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ABSTRACT

Constitutive eguations are developed for elastic solids sustaining
deformation for which displacement gradients are small but where com-
plete physical nonlinearity is permitted. The constitutive egquation
includes as special cases forms considered by recent authors; at the
same time, more general effects are considered, in particular, coupling
between volumetric and deviatoric effects.

Some simple states of deformation are examined and the plane
elastostatic @Hovwma is formulated together with the approximate

solution of an example by perturbation techniques.
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INTRODUCTION

There exist real materials which, even for small deformations,
exhibit nonlinear mechanicsl effects.

Exampies of interest are materials such as concrete, solid propel-
lants end foamed elastomers whose tensile and compressive responses
differ and whose behavior is strongly dependent on superimposed hydro-
static stress. Another exasmple is sand which dilates when subjected
to a state of gimple shearing siress.

While some of these materials are not entirely elastic, they are
of'ten analyzed by classical elasticity theory and, in order tc describe
more adequately some aspects of thelr mechanical behavior under small
deformations, one is led to examine a theory of elastic solids for
which kinematic linearity is retained but where physical nonlinearity
is permitted. In other words, for the class considered, nonlinearity
in the stress-strain relations is postulated to be more important than
in the strain-displacement equations.

Although this nonlinearity is but a special case of the general
nonlinear theory of elasticity mwwww rather than simplify more general
results which are generally complicated, it has been more convenient to
introduce kinematic restrictions initially end to develop the theory
from this viewpoint.

The first significant contribution to physically nonlinesr elastic-
ity theory appears to have been in 1894 by Voigt (2}, who extended the

stress~strain law t¢ include gquadratic ferms in strain and thus developed

w2¢§dmwm in parentheges refer to the bhibliography at the end of the text.



a five constant elasticity theory, applying it to the solution of simple
problems. The same form of law was considered in 1937 by Murnaghan va
and in 1940 by Biot {(4).

Novozhilov (5) pointed cut the restrictive nature of Voigt's five
constant theory in its application to the behavior of most real materials
and discussed a constitutive law refaining linear and cubic terms in
strain and having six elastic constants. He slgo referred to earlier
work by Bulffinger in 1729.

Sternberg (6}, in 1946, further examined the five constant theory
and applied it to the extension of a rod and to torsion of a circular
cylinder.

The first application to boundary value probiems appears tc have
been by Kauderer {7} who used periturbation techniques to obtain approx-
imate solutiong to a number of problems., His form of constitutive law,
as will be seen, is guite restrictive.

Most recently, Savin {8) has extended Kauderer's work to include
formulation of approximete solutions for the extension of an infinite
plate with a hole.

Mentiocn should also be made of the work of Dillon {9) who has
considered coupled thermoelastic theory where nonlinearity is present
with regpect to mechanical and thermal variables.

A special class of viscoelastic materials has been considered by
Rivlin (10) and by Bergen, Messersmith and Rivlin (11} with a constitu-
tive law that is equivalent, for a glven class of deformations, to a
sub-class of that considered here.

The first section of the present work is devoted to the develop-

ment of the most general form of constitutive law for isotropic media



and to consideration of the corresponding inverse constitutive law.
Restrictions on these laws are considered and gpecial clasgses of consti-
tutive laws are examined.

In the second section some simple states of deformation are inves-
tigated and the third section 1s devoited to formulation of the plane
elastostatic problem together with an approximete solution, by pertur-
bation techniques, of the extension of & nonlinear elastic plate con-

taining a circular hole,



I. THE CONSTITUTIVE LAW FOR PHYSICALLY NONLINEAR ELASTIC SOLIDS

1.1 Introduction

In the following development, for mathematical simplicity, attention
ig restricted to homogenecus isotropic medis.

The constitutive law is derived and ilts inverse 1s considered. The
requirement that the constitutive law have a unigue inverse piaces cer-
tain restrictions on the form of the constitutive law. Further restric-
tionsg are obtained from physical reasoning.

The section concludes with consideration of special classes of
congtitutive laws and those laws considered by other authors are related

to the genersl case.

1.2 Formulation of the constitutive lsw for homogenecus isotropic

solids

An elastic solid is defined {12) as one for which the state of
stregs depends only on the current state of deformation. A mgmmw
elastic, or hyperelastic, solid is one for which, in addition, there
exists a scalsr potential function, Wzv , dependent only on the current
gtate of deformation from which the constitutive law may be derived. The
latter sub-class of materials will be conmsidered in this work.

If displacement gradients are small such that

!

LN

R
V/.N\

Hbmﬁwﬁ indices tske on valuss 1, 2 or 3.

2 . . . o
Tensor notation is used and, for convenience, guantities are referred
to rectangular Cartesisn coordinates, 7. ; unless otherwise specified.



the material deformation messure,
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In order that L./ , the strain energy density function, be

objective, its assumed functional form

)= Cmm_ﬂ_?r?‘u

must be replaced by

U o= Cmmﬁwm;v (1.1)
and stress is determined from

E1Y,

T, = deq, . (1.2)

For homogeneous media, (1.1) becomes

If the medium is now restricted to be isctropic, (U is a scalar

invariant under proper orthogonal coordinate transformations and may

be expressed as

U=uwlt, 1. 1) (1.3)

where 1 , independent inveriants of the strain tensor, are here

taken to be



uﬁzm = m,m_m
H.N = M\Nmﬂ.r\nv)m_ﬁsﬁ N AW._FV
T = /A CemCxn€rmn
From (1.2) and (1.3)
7. U 2L L 2y ol | oL 2.
¢ !@H_ ler(" whm mmrru \@:_:m\ m...,umif.»
oY
M.lzru. - ﬁﬂ,d“ ./.ﬁf_.x,.. - vamr,u_ -4 ﬂuwmp.(ﬁmuﬁ J AH.WV
where

G- P (1) = Y c..mv
oli .

