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ABSTRACT

The purpose of this study is to evaluate the safety and effectiveness of the New Star Model 130
neodymium:yttrium aluminum garnet (Nd:YAG) laser system for nonablative laser treatment of facial rhytides

(e.g., periorbital wrinkles). Facial rhytides are treated with 1.32 jim wavelength laser light delivered through a
fiberoptic handpiece into a 5 mm diameter spot using three 300 ps duration pulses at 100 Hz pulse repetition
frequency and pulse radiant exposures extending up to 12 J/cm2. Dynamic cooling is used to cool the epidermis
selectively prior to laser treatment; animal histology experiments confirm that dynamic cooling combined with
nonablative laser heating protects the epidermis and selectively injures the dermis. In the human clinical study,
immediately post-treatment, treated sites exhibit mild erythema and, in a few cases, edema or small blisters.
There are no long-term complications such as marked dyspigmentation and persistent erythema that are
commonly observed following ablative laser skin resurfacing. Preliminary results indicate that the severity of
facial rhytides has been reduced, but long-term follow-up examinations are needed to quantify the reduction.
The mechanism of action of this nonablative laser treatment modality may involve dermal wound healing that
leads to long-term synthesis of new collagen and extracellular matrix material.

BACKGROUND

Facial rhytides (e.g., periorbital and perioral wrinkles produced by photodamage and/or aging) have
previously been treated using a variety of modalities, including dermabrasion, chemabrasion (chemical peel),
and CO2 laser skin resurfacing (LSR) - a technique in which pulsed or scanned CO2 laser light at 10.6 jim
wavelength is used to ablate skin. All three modalities provoke a strong skin wound healing response that leads
to wrinkle reduction. CO2 LSR has recently emerged as a widely used aesthetic surgical modality which may
have advantages of improved reproducibility and control compared to dermabrasion and chemabrasion[1101.
However, CO2 LSR is often accompanied by complications such as persistent erythema, hyperpigmentation,
hypopigmentation, scarring, and infection[1101. Patients also experience edema, drainage, and burning
discomfort during, typically, the first few weeks after treatment. The work reported in this paper is directed
toward treating facial rhytides using a new nonablative laser modality that may be effective in reducing both the
severity of wrinkles and the incidence of morbidity presently associated with LSR.
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The mechanism of action of CO2 LSR is not well understood, but three processes have been identified as
possible contributors to facial rhytides reduction[11: 1) ablation of the epidermis and part of the dermis, 2) acute
collagen shrinkage in the residual dermis, and 3) long-term wound healing that leads to dermal remodelling as
new collagen and extracellular matrix material are synthesized over a period of months after treatment. Dermal
ablation may be useful to remove dermal surface irregularities such as acne scars[111, but may not be a major
contributor to rhytides reduction. Dermal collagen shrinkage induced by CO2 LSR has been studied by in vivo
pig skin experiments[12] and in vitro human skin experiments[13]; this process may contribute to acute wound
contraction, but may be only incidental to long-term rhytides reduction. Long-term wound healing and dermal
remodelling is probably the major mechanism of action responsible for long-term facial rhytides reduction;
clinical evidence for this hypothesis includes the following studies.

In one ablative LSR clinical study[5], a pulsed CO2 LSR device was used to treat periorbital and/or
perioral rhytides of 100 patients; reduction in the severity of facial rhytides was quantitated by grading of pre-
and post-treatment photographs using a visual analog scale (Ono improvement, .. ., 6=marked improvement).
At 1 month post-treatment, only 5 of 100 patients exhibited marked improvement, while 68 and 27 patients
exhibited moderate or minimal improvement, respectively. At 2 months post-treatment, 20 of 27 patients with
minimal improvement at 1 month exhibited further (moderate to marked) improvement from baseline. Mean (±
standard deviation) improvement grades increased from 2.30 1.18 (n=100 cases) at 1 month to 3.07 0.99

(n=83) at 2 months, 3.74 1.04 (n87) at 3 months, and 4.17 1.18 (n38) at 6 months post-treatment. Since
significant cumulative reduction of facial rhytides occurred from 1 month to 6 months after CO2 LSR treatment,
long-term wound healing must have been a major component of the mechanism of action.

