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Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution.

The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which

collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often

much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq.

However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with in-

herent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important tran-

scriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from

preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We

show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis.

However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous.

We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq,

while also providing a detailed understanding for the preferential detection of long genes uponusing this technique. To remove

such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular

data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools.

Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.

[Supplemental material is available for this article.]

Adipose tissue is a complex, heterogenous organ responsible for
maintaining energy balance in animals by storing energy during
nutritional excess and providing energy during nutritional depri-
vation. This regulation of whole-body energy homeostasis is pri-
marily maintained by two functionally different types of fat:
white adipose tissue (WAT), the primary site of lipid storage, and
brown adipose tissue (BAT), which specializes in thermogenic en-
ergy expenditure. An imbalance in themetabolic activity or expan-
sion of WAT and BAT is implicated in the pathogenesis of
lipodystrophy or obesity and associated comorbidities like cardio-
vascular diseases and type 2 diabetes (Jo et al. 2009; Carobbio et al.
2011; Levelt et al. 2016). Further complexity arises from the het-

erogeneity within WAT, which also includes a cellular subtype
called beige adipocytes with greater oxidative capacity (Pfeifer
and Hoffmann 2015). Therefore, understanding the molecular
pathways of adipose tissue expansion (adipogenesis) in humans
and identifying resident cell types that regulate adipocyte activity
are necessary for understanding the tissue’s contribution in the pa-
thology of such metabolic diseases. Consequently, recent studies
are beginning to elucidate cellular heterogeneity and developmen-
tal pathways in distinct adipose tissue lineages at the single-cell
level (Deutsch et al. 2020; Ferrero et al. 2020; Shamsi et al. 2021).
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Over the last decade, single-cell RNA sequencing (scRNA-seq),
combined with microfluidic technologies, has proven to be a
powerful tool for transcriptomic profiling of complex tissues in an
unbiased fashion (Trapnell 2015; Birnbaum 2018; Chen et al.
2018). Indeed, multiple recent studies using microfluidic scRNA-
seq approaches have investigated the heterogeneity of adipocyte
precursors (referred to as preadipocytes in the text) in mice
(Ferrero et al. 2020; Rondini andGranneman 2020). However, tran-
scriptomic profiling of single mature adipocytes has been challeng-
ing (Shinoda et al. 2015; Xue et al. 2015;Min et al. 2016; Spaethling
et al. 2016; Gao et al. 2017; Lee et al. 2019; Song et al. 2020), in part
because of the technical barriers associated with isolating intact ad-
ipocytes, which aremarkedwith fragile nature, high buoyancy, and
large size (Deutsch et al. 2020). Consequently, single-nucleus RNA
sequencing (snRNA-seq) is emerging as an alternative approach
for transcriptomic profiling of cellular heterogeneitywithin adipose
tissue (Rajbhandari et al. 2019; Sun et al. 2020; Sárvári et al. 2021).
However, a single nucleus contains 10- to 100-fold less mRNA than
whole cells, raising the question of whether the composition of
mRNA transcripts in the nucleus is sufficient to enable identifica-
tion of the same cell populations as whole cells. Indeed, previous
comparisons of single-cell and single-nucleus approaches have
shown that the relationship between nuclear and cytoplasmic
mRNA is tissue specific (Habib et al. 2017; Lake et al. 2017;
Bakken et al. 2018; Wu et al. 2019; Selewa et al. 2020; Thrupp
et al. 2020). Therefore, there is a need to understand the transcrip-
tomic similarities and differences between single-cell and single-nu-
cleus profiles in the context of human adipose tissue, for which
there is growing need to rely on snRNA-seq.

In this study, we explored the ability of snRNA-seq to recapit-
ulate the transcriptional profiles observed by scRNA-seq in the hu-
man adipose tissue white and brown lineages. We focused our
study on a well-controlled in vitro system of human white and
brown adipogenesis (Fig. 1A; Xue et al. 2015; Kriszt et al. 2017). In
this in vitro model, paired white and brown primary preadipocytes
were isolated from a defined region (the neck depot) of a single in-
dividual. This system allowed us to measure cell-to-cell transcrip-
tomic variations within and between lineages, while controlling
for inter-individual variabilities that are typically associated with
transcriptomic profiling of primary human adipose tissue, such as
body mass index, genotype, and gender. Preadipocytes from both
lineages were isolated while preserving their intrinsic cellular het-
erogeneity and were then immortalized to allow for long-term in
vitro cell culture. Previously reported data showed that the
preadipocyte populations could be differentiated into mature adi-
pocytes with gene expression profiles that correspond to the adipo-
genic and thermogenic function of primary tissue from human
neck BAT andWAT (Xue et al. 2015).Moreover, the in vitro cell-cul-
ture system allows for the isolation of intact nuclei as well as intact
single cells acrosswell-defined stages of adipogenesis, includingma-
ture, lipid-laden white and brown adipocytes. Overall, using this
model system, we aimed to characterize the accuracy with which
snRNA-seq can identify cell types and recover biology relevant to
the adipose tissue, compared with scRNA-seq.

Results

scRNA-seq reveals transcriptional landscape of white

and brown preadipocytes

Unsupervised clustering of the white and brown preadipocyte
scRNA-seq library grouped the cells into three clusters, referred

to as populations 0, 1, and 2 (Fig. 1B). White preadipocytes orga-
nized into a single homogeneous cell population, cluster 0, where-
as brown preadipocytes revealed two cell populations, cluster 1
and cluster 2 (Fig. 1B). As expected, clusters of white and brown
preadipocytes were highly concordant with molecular features of
respective primary preadipocytes (Supplemental Fig. S1C,D; Tews
et al. 2014). All populations were devoid of endothelial (CD31)
and hematopoietic marker genes (PTPRC [previously known as
CD45]) (Supplemental Fig. S1E,F) and reflected a preadipocyte
state on the basis of their high expression for the commonmesen-
chymal stem cell markers ITGB1 (also known asCD29), THY1 (also
known as CD90), CD44, and ENG (Supplemental Fig. S1G–J;
Cawthorn et al. 2012; Mildmay-White and Khan 2017). All popu-
lations also had positive expression for adipogenesis regulators
CEBPB & PPARG (Ghaben and Scherer 2019), as well as ZEB1
(Gubelmann et al. 2014), further verifying an adipogenic fate for
these cells (Supplemental Fig. S1K–M).

