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ABSTRACT OF THE DISSERTATION

A Blob Method for Advection-Diffusion-Reaction Systems

with Application to Robotic Swarms

by

Fangbo Zhang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Andrea Bertozzi, Chair

In this dissertation, a blob method of measuring spatial coverage by a swarm of agents is

presented, and two models are introduced: a macroscopic model, consisting of a system of

Advection-Diffusion-Reaction equations that govern the spatial distribution of the swarm

at the population level; and a microscopic model, represented by a stochastic differential

equation, describing the individual behavior of each agent in the swarm. Depending on

different tasks, multiple control frameworks are proposed to drive the swarm to a target

distribution, and are proved to be both valid in theory and robust in real world case.

First, we briefly review the history of Advection-Diffusion-Reaction (ADR) system in

the literature. The ADR system models the agents’ motion as drifted brownian motion,

and the agents’ reaction as probabilistic transition between different states. The key idea of

the ADR model lies in the fact that the green’s function of Advection-Diffusion Equation is

the conditional probability density function of the corresponding drifted brownian motion.

The proposed point mass approach verifies that the error between the macroscopic and the

microscopic model converges with respect to the inverse of the square root of the swarm size.

Next, we explores a stochastic approach for controlling swarms of independent robots

toward a target distribution in a bounded domain. The robots are resource-constraint: they

lack both communication and localization capabilities, and can only gather local information
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by measuring a scalar field (e.g. concentration of a chemical) from the environment. A simple

control law is introduced to govern the diffusion of each robot, so that the distribution of

the swarm converges to a pre-defined target distribution over time. The key point behind

the control framework is that the solution of heat equation converges to the first-order

eigenvector of the Laplacian operator. We further confirm the robustness of the control

law in real world case by conducting simulations in computer and test bed experiments in

multiple cases of target distributions, where the swarm achieves the theorized convergence

to the target distribution despite deviations from assumptions underpinning the theory.

Finally, we presents a novel procedure for computing parameters of a robotic swarm that

guarantee coverage performance by the swarm within a specified error from a target spatial

distribution. The main contribution is the analysis of the dependence of this error on two

key parameters: the number of robots in the swarm and the robot sensing radius, in which

we view each robot as a blob instead of a point mass. We model the population dynamics of

the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-

dependent advection and reaction terms. We derive rigorous bounds on the discrepancies

between the target distribution and the coverage achieved by individual-based and PDE

models of the swarm. We use these bounds to select the swarm size that will achieve

coverage performance within a given error and the corresponding robot sensing radius that

will minimize this error. We also apply the optimal control approach to compute the robots’

velocity field and task-switching rates. We validate our procedure through simulations of a

scenario in which a robotic swarm must achieve a specified density of pollination activity

over a crop field.
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CHAPTER 1

History and Application: The

Advection-Diffusion-Reaction System

1.1 Introduction

In recent years, the Advection-Diffusion-Reaction (ADR) System has been widely applied to

model the motion and stochastic transitions in a swarm of agents in nanomedicine [HBN13],

coverage and field estimation [EAB16,LFE17], unknown environment mapping [REB18] and

robotic pollination [EB15, BNH11]. A swarm system is often comprised of hundreds or

thousands of inexpensive, relatively expendable agents that perform tasks on large spatial

and temporal scale. They should work quickly, robustly, adaptively, and autonomously

[EB15]. Recent advances in computing, sensing, actuation, power, control, and 3D printing

technologies have boosted the production of light robots, making research and experiments

in robotic swarm more popular. Tasks for robotic swarms include exploration, mapping,

environmental monitoring, chemical source localization, search-and-rescue, surveillance, and

reconnaissance.

The simpler Advection-Diffusion equation, or Fokker Planck Equation, has been compre-

hensively studied in the literature. The Monte Carlo method is a popular way to simulate

the solution of the Fokker Planck equation [MWW07,CJL06], in which the key idea is to de-

ploy a swarm of independent particles, whose trajectories are generated by the corresponding

drifted Brownian motion of the Fokker Planck equation.

This chapter is organized as following. In section 1.2, we briefly review and prove the

theory of the Fokker Planck equation, and present a numerical simulation using a point mass
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approach. In section 1.3, we include the reaction term and show some examples of existing

applications of ADR system in the literature.

1.2 Preliminary: Fokker-Planck Equation

In this section, we state and prove Kolmogorov theorem [Pav14], which demonstrates the fact

that the Green’s function of the Advection-Diffusion equation is the conditional probability

density of a drifted Brownian motion.

Definition 1.2.1. (Fokker-Planck) Suppose v(x, t), D(x, t) are functions in C2,1(R2, R+),

D(x, t) > 0, and X(t) is a stochastic process that satisfies Stochastic Differential Equa-

tion(SDE)

dX(t) = v(X(t), t)dt+
√

2D(X(t), t)dB(t), (1.1)

then the Fokker-Planck equation for the probability density p(x, t) of the random variable

X(t) is

ρt +∇ · (vρ) = ∆(Dρ). (1.2)

Theorem 1.2.2 (Kolmogorov theorem). Let p(y, t|x, s) is the conditional probability density,

such that ∀Σ ∈ R2, t > s > 0,

P{X(t) ∈ Σ|X(s) = x} =

∫
Σ

p(y, t|x, s)dy.

Then p(y, t|x, s) is the solution to the initial value problem pt = −∇y · (v(y, t)p) + ∆y(D(y, t)p), ∀y ∈ Ω

p(y, s|x, s) = δ(y − x),
(1.3)

with the no-flux boundary condition

(−v(y, t)p+∇y(D(y, t)p)) · −→n = 0, ∀y ∈ ∂Ω. (1.4)

or the vanishing boundary condition in the case when Ω = R2:

lim
‖x‖→∞

p(x) = 0. (1.5)
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Or equivalently, the conditional probability density function is the Green’s function of Fokker-

Planck Equation.

We will prove theorem 1.2.2 later in section 1.3. Based on the theorem, we obtain the

following corollaries.

Corollary 1.2.3. Let p(y, t|x, s) is the conditional transaction probability density of the

stochastic process defined in (1.1), then the solution to the initial value problem ρt = −∇ · (v(x, t)ρ) + ∆(D(x, t)ρ)

ρ(x, 0) = ρ0(x),
(1.6)

with the same boundary condition in theorem 1.2.2 is:

ρ(x, t) =

∫
Ω

ρ0(y)p(x, t|y, 0)dy.

1.2.1 First Simulation: Point Mass Approach

One well known way to simulate the distribution of drifted Brownian motion is the Monte

Carlo method, in which one often view each particle as a point mass. We now suppose there

are N ∈ Z+ particles that are moving according to SDE (1.1) in a 2D plane, indexed by

1 ≤ i ≤ N . The ith particle starts from X i
0 ∈ Ω. For a fixed area Σ ⊂ Ω, the total number

of particles in Σ at time t is

# of particles in Σ =
∑
i

1Σ(X i
t),

where 1Σ(x) is 1 if x ∈ Σ and 0 otherwise. Let δ(x) denote the delta function in 2D. Then

if we see each particle as a point mass, the corresponding density function of the initial state

of the particle system is

ρ0(x) =
∑
i

δ(x−X i
0).

The total mass of the system is conserved since

∂

∂t

∫
Ω

ρdx =

∫
Ω

−∇ · (v(x, t)ρ) + ∆(D(x, t)ρ)dx =

∫
∂Ω

(−vp+∇(Dp)) · −→n dS = 0.

Theorem 1.2.2 also leads to the following corollary.
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Corollary 1.2.4. Let ρ(x, t) be the solution to the initial value problem
ρt = −∇ · (v(x, t)ρ) + ∆(D(x, t)ρ), ∀x ∈ Ω

ρ0(x) =
1

N

∑
i

δ(x−X i
0),

(1.7)

with the same boundary condition in theorem 1.2.2. Without loss of generality we assume∫
R2

ρ(x, t)dx ≡ 1.

Then for any Σ ⊂ Ω and t > 0,

E(portion of particles in Σ at time t) =
1

N

∑
i

E
(
1Σ(X i

t)
)

=

∫
Σ

ρ(x, t)dx. (1.8)

Proof. By corollary 1.2.3, ρ(x, t) =
∫

Ω
ρ0(y)p(x, t|y, 0)dy, where p(x, t|y, 0) is the condi-

tional transaction probability density of (1.1). Denote X(t;x) be the stochastic process of

(1.1) starting from x, then we have∫
Σ

ρ(x, t)dx =

∫
Ω

1Σ(x)ρ(x, t)dx

=

∫
Ω

1Σ(x)

∫
Ω

ρ0(y)p(x, t|y, 0)dydx

=

∫
Ω

ρ0(y)

∫
Ω

1Σ(x)p(x, t|y, 0)dxdy

=

∫
Ω

ρ0(y)E (1Σ(X(t;y)))dy.

Now we plug in ρ0(y) = 1
N

∑
i δ(y −X i

0), and get∫
Σ

ρ(x, t)dx =
1

N

∑
i

E
(
1Σ

(
X(t;X i

0)
))

=
1

N

∑
i

E
(
1Σ(X i

t)
)
.

1.2.2 Numerical Experiment

We present an numerical simulation that justifies corollary 1.2.3. We choose N = 10000,v =

(0.5x1, 0.5x2), D = 1, Σ = [0, 1] × [0.2, 1.2] ⊂ R2, all of the particles start from origin. We

discretize the time interval [0, 1] into M = 1000 equal time steps as

0 = t0 < t1 < ... < tM = T, tm = m∆t. (1.9)
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We simulate each particle path independently by

X i
m+1 = X i

m + v(tm)∆t+
√

2D∆t∆Zi
m ∀i ∈ Fm+1, (1.10)

where X i
m denote the position of ith particle at mth time step, and ∆Zi

m are independent,

normally distributed random variables with zero mean and unit variance in R2. Figure 1.1

shows final distribution of a sampled 500 particles, and the comparison between portion of

particles in Σ and
∫

Σ
ρ(x, t)dx.

Figure 1.1: Left: Final distribution of sampled 500 particles, where Σ is depicted as the solid

rectangle. Right: portion of particles in Σ = [0, 1] × [0.2, 1.2] (diamond) and
∫

Σ
ρ(x, t)dx

(solid line) over time.

Also we define the error

e(N) =

∫
Σ

ρ(x, T )dx− 1

N

∑
i

1Σ(X i
T )

. From central limit theorem we know that

√
Ne(N) =

1√
N

∑
i

(
1Σ(X i

T )− E
(
1Σ(X i

T )
))
∼ N (0, σ2)

Hence we conjecture that e(N) ∼ 1√
N

. In figure 1.2, ln e(N) is computed against lnN , where

the results are the average of 100 experiments. We discover linear dependency between them,

which will be rigorously proved later in a more complex setting.

1.2.3 Proof of Kolmogorov Theorem

In this subsection, we present the proof of the Kolmogorov theorem 1.2.2. A proof for a

1D diffusion process can be found in the book [Pav14], Section 2.5, and the proof here is a

5



Figure 1.2: Different e(N) with respect to different N , all the results are average of 100

experiments.

generalization in the 2D case. To simplify the proof, we consider the case when Ω = R2. We

first state two lemmas.

Lemma 1.2.5. With the stochastic process X(t) = (X1(t), X2(t)) defined above, we have:

(i)First moment:

E

(
X(t)−X(s)

∣∣∣∣X(s) = x

)
= v(x, s)(t− s) + o(t− s) (1.11)

(ii)Second moment:

E

(
(Xi(t)−Xi(s))(Xj(t)−Xj(s))

∣∣∣∣X(s) = x

)
= 2D(x, s)(t− s)δij + o(t− s)

(1.12)

(iii)Higher order moment:

∀δ > 0, E

(
|X(t)−X(s)|2+δ

)
= o(t− s) (1.13)

where i, j ∈ {1, 2}, δij is 1 when i = j, or 0 otherwise.

Lemma 1.2.6. With the process X(t) defined above, for every fixed x and every ε > 0:

6



(i) ∫
|y−x|>ε

p(y, t|x, s)dy = o(t− s) (1.14)

uniformly over s < t.

(ii) ∫
|y−x|≤ε

(y − x)p(y, t|x, s)dy = v(x, s)(t− s) + o(t− s) (1.15)

uniformly over s < t.

(iii) Write x = (x1, x2),y = (y1, y2), then∫
|y−x|≤ε

(yi − xi)(yj − xj)p(y, t|x, s)dy = 2D(x, s)(t− s)δij + o(t− s) (1.16)

uniformly over s < t.

We postpone the proof of the above two lemmas, and apply them to prove our main

theorem first.

Proof of Theorem 1.2.2. The initial condition follows from the definition. Now for any func-

tion f(y) ∈ C2
0(R2), notice that p(y, t|x, s) satisfies Chapman-Kolmogorov equation:

p(y, t+ k|x, s) =

∫
R2

p(y, t+ k|z, t)p(z, t|x, s)dz. (1.17)

Hence∫
R2

f(y)
∂

∂t
p(y, t|x, s)dy

= lim
k→0

1

k

(∫
R2

f(y)p(y, t+ k|x, s)dy −
∫
R2

f(y)p(y, t|x, s)dy
)

= lim
k→0

1

k

(∫
R2

∫
R2

f(y)p(y, t+ k|z, t)p(z, t|x, s)dydz −
∫
R2

f(z)p(z, t|x, s)dz
)

= lim
k→0

1

k

(∫
R2

p(z, t|x, s)
(∫

R2

f(y)p(y, t+ k|z, t)dy − f(z)

)
dz

)
.

(1.18)
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Let Hf(z) denote the 2× 2 Hessian matrix of f at z, then ∀ε we have∫
R2

f(y)p(y, t+ k|z, t)dy − f(z)

=

∫
R2

(f(y)− f(z))p(y, t+ k|z, t)dy

=

∫
|y−z|≤ε

(f(y)− f(z))p(y, t+ k|z, t)dy +

∫
|y−z|>ε

(f(y)− f(z))p(y, t+ k|z, t)dy

≤
∫
|y−z|≤ε

(f(y)− f(z))p(y, t+ k|z, t)dy + 2‖f‖∞o(k)

=

∫
|y−z|≤ε

(
∇f(z)(y − z) +

1

2
(y − z)THf(z)(y − z)(1 +O(|y − z|))

)
· p(y, t+ k|z, t)dy + o(k)

=∇f(z)v(z, t)k +D(z, t)k∆f(z)(1 +O(ε)) + o(k),

where we applied (1.11) and (1.12) in the last step. Taking ε→ 0 we get∫
R2

f(y)p(y, t+ k|z, t)dy − f(z) = k (∇f(z)v(z, t) +D(z, t)∆f(z)) + o(k). (1.19)

Now plug (1.19) back into (1.18), use 2D integration by parts formula, and apply the bound-

ary condition, we get: ∫
R2

f(y)
∂

∂t
p(y, t|x, s)dy

=

∫
R2

p(z, t|x, s) (∇f(z)v(z, t) +D(z, t)∆f(z)) dz

=

∫
R2

f(y) (−∇ · (v(y, t)p+ ∆(D(y, t)p)) dy

Since f(y) is arbitrarily chosen in C2
0(R2), we know that

pt = −∇y · (v(y, t)p) +
1

2
∆y(D(y, t)p).

This closes the proof of the theorem.

Now what is left is to prove the lemma 1.2.5 and lemma 1.2.6.

Proof of lemma 1.2.5. From SDE (1.1) we know that

X(t)−X(s) =

∫ t

s

v(X(τ), τ)dτ +

∫ t

s

√
2D(X(τ), τ)dB(τ) (1.20)

8



So, by property of conditional expectation,

E

(
X(t)−X(s)

∣∣∣∣X(s) = x

)
− v(x, s)(t− s)

=E

(
X(t)−X(s)− v(X(s), s)(t− s)

∣∣∣∣X(s) = x

)
.

Notice that

E

(∫ t

s

√
2D(X(τ), τ)dB(τ)

∣∣∣∣X(s) = x

)
= 0,

so the above identity becomes

E

(
X(t)−X(s)

∣∣∣∣X(s) = x

)
− v(x, s)(t− s)

=E

(∫ t

s

v(X(τ), τ)dτ − v(X(s), s)(t− s)
∣∣∣∣X(s) = x

)
=E

(∫ t

s

v(X(τ), τ)− v(X(s), s)dτ

∣∣∣∣X(s) = x

)
≤E
(∫ t

s

|v(X(τ), τ)− v(X(s), s)|dτ
∣∣∣∣X(s) = x

)
But by continuity of v(x, t) and almost everywhere continuity of X(t),∫ t

s

|v(X(τ), τ)− v(X(s), s)|dτ =

∫ t

s

O(t− s)dτ = o(t− s).