From (1.6), the functions mvw (material strain functions)

are related by three ecquations

/

& oy
[, oI . (1.7)

L
L

0

The constitutive law (1.5) may also be derived from the theory of

isotropic matrices (13) without assuming the existence of L/ . The

material strain functione, no longer restricted by (1.7), define a Cauchy

elastic solid.

As an example of the constitutive law, let L/ te a continuous

function which is approximated by a polymomial in Lo . If terms in

[J  from second to fourth order in strain are retained, the ‘cubic’

stress-sirain law is cobtained:
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Loy = [N, &r@ -+ ,D/,Mm.,..r..v + \V/.P_m.,_mﬁ Doy + Pu.p mﬁjmﬁf&ru
ES
+Mx/mm:h..a,mmt.£ + Pummnﬁmpr + Pw,mﬁﬁnm.,ﬁ + P,ww mfm?mtﬂ?ﬂ‘ﬁ
-+ P.WW m,nm...z/m”.ww?:mmﬂ) f\.ur& l..s ?Wu.um,_.iﬁ,eru 4 b/ruub-m.ﬁm.ﬂmrﬂmlwmﬂ

+ D hag W\iﬁfm;,ms,m.};nmﬂ . (1.8)
Terms are grouped in order in (1.8), and it is readily seen that

QJM = b/:u.., + ?M,Hﬁw;. N?wp“mm., - v/m_,,H_w -+ Nw/w; HM_‘M + ?wwa

=

mVN = A+ 2hnlos N?wflkw,i VWWHWV

Dy = Pow o+ Awali . (1.9)

It is to be noted that for a nonlinear solid at small strain,

reduction to a linear law for £.] » O need not be required.

There is, furthermore, no a priori reason for requiring thai terms
of a prescribed order be present in all material functions. The only
reason for doing so here is to examine the most general polynomial law

of a given order.

1.3 The incompressible case

For incompressible media,

I, =0

and

() = FR_AHMJHWV .

Introducing a Lagrangian multiplier, - P , (1.2) vecomes
=1, -
T Vo=l )
o™ ae t o) s (1.10)

and, from {1.10),

T, Hl_\u&h_ + D€, ~ PrE €k, (1.11)



@:  and  @s are as defined by (1.6), and (1.7) gives the

single eguation
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P has dimensions of stress end in certain cases has physical

significance as hydrostatic pressure.

1.4 The Inverse Constitutive Law

Consider the scalar function, C s, the complemenitary energy

density, dependent only on the current state of stress such that

2
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Then, by arguments identical to those used for the strain energy

density function, for a homogensous, isotropic sclid

=5

where , the inveriants of the stress tensor, are given by

oy = \ﬁﬁ.ﬁ .

mwk == A\N .N;laKwa;.\W\D_‘) N AH.WNV
S, = 2 T Ten Trn
The inverse constitutive law
nmra = OA"&,,.‘L - Oha.\ﬁr,,.m -+ Ohiwwﬁrrujﬁ.{,ﬁ.ﬂ AH.va
is thus obtained, where S o
(1.14)

&nmﬁ@ruv = Ml/w .

TR L =



From {1.14) it follows that the material stress functioms, X<

are related by three eguations

(1.15)

SIRG Y,
02

A
&,

Qo

The existence of the complementary energy density function follows
from the existence of the strain energy density function in that -
is the Legendre transformation of L/ (14), the two functions being

related by
m = \Wrumna - ru . AM.H@V

The condition that (1.5) has a unique inverse (1.13) is that the

mmmmwww determinant of ﬁzL is non vanishing., i.e.
| eru
k . e
L(U) = pET| SE €. | T D (1.17)

The condition (1.17), which is identical to the non vanishing of
the Jacobian of L., (€mn) , is taken as a restriction on the
material strain functions.

The restriction is, in fact, equivalent to Drucker’s postulate
of stability (15). A proof of this equivalence follows.

Drucker's stability postulate states that, if a unit volume of the
body is subjected to a homogeneous state of stress, by , and

corresponding strain, &

1

, and that if, due to an additional small
load, stress and strain increase by S T, and Qe

respectively, then

Sl = ST &, =O (1.18)

for a stable material.



Since, for an elastic solid,
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it follows that
s@\lﬁrc 1\\@ : ‘ﬁ.\vw —
%Mr‘_ = Wm?ﬁ ﬂm;mq.)ﬂ, = wm(L rJr.nuH‘ /Omwj)
and
_-
S
~ M -
S\wW = 6, 0E,.., CEL O&..,
For convenience, & i) will now be denoted by < /- where A

can take on values from 1 to ©. Then

= R
ST N L )

(1.19) is a quadratic form and, since DEn Ols are the
components of a real symmetric matrix, (1.19) may, by a change of

coordinates, be expressed as

b
EW =) haSEL el

Oy
where A\ A  are the eigenvelues of the matrix SEe D (16).

Since YN are arbitrary, the condition (1.18) requires that

An >0 (R0 &) (1.20)
Also

< |
| 3*u , N
UﬂAMu\f@mL = R{U) - :Lﬂyy

Thus, if (1.20) is satisfied,

L(w) » O

10



and (1.5) has a unique inverse {1.13).

Conversely, the condition

Hlu) = O

represents incipient instability.

Identical srguments show that stability infers

L) >0 (1.21)

with (1.13) having a unique inverse (1.5) and that the condition

LG =0

represents incipient instability.
In figure l, the conditions of stebility are represented for a one-

dimensional stress space.

(1.16) may be used as a starting point for obtaining inverse
constitutive laws.
Suppose that the form of {1.5) and hence of (J is known.

