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Abstract

Prior results have shown that for ad hoc networks with uniform source-destination probabilities, where

each node generates traffic, the transport capacity for each node in the network declines with the network

size n [1]. In this paper, we show that the finite per-node throughput and hence scalability is achievable

with the adjustment of source-destination pair distributions.

We also explore the rate-distortion bound in the context of sensor networks. Considering a network

over a finite region, with finite Gaussian point sources and densely distributed sensors, the otherwise

difficult to obtain data rate region under a fidelity criterion, reduces to a partial side information problem

for Gaussian sources. The key concept in proving this is to consider source, sensor, and communications

relay densities as separate quantities.

Index Terms

sensor network, scalability, source-destination pair distribution, rate-distortion bound, source separa-

tion, partial side information.

I. INTRODUCTION

Large scale sensor networks consisting of hundreds or thousands of nodes will link the physical

world to global communication networks for a broad set of applications [2], [3], [4]. Individual

nodes will have some combination of sensing, signal processing and communications capability

and may self-organize for a variety of cooperative sensing and communication tasks, subject to

resource constraints such as energy and bandwidth [2].

Basic information theoretic questions for such networks include the minimum resources required

to extract information about some source to some level of fidelity - a rate distortion problem [5],

and whether the network capacity per node is scalable subject to bandwidth constraints [1]. Even

given that source-channel coding separability fails for network information theory problems, there
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remain many long-standing unsolved problems for source and channel coding treated individu-

ally. However, it is possible to derive rate regions in order to answer questions about whether the

required information can be extracted or the network can scale [6], [7] given resource constraints.

The question of the capacity region for ad hoc network has recently been addressed by Gupta

and Kumar [1]. Their key result is that given n nodes in the unit disk and a uniform traffic pattern,

one obtains the per-node capacity ofO (1/
√
n) bit-meter per second (transport capacity), assuming

simple point-to-point coding. The results in [1] suggest that static ad hoc networks are inherently

non-scalable, i. e. per-node capacity → 0 as n→ ∞.

After Gupta and Kumar’s capacity results [1] for wireless networks, a considerable amount of

work has been done in this area [8], [9], [10], [11]. Grossglauser and Tse in [12] modified the

model in [1] to explicitly include mobility. They allowed for unbounded delay and used only one

hop relaying, taking advantage of mobility. They showed that O (n) throughput for a mobile ad

hoc network is achievable. Recently, Bansal and Liu in [13] proposed a routing algorithm which

exploits the patterns in mobility of nodes to provide guarantees on delay. Here we show that

scalability is possible even for static networks.

In this paper, we study the scalability issue and show that the appropriate choice of source-

destination pair distribution can lead to finite per node capacity in ad hoc networks. Applications

of this result include sensor networks and hierarchical communication networks.

We also consider the rate-distortion region characterization for a sensor network with finite

point sources and under a fidelity criterion. We note that the model of the sensor network and

the objectives are critical to the conclusions. Servetto [6] for example poses the problem as a

many-to-one correlated coding problem and for his model concludes that the information can be

extracted at the desired level of fidelity for dense networks. Neuhoff, et. al. [7] on the other
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hand have a significantly different set of objectives and conclude these cannot be met. The model

considered in [7] has a data-gathering wireless sensor network in which densely deployed sensors

take periodic samples of the sensed field, and then quantize, losslessly encode and transmit them

to a single receiver/central controller where snapshot images of the sensed field are reconstructed.

For this particular model, [7] shows that the efficiency with which the sensor network functions,

degrades with the increase in the density of the sensors. By contrast, in this paper, the sensor

network problem consists of extracting information about sources in some region to some desired

level of fidelity, and transmitting this information to some gateway(s). We assume point sources

to be Gaussian for analytical simplicity. We show that the question of feasible rates for such

a network can be made into a relatively easy problem to deal with by allowing the network to

be dense, i.e. letting the number of sensors and communication relays be much larger than the

number of sources. A sub-optimal decoupling of source and channel coding can be shown to be

sufficient for achieving scalability in this context. We also explore how the issues of scalability,

source separation, and information extraction can be dealt with by altering the relative densities of

sources, communication relays and the sensors.

