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Water is a key resource in arid Central Asia (CA) and is heavily affected by climate change and 

human activities. Temperature across the region has increased drastically especially in the 

mountain region while precipitation change is less homogeneous. The increased temperature has 

caused increased melting of glacier and snow which has a large contribution to the runoff in rivers. 

Human activities such as agriculture irrigation and reservoir management also affect water 

availability. In the Soviet era, agriculture in CA expanded continuously and large amount of water 

was extracted from rivers for irrigation. This has caused the catastrophic decline of the Aral Sea. 

In the post-Soviet era, countries in CA have reorganized their agriculture structure to be self-

sufficient. It is important to understand how these changes affect water availability in CA 

especially under climate change. This dissertation uses lakes as proxy indicators of water 
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availability and assesses how climate and human activities have affected lakes in CA. Seventeen 

lakes located in three former Soviet republics and western China from seven basins are examined 

using remote sensing and hydrologic modeling to estimate their changes in area, water level and 

volume. Agriculture area changes in these basins from seven countries are also examined using 

remote sensing. It is found that 1) lakes located in the mountains have generally expanded due to 

the melting glaciers and snow; 2) lakes located in the lowlands have remained relatively stable due 

to the relative stability of agriculture area; 3) reservoirs exhibit different seasonal patterns due to 

their major function as power generation reservoirs release water during the winter while irrigation 

reservoirs release water during the summer; 4) agriculture area in the former Soviet Central Asia 

republics is highly dependent on precipitation due to the lack of efficient irrigation infrastructure 

while agriculture in China has continuously expanded due to the adoption of drip irrigation and 

groundwater extraction. In conclusion, climate is the more dominant factor affecting water 

availability especially in the mountains causing the lakes to expand while agriculture irrigation has 

offset some of the surplus in the lowlands causing the lakes to remain relatively stable. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Central Asia (CA), as defined by the United Nations Educational, Scientific and Cultural 

Organization (UNESCO), mainly includes the former Soviet Central Asian republics (i.e., 

Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan),  Afghanistan, northeastern 

Iran, northern and central Pakistan, northern India, western China, Mongolia (Dani et al., 1992, 

Figure 1.1). The region is home to over 100 million people (Frenken, 2013) and the economy 

heavily depends on agriculture (Qushimov et al., 2007). The region is also arid due to its distance 

from moisture sources. About 90% of Central Asia receives less than 400 mm of precipitation per 

year (Mueller et al., 2014). Nevertheless, Central Asia is home to the Tianshan and Pamir 

mountains, which are commonly known as the “water tower” in this region (Viviroli et al., 2003; 

Voviroli and Weigartner, 2004; Immerzeel et al., 2010). These mountains are estimated to 

contribute to 50-90% of total runoff in Central Asia (Voviroli and Weigartner, 2004) through 

orographic effects and meltwater runoff generated by glaciers and snowpacks (Kehrwald et al., 

2008; Kaser et al., 2010; Sorg et al., 2012).  

Climate change has caused glaciers in the Tianshan to shrink in area and mass by 18% and 

27% respectively since the 1960s (Farinotti et al., 2015). While temperature in Central Asia has 

increased in the 20th century and is projected to continue increasing in the 21st century, 

precipitation changes are more ambiguous. It is also debatable whether river runoff will increase 

or decrease in the future (Siegfried et al., 2012; Unger-Shayesteh et al., 2013). Additionally, 

humans have a great impact on the water here as they extract large amounts of water from rivers 
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for agriculture. The upstream countries also depend heavily on hydropower during the winter. All 

these aspects have major impacts on water availability in the countries in Central Asia. 

Despite its aridity, Central Asia is home to many lakes (Lehner and Doll, 2004). Lakes are 

a natural storage of water resources and they are vulnerable to climate change and human 

disturbances (Arnell et al., 2001). Endorheic lakes (lakes with no outflow) are particularly sensitive 

to disturbances because they are dependent on the balance between inflow and evaporation. 

Increasing temperature and/or decreasing precipitation as well as the diversion of upstream water 

for human use may cause the water level in lakes to change drastically (Micklin, 1988; Robertson 

and Ragotzkie, 1990; Mason et al., 1994; De Wit and Stankiewicz, 2006; Gao et al., 2011). Thus, 

these lakes are important indicators of climate change and human disturbances.  

Lakes in Central Asia have experienced drastic changes over the past decades (Birkett, 

1995; Bai et al., 2011; Li et al., 2011; Micklin, 2014a). The Aral Sea in particular has shrunk over 

80% since 1960 mostly due to the diversion of water from the rivers that feed it for agriculture 

(Micklin, 2007, Cretaux and Berge-Nguyen, 2014; Micklin, 2014b). Other lakes have experienced 

spatially heterogeneous patterns of changes as well (Bai et al., 2011; Li et al., 2011; Bai et al., 

2012). While changes in some of the lakes have been documented, attribution of the cause of 

changes have has been highly generalized and qualitative (Bai et al., 2011; Li et al., 2011; Bai et 

al., 2012). Therefore, it is important to understand how and more crucially why these lakes are 

changing in order to better understand the water resources in Central Asia. 

1.2 Climate in Central Asia 

This section will provide a description of the present climate of Central Asia and how it 

has changed over the past 100 years. Temperature and precipitation will be discussed in detail as 

they are two important climate factors affecting water resources. The section provides a general 
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background and leads to the discussion of how climate have and will affect water resources in the 

region. 

1.2.1 Temperature and its changes over the instrumental record period 

Temperature is affected by solar radiation and atmospheric circulation (Surkova, 2010). In 

Central Asia, solar radiation is the dominant factor controlling the air temperature in the region 

especially during the summer due to the large number of cloud-free days (Schiemann et al., 2008; 

Surkova, 2010). Atmospheric circulation plays a smaller role, but it can cause shorter scale weather 

variations through the following four processes (Schiemann et al., 2008; Surkova, 2010). 1) 

cyclonic intrusions from the south bring warm air across southern Central Asia and causes warm 

winter weather and precipitation; 2) Cold northern and north-eastern intrusions causes cooler 

summer and cold winter weather as well as precipitation; 3) anticyclonic weather created by the 

Siberian High causes little precipitation and 4) Mid-latitude (50-55°N) cyclonic activity in 

northern Central Asia causes cooling and winter precipitation. As a result, the region has large air 

temperature variations both diurnally and seasonally (Surkova, 2010). In the arid lowland regions, 

air temperature can reach over 40°C in the summer and below -30°C in the winter. Atmospheric 

circulation plays a stronger role during the winter when cold air intrusions from the north interact 

more frequently with warmer air from the south. As a result, the interannual variation of air 

temperature is greatest during the winter and smallest during the summer (Surkova, 2010). There 

is also a strong north-south gradient in the mean annual temperature in Central Asia (Mannig et 

al., 2013). 

Unger-Shayesteh et al. (2013) conducted an extensive review on the climatic, cryospheric 

and river runoff changes in the mountain ranges of Central Asia. The statistically significant rates 

of temperature changes in literatures that they reviewed range from 0.18 to 0.42°C per decade in 
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the mountains although different studies reveal contradicting seasonal trends. Huang et al. (2012) 

revealed enhanced warming during the cold season (November to March) in the entire Central 

Asia at 0.24°C per decade and the rate is more pronounced than other semi-arid regions in the 

world, while the rate during the warm season (May to September) is 0.08°C per decade. Many 

studies on the mountain regions of Central Asia also revealed largest increases in mean air 

temperature during the winter (Podrezov et al., 2001; Podrezov et al., 2002; Ministry of Ecology 

and Emergencies of the Kyrgyz Republic, 2003; Giese and Mossig, 2004; Romanovskij and 

Kuz’micenok, 2005; Mamatkanov et al., 2006; Siegfried et al., 2012). On the other hand, studies 

focusing on stations in the lowland regions show largest warming rates during the summer and fall 

(Bohner, 1996; Spektorman, 2006 and Chub, 2007). Some studies also found cooling trends in 

certain months in the year especially during late winter and spring (Bohner; 1996; Finaev, 1999; 

Giese and Mossig, 2004; Mamatkanov et al., 2006; Bolch and Marchenko, 2009; Zhang et al., 

2009). Meteorological stations in Uzbekistan show that warming is associated with a decreasing 

range between minimum and maximum mean annual temperatures as most of the stations show an 

increase in minimum mean annual temperature while fewer stations show an increase in maximum 

mean annual temperature (Chub, 2007). 

Unger-Shayesteh et al. (2013) concluded that generally at elevations above 1,500 m 

significant warming rates tend to occur during winter and fall while at elevations below 1,500 m 

significant warming rates tend to occur during summer and fall. They also attributed the different 

findings from different studies to 1) lack of significance assessment; 2) neglecting short-term and 

long-term autocorrelation; 3) the high sensitivity of trends to the selection of study period and 4) 

the lack of assessment on the spatial representativeness of trends. In general, the entire Central 

Asia is experiencing warming temperatures and the rates are more pronounced in higher elevations 
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and during winter and fall; however, a more detailed spatial pattern of warming rates is 

inconclusive. 

1.2.2 Precipitation and its changes over the instrumental record period 

Since Central Asia is located in the heart of Eurasia and far away from moisture sources, 

the region experiences small amount of annual precipitation especially in the lowland areas 

(Gafurov, 2010; Surkova, 2010). The westerlies bring most of the moisture to the region from the 

Atlantic Ocean. However, the air masses quickly become dry as they move across the continent. 

The high Pamir, Hindu-Kush Tianshan and Himalayan mountains to the southeast of Central Asia 

blocks most of the moisture coming from the Indian Ocean (Schiemann et al., 2008). As a result, 

the precipitation in Central Asia exhibits strong spatial heterogeneity. The Aral Sea and most of 

the lowland regions receive merely 90-120 mm of annual precipitation and the foothills of the 

surrounding mountains receive around 200 mm (Surkova, 2010; Micklin, 2014a). On the other 

hand, annual precipitation can reach over 1000 mm in the Tianshan and Pamir mountains (Bolch, 

2007; Williams and Konovalov, 2008; Micklin, 2014a) due to the orographic effects of mountain 

ranges. The wetter region of northern Central Asia receives around 300-400 mm per year 

(Williams and Konovalov, 2008). In general, precipitation decreases from north to south in the 

lowland regions and increases with elevation in the mountain ranges. The precipitation seasonality 

is essentially the same across Central Asia except for the northern part. Most of the region 

(including the mountain ranges) has precipitation peaking in spring and fall, little precipitation 

during the summer and moderate precipitation during the winter (Schiemann, 2008). The northern 

part has a more even distribution of precipitation throughout the year with a relative peak during 

the summer (Schiemann, 2008).  
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The spatial patterns of seasonal and annual changes in precipitation are even less consistent 

among different studies compared to the changes in temperature (Seneviratne et al., 2012; Unger-

Shayesteh et al., 2013). In the mountain regions of Central Asia (where most precipitation falls), 

some studies found no significant trends in annual precipitation (Giese and Mossig, 2004; Bolch, 

2007; Chub, 2007; Bolch and Marchenko, 2009; Kutuzov and Shahgedanova, 2009). Depending 

on the location of stations, some show increasing trends (Bohner, 1996; Aizen et al., 1997; 

Romanovsky, 2002; Mamatkanov et al., 2006; Zhang et al., 2009); and some show decreasing 

trends (Podrezov et al., 2001; Romanovsky, 2002; Mamatkanov et al., 2006; Zhang et al., 2009; 

Kriegel et al., 2013). In general, stations in the foothills and higher altitudes of Tianshan show 

increasing trends while stations in the inner Tianshan show decreasing trends. Changes rates of 

annual precipitation can range from -30 to + 50 mm per decade (Unger-Shayesteh et al., 2013). In 

most of the lowland regions, little change in precipitation was found (IPCC, 2001). However, 

significant increase in precipitation was observed by many stations located near irrigated lands 

compared to stations located in the nearby quasi-pristine sandy desert (Lioubimtseva et al., 2005; 

Lioubimtseva and Henebry, 2009). This reflects the micro-regional changes in climate induced by 

human activities and is consistent with other similar regions in the world (Diem and Brown, 2003; 

Lioubimtseva et al., 2005; Pielke et al., 2005). Seasonal changes in precipitation and their spatial 

patterns are also inconclusive across the mountain regions in Central Asia. Some studies found 

increasing precipitation in the cold season for some regions (Bohner, 1996; Aizen et al., 1997; 

Finaev, 1999; Romanovskij and Kuz’micenok, 2005; Zhang et al., 2009) while others found 

increasing precipitation in the warm season for other regions (Romanovsky, 2002; Karandaeva 

and Tsarev, 2005; Romanovskij and Kuz’micenok, 2005; Mamatkanov et al., 2006; Zhang et al., 
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2009). Neither conclusive is the elevation dependency of precipitation changes (Finaev, 1999; 

Dikich, 2004 and Zhang et al., 2009). 

Even though there is great ambiguity in the long-term trend of precipitation, there are 

significant increasing trends in the year-to-year variability of precipitation shown in many stations 

in Uzbekistan (Chub, 2007). Paleo-records show increased precipitation during warmer periods 

such as the Early and Mid-Holocene and more arid conditions during cooler periods such as the 

Younger Dryas (Lioubimtseva et al., 2005; Lioubimtseva, 2014), providing some insight into 

future changes in precipitation in the region. 