Since, from (1.5),

T, €, = DT+ 28T, + 2.1, (1.22)

(1.16) may be used to obtain C{T.)
From (1.5) and making use of the Cayley-Hamilton theorem, o (I,)

are obtained, the relations being

11
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S = 2, + G, + 20T
Oo = 3 PR+ O Pl + (PF+ 20 P)Ia + 2Papals
v (VI TP - 10+ 2TIs) (L.23)
S: = BFs b T, »2(D.0F + d7ps)Ie + (B: + 6PP:0:) 1
(D dis )Vl —21 w21 +41,14)
e b (Wl e 58I as 51514 + 51,14)

+ 2 @wmxm T I 153110 +1 . 2T 43124 WH_FTV
C dmwnv is then computed.

As Truesdell (ipid), who uses a different but equivalent approach
based on isotropic functions, points out, the mwmu.%mwm in general will
be purely formal.

1f (1.5) is known in polynomial form, however, (1.13) may be ob-
tained ag a power series in =h by using (1.23) and equating coef-
ficients of the muoﬁmw. series H_rH%&sz ,

As an example, suppose that (1.5) contains linear and quadratic

terms, i.e.

2
Ty = V,:mﬁﬁmf + P,Pm..d_ + _Pw;m_mﬁ&.ﬁ -+ ,Pupmrzmﬁj;nm&

4+ 2022 €€l + A3 €k€Ejr | (1.24)
This corresponds to

()= 2 P:HHN;T Bol, + 4 Pw_,w,w+ NPMNH,HN + inHw.
Using (1.22), (1.16) gives

ﬁ.mwwv = 1/ P:H.m+ ,P/G.HN + N\WPTH_WL. A.PSH_HN + N?»wHw,
‘ (1.25)
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C  is now expressed as a power series in =h . Retaining

linear and guadratic terms only,

= .QN m__mmw_p4 B3y~ H\w me.uwm +2B. 8.8, «+ mvw®m+ o

3 (1.26)
corresponding to
m,.,.l_u = mﬂ_ﬁnﬂﬁp mfa -+ wa.u.!.ﬁnﬁ Jmpilﬁwﬂﬂﬂw(.& +mwﬂ.1ﬁ‘ﬁgﬁmﬂqfﬂwrh
2.8 TeeTe + RanToe Tk + -5 - - - - -, {1.27)

Using (1.23) in {1.26) and comparing coefficients of terms in (1.25)

and (1.26), the following results are obtained:

i
Be ™ An
Ay
mﬁ = - :
f y,HAWV,:JfV:u.,V
_ AP
O
p . P:T/w:u ...vf..v ?,L.
—~a1 - 3
A2 (3, - Aa)
o _ aanlasra(aezan) S AGAGGAG As)]

b,,wwﬁm?: -+ n,k.uv.w

The inverse law {1.27) containing only linear and quadratic terms
in stress would be z close approximation to the actual inverse of the
quadratic law (1.24) only for strains small enough such that the effect
of nontinearity in (1.24) is small. For larger strains where nonlinear-
ity is significant, higher order terms would have to be retained in {1.26)

in order to obtain a good approximation to the actual inverse law,



1.5 Further restrictions on the material functions

The material functions, D , are restricted by (1.7) and
(1.17). Further restrictions follow from considerations similar to those
examined by Truesdell (ibid) and by Baker and Ericksen (17) for general
nonlinear elastic solids:

1. A zero state of stress must correspond to a zero state of strain
(for compressible media).

From {(1.5), this reguires

D, (o) = o (1.28)

When a polynomial constitutive law is used, (1.28) is satisfied if
L/ does not contain a term of the type Aol
2. The greatest principal strain occurs in the direction of
greatest principal stress.
et OC  be principal stresses, € be principal strains

associated with a given deformation. From (1.5)

Q.._ A= mMU. -t nvwm, I @W@lu

O = Dum -+ ﬂUpmv “+ Gwmw

}

whence
(o -0u) = mm;,mwvmnvvlnﬁwmm,+mpvg. (1.29)

From (1.29) it is required that
o+ Plese.) o0 of e+e,

by =+ @uwﬁmi.fmyu =0 &g =6y (1.30)

1k



Arguments identical to those used above give restrictions on =
in addition to (1.1k4) and (1.21), which are equivalent to (1.28) and

(1.30), i.e.
OAHNDVH O

and

Ao+ Qﬁwmq,i.nu‘md >0 o T, % Ca R

oA ¢A£wmQ;+ﬁﬁ; =z O rw O = Oy

For materials where the deviation from linearity is small,

condition (1.30) is automatically satisfied. This follows from the
dominance in nUp of the positive constant A i In

general, however, {1.30) is an independent restriction on the consti-

tutive law and is not a consequence of (1.17).

1.6 Special classes of constitutive laws

There are sub-classes of the constitutive laws (1.5) and (1.13)
which have been considered previously or which may describe the
behavior of special classes of materials. Two particular sub-classes

are now considered,

1. Materials for which the strain energy function does not

depend on Is

If
U=u(I, Is) N (1.31)

then

& =0 (1.32)

iy

15



and (1.5) reduces to

P

Toy = P, - DL€ (1.33)

Such & constitutive lew was considered by Wainwright (18) in
application to thin shell theory and by Dong (19) for viscoelastic
solids.

For incompressible solids, (1.33) has the form

This form of law was considered by Berger, Messersmith and Riviin (ibid)
in connection with work on viscoelastic solids.

Reduction of the constitutive law to the form (1.33) is valid only
where experimental evidence sghows the condition (1.32) to be true. The
form of (1.5) cannot be simplified by geometric arguments.

Whern (1.32) holds, then the inverse law (1.13) may be similarly

simplified; i.e.

OAV = Aw'w v
and
mm.”.d Hﬂxfﬁmwﬁ - Qﬁ.\ﬁ/_ , Aw-wwv
A proof of this is as follows:
When condition (1.32) holds, it is seen from {1.22) and (1.23)
that

To&y = T.<u (T, 1.) (1.36)

gnd that

16
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S, = 8.(1, 1), (1.37)

& = 0:(1.1,.15).