The rest of the paper is organized as follows. In Section II we discuss some early work that mo-

tivated our formulation. In Section III we present the S-D pair distribution for achieving scalability

in sensor networks. The consequences of decoupling source, communication relay and sensor den-

sities for sensor networks are discussed in Section IV. The paper concludes in Section V with the

discussion of future work.
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Fig. 1. n nodes located in the disk of unit area with uniform traffic pattern

II. PRIOR SCALABILITY RESULTS

A. Point-to-Point Coding Model [1]

In [1], Gupta and Kumar devised a rule for the achievable global transmission rate of an ad hoc

network. The rate is measured in bit-meters per second (the transport capacity). In their analysis

they used a simple point-to-point coding model. At any given time, a receiver decodes a message

from only one sender, considering simultaneous transmissions purely as noise, and similarly at

any given time, a sender transmits information to only one receiver. Consider n nodes located in

the disk of unit area (Figure 1 ) with a uniform traffic pattern. Each node transmits at W bits per

second over a common wireless channel. Packets are sent from source to destination in a multi-hop

fashion. Radios that are sufficiently distant can transmit concurrently; the total amount of data that

can be simultaneously transmitted for one hop increases linearly with the total area of the ad hoc

network.

If node density is constant, this means that the total one hop capacity is O (n). However, as

the network grows larger, the number of hops between each source and destination may also grow

larger, depending on communication patterns. One might expect the average path length to grow

with the spatial diameter of the network, or equivalently the square root of area, or O (
√
n). With
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this assumption, the total end-to-end capacity is roughly O (n/
√
n), and end-to-end throughput

available to each node is [1], [11]

O

(
1√
n

)

The inverse square root of n behavior can be intuitively understood as follows: Every bit has to

travel at least the distance that separates its source from its destination. It may travel this distance

either through a single direct transmission, or through multiple transmissions via relay nodes [12].

Gupta and Kumar also demonstrated the existence of a global scheduling scheme achieving

Ω
(
1/
√
n log n

)
for a uniform random network with a random traffic pattern.

The application of throughput result of [1] to a relay traffic pattern, where there is only one

source/destination pair while the rest of the network is at their service, would result in O (
√
n) bits

per second or a more careful application would yield O (1). In fact, Gastpar and Vetterli in [14],

[15] showed that the capacity for such a traffic pattern is O (log n) as the number of nodes in the

network, n, goes to infinity. The extension of results in [14], [15] to the relay traffic pattern with

multiple transmissions is not known.

To summarize, the results in [1] indicates the lack of scalability in static ad hoc networks.

III. SCALABILITY IN SENSOR NETWORKS BY SOURCE-DESTINATION PAIR DISTRIBUTION

In this section, we demonstrate that some choices of the source-destination pair distribution

in networks can indeed achieve finite per node capacity and hence scalability. This concept of

source-destination pair distribution for achieving the scalability is motivated by the work in [11].

A. Scalability for Point-to-Point Coding Model

Successful communication is still possible with almost constant node bandwidth, if the distribu-

tion of the source-destination (S-D) pairs is such that the average hops per communication is small
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enough.

We consider the same 2-D framework as in [1]. Servetto in [6] observes that the scalability

in sensor networks of arbitrary size is achievable as long as the rate at which nodes generate

information decays faster then the throughput of the network. However, we note that it is not

the fact of correlated sources which is most fundamental to this result, but rather the S-D pair

distribution.

Observation III.1: For the 2-D geometric model defined in [1], the average distance between

source and destination should be O( 1√
n log n

) .

Clearly, in order for the average throughput per node to be constant, the average number of hops

between source and destination should grow as O (1). This follows immediately by observing that

this criterion is necessary for transport capacity meeting the upper bound of
√
n log n.

1) Example of a distribution that achieves the non-increasing average number of hops with n:

Consider a network with n nodes randomly distributed over an unbounded area with some particu-

lar distribution as follows(Figure 2). The x and y coordinates of the node locations are independent

Gaussian distributions with zero mean and variance σ2. Defining R as the transmission range of

each node, the probability density function (pdf) of the link distance, r, between any two arbitrary

nodes is given by:

pr(r) =
r

2σ2
e−r2/4σ2

(1)

The derivation for the pdf of the link distance can be found in [16]. [16] also considers the case

when x and y coordinates have different variances.

