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Infectious diseases have caused more suffering and death than 
any other calamity known to mankind. A comprehensive control 
plan for emergent pathogens requires knowledge of the selective 
pressures imposed on natural microbial populations as well as 
the pathogenic mechanisms leading to the acquisition, expression 
and transmission of new virulence traits. Where did these patho-
gens come from? Why did they arise? What can be done to stop 
them? Answers to some of these questions have come from recent 
infectious disease outbreaks that have severely impacted public 
health systems on local, national, and international scales. The 
lessons learned may shape health care globally for years to come.

Influenza (2009): Dodging a Bullet

The 1918 “Spanish Flu” pandemic had an estimated mortality of 
40–100 million deaths worldwide and is among the worst public 
health disasters of modern history.1 Pandemic influenza viruses 
are products of nature’s “genetic lottery”—for which humans have 
little or no pre-existing immunity. There have been three influ-
enza pandemics in the last century: 1918 Spanish flu (H1N1), 
1957 Asian flu (H2N2) and 1968 Hong Kong flu (H3N2). 
On April 15, 2009, humanity was challenged once again with 
the emergence of a previously uncharacterized influenza virus: 
type A, subtype H1N1.2-5 The early pathological reports did not 
fit the profile of the seasonal flu: 30% of hospitalizations had 
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infectious diseases continue to plague the modern world. in 
the evolutionary arms race of pathogen emergence, the rules 
of engagement appear to have suddenly changed. Human 
activities have collided with nature to hasten the emergence 
of more potent pathogens from natural microbial populations. 
This is evident in recent infectious disease outbreaks, the 
events that led to their origin, and lessons learned: influenza 
(2009), meningitis (Africa, 2009), cholera (Haiti, 2010), E. coli 
(Germany, 2011) and Salmonella (USA, 2012). Developing a 
comprehensive control plan requires an understanding of the 
genetics, epidemiology, and evolution of emergent pathogens 
for which humans have little or no pre-existing immunity. As 
we plot our next move, nature’s genetic lottery continues, 
providing the fuel to transform the most unlikely infectious 
disease scenarios into reality.
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severe respiratory complications, the most common cause of 
death was viral pneumonia without a secondary bacterial infec-
tion (atypical), and the median age of hospitalized patients was 
27 y—within the age group least susceptible to influenza infec-
tion.4-6 On April 26, 11 d after the first case was identified by 
the Centers for Disease Control and Prevention (CDC), the US 
declared a National Public Emergency,7 resulting in school clo-
sures, travel advisories and the demand for antivirals and vac-
cines. On April 27, the CDC selected a seed-stock for a vaccine 
(A/California/7/2009). However, the development and distribu-
tion of a vaccine was still months away as the virus needed to be 
grown in chicken eggs—a rather slow, cumbersome manufactur-
ing process used to safely and reliably produce flu vaccines for 
decades. Questions arose: Would it be available for the fall ‘09 
flu season? Would it be safe? Who should be immunized first? 
By May 19, 9,830 confirmed cases of H1N1 were reported in 40 
countries, including 79 deaths.8 Three conditions must be met 
for the declaration of a viral pandemic: the virus must (1) be 
a new subtype for which humans have little or no pre-existing 
immunity, (2) infect humans and cause illness and (3) confer 
rapid and sustainable human to human transmission in the gen-
eral population.7 One by one, each of these conditions was met. 
On June 11, the World Health Organization (WHO) raised the 
pandemic threat status to “Alert Phase 6”—the highest warning 
available—formally declaring the first influenza pandemic in 
40 y.9 At the onset, the pandemic virus was resistant to one class 
of antivirals, matrix-channel blockers (adamantine) but was sen-
sitive to another class called neuraminidase inhibitors [e.g., osel-
tamivir (Tamiflu), zanamivir (Relenza) and peramivir (BioCryst 
Pharmaceuticals)].10 The widespread use of antivirals resulted in 
oseltamivir-resistant mutants in patients, but fortunately they 
remained sensitive to zanamivir.11 Then nature fought back. On 
January 11, 2010, a multidrug-resistant strain emerged from a 
fatally-infected immunocompromised patient that conferred 
resistance to all three neuraminidase inhibitors—leaving physi-
cians with few treatment options.12,13 The CDC estimates that 
from April 2009 to April 2010, 61 million people were infected, 
resulting in 274,000 hospitalizations, and 12,470 deaths in the 
US alone.14 Now the good news: The pandemic could have been 
much worse. The H1N1 (2009) virus was mild relative to other 
pandemic viruses since it lacked a few key virulence functions 
that compromise innate immune cytokine responses via disrup-
tion of antiviral signaling (PB2,15 PB1-F216 and NS117)—which 
would have amplified the cost and casualties considerably.10,18-23 
And remarkably, the H1N1 vaccine was made available for the 
fall 2009 flu season—in record time. On August 1, 2010 the 
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for immunocompromised patients need to be strictly enforced 
to impede the emergence of multidrug-resistant viruses in this 
patient cohort.6,12,13

