
4.2 Remark. The standard error estimate for the consistent approximation

is (see Strang-Fix [13]):



k+1-m

e < e AT ], (21)

where eh =y - uh.

4.3 Definition. Dh in sh is the reduced finite element approximation to u,

the solution of (15), if and only if

@)+ M) = (M, (22)
and
(N = (g, KM, (23)
for all wh in Sh, xh in §h, where vh is in §h.
4.4 Proposition. Assume sh C 8" Then 0" = J".

Proof. In this case we may select xh = wh in (23). Thus Dh satisfies the

. h
same equation as u . (3

4.5 Remark. This proposition establishes the intuitively obvious fact that
using higher-order finite element spaces for lower-order terms does not im-

prove in any way upon the consistent approximation.
h ~h -h k+1,-h ~
4.6 Theorem. Let g = u'-@. Then |[8 ‘[m <ch[U lk+1'

Proof. Subtracting (22) from (20) we get

h h h)

a(éh,wh) + (qu' - v,w) =0.

By adding and subtracting qah, in the second term, we obtain:

~h h)

a(éh,wh) +(ge ,wW - (th h h).

-V W

Since Eh is in Sh, we may choose wh = Eh in the above. By the assumptions

on A and q, we have then that

M2 ce ta@E + @ @,
=~C (th 20,
<o flaa -V E"
<c g - VTR

We have employed the Schwartz inequality in obtaining the third line. Thus

we have

10



1

~h ~
e, < e e - V1.

From (23) we see that vh = %(quh). Combining this fact with the ap-

proximation theorem, (19), we obtain

1 1y < e G,y O
4.7 Remark. Combining this result with the standard error estimate for
the consistent approximation, (21), we see that the full rate of convergence
for energy is maintained as long as E_i k-m. This result can be trivially
generalized to the case where (qu,v) is replaced by a positive definite bi-
linear form b(u,v). For example, if b corresponds to a differential opera-

tor B of order 2n, n < m, with smooth coefficients, then we have the estimate

~h k+1-n |~ -
| e I,m<i ch 'Ulk+]s

from which it follows that the full rate of convergence is maintained if k >
k-m+n.

We shall now consider the eigenvalue problem.

4.8 Definition. ug in Sh and Az in R are the consistent finite element ap-
proximations to Uy 5 the ch eigenvector, and Al, the Rth eigenvalue, respective-
ly, of (16) if and only if
a(ul ) =20 W), (24)
for all wh in Sh, and
AT = min max RGwML (25)

2

h

SQCSh W in P

2

where SQ is any 2-dimensional subspace of Sh

and R(wh) = a(wh,wh)/(wh,w
the Rayleigh quotient.
4.9 Remark. The error estimates for (24) are standard (cf. Strang and Fix

(13]):

St pe k+T-m) AR“‘*”/”‘ , (26)



12

h k+1 (k+1)/2m
U, - u <ch A ?
[ 2 2‘1 = % (26) (Cont.)
h k+1-m . (k+1)/2m
!!ug“uillmiCh AR
4.10 Definition. GQ in Sh and XE in R are the reduced finite element ap-
proximations to U and XQ, respectively, if and only if
~h hy _ zh , h h
alug,w') = Xy (vpw), (27)
h  hy _ (~h _h
(Vl’ X ) = (UQ) X )! (28)
for all wh in Sh, xh in §h, where vz is in §h, and
12 = min max ﬁ(wh) , (29)
h ~ch Y h . <h -
SQ(:S w o in S2

a(u )7 (W),

L]

where ﬁ(wh)

4.11 Remark. It is immediate from (25), (29) and the fact that projections de-

h h

crease norm (i.e.||mw||<|]w]] for a1l w in E), that XQ > A,.  In other words,

the reduced eigenvalue approximations are bounded from below by the corres-
ponding consistent eigenvalue approximations,which are in turn bounded from

below by the exact values, i.e., XQ 3_%2 3_AQ for each £ = 1,2,..., min (N,ﬁ).

We note also that if iz # XE, then vg 1 vg with respect to the L2 inner

~h | ~h
product and uy 1 up

easy to establish.