Long-term wound healing, including dermal collagen synthesis, has been documented as an important
mechanism of action for both dermabrasion[1415] and chemabrasion[16] reduction of wrinkles in photodamaged
skin. For example, in one dermabrasion clinical study[14I, a rotating diamond fraise dermabrasion device was
used to treat photodamaged facial skin of 10 patients; the clinical severity of photodamage was quantitated by
grading of pre- and 12 week post-treatment photographs using a photonumeric scale (Ono wrinides or other
photodamage, 1 through 3mild, 4 through 6=moderate, 7 through 9=severe). Wrinide severity decreased from
a mean (± standard error) pre-treatment value of 4.9 0.5 to 3.7 0.5 at 12 weeks post- (p0.016; paired t-test).
Histologic grading using Masson trichrome stain showed that mean collagen density in the upper dermal repair
zone increased from 0.8 0.2 pre-treatment to 1.7 0.3 at 3 weeks and 2.6 0.5 at 12 weeks post- (pO.OO4 and

0.007; paired t-tests); there were no other significant histologic changes (e.g., in elastin density or epidermal
thickness). In situ hybridization analysis for fibroblast procollagen I mRNA showed that wrinkle severity
reduction for individual patients at 12 weeks post-treatment correlated strongly with patient increases in
fibroblast procollagen I mRNA from baseline. Both immunohistologic staining and immunoblotting showed
that papifiary dermal fibroblast synthesis of procollagen I increased substantially (3 to 4.2 times baseline at
3 weeks post- and 1.5 to 2.7 times baseline at 12 weeks post-treatment). These studies conclude that papillary
dermal fibroblasts are activated to synthesize procollagen I (the synthetic precursor to collagen I, the most
abundant dermal protein) during long-term wound healing response to superficial dermal injury. Histologic
studies on CO2 LSR[1718] have identified similarities in wound healing and collagen synthesis in comparison to
dermabrasion and chemabrasion, so all three modalities are likely to have the same mechanism of action.

Ablation or other means of removing the epidermis are not necessary to provoke dermal wound healing
response. Topical applications of tretinoin (all-trans-retinoic acid)[19l and a-hydroxy acids (e.g., glycolic acid)[20]
lead to reduced wrinkles and increased papifiary dermal collagen I. It is also notable that a pulsed 1.06 jtm
wavelength Nd:YAG laser has been used successfully in some cases to treat facial rhytides without ablation[211.

339



METHODOLOGY OF NONABLATIVE LASER TREATMENT

The present nonablative laser treatment procedure is designed to produce selective papillary dermal
injury leading to fibroblast activation and synthesis of new collagen and extracellular matrix material without
significant epidermal injury. Two requirements must be satisfied to achieve this favorable treatment:

1) the laser wavelength, waveform, and radiant exposure must be selected to damage the papifiary dermis and
activate fibroblasts, thereby yielding a long-term wound healing response, and

2) the epidermis must be protected by, for example, cooling prior to laser exposure.

The laser selected for the procedure is a New Star (NS) Model 130 neodymium:yttrium aluminum garnet
(Nd:YAG) device operating at 1.32 im laser wavelength with a pulse waveform of three nearly-identical 300 jis
duration pulses delivered at 100 Hz pulse repetition frequency (yielding a 20 ms duration macropulse containing
three micropulses). The laser output is delivered through an optical fiber and focussing lens combination to
produce a 5 mm diameter spot on the stratum corneum. The laser pulse energy is adjustable to yield pulse
radiant exposures (i.e., pulse areal energy densities) up to 15 J/cm2. Since the three micropulses are delivered
within 20 ms, a relatively fast time for which the mean thermal diffusion length is Ca. 10 ptm[, the three
micropulses produce tissue effects that are nearly the same as those produced by one macropulse of 20 ms
duration with 3 times the micropulse radiant exposure. In discussion below, the 3-pulse (or macropulse) radiant
exposure will be used and termed simply the "radiant exposure".

In contrast to ablative lasers (e.g., CO2 and Er:YAG lasers which produce wavelengths of light that are
absorbed within a few tens of microns of both native and partly dehydrated tissue surfaces), the NSL Model 130
laser wavelength of 1.32 im produces in depth optical heating of, and thermal damage to, the papifiary dermis
and superficial reticular dermis (within a zone ca. 100 jtm thick located just below the epidermis, which is Ca. 50
to 100 im thick in periorbital skin; see Animal Histology Experiments section below). At 1.32 im wavelength,
the primary tissue chromophore is water, which has an absorption coefficient of 1.82 cm1[231. Assuming that the
mean water concentration in the epidermis and papillary dermis is 70% by weight[241 and that skin density is 1.1
g/cm3[25], the skin absorption coefficient ia iS Ca. 1.4 cm1, corresponding to an optical absorption depth öa (