Meningitis (Africa, 2009): Pray for Rain

The Meningitis Belt in sub-Saharan Africa has the highest 
incidence of bacterial meningitis of any region in the world. 
Meningococcal disease can develop rapidly, with an incidence 
approaching 1% of the population and mortality rates exceed-
ing 20%.34-38 The misery continues long after the epidemic 
subsides as 10 to 20% of survivors are left with serious debili-
tating disease—brain damage, deafness and learning disabilities. 
Epidemics have a predictable episodic cycle: they begin with the 
dry season—cease with the onset of rain—and resume during 
the next dry season. This cycle repeats for a duration of 2 to 3 y 
for a given epidemic.36 Why the dry season? It signals the arrival 
of the Harmattan trade winds that churn desert sands with a 
power so fierce they can block the sun. And with cold nights 
and seasonal respiratory infections, they combine to damage 
epithelial tissue of the human upper respiratory tract, which 
is now ripe for infection with Neisseria meningitidis, a natu-
ral inhabitant of this site in up to 40% of the human popula-
tion.37,39 Also linked to the dry season are events associated with 
extreme crowding, including pilgrimages and assembly in market 
places.38 Collectively, this scenario is a recipe for epidemic disas-
ter. Meningococcal strains are classified into serogroups defined 
by the composition of a protective polysaccharide capsule that 
surrounds the microbe. Serogroup A strains are responsible for 
African epidemics, whereas serogroups B and C are more preva-
lent in industrialized nations.34,37,38 Reasons for the geographic 
distribution of these serogroups remain unclear. The last epi-
demic (1996) caused by serogroup A was among the largest in 
African history.40 The toll: 250,000 cases, 25,000 deaths and 
thousands with long-term debilitating disease. Epidemics occur 
every 7 to 14 y and it was time once again.38 In 2009, two strain 
variants, serogroups W-135 (ST-11) and X (ST-181), emerged in 
West Africa that were similar to those seen in earlier cases linked 
to pilgrimages to Saudi Arabia and localized occurrences in West 
Africa.41-43 In a triple-threat attack, the W-135 and X strains com-
bined with serogroup A strains to cause the largest outbreak in 
the Meningitis Belt since 1996. The toll in 2009 alone: 88,199 
cases with 5,352 deaths.38 With limited access to early diagno-
sis, antimicrobial therapy and vaccination, residents in the region 
could do little else but pray for rain.

Epidemic meningitis remains a global health problem with 
1.2 million cases worldwide and up to 135,000 deaths annu-
ally.44 Infection with the bacterium can cause a spectrum of ill-
nesses ranging from meningitis and septicemia to pneumonia 
and arthritis, as well as brain and nerve damage.45 N. meningiti-
dis adheres to nasopharyngeal mucosal tissues via filamentous 
structures called type IV pili, after which the bacteria prolifer-
ate in tight aggregates called microcolonies on the epithelial cell 
surface.46 This host cell contact stimulates a microbe-mediated 
chemical modification of type IV pili that triggers detachment, 
dissemination, and migration of the bacteria across the epithelial 

WHO declared “post-pandemic status,” officially ending the 
pandemic threat alert.24 Humanity dodged a bullet—for now—
but nature’s genetic lottery continues to lead us back to the past. 
A novel avian flu (H5N1) strain, for example, is currently circu-
lating in birds that has high pathogenic and pandemic potential 
if/when a variant arises that confers increased human to human 
transmission.25-27 It is only a matter of time.