Let wh = Gg in (27) and let xh = vg in (28):

with respect to the energy inner product. These are

a(“‘h "h) = 'XQ (Vh Dh)’

h hy_ ,~h _h
(vg> vi) = (ugs vp).
. h _ ~h h _ h,
Now replace & by p in (27) and (28), and let w = u, and x = v,
~h ~h, _ ~h , h =h
a(up, u,) = Ao (vp, u, ), (31)
h hy _ ~ h
(vpovg) = lup vy
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Combining (30) and (31) we obtain

“h  +h h  hy _
(3§ - 1) tvf, Vi) = o,

which implies v? 1 vg in L,. Since we also have
~h  ~h, _ =h h h
a(u,Q,’ up) - AQ, (V,Q,’ Vp)a
and ih > 0, it follows that GZ 1 Gg with respect to the energy inner product.

2

h ~¢h h _ h ~h _ ,h

4.12 Proposition. Assume S C S . Then Uy = uQ and Al = KQ.

Proof. Under this assumption n restricted to sh is the identity map. There-

fore (29) is equivalent to (25), i.e., Ar = Al Selecting x" = Wl in (28)

h . . . ~h _ h -
p in (27) implies u, = uZ.CJ
4.13 Remark. Proposition 4.12 tells us that, within the present scheme, we

and using this and Xg = A

cannot improve upon the consistent mass matrix. However, as we shall see be-
Tow, we can define alternative mass descriptions which retain the full rate of

convergence of the consistent mass matrix, and are of smaller size.

4.14 Lemma. Let 02 = max !(%wh - wh,wh)l where eg js the set of all unit
vectors contained 1in EQ’ the ¢-dimensional subspace of Sh spanned by u?, ug,
h > hy-1
s U Then Ay < AQ (1-02) .
Proof. By (29) we have
< max ﬁ(wh),
‘ —Qh in Sh
£
- a(wh,wh
= max e )
TW W
wh in ez
Assuming wh is in eg, a simple calculation yields:
GRS I L (U RV
= W) - - W,
> 1 - cg.
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Combining the above results and using (25) gives us that

12 < (1 - 02)"] max a(wh,wh),
h .
W oin e
_.h hy-1
=X, (- 02) O
4.15 Lemma. o < cn 2lkEDN2
t k+1

Proof. By definition of the projection %, we have that wh - %wh is ortho-

gonal to §h. Using this and the approximation estimate (19) we obtain

(wh UL

(W' ,Ww = W
" - )

<c h2<k+}) |wh[§ O
k+1

4,16 Theorem. Assume h is small enough so that 02 < 1/2. Then we obtain our

error estimate for the eigenvaTues of the reduced problem:

AN Al e pe(k+1)y. (32)
Proof. By Lemmas 4.14 and 4.15 we have immediately that

h h h
. S (1 + 202),

(1 + h2(ka1)y

A

N

i

4.17 Remark. Comparing this result with (26)1, we see that if k > k-m, then
the full rate of convergence for eigenvalues of the consistent approximation
is maintained by the reduced approximation. The situation for eigenvectors

is similar, as we shall now show.
h h ~h

4.18 Lemma. Let e, = Uy - up. Then
~h hy _ ,h (zh _h h  Zhy (~h . hy . sh (ch _ b N

for all w" in ",



Proof. Subtracting (27) from (24) we obtain

a(éQ, wh) = (AQ uz - 12 vg, wh),
A O I PP VO BV U G S N B w
This identity enables us to estimate the H™ norm of 52 in terms of the
L2 norm of 52, the previously obtained estimate for AQ 12, and the
L2 norm of the lack-of-consistency 52 - vg; viz., let wh = ég in (33), then
&Ry < ¢ OGIERI + 1a) - X1+ JP11TE - vl1. (34)
4.19 Lemma. (X )(nu , ug) = x?(u? - %u?, G?) for all i and j such that

15

Proof. The term —xh(nuh, u?) appears on both sides so it remains to show that
~?(%u:‘, E?) = k?(u?, G?). To do this we employ (24) and (27):
X?(%u?, G?) = i?(%u?, Eﬁ?)
= b -l -, ),
= X?(u1, ﬁﬁ?) - i?(u? - %uh, wﬁ?)
= a(ﬁ?, u?);
el i =l . O