1/na) of Ca. 0.71 cm. Scattering of 1.32 tm wavelength light by skin microstructures (e.g., collagen fibers)
markedly changes the distribution of laser light from an exponential attenuation of the incident radiant exposure
F0 [F(z0), neglecting reflection at the air/tissue interface] as a function of tissue depth z (units: cm):

F(z) Foexp(-taz) F0exp(-z/ö a) (1)

to a more complex distribution [which can be calculated by Monte Carlo modelling[26] if the scattering properties
(e.g., the scattering coefficient and the anistropy factor g) are known]. Figure 1 shows the difference between
light distributions for model "absorption only (A: jt 1 cm1, =0)" and "absorption plus scattering (A+S: ia
1 cm1, jL = 100 cm1, g = 0.9)[261" cases. The fluence 4(z) [units: J/cm2] is the photon energy from 41 directions

(including backscattered light within the tissue) passing through a unit area located at depth z; the corresponding
radiant exposure F(z) is the photon energy from the original direction of light propagation (in the absence of
scattering) passing through the same unit area. For "absorption only", 4(z) = F(z); for "absorption plus
scattering", backscattering increases the fluence [i.e., 4(z) > F(z)] near the air/tissue interface and decreases the
fluence [i.e., (z) <F(z)] deep within the tissue. For "absorption only", the 1.32 tm wavelength photon energy
reflected from the air/tissue interface is a small percentage (ca. 2%) of the incident photon energy, while for
"absorption plus scattering", the 1.32 im wavelength photon energy remitted from the tissue can be a larger
percentage due to both direct reflection and backscattered transmission contributions[27281.
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Figure 1: ttm relative light distributions (F0 =1 J/cm2) for absorption only (A: ji i cm1, = 0) and

for absorption plus scattering126] (A+S: a cm1, jt 100 cm1, g = 0.9; air/tissue interface)

The "absorption plus scattering" light distribution function (A+S in Figure 1) is expected to be similar to
that obtained in human skin (although the scattering coefficient probably a function of the amount of
photodamage, the chronological age, and other patient-dependent factors). Light absorption and temperature
increase are proportional to the light distribution function; although distribution function A+S exhibits a
subsurface peak, thermal damage in the epidermis will be nearly the same as that in the papifiary dermis if only
laser treatment is performed. Instead, "dynamic cooling"[2932] is used to protect the epidermis; this technique
involves selectively cooling the epidermis by delivering a spurt of cryogen for a period of tens of milliseconds
onto the stratum corneum immediately before laser treatment. Figure 2 shows schematic temperature increases
vs. tissue depth for "laser only" (L) and "dynamic cooling plus laser" (C+L) treatments, using the "absorption
plus scattering" light distribution (A+S in Figure 1) with a radiant exposure of 30 J/cm2 for both cases. Case
C+L in Figure 2 includes initial cooling with a cryogen spurt of 20 ms duration followed by 5 ms delay before
laser irradiation. Temperature increases between 30 to 40 °C above physiological temperature applied over a
period of several ms cause phase transition of collagen I within the papillary dermis and superficial reticular
dermis[33]; this collagen thermal modification is probably sufficient to activate fibroblasts to produce long-term
wound healing response. If this temperature-time history is effective, temperature increase function C+L in
Figure 2 may be nearly ideal to produce selective thermal damage in the superficial dermis while protecting the
epidermis from injury. "Fine-tuning" of nonablative laser treatments can be obtained by controlling three
parameters: 1) dynamic cooling (cryogen type and application time), 2) temporal delay (between the cryogen
cooling pulse and the laser heating pulse), and 3) laser heating (radiant exposure, as well as wavelength and
waveform in other lasers). Histology experiments that demonstrate the effects of nonablative laser treatment
parameters are discussed below.

Further basic science aspects of nonablative laser treatment [including pulsed photothermal radiometry

(PFTR) measurements of skin front surface temperatures produced by nonablative laser irradiation and optical!
thermal modelling of light, temperature increase, and damage distributions in laser-irradiated skin] are presented
in a companion paper[M].