Influenza A virus is a single-stranded RNA virus comprised of 
eight gene segments encoding for 12 protein products, including 
two surface proteins that have reciprocal functions, hemagglu-
tinin (HA) and neuraminidase (NA).28 HA binds the virus to 
sialic acid receptors located on respiratory epithelium, whereas 
NA functions to release progeny virus from infected cells via sial-
idase activity. Sixteen HA and 9 NA types have been identified 
and form the basis for the classification of influenza A viruses into 
subtypes. Further variation among viruses exists and thus isolates 
are identified by a standard nomenclature specifying: virus type, 
geographical location based on first isolation, sequential num-
ber of isolation, year of isolation and HA and NA subtype, e.g.,  
A/California/7/2009 (H1N1).7 Influenza mutants are classified 
into two major groups: those that arise via “antigenic drift,” char-
acterized by relatively minor changes in either HA or NA as seen 
in “seasonal” influenza strains; and those that arise via “antigenic 
shift,” characterized by marked changes in these proteins (and 
others) that occur when two different viruses recombine or reas-
sort chromosomes with the potential to generate new pandemic 
influenza strains for which humans have little or no pre-existing 
immunity. The emergence of H1N1 (2009) was due to antigenic 
shift, whereby successive rounds of recombination and reassort-
ment of chromosomes from different viruses led to the origin 
of a new virus subtype not previously detected in humans or 
animals.18,29,30

The identity of “Patient Zero” of the H1N1 pandemic is 
unknown and will likely remain so. However, the genetic identity 
of the H1N1 (2009) virus is known to have occurred by means 
of viral evolution and cross-infection between humans, birds and 
pigs of viral strains that circulated previously—a quadruple reas-
sortant virus comprised of elements from North American swine 
(30.6%), Eurasian swine (17.5%), North American avian (34.4%) 
and North American human (17.5%) influenza viruses.5,10,18,21,29,30 
Each genetic segment of H1N1 genes circulated in swine pop-
ulations for at least 10 years prior to the genetic reassortment 
leading to the origin of the virus.18 Contact between pigs from 
Eurasia and North America may be responsible for the mixing 
of viruses necessary to generate the H1N1 virus.18 And human 
involvement likely contributed—perhaps in the international hog 
trade—since there are distinct subtypes among swine influenza 
A viruses from geographically distant areas due to the lack of 
contact between these animals21 and the virus can be transmitted 
from pigs to humans and from humans to pigs.28

Lessons learned: Recommendations have been developed in 
response to the H1N1 pandemic. (1) Improved surveillance of 
influenza viruses in pigs is necessary to avoid a pandemic of simi-
lar origin.10,18,28 (2) Obesity, pregnancy and age (> 50 y) have been 
identified as risk factors and early antiviral therapy is necessary to 
avoid severe complications.6,31-33 (3) Infection-control measures 
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outbreak strain was remarkably similar to those endemic to South 
Asia and not those of neighboring Latin American regions.57 
Epidemiological and molecular analysis confirmed that the out-
break strain was inadvertently introduced into Haiti by United 
Nations security forces from Nepal, wherein cholera outbreaks 
had occurred shortly before troop deployment.58-61 Insufficient 
treatment of sewage from the Haitian encampment led to con-
taminated river water that was the likely route of spread. These 
findings led to considerable political unrest in a country that was 
ravaged by nature and a disease that was imported during relief 
efforts—a perfect storm. The cholera outbreak caused nearly 
300,000 illnesses and more than 4,500 deaths, and continues to 
sicken people and claim lives in Haiti.61 These events exemplify 
the explosive and lethal nature of cholera outbreaks, and have 
forever changed the global response to natural disasters.

Cholera is one of the most rapidly fatal diseases known, capa-
ble of killing within 12–24 h of the onset of diarrhea (several 
liters/day).62 The WHO estimates 3 to 5 million cholera illnesses 
and up to 130,000 deaths occur globally each year.63 Mankind 
is suffering the seventh cholera pandemic since 1817.63,64 The 
first six pandemics were caused by the “classical” biotype that 
has been replaced with the “El Tor” biotype (origin: Indonesia, 
1961)—the causative agent of the most extensive cholera pan-
demic in modern history. The El Tor biotype confers increased 
environmental persistence and asymptomatic carriage in humans 
and, thus, may be more likely to become endemic upon intro-
duction to a naïve region.62 The El Tor biotype has undergone 
two major changes in the last two decades.62,64 First, it acquired 
a new lipopolysaccharide (LPS) structure—from O1 to O139—
that resulted in a marked capacity to cause disease in previously 
immune populations.65,66 Second, the O139 El Tor strain was 
subsequently replaced with an O1 El Tor “hybrid” variant that 
had acquired the more potent cholera toxin from the classical 
biotype as well as other factors that are associated with increased 
human disease, dissemination/transmission and environmen-
tal persistence.57,67-69 Accordingly, the O1 El Tor hybrid variant 
has the capacity to fuel explosive and lethal disease outbreaks 
on a global scale. It has now become the predominant strain in 
many regions of Asia67-69 and may replace the pandemic strains in 
Latin America following its introduction to the region during the 
Haitian outbreak.57