4.20 Lemma. Assume that the multiplicity of A; is one. Then

ral - s < el uf -l
where B8 = (%u?, vh)
Proof. Note that {uh}? and {v?}? constitute orthogonal bases for s and
sh, respectively. For convenience we assume [lu?l[ =1, 1 <1i<N, and
‘Jahll =1, 1 <j< N. Since %u? is in §h, we may expand it in terms of
o ?
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The estimates (26)] and (32) and the fact that As is isolated imply

that there exists a constant p such that

h
Vi .
—— - <p s forall j#i, (35)
PRI
VJ “
whenever h is small enough.
By the definition of m, (nuh, uj (“”1’ WU? . Now using Lemma 4.19 and

the preceding relations, we have that

. N
il - a8 <) (mul, v?)z ,
A
2
N h
N A ~ ~
= 1 o (uy - wu?, u?)z,
J#i Ixj - Xi |
<of [fuf - mli1% 0
4.21 Lemma. ]!E?!| f_Z]lu? - BG?I[.
Proof. By the triangle inequality
h h =~h h ~h ~h h
[[e = |]u1 - Uil’ < Iyuj - Buj]l + IIBU1 - ui![ ]

[l - 830+ 1 e-E

[}

< Il - el o+ je]
~h
We may choose the sign of v? such that g > 0. Using the fact that u? and us

are unit vectors we get

N

V= e - s el

h ~
l[uj - Bu1]| *+ B
Combining this with the previous result completes the proof. (]

4,22 Lemma. Assume Ai is isolated. Then we have the estimates

el < c kT, (36)
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and

k+1

e8] <cn (37)

Proof. Applying the triangle inequality to the result of Lemma 4.27, we get

RN < 2t - mli e 13T - et e - W,

Using Lemma 4.20 and the approximation estimates (19), we obtain }!5?!} <c hk*T,
Employing this result in (34) yields that llé?ttm < c kT
4.23 Remark. Comparing these results with (26)3, we see that if k > k-m the
H™ rate of convergence for eigenvectors is maintained.

We shall now remove the restriction that A be isolated. The argument is
tedious, but not essentially different than before, so we only sketch t%e
main points.
4.24 Lemma. Let A; have multiplicity Q, where Q is a positive integer > 0.

Then (36) and (37) still hold.

Sketch of proof. Let Ai = Ay T ee A1+Q. There is still a separation

constant between these eigenvalues and the others (cf. (35)). Under these

circumstances the analog of Lemma 4.20 is

Q
~uh h ~h h
]lﬂui+r -jZO Brj Vi+j'] f.cllui+r "Vi+rl!s (38)
where BI"J = (%U?_}_r s V?+j)’ 0 < r,J < Q.

Let a = @f], where 8 = [Bij]’ 0 <i,j < Q We define linear combinations of

the eigenvectors as follows:

Q
U?+r N § ij u?+r’
j=0
oot ~
where 0 < r < R. Llet U; = nUi =jZO o5 U5y
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Employing the triangle inequality, we can estimate the difference between

~

Ui+r and its reduced approximation, u;, .
~h h h Ah
gap = gl 1< e = VR T = U
1 h h ~~h ~h
* Uy - Vipl It RLET Uil 1

The first term on the right-hand side can be estimated using (26)2; the se-
cond and fourth can be taken care of by the approximation estimate (19); for

the third term we employ (38):

~h h _ g ~ h h -
Uy - Vigpl | = \‘__ Aij M™iep - Viepll o
j=0
Q . Q h
=11 gy (m =] B vl
j:o 13 k=0 Jk rtk
Q
~h h
= ¢ rZO iy = Viepl 1

Applying (19) completes the L2 estimate, from which the H™ estimate follows. OJ
4.25 Remark. A1l of the preceding results extend to the generalized eigen-
problem in which (u,v) in (16) is replaced by a positive-definite bilinear
form b(u,v). For example if b(u,v) = (Bu,v), where B is a linear differen-
tial operator of order 2n, n < m, with smooth coefficients, then the con-
dition for maintaining the full rate of convergence for eigenvalues and energy
is that k > k-m + n. The proofs go as before except, instead of m, one must
employ 5, the orthogonal projection onto §h with respect to b.

We shall now consider time dependent problems. Let a superposed dot
indicate time differentiation and let u(t) denote the function obtained from
u: R x @ > R" by freezing t in R. We assume for simplicity that the coef-

ficients of A are independent of t and that F is a ¢® mapping from R to LZ’

. . @, .
i.e., Fis C in t. There are two important cases:
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f, (39)
f

(hyperbolic case) U+ Au

i

(parabolic case) U + Au , (40)
where u is required to satisfy the boundary conditions and appropriate
initial conditions. 1In the former case there are initial conditions on

u and u, whereas in the latter only u need be specified. The correspond-

ing Galerkin equations are

(u,v) + alu,v) = (f,v) , (41)

and
(U,w) + a(u,v) = (f,v) , (42)

respectively, where u and v are in E. If u_ and &O are given initial data

0

then
(ulo),v) = (ug,v), (43)

and
(u(o),v) = (Go,v), (44)

are the weak forms of the initial conditions for the hyperbolic case.

