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Understanding ligand-receptor non-covalent binding kinetics 
using molecular modeling

Zhiye Tang1, Christopher C. Roberts1, and Chia-en A. Chang1

1Department of Chemistry, University of California, Riverside, CA 92521

Abstract

Kinetic properties may serve as critical differentiators and predictors of drug efficacy and safety, in 

addition to the traditionally focused binding affinity. However the quantitative structure-kinetics 

relationship (QSKR) for modeling and ligand design is still poorly understood. This review 

provides an introduction to the kinetics of drug binding from a fundamental chemistry perspective. 

We focus on recent developments of computational tools and their applications to non-covalent 

binding kinetics.

Keywords

Residence Time; Enhanced Molecular Dynamics; Brownian Dynamics; Drug Discovery; Host-
guest

2. INTRODUCTION

Traditionally, a dominant criterion for selecting drug candidates is ligand-protein binding 

affinity, the thermodynamic property that describes how tight a ligand can bind to its target 

protein. This criterion has been used with the understanding that a drug must have strong 

affinity to successfully compete with the natural substrate binding to the same target. 

However high affinity does not always lead to a successful drug because candidates solely 

selected by strong binding affinity may have unexpected in vivo clinical efficacy (1). One 

important fact from the studies is that the drug efficacy correlates with dissociation rate 

constant better than the equilibrium constant which is the ratio of association and 

dissociation rate constants (2). These experiences over the past decades have led researchers 

to realize that the kinetic properties of a drug candidate, more specifically, how fast the drug 

associates into the binding site and how long it stays there, sometimes is equally important 

to its thermodynamic properties (2–5). Despite the comprehension of the importance of the 

kinetics in drug design, a concrete recipe of kinetic effects remains as an open question due 

to the intrinsic difficulties of this issue. Experimental investigation of drug-protein binding is 

usually done by in vitro studies (6, 7), mutagenesis (8, 9), and structural biology (10, 11).
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Computational modeling is a powerful tool to study drug-protein binding kinetics. It is 

capable of describing molecular systems with atomistic details while exploring the motions 

of the systems at femtosecond to microsecond time-scale. These advantages have resulted in 

high applicability to the drug discovery field in the recent years. However, the 

computationally determined kinetics is sometimes faster than experimental values. In some 

scenarios, where the binding kinetics are calculated using rigid body approximation (12), the 

slow conformational changes of the protein and the ligand are ignored and thus the kinetics 

is overestimated. In other scenarios, where flexible systems are studied using explicit solvent 

model. Two factors make the kinetics faster than experimental values. First, the commonly 

used non-polarizable force field tends to underestimate the hydrogen bonds between charged 

residues in the protein and water molecules and thus accelerates the protein conformational 

changes (13). Second, the kinetics of long timed events are usually extrapolated from 

simulations of short transitions (14), resulting in large errors. Therefore, the theoretical 

methods generally overestimate the kinetics of protein-ligand binding, and researchers 

continue to develop new strategies and tools to provide more accurate calculations.

Thermodynamic properties and specific interactions that increase drug-binding affinities 

have been widely applied in structure-based drug design (15–17). For example, scientists 

can successfully design tighter binders by reducing conformational entropic penalty or by 

introducing new hydrogen bonding (18–20). However, a rationality of the effects that 

significantly alter the association/dissociation rates has not yet been established. For the past 

few years, attempts (4, 21–23) have been made towards developing this rationality, but 

difficulties have slowed down the pace of developing systematic strategies for designing 

inhibitors with desired binding kinetics. Drug-protein binding/unbinding usually involves 

conformational changes that occur on the timescale of microseconds (21) or even longer. 

High energy barriers to binding and rough free energy surfaces naturally contribute to slow 

association/dissociation rates, which sometimes may be on the scale of seconds or even 

days. Both of these assert challenges to contemporary computational power in sampling the 

dynamics of drug-protein binding, which can only simulate conformational changes in the 

microsecond range (22, 24–26). Furthermore, even if the conformational changes are 

sampled, the extraction of kinetics, or probability of state transitions, remains as the second 

obstacle before rationalized design of drugs. Therefore development of more advanced 

sampling methods and kinetic models is a necessity in the drug design field.

Among the attempts towards determining drug binding kinetics with computational tools, 

several categories of methods can be distinguished. Stochastic methods sample both 

equilibrium and non-equilibrium states and thus provides insights into non-covalent 

interactions (27–39). Normal mode or contact map based kinetic network models also reveal 

some large scale motions of proteins (39–42). Another major category is molecular 

dynamics (MD) based methods (43–46), which not only sample conformational changes and 

the association/dissociation of the ligands, but also provides straightforward and insightful 

information on the kinetics in the time domain. Therefore numerous efforts have been spent 

on MD-based methods despite of the current timescale limitation in those methods.