Bacteriophages play a key role in the evolution and emergence 
of more potent V. cholerae strains via horizontal gene transfer 
and bacteriocidal selection64—most notably with the acquisition 
of cholera toxin (CT) that is encoded on a lysogenic bacterio-
phage (CTXϕ).70 Further, genomic analysis of pandemic strains 
has indicated that other phages have supplied genes involved in 
increased virulence in humans and/or increased environmental 
fitness.71 Bacteriophages are also involved in the natural con-
trol of cholera epidemics via “phage predation”—a bacteriocidal 
mechanism whereby phage-sensitive strains are selectively killed 
in favor of those that are phage-resistant.72-74 Collectively, these 
phage-mediated processes likely contributed to the elimination 
of the classical biotype and the origin/maintenance of the El Tor 
biotype—responsible for the most extensive cholera pandemic in 
duration and geographic spread in the modern world.64

cell surface. The resultant bacteremia provokes infection of other 
tissues such as the lung, meninges (lining of the brain) and cen-
tral nervous system. Initial diagnosis of meningococcal men-
ingitis is made by clinical examination (stiff neck, high fever, 
headaches and confusion) followed by a lumbar puncture and 
examination of the spinal fluid.38,47 Early diagnosis and antibi-
otic treatment is critical since up to 10% of patients die within 
24–48 h after the onset of symptoms. Thus, vaccines have been 
deemed the most viable approach to minimize human suffering 
resulting from meningococcal disease. Vaccine efforts have been 
hampered by the fact that N. meningitidis is the “chameleon” of 
the microbial world. It can rapidly modulate its surface structures 
(via antigenic variation and phase variation) and switch capsu-
lar serogroups with other strains to effectively evade immune 
clearance mechanisms.37,47-49 Now the good news: In response to 
the 1996 epidemic, the Meningitis Vaccine Project (MVP) was 
established in 2001, spearheaded by the WHO and Program for 
Appropriate Technology in Health (PATH).36,40,50 The consor-
tium’s ambitious goal: eliminate serogroup A epidemics in Africa. 
This effort led to the successful development of “MenAfriVac” 
(Serum Institute of India), a vaccine that was recently shown to 
be safe and effective against infection with serogroup A strains 
in African clinical trials.36,37,40,50 The cost is 40 cents a dose. The 
“conjugate” vaccine links serogroup A polysaccharides to a protein 
carrier that stimulates T-cell dependent immunity and an effec-
tive memory response for long-term-protection. Immunization 
reduces the number of asymptomatic carriers and provides pro-
tection to nonvaccinated individuals via “herd immunity.” This 
has led to a massive vaccine campaign to immunize 250 million 
people in 25 African countries between 2010 and 2015.51

Lessons learned: The success of the Meningitis Vaccine Project 
has given hope to ongoing efforts for the eradication of meningo-
coccal disease.36,37,47,49 Efforts include: (1) Development of mul-
tivalent vaccines that confer protection against other serogroups 
(W-135 and X). (2) Implementation of improved surveillance 
along with genotypic strain typing to detect fluctuations in inci-
dence and shifts in serogroups and genotypes. (3) Development 
of novel vaccination methods for serogroup B strains, which 
are necessary since B-capsule similarity to neuronal cell adhe-
sion molecules renders it poorly immunogenic due to immune 
tolerance.