Hence

E

(
X(t)−X(s)

∣∣∣∣X(s) = x

)
− v(x, s)(t− s) = o(t− s),

which proves (i). For (ii), consider the case i 6= j first, if we write B(t) = (B1(t), B2(t)),v =

(v1, v2), then SDE (1.1) becomes:

dX1(t) = v1(X(t), t)dt+
√

2D(x, t)dB1(t)

dX2(t) = v2(X(t), t)dt+
√

2D(x, t)dB2(t).

Since the stochastic terms B1(t) and B2(t) are independent of each other, so do X1(t) and

9



X2(t). Hence

E

(
(X1(t)−X1(s))(X2(t)−X2(s))

∣∣∣∣X(s) = x

)
=E

(
(X1(t)−X1(s))

∣∣∣∣X(s) = x

)
E

(
(X2(t)−X2(s))

∣∣∣∣X(s) = x

)
= (v1(X(s), s)(t− s) + o(t− s)) · (v2(X(s), s)(t− s) + o(t− s))

=o(t− s).

Now suppose i = j, WLOG i = j = 1. B(t) has independent increment, hence X1(t)−X1(s)

and X(s) are independent.

E

(
(X1(t)−X1(s))2

∣∣∣∣X(s) = x

)
=E

(
(X1(t)−X1(s))2

)
=E

([∫ t

s

v1(X(τ), τ)dτ +

∫ t

s

√
2D(X(τ), τ)dB1(τ)

]2)
with the consumption that X(s) = x. Notice that

E

([∫ t

s

v1(X(τ), τ)dτ

]2)
= E

(
(O(t− s))2

)
= o(t− s);

E

([∫ t

s

v1(X(τ), τ)dτ

]
·
[∫ t

s

√
2D(X(τ), τ)dB1(τ)

])
≤ E

( ∣∣∣∣∫ t

s

v1(X(τ), τ)dτ

∣∣∣∣ · ∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣ )
≤ E

(
C(t− s)

∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣ )
≤ C(t− s)E

( ∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣2) 1
2

= C(t− s) · E
(∫ t

s

2D(X(τ), τ)dτ

) 1
2

≤ C
′
(t− s)

3
2 = o(t− s);

E

([∫ t

s

√
2D(X(τ), τ)dB1(τ)

]2)
= E

(∫ t

s

2D(X(τ), τ)dτ

)

10



with the consumption that X(s) = x. Hence we have

E

(
(X1(t)−X1(s))2

∣∣∣∣X(s) = x

)
− 2D(x, s)(t− s)

=E

(∫ t

s

2D(X(τ), τ)dτ

)
− 2D(x, s)(t− s) + o(t− s)

=E

(∫ t

s

2D(X(τ), τ)− 2D(X(s), s)dτ

)
+ o(t− s)

=E

(∫ t

s

O(t− s)dτ
)

+ o(t− s)

=o(t− s),

which completes the proof of (ii).

For (iii), we use the inequality (a2 + b2)
2+δ

2 ≤ 2
2+δ

2 (a2+δ + b2+δ), so that it is sufficient to

prove

E

(
|X1(t)−X1(s)|2+δ

)
= o(t− s).

By (1.20), and use the above inequality again, we get

E

(
|X1(t)−X1(s)|2+δ

)
= E

( ∣∣∣∣−∫ t

s

v1(X(τ), τ)dτ +

∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣2+δ )
≤ 2

2+δ
2

[
E

( ∣∣∣∣∫ t

s

v1(X(τ), τ)dτ

∣∣∣∣2+δ )
+ E

( ∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣2+δ )]
.

The first term is O(|t− s|2+δ) since v1 is bounded. For the second term, we apply Holder’s

inequality E(|X|δ+2) ≤ E(|X|2)(δ+2)/2, and get

E

( ∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣2+δ )

≤

[
E

( ∣∣∣∣∫ t

s

√
2D(X(τ), τ)dB1(τ)

∣∣∣∣2)
](δ+2)/2

=

[
E

(∫ t

s

2D(X(τ), τ)dτ

)](δ+2)/2

= |t− s|1+δ/2 = o(t− s).

which closes the proof.

Proof of lemma 1.2.6. Equation (1.13) is equivalent to:∫
R2

|y − x|2+δp(y, t|x, s)dy = o(t− s),∀δ > 0

11



So for every ε > 0 and take r to be 0, 1 or 2,∫
|y−x|>ε

|y − x|rp(y, t|x, s)dy

=

∫
|y−x|>ε

|y − x|2+δ

|y − x|2+δ−r p(y, t|x, s)dy

≤ 1

ε2+δ−r

∫
|y−x|>ε

|y − x|2+δp(y, t|x, s)dy

≤ 1

ε2+δ−r

∫
R2

|y − x|2+δp(y, t|x, s)dy

=o(t− s).

Taking r = 0 gives us (i). Also Equation (1.11) tells us that

v(x, s)(t− s) + o(t− s)

=

∫
R2

(y − x)p(y, t|x, s)dy

=

∫
|y−x|≤ε

(y − x)p(y, t|x, s)dy +

∫
|y−x|>ε

(y − x)p(y, t|x, s)dy.

The later term is o(t− s) by taking r = 1, which proves (ii). For (iii), we write (1.12) as

2D(x, s)(t− s)δij + o(t− s) =

∫
R2

(yi − xi)(yj − xj)p(y, t|x, s)dy

=

∫
|y−x|≤ε

(yi − xi)(yj − xj)p(y, t|x, s)dy +

∫
|y−x|>ε

(yi − xi)(yj − xj)p(y, t|x, s)dy.

Combining with inequality |(yi − xi)(yj − xj)| ≤ |y − x|2, the later term is o(t − s). This

proves (iii), thus closes the whole lemma.

1.3 Advection-Diffusion-Reaction System, and its applications

Consider the following system of partial differential equations
∂ρ1

∂t
= −v1 · ∇ρ1 +D1∆ρ1 − k12ρ1 + k21ρ2,

∂ρ2

∂t
= −v2 · ∇ρ2 +D2∆ρ2 + k12ρ1 − k21ρ2.

(1.21)

Compared to the Advection-Diffusion equation (1.2), the system (1.21) has particles in two

states, namely state 1 and state 2, corresponding to densities ρ1, ρ2, respectively. Particles
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in state n(n = 1, 2) are moving with advection vn and diffusing with coefficient Dn, and they

also react with each other, i.e. particle in state 1 switches to state 2, and state 2 also switches

to state 1, with transition rate k12, k21, respectively. We call system (1.21) an Advection-

Diffusion-Reaction (ADR) system. A specific example for the application of the ADR system

is in the field of nano-medicine [HBN13], where different species of nanoparticles react with

each other, resulting in an interchange network between species.

In the rest of this section, we briefly present some applications of ADR system that have

been studied in the literature.

1.3.1 Targeted nanoparticles in Cancer Treatment

In cancer treatment, targeted nanoparticles has been increasingly utilized. However, the

penetration of targeted nanoparticles deep into tissue can be hindered by their slow diffu-

sion. In order to increase tissue penetration, S. Huert et al. [HBN13] proposed generaliz-

able ADR model that captures the potency, motion, and binding kinetics of four species of

nanoparticles: NPF , free nanoparticles; NPI , internalized nanoparticles; R, receptors; and

C, nanoparticle-receptor complexes. The reaction network is:

NPF +R
ka−→ C,

NPF +R
kd←− C,

C
ki−→ NPI +R,

(1.22)

where ka, kd, ki are reaction rates. The corresponding ADR system, or the deterministic

model, is defined as 

∂NPF
∂t

= D∆NPF − kaNPF ·R + kdC,

∂R

∂t
= −kaNPF ·R + kdC + kiC,

∂C

∂t
= kaNPF ·R− kdC − kiC,

∂NPI
∂t

= kiC,

(1.23)

with boundary condition
∂NPF
∂t

(x, t)

∣∣∣∣
x∈∂Ω

= 0.
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In this system, the diffusion term is D∆NPF ; the reaction terms are kaNPF · R, kdC, kiC,

corresponding to 3 types of reactions in (1.22); there is no advection. Hence this is a

Diffusion-Reaction (DR) system. The movement of free nanoparticles NPF is modeled as

Brownian motion

dX(t) =
√

2D(X(t), t)dB(t). (1.24)

The combination of (1.22) and (1.24) is called the stochastic model.

In the simulation, the authors explore parameters that affect the distribution of nanopar-

ticles after extravasation. Such particles can be modified through engineering. Toward this

end, they define dissociation constant kD = kd/ka. Fig. 1.3A shows the number of cells that

are dead after 48 hours of treatment as a function of D and KD, simulated using both the

stochastic model and the deterministic model. Note that the identical results from both

models validate the use of the deterministic model for prediction and optimization. Based

on experimental work by Hong et al. [HLM07] and Thurber et al. [TW08], they estimated

the dissociation and internalization rate constants as kd = 10−4s−1, ki = 10−5s−1 while vary-

ing ka in the range [103, 109]M−1s−1. Fig. 1.3B shows the penetration profiles of several

nanoparticle formulations. The results show that most of the nanoparticle formulations

considered are not capable of killing all 20 cells in the model. Nanoparticles with a high

binding affinity (Fig. 1.3B(a,c)), regardless of their speed, accumulate only in cells near the

vasculature, and slow nanoparticles (Fig. 1.3B(c,d)) fail to accumulate at lethal levels in

cells farthest from the vasculature. Fast nanoparticles with a low binding affinity are able to

accumulate at lethal levels in all cells (Fig. 1.3B(b)). However, lowering the affinity beyond

the range explored here could result in nanoparticles that are unable to accumulate at lethal

levels in tumor cells.

1.3.2 Coverage and Field Estimation on Bounded Domain

In [EAB16], K. Elamvazhuthi el at. developed a generic control framework to achieve and

estimate a certain coverage in a bounded domain by deploying a swarm of agents.

Consider the following background. A swarm of agents that are deployed into a domain
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Figure 1.3: (A) Number of cells killed depending on the diffusion coefficient D and dissocia-

tion constant KD. Complete tissue penetration is assumed when each of the 20 cells in the

model internalizes the number of nanoparticles required to kill one cell. (B) Tissue penetra-

tion profiles determined using a stochastic simulator for four combinations of the diffusion

coefficients and dissociation constants labeled in (A). (C) Number of cells killed depending

on the nanoparticle formulation with ka fixed and kd varying. (D) Representative nanopar-

ticle formulations identified in the literature. (E) Minimum injected dose of chemotherapy

required to theoretically kill all cells in the simulated scenario for each nanoparticle formu-

lation. Copyright c©2013 nanotoday.
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Ω, a bounded convex open subset of R2 with Lipschitz continuous boundary ∂Ω. Each agent

switches probabilistically between an active state, during which it explores the domain with

a combination of deterministic and random motion, and a passive state, during which it

stops to take a measurement. The deterministic motion is governed by a time-dependent

velocity v(t) ∈ R2 , and the random motion is represented as diffusion with an associated

diffusion coefficient D(x). The Diffusion can model a probabilistic search, exploration, and

tracking strategy or stochasticity arising from sensor and actuator noise. An agent switches

from the active state to the passive state at a time-dependent probability rate k1(t), and

it switches back to the active state at a fixed probability rate k. In summary, each agent’s

position satisfies the following stochastic process:

dX(t) = Y (t)
(
v(t)dt+

√
2DdB(t)

)
+ dφ(t), (1.25)

where Y (t) is another stochastic process that controls the transition between active and

passive states, which satisfies:

P (Y (t+ h) = 0|Y (t) = 1) = k1(t)h+ o(h2)

P (Y (t+ h) = 1|Y (t) = 0) = kh+ o(h2).

The problem is stated as following.

Problem 1.3.1. Denote µX(t) be the distribution of (1.25), and let F (x) be a scalar field,

which induces the target distribution µF = dx F∫
Ω F (y)dy

. How to design the control parameters

v(t), D(x), k1(t), k, such that µX(t) converge weakly to µF , as t→∞?

To this end, the authros develop the corresponding ADR system
∂y1

∂t
= −v(t)∇y1 + ∆(Dy1)− k1(t)y1 + ky2

∂y2

∂t
= k1(t)y1 − ky2

(1.26)

with no-flux boundary condition

n · (∇(Dy1)− vy1) = 0.
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Theorem 1.3.2. Denote y1(x, t), y2(x, t) be the solution of the system (1.26), and WLOG∫
Ω
y1dx ≡ 1. Let v(t) ≡ 0, k1(t) ≡ 0, k = 0, and apply the following control law

D(x) =
1

F (x)
, x ∈ Ω, (1.27)

then y1(x, t) converges in L1 norm to F (x), as t→∞.

The proof of theorem 2.2.2 will be presented in more detail in chapter 2. According to

theorem 2.2.2, the solution of the ADR system (1.26) will converge to target distribution with

certain control law, hence in order to solve problem 1.3.1 we need µX(t) converges weakly to

y1(x, t)dx, which will be proved in chapter 3.

The field coverage control law is validated in two different simulated scenarios. Figure

1.4 and 1.5 show the target scalar fields, F1(x), and the dynamic distribution of swarm in

both scenarios. The scalar fields F1(x) are numerically constructed as shown in the lower

right of both figures.

Figure 1.4: Simulated agent densities at three times t and the underlying scalar field with

ring pattern. Copyright c© 2016 IEEE.
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Figure 1.5: Simulated agent densities at three times t and the underlying scalar field with

letter ‘ASU’. Copyright c© 2016 IEEE.

1.3.3 Robotic Swarm Pollination

In [EB15], K. Elamvazhuthi et al. studied an optimal control framework for deploying

swarms of robot bees to pollinate a flower field. The goal is to achieve a target pollination

distribution with effective control on resource-constrained robots that cannot localize or

communicate with each other.

Consider deploying a swarm of N robots into the flower field Ω. Each member of the

swarm performs the following actions during a flight. Upon deploying, each robot flies with

a time-dependent velocity v(t), and a random movement with diffusion coefficient D, which

arises from inherent noise due to sensor and actuator errors. The position X(t) at time t of

each robot satisfies the following SDE, which is the microscopic model.

dX(t) = v(t)dt+
√

2DdB(t). (1.28)

The above SDE is simulated by

X i
m+1 = X i

m + v(tm)∆t+
√

2D∆t∆Zi
m, 1 ≤ i ≤ N,
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where X i
m denotes the position of ith robot at mth time step , Zi

m are independent, normally

distributed random variables with zero mean and unit variance in R2.

Each robot has two states: F , flying state; H, hovering state. While a robot is flying

over a row with flowers of type i (i = 1, 2) , it decides with a time-dependent probability per

unit time ki(t) to pause at a flower in its sensing range and hover for pollination. The robot

resumes flying with a fixed probability per unit time kf , which determines the time taken

to pollinate. The pollination is measured by another species: P, whose number increases by

1 whenever a robot transits from flying state to hovering state. The reaction network is:

F
k(t)−−→ H + P

H
kf−→ F.

Denote the flower bed as Γ = Γ1 ∪ Γ2, where Γi representing the region that flower of type i

occupies, and denote the target distribution as yΩ(x). A simple example of yΩ(x) is

yΩ(x) = 1 in Γ and 0 in Ω− Γ,

which requires uniform pollination over the flower bed.

The optimal control problem [EB15] aims to achieve yΩ(x) by designing the control pa-

rameters {v(t) = (v1(t), v2(t)), k1(t), k2(t)}. To this end, consider the following ADR system,

or the macroscopic model:

∂F

∂t
= −v · ∇F +D∆F −

2∑
i=1

ki1ΓiF + kfH,

∂H

∂t
=

2∑
i=1

ki1ΓiF − kfH,

∂P

∂t
=

2∑
i=1

ki1ΓiF,

(1.29)

with no-flux boundary condition

n · (D∇F − vF ) = 0.

The authors formulate the optimal control problem as following.
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Problem 1.3.3 (Optimal Control Problem). Let u = (v1(t), v2(t), k1(t), k2(t)) be the collec-

tion of all control parameters, then the optimization problem can be framed as

min
u∈Uad

J(u) =
1

2
‖P (·, T )− yΩ‖2

L2(R2) +
λ

2
‖u‖L2(0,T ),

under the constraint of system (1.29). Here Uad = {u ∈ L2(0, T )3 : umini ≤ ui(t) ≤ umaxi ∀t ∈

(0, T )} is the set of admissible control inputs.