Differential gene expression (DGE) analysis confirmed that
white preadipocytes showed enrichment of genes that are reported
to be involved in establishing white preadipocytes’ identity
(Supplemental Table S1B) such as TCF21 (de Jong et al. 2015),
PAX3 (Sanchez-Gurmaches et al. 2016), and PDGFRA (Berry and
Rodeheffer 2013). The most up-regulated gene in white preadipo-
cyteswas ID1 (Fig. 1C), which is known tomaintain the progenitor
state in preadipocytes by positively regulating the progression of
cell cycle for sustained growth and proliferation (Satyanarayana
et al. 2012; Patil et al. 2014). Consequently, enriched expression
of ID1 in white preadipocytes suggested ongoing signaling for
themaintenance of cellular proliferation. In brown preadipocytes,
the top up-regulated genes included ANKRD1 and CCN2 (Fig. 1C),
which are well-characterized YAP target genes (Yu et al. 2012).
YAP/TAZ are mechanosensitive transcriptional coactivators that
regulate proliferation and differentiation at the precursor state
(Dupont et al. 2011; Hansen et al. 2015; Zhang et al. 2018), while
alsomaintaining thermogenic activity atmature adipocyte state in
brown lineage (Tharp et al. 2018). Therefore, our results suggest
that brown preadipocytes may have ongoing YAP/TAZ activity
for maintenance of brown-lineage progenitor state. DGE analysis
also revealed up-regulation of smooth-muscle lineage marker
genes in brown preadipocytes, such as TAGLN (Fig. 1C), ACTA2,
MYL9, and CNN1 (Supplemental Table S1B). These findings are
consistent with a recent study that showed abundant expression
of smooth-muscle lineage–selective genes in clonal human brown
preadipocytes (Shinoda et al. 2015), suggesting that brown preadi-
pocytes derived from human neck depot may share this lineage.

Of note, we identified two distinct cell populations within
brown preadipocytes (cluster 1 and cluster 2) (Fig. 1B). Gene
Ontology (GO) analysis identified cellular adhesion and regulation
of cellularmotility as themost enriched terms in cluster 1 (Fig. 1D),
suggesting the prevalence of stem cell–like migratory behavior in
these cells. Transforming growth factor superfamily genes (BMP4
and TGFB2) were also enriched in cluster 1 (Supplemental Table
S1C), which play an important role in regulating adipocyte com-
mitment in mesenchymal stem cells (Modica and Wolfrum
2017; Li and Wu 2020). Investigating differential activity of tran-
scription factors (TFs) in cluster 1, transcription factor enrichment
analysis (TFEA) identified FOX (FOXC2 and FOXL1) and FOSL1 TFs
with high activity (Supplemental Table S1D). FOXC2 participates
in the early regulation of preadipocyte differentiation (Gerin
et al. 2009; Lidell et al. 2013), whereas FOSL1 proteins have been
implicated as regulators of cell differentiation and transformation
(Luther et al. 2011, 2014). Therefore, our results indicate that

scRNA-seq and snRNA-seq of human adipocyte lineage

Genome Research 243
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275509.121/-/DC1


B

A

C

D Gene Ontology Cluster 1

Gene Ontology Cluster 2

Figure 1. scRNA-seq reveals transcriptional and compositional landscapes of white and brown preadipocytes. (A) A schematic representation of scRNA-
seq versus snRNA-seq characterizations performed in our study. Comparisons were performed at both the preadipocyte stage and the mature adipocyte
stage using an in vitro system of human preadipocytes. For the cell culture maintenance and differentiation protocol, see the Supplemental Methods. (B)
UMAP visualization of white and brown preadipocytes either annotated manually to reflect the sample of origin (top panel) or annotated based on unsu-
pervised clustering (bottom panel); 2578 white and 4055 brown cells were detected. Of these cells, 2558 were in cluster 0, 2062 in cluster 1, and 2013 in
cluster 2. (C) Heatmap of the top 20 differentially expressed genes betweenwhite and brownpreadipocytes, as well as cluster 1 and cluster 2 preadipocytes
based on log fold change values. Both genes (rows) and cells (column) underwent unsupervised clustering, with the top row reflecting cluster assignment as
in B. (D) Top 10 Gene Ontology biological processes terms enriched in brown preadipocyte cluster 1 (top panel) and cluster 2 (bottom panel). (decr.)
Decreased, (anat. str.) anatomical structure, (pos. reg.) positive regulation, (neg. reg) negative regulation, (str.) structural.
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cluster 1 cells may show migratory behavior with ongoing signal-
ing similar to adipogenic fate commitment in mesenchymal stem
cells, a behavior we refer to here as stem cell–like. Enrichment of
multiple regulators of adipose tissue development was also detect-
ed in cluster 1, such as SEMA5A (Giordano et al. 2001), NPPB
(Villarroya and Vidal-Puig 2013), MEST (Karbiener et al. 2015),
and FST (Braga et al. 2014), further suggesting the existence of adi-
pogenic commitment activity in this cell population.

Cluster 2 cells were marked by the expression of the S100A4
gene, also known as the fibroblast-specific protein-1 (FSP1) (Fig.
1C; Supplemental Fig. S2D,F), which is considered a reliable marker
of fibroblasts (Strutz et al. 1995). GOanalysis showed enrichment of
immune response, extracellular structure, and matrix organization,
as well as negative regulation of cell migration terms, in this cell
population (Fig. 1D). Multiple genes encoding for extracellular ma-
trix (ECM) components such asMFAP5, ECM1,COL6A2, and ACAN
were also enriched in cluster 2 (Supplemental Table S1C). Recent in-
vestigations have reported the presence of S100A4+ fibroblasts in
the adipogenic niche, with a potential role in maintaining adipose
homeostasis (Hou et al. 2018; Zhang et al. 2018; Vijay et al. 2020).
The markers identified for fibroblasts in these investigations—
FBN1, IGFBP6, MFAP5, S100A4, and PI16—were some of the most
enriched markers of cluster 2 cells (Supplemental Fig. S2A–F).
Therefore, these results indicate that cluster 2 cells are fibroblast-
like, with negative regulation of cellular migration and an ongoing
activity for ECM organization. The existence of two phenotypically
distinct brown preadipocytes was further corroborated by perform-
ing single-molecule fluorescent in situ hybridization (smFISH) im-
aging of the cluster 2–enriched gene MMP1 (Supplemental Note
S2; Supplemental Fig. S3).

Recently, snRNA-seq of primary humanWAT harvested from
the same region as our model system (neck) identified a single
white preadipocyte population (Sun et al. 2020), whereas multiple
scRNA-seq studies identified two to three adipocyte progenitor
populations in adult murine abdominal WAT (Ferrero et al.
2020). These differences in WAT preadipocyte composition could
arise from species-specific and/or depot-specific variation. In con-
trast to our findings, snRNA-seq of primary human neck BAT also
revealed a homogenous brown preadipocyte population (Sun et al.
2020), possibly because of differences during tissue biopsy collec-
tion or because of poor cell-capture efficiencies during single-nu-
clei isolation.

snRNA-seq identifies the same preadipocyte populations

as scRNA-seq and detects biologically relevant

differential expression

To evaluate the efficacy of snRNA-seq for recovering transcription-
al heterogeneity, we sequenced the nuclear transcriptome of single
preadipocytes from the white and brown lineages. Unsupervised
clustering of the two lineages grouped nuclei into four clusters, re-
ferred to as populations 0, 1, 2, and 3 (Supplemental Fig. S4A,B).
Cluster 3 nuclei, however, had enriched expression for stress-re-
sponse genes and mitochondrial genes, along with high back-
ground RNA contamination (Supplemental Fig. S4D) and, hence,
were removed from downstream analyses. In the remaining clus-
ters, brown nuclei were primarily grouped into clusters 1 and 2,
whereas white nuclei grouped into a single cluster, 0 (Fig. 2A).
Similarity between clusters identified in snRNA-seq and scRNA-
seq was assessed using the concept of transcriptional signatures
(DeTomaso and Yosef 2016; Gaublomme et al. 2019), defined as
genes differentially expressed in either white vs brown preadipo-

cytes, or cluster 1 versus cluster 2, in the scRNA-seq data set
(Supplemental Table S1B,C). As expected, the transcriptional sig-
nature scores, calculated using Vision (DeTomaso et al. 2019),
were enriched in the corresponding preadipocyte-type/clusters in
the snRNA-seq data set (Fig. 2B), thereby showing a high concor-
dance between transcriptional features uncovered by the two
techniques.