Here we review the recent development of computational methods for investigating non-

covalent binding kinetics. The review starts with an introduction on non-covalent ligand-
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receptor binding kinetics from a fundamental chemistry perspective. We will also discuss 

conformational sampling methods and kinetic models. Several examples of investigated 

systems are reviewed.

3. BACKGROUND FOR NON-COVALENT BINDING KINETICS

The protein-drug binding process can be demonstrated by a two state model composed of 

free and bound states, which represent the abstract process of binding with all the 

intermediate steps represented by a single energy barrier. The rate of association and 

dissociation are characterized by the rate constants kon and koff, respectively. A 

representative association process is shown in the equation below (where R stands for the 

receptor, and L stands for the ligand). The forward process is a second order process because 

of the two associating molecules. On the other hand, dissociation, the reverse process of 

association, is a first order process. The two rate constants are related to the equilibrium 

constant (Keq) and further to the binding affinity (ΔG) by the equations below. Faster 

association or slower dissociation leads to a larger equilibrium constant, which implies a 

stronger drug binding to the target protein. The recently defined residence time (tR) (2, 3, 5) 

is directly related to the dissociation rate constant, which can be rigorously derived from the 

first order kinetics of the dissociation.

It is noticeable from the equations that the equilibrium constant is the ratio of the two rate 

constants. Therefore, even if two drugs have the same binding affinity to their target protein, 

binding kinetics can be significantly different from one another (Figure 1). In addition, the 

binding affinity can be tuned by changing either the association or dissociation rate without 

affecting the other. However, this is not necessarily achievable in practice considering the 

complex environment of the binding pathway. From the perspective of chemistry, non-

covalent binding kinetics share the same concept as that for the transition state theory widely 

used for chemical reactions, in which the rates are governed by energy barriers. In Figure 1, 

two systems with exactly the same binding affinity are shown in the plot of free energy 

versus reaction coordinate. Despite having the same binding affinity, the energy barriers are 

different for association and dissociation processes, thus resulting in different values for kon 

and koff.

In real protein-drug systems, the actual binding free energy profile is much more 

complicated than the single barrier model. This results from the convoluted conformational 

changes, intramolecular and intermolecular interactions, solvent effects, and changes of 

entropy involved in the association/dissociation pathways. Firstly these details reshape the 

free energy profile by introducing multiple small barriers that can be overcome by thermal 

fluctuation energies rather than one single dominant insurmountable high barrier. Secondly, 

the rough free energy surface also creates a series of stable or metastable intermediate states, 

which may in turn contribute to the slow kinetics by constant back and forth transitions. Due 
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to the presence of the rough free energy surface, kon and koff are simply a net effect from the 

complex network of transitions between multiple conformational minima, which requires 

more sophisticated treatment than a two state model.

4. SIGNIFICANCE IN CONSIDERING BINDING KINETICS IN CLINICAL 

EFFECTIVENESS OF DRUG CANDIDATES

Kinetic properties may modulate protein function and drug activity, and are recognized as a 

critical differentiator and predictor of drug efficacy and safety (47–52). For example, for 

inhibitors binding to bacterial enoyl-ACP reductase, slow binders are preferred, with binding 

kinetics that correlate with the in vivo efficacy of compounds tested in an animal model of 

tularemia infection. In contrast, no correlation was found between Keq and in vivo efficacy 

(51, 52). Another recent example is agonists binding to adenosine A2A receptor. The 

adenosine A2A receptor belongs to the superfamily of G-protein-coupled-receptors (GPCRs) 

and a number of its ligands have been developed with several therapeutic applications. 

Although ligand-protein binding affinity was traditionally the primary guidance for drug 

development targeting GPCR, studies showed that the residence time of agonists binding to 

adenosine A2A receptor, not binding affinity, has positive correlations to functional efficacy 

(53). Another GPCR, the muscarinic M3 receptor, also showed a correlation between ligand 

binding residence time and agonist efficacy (54).

Kinetic properties may also contribute to developing drugs that have decreased susceptibility 

to protein mutations or have increased specificity to their target proteins. For example, 

compared with other HIV-1 protease inhibitors with the same ΔG, darunavir, a very slow 

binder, is a more potent inhibitor of viral replication with high barriers to resistance (55). 