In [EB15], problem 1.3.3 is solved in a gradient decent manner, which requires the fol-

lowing proposition.

Proposition 1.3.4. Denote the map M : u → y = (F,H, P ), introduced by system (1.29).

Then the map M is Gateaux differentiable at every u ∈ Uad, i.e. its Gateaux derivative

evaluated at h ∈ Uad

lim
ε→0

M(u+ εh)−M(u)

ε

exists.

The proof of proposition 1.3.4 can be found in [EB15].

In the following simulation, a swarm of robots is tasked to achieve a specified spatial

distribution of flower visits over five crop rows, with flower of type 1 occupies the 1st, 3rd,

and 5th row, and flower of type 2 occupies 2nd and 4th row. In [EB15], two objectives are

considered: one in which visits were required along all five crop rows (Objective 1), and

another in which they were required only along two of the crop rows (Objective 2). For both

objectives, the authors simulate an environment with and without obstacles. Hence there

are 4 scenarios in total. For each scenario, N = 1000 robots are deployed into a normalized

domain of size 1 m × 1 m. The transition rate kf is set to be 0.2s−1, so that the expected

pollination time is 5 s, which is a realistic value for certain bee species [BNH11]. In the

optimization, the robot speed is bounded in [0, 10] m · s−1, and the transaction rates ki(t)

are bounded in [0, 1.25] s−1. In the microscopic model, the field is equally discretized into

21×21 cells, and the author compute number of pollinations in each cell, where each robot is

considered as a point mass. In the macroscopic model, the ADR system is numerically solved
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over a grid 51×51 cells. Figure 1.6 shows the decay of the objective functions of the optimal

control scheme in the 4 scenarios over time. Figure 1.7 and 1.8 show the distribution of flower

visits of microscopic and macroscopic models for objective 1, without and with obstacles,

respectively. Figure 1.9 and 1.10 show the distribution of flower visits of microscopic and

macroscopic models for objective 2, without and with obstacles, respectively.

Figure 1.6: Objective function over time for objective 1 and 2, with or without obstacles.

Copyright c© 2015 IEEE.

1.4 Discussion

In section 1.3, we presented numerical simulations of a few tasks, including scalar field

estimation, and robotic swarm pollination. However, there are many real-world complexities

that are not accounted in the model, some of which are ignored in order to simplify the

model. For example, due to the finite clock rate of the microprocessor, the robots have

a finite maximum speed, while in the simulation they do not; The friction between robots’

wheel and body makes the robots ‘inertial’, which hinders the accuracy of the robots’ motion

at low speed; The robots’ path may deviate from the desired one due to the sensor error.

All of these uncertainties makes us doubt whether our control law or framework is robust

in the real world case. In chapter 2, we present test bed experiments with a real robot to

study the control’s effectiveness and robustness.
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In this chapter we reviewed the proof of the Kolmogorov theorem, and also presented

a simulation using a point mass approach to verify the theorem. We viewed each particle

as a point mass and computed the density by counting the number of point masses in a

region. This method is sub-optimal from two aspects. First, the accuracy is very sensitive

to the choice of the region. If the region is too small, it may not contain any particle; if the

region is the whole space, the error will always be zero. Second, it does not provide a global

measurement between the microscopic and macroscopic models. In chapter 3, we solve these

problems by introducing a ‘blob’ approach, in which we treat each particle as a blob with

finite volume. The new approach generates an actual density function for the microscopic

model, which then leads to a global error metric as the L1 norm of the difference between

the densities from the microscopic and macroscopic models.
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Figure 1.7: Distribution of flower visits at three times for objective 1, no obstacle. Left:

microscopic model; Right: macroscopic model. Copyright c© 2015 IEEE.
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Figure 1.8: Distribution of flower visits at three times for objective 1, with obstacles. Left:

microscopic model; Right: macroscopic model. Copyright c© 2015 IEEE.
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Figure 1.9: Distribution of flower visits at three times for objective 2, no obstacle. Left:

microscopic model; Right: macroscopic model. Copyright c© 2015 IEEE.
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Figure 1.10: Distribution of flower visits at three times for objective 2, with obstacles. Left:

microscopic model; Right: macroscopic model. Copyright c© 2015 IEEE.
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CHAPTER 2

Decentralized Stochastic Control of Robotic Swarm

2.1 Introduction

Distributed control laws for multi-agent coverage strategies have been widely investigated

[CMK04], [SRS09]. Applications of coverage strategies include environmental monitoring,

surveillance policies, source localization problems [HMG02], and vehicle scheduling [PFB11].

In this chapter, we explore a stochastic approach in controlling the distribution of a robotic

swarm toward a predefined target distribution in a bounded domain.

In many modern tasks, individual robots may often lack capabilities that are assumed

to be essential for robot control, which is a trade-off between the cost of the robotic swarm

and the accuracy of the control. For example, In [BKN11], S. Berman et al. proposed using

robotic bees to perform commercial pollination, who can only acquire local information.

In [MCF13], K. Y. Ma et al. introduces a set of insect-sized flying robots, among which even

the most advanced robot is extremely weight-constrained. For this reason, we are interested

in a resource-constrained robotic swarm without localization or communication capabilities.

In our model, the robots only have the ability to measure a scalar field from the environment,

from which they follow a control law that drives them toward a target distribution.

The use of stochastic methods in a similar vein has seen much work in literature recently

[AB12], [APB14], [BCH13]. An important characteristic of many of these methods has been

the index-free/permutation-invariant nature of the control laws, which can be beneficial for

scalability in design [BK04], [KE11]. The reason for using stochastic control is two-fold. On

the one hand, the control of robots is not absolutely accurate due to inherent sensor and

actuator errors, which can be modeled as stochastic motion; on the other hand, stochastic
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control can be more stable and less sensitive to errors [DBK12] .

This chapter is organized as following. Section 2.2 presents a brief mathematical back-

ground of the control law. Secion 2.3 shows the detail of our computational simulation in

MATLAB. Section 2.4 describes our experiments on the testbed of our laboratory.

2.2 Control Law and Analysis

2.2.1 Problem formulation

In [EAB16], Karthik et al. studied a swarm of N robots that are deployed into a domain

Ω ⊂ R2. Each robot explores the domain with random motion, which is modeled as a

2D Brownian motion with a location-dependent diffusion coefficient D(x). The robots’

position is denoted by X i(·) ∈ Ω(1 ≤ i ≤ N), which is a group of stochastic processes with

independent and identically distribution (i.i.d) that satisfies the following SDE:

dX(t) =
√

2D(X(t))dB(t) + dφ(t), (2.1)

where dφ(t) represents the robots’ mirror reflection at the boundary ∂Ω, and 0 elsewhere.

We now present the problem of coverage of a predefined scalar field F (x) : Ω→ R+. We

obtain the target distribution µF by normalizing F :

µF = dx
F∫

Ω
F (y)dy

.

We desire to find a diffusion coefficient D(x), so that the distribution of SDE (2.1), which

we denote as µX(t), converges weakly to µF , as t→∞?

Since (2.1) governs the micro level of the swarm, i.e. the behavior of each individual

robot, we call (2.1) the microscopic model. According to definition 1.2.1, the Fokker-Planck

equation of (2.1) is
∂y

∂t
= ∆(Dy) (2.2)

with the no-flux boundary condition n·∇(Dy) = 0, which corresponds to the mirror reflection

dφ(t). Since (2.2) governs the group behavior of the swarm, we call (2.2) the macroscopic

model.
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Now according to corollary 1.2.4, we know that for any region Σ ⊂ Ω, we have

E (1Σ(X(t)) =
1

N

∑
i

E
(
1Σ(X i

t)
)

=

∫
Σ

y(x, t)dx,

where we assumed total mass to be unit:
∫

Ω
y(x, t)dx = 1. Hence µX(t) = y(x, t)dx for all

t > 0, i.e. the macroscopic model and the microscopic model agree with each other. So the

above problem can be reduced to the following problem.

Problem 2.2.1. Determine whether there exists a control law D(x), such that the solution

to the macroscopic model (2.2) limt→∞ y(x, t) = c · F (x) for some constant c.

Toward this end, our specific choice of control law is given by

D(x) =
1

F (x)
. (2.3)

In the rest of this section, we solve problem 2.2.1 by proving the following theorem.

Theorem 2.2.2. [EAB16] With the choice of the control law (2.3), we have∫
Ω

|y(x, t)− c · F (x)|dx ≤Me−λt,

for some constant c > 0,M > 1, λ > 0, and all t > 0.

2.2.2 Preliminaries

In this subsection we recall some standard notions from theory of operator semigroups. Let

H be a Hilbert space and L(H) be the space of bounded operators in H.

Definition 2.2.3. A family of operators (T(t))t≥0 in L(H) is a strongly continuous semi-

group on H if

• T(t) = I,

• T(t+ τ) = T(t)T(τ),

• limt→∞T(t)z = z, ∀z ∈ H.
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Definition 2.2.4. The linear operator A : D(A)→ H, defined by

D(A) =

{
z ∈ H : lim

t→0

T(t)z − z
t

exists

}
,

Az = lim
t→0

T(t)z − z
t

, ∀z ∈ D(A)

is called infinitesimal generator of semigroup T(t).

Definition 2.2.5. An unbounded linear operator A : D(A)→ H is said to be dissipative if

Re〈Az, z〉 ≤ 0, ∀D(A). (2.4)

We define the space of square integrable real-valued measurable functions with respect

to function w(x) on, L2
w(Ω), with the weighted 2-norm as

L2
w(Ω) :=

{
f(x)|‖f‖2w =

(∫
Ω

|f(x)|2w(x)dx

)1/2

<∞

}
,

and the induced inner product ( · , · )w : L2
w(Ω)× L2

w(Ω)→ R as

(f, g)w :=

∫
Ω

f(x)g(x)w(x)dx.

Define H2
w(Ω) as

H2
w(Ω) :=

{
f ∈ L2

w(Ω) :
∂2f

∂x2
α

∈ L2
w(Ω),∀α ∈ {1, 2}.

}
,

which is equipped with the inner product

(f, g)H2
w

=

∫
Ω

f(x)g(x)w(x)dx+
2∑
j=1

2∑
i=1

∫
Ω

∂j(wf)

∂xji
(x)

∂j(wg)

∂xji
(x)dx.

Then it is easy to see that H2
w(Ω) is a Hilbert space. Note that for w ≡ 1, H2

w(Ω) is the

same as the usual Sobolev space H2(Ω). We can then write the macroscopic model in the

form of operator A : D(A)→ H2
w(Ω) as following.

∂y

∂t
= Ay

y(x, 0) = y0(x)

Af = ∆(wf), ∀f ∈ D(A),

(2.5)

where D(A) = {f ∈ H2
w(Ω) : n · ∇(wf(x)) = 0, ∀x ∈ ∂Ω} .
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2.2.3 Analysis of Control Law

Proposition 2.2.6. Defined in (2.5), A is a dissipative operator on L2
w(Ω) and generates a

strongly continuous semigroup on L2
w(Ω).

Proof. Using integration by parts and the boundary condition, (Az, z)w = −
∫

Ω
‖∇(wf)‖2dx ≤

0, so A is dissipative by definition 2.2.5. Next we define a bilinear form

B(u, v) = ((I − A)u, v)H1
w
. (2.6)

Then we have

|B(u, v)| ≤ c‖u‖H1
w(Ω)‖v‖H2

w(Ω) (continuity),

|B(u, u)| ≥ c′‖u‖2
H2
w(Ω) (coerciveness).

By Lax-Milgram theorem, for each f ∈ L2
w(Ω) there exists a unique solution u ∈ H1

w(Ω) such

that

B(u, v) = (f, v)H1
w

for all v ∈ H1
w(Ω). This means that the range of operator (I −A) is the whole space L2

w(Ω).

Therefore, the result follows from the dissipativeness of A and Corollary 3.2 in Chapter II

of [EN99].

Suppose the semigroup that A generates is T(t), then theorem 2.2.2 can be restated as

following.

Theorem 2.2.7. With the choice of the control law (2.3), we have∫
Ω

|T(t)y0 − c/w|dx ≤Me−λt,

for some constant c > 0,M > 1, λ > 0, and all t > 0.

Proof. Define a linear map Rt : D(A)→ R by

Rt(u) =

∫
Ω

(T(t)u− u)dx.
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Then, by conservation of mass, it is easy to deduce that Rt(u) ≡ 0 for all u ∈ D(A), t > 0.

Due to the boundedness of Rt, and that D(A) is dense in L2
w(Ω), Rt can be extended to a

bounded linear operator from L2
w(Ω) to R. Since the Laplace operator ∆ has eigenvector,

constant function, for the eigenvalue 0, A has a unique one-dimensional subspace of eigen-

vectors, spanned by the function 1/w = 1/D(x), corresponding to the eigenvalue 0, and 0 is

the first-order pole of A. The equilibrium of solution y(x, t) is then the eigenvector 1/D(x)

as t→∞, according to [EN99], Chapter V, Corollary 3.3.

2.3 Simulation of Two Target Distribution Examples

In [LFE17], we simulate the microscopic model in MATLAB for two target distributions that

are chosen as performance benchmarks for our testbed experiments, presented in Section 2.4.

We specifically choose two scalar fields of different patterns, ring and row, in our simulation.

The scalar fields are plotted in figure 2.1. The equation for the scalar field is

F (x) =

 36 if x ∈ Ω ∩ Γ,

1 if x ∈ Ω \ Γ,

where:

• Ω = {x : x1 ∈ [0, w], x2 ∈ [0, h]},

• (ring) Γ = {x : r2
1 < (x1 − w

2
)2 + (x2 − h

2
)2 < r2

2},

• (rows) Γ = {x : x1 ∈ [d, 2d] ∪ [3d, 4d] ∪ [5d, 6d]}.

with (x1, x2) Cartesian coordinates of x, w = 48in and h = 70in.

For T big enough, we discretize the time span of swarm deployment [0, T ] into M equal

time steps.

0 = t0 < t1 < ... < tM = T, tm = m∆t,

and simulate the microscopic model (2.1) by a difference equation

Xm+1
i = Xm

i +
√

2D(Xm
i )∆tZm

i , (2.7)
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Figure 2.1: The Scalar Fields. Each pattern above specifies a scalar field, which induces

a target distribution. Left: ring pattern. Right: row pattern. Copyright c©2017 IEEE.

where Xm
i denotes the position of ith robot at mth time step, and Zm

i , ∀i,m is a group of

independent, normally distributed random variables with zero mean and unit variance. A

real robot has a finite maximum speed vmax, hence the speed of the ith robot at the mth time

step is defined as

vmi = min
(√

2D(Xm
i )∆t−

1
2 |Zm

i | , vmax

)
.

Moreover, a real robot with only a local scalar sensor cannot easily determine the orientation

of the boundary relative to its current velocity, and thus cannot reflect specularly. Instead,

when the robot senses contact with the boundary, it simply reverses direction for the duration

of the time step. Therefore, if Xm
i calculated according to equation (2.7) is found to be

outside the boundary, we calculate a coefficient α = ∆ta−∆tb
∆ta+∆tb

, where ∆ta is the duration

until the robot would reach the boundary at its present speed, and ∆tb = ∆t − ∆ta is the

remainder of the time step. Then

vmi = αmin
(√

2D(Xm
i )∆t−

1
2 |Zm

i | , vmax

)
.

For both scalar fields, we choose vmax = 17.5in/s to reflect the maximum speed of the physical

robot, as described in Section 2.4, and ∆t = 0.5s. Because the maximum achievable speed

of the physical robot depends on the direction of movement, vmax is really the minimum,

over all movement directions, of the maximum achievable speed. The time step ∆t = 0.5s is

chosen to be relatively small to avoid error due to time discretization, but large enough to
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permit the robot to accelerate to each new velocity well within the time step.

Suppose ρ(x, t) is the density function of X(t) defined in SDE (2.1), which satisfies∫
Σ

ρ(x, t)dx =

∫
Σ

dµX(t).