Cholera (Haiti, 2010): The Perfect Storm

Cholera epidemics have plagued mankind for centuries but had 
spared the island nation of Haiti. That was about to change. On 
January 12, 2010, an earthquake decimated the country—leaving 
a quarter of a million people dead and 2 million homeless.52 Nine 
months later, on October 21, a cholera outbreak was confirmed in 
Haiti.53 It spread like wild fire—fueled by inadequate sanitation, 
clean water and health care infrastructure, as well as Hurricane 
Thomas, which struck the island on November 5–6.52,54,55 By 
December 17, a total of 121,518 cases of cholera, resulting in 
63,711 hospitalizations and 2,591 deaths, were reported.56 The 
outbreak strain was identified as Vibrio cholerae O1, serotype 
Ogawa, biotype El Tor.53 DNA sequencing indicated that the 
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in mucosal damage and colonization.93,94 Lastly, the O104:H4 
outbreak strain possesses a multidrug-resistance plasmid encod-
ing extended-spectrum β-lactamase (ESBL) that render the bac-
terium resistant to several antibiotics.77,86 The selective pressure 
for maintenance of ESBL is likely due to environmental exposure 
as patients with STEC infections are not usually treated with 
antibiotics since these drugs may promote toxin production.59,95 
This scenario issues a clear caution to physicians treating patients 
infected with newly-emergent pathogens.86 Collectively, these 
data support the view that the O104:H4 outbreak strain har-
bors an unusual assortment of virulence functions that provide a 
means for increased pathogenicity, heightened disease manifesta-
tions and multidrug resistance—a veritable royal flush.

Shedding from asymptomatic animal reservoirs likely applied 
to the chain of events leading to the E. coli O104:H4 strain out-
break, as animal reservoirs provide a continued source of contam-
ination of food and water supplies leading to human disease.96 
Healthy cattle, swine and deer are asymptomatic carriers since 
they lack the Stx2 glycolipid receptor, globotriaosylceramide 
(Gb3),97 which promotes attachment, translocation and resultant 
intoxication in humans via Stx-mediated inhibition of protein 
synthesis.88,89,96 Tainted water may have led to contamination of 
sprout seeds that were exported from Africa and distributed to 
farms in Europe, wherein sprouts were consumed with resultant 
disease in local residents and those abroad due to travel to and 
from the source area. Notably, an emergency treatment protocol 
was approved to reduce organ damage and mortality in severely 
ill O104:H4 patients. It involved the administration of a human-
ized monoclonal antibody against complement component C5 
(eculizumab, Alexion Pharmaceuticals) to reduce complement 
activation, and the protocol had promising patient outcomes.98 
However, the long and short-term effects of this and other prom-
ising therapies—as well as the extremely high costs of these inno-
vative procedures—have yet to be fully vetted.

Lessons learned: A multi-national investigation of the E. coli 
O104:H4 outbreak has led to the following recommendations.99 
(1) Develop diagnostic methods for emergent STEC and integrate 
molecular typing into routine surveillance. (2) Utilize product 
tracing as an epidemiological tool. (3) Research the pathogenesis, 
clinical course and new treatment options (antimicrobials and 
antitoxin). (4) Study pathogen evolution among the human host, 
the environment and in animal reservoirs.

Salmonella (2012): The Trojan Horse

Salmonella is the greatest foodborne disease burden in the US—
representing the leading cause of infections, hospitalizations 
and deaths—1.03 million illnesses with the medical costs alone 
reaching $11.4 billion per year and billions more being incurred 
by the food industry (recalls, litigation and reduced consumer 
confidence) and by state, local and federal public health agencies 
acting in response to Salmonella outbreaks.100-102 The disease bur-
den is mind-boggling when translated on a global scale, with an 
estimated 93.8 million cases of salmonellosis and 155,000 deaths 
each year,103 and Salmonella has emerged as the leading cause of 
bacteremia in sub-Saharan Africa with a case fatality rate up to 

Lessons learned: Recommendations have been developed in 
response to the Haitian cholera outbreak.52,54,62,75 (1) Provisions 
for adequate sanitation, clean water and minimal health care 
infrastructure are necessary to meet acute patient needs and 
for education of both residents and response personnel. (2) 
Antibiotic administration at the onset may cull transmission and 
prevent lethal outbreaks as V. cholerae is hyperinfectious after 
human passage;76 more potent, single use drugs are now avail-
able. (3) Prophylactic vaccination, reactive vaccination (during 
an outbreak) and vaccine stockpiling comprise a comprehensive 
approach toward the prevention and containment of cholera 
outbreaks.