341

3

2
E
C.)

N

0
0



342

50

10

z (cm]
0.1

Figure 2: Temperature increase distributions for laser only (L: F0 = 30 J/cm2) and for dynamic cooling
plus laser (C+L: F0 30 J/cm2 delivered after a 20 ms cryogen spurt and 5 ms delay)

ANIMAL HISTOLOGY EXPERIMENTS

A porcine skin model was used to evaluate near-acute effects of nonablative laser treatments over a
range of dynamic cooling and laser heating conditions. A grid of 5.2 X 3.4 cm treatment and control sites was
marked in permanent black ink on the abdomen of an anaesthetized 3-month old, 25-kg female Yorkshire pig.
Treatment sites were irradiated through 6 mm diameter hole patterns in adhesive-backed templates mounted on
each site; a series of 9 templates, each of which provided a different hole pattern, was used to produce a nearly-
uniform treatment (totalling 171 macropulses) within each site. Cryogen spurts and laser light pulses were
delivered using a handpiece equipped with a transparent plastic barrel and red HeNe laser aiming beam to
facilitate delivery centration and to produce a fixed spot size and irradiance distribution within each template
hole. Laser radiant exposures were calculated using measurements of macropulse energies delivered through a
3.18 mm diameter aperture centered in the beam; although the laser spot size is nominally as large as 5 mm, the
laser irradiance distribution is peaked centrally so that most of the tissue effects occur within the central 3 mm
diameter of each spot. Four laser heating radiant exposures (26, 30, 36, and 39 J/cm2) were delivered to
treatment sites that were uncooled (i.e., at physiological temperture) or that were pre-cooled with either 20 ms or
40 ms durations of cryogen spurts; when cryogen pre-cooling was used, the laser heating macropulse started
after a 5 ms delay following the completion of the cryogen spurt. Other sites were treated with coolant only (20
and 40 ms duration cryogen spurts) or were used as controls.

Full-thickness 4-mm diameter punch biopsy specimens were obtained from treatment and control sites 2
days after treatment. Specimens were fixed in 10% formalin, dehydrated in graded ethanol solutions and
xylene, embedded in paraffin, cut into 4 jim thick sections, and prepared for standard and polarized light
microscopy examinations using hematoxylin-eosin (HE), Masson's trichrome (M) for collagen, and Verhoeff-van
Gieson (VvG) for elastin stains. Figure3 shows photomicrographs of contol and treated (F=30J/cm2) specimens.
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Figure 3: (All with HE stain) A -Control, X4 objective; B - F 30 J/cm2,
no coolant, X10 objective; C - same as B, but with 20 ms coolant prior to laser
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Figure 3A (control - no coolant or laser) shows normal skin (total thickness shown: Ca. 1.2 mm)
comprising epidermis (E) on top (ca. 75 to 150 jim thickness in various locations), followed by the papifiary
dermis (PD) layer (ca. 50 to 75 tm additional thickness), and a portion of the reticular dermis (RD) layer. Figure
3B shows treated skin (laser only: F 30 J/cm2; total thickness shown: ca. 450 jim) displaying massive damage to
E with a large blister plus significant damage to the PD and superficial RD layers. Figure 3C shows treated skin
(same as 3B, but with 20 ms coolant) with little or no E necrosis, but substantial PD and superficial RD injury.
Additional specimens (not shown; same as 3C, but with M stain) show some collagen fiber modification by
subtle changes in stain coloration. Using polarized light, these specimens show loss of collagen birefringence in
the PD and superficial RD layers. Loss of collagen birefringence is uniquely associated with thermal damage[35l,
which becomes appreciable (i.e., damage integral ) �1[36]) in skin heated at temperatures above ca. 70 °C for a
timescale of tens of ms (corresponding to the approximate cooldown time following heating by the laser
macropulse). This is just the condition that may activate fibroblasts and stimulate long-term wound healing
response, including new collagen synthesis arid subsequent reduction in wrinkle severity.

Promising near-acute histology effects (i.e., significant thermal damage to the superficial dermis with
little or no epidermal damage) were also observed for F 26 J/cm2 with 20 ms coolant, F =30 J/cm2 with 40 ms
coolant, and for F = 36J/cm2 with 40 ms coolant. Coolant durations of 20 ms or less did not prevent E necrosis
at the highest radiant exposures (F =36 and 39 I/cm2) and even 40 ms pre-cooling did not prevent E necrosis at
F = 39 J/cm2. At F 36 and 39 J/cm2, skin shrinkage was observed immediately following laser irradiation.
interestingly, prompt skin/collagen shrinkage generated wrinides in the previous unwrinkled pig abdomen skin.