The area that has prospect to utilize correlations between kinetics and pharmacodynamics is 

kinase inhibitor design. Inhibitors binding to the DFG motif of kinases, either binding to 

DFG-in or DFG-out conformations, have been associated with fast/slow binding kinetics 

(56, 57). Potent and selective inhibitors have been designed that target p38 MAP kinase for 

chronic obstructive pulmonary disease (COPD), with an emphasis on slow protein 

dissociation kinetics to deliver prolonged lung p38 inhibition (58). Compared with 

experimental assays for kinetic profiling, thermodynamic equilibrium constants, Kd or Ki, or 

IC50, are relatively easy to measure. However, experimental methods for determine drug 

binding kinetics are becoming faster and less expensive; therefore, a greater understanding 

of molecular determinants of binding kinetics is crucial to further assist structure-based drug 

design.

5. COMPUTATIONAL TOOLS FOR SIMULATING DRUG-PROTEIN BINDING 

KINETICS

5.1. Conventional molecular dynamics simulations

Conventional molecular dynamics, a standard and robust technique which has been well 

established in the past century, is a method that describes a molecular system with harmonic 

approximations and evolves the coordinates of the atoms in the system with time under the 

government of classical mechanics.
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In a typical force field model for protein systems, for example the AMBER force field (43, 

59), the potential energy of molecules is described by harmonic bond and angle terms, a 

cosine dihedral torsion term, a Lennard-Jones van der Waals (vdW) term and a Coulombic 

electrostatics term. In other force fields, additional terms or other functional forms may be 

used for more detailed description of molecular systems. In general a classical force field 

model is unable to capture breakage or formation of a bond (i.e. a hydrogen transfer, or 

strong quantum effect like electron transfer), but it is capable of modeling the local or 

allosteric conformational changes and non-bonded interactions.

In classical mechanics, the motion of a system is governed by Newton’s equation. 

Integration of force along time is done by the finite difference numerical method, and the 

coordinates of atoms in the system are updated correspondingly so that the motion of the 

system is produced. At each step the force on each atom is calculated and the atom 

coordinates are updated by integrating Newton’s equation with the calculated force. Certain 

methods (60–65) that simulate a heat bath environment are applied to ensure the 

thermodynamic stability of the isolated system. In an all-atom simulation, the integration 

time step is usually limited to 1 or 2 femtoseconds due to the fast motion of hydrogen atoms. 

This results in the shortcomings of the conventional MD method, which limits the timescale 

that it can practically achieve. Without accelerating techniques, the timescale that 

conventional MD can reach is limited to microseconds with contemporary hardware (22, 24–

26) leaving a large gap to the timescale of protein motion of interest. However despite the 

limitations of timescale of conventional molecular dynamics, there have been important 

discoveries and progress over the past years.

Since the first atomistic MD for a protein was performed in 1977 (66), MD has been used to 

investigate the behavior of proteins, regardless of the timescale limitation of MD (67). To 

extend the time range while retaining a reasonable atomistic level description of the system, 

many studies were performed with an implicit solvent model. Implicit water models are well 

known to significantly speed up slow dynamics (68–70). This allows the study of allosteric 

effects or slow conformational changes in microsecond or even millisecond time scale with 

limited computational resources. However, it has been known that water molecules play 

crucial roles in protein dynamics (71–75) due to the importance of viscosity, hydrogen 

bonds, and water bridges in protein dynamics. As a result, although MD simulations using 
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implicit water models can provide important information, in some cases, it may fail to 

capture certain dynamics from direct correlation with explicit water molecules.

Recently, computational speed has grown rapidly with the introduction of parallel computing 

based on graphic processor unit (GPU) computing techniques and specialized computing 

machines. This enabled study of the complete drug binding process of a transition state 

analogue to purine nucleoside phosphorylase (PNP) by microsecond level MD simulations 

with the aid of machine learning (22) on GPUs (76). Peptide recognition by protein domain 

was studied by microsecond MD simulation with parallel computing (77). The dewetting 

effect of a protein pocket was also investigated by GPU accelerated MD (78). The effect 

from N-myristylation and ligand binding to the catalytic subunit of protein kinase A was 

also studied by GPU accelerated MD simulation (79). With the Anton machine (24, 80) it is 

possible to study the protein dynamics on a millisecond timescale (81).

Besides the increasing computational power, various modeling techniques have been 

developed to accelerate simulations and/or to sample rare events during ligand binding 

processes. Reseeding techniques attempt to avoid equilibrium traps in MD simulations by 

detecting trapped simulations, stopping them, and restarting the dynamics from more 

promising thermodynamic states. The choice of restart condition in reseeding techniques is 

carried out by various methods including RMSD (82), principal component analysis (PCA) 

(83), conformational clustering (84), progress index (85), and free energy (86).

5.2. Enhanced molecular dynamics simulations

Considering the current limitation of conventional MD at the millisecond timescale, 

conventional MD itself is under question as to its practical applicability. Therefore a wide 

diversity of MD variants has been developed over the past decade.