As was observed with scRNA-seq, white nuclei were enriched
for the genes TCF21, PAX3, and PDGFRA (Supplemental Table
S2A), and brown nuclei were enriched for the YAP/TAZ target
genes ANKRD1 and CCN2 (Supplemental Table S2A) and the
smooth-muscle lineage marker genes TAGLN, MYL9, CNN1, and
MYH11 (Supplemental Table S2A). Gene ID1, however, was not
differentially enriched in white nuclei because of a lack of differen-
tial enrichment in the nuclear compartment between white and
brown preadipocyte (Supplemental Note S3; Supplemental Fig.
S5). In scRNA-seq data set, we had classified certain DE genes as
markers for white and brown preadipocytes based on their highly
enriched and specific expression (Supplemental Note S6). All such
white preadipocyte– and brown preadipocyte–specific marker
genes were also enriched in white and brown nuclei, respectively
(Supplemental Table S2A). Of the 50 genes withmaximum enrich-
ment (ordered by logFC) in white and brown preadipocytes in the
scRNA-seq data set, >94% were also differentially expressed in
white and brown nuclei, respectively (Fig. 2C). This analysis shows
that snRNA-seq has sufficient sensitivity to recover the same mo-
lecular differences as scRNA-seq between white and brown
preadipocytes.

GO analysis identified enrichment of cellular adhesion and
regulation of cellular localization terms in brown cluster 1 nuclei,
correspondingwith the findings in scRNA-seq data set (Supplemen-
tal Fig. S4E). Transforming growth factor superfamily genes BMP4
and TGFB2 were also enriched in cluster 1, along with regulators
of adipose tissue development SEMA5A, MEST, and FST (Supple-
mental Table S2B). All six cluster 1–specific marker genes (Supple-
mental Note S6) identified were also enriched in cluster 1 nuclei
(Supplemental Table S2B). Of the 50 genes with maximum enrich-
ment (ordered by logFC) in cluster 1 cells in the scRNA-seq data set,
94% were also differentially expressed in the nuclear data set (Fig.
2C). In cluster 2 brown nuclei, enrichment of S100A4was observed
(Supplemental Table S2B), aswell as regulationof ECMorganization
terms based on GO analysis (Supplemental Fig. S4F). Genes encod-
ing for the ECM components COL6A2, MFAP5, ACAN, and ECM1
were all up-regulated in cluster 2 (Supplemental Table S2B). Of the
50geneswithmaximumenrichment (logFC) in cluster 2 brownpre-
adipocytes (scRNA-seq data set), 80% were also differentially ex-
pressed in the nuclear data set (Fig. 2C). All cluster 2–specific
marker genes (Supplemental Note S6) identified were also enriched
in cluster 2 nuclei (Supplemental Table S2B). Overall, our snRNA-
seq analyses indicated the emergence of stem cell–like behavior in
cluster 1 and fibroblast-like behavior in cluster 2, in agreement
with the whole-cell data set. Finally, preadipocyte-/cluster-specific
transcriptional signatures now defined using the snRNA-seq data
set revealed enrichment in the corresponding preadipocyte-type/
clusters in the scRNA-seq data set, thereby validating that markers
derived from snRNA-seq can be used to identify the same popula-
tions in whole-cell analysis (Supplemental Fig. S4H).

Gene length–associated detection bias in snRNA-seq

Typical scRNA-seq data analysis pipelines often filter intronic
reads for downstream count matrix generation. More recently,
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however, evidence has suggested that intronic reads originate from
nascent transcripts (Ameur et al. 2011; Gray et al. 2014; Hendriks
et al. 2014) and, hence, are informative about expression levels
in single-cell data. Furthermore, the additional read counts im-
prove gene detection sensitivity and can improve cell-cluster reso-
lution (Bakken et al. 2018; Wu et al. 2019). Multiple recent studies
have suggested internal hybridization of poly(T) RT-primer to
intronic poly(A) stretches in nascent transcripts as the primary
mechanism for the capture and detection of intronic reads (La
Manno et al. 2018; Shulman and Elkon 2019; Patrick et al.
2020). Consequently, intronic reads are more readily detected in
genes with more intronic poly(A) stretches, which are more likely
to be longer in length (Supplemental Fig. S6A). This bias is in-
creased in nuclear libraries where up to 40% of all the reads map
to intronic regions compared with only 9% in scRNA-seq (Fig.
3A). Consequently, recent studies have reported enrichment of
longer genes (Lake et al. 2017; Bakken et al. 2018) and poor detec-
tion of shorter genes (Thrupp et al. 2020) in nuclei.

To examine the enrichment of long genes in nuclei, we first
performed DGE analysis between cells and nuclei in white preadi-
pocytes. Using both intronic and exonic reads, our analysis identi-
fied 493 genes enriched in cells and 568 genes enriched in nuclei

(logFC>1 and FDR<0.05). This analysis revealed nuclear-enriched
genes to be significantly longer than genes enriched in whole cells
(two-group Mann–Whitney U test, P-value< 0.01) (Fig. 3B). Next,
we performed DGE analysis between white and brown nuclei,
with and without intronic reads, for genes that are enriched in
white preadipocytes in the scRNA-seq data set. Certain long genes
such as KCNMA1 (99th percentile), AK5 (96th percentile), and
BAALC (85th percentile) were differentially expressed (in white
nuclei over brown nuclei; DE) only upon inclusion of intronic
reads (non-DEwith only exonic reads), likely because of their pref-
erential detection (Fig. 3C,D, highlighted in red). Conversely, we
also identified certain short genes such as CRABP2 (32nd percen-
tile), TM4SF1 (40th percentile), and EVA1B (17th percentile) that
remain nondifferentially expressed, even with inclusion of
intronic reads in the snRNA-seq data set (also non-DE with only
exonic reads) (Fig 3C,D, highlighted in blue). We also performed
DGE analysis between white cells and white nuclei using only ex-
onic reads (logFC>0.25 and FDR<0.05). The logFC differential en-
richment for nuclear-enriched genes was poorly correlated
with counting exons or exons and introns (Pearson R=0.50, P-
value <0.01) (Fig. 3E). logFC values for some of the longest genes
were artificially inflated, possibly because of their preferential