Future animal histology experiments will include refinement of treatment conditions (including higher
resolution variations of cooling, delay, and heating parameters), together with longer term (i.e., at least 3 months

post-treatment) follow-up measurements by standard light, polarized light, and transmission electron microscopy.
Immunohistochemical stains will also be used to identify procollagen I and other synthetic products of activated
fibroblasts and to correlate long-term wound healing response to short-term thermal injury. Observed tissue
effects wifi also be correlated with measured skin surface temperature increases.

HUMAN CLINICAL STUDY

A human clinical study is being performed to evaluate the safety and effectiveness of the New Star
(NSL) Model 130 Nd:YAG laser system for nonablative laser treatment of facial rhytides. To date, twenty (of a
planned total of sixty-five) patients have been treated in an outpatient setting at three sites. The study had been
approved by the Institutional Review Board of each site before commencement of treatments.

Twenty patients [18 women, 2 men; mean age (± standard deviation): 48.5 7.0 years; range: 40 to 68
years] with photodamaged skin were treated in both right and left periorbital skin areas to reduce rhytides. All
patients were Caucasian, with sun-reactive skin types I (n=1O cases) and II (n10 cases)[3l. Classification of
wrinkle severity was performed prior to treatment as Class I (fine wrinkles; n4), Class II (fine to moderate-
depth wrinkles, moderate number of lines; n=14), or Class III (fine to deep wrinkles, numerous lines, with or
without redundant skin folds; n=2)[81. Pre-treatment inclusion criteria included Caucasian race, sun-reactive
skin types I or II, age between 40 and 70 years, photodamaged skin of Classes I through III with periorbital
and/or perioral rhytides covering an area of at least one cm2, abffity to read, understand, and sign an Informed
Consent form, and ability and willingness to comply with all follow-up requirements. Pre-treatment exclusion
criteria included active localized or systemic infections, immunocompromised status, coagulation disorders,
photosensitivity or allergy, use of aspirin or antioxidants, mental incompetence, pregnancy, and prisoner status.
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Pre-treatment examinations included standardized photography and standardized sificone replicas for
optical profiometry measurements. Silicone replicas were obtained by trained personnel using sificone rubber
impression material and catalyst (Silflo, Flexico Developments Ltd., Potters Bar, England) using methods similar
to those previously described[38]. Periorbital areas were anaesthetized with EMLA cream (a eutectic mixture of
local anaesthetics - 2.5% lidocaine and 2.5% priocaine plus 92% water and 3% emulsifiers and thickening agent;
Astra USA, Westborough, MA) applied at least 45 minutes before treatment. Rectangular treatment sites (5.2 cm
long X 3.4 cm wide) were centered on periorbital areas and treatments were completed through a series of
template holes as described above (see Animal Histology Experiments section). The mean treatment radiant
exposure was 24.7 0.6 J/cm2 (range: 23 to 25 J/cm2); laser energy was delivered following a 40 ms coolant
spurt and subsequent 5 ms delay. The coolant also provided a local anaesthetic effect (combined with that of the
EMLA cream) so that patients typically felt little pain; on a 0 to 4 point pain assessment scale (Ono, lmild,
2=moderate, 3=severe, 4=mtolerable), the mean patient subjective pam was 1.2 1.1 and 1.5 1.0 on the right
and left sides of the face, respectively. It is believed that patients who felt "severe" pain (n=1 case) or
"intolerable" pain (n2 cases) in one or both treatment sites received inadequate EMLA anaesthetic; in future
treatments, EMLA will be applied for at least 1.5 hours prior to treatment and, in fact, even longer application
times would be more effective139]. Patient pain in one case may also have been due to inadequate cooling.
Treatments were interrupted by a technical problem (fiber breakage) in one case and by pain in another case.

Immediately post-treatment, all patients had some degree of erythema in treated sites; additionally, two
patients had edema and one had small blisters. Three patients (all treated on the same morning at one site)
developed swelling at their left (but not right) periorbital treatment sites the evening of the treatment day; these
sites blistered and drained clear fluid on the next morning, leaving superficial erosions. These injuries, which
are believed to be due to fiber damage that led to excess cryogen cooling, resolved after wound care and
Polysporin application; the delivery handpiece was subsequently redesigned to prevent optical fiber tip
contamination and damage. Most of the treated site blemishes disappeared within 7 days, but at 1 month post-
treatment, 3 of the 19 patients examined (16% incidence) had minor blemishes (one small bump, one very slight
hypopigmentation, and one hyperpigmentation).