From (1.16), meking use of {1.31) and (1.36),

CIy= ¢ (I,.I.) | (1.38)
If the complementary energy density is now expressed in terms of

stress invariants, it follows from (1.37) and (1.38) that (. cannot

depend on &2 since ©3 , in turn, depends on Is

Hence,

cle) = C (&, 2N v

and {1.34) and (1.35) follow.

2. Materials for which hydrostatic stress depends only on

volumetric strain

A class of materials which may be of interest is that for which

R

the hydrostatic stress, Lri , is a function of the volumeiric

strain, E rr s 1.e.

e -9, (1) . (1.39)

The form taken by (1.5) to satisfy this condition is obtained as follows:

Rewriting the first of (1.23)},

S, =30, + 1.0+ 2.0, (1.10)



With & view to satisfying (1.39), let

D, = (1)

Ly

T ﬁvﬂfhfwv I V

(1.41)
From (1.39), (1.40) and (L.7), ©C» , @2  ena @-
must satisfy the four conditions
. ﬁu. J:M._ _:! ;GNHK@W P.HQ

28 _ 20
ol oI,
e n‘wﬁw (1.42)
@.Hw MWHN
ch _ o

als T 31a

Conditions (1.42) can be satisfied only if ¢

i s P and
P

are of ihe form

L= 1T Fu(Tu-L17) .

/

b, - (1. twI?). (1.43)

~ T
G, = O

Thus, from {1.41) and {(1.43), it follows that, if the constitutive
law satisfies the condition (1.39), it has the form

To, = ﬁﬁ,mm_ﬁb ~ A€k ﬁwﬁmﬁ?mwpagih\wmwpv‘?mﬁ

" (1.4k)

18
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Equation {1.44) is the form of constitutive law used by Kauderer (ibid)
who obtained it by assuming, in addition to (1.39), that the deviatoric
stress was related to deviatoric strain through the second invariant of

deviatoric strain. From (1.44) it is readily seen that

Ty L\w\mﬂa&ﬂﬂ hm& IH\wm.Emd,rL ﬁ_m ﬁMﬁ?mﬁi - M\wm,ﬁﬂv (1.45)

Ir F. and F:  are anelytic, (1.44) may be expressed as

-

e N o - M o
T, = ﬁvt;fpsmﬁﬁ - M\w m,mﬁV:uO Wnﬁmﬂ:,mri - R\wm.._».w_ﬁv .N ﬂv‘f
- M ) :
+ NJHU _Uj mm ke - — u\:wmﬁvﬁ M €y A.H.rmv

If (1.5) is further restricted so that deviatoric stress is a

function of deviatoric strain only, i.e.

\M'vr,b I:H\Wv\.ﬁnm.ﬂﬂ.\.ﬁftm = ijmrn :..M\.Uium..ﬂf ﬂmruv 5
then from (1.45), F2  must be a constant and the coefficients

in {1.46) are restricted to

“ 3
Ty = N:u Qﬁmﬁma/&é + *Umr,._ (1.47)



where

Ch = p (B =2

Equation (1.47) describes behavior which is linear in shear and non-
linear in bulk response. It describes, for instance, the behavior of
certain {ibrous composites which are linear in shear but whoge response

in simple compression differs from that in simple tension even for very

small strains.

20
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II. SIMPLE STATES OF DEFORMATION

2.1 Introduction

The examination of simple states of deformation gives a clear
illustration of effects resulting from nonlinear constitutive laws.

When left in general form involving material functions of strain
or stress, however, the resulting expressions mey be misleading since
material functions are, in certain cases, isolated. The material
functions, however, are themselves functions of the state of strain
{or stress) and cannot be determined from a single test,

No attempt is made here to describe general methods for experi-
mental determination of the material functions, this, in general, not
being posasible unless they are expressed in polynomial form.

Three homogeneous states of stress are first examined using either
form of constitutive law (1.5) or (1.13) depending on which is more
convenient,

The problem of combined tension and torsion of a circular bar is
then formulated and, for incompressible media, it is shown that the

resulting equations simplify and may be solved in closed Fform.

2.2 Homogeneous stabes of stress

1. Simple tension: To= | | Ty =0 c21,)J=1

It is convenient to use {1.13) as the constitutive law.

22



and strains are given by

For a gquadratic law (1.27), for instance,

~, o= Bu T o4 B T T B T
oG o= B+ 2Bz 1,
H\A el m\uﬂ.
- Nl
and
- - — " —_ — —
m.,r: o= Fﬁ“f,d w..H.\ ‘.,..J I ﬁﬁWN.nT z..r\,mu.ulif qlmuxd i
Eay = € 2n = B, 0 AWV + m\wvvu T2

It ig to be noted that by using (1.13) instead of (1.5}, the
problem of existence and unigueness of solution, such as occurs in
general nonlinear theory {1}, is avoided.

2. Simple shear: Let Cn= S be the only non-vanishing

component of strain.

Using the constitutive law (1.5),

23



and

T \Ww,r. HNUW,$ Q@Wﬂ..ﬁ,

it

In general, for this state of strain, b, and Coa will
not be zero and consequently, in order to maintain simple shear defor-
mation, normal stresses must be spplied. Thisg is the Poynting effect.

Furthermore, since

in general, a hydrostatic stress must be applied in order to maintain
the deformation. The reguirement of such stress to maintain simple
shear is known as the Kelvin effect.

Thig state of stress illustrates the difficulty, mentioned in the
introduction to thig chapter, regarding experimental determination of
the material furctions. Although the relationship between shear stress
end shear strain involves only the materizl function QWN s, this does
not mean that it would be possible to deitermine nU“e from a shear

test. Since, for simple shear,

could only be determined to the extent of

P2



3.