1.3 Agriculture in Central Asia 

Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan (i.e. the former Soviet 

Central Asia republics) were governed by the Union of Soviet Socialist Republics (USSR) from 

1922 to 1991 during which the focus of agriculture was cotton production. The centralized USSR 

government began massive collectivization of agriculture in 1929 in which individual farms were 

combined into collective farms (Micklin, 2014c). The goal was to reach “cotton independence” by 

1933 under collective effort (Karimov, 1995; Pankova et al., 1996). Over 50% of irrigated area 

was devoted to cotton plantings and by 1933, 97% of national cotton needs were grown 

domestically (Micklin, 2000). However, soil conditions declined rapidly over time as a result of 

over-irrigation and lack of proper drainage systems which caused cotton yields to decline (Micklin, 

2014c). To keep up with production, irrigated area saw steady growth since the 1950s until the end 

of the Soviet period. Earlier expansion of irrigated area already occupied most of the fertile lands 

such as the alluvial fans and downstream river deltas (Karimov, 1995; Pankova, 1996). Since the 

1950s, irrigation expansion extended to areas less suitable for agriculture such as the Golodnaya 

(Golodnaya meaning hungry) and Karshi Steppes as well to the Karakum Desert. Construction of 
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the Karakum Canal began in 1954. This is one of the longest irrigation canals in the world at 1375 

km and crossed the vast Karakum Desert. During 1913 - 1950, irrigated area in the Aral Sea basin 

merely expanded from 3.2 to 3.8 million hectares while the area expanded drastically from 3.8 to 

over seven million hectares during 1950 – 1990 (Table 1.1).  

After the collapse of the Soviet Union in 1991, the former Soviet Central Asia republics 

broke into five independent countries each with their own agricultural agendas. Uzbekistan became 

the country having the largest irrigated area (4.28 million ha) as well as the largest share of 

irrigation water withdrawal (53.0%) in the Aral Sea basin in 1995 (Table 1.2; World Bank, 1998). 

The expansion rate of irrigated area greatly decreased since 1995 and irrigated area became stable 

since 2000. Associated with changes in irrigation area are changes in the type of crops being 

planted. During the first five years of the collapse of the Soviet Union, Uzbekistan which was the 

largest cotton producer shrank its area of cotton plantation by 19% (Index 2012a) while tripling its 

area of wheat plantation (Index 2012b). During 1995-2011, Uzbekistan further reduced its cotton 

area by 10% while increasing its wheat area by 8%. Turkmenistan, which was the second largest 

cotton producer, shrank its cotton area by 28% during 1990-1995 (Index, 2012c) while sextupling 

its wheat area (Index, 2012d) and again doubling the 1995 wheat area by 2011. These changes are 

driven by the need to strengthen the countries’ food bases (Micklin 2014c). Kazakhstan and 

Uzbekistan being major rice producers, also dropped their rice plantation area by 23% between 

1990-1995 and 72% between 1990-2001 respectively (Index, 2012e; Index, 2012f). 

In western China, agriculture has been developed since the 1950s and has been rapidly 

expanding (Sun and Gao 2010). Similar to development elsewhere, agriculture in western China 

started around river channels and oases and gradually expanded towards less fertile lands such as 

barren and shrubland (Wang et al., 2017). The widespread irrigation combined with inefficient 
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water management strategies has led to severe desertification and ecological deterioration in 

Ebinur lake basin in Xinjiang (Zhang et al., 2015). In efforts to restore ecological stability in Ebinur 

basin, Ebinur lake wetland nature reserve was established in the late 1990s (Bai, 2007). Highly 

efficient drip irrigation was also introduced around the late 1990s (Xu et al., 2003). 

As can be seen from the discussion above, agriculture in Central Asia depends heavily on 

irrigation. Not only does expanding agricultural area demand more water being withdrawn but also 

does the decreasing efficiency of water use over time. Even though irrigated area only increased 

by 25% from 1913-1950, total water withdrawal increased by over 60% (Table 1.1). The amount 

of water withdrawn per unit of irrigated area increased from roughly 10,750 m3/ha in 1913 to 

15,000 m3/ha in 1950 and peaked in the 1980s to around 20,000 m3/ha. The increase in unit area 

water use is caused by serious soil salinization in the irrigated area of Central Asia (Micklin 2014c). 

When plants absorb water in the soil, they leave the salts dissolved in water behind in the soil and 

over time the salts accumulate leading to the salinization of soil. The situation in Central Asia is 

worsened by over-irrigation and the lack of proper drainage systems to keep the water table low. 

The rising saline groundwater thus further deteriorates soil conditions. Over 50% of irrigated areas 

in the Aral Sea basin suffered from soil salinization (Pankova et al. 1996). Salts needed to be 

flushed out from the soil prior to planting of crops which increased water consumption. Also, as 

irrigated land expanded into drier areas not suited for agriculture, water use increased due to higher 

evaporation as well as the need to fill pore spaces in the drier soils and to leach the salts. Therefore, 

soil salinization combined with expansion of irrigation into steppes and deserts greatly increased 

the withdrawal of water per unit of irrigated area from in the Soviet period from 1950 to 1990 

(Table 1.1; Micklin, 2000). After the collapse of the Soviet Union, there is a drastic decline in per 

area irrigation water use. This is mostly because the planted area of water-intensive cotton (the 
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dominant crop in the Soviet period) and rice, was greatly reduced by the independent countries 

since 1990.  

1.4 Lakes in Central Asia 

Overall, studies on changes in lakes and reservoirs in Central Asia other besides the Aral 

Sea are limited. Li et al. (2011a) examined the water level changes in nine lakes in Central Asia, 

Xinjiang and Mongolia from 2003-2009 using satellite altimetry. Li et al. (2011b) further extended 

the study to 24 lakes in the region. Bai et al. (2011) examined the areal changes of nine lakes in a 

similar region from 1975-2007 using optical satellite imagery. Klein et al. (2014) examined the 

seasonal fluctuations of over 10 lakes in the past 27 years using satellite altimetry. These are the 

only regional studies on lake area and water level changes in Central Asia that were found in the 

literature. A few studies focusing on individual lakes and reservoirs in the region were also found 

(e.g. Ma et al., 2007; Propastin, 2008; Hwang et al., 2011; Cretaux et al., 2015; Kouraev et al., 

2009; Birkett, 1995). Table 1.3 lists changes in the lakes that were found in the literature with 

sources. Note that the Caspian Sea is not reviewed here because the feeding rivers (i.e., the Volga 

and Ural rivers) do not originate in the Central Asian mountains and the rivers are much less 

affected by agriculture in Central Asia. 

These lakes in Central Asia show a spatially heterogeneous pattern of change. Alpine lakes 

(elevation > 1,000 m) are generally stable or expanding. Lakes in northern Tibetan Plateau (i.e. 

Ayakkum Lake and Aqqikkol Lake) are expanding. Lakes in the Tianshan (i.e. Karakul Lake, Lake 

Issykkul, Sayram Lake) are stable or expanding. Lakes in the Altai mountains (i.e. Uureg Lake, 

Uvs Lake, Khyargas Lake, Khar-Us Lake, Teletskoye Lake) are stable or shrinking. This pattern 

follows a north-south gradient where northern lakes are stable or shrinking while southern lakes 

are expanding. The pattern is likely caused by the difference in the number of glaciers in the 
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catchments of the lakes. More glaciers are feeding the lakes in the northern Tibetan Plateau and 

the Tianshan while fewer glaciers are feeding lakes in the Altai Mountains.  

Lakes in the lowland regions are generally stable or shrinking. Changes in open lakes in 

these regions depend on whether dam or irrigation projects exist in their upstream catchments. 

Those affected (Bosten Lake, Zaysan Lake, Kairakum reservoir, Kapshagay reservoir) are 

shrinking while those not affected (Ulungur Lake, Markakol Lake, Teletskoye lake, Khar-Us Lake) 

are generally stable. The closed terminal lakes are mostly shrinking with a few exceptions. 

Affected by dams and irrigation projects, most terminal lakes (Lake Balkhash, all the Aral Sea 

except the north Aral Sea) are shrinking. Sarykamish Lake, a notable exception, expanded 

drastically as much of the irrigation water diverted from rivers drained into its basin. Those not 

affected by water projects (i.e. Alakol Lake, and Uvs Lake) are rather stable. 

1.5 Motivations and objectives of this dissertation 

In light of the above discussion, it is important to understand how water resources are 

changing in Central Asia and what is causing the changes. Lakes, especially endorheic lakes, are 

particularly sensitive to climatic and anthropogenic impacts. Endorheic lakes are the terminus of 

a hydrologic system and their storage variations are direct responses to the climatic changes and 

human activities in the basin. Thus, endorheic lakes can be used as proxy indicators of climate and 

anthropogenic change. Nevertheless, aside from the Aral Sea, studies on lake changes in Central 

Asia are lacking. Such an assessment is important to reduce the uncertainties associated with future 

projections of water availability in the region since it can identify whether water in a region is 

more affected by the climate or the people. It provides insight on future water management 

strategies regarding changing water availability, seasonality as well as human interventions in 

transnational river basins. 



 

12 

 

The scientific goals of this dissertation are to examine the natural and anthropogenic 

impacts on lake dynamics in the various basins in Central Asia. Lakes in these will be examined 

and compared regarding the climatic and anthropogenic impacts affecting their water level, areal 

extent and storage. Specifically, the scientific questions sought are: 

1. How have lakes changed in the past 30 years in Central Asia? 

2. What are the climatic impacts (precipitation and temperature) on water storage in lakes in 

Central Asia?  

3. How have human activities (irrigation and water management) affected water storage in 

lakes in Central Asia? 

These questions are addressed in the following chapters. Chapter 2 is a pilot study that uses 

remote sensing and hydrologic modeling to examine the changes of a pair of adjacent lakes in 

Xinjiang, China. It also uses remote sensing to derive agriculture extent over the basin to assess 

the influence of agriculture on lake changes. This study serves as a methodological guideline for 

the subsequent chapters. Chapter 3 expands the study area to include the most populated regions 

in Central Asia. It examines the changes of 17 lakes across Central Asia and discusses their 

changes in relation to the climate and human activities. Chapter 4 focuses specifically on 

agriculture changes in seven basins that covers the seven countries across Central Asia and 

discusses the effect of agriculture on lake changes. 
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Figure 1.1: Central Asia as defined by the United Nations Educational, Scientific and Cultural 

Organization 
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Table 1.1: Irrigated area and water withdrawal in the Aral Sea basin over the 100 years (Micklin, 

2000; Micklin 2014). 

Year 
Irrigated area 

(million ha) 

Irrigation 

withdrawal (km3) 

Irrigation 

withdrawal (m3/ha) 

1913 3.2 25.6-43.2 8,000-13,500 

1922 1.7 16 9,400 

1933 3.5 40 11,500 

1940 3.8 49 13,000 

1945 N/A N/A 15,000 

1950 3.8 57 15,000 

1965 4.8 82 17,000 

1980 6.3 107-126 17,000-20,000 

1985 7 112-133 16,000-19,000 

1990 7.25 109 14,600-17,000 

1995 7.94 100 12,594 

2000 8.1 75 9,180 

2005 8.1 91 11,258 

2010 8.2 92 11,169 
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Table 1.2: Irrigated area and water withdrawal from the Aral Sea basin by country in 1995 

(World Bank, 1998) 

Country Irrigated area (million 

ha) 

% of irrigation 

withdrawal 

Uzbekistan 4.28 53.0 

Turkmenistan 1.74 22.4 

Tajikistan 0.72 10.3 

Kazakhstan 0.74 9.7 

Kyrgyzstan 0.46 4.6 

Total 7.94 100.0 
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Table 1.3: List of lakes and their changes investigated in the literature 

Lake Coordinates 

(latitude N, 

longitude E) 

Period Area variation Level 

variation 

(m) 

Source 

km2 % 

Karakul Lake 39.03, 73.4 2002-2009 1.8 0.45 +0.816 Li et al. (2011b) 

Kairakum 

reservoir 

40.30, 70.0 2002-2009 -18.69 -6.78% -2.852 Li et al. (2011b) 

      

Ayakkum Lake 37.56, 89.39 2002-2009 110.63 14.84% +1.716 Li et al. (2011b) 

Bosten Lake 41.97, 87.04 2002-2009 -190.32 -17.24% -2.66 Li et al. (2011b) 

  1975-2007 -96.93 -9.18% N/A Bai et al. (2011) 

       

       

Lake Issykkul 42.44, 77.27 2002-2009 17.55 0.28% +0.018 Li et al. (2011b) 

  1975-2007 -41.02 -0.66% N/A Bai et al. (2011) 

  1992-1994 N/A N/A No change Birkett (1995) 

Lake Balkhash 46.29, 75.63 2002-2009 -8.31 -0.05% -0.258 Li et al. (2011b) 

  1975-2007 -449.5 -2.61% N/A Bai et al. (2011) 

  1992-1994 N/A N/A No change Birkett (1995) 

  1992-2007 N/A N/A +1.679 Hwang et al. (2011) 

Zaysan Lake 48.00, 83.92 2002-2009 -223.09 -7.36% -1.745 Li et al. (2011b) 

  1975-2007 165.81 5.85% N/A Bai et al. (2011) 

Ebinur Lake 45.00, 83.00 1998-2005 -253 -50.30% N/A Ma et al. (2007) 

  1975-2007 -50.5 -8.37% N/A Bai et al. (2011) 

Sarykamish 

Lake 

41.94, 57.4 2002-2009 152.2 4.09% +1.001 Li et al. (2011b) 

  1992-2006 N/A N/A +6.6 Kouraev et al. (2009) 

Aqqikkol Lake 37.08, 88.42 2002-2009 85.46 22.29% +1.716 Li et al. (2011b) 

Aral Sea 

(whole) 

44.99, 59.48 1975-2007 -4,4862.2 -75.70% N/A Bai et al. (2011) 

  1993-2001 -13,000 -37.14% -4.5 Peneva et al. (2004) 

  2002-2009 N/A -62% N/A Singh et al. (2012) 

  1981-2013 -22,000 -46.81% N/A Shi et al. (2014) 

  1957-2008 -56,700 -84.5% N/A Kravtsova et al. 