E. coli (Germany, 2011): A Royal Flush

The foodborne outbreak of hemolytic uremic syndrome (HUS) 
in northern Germany (2011) embodies the fact that massive 
multi-national foodborne outbreaks are now a reality—irrespec-
tive of food safety standards. In May through June of 2011, two 
separate outbreaks of bloody diarrhea and hemolytic uremic syn-
drome occurred in Europe. One was centered in Germany and 
comprised 3,816 cases of bloody diarrhea, 845 cases of HUS and 
54 deaths; whereas the other was centered in France and com-
prised 15 cases of bloody diarrhea, nine of which progressed to 
HUS.77-83 Both outbreaks were caused by a strain of Shiga toxin-
producing Escherichia coli (STEC) of serotype O104:H4, repre-
senting the highest frequency of HUS and death recorded from 
a STEC strain. Epidemiological investigation determined that 
contaminated sprouts were the source of the outbreak: a conse-
quence of tainted fenugreek seeds from an exporter in Egypt that 
were obtained by a German seed distributor supplying a German 
sprout farm.84 A portion of the original seed shipment was also 
sent to an English seed distributor, which repackaged the seeds, 
and supplied them to French garden stores, leading to the out-
break in France.

Clues to the origin of the outbreak strain have come from 
genome analysis revealing similarity to an enteroaggrega-
tive E. coli (EAEC) strain isolated from an HIV patient in the 
Central African Republic with persistent diarrhea.85,86 However, 
the O104:H4 outbreak strain harbors a prophage encoding Shiga 
toxin 2 (Stx2), a potent eukaryotic protein synthesis inhibi-
tor,77,86,87 Stx2 causes damage to the colon and the microvascu-
lature in humans, characterized by hemorrhagic colitis (bloody 
diarrhea) and hemolytic uremic syndrome (hemolytic anemia, 
thrombocytopenia and acute renal failure).88,89 The outbreak 
strain also possesses an unusual assortment of EAEC virulence 
factors that may promote colonization, biofilm formation and 
mucosal damage—which could also facilitate the production/
dissemination of Stx2 into circulation. The O104:H4 outbreak 
strain, for example, harbors the EAEC virulence plasmid that 
mediates colonization/biofilm formation (type I aggregative 
adherence fimbriae88,90) and bacterial movement along the intes-
tinal mucosa (dispersin91). It also contains EAEC chromosomal 
virulence factors—Shigella enterotoxin 1 (ShET1)92 and an 
unusual assortment of serine proteases [serine protease autotrans-
porters of Enterobacteriaceae (SPATEs)]—thought to play a role 
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via exposure to any of a wide range of live “backyard” animals 
(poultry, turtles, frogs and hedgehogs).119 The number of illnesses 
reported during each of these outbreaks represents only the “tip 
of the iceberg” as it is estimated that for every confirmed case, 
there are as many as 30 that go unreported.100 Therefore, an out-
break of 350 reported cases may affect more than 10,000 people. 
Moreover, false implication of food products can be devastating 
to a particular industry; e.g., tomatoes were falsely implicated in 
the Salmonella “jalapeno and serrano pepper” outbreak (2008), 
resulting in losses exceeding $200 million as tomato consump-
tion plummeted.120 Salmonella control efforts are problematic 
due to the widespread distribution and diversity of pathogenic 
strains in animal reservoirs and water supplies.121-123 The standard 
approach for many years has been the widespread use of antibiot-
ics in livestock, but this option has now become limited due to 
the emergence of multidrug-resistant strains that are a bona fide 
risk to human health.110-113 To improve food safety, the FDA and 
USDA have thus made the development of improved methods to 