Combined hydrostatic stress and shear stress

Ta=T. Ti= Tivz Tex = LAP . Tz
Using (1.13)
e, = P,
£, = MAWmme,wmwv
2,

3

SRR FATE)

and strains are given by

£ = Eanm Kw B P o+ o (I P \.mw_vw
€3n = o+ L2 P 4 Yo P*
€n = w2 T + s PT |

Epn = €3y = O

Using the gquadratic law {1.27)
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R, Pw By P2, Ba (YerPratz)

mw_ur - wau,.wﬂu
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This state of stress illustrates the coupling which, in general,
exists between bulk and deviatoric sffects and is particularly signif-

icant for filled heterogeneous materials.

2.3 Combined tension and torsion of a circulsar rod

Let & circular rod of outer radius Re and inner radius ﬁmﬁ

be subjected to an axial force, IN | and a twisting moment, | .

The problem is formulated by assuming the form of the displacement

field and calculating the corresponding stresses required to support
this field.

-~

X N U S-S
Using polar coordinates roE, 2 UXT XD X u

¥

as
shown in figure 2, the assumed displacement field is
i ,
m.\ﬁﬂ = Laflr) 5
) -
W = Y2y, (2.1)
m
L = AZ
where W is the esngle of twist per unit length, A is the

uniform axial extemsion and L () the unknown radial displacement.

To use the constitutive law (1.5) in curvilinear coordinates, it

is first written, using mixed tensor components, as



)ﬁru, P 9,“ n..wrcw -+ m,HuNmmng. +D@wmrﬁm_ﬁh Amgmv

where
n,.v (F Fn\
mlwﬂ & mﬁ(\ uﬂm\wl.w w.h._‘\wm_uim.\ﬁcﬁnv,..
{7
Er: = rmruu_ - Ly Lire ,
and
0
Ly = /\@rr Emy . AJO mu(,?)J

In expressing the above quantities with respect to curvilinear
coordinates, the usual notation of tensor analysis {20) is employed.

For .wowmw. coordinates
1 - c
Y= 10 Y 0
®, O {

) R (U R il
J ke = O except Nw,wﬂlﬁvjﬂ =il T T

Then from {2.1)

Y
—

Ll
L\&ﬁp
A

Lic

)

i
i
and the mixed strain components are

= A
cl~ © -
L i
mz_ = o = RU.L\
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The strain invariants are given by

- k ot e ,
4y o= & B = AUTI R \/ R Am.wv
, ; N 5
~ N st e z 2~
R%uﬂmmmgﬁﬁﬂiv +A.,ﬂ + A +H\n.£\ LS

»

2 3
A3l.= mumcwm.ﬁ = m&ﬁv - AWV»... Ko g gt e Bbugtr \

¥ -

=N ‘ fu %
T = QV_ + Poay = va .MMMV
.ﬁwp = ﬂvw -+ ﬁmun Mrr\ =+ gwﬂ.m\ﬂn,uﬂl_. w\hr f,_\vﬁ.ww ® Am:.v

% = Gt - D 4nvwﬁ>~+ Ya uie?] .

T = Yol ba + @wmgcﬁjfvap X
ﬁ_ﬁ‘“ Hr:\w = O

The equilibrium eguations

dTh - hm.ﬁn.ﬂalhll._A JIMUMNV = O Am.mv

The boundary conditions are
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' (r=rs)=0 | (2.6)

Substitution from (2.4) into (2.5) leads to & nonlinear homogeneous
differential equation of second order in UL and first order in Y
and A . This, together with the boundary conditions (2.6) formu-
lates the problem. The solution will, in general, not be obtainable in
closed form and, rather than examine approximate solution schemes, the
particular case of incompressibility is considered, for which an exact
sclution 1s obtainable.

The constitutive law is now (1.11) instead of {(1.5) and, by

replacing Do by % in (2.4) and setting

I =< (2.7)

in the first of (2.3), the azbove formulation carries over to the

incompressible case,

Making use of {2.7), (2.3) yields

du U _
Adec + T - A =0 ,

from which L is given by

A
o= T o= AT



and the incompressible problem is reduced to quadratures.

For simplicity, the rod is taken to be solid, so that

[
mﬂnﬁo e = Tl

Then

and

|-

(s
it

M\WNV/AWMV/M.!T_«W.NAIPVJ Am.mwv
and the stress components

7= —p -l AP+ b s by )
TE o o—p - A + M (AR eyt O

= e oAby F (nxs bawics) by

i
W

c = o (e - Y ADe)

4}

> is determined from the equilibrium equation (2.5 ) which gives

i . L L N [ -
D o= — Y2 b Lo - .ﬁﬁﬁ 0 &;, -~ u e Sy T ot 4 Cemmg
M ! & E .
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The constant of integration is determined from the second of (2.8)

whence

[t

: Com N._\ i H f
D= - h A+ Yo Z*Dy + WHle Ppavae
|

Thus the stresses become
ey
> ] I !
7' = |¥\u4nﬂgﬂuﬁ .
- N fay _ -

T = L\PPH\K&{»@W!%A] Q..uw/ﬂ.hﬁ;ﬁu 3

(2.9)

- - = i
Th= @W%%w+£?4&w%@}ﬁﬁzf@wi%ﬂ@wﬁiﬁ@.

T3 == M\N . m Qw.# -+ h\m.»,ﬂwwv

and to relate i/ and M with N and |

G N
- . ; = P bl P \ [ /. |
N HMﬁmoTﬁ>@H+ S Ny + W T\p,ﬁ Py~ e Dav' @ jFaT

e J

e
T oo T .uo _N.Qua L i ADs | ¥ Tde (2.10)

.

In order to evaluate the integrals involved in (2.9} and (2.10),

a gpecific form of constitutive law must be used.