(2010) 

Aral Sea (south) 44.90, 59.35 2002-2009 -12,399.96 -71.65% -2.948 Li et al. (2011b) 

  1993-2013 -21,000 -72.41 -9 Shi et al. (2014) 

  1957-2008 -54,000 -88.24% N/A Kravtsova et al. 

(2010) 

  1992-2006 N/A N/A -7.2 Kouraev et al. (2009) 

Aral Sea (west) 45.13, 58.47 2002-2009 N/A  -4 Singh et al. (2012) 

  1989-2008 -5,400 -57.45% N/A Kravtsova et al. 

(2010) 

Aral Sea (east) 44.90, 59.87 2002-2009 N/A -94% -3.5 Singh et al. (2012) 

  1989-2008 -25,800 -88.97% N/A Kravtsova et al. 

(2010) 

Aral Sea (north) 46.45, 60.65 2002-2009 382.29 13.11% +1.37 Li et al. (2011) 
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  1992-1994 N/A N/A 0.5 Birkett (1995) 

  2002-2009 N/A N/A +1.5 Singh et al. (2012) 

  1957-2008 -2,700 -45.76% N/A Kravtsova et al. 

(2010) 

  1992-2006 N/A N/A No change Kouraev et al. (2009) 

Tengiz Lake 50.42, 69.02 2002-2009 -478.13 -35.48% -0.738 Li et al. (2011) 

Seletyteniz Lake 53.25, 73.20 2002-2009 -233.62 -58.48% -0.247 Li et al. (2011) 

Teke Lake 53.83, 72.95 2002-2009 -2.61 -1.38% N/A Li et al. (2011) 

Kapshagay 

reservoir 

43.82, 77.62 2002-2009 -68.83 -5.52% -0.442 Li et al. (2011) 

Sayram Lake 44.60, 81.17 2002-2009 1.33 0.29% 0.3 Li et al. (2011) 

  1975-2007 3.31 0.72% N/A Bai et al. (2011) 

Khar-Us Lake 48.06, 92.24 2002-2009 -0.77 -0.08% -0.014 Li et al. (2011) 

       

Alakol Lake 46.13, 81.72 2002-2009 46.37 1.59% -0.131 Li et al. (2011) 

  1975-2007 -22.71 -0.76% N/A Bai et al. (2011) 

Ulungur Lake 47.26, 87.29 2002-2009 -4.72 -0.56% < -0.3 Li et al. (2011) 

Markakol Lake 48.75, 85.76 2002-2009 0.18 0.04% -0.034 Li et al. (2011) 

Khyargas Lake 49.18, 93.31 2002-2009 -48.32 -3.08 -2.088 Li et al. (2011) 

Uvs Lake 50.32, 92.75 2002-2009 -21.02 -0.58% -0.064 Li et al. (2011) 

Uureg lake 50.15, 91.02 2002-2009 0.11 0.04% 0.063 Li et al. (2011) 

Teletskoye lake 51.59, 87.67 2002-2009 0.11 0.05% -0.31 Li et al. (2011) 

Sasykkol Lake 46.50, 81.00 1975-2007 0.91 0.12% N/A Bai et al. (2011) 

  1992-1994 N/A N/A No change  Birkett (1995) 
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CHAPTER 2 

ASSESSING ANTHROPOGENIC AND NATURAL CONTRIBUTIONS TO DECADAL 

LAKE CHANGES IN CENTRAL ASIA: A PILOT STUDY IN EBINUR AND SAYRAM 

BASINS 

2.1 Introduction 

As defined by the United Nations Educational, Scientific and Cultural Organization 

(UNESCO), the geographic area of Central Asia contains Afghanistan, northeastern Iran, northern 

and central Pakistan, northern India, western China, Mongolia and the former Soviet Central Asian 

republics (Dani et al., 1992). Climatically, it is a semiarid to arid region in the vast Eurasian 

hinterlands with a strong continental climate characterized by hot and dry summers and cold and 

relatively moist winters (Schiemann et al., 2008; Lioubimtseva and Henebry, 2009; Surkova, 

2010). Mountains are the “water tower” in this region (Viviroli et al., 2003; Viviroli and 

Weigartner, 2004; Immerzeel et al., 2010). The westerlies bring moisture from the Atlantic Ocean 

to the region and most of the precipitation falls in the mountain ranges while the lowland regions 

are exceptionally dry. Meltwater runoff thus serves a crucial role in the downstream hydrology 

(Kehrwald et al., 2008; Kaser et al., 2010; Sorg et al., 2012;). The Tianshan and the Pamir 

mountains are estimated to contribute to 50-90% of total runoff in Central Asia which is 

significantly higher than the percentage contribution of mountain runoff in humid regions (Viviroli 

and Weigartner, 2004). Climate change has caused glaciers in the Tianshan to shrink in area and 

mass by 18% and 27% respectively since the 1960s (Farinotti et al., 2015). While temperature in 

Central Asia has increased in the 20th century and is projected to continue increasing in the 21st 

century (Unger-Shayesteh et al., 2013), precipitation changes are more ambiguous (Seneviratne et 

al., 2012; Unger-Shayesteh et al., 2013). It is also debatable whether river runoff will increase or 
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decrease in the future (e.g. Aizen et al., 1997; Kezer and Matsuyama, 2006; Khan and Holko, 2009; 

Duethmann et al., 2015).  

Additionally, humans have a great impact on the water in Central Asia as they extract large 

amounts of water from both surface and ground water for agriculture. Over 90% of water extracted 

from rivers is used for irrigation (World Bank, 1998). The area of irrigated agricultural lands has 

increased drastically in the past 100 years. These aspects have major impacts on water availability 

in Central Asia which affects the livelihood of over 100 million people. 

Nevertheless, the contributions of climate change and human impacts on endoreic lakes in 

Central Asia are not well understood. This study intends to select a pair of representative lakes 

(i.e., Ebinur Lake and Sayram Lake) in Central Asia to examine changes in the two lakes using a 

combination of remote sensing and hydrologic modeling.  By comparing the changes in these lakes, 

we examine the impact of the changing climate and human activities on water resources in the two 

basins as a pilot study of the broad Central Asia. 

2.2 Study Area 

Ebinur Lake and Sayram Lake are two typical lakes suitable for the study of climate and 

human influences on water resources. They both are major endorheic lakes in northeastern 

Xinjiang, China (Figure 2.1). As a province in western China, Xinjiang is home to nearly 22 

million people. Its climate and hydrology are similar to elsewhere in Central Asia. Over 80% of 

surface runoff originates in the mountains in Xinjiang and over 45% of that is meltwater from 

glaciers and snowpack (Shen et al., 2013). Climate change is having major impacts on water 

resources in Xinjiang as it is causing the glaciers and snowpack to retreat and shifts peak runoff 

earlier in the year (Yao et al., 2004; Shen et al., 2013). This greatly influences water availability 

for human use and has great implications on water management and water security in the region. 
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These hydrologic changes are associated with a general shift in the climate of Xinjiang 

from warm-dry to warm-wet (Shi et al., 2007). Figure 2.2 shows the mean annual precipitation (A) 

and temperature (B) at three meteorological stations from 1953 to 2010. Both precipitation and 

temperature at all stations show statistically significant increasing trends over the past six decades. 

Bole station, being the highest station at 1,650 m above sea level (asl), experienced the highest 

rate of both precipitation and temperature increase among the three stations.  

The mean surface air temperature in northwestern China between 1961 and 2006 has a 

warming rate of 0.35°C/decade with evidence of accelerated warming since the 1980s (Shi et al., 

2007; Chen et al., 2010; Shen et al., 2013). Precipitation in north Xinjiang has increased by 22% 

from 1987-2000 compared to 1961-1986 with the greatest seasonal increase in winter (Shi et al., 

2007). Warming in the region has caused a widespread retreat of glaciers and changes in the 

snowpack. Glacier area was reduced by 1,400 km2 (5%) in northwestern China from 1960 to 1995 

(Liu et al., 2002). Snow depth across Xinjiang and especially in Tianshan is increasing while snow 

cover duration is decreasing (Hu et al., 2013). As a result of this ongoing warming and shift in 

precipitation patterns, river runoff has been increasing since the second half of the 20st century 

(Yao et al., 2004; Shi et al., 2007; Shen et al., 2013; Yao, et al., 2014; Wang et al., 2017). 

Nevertheless, observations show the runoff seasonality and peak flow has shifted toward earlier in 

the year which has significant implications on water management in the region (Shen et al., 2013). 

Despite its apparent aridity, Xinjiang is home to many endorheic lakes (lakes with no 

outlet). Endorheic lakes are particularly sensitive to disturbances because they are dependent on 

the balance between inflow and net evaporation (evaporation minus precipitation) (Arnell et al., 

2001). Increasing temperature and/or decreasing precipitation as well as the diversion of upstream 

water for human use can cause the water level in lakes to change drastically (Micklin, 1988; 
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Robertson and Ragotzkie, 1990; Mason et al., 1994; Gao et al., 2011). Thus, these lakes are 

important indicators of climate change and human disturbances.  

The selected lakes in this study are located in proximity and are affected by similar changes 

in climate yet drastically different degrees of human disturbance. Ebinur Lake, located in an 

agricultural basin experienced large water level declines between the 1950s and the 1970s, 

remained relatively stable in the 1980s and 1990s before increasing rapidly around 2000 and then 

declining again since 2003 (Yao et al., 2014). Its changes were thought to be relevant to irrigation 

development (Wang et al., 2003; Ma et al., 2014). In contrast, Sayram Lake has been expanding 

steadily since the 1970s (Chai et al., 2013). Since there is little human present surrounding Sayram 

Lake, the expansion was attributed to the increased precipitation and glacier melt (Chai et al., 2013; 

Cheng et al., 2016).  

Despite the significant changes in these lakes, only one study (Ma et al., 2014) has 

attempted to quantify the relative contribution of climatic and human factors to changes in this 

lake region, and focuses entirely on Ebinur Lake. Other studies have assessed causes of the 

differences qualitatively (Sun and Gao, 2010; Yao et al., 2014; Zhang et al., 2015; Wang et al., 

2017). Quantitative assessment of the relative importance of climate and human factors on lake 

changes could help to reduce the uncertainties associated with future projections of water 

availability in the region.  

2.3 Methods 

This study utilized both remote sensing and hydrological modeling. Remote sensing was 

used to derive observed lake area and water level as well as agriculture extent in the basins. 

Hydrologic modeling was used to simulate natural changes of the lakes without human impacts. 

Figure 2.3 shows the overall workflow of this study.  
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2.3.1 Observing lake changes using remote sensing 

We used Landsat and MODIS imagery to derive lake area changes and satellite altimetry 

from ICESat and CryoSat to derive lake water level changes. We extracted lake area using the 

Normalized Difference Water Index (NDWI) and object-based image segmentation at multiple 

scales (Sheng et al., 2016). Table 2.1 lists the images used to derive lake areas.  

The measured lake surface elevations were derived from ICESat and CryoSat products. We 

used the ICESat-derived inland water surface spot heights (IWSH) product from (O’Loughlin et 

al., 2016). The product was derived from the GLAS/ICESat GLA14 Global Land Surface 

Altimetry Data (Zwally et al., 2012). It contains surface water body heights from 2003 to 2009.  

The CryoSat product was derived from CryoSat-2 Level 1B SARIn data provided by the European 

Space Agency (ESA). We retracked the Level 1B waveform product using the algorithm proposed 

by Kleinherenbrink et al. (2014). The algorithm effectively reduces the effects of surrounding 

topography, which often contaminates the water surface elevation in the Level 2 ESA product.  

The two products were then reconciled using lakes around Central Asia that have data from 

both products since they use different geodetic reference systems and contain various biases (Song 

et al., 2015). We selected ten lakes in Central Asia, including lakes in Tianshan, the Tibetan Plateau 

and other lowland regions for this purpose. We found a systematic bias between the ICESat-

derived product and CryoSat derived-product, which we removed for Sayram Lake and Ebinur 

Lake.  

We interpolated the lake area and water level records temporally to obtain coincident lake 

area and water level measurements which we then used to construct the lake hypsometry. We used 

the hypsometry curve to produce a historical records of lake changes since the 1980s, including 

lake volume change time series. The volume change between two time periods was calculated as: 
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∆𝑉 =
(ℎ1 − ℎ2)  ×  (𝐴1 + 𝐴2)

2
 

where h1, h2, A1, A2 are the lake level and area measurements at time 1 and 2 respectively.  

2.3.2 Modeling lake changes using the Variable Infiltration Capacity (VIC) model 

We used the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) to simulate 

changes in lake storage under natural conditions (i.e., absent extractions for uses such as irrigation). 

VIC is a physically based semi-distributed macroscale hydrology model. It has been applied in 

many different environments and spatial scales ranging from 1/16th degree to 2 degree (e.g., 

Nijssen et al., 2001; Livneh et al., 2013; Xiao et al., 2016). Bowling and Lettenmaier (2010) 

extended the model to include a lake and wetland algorithm, which is a key feature that makes the 

model suitable for this study. The lake and wetland algorithm treats all water bodies within a grid 

cell as one effective lake that exchanges water with its surrounding wetland. A wetland in this 

context is the land surrounding a lake that is periodically flooded and dried as the lake expands 

and contracts. The lake and wetland receives runoff from the surrounding land. As the lake expands, 

it first saturates the soil in the wetland and then the lake extent is updated based on the lake’s 

depth-area relationship. Excess lake water discharges into the channel as a function of the water 

level.  