In Chapter 1 we compare the actual distribution of the swarm at a specific time T with

ρ(x, T ) by counting the number of robots in a specific region Σ. This comparison is sub-

optimal from two aspects. First, this method is restricted in one region, while a good metric

should be able to measure the difference between these two distributions. Second, this

comparison is sensitive to the choice of Σ. For example, if we choose Σ to be the whole

region Ω, then the difference will be 0 under any control law. In order to have a better

comparison, we define the actual density field by

yδ(x, t) =
1

N

N∑
i=1

Gδ(x−X i(t)), (2.8)

where δ represents the radius of the region in which the robot effectively performs its task,

and Gδ is the Gaussian function

Gδ(x) =
1

2πδ2
exp

(
−|x|

2

2δ2

)
.

That is, we center a Gaussian ‘blob’ at each robot’s position, instead of viewing them as a

swarm of point mass.

2.3.1 Simulation Results

We show the simulation results of yδ(x, T ), for large enough T . We choose N = 200, δ = 2in

and T = 800s for both target distributions of figure 2.1. Figure 2.2 shows the positions

of robots and the actual density field yδ(x, T ) at different time. To evaluate the result, we

define the error

eδ(t) =

∫
Ω

|yδ(x, t)− F (x)|dx.

Since N = 200 is not a large number, we first compute an upper bound of the minimum error

that one can achieve in both scenarios by manually distributing the robots in our domain.
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Since it is mathematically impractical to rigorously find out the best position of each robot,

we choose the most ‘reasonable’ configuration according to each scalar field. This minimum

error would be seen as the best performance. The two simulations yield eδ(T ) = 0.4295,

with minimum error value 0.3089 for the ring pattern, and eδ(T ) = 0.5366, with minimum

error value 0.3549 for the row pattern.

Figure 2.2: Top: Robot positions at t = 601.5s for ring distribution with N = 200 robots

(left) and at t = 361.5s for row distribution with N = 200 robots (right).

Bot: Gaussian blob function yδ=2in(t = 601.5s) for ring distribution (left) and yδ=2in(t =

361.5s) for row distribution (right). Copyright c©2017 IEEE.

2.4 Testbed Experiment

In [LFE17], the authors further test the robustness of our control law with a real robot in

the lab.

2.4.1 Setting

We design and build a new holonomic drive robot, who can translate in any direction in-

dependent of its orientation [RF06], for our testbed experiment. The holonomic drive is

realized by three 58mm Nexus Robot omni-wheel (RB-Nex-57), which rolls like a typical

wheel but also slides freely relative to the floor along the axis of rotation. The complete

robot is shown in figure 2.3.
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(a) View from above (b) View from bottom

Figure 2.3: The Kiwi-drive Robot. For clarity of other components, identification tag

visible in Figure 2.4 is not shown. Copyright c©2017 IEEE.

We achieve the behavior a swarm of many robots by performing many trials on one robot,

which is valid on our spatial coverage experiment because robots have no communication

abilities and thus are independent with each other. We also do not consider collision, due to

the assumption that the domain Ω is large and our robot is very small compared to it. The

scalar fields of figure 2.1 are printed in RGB color, which are then placed on the ground. The

scalar field are sensed by a digital RGB color sensor (TCS34725) under the chassis of the

robot: black represents a high value of the scalar field, white represents low value, and red

represents the boundary. Two overhead cameras are used to collect data throughout time,

which processes OpenCV in python to track the position of the centroid of the robot. The

detection error between the position measured by the computer and the real position of the

robot is within 2cm.

2.4.2 Results

Figure 2.4 shows the convergence of the ‘swarm’ to the desired distribution through time-

lapse images in the scalar field of ring pattern. The results are obtained by running 1 robot

200 times rather than 200 robots at once. This avoids worrying about collision control. Each

subfigure is produced by superposing the images of a random subset of 50 runs.

In order to evaluate the result, we take the centroid of the robots as their positions in each

frame, so that each robot becomes a point. We then measure the actual density distribution
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(a) t ≈ 0 s (b) t ≈ 25 s (c) t ≈ 80 s (d) t ≈ 170 s

Figure 2.4: The convergence of the swarm to target distribution over time. Notice that the

robot is the same as Figure 2.3, and it is additionally obscured by identification tag, visible

as a solid black rectangle within a white rectangle. Copyright c©2017 IEEE.

of our testbed experiment by Gaussian blobs, as in (2.8). The point mass distributions and

the actual density distributions are shown in figure 2.5. The times chosen for the figure are

those at which the error metric eδ is minimized. The result verifies that the control law guides

the robots toward the target distribution. However, the experiments did not run long enough

to achieve a steady state, at which eδ reaches an equilibrium. The concentration in the top

right remains higher than elsewhere in the row pattern, since the top right corner is where all

the robots started. Figure 2.6 plots the error metric over time eδ(t) from both simulation and

testbed experiment in the ring pattern. Despite many real-world complexities, the testbed

experiment agrees with the simulation in the scale of the error metric at convergence, and

even in the time of convergence. This justifies that our control law in robust in real world

applications.

2.4.3 Extension: N convergence

In chapter 1, we observe the N−1/2 convergence of the number of robots in a specific region.

We show here that the error metric eδ(t) has the same convergence rate with respect to N .

In the ring distribution, we specifically choose five values of N : 10, 20, 40, 80, and 190,
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Figure 2.5: Robot positions at t = 175.5s for ring distribution (left) and at t = 160.5s for row

distribution (right). Notably, there are two robots in the row pattern that does not show in

the figure, because they are still outside the boundary and in the process of bouncing back

in. Copyright c©2017 IEEE.

Figure 2.6: Error metric eδ(t) over time for both simulation and physical experiment with

the target distribution as the ring pattern. We also include Q1 and Q3, which are lines for

the minimum and maximum error achieved by manually displacement, labeled emin and

emax, respectively. Copyright c©2017 IEEE.
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and use the average of eδ(t) of last 60 seconds. We plot the results of the simulation and

the testbed experiment with respect to N−1/2 in figure 2.7, and draw the best fit line of the

simulation.

Figure 2.7: Relationship between the error metric eδ and number of robots n (δ = 2in, ring

pattern). Note that as n increases, the error tends toward a nonzero value, which is due

to the nonzero δ. Nonetheless, the decrease is quite linear with respect to 1√
n
, as expected.

Copyright c©2017 IEEE.

2.5 Conclusion

In this chapter, we analyze a decentralized stochastic control law, which drives a robotic

swarm towards a pre-defined target distribution. We also present a testbed experiment

validation of the control law. Despite the significant differences between the real world

platform and the theoretical simulation, we still achieve expected convergence at a practical

time rate. The reason lies in the robustness of stochastic control, which is not sensitive to

the inherit errors from the sensor, controller, etc. The error metric is experimentally justified

to converge as 1√
N

, as hypothesized in Chapter 1. The result of our experiments suggests

that this control law is an effective choice for distributing source-constraint robots with no

localization or communication abilities.
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CHAPTER 3

Analysis of Advection-Diffusion-Reaction System

Modeling Spatial Coverage by Robotic Swarm

3.1 Introduction

In recent years, there has been a growing interest in the development of robotic swarms

[BFB13] for a range of applications, including environmental sensing, exploration, mapping,

disaster response, surveillance, cooperative manipulation, and even nanomedicine [TFL14].

Indeed, advances in manufacturing, computing, sensing, actuation, control, and other tech-

nologies have already enabled the development of a variety of low-cost robotic platforms that

can be deployed in large numbers, e.g. [MCF13,CCD16,GDG16].

While the technology to create robotic swarms is progressing, it remains a challenge to

predict and control these systems’ collective behaviors when they operate in uncertain, un-

structured, GPS-denied environments. Another constraint is that inter-robot communication

may need to be minimized or excluded in order to conserve power and reduce the possibil-

ity of detection by adversaries. Importantly, control policies and verification methods for

robotic swarms must accommodate non-deterministic behaviors that arise in autonomous

systems [Roa]. Stochasticity in robots’ motion and decisions can arise from inherent sensor

and actuator noise, especially in small, highly resource-restricted platforms. Stochasticity

may also be intentionally introduced, for example when robots are programmed to perform

random walks for probabilistic search and tracking missions [RL15], or to switch probabilis-

tically between behavioral states or tasks in a manner similar to social insects. Social insect

colonies provide a useful paradigm for robotic swarm control in that they display robust

collective behaviors that emerge from the decentralized decisions of numerous individuals,
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which act on locally perceived information [BDT99].

Control methodologies for robotic swarms should be scalable with the number of robots

and reliant on limited human supervision, since situational awareness decreases with large

robot populations. Toward this end, we employ a methodology that is based on models

of the robots’ decision-making and motion at multiple levels of abstraction. The multi-

level modeling framework is adopted from the disciplines of stochastic chemical kinetics and

fluid dynamics, and it has been used by others [PCM11, HW08] to describe the population

dynamics of large numbers of robots. This framework has also been used to model collective

behaviors in biological swarms, such as flocking, schooling, chemotaxis, pattern formation,

and predator-prey interactions [OL13].

In our modeling framework, the microscopic model is a discrete model that represents the

actions of individual robots. We consider swarms of robots that display stochastic motion

and decision-making as described above, while also moving according to a programmed

deterministic velocity field. Each robot’s stochastic movement can be modeled as a Brownian

motion with an associated diffusion coefficient. Since the motion of each robot consists of

a deterministic advection and a stochastic Brownian walk, it is governed by a stochastic

differential equation (SDE). A robot’s stochastic transition between two behavioral states

can be modeled as a chemical reaction with a programmable transition probability rate.

Implementations of the microscopic model can be computationally expensive to simulate,

requiring exhaustive parametric studies, and intractable for analysis as the number of robots

increases. To overcome these limitations, the microscopic model can be abstracted to a

lower-dimensional continuum representation, the macroscopic model, which consists of a set

of advection-diffusion-reaction (ADR) partial differential equations (PDEs). These equations

govern the spatiotemporal dynamics of density fields of robots in different behavioral states.

The macroscopic model enables a quantitative characterization of population behaviors, since

it is amenable to analytical treatment and numerical experiments. In addition, techniques for

control and optimization of PDEs can be applied to compute values of the model parameters

that produce a desired global objective. These parameters define the robots’ programmable

control policies for motion and state transitions, and the resulting collective behavior of the
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robots follows the macroscopic model prediction in expectation. Scalability of this “top-

down” control approach is ensured by the fact that the dimensionality of the macroscopic

model is independent of the number of robots. Human supervisory control can be exercised

in the specification of the global objective and the set of tunable model parameters and state

transitions.

In recent years, there have been various applications of control-theoretic techniques to

PDE macroscopic models of multi-agent systems for the purpose of synthesizing agent con-

trollers that produce desired collective behaviors. ADR PDE models in particular have been

proposed to design robot control policies that achieve target spatial distributions of robot

activity over a bounded domain [EB15] and that drive the swarm to a distribution that is

proportional to a locally measured scalar field [EAB16]. ADR PDEs have also been used to

control the probability density functions of multi-dimensional stochastic processes [AB13],

develop multi-agent coverage and search strategies that are inspired by bacterial chemo-

taxis [MH12], and maximize the probability of swarm robotic presence in a desired re-

gion [ML06]. Other work on PDE-based analysis and design of agent control laws includes

a study of multi-agent consensus protocols in an Eulerian framework [CFT08]; strategies

for confining a population of agents, represented as a continuum, with a few discrete leader

agents [CP12]; and an approach to flocking control for a group of agents governed by the

kinetic Cucker-Smale model [PRT15].

The literature above addresses the problem of designing the rules that govern robots’

behaviors and decisions. However, there has been relatively little effort toward a principled

approach to determining the required number of robots and optimal robot specifications, such

as sensing and communication ranges, for a desired collective task. An impediment to

developing such an approach is the absence of a rigorous and generalizable analysis of the

correspondence between continuum and discrete models of a swarm [BV15]. Recent work

on mean field games [LL07,BFY13,FS14] demonstrates the convergence of optimal controls

of a large number of agents to optimal controls of a mean-field limit system. However, the

work does not analyze the convergence of the agent-based model to the mean-field model for

a fixed set of controls.
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In this chapter, we address this challenge for robotic swarms that can be modeled as

ADR PDEs at the macroscopic level. We derive a rigorous error bound on the discrepancy

between the microscopic and macroscopic models, which depends on the swarm population

size (alternatively, the number of swarm deployments), the robot sensing radius length,

and the time discretization of the microscopic and macroscopic models. Our derivation

employs a representation of each robot as a circular “blob function” [CB16, MB02] with a

small parameter that represents the robot’s maximum sensing radius. We formulate the

discrete density functions of robots in different states and robots’ cumulative activity over

the domain by summing all of the corresponding blobs. We show that as the number of

robots approaches infinity, the discrete density functions converge to the continuous solution

of the macroscopic model. We illustrate our approach for a simulated scenario in which a

swarm of micro-aerial vehicles must pollinate a crop field, similar to the problem in [EB15].

We apply the optimal control approach in [EB15] to compute vehicle control policies that

achieve a target spatial distribution of pollination. We also use our derived error bound to

estimate the required swarm size that will achieve the target pollination distribution within

a specified percentage of accuracy. In addition, we demonstrate the effect of the maximum

sensing radius on the swarm performance and show that an optimal radius length exists

for a given swarm size. Notably, the analysis performed here can also be applied to other

stochastic control strategies for robotic swarms, such as [PCM11,HW08,EAB16].

In summary, the novelty of this chapter is two-fold:

1. We provide a rigorous analysis of the error bound between the aforementioned mi-

croscopic and macroscopic models, which is still absent in the literature on stochastic

control of multi-agent systems with state transitions. This analysis, together with

our optimal control approach in [EB15] which approximates the target distribution

using the macroscopic model, provides a formal mathematical validation of our swarm

control strategy.

2. Based on the scaling laws that are observed in the error estimates, we propose a prin-

cipled approach to determine the required number of robots and optimal robot sensing

43



radius that will achieve a target distribution within a specified error.

This chapter is organized as follows. Section 3.2 describes our task objective and the robot

capabilities and behaviors, and Section 3.3 outlines our design procedure for computing the

number of robots and the robots’ sensing radius, velocity, and pollination rates. Section 3.4

defines the microscopic model, the blob function, and the actual density fields of robots and

their pollination activity, and Section 3.5 formulates the macroscopic model, an operator

splitting method for numerically solving this model, and the expected density fields. Section

3.6 summarizes our optimal control approach, first presented in [EB15], to designing robot

control policies for target spatial coverage. In Section 3.7, we provide our convergence

analysis of the estimated error between the actual, expected, and target density fields. We

validate our analysis and design procedure with simulations in Section 3.8 and conclude in

Section 3.9.

3.2 Task Objective

In this section, we present the task objective of the robot control scenario defined in [EB15],

which is the basis of the analysis in this chapter. We consider a crop field Ω ∈ R2 with

several rows of flowers to be pollinated by a swarm of N micro-aerial vehicles. There are nf

types of crops in the field, and Γj ⊂ Ω denotes the region of the field that is occupied by

crops of type j ∈ {1, ..., nf}. The task objective, which must be completed within time

T , is to achieve a spatial distribution of pollination activity over the field within a specified

error γd relative to a target pollination distribution ρΩ(x), where x ∈ Ω.

The swarm originates from a location in the field called the hive. The robots are assumed

to have sufficient power to undertake brief flights from the hive, and they return to the hive to

recharge after a complete flight. Each robot is equipped with a compass and thus can fly with

a specified heading. However, the robots’ stringent power constraints make it infeasible for

them to use inter-robot communication or GPS sensors for global localization. A computer

in the hive serves as a supervisory agent and calculates the parameters of the robots’ motion

and state transitions prior to their flight.
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Each robot i ∈ {1, ..., N} performs the following actions during a flight. Upon deploy-

ing from the hive, each robot flies with a combination of a time-dependent velocity field

v(t) ∈ R2 and a Brownian motion, which is characterized by a diffusion coefficient param-

eter D > 0. We assume that the flowers are distributed densely enough such that a robot

can always detect at least one flower within its sensing radius δ when it flies over the crop

rows. The sensing radius can be adjusted within a maximum radius, which is determined

by the capability of the robot. When a robot is flying over crops of type j, it decides with

a time-dependent probability per unit time kj(t), the pollination rate, to pause at a flower

within its sensing range and hover for pollination. The robot resumes flying with a fixed

probability per unit time kf , which determines the time taken to pollinate.

3.3 Design Procedure for Target Performance Bounds

Here we present a procedure for computing the number of robots N , the robot velocity v(t),

and the robot pollination rates kj(t) and selecting the robot sensing radius δ to achieve the

task objective defined in Section 3.2. The details of certain steps in the procedure are given

in subsequent sections, as referenced below. We illustrate this computational procedure in

Section 3.8 for an example pollination scenario.