As an example, for a general polynomial law retaining terms up to

fourth order in strain

Q.J\w = P.Nw “+ \m/nﬂmHP

and, making use of (2.8), (2.10) becomes



To tarmaty Lhe « Bhaan s (bas 4 Sohhes (2602 + Yoaiw?)
s (2.11)

N = TTa? hw\u Alan 4 g Ay mw\/u,f bary®) 4 3mba, a(2ars s aty
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Equations (2.10) and {2.11) further illustrate the coupling that
exists, in general, between volumetric and deviatoric effects.

If, however, the material is such that

it follows from (2.9) that

Alsc, the first of (2.10) then gives
Y
N = 27T A fWO Quw/ﬂfﬁjz
end, thus, in the absence of axizl force, there is no axial extension.
This will not be the cage if wa 18 non-nero.

The preceding development is very close to that for finite torsion
of an elastic rod of circular section (21) of which the problem consid-
ered here is a special case.

The results are alsc equivalent to those obtained by Riviin (22)

for a special class of time-dependent materials.

L

j



Figure 2
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IIT. FLANE ELASTOSTATIC BOUNDARY VALUE PROBLEMS

3.1 Introduction

In this section two classes of two-dimensional problems are
congidered, plane strain and generalized plane stress.

By use of Airy's stress function, it is possible to formulate the
generalized plane stress boundary value problem in a manner identical
to that for classical elasticity, the moémwswam equation belng a
fourth order nonlinear homogeneous partial differential equation. The
generalized plane siress problem is thus formulated and an approximate
solution method is described. An alternative approximate formulation
is then shown which is alsc applicable to the plane strain problenm.

The section concludes with the solutiorn of an example problem,

3.2 Simplification of the constitutive law for the plane problem

In what follows it will be assumed that, for the generalized plane
stress problem, guantities have been averaged by integration over the
small thickness of the solid plate.

By redefining the material functions own and AL, the
constitutive law for plane problems may be simplified from the forms
(1.5) or (1.13) to forms similar tc those of {1.33) and (1.35).

For the case of plane strain, the only non-vanishing componernts
of strain are &.., €.+ and S, .

From (1.4}, the strain invariants become

H,”m,ml.umwﬂ 3

HMH H\.\w.mm_y_k.fmuw. -+ Nmﬂuwrv : Ava

Mmuu <Whmﬂw4 mmw - mwmrwm\m:4.MMpvk ;



and from {3.1)

p

T.= I.(T,-4l?) (3.2)

Thus, if (3.2) is used in (1.3), the strain energy density function

may be wriltten as

L= F..AH?;MM,W
and hence
i i
T, = &b, + P (3.3)
. 7o o mwm .
where the prime o indicates that . is not the same

as nwm.

As an example, if the 'cubic' constitutive law as given in (1.8)

were used in a plane strain problem, the material functions D

/
given by (1.9) could be replaced by QU“ and @, in (3.3)
where

i - N oz - . y :
D= AT+ (b - )T e (Zheaa AV w(fa - 23b, 3 T08

/ :

m.UN.N Pwulsf mph/wﬁi_h%m
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w
o

4
p2e
w
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e

‘.——

As shown in section 1.6, & constitutive law of the form (3.3) has

an inverse

€= ol &+ i Tog (3.4)



For generalized plene stress

GL = 6 (e, - o)

and by the same arguments as used above, the constitutive law may be
simplified to the form (3.3) or (3.4}).

Throughout the remainder of this chapter, the primes on the
material functions in {3.3) and (3.4) will be omitted with the
understanding that the constitutive laws (1.5) and {L1.13)} have been

reduced to the simplified form {3.3) and (3.4).

3.3 Direct formuletion of the generalized plane stress problem

In plane problems the strain compatibility equation,

m;..du_ﬁij - mwmz)aru - mr_».i.fj - m(,.;).,.(,b, = O 5 Aw.mv

is identically satisfied except when

(3.6)
OA:: — ON:PN -+ mnxp‘ﬁ.:fwﬁiw miﬁwﬁpuvi_ - Nmorymﬁ.ﬂwdif = O
In order that stresses satisfy eguilibrium in the absence of body

forces, i.e.
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—
the Airy stress function, @ ,is introduced such that

Y - 1
ﬂw\nﬁmul.,ir e ﬂ[\UKQ h v Aw.ﬂv

..

Substituting from {(3.7) into (3.6}, the compatibility equation becomes

_mw.u:\/;.:» N FOAM m..ud_“vdz + 2 AOAHA%,LNV,:P = Oq

Lo ! . mmw .,T ,/., p -

i.e.

6 v Lt @wiw ,v.ﬁiw =0, (3.8)

OAFJ__\uw

Thus, for given material stress functionms, o, and a2 ,

(3.8) may be expressed explicitly as a nonlinear fourth order homo-

geneous partial differential equation.

@ are

The invariants of stress in terms of L

®" = Q...miu,ﬂnk. N Aw.WV

@un - w\m,. Q..U:Q.iﬂ....u @uﬂnmw

=9

As an example of (3.8), for the 'cubic’ strain-stress law,

5 _—~ 2 h il -
mru = .L;.Hmﬁ.w.np + mw‘@wmnr,ﬂ e Bo Ten nm.,u + R0 T Trem mm&

—_— = - - .
- 2R ﬁﬁﬁ\ﬁ.rf, 5 m&_ [ ch.w - WWN\mﬁ_.f o om rré

S L S, L Yore ey Ly v

L=
- =32

for which

@Juﬁx = Qu.,‘; -+ @uww

wmwmmw indices take on values 1, 2 i.e.