The probability of a 2-hop connection between an arbitrary source and destination pair is given
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R 

Fig. 2. Random Network with dispersion parameter σ, transmission range R.

by [17]:

P2 = Pr{1 → 2 in 2 hops}

= Pr{R < r < 2R and at least one other node in the area of intersection

=

∫∫∫

︸ ︷︷ ︸

R<r<2R

px,y(x1, y1, x2, y2)

×








1 −








1 −
∫ ∫

︸︷︷︸

A(x1,y1,x2,y2)

px,y(x3, y3)dx3dy3








n−2





dx1dy1dx2dy2 (2)

As n→ ∞, (2) can be approximated with the following upper bound [17]:

P2 < P2∞ =

∫ R2/σ2

R2/4σ2

e−νdνP2∞ = e−R2/4σ2 − e−R2/σ2

(3)

Similarly, the asymptotic probability of an m-hop connection is given by:

Pm < Pm∞ = e(m−1)2R2/4σ2 − em2R2/4σ2

(4)
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Miller [17] then showed that the average number of hops between node pair can be calculated as,

E{h} =
n−1∑

m=1

mPm <

∞∑

m=1

mPm∞ (5)

E{h} <
∞∑

m=0

e
− m2

4γ2
.
= h+(γ) (6)

where γ is the mobile dispersion given by γ = σ/R. Using the non-linear regression techniques

and subsequent linearization, the asymptotic average number of hops for random source destination

pair is,

h+(γ) ≈ 0.5 + 1.772(σ/R) (7)

In terms of actual distance, we simply multiply by the transmission range of each node R, to upper

bound the average hop distance per transmitted bit by

E{h} < R
(

0.5 + 1.772
σ

R

)

(8)

The average hop distance in (8) is for an unbounded disk. Since the nodes in the scenario described

earlier are zero-mean Gaussian distributed, 99.7% of all the nodes are expected to lie within a 3σ

radius of the center. The resulting area of the disk of radius 3σ is 9πσ2. We therefore scale the

result in (8) by this factor. Also note, that the average hop distance is consistent with the framework

of Gupta and Kumar [1],

H =
R

9πσ2

(

0.5 + 1.772
σ

R

)

(9)

which is independent of n.

Hence, the zero-mean truncated Gaussian is one of the many distributions that achieve the finite

per node capacity for the geometric model of [1].
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Our approach is based on results in [6], but one can find the similar results with the alternative

approach in [11]. J. Li, et. al. in [11] show that the traffic pattern determines whether an ad hoc

network’s per-node capacity will scale to large networks. In particular, they show that for the total

capacity to scale up with network size the average distance between source and destination nodes

must remain small as the network grows. If local communication predominates, path lengths could

remain nearly constant as the network grows leading to a constant per-node available throughput

[18].

In practice, scalability can be achieved in two basic ways:

1) Local cooperative processing to produce decisions (e. g. in sensor networks).

2) Adding communications hierarchy so that communications in each level is local (e. g. telecom-

munication network).

The latter of course requires additional resources, but typically also provides latency benefits.

IV. CONSEQUENCES OF DECOUPLING SOURCE, SENSOR AND RELAY DENSITIES

Along with the ways to approach network scalability, another interesting question is the feasible

rate region under a fidelity criterion. We now find the rate region for a wireless sensor network with

finite point sources and under a fidelity criterion and discuss the consequences of spatial source

separation in dense networks.

In sensor networks, the basic problem is to extract measurements of some physical phenomenon,

to some desired level of fidelity, subject to constraints on energy consumption and bandwidth

(resources). Nodes may also have explicit limits on signal processing and storage, which we

will neglect here. By considering source, sensor and communications relay densities separately,

we show that extraction of such information can be easily achieved without the requirement of
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Fig. 3. The coding system with partial side information at the decoder

complicated joint source-channel coding schemes, in the limit of high sensor and relay densities.

Further, this formulation admits simple classification of a broad set of network information theory

problems.

Before we cite our main results, we shall define some preliminaries required for our formulation.

A. Preliminaries

1) Coding System with Partial Side Information at the Decoder [19]: Consider the system as

shown in figure 3.

X and Y are correlated memoryless Gaussian sources with squared distortion measures. For

analytical simplicity, the observation data is assumed to be Gaussian. The challenge is to determine

appropriate codes and data rates such that the gateway/data-fusion center can reproduce the data

from the main node using the other node as a source of partial node information, subject to some

distortion criterion. At the decoder we reproduce only X and do not care about Y . Rather, Y

acts as a helper to reproduce X by providing side information at the data fusion node with some

distortion criterion. This is the so-called partial side information problem.