1. Set values of the parameters nf , Γj, T , ρΩ(x), γd, D, and kf , defined in Section 3.2,

and ∆t, X0, defined in Section 3.4.

2. Compute the robot control parameters v(t) and kj(t), defined in Section 3.2, by apply-

ing the optimal control technique described in Section 3.6 to the macroscopic model,

defined in Section 3.5.

3. Choose a value of δ and two values of N . Simulate the microscopic model, defined in

Section 3.4, for each value of N with the chosen δ and the computed control parameters

v(t) and kj(t).

4. For each value of N , compare the actual distribution of pollination in the microscopic
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model to the target distribution ρΩ(x) and compute the discrepancy between them.

5. Use the convergence analysis in Section 3.7 to estimate the required N such that the

discrepancy is less than γd.

6. Simulate the microscopic model for several values of δ with the estimate of the required

N , and select the δ that yields the minimum discrepancy.

3.4 Microscopic Model

3.4.1 Robot controller

We use the same robot controller as in our previous work [EB15]. We discretize the time

span of swarm deployment [0, T ] into M equal time steps:

0 = t0 < t1 < ... < tM = T, tm = m∆t. (3.1)

The controller that drives each robot is illustrated by the state-transition diagram in Fig.

3.1. Robots switch stochastically between two states, Flying and Hovering. We define the

index sets of robots in each state at time tm:

Fm = {i : Robot i is Flying},

Hj,m = {i : Robot i is Hovering over crops of type j}.

All of the robots start from X0 ∈ Ω in the Flying state. At the start of each time step

∆t, each Flying robot that is over crops of type j switches to Hovering at a flower with

probability kj(tm)∆t, and each Hovering robot returns to Flying with probability kf∆t. We

choose ∆t to be small enough such that kj(tm)∆t ≤ 1 and kf∆t ≤ 1, since these probabilities

can at most be 1. The robots’ state transitions can be modeled as the following reactions,

where φ ∈ [0, 1] is a uniformly distributed random number:

i ∈ Fm
if φ≤kj(tm)∆t−−−−−−−−→ i ∈ Hj,m+1

i ∈ Hj,m

if φ≤kf∆t
−−−−−−→ i ∈ Fm+1

(3.2)
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Figure 3.1: State-transition diagram of robot controller for pollination. The diagram outlines

a program that would run on a single robot. [ZBE18] Copyright c©2017 IEEE.

After generating φ and switching states if φ satisfies the condition associated with its

possible reaction in (3.2), each robot executes the motion controller that is defined for its

current state over the duration ∆t. We define the domain as unbounded, and robots may

exit and re-enter the bounded subregion of the domain that represents the crop field. The

position of robot i at time tm, the beginning of the time step, is denoted by X i
m ∈ R2. Each

Hovering robot stays at the location of the flower that it is pollinating, i.e.

X i
m+1 = X i

m ∀i ∈ ∪nfj=1Hj,m+1. (3.3)

Each Flying robot moves according to the stochastic differential equation,

dX(t) = v(t)∆t+
√

2DdB(t), (3.4)

where B(t) is the standard Brownian motion. We simulate this motion using a first-order

discretization of Eq. (3.4),

X i
m+1 = X i

m + v(tm)∆t+
√

2D∆t∆Zi
m ∀i ∈ Fm+1, (3.5)

where ∆Zi
m are independent, normally distributed random variables with zero mean and

unit variance in R2.

3.4.2 Density fields of robots and pollination activity

In this section, we define the density fields of the microscopic model. During a deployment,

when a Flying robot switches to the Hovering state for pollination, it randomly selects a
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flower that it identifies within its sensing radius δ. In order to compute the density fields

of robots and their pollination activity, we model the probability density function of the

location that the robot chooses to pollinate as a blob function Gδ(x). We define the blob

function as:

Gδ(x) =


Cg
δ2

exp

(
1

|x|2/δ2 − 1

)
if |x| < δ,

0 otherwise,

(3.6)

where Cg ≈ 2.1436 so that ∫
R2

Gδ(x)dx = 1.

Gδ satisfies the following properties:

1. Gδ ∈ C∞0 (R2), and its support is {x : |x| ≤ δ};

2. ∀x, |Gδ(x)| ≤ Cge
−1δ−2 < δ−2;

3. ∀x, |∂xiGδ(x)| = O(δ−3) and |∂xixjGδ(x)| = O(δ−4), i, j = 1, 2.

Fig. 3.2 illustrates a domain with three blob functions, each with the same sensing radius

parameter δ.

Remark 3.4.1. The blob function serves as a mean field approximation of pollination ac-

tivity. That is, instead of modeling a robot’s selection of a particular flower to pollinate,

we consider the probability density of the robot’s flower visits over multiple deployments, or

alternatively, the flower visits by a large number of robots over a single deployment. Each

crop row is modeled as a continuum of possible pollination locations, and thus a robot can

choose to hover at any position within the support of its corresponding blob function.

For all Σ ⊂ R2, we define the indicator function as

1Σ(x) =

 1, if x ∈ Σ

0, otherwise.
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Figure 3.2: A domain with three blob functions Gδ(x), where δ = 0.15. [ZBE18] Copyright

c©2017 IEEE.

We also define

dis(x,Σ) := inf{|x− y| : y ∈ Σ},

Σζ
in := {x : dis(x,Σc) ≥ ζ}, (3.7)

Σζ
out := {x : dis(x,Σ) ≤ ζ}, (3.8)

for some constant ζ > 0, where Σc is the complement of Σ. From these definitions, Σζ
in and

Σζ
out are obtained by shrinking and expanding, respectively, the boundary of Σ by a layer of

width ζ. Hence, Σζ
in ⊂ Σ ⊂ Σζ

out.

Let X(t) be a stochastic process in R2 that satisfies the SDE (3.4). For all t > s ≥ 0

and x,y ∈ R2, we denote the transition probability measure by P (Σ, t|y, s) = P (X(t) ∈

Σ|X(s) = y) and the transition probability density function (pdf) by pe(x, t|y, s). These

functions satisfy

P (Σ, t|y, s) =

∫
Σ

pe(x, t|y, s)dx,

pe(x, t|y, s) =
1

4πD(t− s)
exp

{
−
|x− y −

∫ t
s
v(τ)dτ |2

4D(t− s)

}
.
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In our simulation of the microscopic model, we discretize the velocity v(t), and hence the

transition pdf from time tm to time tm+1 is given by

p(x, tm+1|y, tm) =
1

4πD∆t
exp

{
−|x− y − v(tm)∆t|2

4D∆t

}
. (3.9)

We now define the actual density fields of Flying robots and Hovering robots, respectively,

at each location x ∈ Ω and each time tm as:

ρδ1(x, tm) :=
1

N

∑
i∈Fm

Gδ(x−X i
m), (3.10)

ρδ2(x, tm) :=
1

N

nf∑
j=1

∑
i∈Hj,m

Gδ(x−X i
m). (3.11)

To confirm that these are robot density fields, note that∫
Σ

Gδ(x−X i
m)dx ≈ 1Σ(X i

m).

The above identity strictly holds only when X i
m /∈ Σδ

out − Σδ
in; otherwise, the range of the

blob will exceed the boundary and will cause coverage outflow, an error introduced in Section

3.7. Hence ∫
Σ

ρδ1(x, tm)dx ≈ 1

N

∑
i∈Fm

1Σ(X i
m), (3.12)

∫
Σ

ρδ2(x, tm)dx ≈ 1

N

nf∑
j=1

∑
i∈Hj,m

1Σ(X i
m), (3.13)

which are the numbers of Flying and Hovering robots, respectively, that are in region Σ at

time tm, divided by N .

We also define the actual density fields of Flying and Hovering robots, respectively, that

are present after robots execute state transitions according to reactions (3.2) but before they

execute their motion controllers during the time step ∆t:

ρ̄δ1(x, tm) :=
1

N

∑
i∈Fm+1

Gδ(x−X i
m),

ρ̄δ2(x, tm) :=
1

N

nf∑
j=1

∑
i∈Hj,m+1

Gδ(x−X i
m).

(3.14)
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Note that by Eq. (3.3), the positions of Hovering robots is unchanged during the time step,

and therefore

ρ̄δ2(x, tm) = ρδ2(x, tm+1). (3.15)

We denote the density of robot state transitions from Flying to Hovering between times

tm and tm+1 as FTH(x, tm), and the density of transitions from Hovering to Flying as

HTF (x, tm). These densities can be expressed as:

FTH(x, tm) :=
1

N

nf∑
j=1

∑
i∈Fm

Ii,j,mLj(X
i
m)Gδ(x−X i

m),

HTF (x, tm) :=
1

N

nf∑
j=1

∑
i∈Hj,m

Ji,j,mGδ(x−X i
m),

where Lj(x) = 1Γj(x), and Ii,j,m, Ji,j,m are independent random variables with

P (Ii,j,m = 1) = ∆t · kj,m, P (Ii,j,m = 0) = 1−∆t · kj,m,

P (Ji,j,m = 1) = ∆t · kf , P (Ji,j,m = 0) = 1−∆t · kf ,

with indices i = 1, ..., N , j = 1, ..., nf , and m = 1, ...,M and kj,m := kj(tm). According to

the reaction network (3.2),

ρ̄δ1(x, tm) = ρδ1(x, tm)− FTH(x, tm) +HTF (x, tm),

ρ̄δ2(x, tm) = ρδ2(x, tm) + FTH(x, tm)−HTF (x, tm).
(3.16)

At each time tm, the total number of state transitions from Flying to Hovering in the region

Σ is given by: ∫
Σ

FTH(x, tm)dx ≈ 1

N

nf∑
j=1

∑
i∈Fm

Ii,j,mLj(X
i
m)1Σ(X i

m). (3.17)

Since each transition from Flying to Hovering indicates a robot pollination visit, FTH(x, tm)

is also the actual density field of pollination activity at time tm. Thus, the actual cumulative

density field of pollination activity by the swarm from time 0 to time tm is given by:

ρδ3(x, tm) =
m−1∑
τ=0

FTH(x, tτ ). (3.18)
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We define the tuple of actual density fields as

ρδ(x, tm) =
(
ρδ1(x, tm), ρδ2(x, tm), ρδ3(x, tm)

)
. (3.19)

The goal of our analysis is to compare ρδ3 to the expected density field of pollination, which

is defined in the next section.

3.5 Macroscopic Model

3.5.1 Definition

The macroscopic model consists of a set of advection-diffusion-reaction (ADR) PDEs that

describe the time evolution of the expected spatial distribution of the swarm. The model

presented here was first defined in [EB15] for a similar pollination scenario. The states of the

macroscopic model are ρ1(x, t), ρ2(x, t), and ρ3(x, t), the expected density fields of Flying

robots, Hovering robots, and cumulative pollination from time 0 to t, respectively. Using

the parameters v(t), kj(t), j = 1, 2, ..., nf , kf , D, and Lj that are defined in the microscopic

model, the macroscopic model is given by

∂ρ1

∂t
= −v · ∇ρ1 +D∆ρ1 −

nf∑
j=1

kjLjρ1 + kfρ2,

∂ρ2

∂t
=

nf∑
i=1

kjLjρ1 − kfρ2,

∂ρ3

∂t
=

nf∑
i=1

kjLjρ1,

(3.20)

with initial conditions specifying that all robots start in the Flying state and are distributed

according to a blob function centered at X0:

ρ1(x, 0) = Gδ(x−X0), ρ2(x, 0) = 0, ρ3(x, 0) = 0. (3.21)

The initial conditions of the macroscopic model and microscopic model are consistent,

i.e.

ρi(x, 0) = ρδi (x, 0), i = 1, 2, 3. (3.22)

52



We define the tuple of expected density fields as

ρ(x, t) = (ρ1(x, t), ρ2(x, t), ρ3(x, t)). (3.23)

3.5.2 Numerical solution

We use the operator splitting method to numerically solve the macroscopic model with the

same time discretization as in Eq. (3.1). We define the following three operators:

ADVm(ρ) = ( − v(tm) · ∇ρ1 , 0 , 0 ),

DIFF (ρ) = ( D∆ρ1 , 0 , 0 ),

REACTm(ρ) =

(
kfρ2 −

nf∑
j=1

kj,mLjρ1,

nf∑
j=1

kj,mLjρ1 − kfρ2,

nf∑
j=1

kj,mLjρ1

)
.

(3.24)

We split the macroscopic model (3.20), (3.21) into three parts:

∂ρ

∂t
= ADVm(ρ), (3.25)

∂ρ

∂t
= DIFF (ρ), (3.26)

∂ρ

∂t
= REACTm(ρ). (3.27)

Denote the solution operators of Eq. (3.25), (3.26), and (3.27) with respect to time step

∆t by H1(∆t), H2(∆t), and H3(∆t), respectively. That is, ρ(x, tm+1) = H1(∆t)ρ(x, tm) if

ρ(x, tm+1) is the solution of Eq. (3.25) with initial condition ρ0(x) = ρ(x, tm).

Using these operators, we can compute the expected density fields at time tm+1 as

ρ(x, tm+1) = H1(∆t)H2(∆t)H3(∆t)ρ(x, tm). (3.28)

This is a first-order splitting method, i.e.∫
R2

|ρe(x, T )− ρ(x, T )|dx ≤ Cδ∆t, (3.29)

where ρe is the exact solution of model (3.20) and ρ is defined by Eq. (3.28). We note that

Cδ depends on δ and that limδ→0Cδ = ∞. We choose the values of ∆t and δ based on the

numerical simulation results in Section 3.8 to ensure that the above error is small.
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We also define the expected density fields of Flying and Hovering robots that are present

after the reactions but before robot motion during a time step,

ρ̄i(x, tm) := H3(∆t)ρi(x, tm), i = 1, 2, (3.30)

which correspond to ρ̄δi (x, tm), i = 1, 2 in the microscopic model. Equations (3.28) and

(3.30) also yield

ρi(x, tm+1) = H1(∆t)H2(∆t)ρ̄i(x, tm), i = 1, 2. (3.31)

From the definitions of H1(∆t) and H2(∆t), we have that

ρ1(x, tm+1) =

∫
R2

ρ̄1(y, tm)p(x, tm+1|y, tm)dy, (3.32)

ρ2(x, tm+1) = ρ̄2(x, tm). (3.33)

Equation (3.32) holds because the transition pdf p(x, tm+1|y, tm) is also the Green’s function

of the advection-diffusion equation, see theorem 1.2.2 in Chapter 1, or Theorem 2.1 in [Pav14]

for a one-dimensional case.

We numerically solve the three operators over a square domain Ω̄ with Neumann bound-

ary conditions. The domain is defined to be large enough to contain all the robots almost

surely over the entire duration of the deployment. For the advection operator (3.25), we use

the following Lax-Friedrichs scheme.

ρj+1
mn − 1

4
(ρjm+1,n + ρjm−1,n + ρjm,n+1 + ρjm,n−1)

∆t

=
(vρ)jm−1,n − (vρ)jm+1,n

2h
+

(vρ)jm,n−1 − (vρ)jm,n+1

2h

with CFL condition:
∆t

h
≤ 1

‖v‖∞
.

For the diffusion operator (3.26), we use the Crank-Nicolson scheme

(ρj+1
mn − ρjmn)

D∆t
=

(
ρjm+1,n − 2ρjm,n + ρjm−1,n

)
+
(
ρjm,n+1 − 2ρjm,n + ρjm,n−1

)
2h2

+

(
ρj+1
m+1,n − 2ρj+1

m,n + ρj+1
m−1,n

)
+
(
ρj+1
m,n+1 − 2ρj+1

m,n + ρj+1
m,n−1

)
2h2

. (3.34)

54



Method (3.34) is semi-implicit. To avoid solving a large scale linear system of equations, we

apply the discrete cosine transform

ρ̂jk,l =
M∑
m=1

N∑
n=1

ρjmn sin
kπm

M + 1
sin

lπn

N + 1
,

so that (3.34) turns into the explicit form

ρ̂j+1
k,l =

1 + λk,l
1− λk,l

ρ̂jk,l

where

λk,l =
D ·∆t

2h2

(
2 cos

kπ

M + 1
+ 2 cos

lπ

N + 1
− 4

)
.