The first class of such MD variants relies on the fact that the conformational changes happen 

slowly due to high free energy barriers, and aims to lower the energy barrier or smooth the 

potential energy surface itself. The most obvious approach is to coarse grain the atomistic 

model into a residue bead model (87–89), but this method loses the atomistic details and can 

only provide a reference about the overall motions of the system. Other early works used the 

locally enhanced sampling technique that focused on residues important to binding to 

accelerate dissociation pathways (90, 91). Hyperdynamics was the first implementation of 

an algorithm to raise the potential energy well of the dihedral torsions so that the 

conformational changes happen much easier than the original model (92). Accelerated MD 

(93) was built on similar principals. Similarly its natural variant RaMD-db (94) aims at 

accelerating the most relevant portion of the system. Regarding the force field, a softcore 

force field was developed to allow easier motion at the region of interest intrinsically (95). A 

scaled potential was used to estimate the kinetics of ligand dissociation (96). Recently, a 

Gaussian accelerated MD (GaMD) method was developed by using Gaussian functions to 

boost the conformational transition in protein systems, in a way similar to accelerated MD 

(97), so that the Gaussian functions alleviate the potential energy wells.

A second group of MD variants enhance sampling by employing additional forces that pull a 

ligand from its binding site. This group includes steered MD (98, 99) and target MD (100) 
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methods, which drive the conformational change to or away from some predefined states. A 

popular method in the past decade for enhanced sampling is metadynamics (92, 101, 102). 

Instead of using Gaussian functions to systematically alleviate the potential energy surface 

of the system, it utilizes the Gaussian functions to raise the potential energy surface of the 

readily sampled regions so that the sampling evolves to unvisited, originally high energy 

portion of the potential energy surface, such as an energy barrier. However, collective 

variables must faithfully reproduce the reaction coordinates and distinguish the states of 

interests efficiently, which limits the applicability of metadynamics. Another method related 

to metadynamics is known as self-guided Langevin dynamics (SGLD) (103, 104). It 

distinguishes from metadynamics in that it needs no pre-knowledge of the system. It 

accumulates the random force on the system for a directional force and enhances the low 

frequency motion of the system by applying that additional force back to the system.

There exist several other important related computational methods. LowModeMD (105) 

embeds low frequency modes from normal mode analysis into the velocity of MD 

simulations to allow low frequency transitions to happen. Transition interface sampling 

(106) is based on the idea of the transition path sampling method and allows intensive 

sampling at the transition interface, and extracts the kinetics from the direct probability 

measurement. Replica exchange molecular dynamics (REMD) (107, 108) was developed on 

the idea that in high temperature or low interaction ensembles the system evolves with a 

faster speed than room temperature ensemble.

5.3. Brownian dynamics simulations

Bimolecular association kinetics are of particular interest to the study of biochemical 

systems due to the ubiquitous nature of protein-protein and substrate-receptor association 

events in vivo. Computational methods to characterize the kinetics of molecular association 

processes have been in development for many years. Brownian dynamics (BD) has been a 

common approach to simulating the diffusional encounter of a ligand and receptor system 

for several decades. The most direct way to determine association kinetics with BD is to 

perform many simulations of a model system at a specific concentration and calculate the 

rate of association through the inverse of the average association time of a specific pair of 

molecules. However, this approach suffers from a lack of computational practicality due to 

the dilute nature of many biological and experimental conditions, and suffers from problems 

of convergence due to the rare-event nature of binding processes. The “NAM” method, 

named after the authors Northrup, Allison, and McCammon, established the means to 

estimate the second-order bimolecular association rate constant of a substrate-receptor pair 

through BD simulations (109–111). In this scheme, many replicate substrate simulations 

start from a distance b from a molecular receptor, and through the propagation of Brownian 

motion either the substrates diffuse away from the receptor and escape at an exit distance q, 

or “bind” by diffusing to the target receptor and satisfying a binding criterion. The fraction 

of trajectories resulting in binding events is used to scale the analytical approximation of 

diffusion limited association from the distance b. A spherical recombination probability is 

also included to account for the small fraction of substrate that diffuse beyond the exit radius 

q before returning to, and binding with, the receptor. While this method focuses on the 

relevant configuration space, the primary challenge with this approach is still to sufficiently 
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sample configuration space to accurately describe the probability of the encounter of a 

ligand to the active site of a receptor. This approach typically requires the simulation of 

many thousands of Brownian trajectories for a reaction probability to converge.