2) Rate Distortion for the partial side information problem for Gaussian Source [19]: The

main source, X , and a partial side information correlated source, Y (see Figure 3), {(Xt, Yt)}∞t=1
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are stationary Gaussian memoryless sources, for each observation time, t = 1, 2, 3, . . .. Let the

random pair (Xt, Yt) take values in X × Y . The probability density function (pdf) pXY (x, y) is

given by

pXY (x, y) =
1

2π|Λ|1/2
exp

{

−1

2
~xΛ−1T~x

}

where ~x = (x, y) ∈ X × Y and Λ is a covariance matrix defined by

Λ =







σ2
X ρσXσY

ρσXσY σ2
Y






, − 1 < ρ < 1 (10)

Let us denote independent copies of {Xt}∞t=1 as Xn = {X1, X2, . . . , Xn} and that of {Yt}∞t=1,

as Y n = {Y1, Y2, . . . , Yn}. Consider a coding system where data sequences Xn, Y n are separately

encoded to ϕ1 (Xn), ϕ2 (Y n) and sent to an information processing/data fusion center. The decoder

function ψ = (ψ1, ψ2) observes (ϕ1 (Xn) , ϕ2 (Y n)) and estimates
(

X̂n, Ŷ n
)

. Let Fn,δ (R1, R2)

denote the set of all such coding and decoding schemes, (ϕ1, ϕ2, ψ), which can exist with the

properties mentioned above. Let,

d1 : X 2 → [0,∞), d2 : Y2 → [0,∞) (11)

define the distortion measures, which in our case is the squared distortion measure. The average

distortions ∆1 and ∆2 are given by,

∆1 = E

{

1

n

n∑

t=1

d1

(

Xt, X̂t

)
}

∆2 = E

{

1

n

n∑

t=1

d2

(

Yt, Ŷt

)
}

Then for given positive numbers D1 and D2, a rate pair (R1, R2), is admissible if for any δ > 0,

n ≥ n0 (δ), there exists a triple

(ϕ1, ϕ2, ψ) ∈ Fn,δ (R1, R2)
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such that ∆i ≤ Di + δ, i = 1, 2.

Note, that D2 can be large as we do not care about the reproduction of Y . For an encoding

system using Y as a helper, the rate distortion region is given by:

R (D1) = {(R1, R2) : (R1, R2) is admissible} (12)

For the special case of the correlated Gaussian sources, the following theorem applies [19]:

Theorem IV.1: Consider the following encoding functions:

ϕ1 : Xn → C1 = {1, . . . , C1} ,

ϕ2 : Y n → C2 = {1, . . . , C2} ,

to be such that the rate constraints being satisfied are

1

n
logCi ≤ Ri + δ, i = 1, 2

then for an admissible rate (R1, R2) and for some D2 > 0, the partial side information at the

decoder coding system data rates for correlated Gaussian sources can be fused to yield an effective

data rate (with respect to source X) satisfying the following lower bound

R1 (D1) ≥
1

2
log+

[
σ2

X

D1

(
1 − ρ2 + ρ22−2R2

)
]

(13)

where log+ x = max {log x, 0}. This is the desired rate region.

The proof of the Theorem IV.1 can be found in [19]. Note that when there is no helper, (13)

collapses to the classic Gaussian rate-distortion expression [20].

B. Spatial Source Separation

Consider any two dimensional region, S, with m Gaussian point sources (Figure 4) where m <

∞. The point sources are spread over a region S with some random distribution.
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Fig. 5. A region S with Gaussian point sources and sensors of O(m)

Consider p <∞ randomly distributed sensors in the region S to fulfill the functions of gathering

information. Also, the sensors are assumed to be iid in location. Furthermore, the distribution by

which the sensors are deployed is assumed to have positive density at every point over S (Figure 5).

We also assume that power decays with distance.

The challenge is to find the rate distortion bound of such a network. In other words, we need

to know the achievable distortion D (R), for the above described sensor network model. The

distortion measure is assumed to be squared error as in Section IV-A.