The algorithm has been shown to successfully capture the delay of streamflow in an arctic 

environment caused by lakes and wetlands and to reproduce the seasonality of saturated area 

surrounding lakes (Bowling and Lettenmaier, 2010). It was also applied to reconstruct changes in 

Lake Chad, including a multi-decadal reduction in storage initiated by the Sahel drought of the 

1980s and extended by long-term increases in irrigation of the surrounding areas (Gao et al., 2011).  

2.3.2.1 Precipitation data processing 
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Precipitation generally is acknowledged to be the most important forcing variable for 

hydrologic models. However, high quality spatially-gridded precipitation data are not available in 

regions like Central Asia where meteorological stations are lacking. Here, we circumvented this 

issue by using output from the Weather Research and Forecasting (WRF) model (Gao et al., 2015), 

adjusted with limited station to create a model forcing data set. The workflow used in production 

of the data set is shown in Figure 2.4. 

We first resampled the gridded precipitation output from WRF, which is for the period 

from 1979 through 2011, from its native 30-km spatial resolution to 1/4 degrees. The basin 

contains 131 cells after resampling. We then aggregated the data temporally into monthly averages. 

For months from April to September when precipitation rates are high especially in the mountains, 

we divided the grid cells to two groups to better capture precipitation variability at higher altitudes 

(Figure 2.5). We plotted the monthly averages for each grid cell against the cell’s average elevation 

to obtain empirical precipitation lapse rates for the entire basin (Figures 2.6 to 2.16). These lapse 

rates are then used in conjunction with station values to develop adjustments to the WRF-derived 

precipitation fields.  

There are three precipitation gauges in the basin that collected daily data for the period 

from 1951 to 2010. We used these estimates to adjust each grid cell’s values to a fixed elevation 

(1,000 m) based on the corresponding lapse rates. We then extrapolated the monthly averages from 

the gauges to all 131 grid cells within the basin. Finally, we adjusted these values back to the grid 

cells’ original elevation using the lapse rates calculated from the WRF data set. As a final step, we 

disaggregated the monthly grid cell values to daily based on the day to month proportions from 

the WRF data set. The comparison between the final precipitation data set and the WRF data set 

is shown in Figure 2.17. 
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2.3.2.2 Model setup 

We set up the model to run at 1/4 degree spatial resolution. We took model input parameters 

such as elevation, soil and vegetation parameters from Nijssen et al. (2014). Meteorological 

forcings (including daily max/min temperature and wind speed) are the daily 0.25-degree records 

from 1948-2016 were from Sheffield et al. (2006). Creation of the precipitation forcing is 

described in the following section. We ran the model at a daily time step for the period 1979 to 

2010. As implemented, the VIC model does not account for human water consumption.  Therefore, 

the model simulations only represent natural changes in the lakes, that would have occurred absent, 

for instance, diversion of inflows for irrigation. 

The model implementation for both Sayram and Ebinur lakes consists of two steps. In the 

first step the lake is not simulated, rather runoff is generated for all grid cells within the lake basins 

respectively. The resulting streamflow is then computed and fed into the second step (as lake 

inflow) along with other forcings to simulate the lake water and energy balances.  

We estimated model parameters for Sayram Lake by comparing the predicted and observed 

lake areas (the latter from remote sensing). There has been relatively little human disturbance in 

the Sayram Lake basin in recent decades, so observed changes should be caused almost entirely 

by natural climate variability. On the other hand, we did not attempt to calibrate model parameters 

for Ebinur Lake, since the observed changes are likely associated with both natural variability and 

human influence. We used the default parameters from Nijssen et al., (2014) instead. 

2.3.3 Agriculture changes 

Agricultural land in the basins has mostly been converted from grass/barren through 

irrigation (Wang et al., 2017). There are significant changes of normalized difference vegetation 

index (NDVI) between grass/barren land and agricultural land that are apparent from satellite 
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imagery. We estimated these changes quantitatively using the Terra MODIS NDVI time series 

data (Didan, 2015). The data set is a 16-day composite at 250 m spatial resolution for the period 

2000 through 2017. To measure the expansion of agriculture in the region, we used a simple 

thresholding technique based on the annual mean NDVI as in Rembold and Maselli (2006). A 

pixel is considered to be agricultural if its annual mean NDVI value is greater than 0.25 and 

abandoned if the value falls below 0.25. We evaluated the results through manual inspection using 

Google Earth high resolution imagery. From our results, we evaluated the yearly extent and 

expansion rate of agricultural land within the two basins from 2000 through 2017.  

2.4 Results 

Observed and modeled lake changes are presented and compared for both lakes. 

Agriculture changes in the Ebinur Lake basin are also presented to provide context for changes in 

Ebinur Lake. 

2.4.1 Observed lake changes 

Sayram Lake and Ebinur Lake have experienced different patterns of area and water level 

changes in recent decades (Figures 2.18 and 2.19). Sayram Lake expanded more or less steadily 

since the 1970s. Its area increased from 453 km2 to 462 km2 (~2%) between 1977 and 2016 and 

its water level increased about 1.5 m between 2004 and 2018. Ebinur Lake, in contrast, experienced 

more fluctuation since the 1990s. Its area increased from 550 km2 to 950 km2 (45%) between 1990 

and 2003 and declined to 600 km2 (25%) in 2016. The water level decreased 2.5 m between 2004 

and 2018.  

The hypsometry curves of the two lakes constructed based on coincident lake area and 

water level measurements are shown in Figure 2.20. We used a linear relationship to describe the 

hypsometry. The correlation coefficients were around 0.6 for both lakes and root mean square 
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errors (RMSEs) for the lake levels are around 0.13 m. The volume changes of the two lakes 

reconstructed based on the hypsometry curves are shown in Figure 2.21. Sayram Lake had a 

volume increase of about 0.5 km3 since 1970s. Ebinur Lake experienced a dramatic increase of 

about 0.2 km3 between 1999 and 2003 and declined to pre-1999 volumes in 2010. It increased 

again since 2010 by about 0.35 km3. 

2.4.2 Modeled lake changes 

The comparison between modeled and observed volume changes are shown in Figures 2.22 

and 2.23. Both lakes had similar trends in modeled and observed volume changes. Model results 

for Sayram Lake had an overall increasing trend as in the observations but the model volumes had 

greater inter-annual as well as intra-annual variability. For example, the modeled volume remained 

relatively constant between 1989 and 2002 but increased dramatically between 2002 and 2005. It 

remained relatively steady since 2005 as well. The modeled results showed up to 0.3 km3 of intra-

annual variability while the observed show less than 0.1 km3 though there were no year-round 

observations. The model showed a greater overall increase in volume (i.e., 0.35 km3) between 

1989 and 2016 than the observations (0.25 km3). 

The modeled volume changes for Ebinur Lake had a much larger intra- and inter-annual 

variability compared to the observed as well. The lake volume had a decreasing trend between 

1990 and 2001 of 0.35 km3. It increased between 2001 and 2003 by 0.7 km3 and declined again 

2003 and 2010 by 0.55 km3. Even without considering irrigation, the model showed a decline of 

0.2 km3 between 1990 and 2010 while the observed volumes remained rather steady.  

2.4.3 Agriculture changes 

Agriculture extent increased steadily since 2000 (Figure 2.24). Over 8,700 km2 (16.7% of 

the basin area) were converted to agriculture in 2017, more than doubling the 2000 irrigated area 
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of around 4,000 km2. In contrast, the Sayram basin had no agriculture at all. The conversion from 

barren and grassland to agriculture started near river channels and gradually expanded to less and 

less fertile regions (Figure 2.24). This is similar to agriculture expansion patterns seen elsewhere 

in Central Asia (Karimov, 1995; Pankova, 1996). As a result, soils suffer from salinization in many 

parts of Central Asia (Pankova, 1996). Water use efficiency declines as additional water is needed 

to flush salts in the soil and fill pore spaces in the drier soils (Micklin, 2000). Nevertheless, drip 

irrigation has been adopted in Xinjiang since the late-1990s which drastically improves water use 

efficiency (Xu et al., 2003). 

2.5 Discussion 

The limitations of methods used in the study are discussed. They include limitation of 

volume change estimation from both remote sensing and hydrologic modeling as well as the 

uncertainty of agriculture extent estimation. Finally, the implications of the findings for water 

resources in Xinjiang are discussed as well. 

2.5.1 Limitations of methodology 

Limitations of the methodology mainly consist of the uncertainties of the lake hypsometry 

derived from remote sensing observations as well as the precipitation data set that forces the VIC 

model. 

2.5.2 Volume change estimation from remote sensing  

The reliability of volume change estimation from remote sensing depends on the accuracy 

of lake hypsometry curves constructed from coincident area and water level observations. While 

lake area changes estimated from satellite imagery have fairly low uncertainty (~2%), the water 

level changes are more uncertain because satellite altimetry (especially CryoSat) is affected by the 

surrounding topography even after retracking. The standard deviation for the CryoSat retracking 
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algorithm is about 0.1 m while the range of elevation change for Sayram Lake over 15 years is 

about 1 m.  

Moreover, the dates of area and water level observation rarely coincide. While the water 

level observations are more frequent, there is usually a few days to two weeks of difference to the 

closest area observation. Area and water level observations are matched to the closest dates as long 

as the time difference is less than 15 days. As a result, there is a small range of area and water level 

difference in the hypsometry curves especially for Sayram Lake (Figure 2.20). The uncertainty in 

the volume change estimates ranges from 0.035 to 0.12 km3.  

2.5.3 Volume change estimation from modeling 

Precipitation is the primary forcing driving the results of volume change estimation in the 

model. While the best available precipitation data sets were gathered and reprocessed to obtain a 

gauge-based gridded precipitation data set for the basins, we were unable to verify the accuracy of 

the reprocessing results other than at the small number of precipitation gauges (and even this is 

complicated by the fact that the in situ observations were used in the adjustment process). 

Moreover, the model requires a lake hypsometry profile in order to calculate the lake area from its 

water balance. The hypsometry curves obtained from remote sensing were used for both lakes 

which contains some uncertainty. Finally, there is no observed data that can be used to evaluate 

the modeled results for Ebinur Lake inflows.  

2.5.4 Agriculture changes 

We empirically identified agricultural lands as having mean annual NDVI of greater than 

0.25. We inspected the delineations visually and removed non-agricultural lands such as forests 

manually. Nevertheless, there is uncertainty associated with the inspection process as well as the 

Google Earth imagery used to validate the results for each year from 2000 to 2017. 
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2.6 Implications for water resources in Central Asia 

The steady expansion of Sayram Lake is consistent with limited previous studies. Cheng 

et al. (2016) found that, between 1972 and 2011, the lake area expanded 12 km2, the water level 

increased 2.8 m and its volume increased 1.3 km3. Our observed lake area, water level and volume 

change are 8.5 km2, 1.9m and 0.4 km3 respectively between 1972 and 2016. This is likely because 

of the different lake hypsometry profiles used to estimate the volume changes. The results for 

Sayram Lake revealed by both satellite observations and hydrologic modeling as well as observed 

precipitation over the past decades suggest that the north slope of Tianshan in northwestern 

Xinjiang is getting wetter. This expansion of Sayram Lake is likely caused by the increase of 

precipitation and melting of glaciers as a result of increased temperature in the mountain region 

(Shi et al., 2007; Chai et al., 2013; Wang et al., 2014; Wang et al., 2016). This suggests that the 

climate is getting wetter in the region. It also supports the hypothesis that the climate in 

northwestern China is switching from warm-dry to warm-wet (Shi et al., 2007), at least in the 

mountain region. 

Nevertheless, results from Ebinur Lake which lies in the lowlands show that there is not 

much change in lake volume even under natural conditions. The observed changes of the lake area 

and water level follow a similar pattern as the modeled natural changes. It suggests that, while 

agriculture area has been expanding, irrigation water consumption has not changed much between 

2000 and 2010 in Ebinur Lake basin. This is possibly related to the widely spreading adoption of 

drip irrigation in Xinjiang since the late-1990s which drastically improves water use efficiency 

compared to sprinkler irrigation that is commonly used prior (Xu et al., 2003). Su (2014) show 

that the adoption rate of drip irrigation increased from virtually none in 1996 to 60.95% in 2010 

on lands cultivated by the Xinjiang Production and Construction Corps. The results also suggest 
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that human water consumption in Ebinur Lake basin has come to an equilibrium with available 

water even under agriculture expansion. Contrary to common belief, changes in Ebinur Lake in 

the past two decades are more likely to have been caused by natural climate variability than 

increased water extraction due to agriculture expansion.  

2.7 Conclusions 

Water is a crucial resource in Xinjiang and its availability in the future under climate 

change has profound influence on the local ecosystem as well as the livelihood of the local 

residents. Here, we used remote sensing and hydrologic modeling to examine the changes of 

Sayram Lake and Ebinur Lakes in northwestern Xinjiang to reveal trends of water availability in 

the region. We found that the mountain region is getting wetter as evidenced by the continual 

expansion of Sayram Lake under little human influence.  

We also found that the lowland region has experience little change in water availability in 

the past two decades as evidenced by the lack of trends in the observed lake volume changes. 