Then we apply the inverse discrete cosine transform to solve ρ from ρ̂:

ρj+1
m,n =

2

M + 1

2

N + 1

M∑
k=1

N∑
l=1

ρ̂j+1
kl sin

mπk

M + 1
sin

nπl

N + 1
.

Lastly, we solve the reaction operator (3.27) using the forward Euler scheme:

(ρj+1
mn − ρjmn)

∆t
= REACTm(ρ)|jmn .

3.6 Optimal Control of Coverage Strategies

We briefly summarize the optimal control problem that is solved in our previous work [EB15].

We use this approach to compute the optimal robot velocity v(t) = [v1(t) v2(t)]T and pol-

lination rates kj(t), j = 1, ..., nf that minimize the error between a target distribution ρΩ

and the expected pollination field ρ3 at a given time T . Note that the performance of the

optimal control method is not the focus of this chapter.

For an open subset X ⊆ R2, L2(X) refers to the space of real-valued, square-integrable

functions. The norm ‖·‖L2(X) is defined as ‖f‖L2(X) =
( ∫

X
|f(x)|2dx

)1/2
for each f ∈ L2(X).

The notation
〈
·, ·
〉
L2(X)

refers to the inner product on L2(X), defined as
∫
X
f(x)g(x)dx for

each f, g ∈ L2(X). For a natural number m, ‖ · ‖L2(X)m and
〈
·, ·
〉
L2(X)m

refer to the natural

extension of the norm and inner product on the product space L2(X)m. The vector of control

parameters is defined as

u := (u1, u2, ..., unf+2),
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where u1 = v1, u2 = v2, and uj+2 = kj for j = 1, ..., nf . Then the optimal control problem is

the following:

min
(ρ,u)∈Y×Uad

J(ρ,u) =
1

2
‖ρ3(·, T )− ρΩ‖2

L2(R2) +
λ

2
‖u‖2

L2(0,T )κ , κ = nf + 2 (3.35)

subject to Eq. (3.20), (3.21). Hence, this is a PDE-constrained optimization problem.

Here, Y = C([0, T ], L2(R2)3) is the space of vector-valued continuous functions f : [0, T ] →

L2(R2)3, and Uad is the set of admissible control inputs given by

Uad = {u ∈ L2(0, T )nf+2 : umini ≤ ui(t) ≤ umaxi ∀t ∈ (0, T )},

where umini and umaxi are real-valued scalars defining the lower and upper bounds on the

control parameters. These bounds are determined by the physical limitations on the robots,

such as their maximum velocity. The bounds on the pollination rates kj, j = 1, ..., nf ,

additionally depend on the time step ∆t, according to the constraint kj(t)∆t ≤ 1.

The necessary conditions for optimality are used to derive a gradient descent method

for numerically computing the optimal robot control parameters. We consider a reduced

objective functional Ĵ corresponding to J in the optimal control problem (3.35). We define

the following reduced problem:

Ξ : Uad → Y, min
u∈Uad

Ĵ(u) := J(Ξ(u),u),

where Ξ is a control-to-state mapping which maps a control, u, to ρ, the corresponding

solution of the macroscopic model (3.20), (3.21). The directional derivative of Ĵ is used in a

gradient descent method to numerically compute the optimal robot control parameters. The

expression for this derivative is given in the following claim, which is proved in [EB15].

Claim 3.6.1. The reduced objective functional Ĵ is directionally differentiable along each h ∈

L∞(0, T )nf+2, where L∞(0, T ) is the space of essentially bounded functions on the interval

(0, T ). The directional derivative of Ĵ has the form

dĴ(u)h =

∫ T

0

〈
nf+2∑
i=1

hiBiρ,y〉L2(R2)3 + λ〈u,h〉L2(0,T )
nf+2 ,
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where y is the solution of the backward-in-time adjoint equation

−∂y1

∂t
= v · ∇y1 +D∆y1 +

nf∑
j=1

kjLj(−y1 + y2 + y3),

−∂y2

∂t
= kfy1 − kfy2,

−∂y3

∂t
= 0,

with the final time condition

y1(x, T ) = y2(x, T ) = 0, y3(x, T ) = ρ3(x, T )− ρΩ(x)

and the input operators {Bi} defined as

B1 =


− ∂
∂x1

0 0

0 0 0

0 0 0

 , B2 =


− ∂
∂x2

0 0

0 0 0

0 0 0

 ,

Bi =


−Li−2 0 0

Li−2 0 0

Li−2 0 0

 , 3 ≤ i ≤ nf + 2.

The solution y of the above PDE plays the role of the covector in optimal control the-

ory. However, a straightforward application of the maximum principle for finite-dimensional

control systems to infinite-dimensional systems is not possible in general. Although there

does exist a more general maximum principle for infinite-dimensional control systems such

as those governed by PDEs [Fat99], this result is not applicable to our system due to the

unboundedness of the control operators B1 and B2. An alternative approach to derive nec-

essary conditions based on the first-order derivative of the control-to-state map is to use the

Lagrange multiplier technique to formally derive the optimality conditions, and then rigor-

ously prove the necessity of these conditions and the differentiability of the control-to-state

map. This approach is outlined in [Tro10] and was applied in our prior work [EB15].
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3.7 L1-Convergence Analysis

In this section, we present the main result of this chapter: a rigorous convergence analysis to

estimate the error between the expected density field ρ from the macroscopic model and the

actual density field ρδ from the microscopic model. Our result shows that the error depends

on the number of robots N , the time discretization ∆t, and the sensing radius δ.

In our analysis, we use the L1 norm, which is the most natural norm for particle trans-

portation, to quantify the degree of coverage by the swarm. This is because the L1 norms of

ρδ1 and ρδ2 directly measure the numbers of Flying robots and Hovering robots, respectively

(see Eq. (3.12), (3.13)), and the L1 norm of ρδ3 measures the cumulative number of crop

visits (see Eq. (3.17), (3.18)), which is the metric of interest in the application. Note that

in the optimal control method in Section 3.6, we use the L2 norm in the objective function

since it is convenient for optimal control. This is due to the inner-product structure of L2

spaces, which makes them self-dual; L1 function spaces lack this structure. Since our do-

main is a finite region, bounding the L2 norm also bounds the L1 norm according to the

Cauchy-Schwarz inequality ‖ · ‖1 ≤ C‖ · ‖2.

The error bound that we derive in this section consists of four components: the time-

discretization error, the coverage outflow, the coverage insufficiency, and the sampling error.

The time-discretization error arises from our time-splitting method. The coverage outflow

happens at the boundary of the region of crop rows Γj, j = 1, 2, ..., nf : if a robot is polli-

nating in a row Γj at a position that is very close to the boundary of Γj, then part of the

corresponding blob may exceed Γj, which generates some loss of coverage. Coverage insuf-

ficiency arises when there are too few robots in the swarm to cover the entire field, given

the size of δ, and can be improved by deploying more robots. The most significant error

component is the sampling error, which arises from the stochasticity in the robot motion and

task switching. The error bound indicates the existence of an optimal δ for a fixed swarm

size, which we verify in simulation in Section 3.8.

Let ρδ(x, tm) and ρ(x, tm) be defined as in Eq. (3.19) and (3.28), respectively. We also
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define the L1 norm of a function f : R2 × [0, T ]→ R and the error functions as follows:

‖f(·, t)‖1,Σ : =

∫
Σ

|f(x, t)|dx, ∀Σ ⊂ R2

ei(x, tm) : = ρi(x, tm)− ρδi (x, tm), i = 1, 2, 3

Em : = max{‖e1(·, tm)‖1, ‖e2(·, tm)‖1}.

Theorem 3.7.1. Assume that v(t) ∈ C1([0,∞]), D > 0, and ki(t) ∈ C([0,∞]), i = 1, ..., nf .

Suppose that Ω̄ ⊂ R2 is a large enough square such that Ω ⊂ Ω̄, and ∃ζ > 0 such that

X i
m ∈ Ω̄2ζ

in ∀m = 1, ...,M, i = 1, ..., N

almost surely, and δ < ζ, ∆t � ζ. We define |Ω̄| as the area of Ω̄, C as an independent

constant, Γ as ∪nfj=1Γj, and Γδin and Γδout as in Eq. (3.7) and (3.8). We also set

K = kf +

nf∑
j=1

max
t∈[0,T ]

kj(t),

Pδ = max
m

P
(
X i

m ∈ Γδout − Γδin
)

= O(δ).

Then when N is sufficiently large, the following estimates are true with a probability greater

than

1− CT

∆t
N [− 1

3
(lnN)∆t2+2] . (3.36)

(i) (Error in distributions of Hovering and Flying robots)

‖ei(·, tm)‖1 ≤ CeKT
[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
, i = 1, 2 (3.37)

uniformly in m.

(ii) (Error in distribution of cumulative pollination)

‖e3(·, tm)‖1 ≤ CKTeKT
[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
(3.38)

uniformly in m.

Remark 3.7.2. In the inequalities (3.37) and (3.38), the error terms are interpreted in the

following way.
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1. lnN√
N

: Sampling error;

2. δ−4: Coverage insufficiency;

3. Pδ: Coverage outflow;

4. ∆t: Time-discretization error.

The sampling error is the main source of error in this model, due to the significant stochas-

ticity in the robot motion and state transitions. The time-discretization error arises from

the diffusion of the blob functions outside of Ω̄ in the macroscopic PDE model. This error

is not as significant as the other errors, since Ω̄ is chosen to be large enough to contain the

entire swarm almost surely throughout the selected time span [0, T ].

Note that the task-switching and the motion of the robots depend on each other, i.e. the

motion depends on which state a robot is in, and the task-switching depends on whether a

robot is above a crop region. We formulate the error of motion as

EM(x) =

∫
R2

ρ̄δ1(y, tm)p(x, tm+1|y, tm)dy − ρδ1(x, tm+1). (3.39)

The first term is the expected density of Flying robots at tm+1 based on the actual density

that is present after the reaction at tm, and the second term is the actual density at tm+1.

We also formulate the error of reaction as

ER(x) = −∆t

nf∑
j=1

kj,mLj(x)ρδ1(x, tm) + FTH(x, tm)

+ ∆tkfρ
δ
2(x, tm)−HTF (x, tm). (3.40)

Here, FTH(x, tm) and HTF (x, tm) are the actual densities of robot state transitions be-

tween Flying and Hovering, whereas the other two terms are the expected densities of state

transitions. To prove Theorem 3.7.1, we track the iteration of the error Em over the time

span [0, T ] using the following proposition.

Proposition 3.7.3 (Iteration of error). For all m = 0, ...,M − 1, we have that

Em+1 ≤ (1 + ∆tK)Em + ‖ER(·)‖1 + ‖EM(·)‖1. (3.41)
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Proof of Proposition 3.7.3. We can decompose the error in the following way. First, using

Eq. (3.32), we derive the inequality:

|e1(x, tm+1)| = |ρ1(x, tm+1)− ρδ1(x, tm+1)|

=

∣∣∣∣∫
R2

ρ̄1(y, tm)p(x, tm+1|y, tm)dy − ρδ1(x, tm+1)

∣∣∣∣
≤
∣∣∣∣∫

R2

[ρ̄1(y, tm)− ρ̄δ1(y, tm)]p(x, tm+1|y, tm)dy

∣∣∣∣+ |EM(x)|.

(3.42)

Then by taking the L1 norm of both sides of Eq. (3.42), we obtain

‖e1(·, tm+1)‖1 ≤ ‖ρ̄1(·, tm)− ρ̄δ1(·, tm)‖1 + ‖EM(·)‖1. (3.43)

For abbreviation, we omit (x, tm). By Eq. (3.16) and the definition of ER(x) in (3.40),

‖ρ̄1 − ρ̄δ1‖1 ≤
∥∥(ρ̄1 − ρ1)− (ρ̄δ1 − ρδ1)

∥∥
1

+ ‖ρ1 − ρδ1‖1

≤

∥∥∥∥∥FTH −∆t

nf∑
j=1

kj,mLjρ1 + ∆tkfρ2 −HTF

∥∥∥∥∥
1

+ Em

≤

∥∥∥∥∥∆t

nf∑
j=1

kj,mLj(ρ1 − ρδ1)

∥∥∥∥∥
1

+ ‖∆tkf (ρ2 − ρδ2)‖1 + ‖ER(·)‖1 + Em

≤ (1 + ∆tK)Em + ‖ER(·)‖1. (3.44)

Now we combine Eq. (3.43) and (3.44) to obtain

‖e1(·, tm+1)‖1 ≤(1 + ∆tK)Em + ‖ER(·)‖1 + ‖EM(·)‖1. (3.45)

Similarly, by Eq. (3.15) and (3.33),

‖e2(·, tm+1)‖1 =‖ρ2(·, tm+1)− ρδ2(·, tm+1)‖1

= ‖ρ̄2(·, tm)− ρ̄δ2(·, tm)‖1

≤ ‖(ρ̄2 − ρ2)− (ρ̄δ2 − ρδ2)‖1 + ‖ρ2 − ρδ2‖1

≤ (1 + ∆tK)Em + ‖ER(·)‖1.

(3.46)

Combining Eq. (3.45) and (3.46), we arrive at

Em+1 ≤ (1 + ∆tK)Em + ‖ER(·)‖1 + ‖EM(·)‖1.

In the remainder of this section, we will focus on estimating ‖ER(·)‖1 and ‖EM(·)‖1.
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3.7.1 Error of Motion ‖EM(·)‖1

To estimate the L1 norm, we utilize a spatial discretization. Denote Ω̄ by [a0, af ] × [b0, bf ],

where bf − b0 = af − a0 =
√
|Ω̄|. Select the spatial resolution to be

h =

√
|Ω̄|

d
√
Ne

, (3.47)

and discretize Ω̄ into cells of size h× h as follows:

Ω̄h = {(a0 + ih, b0 + jh) ∈ Ω̄ : 0 ≤ i, j < d
√
Ne}. (3.48)

We note that there is no spatial discretization in the simulation of the microscopic model,

but the selection of h matters in the analysis. The choice of h involves a trade-off: smaller

h yields a more accurate estimate, while larger h provides a higher probability that the

estimate is true. By Eq. (3.47), there are d
√
Ne2 cells in all, and hence each cell contains

one robot on average. For F (x) : R2 → R2 = (f1(x), f2(x)), we introduce the infinity norm

‖F (·)‖∞ := sup{|f1(x)|, |f2(x)| : x ∈ R2}.

Then we have the following quadrature error.

Lemma 3.7.4 (Quadrature error). Suppose that f ∈ C∞(R2). Then the following inequality

holds: ∣∣∣∣∣∣‖f(·)‖1,Ω̄ −
∑
α∈Ω̄h

|f(α)|h2

∣∣∣∣∣∣ ≤ 2|Ω̄|‖∇f(·)‖∞h.

The proof of Lemma 3.7.4 is based on the mean value theorem. A similar estimate can

be found in [MB02], Lemma 6.2. In the rest of the section, we always assume that N is

sufficiently large for our estimates.

Claim 3.7.5 (Error of motion). There exists an independent constant, C, such that

‖EM(·)‖1 ≤ C∆t|Ω̄|
√
Dδ−4 lnN√

N
+ ∆t2

with probability greater than 1−N [− 1
3

(lnN)∆t2+2].
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Proof of Claim 3.7.5. We note that

‖EM(·)‖1 = ‖EM(·)‖1,Ω̄ + ‖EM(·)‖1,Ω̄c .

First, we estimate ‖EM(·)‖1,Ω̄. We define the error of motion for the ith robot:

Yi(x) :=
1

N

∫
R2

Gδ(y −X i
m)p(x, tm+1|y, tm)dy − 1

N
Gδ(x −X i

m+1) if i ∈ Fm+1, (3.49)

and Yi(x) = 0 if i ∈ ∪jHj,m+1. Then by Eq. (3.10), (3.14), and the definition of EM(x) in

Eq. (3.39), we have

EM(x) =
N∑
i=1

Yi(x).

Note that the robots are independent of one another, and thus Yi(x), i = 1, ..., N , are

independent random variables for any fixed x. These random variables have zero mean, i.e.

E(Yi(x)) = 0. (3.50)

The proof of Eq. (3.50) is given in Subsection 3.7.3, Claim 3.7.9.

Now we apply Bennett’s inequality to obtain an upper bound for |EM(x)|.