When the number of sensor nodes in the network is of O (m), where m is the number of finite
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Gaussian point sources, not all D are achievable regardless of the rate constraints, since sensors

may not be close enough to sources. Also, not all the rates are achievable because capacity may not

be sufficient. Here, there is an interference among information streams and in the signals received

by each sensor and so a joint source-channel coding approach would be needed to achieve a large

fraction of the rate region. There is little prospect of actually implementing such a system for large

m, although clearly it is a rich regime for future research. The concept of joint source-channel

coding is well described in [15].

For the network in Figure 5, the rate distortion bound is a hard problem to solve even for the case

of Gaussian point sources. But, it can be readily converted to a simple formulation by increasing

the density of sensor nodes i.e. allowing sensor nodes, p, to go to infinity (p → ∞). This is

depicted in Figure 6.

As p → ∞, we will have at least one sensor node in very close vicinity to the point source.

In this scenario, the rate distortion bound for the network reduces to the individual rate distortion

bounds, for each point source. Hence, we have the separation of point sources in the network.

The clear distinction of our approach from [6], [7] is that we do not need every node to gather
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information, only the closest. We could, for lower distortion, use partial side information at the

decoder from a correlated sensor node for the rate-distortion coding locally to each point source.

This is sufficient to achieve desired distortion level D.

Proposition IV.2: For the network in Figure 6, as the number of sensors, p, goes to infinity, there

exists at least one sensor node in a very close vicinity of the point sources with probability 1. Here,

we have an assumption that sensor nodes are iid with distribution, F , having positive density at

every point on region S.

Proof: SinceF has positive density at every point in S, for any δ > 0, ∃B1 s.t. P (||Xi −B1|| < δ) =

ε > 0, where Xi is the sensor node and B1 is the point source.

P (||Xi −B1|| < δ ∀i) = 1 − P (||Xi −B1|| ≥ δ ∀i)

= 1 − P (||X1 −B1|| ≥ δ)p

→ 1 as p→ ∞

(14)

Theorem IV.3—(Source Separation): A network with finite Gaussian point sources, say m, and

number of sensor nodes, p, going to infinity can be considered as a network withm separate coding

systems with partial side information at the decoder. We assume that power decays at least as the

square of the distance.

Proof: The proof follows from Proposition IV.2. Since p→ ∞, the frequency re-use distance

goes to zero and thus there is no interference between information pathways through the network.

Hence, a simple relay is adequate for carrying the traffic even if it is not capacity achieving. For

the nodes that are in very close vicinity to the Gaussian point sources, SNR for those nodes goes to

infinity. So, any value of distortion, D, will be achievable and there is no substantial interference

among sources. Hence, local processing will be sufficient. In the scenario considered here, each
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Gaussian point source can be separated from the rest and source coding can be posed as a partial

side information problem. This is because Gaussian point sources are independent of each other.

Since we have m point sources in the network of Figure 6, it can be seen as m separate coding

system with partial side information at the decoder for the correlated Gaussian sources.

The assumption that the signal decays with distance faster than some rate is required to avoid

interference growing without bound for large fields of sources. This assumption is quite reasonable

for typical deployments of sensor networks for many physical phenomena of interest.

From Theorem IV.3 and limiting cooperation to only two nodes per source, it is evident that the

data rate, RXi
, i = 1, 2, , . . . ,m, associated with each point source is given by

RXi
(DXi

) ≥ 1

2
log+

[
σ2

Xi

DXi

(
1 − ρ2 + ρ22−2RYi

)
]

(15)

where Xi is the main source and Yi is a helper such that (i = {1, 2, . . . ,m}). The rate distortion

bound for the network will be the ensemble over the position of all the point sources. Clearly,

extending to the q-helpers per source (q > 1), lower distortions would be achievable for a given

density of sensors.

In terms of achievable distortion for a point source we have,

DXi
(RXi

) ≥ σ2
Xi

22RXi

[
σ2

Xi

DXi

(
1 − ρ2 + ρ22−2RYi

)
]

(16)

for i = {1, 2, . . . ,m}.