Ebinur Lake’s drastic decline between the 1950s and 1970s as shown in past studies is likely 

caused by large scale agriculture irrigation projects (Wang et al., 2003; Ma et al., 2014). The 

changes of Ebinur Lake in the recent two decades, however, are unlikely caused by agriculture 

expansion as evidenced by the consistent patterns between the modeled natural changes and 

observed changes in Ebinur Lake. This suggests that the local agriculture practices since the 1990s 

have greatly improved water use efficiency and Ebinur Lake has come to a new balance with 

available water in the basin at a smaller volume.  
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Figure 2.1: Ebinur Lake and Sayram Lake in Xinjiang, China. 
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Figure 2.2: Mean annual precipitation (A) and Mean temperature precipitation (B) at three 

meteorological stations from the Chinese Meteorological Administration 
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Figure 2.3: Workflow of the methodology 
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Figure 2.4: Workflow for precipitation data processing 
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Figure 2.5: Grid cells used in the VIC model with red showing higher altitude grids. 
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Figure 2.6: Precipitation lapse rate for January 
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Figure 2.7: Precipitation lapse rate for February 



 

50 

 

 

Figure 2.7: Precipitation lapse rate for March 
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Figure 2.8: Precipitation lapse rates for April 
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Figure 2.9: Precipitation lapse rates for May 
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Figure 2.10: Precipitation lapse rates for June 
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Figure 2.11: Precipitation lapse rates for July 
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Figure 2.12: Precipitation lapse rates for August 



 

56 

 

 

Figure 2.13: Precipitation lapse rates for September 
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Figure 2.14: Precipitation lapse rate for October 
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Figure 2.15: Precipitation lapse rate for November 
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Figure 2.16: Precipitation lapse rate for December 
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Figure 2.17: Comparison between adjusted precipitation and WRF precipitation
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Figure 2.18: Area changes of Sayram and Ebinur Lakes from Landsat and MODIS imagery 
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Figure 2.19: Water level changes of Sayram and Ebinur Lake from ICESat and CryoSat altimetry 



 

63 

 

 

Figure 2.20: Hypsometry of Sayram and Ebinur Lakes 
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Figure 2.21: Volume changes of Sayram and Ebinur Lake derived from lake hypsometry 
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Figure 2.22: Comparison between modeled and observed volume changes of Sayram Lake 
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Figure 2.23: Comparison between modeled and observed volume changes of Ebinur Lake 
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Figure 2.24: Annual agriculture expansion in Ebinur Lake basin from 2000 to 2017  
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Table 2.1: Summary of collected optical imagery 

 Acquisition date Sensor Image ID 

Sayram Lake 10/01/1965 Panoramic camera Corona_19651001 

09/22/1972 Landsat 1 MSS P158R029_LM1D19720922.dat 

04/21/1974 Landsat 1 MSS P158R029_LM1D19740421.dat 

05/31/1975 Landsat 2 MSS P158R029_LM2D19750531.dat 

07/24/1975 Landsat 2 MSS P158R029_LM2D19750724.dat 

08/11/1975 Landsat 2 MSS P158R029_LM2D19750811.dat 

10/16/1976 Landsat 2 MSS P158R029_LM2D19761016.dat 

12/09/1976 Landsat 2 MSS P158R029_LM2D19761209.dat 

04/14/1977 Landsat 2 MSS P158R029_LM2D19770414.dat 

05/20/1977 Landsat 2 MSS P158R029_LM2D19770520.dat 

06/25/1977 Landsat 2 MSS P158R029_LM2D19770625.dat 

08/18/1977 Landsat 2 MSS P158R029_LM2D19770818.dat 

09/23/1977 Landsat 2 MSS P158R029_LM2D19770923.dat 

11/16/1977 Landsat 2 MSS P158R029_LM2D19771116.dat 

12/04/1977 Landsat 2 MSS P158R029_LM2D19771204.dat 

04/27/1978 Landsat 2 MSS P158R029_LM2D19780427.dat 

06/02/1978 Landsat 2 MSS P158R029_LM2D19780602.dat 

08/13/1978 Landsat 2 MSS P158R029_LM2D19780813.dat 

12/17/1978 Landsat 2 MSS P158R029_LM2D19781217.dat 

8/22/1989 Landsat 5 TM P147R029_LT5D19890822.JP2 

6/6/1990 Landsat 5 TM P147R029_LT5D19900606.JP2 

7/13/1992 Landsat 5 TM P147R029_LT5D19920713.JP2 

6/14/1993 Landsat 5 TM P147R029_LT5D19930614.JP2 

8/9/1996 Landsat 5 TM P147R029_LT5D19960809.JP2 

8/25/1996 Landsat 5 TM P147R029_LT5D19960825.JP2 

9/10/1996 Landsat 5 TM P147R029_LT5D19960910.JP2 

9/13/1997 Landsat 5 TM P147R029_LT5D19970913.JP2 

9/29/1997 Landsat 5 TM P147R029_LT5D19970929.JP2 

7/9/1999 Landsat 7 ETM+ P147R029_LE7D19990709.JP2 

8/26/1999 Landsat 7 ETM+ P147R029_LE7D19990826.JP2 

7/27/2000 Landsat 7 ETM+ P147R029_LE7D20000727.JP2 

8/28/2000 Landsat 7 ETM+ P147R029_LE7D20000828.JP2 

9/13/2000 Landsat 7 ETM+ P147R029_LE7D20000913.JP2 

7/14/2001 Landsat 7 ETM+ P147R029_LE7D20010714.JP2 

9/16/2001 Landsat 7 ETM+ P147R029_LE7D20010916.JP2 

7/17/2002 Landsat 7 ETM+ P147R029_LE7D20020717.JP2 

8/18/2002 Landsat 7 ETM+ P147R029_LE7D20020818.JP2 

8/5/2006 Landsat 5 TM P147R029_LT5D20060805.JP2 

8/21/2006 Landsat 5 TM P147R029_LT5D20060821.JP2 

9/6/2006 Landsat 5 TM P147R029_LT5D20060906.JP2 

9/22/2006 Landsat 5 TM P147R029_LT5D20060922.JP2 

6/21/2007 Landsat 5 TM P147R029_LT5D20070621.JP2 

7/7/2007 Landsat 5 TM P147R029_LT5D20070707.JP2 

8/8/2007 Landsat 5 TM P147R029_LT5D20070808.JP2 

8/24/2007 Landsat 5 TM P147R029_LT5D20070824.JP2 

9/9/2007 Landsat 5 TM P147R029_LT5D20070909.JP2 

6/26/2009 Landsat 5 TM P147R029_LT5D20090626.JP2 

8/13/2009 Landsat 5 TM P147R029_LT5D20090813.JP2 

9/30/2009 Landsat 5 TM P147R029_LT5D20090930.JP2 

7/15/2010 Landsat 5 TM P147R029_LT5D20100715.JP2 
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8/16/2010 Landsat 5 TM P147R029_LT5D20100816.JP2 

7/18/2011 Landsat 5 TM P147R029_LT5D20110718.JP2 

8/19/2011 Landsat 5 TM P147R029_LT5D20110819.JP2 

9/20/2011 Landsat 5 TM P147R029_LT5D20110920.JP2 

6/21/2013 Landsat 8 OLI P147R029_LC8D20130621.JP2 

9/9/2013 Landsat 8 OLI P147R029_LC8D20130909.JP2 

9/25/2013 Landsat 8 OLI P147R029_LC8D20130925.JP2 

7/10/2014 Landsat 8 OLI P147R029_LC8D20140710.JP2 

7/26/2014 Landsat 8 OLI P147R029_LC8D20140726.JP2 

8/11/2014 Landsat 8 OLI P147R029_LC8D20140811.JP2 

8/27/2014 Landsat 8 OLI P147R029_LC8D20140827.JP2 

9/12/2014 Landsat 8 OLI P147R029_LC8D20140912.JP2 

7/13/2015 Landsat 8 OLI P147R029_LC8D20150713.JP2 

6/13/2016 Landsat 8 OLI P147R029_LC8D20160613.JP2 

6/29/2016 Landsat 8 OLI P147R029_LC8D20160629.JP2 

8/16/2016 Landsat 8 OLI P147R029_LC8D20160816.JP2 

9/1/2016 Landsat 8 OLI P147R029_LC8D20160901.JP2 

9/17/2016 Landsat 8 OLI P147R029_LC8D20160917.JP2 

Ebinur Lake 6/26/1994 Landsat 5 TM P146R029_LT5D19940626.JP2 

9/30/1994 Landsat 5 TM P146R029_LT5D19940930.JP2 

8/5/1997 Landsat 5 TM P146R029_LT5D19970805.JP2 

8/21/1997 Landsat 7 ETM+ P146R029_LT5D19970821.JP2 

9/22/1997 Landsat 7 ETM+ P146R029_LT5D19970922.JP2 

9/25/1998 Landsat 7 ETM+ P146R029_LT5D19980925.JP2 

7/2/1999 Landsat 7 ETM+ P146R029_LE7D19990702.JP2 

8/3/1999 Landsat 7 ETM+ P146R029_LE7D19990803.JP2 

6/18/2000 Landsat 7 ETM+ P146R029_LE7D20000618.JP2 

9/25/2001 Landsat 7 ETM+ P146R029_LE7D20010925.JP2 

07/04/2003 MODIS Terra MOD09GQ.A2003185.h23v04.006.2015159134211 

07/11/2004 MODIS Terra MOD09GQ.A2004192.h23v04.006.2015091081849 

07/18/2005 MODIS Terra MOD09GQ.A2005199.h23v04.006.2015106015230 

7/26/2002 Landsat 7 ETM+ P146R029_LE7D20020726.JP2 

7/29/2006 Landsat 5 TM P146R029_LT5D20060729.JP2 

8/14/2006 Landsat 5 TM P146R029_LT5D20060814.JP2 

6/30/2007 Landsat 5 TM P146R029_LT5D20070630.JP2 

8/17/2007 Landsat 5 TM P146R029_LT5D20070817.JP2 

9/2/2007 Landsat 5 TM P146R029_LT5D20070902.JP2 

9/18/2007 Landsat 5 TM P146R029_LT5D20070918.JP2 

6/19/2009 Landsat 5 TM P146R029_LT5D20090619.JP2 

7/21/2009 Landsat 5 TM P146R029_LT5D20090721.JP2 

8/22/2009 Landsat 5 TM P146R029_LT5D20090822.JP2 

6/6/2010 Landsat 5 TM P146R029_LT5D20100606.JP2 

7/11/2011 Landsat 5 TM P146R029_LT5D20110711.JP2 

9/13/2011 Landsat 5 TM P146R029_LT5D20110913.JP2 

6/30/2013 Landsat 8 OLI P146R029_LC8D20130630.JP2 

7/16/2013 Landsat 8 OLI P146R029_LC8D20130716.JP2 

8/1/2013 Landsat 8 OLI P146R029_LC8D20130801.JP2 

9/2/2013 Landsat 8 OLI P146R029_LC8D20130902.JP2 

9/18/2013 Landsat 8 OLI P146R029_LC8D20130918.JP2 

6/1/2014 Landsat 8 OLI P146R029_LC8D20140601.JP2 

6/17/2014 Landsat 8 OLI P146R029_LC8D20140617.JP2 

7/19/2014 Landsat 8 OLI P146R029_LC8D20140719.JP2 

8/20/2014 Landsat 8 OLI P146R029_LC8D20140820.JP2 
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9/21/2014 Landsat 8 OLI P146R029_LC8D20140921.JP2 

6/4/2015 Landsat 8 OLI P146R029_LC8D20150604.JP2 

6/20/2015 Landsat 8 OLI P146R029_LC8D20150620.JP2 

7/22/2015 Landsat 8 OLI P146R029_LC8D20150722.JP2 

9/8/2015 Landsat 8 OLI P146R029_LC8D20150908.JP2 

6/6/2016 Landsat 8 OLI P146R029_LC8D20160606.JP2 

6/22/2016 Landsat 8 OLI P146R029_LC8D20160622.JP2 

7/24/2016 Landsat 8 OLI P146R029_LC8D20160724.JP2 

8/25/2016 Landsat 8 OLI P146R029_LC8D20160825.JP2 

9/10/2016 Landsat 8 OLI P146R029_LC8D20160910.JP2 
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CHAPTER 3 

LAKE CHANGES ACROSS CENTRAL ASIA IN THE PAST 30 YEARS OBSERVED FROM 

REMOTE SENSING 

3.1 Introduction 

Central Asia is located in the heart of Eurasia that includes the former Soviet Central Asian 

republics, northeastern Iran, Afghanistan, northern and central Pakistan, northern India, western 

China and Mongolia (Dani et al., 1992). Water is a crucial resource to over 100 million people in 

this region. However, Central Asia is far away from moisture sources and is characterized by hot 

and dry summers and cold and relatively moist winters (Schiemann et al., 2008; Lioubimtseva and 

Henebry, 2009). The Himalayan mountains to the south block moisture coming from the Indian 

Ocean and most precipitation is brought by the westerlies coming from the Atlantic Ocean 

(Schiemann et al., 2008), leading to strong spatial heterogeneity of precipitation patterns. For 

example, the Aral Sea and most of the lowland regions receive merely 90-120 mm precipitation 

annually while the foothills of the Tianshan and Pamir mountains in these regions receive around 

200 mm (Surkova 2010; Micklin et al., 2014). In contrast, the high Tianshan and Pamir mountains 

can receive over 1000 mm annually due to the orographic effects (Bolch, 2007; Williams, 2008). 

Temperature has been rising significantly at 0.24°C per decade across Central Asia (Huang et al., 

2012) while more pronounced warming has been observed during the winter especially in the 

mountains (Siegfried et al., 2012). Figures 3.1 and 3.2 show the precipitation and temperature 

trends in Central Asia from 1985-2015 derived from the Climate Research Unit data set (Harris et 

al., 2014). While precipitation trends are highly variable across the region, there is widespread 

increase in temperature. As a result, glaciers in the region are declining (e.g. Aizen et al., 2007; 

Bolch, 2007; Armstrong, 2010; Cogley, 2016) and snow cover area and snow depth are decreasing 
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(Aizen et al., 1997) and snow is starting to melt earlier in the spring (Dietz et al., 2013). The 

generated meltwater provides crucial water source to the downstream arid lowland regions where 

most populations are located. Depending on the location and abundance of glaciers in the 

catchments, some studies have found increases in annual runoff in certain Tianshan catchments 

(e.g. Kriegel et al., 2013; Xu et al., 2013; Deng et al., 2015; Duethmann et al., 2015) while others 

have found decreases (Aizen et al., 1997; Kezer and Matsuyama, 2006) or no significant changes 

(Aizen et al., 1997). Given these hydrologic changes, there is great uncertainty on how water 

resources will change under the undertaking climate change (Bernauer and Siegfried, 2012; 

Siegfried et al., 2012). 