In the parabolic case only (43) is required. We assume Ug and QO are

in L2 and Hm, respectively.

h

4,25 Definition. uh in S is the consistent finite element approximation

to u, the solution of (39) if and only if

W)+ a™ W™ = (), (45)
(o)) = (ugw), (45)

and '
(W"(0) ") = (ug,w"), (47)

for all wh in Sh. From the theory of ordinary differential equations uh is
a ¢ mapping from R to H™.
4.26 Remark. The error for the hyperbolic case is conveniently measured in

terms of the energy

19
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£ = k(") + u(e), (48)
hy _ ‘h -h h h h
where K(e'') = 1/2(e',e") and U(e') = 1/2 a(e ,e ). Because of our hypotheses
on the operator A, E - 0 is equivalent to ![e || > o and Heh!]m-> o. The

standard error estimate for the consistent approximation is (see [13]):

C(hkﬂ-m + hk+1t) (49)

4.27 Definition, uh in sh is the reduced finite element approximation to u,

the solution of (39), if and only if

Gy s ahwy = (Fal), (50)
(Ml = @M, (51)
(@(0) ") = (uy™), (52)
and
(Mo) k™ = (hg.x), (53)

h _h . 2h h . ¢h

for atll wh in s, x in S, where v’ is in S'. As in the case of the con-

sistent approximation, Gh is €7 in t.

4.28 Proposition. Assume ShC§h.

Proof. Pick x" = W in (51) and (53). Then (51) evaluated at t=0, when com-

Then uh = uh.

bined with (53),shows W satisfies (47). Time differentiating (51) and sub-
stituting the result in (50) yields that D“ satisfies (45). Since (52) is equi-

valent to (46), Gh satisfies the same equations as uh.[]

h) Then E E hk+1t.

4.29 Theorem. Let E = K(a") + U(a

Proof.  Subtracting (50) from (45) we get

(u' - v ,W ah wh

+a(e’,w) =0

| anbibd

Adding and subtracting ﬁh in the first term, and observing that Qh =7

from (51), results in

(EN,Wy + a(a" W) =

Selecting wh = éh in the above yields
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The approximation theorem, (19), when applied to this result yields that

. <c hk+] E]/Z.

™

Integraling this relation over 0 to t yields

E]/Z < k+1t

— 0

1/2

mi?

+ch

which was to be proved. U

4.30 Remark. EO]/Z is of order min(k+1, k+1-m). Therefore, if E_z k-m the
full rate of convergence of the consistent approximation is maintained, at
least for short times.

We shall now consider the parabolic case.

h h

4.31.Definition. u 1in S is the consistent finite element approximation to

u, the solution of (40),if and only if

@™y ™ = (F), (54)

= (0w, (55)

0
for all w in 5™y WM 4s ¢ in t.

4,32 Remark. The error estimate for the consistent approximation is (see
(13]):

el < e h M ],

for all t.

~h h

4,33 Definition. u in S 1is a reduced finite element approximation to u,

the solution of (40), if and only if

21
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W s a(@ W) = (F, (56)
(vox) = (Ex), (57)
- hy _ h
and (d(o),w') = (u ,w ), (58)
for all wh in Sh, xh in § , where vh is in §h; Dh is ¢® in t.
4.34 Proposition. Assume Sh’”Sh Then Dh = uh.

Proof. The proof goes along the same lines as that for Prop. 4.28.0
4,35 Theorem. The error ]!éhllm in the reduced approximation is of order
min (k+1, k+1).

4.36 Proof. Subtracting (56) from (54), using (57), and taking W= @

yields @&y 4 ageh M) = @ - At ). (59)
It follows direct]y that
Gz I8 e 1E R < - A E
Cancelling ]leh!] from the above results in
L E" ] ey e “1!5_1 § - "]
Multiplying this inequality by e ( t), and integrating from o to t yields

()] ] < exp (xqt) 1181 +

t zh ~:h
f exp (g (e-t)) 1T (1) - wi ()],
. !

W [l exp (3g8)

~ t
+ < {0 exp (A (z-t)) [1u(x)]]drd, (60)
where we have applied (19) in deriving the second Tine.