25%.104,105 Moreover, the problem has been exacerbated due to 
the prolonged administration of antibiotics to livestock that has 
resulted in the emergence of multidrug-resistant strains that have 
disseminated globally. The pandemic spread of S. Typhimurium 
DT104, for example, has caused a high number of foodborne 
disease outbreaks over the last two decades and is resistant to 
four of the five most commonly used antibiotics in veterinary 
medicine (tetracycline, β-lactams, aminoglycosides and sulfon-
amides).106,107 These multidrug-resistant strains are more virulent 
and cause increased hospitalizations and bacteremia.108,109 Now 
the bad news: the Salmonella disease burden is poised to worsen 
with the potential emergence of more potent strains that, when 
combined with multidrug resistance, pose a significant health 
risk due to the lack of therapeutics available to fight these infec-
tions when they occur.110-113 These dire predictions may have 
been realized as “hypervirulent” Salmonella were isolated from 
natural microbial populations (2012) that are among the most 
virulent microbes encountered of this species.114 These strains are 
100 times more virulent then other clinical isolates, more capable 
of killing vaccinated animals and not detectable under stan-
dard laboratory test conditions as the hypervirulent state is only 
expressed during the infective process. The key to their identifi-
cation was to assess virulence immediately after infection before 
their rapid transition to a less-virulent state outside of the animal. 
These hypervirulent strains utilize a “Trojan Horse” strategy 
whereby virulence functions are only revealed during the infec-
tive process (Fig. 1). Entry into an animal host induces distinct 
transcriptional responses in hypervirulent strains that were not 
altered, or altered to the same extent, in conventionally virulent 
strains. Such altered gene expression is characterized by elevated 
production of an actin cytotoxin and immunomodulatory mol-
ecules that, in combination, confer profound effects on micro-
bial virulence and the capacity of the host to mount an effective 
immune response. Reciprocally, exposure to ex vivo conditions 
signals a rapid reversion to a less-virulent state characterized by 
more competitive growth in the environment. This rapid and 
reversible switching between virulence states provides a means to 
quickly adapt to disparate hosts/environments without undergo-
ing irreversible changes in the genome, and may contribute to the 
maintenance of hyperinfectious strains in nature. These events 
have sounded the alarm to the medical community, as hyper-
virulent strains of other pathogens may be present among natural 
microbial populations—posing a previously unrecognized risk to 
human health.

Salmonella is acquired via the fecal-oral route and is com-
prised of more than 2,500 serovars (serological variants) based 
on carbohydrate, lipopolysaccharide and flagellar composi-
tion;112,115,116 and can result in any of four distinct syndromes: 
enterocolitis/diarrhea, bacteremia, enteric (typhoid) fever and 
chronic asymptomatic carriage.117,118 Salmonella puts everyone at 
risk irrespective of dietary preferences—poisoning meats, poul-
try, livestock-derived food products, fruits, nuts and vegetables. 
In the US (2011–2012), the CDC has reported several Salmonella 
outbreaks due to the consumption of contaminated ground beef, 
turkey burgers, chicken livers, fish, cantaloupe, mangoes, papa-
yas, pine nuts, alfalfa sprouts, dry dog food, peanut butter or 

Figure 1. Hypervirulent Salmonella utilize a “Trojan Horse” strategy—
exposing their virulence functions only during the infective process—
but appearing much like other less-virulent strains in the environment. 
entry into an animal host signals a dramatic shift in gene expression 
that is characterized by elevated toxin production coupled with the 
disruption of the host innate immune cytokine response necessary to 
execute antimicrobial activities. exposure to ex vivo conditions signals a 
rapid transition to a less-virulent state characterized by more competi-
tive growth in the environment. This rapid and reversible switching 
allows the bacterium to rapidly adapt to disparate hosts/environments 
without undergoing irreversible changes in the genome—providing a 
means for increased immune evasion/disruption, heightened disease 
and increased maintenance in nature. Hypervirulent Salmonella are 
among the most virulent of this species and are difficult to detect by 
current diagnostics. Credit: Peter Allen, UC Santa Barbara.
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treatment options limited to removal of portions of the infected 
lung (Iran, 2009; India, 2012).132,133 Extensively drug-resistant 
Streptococcus pneumoniae (South Korea, 2012)134 has recently 
forced treatment of pneumococcal infections with vancomycin—
usually reserved for patients with MRSA (methicillin-resistant 
Staphylococcus aureus).135 Vancomycin-resistant S. aureus strains 
now abound in the United States and elsewhere.136 Notably, mul-
tidrug-resistant strains are often more virulent—causing more 
illnesses, hospitalizations and deaths108,109—and their enrichment 
and maintenance in nature can occur at extremely low antibi-
otic concentrations that are commonly found in the environment 
(e.g., ground water).137 Another example of human activities that 
have hastened microbial evolution is pneumococcal vaccination. 
Although highly successful in preventing pneumococcal disease, 
vaccination has led to changes in capsular serogroup prevalence 
in human populations.138 Since each pneumococcal serotype var-
ies in its ability to cause invasive disease,139-141 some vaccination 
benefits may be offset by altered serotype prevalence and, in com-
bination with treatment of pneumococcal patients with front-line 
antibiotics, may lead to the emergence of highly invasive mul-
tidrug-resistant strains that escape vaccine-conferred immunity. 
Lastly, careful consideration must be given to emergent pathogens 
that may already be lurking within natural microbial populations 
waiting for the appropriate signal(s) to launch a covert attack on 
human populations—with potentially devastating outcomes.114,142