BA

C

Figure 2. snRNA-seq identifies the same preadipocyte populations as scRNA-seq and detects biologically relevant differential expression. (A) UMAP vi-
sualization of white and brownpreadipocytes either annotatedmanually to reflect the sample of origin (top) or annotated based on unsupervised clustering
(bottom); 6556white and 3891 brownnuclei were detected. Of these nuclei, 6578were in cluster 0, 2716 in cluster 1, and 1153 in cluster 2. (B) Heatmap of
transcriptional signature scores for white preadipocyte (top left), brown preadipocyte (top right), brown preadipocyte cluster 1 (bottom left), and brown
preadipocyte cluster 2 (bottom right) as plotted on the UMAP visualization of snRNA-seq data. (C) Bar plot of percentage of top 50 genes differentially
enriched (DE) in the scRNA-seq data set that are also DE in the snRNA-seq data set. The top 50 genes were evaluated based on log fold change values using
the scRNA-seq data set.
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detection upon inclusion of intronic reads (Fig. 3E). Conversely,
logFC values for some of the shortest genes were artificially deflat-
ed because of their poor detection (Fig. 3E). Consequently, the ra-
tio of the logFC values with counting exons or exons and introns

was strongly correlated with gene length (Pearson R=0.69, P-value
<0.01) (Fig. 3E). Overall, our results show technical artifacts in-
duced by gene length–associated detection bias in snRNA-seq
upon inclusion of intronic reads. We therefore developed a
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G
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Figure 3. Gene length–associated detection bias in the nuclear transcriptome. (A) Distribution of reads in the scRNA-seq and snRNA-seq preadipocyte
data sets. (B) Distribution of gene length for genes enriched in cells (in blue) and nuclei (in yellow) with log fold change >1 and FDR <0.05, including both
intronic and exonic reads. (C ) logFC versus log-UMI counts in white nuclei when using only exonic reads, where each dot represents a white preadipocyte–
enriched gene (white vs. brownDE test) detected using the scRNA-seq data set. Horizontal dotted line indicates a logFC cutoff value of 0.5 used as a thresh-
old for DE testing. All genes had a logFC>0.5 in the scRNA-seq data set. (D) logFC versus log-UMI counts in white nuclei when using both intronic and
exonic reads. Each dot is the same as in panel C. Horizontal dotted line indicates a logFC cutoff value of 0.5 used as a threshold for DE testing. Highlighted
genes are represented with a square symbol. (E, left): logFC for nuclear-enriched genes when using only exonic reads or both intronic and exonic reads
before normalization. Each dot represents a gene enriched in nuclei using exonic-only reads with logFC>0.25 and FDR<0.05. Red dotted line indicates
y= x axis. (Right) Ratio of y-axis value over x-axis value for genes in left panel, plotted as a function of their length. (F, left) logFC for nuclear-enriched genes
when using only exonic reads or both intronic and exonic reads after normalization. Each dot is the same as in panel E. Red dotted line indicates y= x axis.
(Right) Ratio of y-axis value over x-axis value for genes in left panel, plotted as a function of their length. (G,H) Average expression of genes in white cells and
white nuclei when using both intronic and exonic reads, without normalization (G) and with normalization (H). For normalization strategy, see
Supplemental Note S5. Each dot represents a gene with average counts per million (CPM) >1 when using both intronic and exonic reads, without nor-
malization, in both cells and nuclei. White nuclei were randomly selected to have as many barcodes as white cells. Red dotted line has a slope of 1.
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normalization strategy to address this technical, length-associated
detection bias (Supplemental Note S5; Supplemental Fig. S6). After
normalization, the logFC differential enrichment of nuclear-en-
riched genes was highly correlated with counting exons or exons
and introns (Pearson R=0.94, P-value<0.01) (Fig. 3F). Moreover,
the ratio of the logFC values with counting exons or exons and in-
trons, after normalization, was poorly correlated with gene length
(Pearson R=0.15, P-value <0.01) (Fig. 3F). Nuclear and cellular
transcriptomes were also better correlated after removal of techni-
cal biases using our normalization strategy (Fig. 3G,H).

DGE analysis, betweenwhite cells andwhite nuclei, with nor-
malized read counts identified 382 enriched genes in cells and 249
enriched genes in nuclei (logFC>1 and FDR<0.05), with nuclear-
enriched genes still significantly longer than whole cells (two-
group Mann–Whitney U test, P-value<0.01) (Supplemental Fig.
S7A). However, the genes enriched in nuclei were, on average,
14-fold longer than genes enriched in cells (compared with a 32-
fold difference before normalization), which is comparable with
the difference observed when using only exonic reads (11-fold dif-
ference) (Supplemental Fig. S7B), suggesting that after accounting
for technical bias, there also exists biological enrichment of longer
genes in nuclei. Overall, our observations show that length nor-
malization removes artificial detection biases, thereby improving
UMI count estimation accuracy while also preserving improved
gene detection sensitivity afforded by inclusion of intronic reads.

To further understand differential transcript enrichment be-
tween whole-cell and nuclear transcriptomes, we next focused
on genes enriched in whole cells after normalization. GO analysis
identified protein translation-associated terms asmost enriched in
whole cells (Supplemental Fig. S7D). Genes contributing to the en-
richment of translational terms primarily includedmRNAs encod-
ing for ribosomal proteins. This enrichment of ribosomal-protein
mRNAs inwhole cells is consistent with their very low cytoplasmic
decay rates and selective nuclear export machinery (Wickrama-
singhe et al. 2014; Chen and van Steensel 2017). Yet, poor detec-
tion of ribosomal proteins in the nuclear transcriptome did not
affect the ability to resolve cellular populations in snRNA-seq, as
evident by the score of the transcriptional signature consisting of
the top 100 genes enriched in cells based on logFC values (approx-
imately 53/100 ribosomal protein genes) (Supplemental Fig. S7C).

Nuclear transcriptome is enriched for long noncoding RNAs that

regulate adipogenesis and drive cell type differences

LongnoncodingRNAs (lncRNAs) function in regulating diverse bi-
ological processes, including regulation of transcription, prolifera-
tion, pluripotency, and cellular differentiation (Quinodoz and
Guttman 2014; Samata and Akhtar 2018; Sherstyuk et al. 2018;
Delá et al. 2019). Because of their regulatory function, lncRNAs
predominantly remain localized in the nucleus (Cabili et al.
2015;Wen et al. 2018). snRNA-seq intrinsically enriches for nucle-
ar localized transcripts, and previous studies have reported enrich-
ment of lncRNAs in snRNA-seq libraries over scRNA-seq
(Grindberg et al. 2013; Zeng et al. 2016).We hypothesized that nu-
clear enrichment of lncRNAs could be advantageous for character-
izing adipose tissue because multiple lncRNAs have also been
implicated in regulating adipogenesis (Sun et al. 2013; Wei et al.
2016; Ding et al. 2018; Sun and Lin 2019; Zhou et al. 2020). We
tested this hypothesis in our in vitro system by profiling adipo-
genic regulatory lncRNAs in our whole-cell and nuclear libraries
derived from white preadipocytes after normalization. We identi-
fied significant enrichment of the lncRNAs NEAT1 (Wei et al.