To obtain an estimate for a(éﬁéh), we integrate (59) from ty to ty:

t |
2 J 2 4@ aMer = 1A 11E (1)1

t n
-2 f 2 (ﬁh - ﬂﬁh,éh)dr.
Y

Applying (19), (60) and the mean value theorem to this result yields that
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al(e ,éh) is order 2min(k+1,ﬁ+1), from which the assertion of the theorem
follows. OJ
4.36 Remark. Thus if E.Z k-m the rate of convergence of the consistent

approximation is maintained (cf. Remark 4.32).

5. Discussion.

The previous developments enable us to design reduced finite element
systems for dynamics which retain the rate of convergence of systems employ-
ing consistent mass matrices. Some examples are illustrative of the nature
of the reduced system. |

5.1 Beam Element. -

For the standard cubic beam element ( k = 3, m = 2) the full rate of
convergence 1is maint;ined as long as k > 1. The optimal choice is then a
Tinear element interpolation for the velocity field (E = 1) which may be
made continuous at the nodes. This model, aside from the effects of boundary
conditions, results in a reduced system of one-half the number of degrees of

freedom as that of the standard consistent mass system.

5.2 Plate Bending Elements.

A survey of the standard error estimates for plate bending elements
has been given by Ciarlet [2]. There are several basic plate bending ele-
ments which contain a full cubic displacement function (k = 3, m = 2) and
are thus of quadratic convergence rate in the H2 norm (e.g., the 16 degree
of freedom rectangular element of Bogner, Fox and Schmidt [1], the 16 degree
of freedom quadrilateral of Fraeijs de Veubeke [5], the 12 degree of freedom
triangle of Clough and Tocher [4], etc.). To retain the rate of convergence
of consistent mass for these cases one needs that k > 1, i.e., the velocity
field must contain a polynomial of the first degree. 1In the case of triangles
this is achieved most simply by assuming a linear velocity field with nodal
degrees of freedom at the vertices. For quadrilaterals it seems the most

appropriate scheme is to employ a bilinear velocity field, also with nodal
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degrees of freedom at the vertices. These procedures will result in reduced
systems of approximately 1/4 the size for the Bogner, Fox and Schmidt rectangle,
1/5 for the Fraeijs de Veubeke quadrilateral and 1/6 for the Clough and Tocher
triangXe.*

A reduced system for the compatible 9 degree of freedom triangle (k = 2,
m = 2) of Clough and Tocher can also be constructed, as above, with a linear
velocity field. The reduced system would be approximately 1/3 the size of the
consistent mass system and would also maintain the first-order convergence rate
of this element. However, it may be preferable in this case to simply use lumped
mass, i.e., assign one-third the total mass to each translatory degree of free-
dom. The standard result on numerical integration techniques (see Fried (6]
and references therein) guarantees that the Tumped mass matrix (which is exact
only for uniform translation) retains the first-order rate of convergence of
this element. A similar argument may be made for several other slowly converg-
ing plate bending elements (see Ciarlet [2] for examples).

5.3 Classical Elasticity.

Classical linear elasticity involves a second-order elliptic differential
operator so that m = 1. Thus, to retain the convergence rate of consistent
mass for compatible elements in which the displacement interpolations contain
complete polynomials of degree k, one needs the velocity interpolations to
contain complete polynomials of degree kK =%-1. For the standard families
of triangular and quadrilateral elements (see [14]) the velocity fields could
be taken to be one order lower than the displacement fields. For example,
for the quadratic triangle ( k = 2) the velocity field could be taken to

be linear and defined in terms of the three vertex degrees of freedom.

The reduced system for this case approaches 1/4 the size of the consistent

*
These ratios for the Fraeijs de Veubeke and Clough-Tocher elements are limit-
ing values for infinite rectangular meshes.
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mass system.

For this class of problems an alternative scheme has been proposed by
Fried and Malkus [7] which is remarkably simple and produces a diagonal mass
matrix. They choose the locations of the nodal degrees of freedom to coin-
cide with the so-called Lobatto points. Numerical integration formulas are
then derived employing these points, which insure the maximal rate of con-
vergence. One unpleasant feature of the scheme is that for certain higher-
order elements some negative masses occur. Zero masses may occur also, but
these may be eliminated by static condensation, reducing the size of the sys-

tem.