Lemma 3.7.6. (Bennett’s inequality) Let Yi be independent bounded random variables with

E(Yi) = 0, V ar(Yi) = σ2
i , and |Yi| ≤M0. Let S =

∑
i Yi and V ≥

∑
i σ

2
i . Then for η > 0,

P{|S| ≥ η} ≤ 2 exp

[
− 1

2
η2V −1B(M0ηV

−1)

]
, (3.51)

where B(λ) = 2λ−2[(1 + λ) ln(1 + λ) − λ], λ > 0, limλ→0+ B(λ) = 1, and B(λ) ∼ 2λ−1 lnλ

as λ→∞.

The proof of Lemma 3.7.6 can be found in [Ben62], [Hoe63]. A direct computation yields

|Yi(x)| ≤ 1

Nδ2
,

N∑
i=1

V ar(Yi(x)) ≤ 1

Nδ4
.

We set η = ∆t lnN√
Nδ2 , M0 = N−1δ−2, and V = N−1δ−4 in Bennett’s inequality to obtain the
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following estimate.

P

(
|EM(x)| ≥ ∆t

lnN√
Nδ2

)
≤ 2 exp

[
− 1

2
η2V −1B(M0ηV

−1)

]
= 2 exp

[
− 1

2
(lnN)2∆t2B

(
∆t

lnN√
N

)]
≤ 2 exp

[
− 1

3
(lnN)2∆t2

]
= 2N−

1
3

(lnN)∆t2 ,

(3.52)

where we used the fact that B
(

∆t lnN√
N

)
≥ 2

3
when N is sufficiently large. Hence we have

∑
α∈Ω̄h

|EM(α)|h2 ≤ ∆t|Ω̄| lnN√
Nδ2

(3.53)

with probability greater than 1− 2N [− 1
3

(lnN)∆t2+2]. Next, by Lemma 3.7.4,∣∣∣∣∣∣‖EM(·)‖1,Ω̄ −
∑
α∈Ω̄h

|EM(α)|h2

∣∣∣∣∣∣ ≤ 2|Ω̄|‖∇EM(·)‖∞h ≤ 2|Ω̄|
N∑
i=1

‖∇Yi(·)‖∞h. (3.54)

We claim that for each i = 1, ..., N ,

‖∇Yi(·)‖∞ ≤
C2

N

√
D∆tδ−4 lnN (3.55)

with probability greater than 1− exp
[
−1

2
∆t(lnN)2

]
, where C2 is an independent constant.

The proof of this claim is given in Subsection 3.7.3, Claim 3.7.10.

Combining inequalities (3.53), (3.54) and (3.55), and plugging in the choice of h given

by Eq. (3.47), we obtain

‖EM(·)‖1,Ω̄ ≤ ∆tδ−2|Ω̄| lnN√
N

+ C2|Ω̄|3/2
√
D∆tδ−4 lnN√

N
≤ C∆t|Ω̄|

√
Dδ−4 lnN√

N
(3.56)

with probability greater than 1− 2N [− 1
3

(lnN)∆t2+2], where C is an independent constant.

Next, we consider ‖EM(·)‖1,Ω̄c . This error is caused by diffusion: in the macroscopic

model, the density of Flying robots diffuses immediately to the entire R2, whereas in the

microscopic model, the actual density of Flying robots always stays in Ω̄.

We claim that:

‖EM(·)‖1,Ω̄c ≤ ∆t2. (3.57)
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The proof of this claim is given in Subsection 3.7.3, Claim 3.7.11. Now we combine Eq.

(3.56) and (3.57) to obtain

‖EM(·)‖1 ≤ C∆t|Ω̄|
√
Dδ−4 lnN√

N
+ ∆t2

with probability greater than 1−N [− 1
3

(lnN)∆t2+2]. This completes the proof of Claim 3.7.5.

3.7.2 Error of Reaction ‖ER(·)‖1

Claim 3.7.7 (Error of reaction). There exists an independent constant, C, such that

‖ER(·)‖1 ≤ CK∆tδ−3|Ω̄| lnN√
N

+ ∆tKPδ

with probability greater than 1− CN [− 1
3K

(lnN)∆t+2].

Proof of Claim 3.7.7. Define an intermediate term

FTH ′(x, tm) :=
1

N

nf∑
j=1

∑
i∈Fm

∆tkj,mLj(X
i
m)Gδ(x−X i

m).

Omitting (x, tm), we have

|ER(x)| =

∣∣∣∣∣−∆t

nf∑
j=1

kj,mLj(x)ρδ1 + ∆tkfρ
δ
2 + FTH −HTF

∣∣∣∣∣
≤ |SE(x)|+ |OF (x)|,

where

SE(x) =
[
(FTH − FTH ′) + (∆tkfρ

δ
2 −HTF )

]
(x, tm),

OF (x) =

(
∆t

nf∑
j=1

kj,mLj(x)ρδ1 − FTH ′
)

(x, tm).

Notably, FTH and FTH ′ are supported in Γδout, while kj,mLj(x)ρδ1 is supported in Γ. There-

fore, OF (x) measures the coverage outflow at the boundary of Γ. FTH and HTF are the

actual densities of robot state transitions between Flying and Hovering, whereas FTH ′ and
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∆tkfρ
δ
2 are the expected densities of these state transitions; therefore, SE(x) measures the

sampling error of reaction.

First we estimate ‖OF (·)‖1. We define L(x) = 1Γ(x). Note that by the definitions of

Lj(x) and L(x), we have that

L(x) =

nf∑
j=1

Lj(x).

Now using the definition of ρδ1 from Eq. (3.10), we obtain

OF (x) =
∆t

N

∑
i∈Fm

nf∑
j=1

kj,m(Lj(x)− Lj(X i
m))Gδ(x−X i

m).

Let us define

Zi :=


1

N

nf∑
j=1

kj,m‖(Lj(·)− Lj(X i
m))Gδ(· −X i

m)‖1 if i ∈ Fm,

0 if i ∈ ∪nfj=1Hj,m,

and

Z ′i := Zi − E(Zi).

Then Zi is coverage outflow of each individual robot, and

‖OF (·)‖1 ≤ ∆t
N∑
i=1

Zi = ∆t
N∑
i=1

(Z ′i + E(Zi)) . (3.58)

From the fact that Gδ(x) is supported in {x : |x| ≤ δ}, it is straightforward to see that

(Lj(x)− Lj(X i
m))Gδ(x−X i

m) ≡ 0 if X i
m /∈ Γδout − Γδin. When X i

m ∈ Γδout − Γδin, we have

Zi ≤
K

N

∫
R2

|(L(x)− L(X i
m))Gδ(x−X i

m)|dx

≤ 1

N

∫
R2

Gδ(x−X i
m)dx =

K

N
.

Hence,

E(Zi) ≤
K

N
P
{
X i

m ∈ Γδout − Γδin
}
≤ K

N
Pδ. (3.59)

Note that Z ′i are i.i.d random variables with E(Z ′i) = 0, so we can apply Bennett’s inequality

(Lemma 3.7.6) again to estimate |
∑

i Z
′
i|. We set η = K lnN/

√
N and compute M0 and V
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as follows: |Z ′i| ≤ K/N =: M0 and
∑

i V ar(Z
′
i) ≤ NM2

0 = K2/N =: V . Plugging η, M0,

and V into Bennett’s inequality, we arrive at

P

(∣∣∣∣∣
N∑
i=1

Z ′i

∣∣∣∣∣ ≥ K lnN√
N

)
≤ 2 exp

[
−(lnN)2

3

]
. (3.60)

Combining Eq. (3.58), (3.59), and (3.60), we obtain

‖OF (·)‖1 ≤ ∆tK
lnN√
N

+ ∆tKPδ (3.61)

with probability greater than 1− 2 exp
[
−1

3
(lnN)2

]
.

Next we estimate ‖SE(·)‖1. Since SE(x) is supported in Ω̄, we have that ‖SE(·)‖1 =

‖SE(·)‖1,Ω̄. We define

Wi(x) := ϕiGδ(x−X i
m), i = 1, ..., N,

where

ϕi :=


1

N

nf∑
j=1

(∆tkj,m − Ii,j,m)Lj(X
i
m) if i ∈ Fm,

1

N
(Ji,j,m −∆tkf ) if i ∈ Hj,m.

It can be verified that for a fixed x, the random variablesWi(x), i = 1, ..., N , are independent,

and

SE(x) =
N∑
i=1

Wi(x), E(Wi(x)) = 0

|Wi(x)| ≤ 1

Nδ2
and |SE(x)| ≤ 1

δ2
,

V ar(Wi(x)) ≤ δ−4V ar(ϕi) ≤
∆tK

N2δ4
.

Using the estimate of quadrature error (Lemma 3.7.4),∣∣∣∣∣∣‖SE(·)‖1,Ω̄ −
∑
α∈Ω̄h

|SE(α)|h2

∣∣∣∣∣∣ ≤ 2|Ω̄|‖∇SE(·)‖∞h

≤ 2|Ω̄|
N∑
i=1

|ϕi|‖∇Gδ(· −X i
m)‖∞h ≤ 5|Ω̄|δ−3

N∑
i=1

|ϕi|h.

(3.62)
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Next we claim that
N∑
i=1

|ϕi| ≤ 2∆tK (3.63)

with probability greater than 1−2 exp [−C1∆tKN/2], where C1 is an independent constant.

The proof of this claim is given in Subsection 3.7.3, Claim 3.7.12. Now we apply Bennett’s

inequality again to estimate SE(α). Setting η = ∆t lnN√
Nδ2 , M0 = 1

Nδ2 , V = ∆tK
Nδ4 and plugging

these parameters into Eq. (3.51), we obtain

P

(
|SE(α)| ≥ ∆t

lnN√
Nδ2

)
≤ 2N [− 1

3K
(lnN)∆t].

Hence,

P

∑
α∈Ω̄h

|SE(α)|h2 ≤ ∆tδ−2|Ω̄| lnN√
N

 ≥ 1− 2N [− 1
3K

(lnN)∆t+2]. (3.64)

Combining Eq. (3.62), (3.63), and (3.64), and noting that exp(−N)� N−(lnN)∆t+2, we find

that

‖SE(·)‖1 ≤ 10∆tδ−3K
|Ω̄|3/2√
N

+ ∆t|Ω̄|δ−2 lnN√
N

≤ C2∆tKδ−3|Ω̄| lnN√
N

(3.65)

with probability greater than 1 − C3N
[− 1

3K
(lnN)∆t+2], where C2 and C3 are independent

constants. Finally, by combining Eq. (3.61) and (3.65), we conclude that

‖ER(·)‖1 ≤ CK∆tδ−3|Ω̄| lnN√
N

+ ∆tKPδ

with probability greater than 1 − CN [− 1
3K

(lnN)∆t+2], which completes the proof of Claim

3.7.7.

We now show how Theorem 3.7.1 follows from Proposition 3.7.3, Claim 3.7.5, and Claim

3.7.7.

Proof of Theorem 3.7.1. Set β = 1 + K∆t. By combining the inequalities in Proposition

3.7.3, Claim 3.7.5, and Claim 3.7.7, we find that

Em+1 ≤ βEm + C ′K

[
∆tδ−4

√
D|Ω̄| lnN√

N
+ ∆tPδ + ∆t2

]
(3.66)
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with probability greater than 1 − C ′N [− 1
3

(lnN)∆t2+2], where C ′ is an independent constant.

Note that E0 = 0. Iterating over m by using Eq. (3.66), we obtain

Em+1 ≤ C ′K∆t
βm+1 − 1

β − 1

[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
≤ C ′eKT

[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
uniformly in m with probability greater than

1− C ′T

∆t
N [− 1

3
(lnN)∆t2+2]. (3.67)

Replacing C ′ with C, this proves part (i) of the theorem.

To prove part (ii), we start with the following inequality:

‖ρ3(·, tm)− ρδ3(·, tm)‖1

=

∥∥∥∥∥
m−1∑
τ=0

nf∑
j=1

kj,τ∆tLj(·)ρ1(·, tτ )−
m−1∑
τ=0

FTH(·, tτ )

∥∥∥∥∥
1

≤ ∆t

∥∥∥∥∥
m−1∑
τ=0

nf∑
j=1

kj,τLj(·)(ρ1(·, tτ )− ρδ1(·, tτ ))

∥∥∥∥∥
1

+

∥∥∥∥∥
m−1∑
τ=0

nf∑
j=1

∆tkj,τLj(·)ρδ1(·, tτ )−
m−1∑
τ=0

FTH(·, tτ )

∥∥∥∥∥
1

:= Λ1 + Λ2.

Here, Λ1 is the cumulative error in the positions of the Flying robots, and Λ2 is the cumulative

error in reactions. We have that

Λ1 ≤ ∆tK
m−1∑
τ=0

Eτ

≤ ∆tK
m−1∑
τ=0

C ′eKT
[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
= C ′TKeKT

[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
.

(3.68)

Next we estimate Λ2. We have

Λ2 ≤
m−1∑
τ=0

∥∥∥∥∥
nf∑
i=1

∆tkj,τLj(·)ρδ1 − FTH(·, tτ )

∥∥∥∥∥
1

.
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We note that the term
∑nf

i=1 ∆tkj,τLj(x)ρδ1 − FTH(x, tτ ) comprises part of the error of

reaction ER(x), according to Eq. (3.40). Using an argument similar to the one in Claim

3.7.7, we obtain

Λ2 ≤
m−1∑
τ=0

[
CK∆tδ−3|Ω̄| lnN√

N
+ ∆tKPδ

]
= T

[
CKδ−3|Ω̄| lnN√

N
+ KPδ

]
. (3.69)

Combining Eq. (3.68) and (3.69), we arrive at our conclusion:

‖e3(·, tm)‖1 ≤ C ′′KTeKT
[
δ−4
√
D|Ω̄| lnN√

N
+ Pδ + ∆t

]
uniformly in m with probability greater than expression (3.67). Replacing C ′′ with C, this

completes the proof of Theorem 3.7.1.

Thus far, we have presented an estimate of the L1 error between the expected density

field ρ3 and the actual density field ρδ3. We can compute the relative error between these

density fields as:

REL =
‖ρ3(·, T )− ρδ3(·, T )‖1

‖ρ3(·, T )‖1

. (3.70)

In practice, however, we would want to compare ρδ3 to the target distribution ρΩ. Moreover,

since the user will be satisfied as long as the crops are sufficiently pollinated, we can consider

the over-pollinated portion as an inefficiency rather than an error. Hence, we only count

insufficient pollination as error. We define the discrepancy γ and efficiency as

γ =
‖ρδ3(·, T ) ∧ ρΩ(·)− ρΩ(·)‖1

‖ρΩ(·)‖1

, (3.71)

Efficiency =
‖ρδ3(·, T ) ∧ ρΩ(·)‖1

‖ρδ3(·, T )‖1

, (3.72)

where ρδ3(x, T ) ∧ ρΩ(x) = min{ρδ3(x, T ), ρΩ(x)}. We also define the intrinsic discrepancy,

which does not depend on N and δ, as

γΩ =
‖ρ3(·, T ) ∧ ρΩ(·)− ρΩ(·)‖1

‖ρΩ(·)‖1

. (3.73)
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Note that we do not analyze the error between the target distribution and the macroscopic

model in this chapter, since the optimal control is already studied in [EB15]. Given a desired

discrepancy γd, our goal is to select N and δ such that

γ ≤ γd. (3.74)

Toward this end, we present the following corollary.

Corollary 3.7.8. Under the same assumptions as in Theorem 3.7.1, we have that

γ ≤ γΩ + C4

(
δ + ∆t+ (1 + δ−4)

lnN√
N

)
(3.75)

with probability greater than 1− CT
∆t
N [− 1

3
(lnN)∆t2+2]. Here, C4 is a constant that depends on

kj(t), D, Γj, T , and Ω̄.

Proof. Since |min{a, c} −min{b, c}| ≤ |a− b|,

‖ρδ3 ∧ ρΩ(·, T )− ρΩ(·)‖1

≤‖ρ3 ∧ ρΩ(·, T )− ρΩ(·)‖1 + ‖ρδ3 ∧ ρΩ(·, T )− ρ3 ∧ ρΩ(·, T )‖1

≤‖ρ3 ∧ ρΩ(·, T )− ρΩ(·)‖1 + ‖ρδ3(·, T )− ρ3(·, T )‖1.

Hence,

γ ≤ γΩ +
‖ρδ3(·, T )− ρ3(·, T )‖1

‖ρΩ(·)‖1

.

By Theorem 3.7.1, ∃ an independent constant C ′4 > 0 such that

‖ρδ3(·, T )− ρ3(·, T )‖1 ≤ C ′4

(
δ + ∆t+ (1 + δ−4)

lnN√
N

)
.