2016), MEG3 (Li et al. 2017), MIR31HG (Huang et al. 2017), and
PVT1 (Zhang et al. 2020) in white nuclei, which are previously re-
ported regulators of adipogenesis (Fig. 4A). All four lncRNAs were
also enriched in brown nuclei compared with brown whole cells
(Supplemental Fig. S8A–D). Generally, snRNA-seq consistently de-
tected a greater number of lncRNAs at all read depths than did
scRNA-seq (P-value< 0.01, two-group Mann–Whitney U test)
(Fig. 4B). Of the 111 differentially expressed lncRNAs between
white nuclei and white cells, ∼86% (96/111 genes) were up-regu-
lated in nuclei, thereby validating a higher prevalence of this class
of genes in the nuclear compartment. Seven out of 15 lncRNAs
that were enriched in white cells were snoRNA host genes
(SNHGs), which have been shown to have various functions in cy-
toplasm such as repressing mRNA translation, miRNA sponging,
and protein ubiquitination (Zimta et al. 2020). Overall, our results
suggest a higher likelihood to deconstruct the functional roles of
adipogenic regulatory lncRNAs (and other lncRNAs in general) us-
ing snRNA-seq.

Next, we evaluated the sensitivity of snRNA-seq for detection
of lncRNAs driving molecular heterogeneity between brown pre-
adipocyte cluster 1 and 2, two cell types most closely related to
each other. At approximately 50,000 reads per cell/nuclei, DGE
analysis identified more than 40 lncRNAs distinctively regulated
between cluster 1 and 2 in the snRNA-seq data set compared
with only 15 lncRNAs in the scRNA-seq data set. Unsupervised hi-
erarchical clustering in the snRNA-seqdata set based on the expres-
sion of the top 20 up-regulated lncRNAs in cluster 1 and 2 each
revealed sorting of nuclei into two distinct groups that predomi-
nantly reflected their original cluster assignment (Fig. 4C). More-
over, silhouette coefficient analysis (a method for evaluating
clustering performance) revealed better cluster separation perfor-
mance for snRNA-seq compared with scRNA-seq between cluster
1 and 2 for all down-sampled read depths (Fig. 4D). Silhouette co-
efficients were calculated based on the Euclidean distance between
cells/nuclei in the principal component space generated using
only lncRNAs (see SupplementalMaterial). To validate that the ob-
served performance features were not metric dependent, we quan-
tified two more indices, the Calinski–Harabasz index and the
Davies–Bouldin index, to compute inter-cluster separation and
found similar trends (Supplemental Fig. S8F,G). A similar analysis
performed by normalizing for the same number of mean unique
molecules (UMIs) per sample revealed a similar trend for the three
separation indices (Supplemental Fig. S8H–J). Together, our results
suggest that snRNA-seq is superior for learning heterogeneity gov-
erned by lncRNAs compared with scRNA-seq.

snRNA-seq detects relevant transcriptional regulation during

adipogenesis in white preadipocytes

After identifying transcriptomic similarities and differences be-
tween scRNA-seq and snRNA-seq in the preadipocyte state, we
next focused on evaluating molecular correspondence between
the two techniques in mature adipocytes. We leveraged our in
vitromodel of white adipogenesis that enabled us to prepare a sin-
gle-cell suspension of mature adipocytes without the need of im-
plementing harsh tissue dissociation protocols (see Methods).
Following single-cell suspension preparation, one of the most
commonways to sort single cells is using flow cytometry. Recently,
FACS gating strategies have been tailored to isolate mature adipo-
cytes (Majka et al. 2014; Hagberg et al. 2018), although only a
small percentage of adipocytes are able to survive the shear stress
associated with flow sorting (Majka et al. 2014). Therefore, to
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enable gentle sorting of single adipocytes for downstream scRNA-
seq, we developed a new protocol using the cellenONE X1 single-
cell isolation platform. This automated liquid-handling robot uses
gentle piezo-acoustic technology for dispensing cells encapsulated
in a picoliter-volume droplet, ensuring minimal cellular
perturbation and background RNA contamination. To harvest ad-
ipocytes in vitro, human white preadipocytes were cultured and
differentiated using a chemical adipogenic induction cocktail for
20 d (Shamsi and Tseng 2017). Coherent antistokes Raman imag-
ing established successful differentiation of white preadipocytes,
with distinctly visible signal from round lipid droplets (Supple-
mental Fig. S9A; Gupta et al. 2019). After creating a single-cell sus-
pension of white adipocytes, 200 cells were spotted using the
cellenONE X1 machine onto 96-well plates preloaded with lysis
buffer and barcoded poly(T) primer. Library preparation was
then performed using mcSCRB-seq chemistry (Bagnoli et al.
2018). Transcriptomic profiles of these cells were then compared
with a snRNA-seq library of approximately 12,000 nuclei isolated
from 20-d differentiated white adipocytes.

Independent unsupervised clustering revealed organization of
both cells and nuclei into primarily two clusters, referred to as clus-
ters 0 and 1 (Fig. 5A). snRNA-seq identified an additional cluster 2,

which showed characteristics of mitotic preadipocytes with ongo-
ing cell cycle progression, suggesting that these cells could be prea-
dipocytes that never underwent growth arrest (Supplemental Note
S4; Supplemental Fig. S10A–H). Cluster 0 in both data sets was
marked by the expression of mesenchymal marker THY1 (Fig. 5A),
suggesting that these cells/nuclei were differentiating preadipo-
cytes. Cluster 1, on the other hand, had high expression of the adi-
pogenic gene ADIPOQ, indicating that cells/nuclei in this cluster
were mature adipocytes (Fig. 5A). DGE analysis further identified
enrichment of other adipogenicmarker genes (alongwith ADIPOQ)
in cluster 1 (Fig. 5B,C, highlighted in red), confirming a transition
from differentiating preadipocytes to mature adipocytes from clus-
ter 0 to cluster 1 in both data sets. GO analysis identified enrich-
ment of ECM organization terms in cluster 0 and lipid
metabolism in cluster 1, independently in both the scRNA-seq
and snRNA-seq data sets (Supplemental Fig. S9B–E). Moreover,
∼80% genes (106/133) up-regulated in cluster 1 in the scRNA-seq
data set were also differentially expressed in the snRNA-seq data
set. Notably, the remaining 20%genes (27/133) thatwere not differ-
entially expressed in the snRNA-seq data set primarily included
genes associated with the mitochondrial respiratory chain process
(Supplemental Fig. S9F), suggesting that adipocytes’ enhanced