Algorithms have been formulated to bias or weight BD trajectories in such a way as to 

accelerate the sampling of rare events. The biased BD method proposed by Zhou et al. 
introduces a biasing force to the BD simulation, increasing the probability of substrate-

active site encounter leading to faster convergence (112). Trajectories are then statistically 

weighted in an attempt to remove the effect of the biasing force from the results. The 

Weighted-ensemble Brownian dynamics (WEB dynamics) approach, proposed by Huber and 

Kim, attempts to efficiently sample the bimolecular configuration space by replacing a 

single instance of one molecule with an ensemble of psuedoparticles with variable statistical 

weights (113). These pseudoparticles are distributed evenly into bins that are located along a 

reaction coordinate. The statistical weights of particles are assigned according to the 

Boltzmann distribution, giving particles in regions of higher energy lower statistical weights. 

This allows for additional sampling of regions of low probability, such as the top of a free 

energy barrier, without over-weighting rare events (114). This method has proven to 

accurately determine association rate constants relative to the NAM method. The algorithm 

itself has also found use in the Brownian dynamics of protein folding (115).

The University of Houston Brownian Dynamics package (UHBD) and the MacroDox 

package were early expressions of the “NAM” method and related algorithms using flexible 

chain molecular models, and enabled a large body of computational studies (116–126). 

BrownMove contains similar functionality and also includes flexible definition of molecular 

structure (127). The Simulation of Diffusional Association (SDA) package additionally 

applies the “NAM” method to determine protein-protein association rates under rigid-body 

constraints (128, 129). SDA has been used extensively for this purpose, and has been 

modified to accommodate the investigation of protein-DNA and protein-RNA association 

(130–137). Similarly, BrownDye is designed as general purpose rigid-body bimolecular 

association rate calculation software, with support for standard and weighted BD 

simulations, and is capable of lending insight into subtle processes such as substrate 

channeling (118, 138–140). Also operating under the rigid-body approximation, GeomBD 

specifically focuses on simulating and characterizing intermediate substrate transfer 

processes in multi-receptor systems, calculating first-order rate constants for each 

intermediate transfer step in a series of receptors (141, 142). Large all-atom molecular 

constructs and nanostructures such as DNA origami scaffolds can be included in GeomBD 

simulations through parallel acceleration and precomputation of potential grids.

5.4. Other computational approaches

Milestoning is a multi-scale method for determining the association rate constant of a 

bimolecular system (143, 144). It brings together Brownian dynamics (BD) and molecular 

dynamics (MD) by dividing the configuration space around a receptor into a diffusive BD 

region and a detailed MD region. The MD region is further divided into concentric spherical 

“milestone” states surrounding a defined binding surface. Combining statistically derived 
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information from both BD and MD simulations, a bimolecular binding probability and a 

second order association rate can be calculated.

Continuum methods offer a deterministic alternative to the explicit simulation of particles in 

molecular and Brownian dynamics for determining bimolecular association kinetics. 

Continuum methods describe diffusional processes in terms of probability distributions 

through the solution of partial differential equations, such as the Smoluchowski or diffusion 

equations (145). Through these solutions, binding processes can be kinetically evaluated. 

Continuum methods are significantly faster than BD methods and do not suffer from issues 

of convergence. However, continuum methods require spherical approximation of substrate/

ligand molecules. The SMOL program is a modern biomolecule-specific continuum method 

for determining bimolecular association rate constants (146). It utilizes adaptive meshing 

and the finite element method, via FEtk (147), to solve the steady-state Smoluchowski 

equation (SSSE), arriving at results similar to those of comparable BD simulations.

Determining the pathway through which a substrate binds to a molecular receptor has been 

the subject of many studies and the focus of many computational methods due to the 

relevance in determining both thermodynamic and kinetic properties of a substrate-receptor 

pair. Approaches such as the adaptive biasing force methods calculate a potential of mean 

force in order to determine the free energy change along a reaction coordinate, through 

which an equilibrium constant can be calculated (Keq = kon/koff) (148–151). The Hopping 

Minima (HM) method was designed to determine binding or unbinding pathways for 

substrate-receptor systems, relying on thorough conformational sampling of a bimolecular 

host-guest system and normal mode calculations of the minima in internal coordinates (152). 

Normal modes of each minimum are used to generate a large set of coordinated substrate-

receptor motions. Pathways are then constructed through the combination of a series of 

coordinated motion trajectories. The results of the HM method can be used as a physically 

based reaction coordinate for guided dynamics methods and potential of mean force 

calculations. The HM method is compatible with the second generation Mining Minima 

software, thus the free energy change along the minima of the binding pathway can also be 

evaluated (153).