 Apart from climatological changes, humans also have great influences on water availability 

in Central Asia. Over 90% of water extracted from rivers is used for irrigation (World Bank, 1998). 

With the exception of Kazakhstan, irrigated agriculture accounts for 80% of total agriculture in the 

former Soviet Central Asia republics including Kyrgyzstan, Tajikistan, Turkmenistan and 

Uzbekistan (Micklin et al., 2014). The drastic expansion of agriculture lands in the 20th century 

has caused the Aral Sea to experience devastating shrinkage which is commonly known as the 

Aral Sea disaster (Micklin, 2007). During the Soviet period, water in the former Soviet Central 

Asia republics was managed by the central government. Hydroelectric facilities were constructed 

in upstream regions (Kyrgyzstan and Tajikistan) to mainly to store water during the winter and 

provide water during the summer for agricultural irrigation in the downstream regions (Uzbekistan, 

Turkmenistan and Kazakhstan). After the collapse of the Soviet Union however, this regional 

arrangement fell apart as the region broke into various countries each with their own agenda. This 

created conflicts between upstream and downstream countries on how much water should be 

released from dams in the winter for power generation versus how much should be released in the 
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summer for irrigation. These international conflicts on water and energy management will likely 

exacerbate water security in Central Asia (Siegfried and Bernauer, 2007; Bernauer and Siegfried, 

2012; Mukhammadiev, 2014).  

 In light of the above discussion, it is important to understand how water resources are 

changing in Central Asia and what is causing the changes. Lakes, especially endorheic lakes, are 

particularly sensitive to climatic and anthropogenic impacts. Endorheic lakes are the terminus of 

a hydrologic system and their storage variations are direct responses to the climatic changes and 

human activities in the basin. Central Asia is home to many such lakes (Lehner and Döll, 2004), 

despite its apparent aridity. Thus, lakes in Central Asia can be used as proxy indicators of climate 

and anthropogenic change. This study selects some representative lakes in the region and uses 

remote sensing to examine how their area, level and volume are changing in the past 30 years. It 

also assesses the possible climatic and anthropogenic causes that lead to the changes in these lakes 

to provide insight into future water availability in the region under climate and population change. 

3.2 Materials and methods 

3.2.1 Study area  

Figure 3.3 shows the study area which is located in the most populated area of Central Asia. 

Seven major basins were selected including the most notable Amu Darya, Syr Darya and Ili river 

basins. The basins cover about 1.7 million km2 and about 20% are in the high mountains (elevation > 

2,000 m). Extensive agriculture has been developed in all but three mountain lake basins (Chapter 

4). Seventeen representative lakes were selected from these basins. Table 3.1 shows their basic 

characteristics of the lakes. These lakes form a hierarchy from high altitude, high precipitation, 

little human disturbance to low altitude, low precipitation, considerable human disturbance. Chatyr, 

Karakul, Sayram and Songkul are mountain lakes located at altitudes greater than 2,000 m. 
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Kapchagay, Kayrakkum, Shardara and Toktogul are reservoirs located near population centers and 

agriculture lands. The rest are lowlands lakes located at or near the terminus of their respective 

basins. Therefore, the chosen lakes provide a representative view of how water resources are 

changing in Central Asia. 

3.2.2 Observing lake area from optical satellite imagery 

We collected over 330 satellite imagery from Landsat and MODIS archives 

(https://earthexplorer.usgs.gov/) ranging from 1986 to 2016. Lakes were mapped from these 

images using an automated adaptive mapping algorithm based on the Normalized Difference 

Water Index (NDWI) (Li and Sheng, 2012; Sheng et al., 2016). The NDWI is defined using the 

green and near infrared bands as: 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝑒𝑎𝑟 𝑖𝑛𝑓𝑒𝑎𝑟𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝑒𝑎𝑟 𝑖𝑛𝑓𝑒𝑎𝑟𝑒𝑑
(1) 

Regions of potential lakes were first located by applying a loose global threshold (-0.05) to the 

entire NDWI image. A buffer was then extended from the region so that each region contained 

lakes pixels and lands pixels. A NDWI histogram was then generated for each region and a second 

local NDWI threshold was identified from the histogram to extract the lake pixels. This adaptive 

mapping algorithm is more effective and robust than using a single NDWI threshold because 

complex water conditions such as turbidity, mineral content, presence of vegetation and snow/ice 

may cause the lake to have different NDWI values that cannot be captured by a single threshold. 

The algorithm has been shown to be effective in various terrains and water conditions (Li and 

Sheng, 2012; Wang et al., 2014; Sheng et al., 2016). 

 The algorithm was applied to the acquired satellite images to derive lakes automatically. 

The derived results were then validated manually by comparing the results to the original image 

to remove cloud and shadow contamination. Over 360 area observations were derived for 17 lakes. 
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3.2.3 Observing lake water level from satellite altimetry 

We measured lake water level from ICESat and CryoSat altimeters. The ICESat data was 

collected from the ICESat derived inland water surface spot heights (IWSH) product (O’Loughlin 

et al., 2016). This product contains the mean and median elevations of each transect that overpasses 

a lake from 2003 to 2009. Over 850 observations were collected from this product. 

We also collected the CryoSat Level 1B product 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat) operated in 

synthetic aperture radar interferometry (SARIn) mode from 2010 to 2018. This product contains 

waveforms received by the sensor. The standard retracker used for the Level 2 product can only 

detect one peak in the waveform and thus provide one elevation estimate. However, in mountain 

areas the surrounding topography may product multiple peaks in the waveform. The standard 

retracker may detect a peak corresponding to the surrounding terrain instead of the water surface. 

As a result, water level estimates in the Level 2 product may be off by tens to even hundreds of 

meters (Kleinherenbrink et al., 2015). We conducted our own retracking on the L1B product using 

an algorithm proposed by Kleinherenbrink, Ditmar, and Lindenbergh (2014). The proposed 

retracker is able to detect multiple peaks and multiple elevation estimates. The multiple elevation 

estimates were then filtered to only contain measurements from the water surface since water 

surface elevation does not vary as much as the surrounding terrain. This approach can effectively 

remove terrain reflections from a satellite overpass. 

Finally, results from both products have to be reconciled because they use different 

geodetic reference systems and contain various biases. Since they do not have temporal overlap, 

other lakes in the region that contains ICESat, CryoSat and a third HYDROWEB product 

(http://hydroweb.theia-land.fr/) with elevation measurement from 2003 to 2018 were examined. 

http://hydroweb.theia-land.fr/


 

84 

 

We selected ten lakes in Central Asia, including lakes in Tianshan, the Tibetan Plateau and other 

lowland regions and used the HYDROWEB product as a baseline to assess the bias between 

ICESat and CryoSat. We found that CryoSat was consistently underestimating elevation than 

ICESat in nine out of ten lakes. We took the median difference at those nine lakes (0.687 m) and 

applied to all lakes in the study area. 

3.2.4 Combining lake area and water level observations to estimate lake volume changes 

A lake hypsometry (area-level relationship) needs to be derived before volume changes of 

the lake can be estimated. The satellite area observations started around late 1980s and early 1990s 

for most lakes while the lake level observations started in 2003. There were too few coincidental 

area and level measurements to derive hypsometry for lakes in our study area. Therefore, we had 

to use a digital elevation model (DEM) for this purpose.  

3.2.4.1 Deriving lake hypsometry from digital elevation model 

We used the Multi-Error-Removed Improved-Terrain Hydro (MERIT Hydro, 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/) DEM to derive lake hypsometry. This 

DEM is based on the MERIT DEM which removed multiple errors including absolute bias, stripe 

noise, speckle noise and tree height bias from the Shuttle Radar Topography Mission (SRTM) 

DEM and developed specifically for hydrologic studies.  

We obtained the maximum extent for each lake in our study area from the 30-year satellite 

observations and calculated a lake area within the maximum extent for each 0.5-meter elevation 

intervals. We also derived a mean shoreline elevation using the DEM based on the remote-sensing-

derived lake boundaries. We used both derivations to fit a polynomial relationship between lake 

area and water level, which is used as the basis for estimating lake area from level measurements 
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and vice versa. The relationships are shown in Table 3.2 and scatterplots are shown in Figures 3.4 

– 3.20. 

Lake level given an area observation (and vice versa) is estimated using the equations in 

Table 3.2. We found systematic biases between the estimated levels from area observations and 

the observed levels from ICESat/CryoSat. The estimated levels are greater than the observed levels 

for most of the lakes. Therefore, we used pairs of estimated levels and observed levels taken within 

15 days apart to estimate the bias between the two data sources. We then subtracted the bias of 

each lake from the estimated levels to derive a consistent record of water level changes in all lakes 

from 1980s to 2010s. Similarly, we corrected the bias between the observed areas and estimated 

areas. 

3.2.4.2 Estimating lake volume changes 

With the area and level estimates, lake volume change between two time periods is then 

calculated as: 

∆𝑉 =
(ℎ1 − ℎ2)  ×  (𝐴1 + 𝐴2)

2
 

where h1, h2, A1, A2 are the lake level and area measurements at time 1 and 2 respectively.  

3.3 Results 

Using the above data sets we generated, we analyze the observed lake area, level, and 

volume changes in the past ~30 years in the subsequent sections and examine the lake changes for 

various lake groups. Lakes are grouped by endorheic, open and reservoirs as these types of lakes 

are controlled by different physical processes. Endorheic lakes are usually the most sensitive ones 

to changes in inflow and can have drastic changes in area. On the other hand, open lakes can self-

regulate through outflow and they are usually more stable. Reservoirs are controlled by human 
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operations and can have drastic interannual fluctuations depending on the inflow and release 

schedules.  

3.3.1 Endorheic lakes 

Figures 3.21 - 3.23 show the area, level and volume changes of endorheic lakes. All lakes 

except Songkul, Sorbulaq and Issykkul experienced an overall increase in surface area (Figure 

3.21). The increases range between 1.0% and 15.4% while the decreases are much less, between -

0.04% and -4%. Chatyr, Karakul and Sayram showed consistent increase during the observed 

period. These three lakes are located in the mountain regions above 2,000 m in elevation. Alakol, 

despite located at 347 m, showed a consistent increase as well. Songkul, while located in the 

mountains at 3,011 m, experienced a decline of -1.3%. Issykkul remained rather stable with a slight 

overall decline of -0.03%.  

Other lakes showed much greater interannual fluctuations. Ebinur lake in particular 

experienced the biggest fluctuations among all endorheic lakes as its area changed between -40% 

and 80%. The north part of the Aral Sea showed a decline between the late 1980s and 1990s and 

it recovered in the 2000s. Smaller lakes like Sorbulaq and Qamystybas showed some interannual 

variabilities as well between -5.0% and 6.6%. 

All lakes except Aral Sea north, Songkul, Sorbulaq and Issykkul experienced an overall 

level increase during the observed period (Figure 3.22). Similar to area observations, mountain 

lakes such as Chatyr, Karakul and Sayram showed consistent increases in water level ranging from 

3.5 m to 5.2 m. Alakol and Qamystybas showed increase of 2.7 m and 0.05 m respectively. Both 

Aral Sea north and Issykkul showed slight decline during the period of -1.9 m and -1.6 m 

respectively. Songkul and Sorbulaq remained relatively stable with slight declines overall. 
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Over half the lakes experienced increase in volume during the observed period (Figure 

3.23). Alakol showed the greatest increase of 3.91 km3. Qamystybas, Sayram, Karakul, Chatyr and 

Ebinur showed moderate increase between 0.13 and 1.04 km3. Songkul and Sorbulaq showed 

slight decrease of -0.21 km3 and 0.01 km3 respectively while the north Aral Sea and Issykkul 

showed greater decline of -2.72 km3 and -4.87 km3 respectively. 

3.3.2 Open lakes 

Figures 3.24 - 3.26 show the area, level and volume changes of open lakes. All three open 

lakes examined in this study have experienced an increase during the observed period ranging 

between 0.8% and 1.4% (Figure 3.24). All three lakes drain into Alakol; and therefore, it’s 

reasonable that they have the same consistent increasing trend. 

All three lakes showed similar levels of increase during this period (Figure 3.25). 

Kosharkol, Sasykkol and Zhalanashkol increased by 0.8, 1.6 and 1.4 m respectively. This is 

consistent with the area increase. 

All three lakes also experienced increase in volume (Figure 3.26). Kosharkol and 

Zhalanashkol increased by 0.05 km3 and 0.03 km3, respectively while Sasykkol had a greater 

increase of 0.58 km3.  

3.3.3 Reservoirs 

Figures 3.27 – 3.29 show the area, level and volume changes of reservoirs. All four 

reservoirs experienced a slight 0.02% to 8.4% increase overall (Figure 3.27). They have little 

overall trend during the observation period, but they experience much interannual variability as 

expected from dam operations. Toktogul experienced the greatest interannual changes of up to 

60%. The Toktogul dam is constructed in a mountain valley mainly for hydroelectric purposes 
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while other three dams are constructed in relatively flat lowland regions mainly for irrigation 

purposes. 