B

A

C
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Figure 4. Nuclear transcriptome is enriched for lncRNAs that regulate adipogenesis and drive cell type differences. (A) Box plots of lncRNAs reported as
regulators of adipogenesis. Black text indicates logFC value for white nuclei versus white cell DE test in preadipocytes with a FDR<0.05 after normalization.
(B) Median lncRNAs detected as a function of read depth across single cells and nuclei (both white and brown lineages). Error bars indicate the interquartile
range. (C) Hierarchical clustering using scaled expression values of the top-20 up-regulated lncRNAs in brown cluster 1 and cluster 2 in the snRNA-seq data
set. One-hundred random barcodes were chosen for this analysis. Top row reflects original cluster assignment for the selected barcodes. (D) Cluster sep-
aration resolution quantification between brown cluster 2 versus cluster 1 in the scRNA-seq and snRNA-seq data set. Only lncRNAs were considered for PCA
manifold generation. Both data sets were subsampled to have the same number of cells/nuclei and same number of mean transcriptome mapped reads.
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Figure 5. snRNA-seq detects important transcriptional regulation during adipogenesis in white preadipocytes. (A) UMAP visualization of scRNA-seq and
snRNA-seq white adipocyte data sets (day 20) after unsupervised clustering (left panels). The scRNA-seq data set had 109 cells in cluster 0 and 38 cells in
cluster 1. The snRNA-seq data set had 4859 nuclei in cluster 0, 4546 nuclei in cluster 1, and 31 nuclei in cluster 2. Expression profile formesenchymalmarker
THY1 and mature-adipocyte marker ADIPOQ in both scRNA-seq and snRNA-seq data sets (middle and right panels). (B) Heat map of z-scored expression of
the top 20 differentially expressed genes between cluster 0 and cluster 1 in the scRNA-seq white adipocyte data set. Highlighted in red aremarkers of adipo-
genesis. (C) Heat map of z-scored expression of the top 20 differentially expressed genes between cluster 0 and cluster 1 in the snRNA-seq white adipocyte
data set. A random subset of 150 barcodes was used for this visualization. Highlighted in red are markers of adipogenesis. (D) Heat map of transcriptional
signature scores for cluster 1 as plotted on the UMAP visualization of snRNA-seq white adipocyte data. (E) Heat map of transcriptional signature scores for
cluster 0 as plotted on the UMAP visualization of snRNA-seq white adipocyte data. (F,G) Normalized expression of genes ADIPOQ and SEMA5A (F) and
ADIPOQ and S100A4 (G) in differentiating brown preadipocytes (day 20) scRNA-seq data set. Also see Supplemental Figure S2, G–I.
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mitochondrial activity may not be captured in the snRNA-seq data
set. Correspondingly, the snRNA-seq data set lacked manifestation
of mitochondrial biological processes such as oxidative phosphory-
lation and electron transport chain in cluster 1 upon GO (Supple-
mental Fig. S9B,D). This observation was also supported by the
fact that these 27 genes had a median length of ∼11 kb, the same
order ofmagnitude as the lengthof geneswithpoor detection innu-
clei over whole cells (Fig. 3B). As expected, scores of the cluster 0 and
1 transcriptional signatures in the scRNA-seq data set were observed
to be highly conserved and enriched in corresponding cluster types
(Fig. 5D,E), further validating the conservation of information in
the nuclear transcriptome. Overall, our results reveal a comparable
molecular landscape in white adipocytes between the scRNA-seq
and snRNA-seq data sets.

We next looked to investigate any differential adipogenic ca-
pacity between the two brown preadipocyte clusters identified in
our study (cluster 1 and 2) (Fig. 1B) by performing scRNA-seq on
mature brown adipocytes using the cellenONE X1 for gentle isola-
tion of intact mature adipocytes. These adipocytes were derived by
differentiating brown preadipocytes for a period of 20 d. After sort-
ing approximately 200 cells, library preparationwas performed us-
ing themcSCRB-seq protocol (Bagnoli et al. 2018). Transcriptomic
profiling revealed detection of mature brown adipocytes, along
with recovery of multiple cells that were not terminally differenti-
ated but rather distributed along a continuum of differentiation
states (Supplemental Fig. S2G,H). Consequently, our analysis re-
vealed a range of adipogenic gene expression (ADIPOQ) in our
data set (Fig. 5F), which was mutually exclusive from the expres-
sion of the cluster 1–enriched gene SEMA5A (Fig. 5F). On the other
hand, we identified multiple cells with shared expression of the
cluster 2–enriched genes S100A4 and ADIPOQ (Fig. 5G). These re-
sults supported the observation of two brown preadipocyte popu-
lations and indicate that cluster 2 cells are more likely to
differentiate into mature brown adipocytes. Additionally, we also
compared transcriptomic similarities between mature brown adi-
pocytes (Supplemental Fig. S2H, highlighted in red) and cluster
1/cluster 2 cells using transcriptional signatures defined for respec-
tive clusters using the day-0 scRNA-seq data set (Supplemental Ta-
ble S1C). Mature adipocytes had a significantly higher score for
cluster 2 cells compared with those of cluster 1 (Supplemental
Fig. S2I), thereby providing additional evidence that the former
cell type is more likely to be adipogenic.

Integration of snRNA-seq and scRNA-seq data sets

A comprehensive cell atlas of the adipose tissue will require joint
analyses of data sets generated using both scRNA-seq and
snRNA-seq. However, technical biases and differential transcript
enrichment in snRNA-seq lead to significant batch effects between
snRNA-seq and scRNA-seq experiments, thereby reducing cluster-
ability of cells from these two protocols (Mereu et al. 2020).
Multiple bioinformatic tools are now available to remove covari-
ates that lead to technical batch effects and to facilitate integration
of scRNA-seq data sets generated across different days, laboratories,
individuals, or technologies (Zappia et al. 2018). We used single-
cell variational inference (scVI), a deep generative modeling-based
tool (Lopez et al. 2018; Gayoso et al. 2021), to explore the possibil-
ity of integrating the snRNA-seq and scRNA-seq data sets for joint
analysis. Four data sets of white preadipocytes were integrated in
total: day-0 scRNA-seq and snRNA seq (cluster 0 in Figs. 1B, 2A)
and day-20 scRNA-seq and snRNA-seq (top and bottom left panels
in Fig. 5A).

Without batch correction, all four data sets arranged into dis-
tinct individual clusters, with no shared population identified at
the same time point across different techniques or the same tech-
nique but across different time points (Fig. 6A). A dendrogram,
based on the Euclidean distance in dimensionally reduced space,
grouped clusters first by sequencing chemistry (mcSCRB-seq vs.
10x), followed by technique type (snRNA-seq vs. scRNA-seq),
and finally by time point (day 0 vs. day 20) (Fig. 6A). After integra-
tion, matching adipocyte populations from day 20 and preadipo-
cyte populations from both day 0 and day 20 in nuclear and
whole-cell data sets were primarily nearest neighbors in a dendro-
gram based on the Euclidean distance in dimensionally reduced
space (Fig. 6B). UMAP visualization further revealed proximal
placements of similar cell populations (Fig. 6B,C). Of note, we ob-
served that preadipocytes fromboth the day-0 snRNA-seq and day-
0 scRNA-seq data sets localized into two distinct groups, whichwas
driven by differences in proliferation state with one cluster com-
posed of mitotic cells and another composed of growth arrested
cells (Supplemental Note S4; Supplemental Fig. S10A–H). Unsu-
pervised clustering of the integrated data set revealed adipocytes,
day-20 preadipocytes, and the two groups of day-0 preadipocytes
as distinct cell types, illustrating scVI’s abilities to remove batch ef-
fects while retaining biological variation (Fig. 6C, right panel). In-
deed, top marker genes for each cluster recovered previously
reported expression trends such as enrichment of ECM compo-
nents in day-0 preadipocytes (Weiner et al. 1989), enrichment of
insulin-binding proteins in day-20 preadipocytes (Gleason et al.
2010), and enrichment of adipogenic genes in mature adipocytes
(Supplemental Fig. S10J). Althoughmultiplemarkers for each clus-
ter had conserved expression across scRNA-seq and snRNA-seq,
some markers were exclusively enriched in either one of the data
sets (Supplemental Fig. S10J), thereby highlighting the importance
of performing joint analysis. Finally, integration of the same four
data sets using Seurat (Stuart et al. 2019) revealed minimal overlap
of single-cell and single-nuclei data sets for both day 0 and day 20
(Supplemental Fig. S10I). Recently, benchmarking of distinct inte-
gration methodologies indeed revealed effective performance by
scVI on complex integration tasks, with Seurat v3 performing
well on simpler tasks with distinct biological signals (Luecken
et al. 2022). Overall, our results show scVI’s integration abilities
by identifying functionally similar preadipocyte and adipocyte
populations shared across scRNA-seq and snRNA-seq techniques.