Divide both sides by ‖ρΩ(·)‖1 and apply it to the previous inequality, and Eq. (3.75) is

proved.

3.7.3 Proof of the Claims

Claim 3.7.9. Let Yi(x) be defined as in Eq. (3.49). Then for each i = 1, ..., N and each x,

E(Yi(x)) = 0.
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Proof. Note that if i ∈ Fm+1,

E
(
Gδ(x−X i

m+1)
)

=E

{
E

[
Gδ

(
x−X i

m − v(tm)∆t−
√

2D∆t∆Zm

) ∣∣∣∣X i
m

]}
=E

[∫
R2

Gδ

(
x−X i

m − v(tm)∆t− y
) 1

4πD∆t
e−

|y|2
4D∆tdy

]
=E

[∫
R2

Gδ(y
′ −X i

m)
1

4πD∆t
e−
|x−v(tm)∆t−y′|2

4D∆t dy′
]

=E

[∫
R2

Gδ(y −X i
m)p(x, tm+1|y, tm)dy

]
,

where we applied the change of variable y′ = x− v(tm)− y. This proves our statement for

i ∈ Fm+1. In addition, Yi(x) = 0 for each i /∈ Fm+1.

Claim 3.7.10. For each i = 1, ..., N ,

‖∇Yi(·)‖∞ ≤
C

N

√
D∆tδ−4 lnN

with probability greater than 1− exp
[
−1

2
∆t(lnN)2

]
, where C is an independent constant.

Proof. It is straightforward to see that for each i ∈ ∪jHj,m+1,∇Yi(x) = 0. For each i ∈ Fm+1,

∇Yi(x) =
1

N

∫
R2

∇Gδ(x
′ − y)p(y; ∆t)dy − 1

N
∇Gδ(x

′ −
√

2D∆t∆Zm),

where

x′ = x− v(tm)∆t−X i
m,

p(y; ∆t) =
1

4πD∆t
exp

(
− |y|

2

4D∆t

)
.

Note that

|∇Yi(x)| ≤ W1 +W2,

with

W1 =
1

N

∫
R2

|∇Gδ(x
′ − y)−∇Gδ(x

′ −
√

2D∆t∆Zm − y)|p(y; ∆t)dy

W2 =
1

N

∣∣∣∣ ∫
R2

∇Gδ(x
′ −
√

2D∆t∆Zm − y)p(y; ∆t)dy −∇Gδ(x
′ −
√

2D∆t∆Zm)

∣∣∣∣.
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Since ∆Zm = (∆Z1
m,∆Z

2
m) ∼W (0, 1),

P (max
i=1,2
|∆Zi

m| ≤
√

∆t lnN) ≥ 1− exp

[
−1

2
∆t(lnN)2

]
.

By the mean value theorem,

W1 =
1

N

∫
R2

∣∣∣∣∂2Gδ(ξ1(x,y))
√

2D∆t∆Zmp(y; ∆t)

∣∣∣∣dy
≤ 2
√

2D∆t

N
max
i,j=1,2

|∂xixjGδ|max
i=1,2
|∆Zi

m| (3.76)

≤ C ′

N

√
D∆tδ−4 lnN

with probability greater than 1− exp
[
−1

2
∆t(lnN)2

]
. Here C ′ is an independent constant.

Now we estimate W2. It is straightforward to see that

W2 ≤ ‖∇Gδ ∗ p−∇Gδ‖∞.

By using a change of variable y =
√

∆ty′, we obtain

Gδ ∗ p(x; ∆t)−Gδ(x)

=

∫
R2

[
−∂2Gδ(x)

√
∆ty′ +

1

2
∆t∂3Gδ(ξ2(x,y′))|y′|2

]
· p(y′; 1)dy′.

Applying the facts that∫
R2

y′p(y′; 1)dy′ = 0, max
i,j,z=1,2

|∂xixjxzGδ| ≤ Cδ−5,

we have that

W2 ≤ ‖∇Gδ ∗ p−∇Gδ‖∞ ≤ C ′′∆tδ−5, (3.77)

where C ′′ is an independent constant. Combining Eq. (3.76) and (3.77), and noting that

N � δ−1, we arrive at

‖∇Yi(·)‖∞ ≤
C

N

√
D∆tδ−4 lnN

with probability greater than 1− exp
[
−1

2
∆t(lnN)2

]
.
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Claim 3.7.11. The following inequality holds:

‖EM(·)‖1,Ω̄c ≤ ∆t2.

Proof. By our assumptions in Theorem 3.7.1, ∃ζ > 0 such that X i
m ∈ Ω̄2ζ

in and δ < ζ. Since

Gδ(x) is supported in Bδ,

Gδ(x−X i
m) = 0 ∀x /∈ Ω̄ζ

in, ∀m = 1, ...,M, i = 1, ..., N.

Therefore, we have

‖Yi(·)‖1,Ω̄c =
1

N

∫
Ω̄c

∫
Ω̄ζin

Gδ(y −X i
m)p(x, tm+1|y, tm) · dydx.

By definition, ∀x ∈ Ω̄c,y ∈ Ω̄ζ
in, |x− y| ≥ ζ. Thus, we can choose ∆t small enough so that

|x− y − v(tm)∆t| ≥ ζ
2
. Defining Bζ = {x : |x| ≤ ζ}, we have

‖Yi(·)‖1,Ω̄c ≤
1

N

∫
Ω̄ζin

Gδ(y −X i
m)dy

∫
(Bζ/2)c

1

4πD∆t
e−

|x|2
4D∆tdx

≤ 1

N

∫ ∞
ζ/2

r

2D∆t
e−

r2

4D∆tdr =
1

N
e−

ζ2

16D∆t ≤ ∆t2

N

since ∆t� ζ. Hence,

‖EM(·)‖1,Ω̄c ≤
N∑
i=1

‖Yi(·)‖1,Ω̄c ≤ ∆t2.

Claim 3.7.12. The inequality
N∑
i=1

|ϕi| ≤ 2∆tK

is true with probability greater than 1 − 2 exp [−C∆tKN/2], where C is an independent

constant.

Proof. We define

ϕ′i = |ϕi| − E(|ϕi|).
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Then E(ϕ′i) = 0 and E(|ϕi|) ≤ ∆tKN−1. Applying Bennett’s inequality (3.51) with η =

∆tK, M0 = N−1, and V = ∆tKN−1, we obtain

P

(∣∣∣∣∣
N∑
i=1

ϕ′i

∣∣∣∣∣ ≥ ∆tK

)
≤ 2 exp [−B(1)∆tKN/2] .

Hence,
N∑
i=1

|ϕi| ≤

∣∣∣∣∣
N∑
i=1

ϕ′i

∣∣∣∣∣+
N∑
i=1

E(|ϕi|) ≤ 2∆tK

with probability greater than 1− 2 exp [−B(1)∆tKN/2].

3.8 Simulation Results

In this section, we illustrate the design procedure in Section 3.3 for a simulated crop polli-

nation scenario. Simulation results beyond those required for the design procedure are also

presented to validate our convergence analysis.

1) Set the parameter values.

We set the example crop field to be a unit square, Ω = [0, 1]2, which has five rows of

nf = 2 different types of crops. The regions of type 1 crops and type 2 crops are defined, re-

spectively, as Γ1 = {(x1, x2) : x1 ∈ [0.05, 0.15]∪[0.45, 0.55]∪[0.85, 0.95], x2 ∈ [0.05, 0.95]} and

Γ2 = {(x1, x2) : x1 ∈ [0.25, 0.35] ∪ [0.65, 0.75], x2 ∈ [0.05, 0.95]}. Let the target pollination

distribution be

ρΩ(x) = 6 · 1Γ1(x) + 12 · 1Γ2(x), (3.78)

which is shown in the top left of Fig. 3.4. The other simulation parameters are X0 =

(0.4, 0.2), T = 240, kf = 0.2, D = 0.0005, γd = 0.25, vmin1 = vmin2 = −0.01, vmax1 = vmax2 =

0.01, and ∆t = 0.5.

We note that our choice of ∆t = 0.5 is based on empirical tests of a range of ∆t values,

each of which satisfies the CFL condition needed to solve the advection operator in the

macroscopic PDE model. We found that the numerical solution of the macroscopic model

does not change significantly for ∆t ∈ (0, 1.5]. This is because, as shown in Fig. 3.3, the

robots’ optimized velocity components v1(t), v2(t) and pollination rates k1(t), k2(t) do not
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display sharp variations over any time period of 1.5 units, which means that the typical

time scales of v1(t), v2(t), k1(t), and k2(t) are much larger than the time scale resolved with

a choice of ∆t ∈ (0, 1.5]. Furthermore, we note that the choice of ∆t has little effect on the

error bounds (3.37) and (3.38), as explained in Remark 3.7.2.

2) Apply the optimal control technique to compute the robot control policies.

Using the parameters above, we run the optimal control technique described in Section

3.6 to compute the robots’ velocity v(t) and pollination rates k1(t) and k2(t), which are

plotted in Fig. 3.3.
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Figure 3.3: Top: robot velocity field v(t) = (v1(t), v2(t)). Bottom: robot pollination rates

k1(t) and k2(t). [ZBE18] Copyright c©2017 IEEE.

3) Simulate the microscopic model.

We simulate the microscopic model with the optimized values of v(t), k1(t), and k2(t)

from Step 2 and the robot sensing radius δ = 0.015. While the design procedure only requires

simulations for two distinct values of the swarm size N , here we simulate the microscopic

model for all the values of N shown in Table 3.1. We run 100 simulation trials for each value

of N .
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4) Compute the discrepancy γ between the actual and target pollination distributions.

For each simulation of the microscopic model, we compute the resulting actual pollination

density field, ρδ3(x, T ), and calculate the discrepancy γ from Eq. (3.71), the relative error

REL from Eq. (3.70), and the efficiency from Eq. (3.72). Table 3.1 shows the mean γ,

REL, and efficiency for each value of N over 100 simulation trials.

Note that as the swarm size N increases, the mean values of γ and REL decrease.

This is due to the convergence of the actual pollination density ρδ3(x, T ) to the expected

pollination density ρ3(x, T ) with increasing N . We illustrate this convergence in Fig. 3.4,

which plots ρδ3(x, T ) resulting from several values of N (one simulation trial per N) alongside

ρ3(x, T ) and the target distribution ρΩ(x). To obtain ρ3(x, T ), we numerically solved the

macroscopic model over the domain Ω̄ = [−1, 2]2 with h = 0.006. The intrinsic discrepancy

for this scenario was computed to be γΩ = 0.1413.

Table 3.1: Simulation results with respect to different N .

N Mean γ Mean REL Mean Efficiency

6400 0.1912 0.1968 0.8881

3200 0.2139 0.2636 0.8667

1600 0.2486 0.3601 0.8257

800 0.3065 0.4997 0.7615

400 0.3924 0.7017 0.6643

200 0.5284 0.9845 0.5177

5) Estimate the required N such that the discrepancy γ is less than γd.

From Corollary 3.7.8, we have that

γ ≤ c′1 + c′2
lnN√
N
, (3.79)
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Figure 3.4: Top left : Target pollination distribution ρΩ(x). Top right : Expected pollination

distribution ρ3(x, T ) from the macroscopic model. From middle left to bottom right : Actual

pollination distribution ρδ3(x, T ) from the microscopic model with δ = 0.015 and N = 200,

400, 800, 1600 robots. The field is [0, 1]2. [ZBE18] Copyright c©2017 IEEE.
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where c′1 is the error determined by ∆t and δ, and c′2 is a coefficient that depends on δ. Since

lnN � N

when N is sufficiently large, we conjecture that

γ = c1 + c2
1√
N
. (3.80)

In the bottom subfigure of Fig. 3.5, the linear fitting of mean γ against 1/
√
N verifies Eq.

(3.80). This figure also shows that there is a linear relationship between the mean value of

REL and 1/
√
N .

Now for γd = 0.25, we show how to select the number of robots that are needed to achieve

the specification (3.74). We solve for c1, c2 in Eq. (3.80) using the mean γ for N1 = 200,

N2 = 400 from Table 3.1. The resulting two equations,

0.5284 = c1 + c2
1√
N1

, 0.3924 = c1 + c2
1√
N2

, (3.81)

yield c1 = 0.06407, c2 = 6.567. We plug these coefficients into Eq. (3.80) and choose the

smallest N such that γ ≤ γd = 0.25. This yields N ≈ 1249.

Remark 3.8.1. The robots in this scenario act independently of one another, since there

are no interactions such as communication. Hence, a swarm with a large population N will

achieve the same distribution of pollination over one deployment as a swarm with a smaller

population of αN , α ∈ (0, 1), over α−1 deployments. This deployment strategy can be used

when the required value of N for some γd exceeds the number of available robots.

6) Select the value of δ that yields the minimum γ for the required N .

For the selected value of N , there exists an optimal value of δ that yields a minimum

value of the discrepancy γ for that N . We illustrate this in Fig. 3.6, which plots the mean

value of γ over 100 simulation trials with respect to different pairs of δ and N . We note that

the range of δ in our study and the choice of ∆t = 0.5 yield a very small error (< 0.01) in

the operating splitting method (3.29).
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Fig. 3.6 reflects a trade-off in choosing δ that is predicted by our error analysis: for

a given swarm size N , small δ yield a low coverage outflow near the crop boundary but a

high coverage insufficiency, whereas large δ yield a high coverage outflow and a low coverage

insufficiency. As the plot shows, the optimal δ becomes smaller as the swarm size N increases.

From Step 5, we find that N ≈ 1249 is the smallest N for which the discrepancy does not

exceed γd. Thus, we can choose any N > 1249, such as N = 1600. Then, from Fig. 3.6,

we can pick the optimal δ for N = 1600 to further decrease the discrepancy, which gives us

δ ≈ 0.024 and γ ≈ 0.23. In practice, the sensor limitations will impose an upper bound on

δ that may be lower than the optimal value. For example, if we choose N = 1600 and the

possible range of δ for the sensor is [0, 0.020], then according to Fig. 3.6, we should choose

δ to be 0.020 instead of 0.024.

We further illustrate the effect of δ with the results in Fig. 3.7, which plots ρδ3(x, T )

resulting from a relatively small robot population N = 100 and several values of δ (one

simulation trial per δ) alongside the target distribution ρΩ(x). The figure shows that when

N is fixed at 100, the discrepancy γ is very large and coverage is fairly sparse when δ = 0.015,

and increasing δ to 0.030 yields a lower discrepancy and improved coverage.

3.9 Conclusion

In this chapter, we derived analytical bounds on the error between a target spatial distribu-

tion of coverage activity and the actual coverage distribution that is achieved by a swarm of

N robots whose population dynamics can be described by an Advection-Diffusion-Reaction

PDE. We consider scenarios in which the environment is known and the robots’ capabilities

are highly constrained, in that they have no inter-robot communication or global position

information. The analytical bound revealed an almost linear relationship between the cov-

erage error and N−
1
2 , thus providing a convenient way to choose a swarm size that produces

a coverage distribution within a maximum allowable error. Our analysis also indicated the

existence of an optimal robot sensing radius that minimizes the discrepancy between the

actual and target coverage distributions for each swarm size, which provides a theoretical
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basis for selecting a particular sensing range. We verified our analytical results through

simulations of a crop pollination scenario. We hope that the detailed analysis presented here

will inspire the analysis and design of other distributed systems with a significant stochastic

component.
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Figure 3.5: Top figure: Swarm size N vs. mean REL and mean γ, both averaged over

100 simulations of the microscopic model for each value of N . The corresponding standard

deviations are shown as error bars. Bottom figure: 1/
√
N vs. mean REL and mean γ. The

solid and dashed lines are the linear fittings of mean REL and mean γ, respectively. [ZBE18]

Copyright c©2017 IEEE.
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Figure 3.6: Relationship among δ, N , and γ. Each data point is averaged over 100 simulations

of the microscopic model with the corresponding values of N and δ. [ZBE18] Copyright

c©2017 IEEE.

Figure 3.7: Top left : Target pollination distribution ρΩ(x). From top right to bottom right :

Actual pollination distribution ρδ3(x, T ) from the microscopic model with N = 100 robots

and δ = 0.015, 0.020, 0.030. The discrepancy γ is shown for each value of δ. The field is

[0, 1]2. [ZBE18] Copyright c©2017 IEEE.
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