2. o N H...u ~
oL, = m__®,.ﬂ WN,’M, el }wam.J.. mU.u.Z@, + £ Dy mnr.H;:n.\...sUH *
c ~ o~ Z
AUAN = Fﬂ.‘)\.,\M.iT W.MW,\NN@, -+ NG)UN@.PlT @N..W@ﬂ 4 ﬁw.HHv

I \ B
-+ wuﬂ /i\.Nh'/.\wmwu Zaa Cfy se o+ N

——

.,
o~

|

VI B s e ] = O

3.4 Perturbation solution scheme for the compatibility eguation

It is not possible, in general, to obtain a closed form solution
for {3.8). If, however, the constitutive law is "close” to *he linear
law and is in a polynomial form, then an approximate solution scheme
may be generated by perturbing the linear solution. This solution
scheme has been used by Kauderer (ibid)} and by Savin {ibid) ior the
particular class of nonlinearity referred to in section 1.6,

T

P is expanded in terms of a characteristic parameter,

such that

-
£
~

. ool b L2 X
AW = LD 4 TP L R

S

"
Rwa
na

i

(3.13)

Substituting from (3.13) into (3.8) and requiring the coefficient

of each power of X to vanish, a succession of linear differential

i
equations is obtained. The coefficient of e gives the compat-
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ibility equation associated with the linear problem while, for each
succesaive power of A , there is obtained a differential equation
which is the biharmonic eguation with a forcing function dependent on

the preceding solutions, i.e.

- {1
viE o
(Bu=x Be)9%3Y L F (DY) = o |, (3.14)
|
|
! H fy ' ;- 1....;,
(Bu+ By v L B(EY . ") Lo

It is convenient to teke the solution for = m@cu to satisfy
y (Y g
the actual boundary conditions whilst & (7 »1) satisfy homo-
geneocus boundary conditions.

To illustrate (3.14), for a material with constitutive law (3.10),

the first three terms of {3.14) become

(814 Be)v*®™ + ga, v*[(v:d®)?]

¢ . N .
+ Bz N;/!\mm\ﬁw . Sﬁav +2(v? @mm_ vuﬁauunﬁulﬂ = O

(Bus Be) 9 *d? L opav2(v2& an:.: (3.15)

=+ mw.mwﬁmqm mm@m:ni,u %wnv -+ R o @@im -+ ..QU.% ﬂv@mgv&a@w

{0y 3 ﬂm:

-+ B v u,_!hﬁwﬂm: ww -+ mwﬁm m@uuﬁm V=B L. e u S

w B R (920 Ee) 4 (92877 E k)] = O
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The problem of uniqueness and convergence of perturbation series
has received slight attention (23). The comvergence of (3.13} in
general will not be considered here but is gqualitatively considered

in section 3.6 for a specific problem.

3.5 An alternative approximate formulation of the plane problem

Although, for generalized plane stress, the formulation (3.8) is
exact for a given comstitutive law {(3.4), it is not valid for plane
strain since Tsz , which occurs in (3.4), is not zero. Further-

more, in the noplinear case, the conditlion

Cag = O (3.16)

will not enable Ta to be expressed, in cloged form, in terms of

—

Log .
An aliernative approximate formulation for the problem is developed
by expanding both strain and stress in powers of a characteristic

paremeter, oL, de.

s \ l

T ; LN 2 ey 3 Y

ﬁnir(_ = nvfm....vL + Qr\..mrg o ﬂx.mr,.v e m e e e, A“w.u.ﬂ\v
NC e R {2}

\Nw...g_ = Q/\mffnﬁ + Oﬂnﬂuf s Ty A -

For polynomial law (3.h4), substituting from (3.17) and requiring
the coefficient of each power of = toc be zero, a series of cons-

titutive laws is obtained, each having the form



U —_— D
m.r,v = 0 bew n.wrt ~+ m,ﬂ Lo
{2} e 2y ) 2 o )
€0 = Bulea @ + Bl ~ FL{Ty v ) (3.18)
i
H
3
M
) I GV ) o een — (0
m.,..,.m = ,ﬁ;\ui\m.\/«f ﬁwr.,_ + ﬂ_fwwﬂ. =l ~ - »\rra - - - FnL u
The coefficients of the first three powers of = in .10
bl
for example, give
NL 75 IEh]
mrt = m«U: L [ ﬁww,,, e waw MF\W,.L \
{2 . e ~ (2 - .\!_/:N
£ = BuTon iy o erwrw + B Lk %5 (3.19)
- —~ 0y . —~ o
- B, _fo,H!Fu,;)Qr,m e .r_,mw‘.r,ﬂ_o )h.ﬁ ,
2 (0 ~ (%) 0 2
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“+ Wu@/ Lomve Lien Loan %r«, + ha,w rﬂ..v \
To formulate the plane stress problem, the Airy stress function
(3.7) with (3.13) is used in the constitutive laws {3.18) which are
then substituted into the compatibility equations (3.5). The resulting

differential equations are, of course, precisely those given by (3.14).

k1
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For plane strain, L

inated from (3.18). fTo do this, the

the first of {3.17), requires that

(

3

3
. =
-

-

[

o= must be elim-

condition (3.16)} is used which, from

(3.20)

Using (3.20) in (3.18), the equivalent plane strain constitutive

laws may be obtained.

The equations (3.19), for example, become

— 6 — o
() _— r = — wY
mi@ = mx Lyr G e Ein Lag \
e — \fﬁm./. P — 0y o2 -
m.nv:u - m:.ﬁm,ﬁ mmU:@ -+ [ Te R rru.wi)ﬁa\ﬁ Clest
— Oy . (8 . - .}rm& w..IQu
+ B Tyg Trg de = 282 Tar Lo
(=) — & (Ey — J.ﬁ& = R () \!G.,v
€on = BuTsrdue + BoTwe + 2Ba TerTds dug
- J..o,u e Oy @ — iy (@
280 (Tes Twr Sun + TasToe + Twp Lo8 (3.21)
- iz N A S
+ 2y Tes nmnxﬂ + Drr Lyl byd Lwg
— g o M - Gy &y Y
-+ awmﬂﬂy\m Tyd Tep Oxa + Tyr Log)
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W: — £ w,_

m“,_ — mqm.
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Thus, by replacing the constants Bae

in the constitutive
law by equivalent constanis

Bre , the pilane strain problem
may be considered as if it were plane stress and, as in the linear case,

2 given solution may be adopted to plane strain or plane stress provided

the elastic constents are properly interpreted.