The achievable distortion for the network will be D =
∑m

i=1DXi
. For a point source, if we fix

the node density and allow an algorithm to select a node closest to the source while making the

rest of the nodes inactive, it is less likely to achieve the desired distortion. But this approach is a

practical way to deal with achieving the desired distortion, at the cost of increased density.
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Source
SensorSource Separation

Fig. 7. Gaussian distributed sources and sensor nodes

Note that we consider only those sensor nodes that are near to the source and it is sufficient to

have only partial side information at the decoder. Consider a source and node distribution as shown

in Figure 7. Consider the case of determining the achievable rate for a desired distortion level 0.4

a partial side information at the decoder. The covariance matrix is given by,






3 2

2 4







The correlation between the main source X and helper Y is ρXY = 1/
√

3. The minimum rate at

which Y needs to transmit the information is RY = 1.5. From (15), the rate at which X needs to

transmit to achieve the desired distortion level is RX ≥ 1.205.

To illustrate the source separation, consider the multi terminal system shown in Figure 8. A

portion of a distributed cluster of sensor nodes is observing a phenomenon and generating source

data. Algorithms exist which can determine which nodes in the proximity of the phenomenon need

to be activated and which can remain dormant [21], [20]. On the completion of a boot up process,

one data node acts as the main data source (e. g. that which is closest to the phenomenon), and a
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Fig. 8. Data fusion for Wireless Networked Sensor System

node close to main data source generates correlated data. Hence, the other node acts as a source of

partial information at the decoder. Here, we consider an example of only one source but this can

be easily extended for m sources.

Now it is also possible that for given values of m, p and D, the capacity of the network may

be inadequate. However, by allowing the number of communication relays n � p then the infor-

mation can be extracted. Large over-provisioning will enable decoupling of source and channel

coding.

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the issues of scalability, and extraction of the measurements of

a physical phenomenon to a desired level of fidelity by sensor networks. We show that these issues

can be tackled by considering the relative densities of sources, communication relays and sensors.

The results are summarized in Table I.

Scalability can be controlled by making the S-D pair distribution peaked to local. When this

occurs, the local interactions will dominate resources. Thus, the cooperative signal processing

and communication problems are most profitably considered in these local domains - the typical

interactions (that are application specific) thus may involve relatively small numbers of nodes.
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TABLE I

SUMMARY OF MAIN RESULTS

Question Asked Source

Density

Relay Den-

sity

Sensor

Density

Solution

Scalability? Same Same Same only if we make S-D pair

distribution local

Information Extraction? Fixed Same Same only if correlation increases

fast enough [6]

Scalability and Informa-

tion Extraction?

Fixed Traffic

Dependent

Distortion

Dependent

Yes by Source Separation

Further, even though the optimization may be intricate, it is feasible because of the small numbers.

The adjustment in S-D pair distribution for scalability can be done directly through cooperative

signal processing to bias high volume traffic to local destinations. Average delay may also be

controlled by adjusting the S-D pair distribution by biasing towards closer nodes, but this does not

help with peak delay.

For sensor networks, we believe the main objective is information extraction to some level of

fidelity. We show that the objective of scalability and information extraction under a distortion

criterion is attainable by the independent play of the relative densities of sensors, sources and re-

lays. For this we consider a network of m Gaussian point sources, p sensors and n communication

relays over a finite region and show that the rate-distortion bound for such a network can be found
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by a set of q-helper problems as p → ∞. The case n � p � m is easy to deal with. For such

cases, we consider the decoupling of source, relays and sensor densities to achieve any distortion

level D as p→ ∞. This is the idea of source separation. The source separation leads to the useful

abstraction that the scale for specialized communications and signal processing for linkage to the

physical world need not be large in the limit of high sensor density relative to the source density. At

the networking and higher layers, the standard approaches for large scale networks can be utilized.

The cases where n ≈ p ≈ m are much more difficult problems. This is because as we approach

the critical sampling density (such as Nyquist sampling), larger scale interactions are required, and

the communication and source coding become tightly coupled. If the number of sensors is limited,

certain distortion values are not achievable regardless of the data rate available. Notice that both

distortion and capacity must be considered jointly since the data rate must also be achievable,

and if we use some efficient scheme, we might use fewer resources in extracting the necessary

information. Such problems remain both open and interesting.

There also remain a large set of open problems with varying ratios of n, p and m. For example,

given a distortion level (spatial and value), what is the minimum density of sensors required?

There are many such resource optimization problems that will differ in character according to

communication resources and source densities. Among the optimization parameters are energy,

bandwidth and latency. The extension to non-Gaussian sources may also be challenging.

While in this paper we consider point sources, we believe that very similar results may be ob-

tained for distributed sources subject to fidelity constraints.
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