Post-treatment examinations (including assessments of improvement and outcome, clinical observations,
and, with reduced frequency, standardized photography and silicone replica impressions) are being obtained at
1 day, 1 week, 1 month, 3 months, and 6 months after treatment. At present, the follow-up statistics are: n8
(40%) at 1 day, n16 (80%) at 1 week, n=19 (95%) at 1 month, and n'2 (10%) at 3 months post-treatment.

Wrinide severity improvement (WSI) assessment (from baseline) was made subjectively by the treating
physicians using four improvement grade levels: 1 (0-25%), 2 (265O%), 3 (51-75%), and 4 (76-100%). Outcome
assessment was graded subjectively by the treating physicians using four levels: 1 (poor), 2 (fair), 3 (good), and 4

(excellent). At 1 week post-treatment, WSI was graded 1 in all cases, but outcome assessment was graded 1 in 6
cases (38% incidence) and 2 in the other 10 cases (63% incidence). At 1 month post-treatment, WSI was graded 1
in 13 cases (72%) but was graded 2 in 5 cases (28%), while outcome assessment also improved to a grade of 1 in 4
cases (22%) and 2 in 14 cases (78%). Anecdotally, at 1 month after treatment, most patients subjectively believe
that their wrinide severity has been reduced from baseline. Photographic and profiometric data are being
obtained to provide more objective assessments of wrinkle reduction and overall outcome.

At this early stage of the human clinical study, all the patients have received low radiant exposure
treatments (below the apparent damage threshold in pig histology experiments). These conservative treatments
were performed, in part, to learn whether sub- or near-threshold injury is sufficient to activate fibroblasts to
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synthesize new collagen and other extracellular matrix materials. Indeed, there are numerous claims of
"biostimulation" of fibroblast activation and wound healing improvement using relatively low power lasers[401,
so testing the possible effectiveness of low radiant exposure treatments is desirable. At present, with relatively
short-term follow-up, our clinical results indicate that mild wrinkle reduction may be obtained at low radiant
exposure levels in some cases. Longer-term follow-up will provide proper outcome assessment, but in the
meantime additional patients will be treated at higher laser radiant exposures (and/or at shorter coolant
durations) to achieve more effective periorbital wrinkle reductions.

CONCLUSIONS AND FUTURE STUDIES

The development of this nonablative laser treatment procedure is at an early stage. It is still necessary to
find the "narrow therapeutic window" of cryogen cooling and laser heating treatment parameters through
which effective treatments can be obtained routinely. These effective treatment parameters will be determined
through further animal histology and human clinical studies

A new diagnostic device is also being developed to provide improved and patient- and/or site-specific
treatments. This diagnostic device includes a radiometer mounted in the delivery handpiece that permits real-
time temperature measurements of the skin surface at the treatment site. The device will be used to verify that
cryogen application has pre-cooled each site prior to laser light delivery; a feedback signal from the device wifi
then enable laser operation. More importantly, the radiometer will measure the skin front surface temperature
rise following irradiation at a diagnostic (i.e., well below therapeutic threshold) radiant exposure level; this
information will then be used to calibrate the correct radiant exposure that must be delivered to achieve the
papillary dermis temperature increase required to activate fibroblasts and to stimulate their long-term wound
healing response. The clinical value of this diagnostic device is that it will facilitate adjustment of laser light
delivery to overcome variations in skin optical properties, which are highly patient-specific. For example, the
absorption coefficient of skin at 1.32 ptm depends strongly on skin hydration, which varies with age and other
factors. In addition, the scattering properties of skin at 1.32 jtm are likely to depend strongly upon the amount
of photodamage, chronological age, skin type, and other factors; the right and left periorbital sites may even be
asymmetrically photodamaged[41], requiring treatment opiimizations to reduce rhytides.

It is anticipated that future refinements of this nonablative laser treatment device and procedure will
permit safe and effective treatments of facial rhytides for most patients. Complications should be low or
nonexistent when the "narrow therapeutic window" of proper cryogen cooling and laser heating treatment
parameters is used. In addition, the current approach should permit effective treatments of patients with
pigmented skin who have thusfar been difficult to treat successfully by CO2 LSR (due to the high risk of
dyspigmentation). Since melanin is located in the epidermis[2l which is protected by dynamic cooling, and
since melanin does not absorb 1.32 jim wavelength light, the current nonablative laser treatment wifi probably
not cause substantial dyspigmentation. Clinical verification of this application wifi be pursued.
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