It is to be noted that, for nonlinear solids, the solution of plane

problems, in general, will not be independent of the elastic constants.

From (3.22) it is seen that the cubic constants in plane strein will



not ve zero even if the cubic constanis in the constitutive law are
zero. The second perturbation of gquadratic terms is thus effected

both through the coefficients B2 and Ban

3.6 Example -- The extension of an infinite plate containing a

circular hole

As mentioned in section 3.4, Kauderer cbtained numerous approximate
solutions to plane stress problems for a special class of nonlinearity.
A single perturbation of quadratic terms was congidered.

Using complex variables, Savin (ibid) formulated the problem of
the tension of an infinite plate containing a hole, again using & single
perturbation of Kauderer's quadratic law.

In the sclution described below, the first and second perturbations
are carried oult for the "cublc' gtrain-stress law as given by eguation
{(3.10).

The equaetions solved are Aw.wmv. These take into account the most
general nonlinearity up to third order in the strain-stresgs law and,
as shown sbove, may be used for plane stress or plane strain depending
on the interpretation of the elastic constants.

Figure 3 shows part of the plate. The radius of the hole is &
and 2 uniform tension, S . 18 applied at infinity.

It is convenient to use pelar coordinates hl and €
located ag shown.

Since the equations (3.15) are in invariant form, they may be
gpplied in curvilinear coordinates if the partial differentiation is
replaced by eppropriate invariant differentiation {20). The term

)

' - ) =& @y
JE ) @uﬁm , for instance, becomes & ¢ @ IS R

by



Physical components of stress are required and, in polar coordi-

nates, become

@w%n)w

¢
Tea = Ploey = ov*
ey - (™ S ;F@%M?:g
lee = am.u_eﬁv = MA;;%W@ , (3.23)
™ . _ W Wf;@mii. I mwwmm,m),v
Ter = P — + 37 2 a3t

The method of solution of {3.15) is straightforward and is only
briefly described.
mwS
The linear solution is well known (24) and, in order that &

satisfy the actual boundary conditions

- 2 2
o =4 AN ,mf,v A}M -l v
PV ZE |lar - 2legg ) +(ae*2-F= /| (3.01)
(3.24) is now used in the second of (3.15). Since the coefficients
of B and Bon are mutually independent, they must sepa-

rately satisfy the homogeneous boundary conditions which are:

wu = G \miﬂﬁuﬁﬂﬁm” (@) .
‘JJ W e O Tap -~ O©
(=)
A particular integral, = , is first obtained, and the
{2
complementary function, - , is determined such that:

. - & &)
;.ﬁrnnr Dejza = ;%n:.p

(3} - {2y
@;UTN = i@unfw \

(23 {23
WSAJL.QG mu‘e,mﬂl nWﬂTiw
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Carrying out the above steps,

-

e
@af mwsi\ﬁ.vwm h;rhow + WWWL + mwfmJu,;ﬁmziuﬁOmMr:ﬁw

4 L S ok 4 3-8
+m./m”.a - mﬁrv + NT -2 MH vbommm. +NA :1 va‘n.owg.@gw.

(3.24) and (3.25) are now used in the third of (3.15) to obtain,

by the same procedure as above,
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From (3.23), (3.24), (3.25) and (3.26) the first three terms of

the perturbation series for stresses may be obtained. Of particular
interest is the elffect of nonlinearity on the stress concentration

T
obtained by linesr theory, i.e. Nuﬁmmm%annu , e = m.v )

Computing this gquantity one obtains

- S | 2/ 2
Tee = mﬁlw + mmlwmu&i Dvmpurv -+ Wu, Ardluuwm.,
=T o N . cz o -
:Tml\;minunwmﬂwu.nwnw. M‘ww JNPV + m ENO wfuw; e L&v,w mwp [MNU,hU mwwv.ﬁm .
where

E= B+ mw_N

The general effect is as expected. As shown in figure 4, positive

elastic constants, mWan m?hvhv , indicate that the materiasl sofiens



LB
under increasing uniaxial tensile lcad, and & corresponding reduction
in stress concentration would be expected.
A feature brought out by the gtress concentraltion is that the
second perturbation for quadratic terms is not small compared with
the first perturbation unless the deviation from linearity is very
emall.
S mewrw
As seen from figure La, the ratios = and =
are meagures of nonlinearity with respect to the uniaxial test, and
each ratic has a coefficient in the second perturbation of between four
and five times its coefficient in the first perturbation. Thus, the
magnitude of the stress concentration due to the second perturbation
woulé be approximately the same as that due fo the first periurbation
for & nonlinearity of 20%.
In order to consider more fully the convergence of the perturbstion
series, two further perturbations were carried out for the coefficient

B. .

Omitting computational details, for a constitutive law

~ & LT e . -~ = -
Eoy = 5 Lre Qo + T Loy + B Tee .ﬁmé )

the stress concentration facter is

1

 J—

S L4
Teo =83 -2k + 92k 804k« 287K - - 1, (3.27)



ig the nonlinearity ratio with resgpect to uniaxial tension.

If an approximation of 10% to the correction of stress concentra-
tion due to nonlinearity is taken as an acceptable criterion to termi-
nate the perturbation series, one might infer from {(3.27):

l. for one perturbation to be satisfactory, W must not
exceed 2 %,

2. for k - 5%, at least two perturbations are required.

It also sppears doubtful that the alternating series (3.27) would
converge for values of MA greater than 15%.

It must be cmphasized that genersal conclusions regarding conver-
gence and accuracy cannot be based on qualitative conclusions for a

particular stress state and a particular type of nonlinearity.

b9
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Figure 3



(a) "Quadratic” material , Daa >O.

-

-

/

(o) “Cubic" materiali . Ban> O,

Figure bW
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