Similar to their area, reservoirs levels show little trend over the entire observed period 

(Figure 3.28). However, interannual fluctuations exists especially for Toktogul which fluctuates 

between -40.6 m and 20.0 m. Kapchagay, Kayrakkum and Shardara generally fluctuates between 

-7.2 m and 6.4 m. Both Kayrakkum and Shardara are located on the Syr Darya river while Toktogul 

is located on the Naryn river which is a major tributary of the Syr Darya river. It can be seen that 

the water level in Kayrakkum and Shardara are well correlated while they are in opposite phase 

with the level of Toktogul. This is implicated by the major functionality of the three dams as 

Toktogul release large amounts of water in winter and spring for power generation while 

Kayrakkum and Shardara releases water in summer for irrigation. 

All reservoirs experienced increase in volume during the observed period except for 

Kayrakkum which showed a slight decrease of -0.17 km3 (Figure 3.29). Kapchagay, Shardara and 

Toktogul increased by 1.17 km3, 0.35 km3 and 1.10 km3 respectively. It can be seen from that 

Toktogul peaks in October and releases water throughout the winter months and reaches its lowest 

level in March. Shardara and Kayrakkum peaks in May and releases water during the summer and 

reaches their lowest levels in September/October.  

3.4 Discussion 

Interesting patterns can be found from the above results. Overall, natural lakes are 

increasing in volume regardless of their type and elevation. Reservoirs have remained stable with 

large amounts of interannual variability. Our results correspond well with other studies on 

individual lakes (Ma et al., 2007; Kravtsova et al., 2010; Bai et al., 2011; Li et al., 2011). 

Differences exist mainly due to the different time periods examined by various studies. For 
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example, the north part of Aral Sea experienced drastic changes in the 1990s up to 2005 due to the 

construction and destruction of a dam in multiple occasions (Cretaux et al., 2005). Drastic increase 

since 2000 and stabilization since 2006 is due to the construction of a new dam that stopped the 

flow of water out of the north Aral Sea. Nevertheless, the overall volume of the lake still declined 

compared to the mid-1980s when the Aral Sea was not yet divided, and its volume was much 

larger. 

3.4.1 Climatic causes of lake changes 

Precipitation changes across Central Asia is highly heterogeneous. Stations in the foothills 

and higher altitudes of Tianshan show increasing precipitation trends while those in the inner 

Tianshan show decreasing trends. There is little difference overall between precipitation trends at 

high and low elevations (Figure 3.30). Nine out of twelve lakes that expanded are located in regions 

with increasing precipitation while only one out of five lakes that declined are located in regions 

with decreasing precipitation. Thus, ten out of seventeen lakes have the same direction of change 

as precipitation in their locale. This suggests a modest relationship between precipitation and lake 

change.  

Temperature, on the other hand, has been increasing consistently across Central Asia. The 

rate of temperature change in Central Asia ranges between 0.18°C and 0.42°C per decade with 

evidence of exacerbated warming in winter though evidence for altitude-dependent warming is 

inconclusive (Unger-Shayesteh et al., 2013). As a result, the decline of glacier and snowpacks have 

been widely observed across the Tianshan (Unger-Shayesteh et al., 2013). The decline of glacier 

and snow generates more meltwater runoff that can feed lakes which explains the consistent 

expansion of lakes located above 2,000 m elevation such as Chatyr, Karakul and Sayram (Figure 

3.31). The interesting exception to this is Songkul which showed a slight decline over the period. 
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This is possibly related to the small proportion of the lake basin being covered by snow and glacier. 

Issykkul also showed a slight decline over the period despite being at 1,600 m elevation and 

surrounded by mountains with glaciers and permanent snowpacks. However, the Issykkul basin 

has well developed irrigated agriculture fields. Human activities may have caused the decline of 

Issykkul though the decline of area is only -0.03%. Downstream lakes and reservoirs have 

generally expanded slightly as well as a result of more meltwater production.  

3.4.2 Anthropogenic causes of lake changes 

Humans have been practicing irrigated agriculture in the region for 3,000 years (Micklin, 

2014). During the Soviet period (pre-1991), the Kazakhstan, Uzbekistan, Turkmenistan, 

Kyrgyzstan and Tajikistan were predominantly planting cottons which is a water intensive crop. 

The Soviets extensively built water management infrastructures including canals and dams 

between the 1950s and 1980s. All four reservoirs examined in this study were filled during this 

period. Agriculture expanded steadily since the 1950s and as a result the Aral Sea has undergone 

constant decline since the 1960s due to the extraction of water for irrigation from the Amu Darya 

and the Syr Darya rivers which supplies the sea. Figure 3.32 shows the monthly average volume 

change of each reservoir within a year. Kapchagay, Kayrakkum and Shardara, which are irrigation 

reservoirs, fills water up until May and releases water during the summer for irrigation. Toktogul, 

which is mainly a power generation reservoir releases water during the winter. 

Most of the observations in this study were made after the collapse of the Soviet Union in 

1991. During this period, agriculture expansion in the former Soviet states came to a halt and 

irrigated area remained largely unchanged between 1995 and 2010 (Micklin, 2014; Chapter 4 of 

this dissertation). However, agriculture continued to expand in Xinjiang, China (See Chapter 2). 

This may be why the majority of lakes and reservoirs at lower elevations remained relatively stable 
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with little sign of decline during our observed period. Nevertheless, considering the expansion of 

high-altitude lakes under increased meltwater runoff, lakes in lowland regions should experience 

similar increasing trends if no agriculture were present. 

3.4.3 Implications of transnational river management policies 

Of the four reservoirs, Toktogul lies in Kyrgyzstan while Kapchagay and Shardara lies in 

Kazakhstan and Kayrakkum lies in Tajikistan. With the collapse of the USSR, the five countries 

of the former Soviet Central Asia republic undergone numerous negotiations on agreements over 

water sharing in the region (Agreement, 1992; Agreement, 1993; Agreement, 1996; Almaty 

Declaration, 1997; Agreement, 1998; Ashgabat Declaration, 1999; Agreement, 2000; Almaty 

Statement, 2009). They agreed to essentially keep the arrangements during the Soviet period. 

However, these agreements are poorly implemented (Siegfried and Bernauer, 2007) and attempts 

to solve the problem have largely failed (Bernauer and Siegfried, 2012). For example, even though 

downstream countries insisted on keeping the previous schedule of water releases from upstream 

hydroelectric facilities (Micklin, 1996; Micklin, 1997; Krutov and Lennaerts, 2000; Pannier, 2000; 

Gleason, 2001), they declined to offer compensating energy resource to upstream countries or 

offered them at market prices (Micklin, 2002; Bernauer and Siegfried, 2012). In response, the 

upstream countries modified their hydroelectric operation schedules to match their domestic 

energy demand during the winter (Siegfried and Bernauer, 2007; Bernauer and Siegfried, 2012) as 

shown in Toktogul whose volume kept declining during the winter (Figure 3.32). These nations 

view energy and water as a matter of national security and generally adopts a “self-sufficiency” 

policy which incurs substantial costs for all countries in the region (Micklin, 2002).  

3.5 Conclusion  
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Water is a scarce yet essential resource in Central Asia. Here, we examined the changes of 

lakes and reservoirs across Central Asia in the past three decades to shed light on the changes of 

water resources in the region. We used satellite remote sensing to estimate lake area, water level 

and volume changes and found various interesting patterns that can guide future water 

management policies in the region. 

First, lakes located in the remote high-elevation mountain regions are generally expanding 

throughout the period. This is likely caused by the increased melting of snow and glaciers due to 

a warming climate. This suggests that more water is being generated from the mountains and will 

have a positive effect on the local population. Second, despite the increased meltwater runoff, lakes 

in the downstream lowland regions have not seen similar expansion like the mountain lakes. Most 

downstream lakes have remained stable and, in some cases, declined. Many of these lakes are 

located near agriculture fields and irrigation is likely the cause of such difference. Third, reservoirs 

have generally remained stable during the past three decades though they have experienced 

different patterns depending on their location and major function. A reservoir located in the 

mountains has shown declines during the winter and spring suggesting a release of water for 

hydroelectric power generation. Reservoirs located in the agriculture regions have shown declines 

during the summer suggesting a release of water for irrigation.  

Under climate change, more water has been generated from glaciers and snow and this 

trend is likely to continue to the near future (Siegfried et al., 2012); however, peak runoff will shift 

towards earlier in the spring (Bernauer and Siegfried 2012). This has great implications on water 

management especially in transnational rivers as countries will fight over the amount of water 

allocated for power generation versus agriculture irrigation. This calls for the cooperation between 
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countries sharing the same watershed as increased meltwater production alone will not solve water 

conflicts in the region. 
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Figure 3.1: Precipitation trends in Central Asia from 1985-2015 
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Figure 3.2: Temperature trends in Central Asia from 1985-2015 
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Figure 3.3: Lakes in study area 
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Figure 3.4: Hypsometry of Alakol 
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Figure 3.5: Hypsometry of Aral Sea north 
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Figure 3.6: Hypsometry of Chatyr 
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Figure 3.7: Hypsometry of Ebinur 
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Figure 3.8: Hypsometry of Issykkul 
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Figure 3.9: Hypsometry of Kapchagay 
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Figure 3.10: Hypsometry of Karakul 
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Figure 3.11: Hypsometry of Kayrakkum 
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Figure 3.12: Hypsometry of Kosharkol 
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Figure 3.13: Hypsometry of Qamystybas 
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Figure 3.14: Hypsometry of Sasykkol 
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Figure 3.15: Hypsometry of Sayram 
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Figure 3.16: Hypsometry of Shardara 
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Figure 3.17: Hypsometry of Shardara 
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Figure 3.18: Hypsometry of Sorbulaq 
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Figure 3.19: Hypsometry of Toktogul 
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Figure 3.20: Hypsometry of Zhalanashkol 
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Figure 3.21: Area changes of endorheic lakes 
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Figure 3.22: Level changes of endorheic lakes 
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Figure 3.23: Volume changes of endorheic lakes 
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Figure 3.24: Area changes of open lakes 
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Figure 3.25: Level changes of open lakes 
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Figure 3.26: Volume changes of open lakes 
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Figure 3.27: Area changes of reservoirs 
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Figure 3.28: Level changes of reservoirs 
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Figure 3.29: Volume changes of reservoirs 
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Figure 3.30: Precipitation trends at difference elevations (Harris et al., 2014) 
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Figure 3.31: Volume change of mountain lakes at elevation above 2,000 m 
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Figure 3.32: Seasonal volume change of reservoirs 
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Table 3.1: Lake characteristics 

Lake name County  Type Elevation 

Alakol Kazakhstan Endorheic 347 

Aral Sea north Kazakhstan Endorheic 39 

Chatyr Kyrgyzstan Endorheic 3,526 

Ebinur China Endorheic 194 

Issykkul Kyrgyzstan Endorheic 1,601 

Kapchagay Kazakhstan Reservoir 475 

Karakul Tajikistan Endorheic 3,915 

Kayrakkum Tajikistan Reservoir 345 

Kosharkol Kazakhstan Open 348 

Qamystybas Kazakhstan Endorheic 55 

Sasykkol Kazakhstan Open 348 

Sayram China Endorheic 2,072 

Shardara Kazakhstan Reservoir 248 

Songkul Kyrgyzstan Endorheic 3,011 

Sorbulaq Kazakhstan Endorheic 618 

Toktogul Kyrgyzstan Reservoir 871 

Zhalanashkol Kazakhstan Open 366 
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Table 3.2: Lake hypsometry derived from digital elevation model and range of area and water 

level 

Lake name Equation Area range (km2) Level range (m) 

Alakol H = 2.3065 × 10−5 × 𝐴2 − 0.1182 × A
+ 497.2126 

[2873.49, 3009.72] [348.45, 350.64] 

Aral Sea north H = 0.0146 × 𝐴 + 4.2809 [2802.82, 3393.62] [39.40, 42.21] 

Chatyr H = 0.0070 × 𝐴2 − 1.6881 × 𝐴
+ 3623.0605 

[130.42, 160.17] [3528.88, 3532.14] 

Ebinur H = 2.4450 × 10−6𝐴2 + 0.0027 × A
+ 192.6407 

[324.37, 950.84] [191.35, 195.49] 

Issykkul H = 0.0033 × 𝐴2 − 41.1033 × A
+ 128558.3667 

[6202.14, 6218.08] [1602.93, 1605.12] 

Kapchagay H = 0.0372 × 𝐴 + 432.8686 [1116.7, 1291.32] [473.67, 478.20] 

Karakul H = 0.0090 × 𝐴2 − 6.8183 × A
+ 5199.2527 

[390.42, 409.71] [3916.01, 3918.49] 

Kayrakkum H = 0.0003 × 𝐴2 − 0.1472 × 𝐴
+ 354.5827 

[267.52, 415.12] [340.18, 346.43] 

Kosharkol H = 0.0435 × 𝐴2 − 10.3606 × 𝐴
+ 966.3586 

[123.43, 125.99] [350.10, 350.87] 

Qamystybas H = 0.0045 × 𝐴2 − 1.2755 × 𝐴
+ 146.0976 

[144.80, 162.55] [55.33, 57.88] 

Sasykkol H = 0.0105 × 𝐴2 − 15.3671 × A
+ 5969.7212 

[741.74, 747.37] [348.28, 350.72] 

Sayram H = 0.0451 × 𝐴2 − 40.8125 × 𝐴
+ 11307.3392 

[458.00, 463.01] [2073.36, 2075.75] 

Shardara H = 8.7239 × 10−6 × 𝐴2 − 0.0043 × 𝐴
+ 249.2169 

[266.51, 680.37] [241.88, 251.09] 

Songkul H = 0.0281 × 𝐴2 − 15.2606 × 𝐴
+ 5083.3997 

[274.80, 281.20] [3012.64, 3013.49] 

Sorbulaq H = 0.4485 × 𝐴2 − 54.4686 × 𝐴
+ 2275.2113 

[59.93, 62.84] [617.49, 618.73] 

Toktogul H = 0.4236 × 𝐴 + 776.0659 [215.44, 292.75] [843.45, 904.08] 

Zhalanashkol H = 8.3331 × 𝐴2 − 615.6482 × 𝐴
+ 11738.3940 

[36.98, 37.35] [366.19, 369.89] 

 



 

128 

 

3.6 References 

Agreement. (1992). Agreement between the Republic of Kazakhstanm the Kyrgyz Republic, the 

Republic of Tajikistan, Turkmenistan, and the Republic of Uzbekistan on cooperation in the 

field of joint management of the use and conservation of water resources of interstate 

sources, Almaty (signed 19 February 1992). 