Discussion

In this investigation, we evaluated the ability of snRNA-seq to re-
capitulate the molecular and compositional landscape of distinct
lineages in human adipose tissue. We avoided confounding vari-
ability associated with inter-depot and inter-subject transcription-
al variation by performing a direct comparison of snRNA-seq and
scRNA-seq on a pair of immortalized white and brown human pre-
adipocytes isolated from the neck region of the same individual.
We found that snRNA-seq was able to recover the same cell types
as scRNA-seq at both the preadipocyte and mature adipocyte
states. Furthermore, we provided evidence for recovering similar
expression profiles of biologically relevant genes and attributing
similar functional annotations to cell types by nuclear transcrip-
tome profiling compared with whole cells.

At the preadipocyte stage, brownpreadipocyteswere a hetero-
geneous mix of two distinct cell populations, cluster 1 and cluster
2. However, cell type enrichment followed by differentiation and
metabolic assays will need to be further performed to identify their
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individual functions in maintaining adipose tissue homeostasis.
To date, different scRNA-seq studies of mouse stromal vascular
fraction (SVF) have identified multiple subpopulations of adipose
progenitor cells (APCs) expressing distinct markers (Burl et al.
2018; Hepler et al. 2018; Schwalie et al. 2018; Merrick et al.
2019). Integrated analysis of these data sets primarily identified
two common populations of APCs in mice referred to as Asc1
and Asc2 (Ferrero et al. 2020; Rondini and Granneman 2020).
Like cluster 2 cells, Asc2 showed proinflammatory and profibrotic
phenotype and positive expression of genes PI16 and MFAP5.
Functional investigations into the two cell types revealed Asc2
cells inhibiting the differentiation of Asc1 cells in vitro (Rondini
and Granneman 2020). This agrees with the proadipogenic nature
of cluster 2 cells identified in our study. Therefore, it is plausible
that cluster 1 and cluster 2 cells identified in our study may be
functioning in amanner like Asc1 and Asc2 tomaintain adipocyte
turnover.

snRNA-seq is the preferred technique to study samples whose
compositional landscapemaybe biased by the differential efficien-
cy of cell type recovery when using scRNA-seq. Adipose tissue is
one such sample in which isolation of intact, single adipocytes is
complicated by their fragile nature. Indeed, most adipose scRNA-
seq studies to date derive the transcriptomes of the cell types
within SVF only, with minimal detection efficiencies for mature
adipocytes either in animal models (Burl et al. 2018; Hepler et al.

2018; Schwalie et al. 2018; The Tabula Muris Consortium 2018;
Cho et al. 2019; Gu et al. 2019; Jaitin et al. 2019; Merrick et al.
2019; Henriques et al. 2020) or humans (Acosta et al. 2017;
Jaitin et al. 2019; Merrick et al. 2019; Vijay et al. 2020). Here, we
developed a new single-adipocyte isolation protocol using piezo-
acoustic-based gentle dispensing technology for improved re-
covery with downstream scRNA-seq. Using this strategy, ∼26%
barcodes recovered were annotated as adipocytes. However, this
adipocyte capture efficiency was still limited compared with
snRNA-seq, where ∼48% barcodes were identified as adipocytes.
Conversely, at the preadipocyte stage, where cell type recovery is
efficient, scRNA-seq recovered equal proportions of the two brown
preadipocyte clusters. However, analysis of snRNA-seq data
revealed an approximately 1.5-fold enrichment of cluster 1 over
cluster 2, suggesting a bias in compositional sampling in snRNA-
seq. Therefore, such cell-level sampling biases must be considered
when evaluating the composition of complex tissues with snRNA-
seq.

Understanding the advantages and drawbacks of using
snRNA-seq, a nuclear transcriptome is inherently enriched for na-
scent transcripts, thereby predominantly reflecting changes in
gene expression as a result of differences in transcription rates
alone (Gaidatzis et al. 2015). In contrast, a cellular transcriptome
is fundamentally enriched for mature transcripts, thereby captur-
ing gene expression changes driven by both transcriptional and

A B

C

Figure 6. Integration of the snRNA-seq and scRNA-seq data sets. (A, top panel) UMAP visualization of nonintegrated scRNA-seq and snRNA-seq data sets
for both white preadipocyte (day 0) andmature adipocyte (day 20), for a total of four batches (total 18,717 barcodes). (Bottom panel) Cluster dendrogram
for nonintegrated data sets based on the eigenvalue-weighted Euclidean distance matrix constructed in latent-dimension space inferred using scVI. (B)
UMAP visualization and cluster dendrogram of scRNA-seq and snRNA-seq data sets as in A after integration using scVI tools (total 18,717 barcodes).
See also Supplemental Note S4 and Supplemental Figure S10. (C) UMAP visualization of scVI integrated data set with barcodes annotated by sequencing
technique (left), harvest day (middle), and joint unsupervised clustering (right).
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post-transcriptional regulatory processes such asmRNAprocessing
and degradation. A higher relative proportion of nascent tomature
transcripts in the nucleus also results in a large fraction of intronic
reads in snRNA-seq, which,when considered for countmatrix gen-
eration, gives rise to detection bias against short genes with few
intronic poly(A) stretches. Consequently, for a biological system
compatible with both techniques, scRNA-seq may be better for
identifying cellular subpopulations. scRNA-seq will also be better
for assessing gene expression changes because of post-transcrip-
tional regulation. However, nuclear transcriptome is preferentially
enriched for lncRNAs, indicating that functional investigations of
these genes will be enhanced by sequencing nuclei. Moreover,
some studies of specific nuclear functions may be enhanced by
directly accessing nuclei, for example, changes in gene expression
profile because of targeted transcriptional activation mediated by
epigenetic modifications. Therefore, it is important to evaluate
each approach depending on the task at hand. However, for tissues
such as the adipose tissue, snRNA-seq may be the only option. In
our investigation, lncRNAs regulating adipogenesis were enriched
in the nuclear transcriptome. lncRNAs driving differences between
cluster 1 and 2 in brown preadipocytes were also better detected in
the snRNA-seq data set. However, we also identified poor detection
of shorter genes in nuclei, some of which were key to driving het-
erogeneity between distinct cell types.