6. EXAMPLES OF MODELING OF LIGAND-RECEPTOR BINDING KINETICS

6.1. Ligand-cyclodextrin: direct sampling for association and dissociation pathways

With contemporary sampling techniques, it is still extremely computationally expensive to 

sample a full association or dissociation pathway for a ligand binding to a protein. Protein 

systems usually have more than 10,000 atoms and the association and dissociation rate 

constant, kon and koff, of protein-ligand systems need microsecond to second MD 

simulations. It is even more difficult to sample multiple association/dissociation events to 

obtain ensemble properties. As a result, using classical MD simulations to calculate kon and 

koff of protein-ligand systems is currently impractical. Nonetheless, with smaller host-guest 

systems such as β-cyclodextrin-ligand complexes, MD simulations are applicable to sample 

multiple association and dissociation events within reasonable computational time. Small 

molecules binding to β-cyclodextrin usually have weak binding affinities, i.e. 1-propanol 

(ΔG=−0.88 kcal/mol) (154), 1-butanol (ΔG=−1.67 kcal/mol) (154) 1-naphthylethanol (ΔG=
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−3.22 kcal/mol) (155) and 2-naphthylethanol (ΔG= 3.97 kcal/mol) (155). The kon values of 

those complexes are on the order of 108 1/M s (154–156), which is an order of magnitude 

slower than kon from a diffusion controlled association kon = ~ 109–10 1/M s. Considering 

the fact that all the ligands have similar values of kon, it is the difference in koff values that 

determines their relative binding free energies.

In most cases, binding rigidifies a molecular system (157–160). However, from our MD 

simulations, the free β-cyclodextrin is quite flexible (Figure 2), presumably due to the single 

bond (α-1,4-glycosidic bond) connected glucopyranose units. Interestingly, the β-

cyclodextrin molecule can become more flexible after binding to a compound described 

above, and the configurational entropy estimated from macrocyclic ring conformations 

increases by ~1–2 kcal/mol at 298K. The presence of a ligand perturbs β-cyclodextrin and 

the surrounding water molecules.

MD simulations also sampled various binding modes for different ligands (Figure 3). The 

small ligands can fit into the cavity of the β-cyclodextrin without any clashes or unfavorable 

vdW repulsion. Some ligands, such as 1-butanol and 1-propanol, may seem to perfectly fit 

into the cavity. However, the ligands are too small to occupy the entire space in the cavity to 

optimize the intermolecular interactions (Figure 3). Rather than gaining the attractive 

enthalpy, entropy gain from freeing water molecules and a more flexible β-cyclodextrin 

upon binding is the major driving force of binding.

Similar to a receptor, a ligand usually loses entropy during binding, including the 

translational and rotational entropy due to the confinement in the cavity of the host and the 

configurational entropy from the rigidifying the ligand upon binding. However, the MD 

simulation shows that those small ligands can retain most of the external entropy by 

tumbling and vibrating relative to the β-cyclodextrin. This is because the intermolecular 

attractions are not strong and the binding site of β-cyclodextrin is large enough for the 

ligands, comparing with most ligand-receptor binding. As a result, unlike most molecular 

systems, no entropic penalty is observed in these ligand-β-cyclodextrin binding.

In summary, the β-cyclodextrin and small compound binding is considerably different from 

a typical drug-protein system. The binding is weak and the major driving forces is entropy, 

and no significantly entropy loss was observed in both β-cyclodextrin and the ligand. 

Conventional MD simulations can sample multiple association and dissociation events. No 

significant conformational changes in the β-cyclodextrin are needed when compounds 

binding to the host, resulting in a fast computed of kon which also agree nicely with 

experimental observations.

6.2. Drug-protein binding: sampling with microsecond long MD simulations

The pathways of drug binding to G-protein-coupled receptors (GPCRs) (Figure 4) and the 

binding mechanism were investigated by conventional MD on the specialized ANTON 

machine to carry out microsecond simulation length MD simulations (161). In this work, a 

total of 21 spontaneous binding events was sampled out of 82 simulations with trajectory 

lengths ranging from 1 to 19 μs on the binding of four ligands (propranolol, alprenolol, 

dihydroalprenolol and isoproterenol) to β2 adrenergic receptor and one ligand 
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(dihydroalprenolol) to β1 adrenergic receptor. One predominant binding pathway for the four 

ligands and one rarely visited minor binding pathway were identified from post-simulation 

analysis. There exist two free energy barriers along the binding pathways. The first barrier 

lies at the region as far as 15 Å from the entrance of the GPCR, and is believed to originate 

from the desolvation of the ligand and protein. The second barrier resides at the entrance to 

the binding site, which is from increased protein conformational energy and another partial 

desolvation penalty. The ligands first spent several hundred nanoseconds searching for the 

protein entrance and crossing the first energy barrier, and then spent a longer microsecond-

level time period to finally cross the second barrier for the fully bound state. The unbinding 

pathway is suggested to be the reverse of the binding pathway due to the high similarity in 

the unique predominant binding pathway. This discovery suggested a design strategy to 

modify the heights of the two energy barriers according to their distinct origins. In addition 

to the free energy profile along the binding path, two metastable binding poses were 

discovered from the unsuccessful trajectories ending in bound states dissimilar to the crystal 

structure bound state. It is believed that the ligands would eventually undergo slow 

transitions to the fully bound state, but with proper engineering on the structure of the 

ligand, it may be possible to use these binding poses as allosteric binding sites for selective 

drug design. Although sampling of complete binding pathways is computationally very 

expensive, it will become a more routine technique with the advancements on computational 

resources.