However, there is new hope in the ongoing battle against 
infectious diseases. Genomic sequencing methods are now avail-
able to rapidly determine the presence of antibiotic resistance 
genes as well as specific virulence or antigenic determinants in 
newly emerging pathogens prior to making decisions about what 
antibiotics or vaccines to administer.57,86 In addition to new thera-
peutics, there are a number of novel vaccine efforts that are either 
ongoing or in the pipeline: universal influenza vaccines against 
pandemic and seasonal viruses;143 epidemic meningitis vac-
cines,37,47 prophylactic/reactive cholera vaccines,62,75 STEC vac-
cines144 and cross-protective salmonellae vaccines.125 Meanwhile, 
as we exhaust all available resources to combat emergent patho-
gens, nature’s genetic lottery is continuous and unrelenting—
fueling the rise of the microbes for the next generation. Some 
things never change.
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reduce Salmonella contamination from farm-to-fork a top prior-
ity, with particular emphasis on reduced contamination of food 
and water supplies at the outset of the livestock production pro-
cess.120,124,125 Early monitoring, intervention and prevention meth-
ods, for example, would reduce pathogen exposure, transmission, 
animal disease and the direct contamination of livestock-derived 
food products as well as the indirect contamination of fruit and 
vegetable food products via contaminated water.

Lessons learned: Recommendations have been developed to 
limit the size, frequency, and severity of foodborne outbreaks, the 
emergence of multidrug-resistant strains, and the false implica-
tion of other food products.120,124,125 (1) Elimination of growth-
promoting antibiotics in animal feeds. (2) Development of 
cross-protective vaccines. (3) Irradiation of post-harvest foods. 
(4) Improved monitoring by the FDA and USDA. (5) Improved 
surveillance/traceability for source-product identification.

Conclusions: Dead Smart

Infectious disease outbreaks manifest the impact of emer-
gent pathogens on human health, animal welfare and modern 
agriculture—a clear indication of how fragile public health has 
become. Pathogen emergence is fueled by the acquisition of genes 
encoding novel virulence functions and/or the altered expression 
of pre-existing functions. The resultant shifts in serogroups and 
genotypes lead to an unusual assortment of virulence capabili-
ties for which humans have little or no pre-existing immunity. 
In some cases, genetic alterations in one species results in the 
acquisition of variations that allow them to overcome barriers 
and infect new hosts—in these cases, devastating outbreaks can 
occur. A paradigm for this process is cross-species virus transmis-
sion and emergence of new epidemic diseases: HIV, Marburg and 
Ebola.126-128 Human activities have hastened these natural pro-
cesses of microbial evolution. This is evident in the aftermath of 
recent infectious disease outbreaks, highlighting the importance 
of adequate sanitation, clean water, health care infrastructure 
and the implementation of improved surveillance/genotyping 
that monitor pathogen emergence. It is also evident in our pub-
lic health care systems wherein hospitalizations for septicemia or 
sepsis have more than doubled from 2000 to 2008 at an annual 
cost of $14.6 billion in the US alone.129 Numerous factors are 
thought to have contributed to the rise in sepsis patients includ-
ing an aging population with chronic conditions, increased use 
of invasive procedures, immunosuppressive drugs, chemotherapy 
and increased use of antibiotics—creating a fertile breeding 
ground for multidrug-resistant superbugs.130,131

Physicians must carefully evaluate patient treatment prac-
tices from hospital admittance to discharge and beyond to avoid 
exacerbating the current vicious (and deadly) cycle: more potent 
pathogens—more acute illnesses—more aggressive treatments—
and the emergence of even more potent pathogens. Totally drug-
resistant (TDR) Mycobacterium tuberculosis has emerged with 
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