Including intronic reads for UMI quantification presents re-
searchers with both advantages and drawbacks. poly(A) stretches
are found randomly dispersed along the length of the genome,
and introns become the predominant site for the localization of
such stretches because of their extensive length (21-fold longer
than exons) (Piovesan et al. 2016). These poly(A) stretches present
additional priming sites (besides the 3′ poly(A) tail) for the
poly(T) RT primer, thereby enabling more efficient transcript cap-
ture. Conversely, most intronic reads are therefore derived from
genes with multiple poly(A) stretches (long genes), thereby intro-
ducing technical detection bias. This bias gets further magnified
in snRNA-seq libraries that are inherently enriched for nascent
transcripts (and hence intronic reads), and filtering such reads
would mean reduced gene detection sensitivity, shallower se-
quencing depth, and underused sequencing cost. Here, we provid-
ed a normalization strategy for UMI counts derived from intronic
reads that can remove gene length–associated technical biases. Im-
plementation of this normalization strategy removes technical ar-
tifacts while retaining true biological features, thereby improving
integration and enabling joint analysis of the scRNA-seq and
snRNA-seq data sets. In such joint analysis, our normalization
strategy would also improve the accuracy of differential expression
testing between any technique-specific clusters identified.

Finally, we showed applicability of scVI for integration of
scRNA-seq and snRNA-seq data sets. This is critical for the genera-
tion of a comprehensive adipose tissue atlas because investigations
into the SVF heterogeneity have been performed using scRNA-seq,
whereas snRNA-seq is favorable for investigations into the exis-
tence of adipocyte subtypes. Therefore, any efforts to identify
shared subpopulations across such data sets, and the lineages
therein, would demand data integration. However, our findings
here are based on an in vitro adipogenic model system, with a
less heterogeneous cellular composition than primary tissue.
Therefore, integration of the scRNA-seq and snRNA-seq data sets
with this in vitro adipogenic model system is likely more robust
than in a primary sample. Indeed, multiple previous reports have
shown strong batch effects between scRNA-seq and snRNA-seq
data sets derived from the same primary tissue, resulting in subop-

timal integration performance (Slyper et al. 2020; Andrews et al.
2021; Luecken et al. 2022). Such batch effects are likely rooted in
technical differences across the two techniques, such as gene
length–associated detection biases and high background mRNA
levels in nuclear libraries (Fleming et al. 2019; Alvarez et al.
2020). Therefore, to truly generate a comprehensive human cell at-
las across varying tissue types, there is a need for evolved
algorithms specifically developed for the task of integrating
scRNA-seq and snRNA-seq data sets.

Overall, snRNA-seq provides an effective method for charac-
terizing cellular heterogeneity and functionally relevant gene ex-
pression profiles within human preadipocytes and adipocytes.
We expect that snRNA-seq will be actively adopted by the adipose
community for high-throughput transcriptomic profiling of the
tissue and will aid in increasing its representation in initiatives
such as the Human Cell Atlas. Ultimately, joint analysis of data
sets acquired using multiple sequencing techniques will aid in
the creation of a comprehensive human adipose tissue atlas, there-
by enabling us to dissect its critical role in health and disease.

Methods

Preadipocyte culture and adipogenic differentiation

The detailed protocol for maintenance, cryopreservation, and dif-
ferentiation of white and brown preadipocytes is outlined in a dif-
ferent study (Shamsi and Tseng 2017). Briefly, preadipocytes were
maintained in DMEM (Corning 10-017-CV) supplemented with
10% (v/v) FBS and 1% vol/vol penicillin–streptomycin at 37°C
with 5% CO2. For differentiation, preadipocytes were maintained
at 100% confluence for 48 h, after which growth media was re-
placed with differentiation media every 48 h for the next 20 d
(see Supplemental Material).

Harvesting mature adipocyte for scRNA-seq cellenONE X1

Mature adipocytes were washed with PBS and incubated with a
monolayer of 0.25% trypsin with 0.1% EDTA (Gibco 25200-056;
monolayer obtained by adding and removing 1 mL of trypsin)
for 2–3 min in a tissue culture incubator. When adipocytes started
to become round and detached from the plate, trypsinwas neutral-
ized by adding 1 mL of FBS. Clumps of adipocytes were dislodged
using a wide-bore 1-mL pipette tip and filtered using a 70-µm cell
strainer. Concentration of adipocyte suspension was adjusted to
approximately 200 cells per microliter using FBS for downstream
spotting using the cellenONE X1 machine.

Nuclei isolation from preadipocytes and mature adipocytes

for snRNA-seq

Nuclei were isolated fromwhite and brown preadipocytes using an
NP-40-based lysis buffer (see Supplemental Material). Cells from a
100-mm dish were scraped onto 500 µL of chilled lysis buffer, in-
cubated for 5 min on ice, and washed with ice-cold PBS supple-
mented with 0.2 U/µL RNase inhibitor (Protector RNase
inhibitor; henceforth called wash buffer) four times by centrifug-
ing at 500 rcf for 5 min at 4°C. Nuclei were finally resuspended
in the ice-cold wash buffer, filtered using a 40-µm cell strainer,
and adjusted for a final concentration of approximately 1000 nu-
clei per microliter. Nuclei were also stained using 0.08% trypan
blue dye to assess nuclear membrane integrity under brightfield
imaging. For nuclear isolation at the mature adipocyte stage, the
same protocol was implemented as mentioned above with the
modification of using 1 mL lysis buffer per 100-mm dish.
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scRNA-seq and snRNA-seq library preparation

Sequencing chemistries and metrics for libraries used in our study
are listed in Table 1. See Supplemental Methods for more details.
Also see Supplemental Note S1 for cell-hashing strategy used
for white and brown preadipocytes scRNA-seq data set (Table 1,
row 1).

scRNA-seq and snRNA-seq data analysis

All 10x Genomics libraries were mapped and quantified using
CellRanger. UMAP visualization for individual libraries was per-
formed using latent space derived from scVI (Lopez et al. 2018)
as input. Downstream QC to remove low-quality cells and clusters
was performed using Seurat (Butler et al. 2018) in R (R Core Team
2020). Similar steps were performed for analysis of mcSCRB-seq li-
braries with data processing using zUMIs (Parekh et al. 2018).
Vision was used to perform all transcriptional signature analysis.
Data integration was performed using scVI-tools (Gayoso et al.
2021) and Seurat (Stuart et al. 2019). For further details, see the
Supplemental Material.

RNA smFISH and spot counting analysis

To perform RNA FISH, we followed the protocol of Raj et al. (2008)
with minor modifications. We prewashed cells with wash buffer
containing 10% formamide and 2× saline-sodium citrate (SSC).
We then performedhybridization by adding 1 µL of 6.25 µMprobe
to 50 µL of hybridization buffer consisting of 10% formamide, 2×
SSC, and 10% (w/v) dextran sulfate. The final probe concentration
for overnight hybridization was 125 nM. We hybridized the sam-
ples overnight in a humidified chamber at 37°C. Following hybrid-
ization, we washed the samples twice with wash buffer for 30 min
at 37°C. We then washed the samples 2× SSC, antifade buffer.
Imaging was performed in antifade buffer supplemented with cat-
alase and glucose oxidase. Quantification of RNA spots per cell was
performed using the Find Foci tool (Herbert et al. 2014) in Fiji (see
Supplemental Material).

Data access

The sequence data from this study have been submitted
to the NCBI database of Genotypes and Phenotypes (dbGaP;
http://www.ncbi.nlm.nih.gov/dbgap) under accession number
phs002461.v1.p1. The scripts to reproduce the work presented in
this study can be found as Supplemental Code.
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