6.3. Fast and slow inhibitors binding to HIV-1 protease: case study for binding pathways 
and mechanisms

The drug and protein binding process begins with the encounter of the two molecules by 

random walks that are often guided by intermolecular attractions. The internal motions of 

proteins may serve as a “gate” in some systems, such as the open/closed flaps of HIV-1 

protease, which controls ligand–protein association (162). In addition to being a good model 

system for gated control ligand-protein association, HIV-1 protease is among the major 

antiretroviral therapy targets for AIDS treatment. The experimentally measured association 

rate constants of inhibitor xk263 and drug ritonavir are ~109 and 106 1/Ms, respectively. 

However, the two ligands bind with similar binding affinities Kd ~ 10−9M (163). Unlike 

other protein systems such as kinases that have ligand binding pockets constructed by the 

DFG-in or DFG-out loop conformations, there is only one binding pocket for HIV-1 

protease inhibitors. The binding pathways and flap motions during ligand binding processes 

play crucial roles in determining a fast/slow binder. Coarse-grained Brownian dynamics 

simulations and detailed atomistic molecular dynamics simulations have been used to study 

the binding processes (23, 164, 165). The MD results found that generally, charge attractions 

play a key role for determining binding pathways, and the number and distribution of H-

bond donor or acceptor of a drug contribute to the binding kinetics. For example, the slow 

binder ritonavir has more H-bond donors/acceptors than the fast binding xk263. As shown in 

Figures 5 and 6, H-bond switches during ritonavir binding to HIV-1 protease slows down the 

binding process. Stable transient bridge waters can easily be found between ritonavir and 

HIV-1 protease that largely stabilize the intermediate states and slow down the progression 

of ritonavir toward the binding site. In contrast, xk263 has only a few H-bond donors/

acceptors that form significantly fewer H-bonds with the protein and bridge water 
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molecules. The non-polar interactions between the rings of xk263 and flaps of HIV-1 

protease also induce the flaps opening that accelerate ligand binding. More studies have 

been carried out to investigate the ligand binding to HIV-1 protease to reveal determinants of 

binding kinetics for fundamental research and drug design.

6.4. Cryptophane host-guest binding: other strategy to model extremely slow binding 
processes

Certain bimolecular binding and unbinding processes happen slowly due to high free energy 

barriers along the association pathway. Modeling these slow binding or unbinding pathways 

with dynamics techniques may be prohibitively expensive due to the unlikelihood of 

important transitions occurring. An exemplifying case includes the cryptophane E and 

cryptophane ES synthetic host molecules with trimethyl- and tetramethyl-ammonium guests 

(Figure 7). Cryptophane E is a cage-like molecular spheroid that is commonly used in the 

study of molecular recognition due to its propensity to bind atoms and small molecules 

(166–170). Cryptophane ES is a cryptophane E derivative in which the methoxyl gating 

arms are replaced by thiomethyl groups. This modification results in association and 

dissociation rates with the aforementioned guest molecules dropping 3 to 4 orders of 

magnitude despite having essentially identical changes in binding free energy (168). The 

rare cryptophane ES unbinding events are difficult to sample with dynamics-based methods. 

In addition to serving as model systems for understanding binding kinetics, chemical hosts 

are used as drug carriers. Therefore, the kinetics of drug-host binding is of interest for 

practical applications in pharmaceutical research.

The sampling of the binding processes of the cryptophane E and ES hosts to the trimethyl- 

and tetramethylammonium ligands has previously been modeled with the hopping minima 

(HM) method (152). HM is a non-dynamics method that treats a binding/unbinding pathway 

as a set of normal mode-based transitions between distinct host-guest conformational 

minimum energy states. Conformational search of each host-guest complex pair was 

performed with Tork, ensuring that the bound, unbound, and intermediately bound complex 

states were thoroughly sampled (171). Through derivation of the potential energy function at 

each minimum energy state, a large set of coordinated motions derived from the normal 

modes of the complex was created. Binding processes were modeled by combining motions 

representing minimum-hopping transition pathways. From the modeled binding pathway 

trajectories of the cryptophanes with each guest, it was observed that spatial restriction 

prevented facile transition of the guests through the windows of the hosts. The increased 

vdW radius of the sulfur atoms in the gating arms of cryptophane ES further restricted 

passage of guests relative to the oxygen atoms in cryptophane E. In addition, the 

conformations along each path highlight the importance of coordinated conformational 

transitions of host and guest molecules to facilitate induced-fit association processes.