6. Numerical Examples.

To verify the results of the error analysis, spectral properties of

three structural models were studied:

6.1 Quadratic Rod Element,

The differential equation for this model is
u o+ of oy = 0,

where u represents the longitudinal disp1acement'of the rod and ® 1s the
natural frequency; thus m = 1. The boundary conditions studied were fixed-
free and fixed-fixed. The displacement field is assumed to vary quadratically
within each element (k = 2), thus the element has 3 degrees of freedom; one

at each end and one at the midpoint. Results are presented for three cases:

a consistent mass matrix, a reduced system involving a linear velocity
approximation for each element (Q = 1) and a diagonal mass matrix in which

1/6 the mass {is lumped at the end-point degrees of freedom and 2/3 at the
midpoint. The theoretical rate of convergence of consistent mass, which

s quartic, is verified numerically in Fig. 1; w denotes the numerically
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computed frequencies. The slope of the curves indicates the convergence
rate of the fundamental frequency. It is also seen in Fig. 1 that the
reduced system retains the convergence rate of the consistent mass matrix,
This corroborates the present theory (1 = K > k-m = 1). The diagonal mass
matrix is also seen to retain the convergence rate of the consistent case.
This matrix was arrived at via experimentation, but can be constructed
following the theory of Fried and Malkus [7].

In Fig. 2, the complete spectra for the fixed-fixed case is presented;
n is the mode number and N is the number of elements. These spectra are
invariant and apply for all N. The upper bound property of the consistent
and reduced systems is evident. In addition, the maximum relative error of
any frequency is seen to be a minimum for the reduced case (approximately
15%). These properties, as will be shown in the following examples, are

common to the cases we have investigated.

6.2 Beam Element.

The differential equation for this example is

where u represents the tranverse displacement of the beam. For this case
m =.2 and the standard cubic displacement function is employed (k = 3).
Simply-supported boundary conditions are considered. Results are presented
for four cases: a consistent mass matrix, a reduced system involving a
linear velocity approximation for each element (Q = 1,cf. § 5.1), a diagonal
mass matrix in which 1/2 the mass is lumped at each translatory degree of
freedom and zero is assigned to the rotatory degrees of freedom, and a
linear displacement function used for the mass matrix only. The last case

results in a mass matrix of the form



o=

- 4 .
where M is the element mass. As can be seen from Fig. 3, this ad-hoc
approach has an adverse effect on convergence rate, For all other cases
the rate of convergence is quartic, which verifies the standard error esti-
mate for the consistent case and the present theory for the reduced case
(i.e., 1 = k > k-m = 1), The lumped mass matrix scheme used here is the
best diagonal mass matrix for the beam.

In Fig. 4 spectra for these cases are presented. Again, the upper
bound property of the consistent and reduced cases is evident, as is the
fact that the reduced spectrum produces the least maximum relative error;

approximately 12%.

6.3 Plate Bending Element,

Here the differential equation is

where v4 indicates‘the biharmonic operator and u denotes the transverse

i

displacement of the plate, thus m = 2. The plate is square and simply-
supported boundary conditions are employed. The Bogner-Fox-Schmidt element
[1], which contains a complete cubic displacement function (k = 3), was

chosen for study. Results for three cases are presented: consistent mass,

27
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a reduced system for which a bilinear velocity assumption is made (Q = 1,
cf. § 5.2) and a diagonal mass matrix in which 1/4 the plate mass is lumped
at each translatory degree of freedom. As can be seen in Fig. 5 each
case exhibits quartic rate of convergence. This corroborates the standard
error estimate for the consistent case and the present estimate for the
reduced case.

In Fig. 6 spectral results are presented for the above cases. The
qualitative aspects of the previous problems are again in evidence.

Examples involving elements of unequal size were run for problems 6.1 and
6.2 to see if any of the results were special for regular meshes. Inall
cases the same rates of convergence were observed, although the spectral lines
changed somewhat in each case. We believe the high rates of convergence of
the lumped mass models are somewhat accidental; there is no analytical
evidence extant which indicates that lumped models can be constructed for
arbitrary bending elements which retain the full rate of convergence of

consistent mass.
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Convergence rates for the fundamental frequency
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Fig. 2 Spectra for a fixed-fixed rod
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Fig. 3 Convergence rates for the fundamental frequency
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Fig. 5 Convergence rates for the fundamental frequency

of a simply-supported plate




35

APPROXIMATE SPECTRUM OF A SIMPLY
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Fig. 6 Spectra for a simply-supported plate