7. CONCLUDING REMARKS

Computational chemistry plays an important role in understanding non-covalent binding 

kinetics. Molecular modeling tools will be even more important for studying binding 

kinetics because of recent computer hardware improvements and also the success in new 
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methodologies for longer timescale or large-amplitude sampling. Despite the technical 

varieties, most of the methods focused on three important concepts. First a reasonably 

detailed description of the system must be retained because examining detailed interactions 

is necessary to understand ligand-receptor binding kinetics. Secondly it is desirable to avoid 

the redundant sampling in the same region of the conformational space, which is also the 

major disadvantage in brute force sampling. This actually results in the many different 

methods which explore various techniques to reduce the redundancy in sampling. Finally, 

sampling efficiency can be achieved by parallelization. This could be accomplished by 

parallelization in algorithm and/or by replica exchange. In order to understand binding 

kinetics using computational methods, the first step is to search for the most popular 

association/dissociation pathways. Various post-analysis methods are then used to gain 

useful information, such as representative conformations, well defined minima, rates/

probability for crossing major energy barriers, free energy profiles and key conformational 

changes involved in the binding processes.

The examples discussed here suggest several concepts important for studying binding 

kinetics. First of all, rare events are challenging to sample because of the high energy barrier 

and the low probability of occurrence, but it is possible to capture rare events by 

contemporary sampling techniques such as accelerated MD techniques. Secondly, 

researchers may not always need to obtain a complete sampling of one trajectory for a 

ligand-receptor binding pathway. The kinetic information may be extracted from combining 

with multiple distinct sampling of the entire conformational space and some kinetic models, 

for example, the MSM model. Thirdly, water molecules are crucial and may contribute 

significantly to the kinetic behavior for a ligand binding to a receptor. The solvent plays a 

role in both enthalpy and entropy, and stable bridge waters that form intermolecular H-

bonding with both the ligand and receptor can directly alter binding kinetics.

With the constantly evolving hardware and methodologies, experiments and computer 

simulations complement with each other to bring a more complete view for complex 

chemical and biological events. Deeper understanding of non-covalent binding kinetics will 

enable more rational design of drug development.
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Figure 1. 
Representative free energy profiles along the reaction coordinate for a fast binder and a slow 

binder. Ea is the activation energy of the forward process (association) and Ed is the 

activation energy of the backward process (dissociation).
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Figure 2. 
The structure of β-cyclodextrin. The seven glucopyranose units are connected by α-1,4-

glycosidic bonds.
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Figure 3. 
The left is a superficial binding pose, and the right is a deeper binding pose with the ligand 

inside the cavity of β-cyclodextrin. The β-cyclodextrin is rendered with atom types while the 

ligand is rendered as green. In the left binding pose, the cavity of β-cyclodextrin is closed up 

by flipping of glucopyranose units. In the right binding pose, the cavity is open and some 

vacuum space is created.
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Figure 4. 
Structure of the adrenergic receptor. The entrance of the binding tunnel is shown in blue. 

The binding site is shown in green. The first energy barrier is located above the blue sphere. 

The second energy barrier is between the blue and green regions.
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Figure 5. 
Hydrogen-bond switches of ritonavir when binding to HIV-1 protease. (Top) The root mean 

square distance (RMSD) compared with the final bound state of ligand position (Red), the 

bound state of flaps (Green), and the tip distance (Black) and distance between two 

representative residues (Blue). (Middle) H-bond pairs between ritonavir and HIV-1 protease. 

(Bottom) Polar and nonpolar interactions during the binding process. The Figure is plotted 

using a trajectory from a 200 ns MD simulation with implicit-solvent model for ritonavir–

HIVp association. Notably, the same behavior that shows similar hydrogen bond switches 

can be observed during binding processes in MD simulations using both implicit and explicit 

models.
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Figure 6. 
Representative conformations of ritonavir when binding to HIV-1 protease. A, B, C, D, and 

E represent the MD snapshot for 0, 1.51, 4.04, 5.46, and 9.50 ns, respectively. The 

conformations are from the same 200 ns MD simulation with implicit-solvent model for 

ritonavir–HIVp association as in Figure 5.
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Figure 7. 
Hopping Minima resulting association pathway for Cryptophane-E with 

Tetramethylammonium guest. Three natural motion paths, represented by yellow traces, 

connect four distinct minimum states. The ligand minimum states are colored, from red to 

yellow, according to their position along the association path. Hopping Minima provides 

both the translational motion of the ligand as well as the corresponding conformational 

changes of the host molecule.
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