Agreement (1993) Agreement between the Republic of Kazakhstan, the Kyrgyz Republic, the 

Republic of Tajikistan, Turkmenistan, and the Republic of Uzbekistan on joint actions for 

addressing the problems of the Aral Sea and its Coastal Area, improving the environment, 

and ensuring the social and economic development of the Aral Sea region, Kzyl-Orda 

(signed 26 March 1993) 

Agreement (1996) Agreement between the Republic of Uzbekistan and Turkmenistan on 

cooperation in water management issues, Chardjev, Turkmenistan (signed 16 January 1996) 

Agreement (1998) Agreement between the Governments of the Republic of Kazakhstan, the 

Kyrgyz Republic, and the Republic of Uzbekistan on the use of water and energy resources 

of the Syr Darya Basin, Bishkek (signed 17 March 1998, Republic of Tajikistan joined in 

1999) 

Agreement (2000) Agreement between the Government of the Republic of Kazakhstan and the 

Government of the Kyrgyz Republic on the use of water management facilities of 

intergovernmental status on the rivers Chu and Talas, Astana (signed 21 January 2000). 

Aizen, V. B., Aizen, E. M., Melack, J. M., & Dozier, J. (1997). Climatic and Hydrologic 

Changes in the Tien Shan, Central Asia. Journal of Climate, 10(6), 1393–1404.  



 

129 

 

Aizen, V. B., Kuzmichenok, V. A., Surazakov, A. B., & Aizen, E. M. (2007). Glacier changes in 

the Tien Shan as determined from topographic and remotely sensed data. Global and 

Planetary Change, 56(3–4), 328–340.  

Armstrong, R. (2010). Melting Glaciers: Current status and future concerns. USAID Asia Glacier 

Melt Project: Expert Summary of Science Regarding Glacier Melt/Retreat in the Himalaya, 

Hindu Kush, Karakoram, Pamir, and Tien Shan Mountain Ranges.  

Ashgabat Declaration (1999) Ashgabat Declaration of the Heads of States of the Republic of 

Kazakhstan, the Kyrgyz Republic, the Republic of Tajikistan, Turkmenistan and the 

Republic of Uzbekistan, Ashgabat, Turkmenistan (adopted 9 April 1999) 

Bai, J., Chen, X., Li, J., Yang, L., & Fang, H. (2011). Changes in the area of inland lakes in arid 

regions of central Asia during the past 30 years. Environmental Monitoring and Assessment, 

178(1–4), 247–256.  

Bernauer, T., & Siegfried, T. (2012). Climate change and international water conflict in Central 

Asia. Journal of Peace Research, 49(1), 227–239.  

Bolch, T. (2007). Climate change and glacier retreat in northern Tien Shan 

(Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 56(1–

2), 1–12.  

Cogley, J. G. (2016). Glacier shrinkage across High Mountain Asia. Annals of Glaciology, 

57(71), 41–49.  

Crétaux, J.-F., Kouraev, A. V., Papa, F., Bergé-Nguyen, M., Cazenave, A., Aladin, N., & 

Plotnikov, I. S. (2005). Evolution of Sea Level of the Big Aral Sea from Satellite Altimetry 

and Its Implications for Water Balance. Journal of Great Lakes Research, 31(4), 520–534.  



 

130 

 

Dani, A. H., Masson, V. M., Harmatta, J., Puri, B. N., Etemadi, G. F., Litvinskiĭ, B. A., Zhang, 

G., Samghabadi, R. S., Osimī, M., Bosworth, C. E., Adle, C., Habib, I., Palat, M. K., 

Tabyshalieva, A., & Unesco. (1992). History of civilizations of Central Asia. Unesco. 

Deng, H., Chen, Y., Wang, H., & Zhang, S. (2015). Climate change with elevation and its 

potential impact on water resources in the Tianshan Mountains, Central Asia. Global and 

Planetary Change, 135, 28–37.  

Dietz, A. J., Kuenzer, C., & Conrad, C. (2013). Snow-cover variability in central Asia between 

2000 and 2011 derived from improved MODIS daily snow-cover products. International 

Journal of Remote Sensing, 34(11), 3879–3902.  

Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., 

Jiang, T., Su, B., & Güntner, A. (2015). Attribution of streamflow trends in snow and 

glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resources 

Research, 51(6), 4727–4750.  

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of 

monthly climatic observations – the CRU TS3.10 Dataset. International Journal of 

Climatology, 34(3), 623–642.  

Huang, J., Guan, X., & Ji, F. (2012). Enhanced cold-season warming in semi-arid regions. 

Atmos. Chem. Phys., 12(12), 5391–5398.  

Kezer, K., & Matsuyama, H. (2006). Decrease of river runoff in the Lake Balkhash basin in 

Central Asia. Hydrological Processes, 20(6), 1407–1423.  

Kleinherenbrink, M., Ditmar, P. G., & Lindenbergh, R. C. (2014). Retracking Cryosat data in the 

SARIn mode and robust lake level extraction. Remote Sensing of Environment, 152, 38–50.  



 

131 

 

Kleinherenbrink, M., Lindenbergh, R. C., & Ditmar, P. G. (2015). Monitoring of lake level 

changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. 

Journal of Hydrology, 521, 119–131.  

Kravtsova, V. I., & Tarasenko, T. V. (2010). Space monitoring of Aral Sea degradation. Water 

Resources, 37(3), 285–296.  

Kriegel, D., Mayer, C., Hagg, W., Vorogushyn, S., Duethmann, D., Gafurov, A., & Farinotti, D. 

(2013). Changes in glacierisation, climate and runoff in the second half of the 20th century 

in the Naryn basin, Central Asia. Global and Planetary Change, 110, Part A, 51–61.  

Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, 

reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22.  

Li, J, Chen, X., & Bao, A. (2011). Spatial-temporal Characteristics of Lake Level Changes in 

Central Asia during 2003-2009. Acta Geographica Sinica, 66(9), 1219–1229. 

Li, Junli, & Sheng, Y. (2012). An automated scheme for glacial lake dynamics mapping using 

Landsat imagery and digital elevation models: A case study in the Himalayas. International 

Journal of Remote Sensing, 33(16), 5194–5213.  

Lioubimtseva, E., & Henebry, G. M. (2009). Climate and environmental change in arid Central 

Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11), 963–

977.  

Ma, M., Wang, X., Veroustraete, F., & Dong, L. (2007). Change in area of Ebinur Lake during 

the 1998–2005 period. International Journal of Remote Sensing, 28(24), 5523–5533.  

Micklin, P. (2002). Water in the Aral Sea Basin of Central Asia: Cause of Conflict or 

Cooperation? Eurasian Geography and Economics, 43(7), 505–528.  



 

132 

 

Micklin, P. (2007). The Aral Sea Disaster. Annual Review of Earth and Planetary Sciences, 

35(1), 47–72.  

Micklin, P., Aladin, N. V., & Plotnikov, I. (Eds.). (2014). The Aral Sea. Springer Berlin 

Heidelberg.  

Mukhammadiev, B. (2014). Challenges of transboundary water resources management in Central 

Asia. In P. Micklin, N. V. Aladin, & I. Plotnikov (Eds.) The Aral Sea (pp. 233-251). Berlin, 

Heidelberg: Springer. 

O’Loughlin, F. E., Neal, J., Yamazaki, D., & Bates, P. D. (2016). ICESat-derived inland water 

surface spot heights. Water Resources Research, 52(4), 3276–3284.  

Schiemann, R., Lüthi, D., Vidale, P. L., & Schär, C. (2008). The precipitation climate of Central 

Asia—Intercomparison of observational and numerical data sources in a remote semiarid 

region. International Journal of Climatology, 28(3), 295–314.  

Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B. R., Cox, J. S., & Gao, F. (2016). 

Representative lake water extent mapping at continental scales using multi-temporal 

Landsat-8 imagery. Remote Sensing of Environment, 185, 129–141.  

Siegfried, T., & Bernauer, T. (2007). Estimating the performance of international regulatory 

regimes: Methodology and empirical application to international water management in the 

Naryn/Syr Darya basin. Water Resources Research, 43(11), W11406.  

Siegfried, T., Bernauer, T., Guiennet, R., Sellars, S., Robertson, A. W., Mankin, J., Bauer-

Gottwein, P., & Yakovlev, A. (2012). Will climate change exacerbate water stress in 

Central Asia? Climatic Change, 112(3–4), 881–899.  

Surkova, G. V. (2010). Regional climate variability. In A. G. Kosti︠ a︡noĭ, A.N. Kosarev, & E. G. 

Arashkevich, (Eds.). The Aral Sea Environment (pp. 83-100). Berlin, Heidelberg: Springer. 



 

133 

 

Unger-Shayesteh, K., Vorogushyn, S., Farinotti, D., Gafurov, A., Duethmann, D., Mandychev, 

A., & Merz, B. (2013). What do we know about past changes in the water cycle of Central 

Asian headwaters? A review. Global and Planetary Change, 110, 4–25.  

Wang, J., Sheng, Y., & Tong, T. S. D. (2014). Monitoring decadal lake dynamics across the 

Yangtze Basin downstream of Three Gorges Dam. Remote Sensing of Environment, 152, 

251–269.  

Williams, M. W. and V. G. K. (2008). Central Asia Temperature and Precipitation Data, 1879-

2003.  

World Bank. (1998). Aral Sea Basin program (Kazakhstan, Kyrgyz Republic, Tajikistan, 

Turkmenistan, and Uzbekistan) Water and environmental management project. World 

Bank, Washington, DC. 

Xu, C., Chen, Y., Chen, Y., Zhao, R., & Ding, H. (2013). Responses of Surface Runoff to 

Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in 

the Tarim River Basin, China. Environmental Management, 51(4), 926–938.  

Zhou, H., Aizen, E., & Aizen, V. (2013). Deriving long term snow cover extent dataset from 

AVHRR and MODIS data: Central Asia case study. Remote Sensing of Environment, 136, 

146–162.  

 

 



 

134 

 

CHAPTER 4 

CHANGES IN AGRICULTURE EXTENT ACROSS CENTRAL ASIA IN THE PAST 20 

YEARS OBSERVED FROM REMOTE SENSING 

4.1 Introduction 

Central Asia is an arid region with over 100 million population. The common definition 

includes the former Soviet Central Asian republics (Kazakhstan, Kyrgyzstan, Tajikistan, 

Turkmenistan and Uzbekistan), northeastern Iran, Afghanistan, northern and central Pakistan, 

northern India, western China and Mongolia (Dani et al., 1992). Population density is highest along 

the foothills of Tianshan and Pamir mountains in the former Soviet Central Asian republics and 

parts of Xinjiang, China (Pesaresi et al., 2013). Agriculture plays a significant role in the economy 

Central Asia, accounting for 5.0% to 27.4% of GDP in Afghanistan, Kazakhstan, Kyrgyzstan, 

Tajikistan, Turkmenistan and Uzbekistan (FAO, 2016) with 20% to 50% of the labor force 

working in the agriculture sector (Qushimov et al., 2007). Due to its aridity, between 75% and 100% 

of agriculture land in Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan is irrigated (Frenken, 

2013). About 90% of Central Asia receives less than 400 mm of precipitation per year while the 

Tianshan and Pamir mountains can receive over 1,000 mm due to orographic effects (Bolch, 2007; 

Williams, 2008; Mueller et al., 2014). As a result, about 50% to 90% of available water resources 

in the region originates from the mountains (Viviroli and Weigartner, 2004). 

During the Soviet era when Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and 

Uzbekistan were part of the Soviet Central Asian republics, each country specialized in certain 

crop types. Kazakhstan specialized in grain production, Kyrgyzstan in alfalfa and maize while 

Tajikistan, Turkmenistan and Uzbekistan focused on cotton (Suleimenov 2014). Extensive 

irrigation canals and drainage systems were developed in the region that extended well into the 
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deserts and irrigated agriculture experienced steady expansion during this time (Micklin, 2014). 

Soil salinization has become a serious issue as a result of heavy irrigation and irrigation efficiency 

declined as more water is required to flush the salt out from the soil prior to planting crops 

(Pankova et al. 1996; Micklin, 2000). 

After the collapse of the Soviet Union in 1991, these countries adopted their own 

agricultural strategies to achieve food security. Uzbekistan became the country having the largest 

irrigated area (4.28 million ha) as well as the largest share of irrigation water withdrawal (53.0%) 

in the Aral Sea basin in 1995 (World Bank, 1998). The expansion rate of irrigated area greatly 

decreased since 1995 and irrigated area became stable since 2000. Associated with changes in 

irrigation area are changes in the type of crops being planted. Uzbekistan, which was the largest 

cotton producer at the Soviet Union time, shrank its area of cotton plantation by 19% (Index 2012a) 

while tripling its area of wheat plantation during the first five years after the collapse of the Soviet 

Union (Index 2012b). During 1995-2011, Uzbekistan further reduced its cotton area by 10% while 

increasing its wheat area by 8%. Turkmenistan, which was the second largest cotton producer, 

shrank its cotton area by 28% during 1990-1995 (Index, 2012c) while sextupling its wheat area 

(Index, 2012d) and again doubling the 1995 wheat area by 2011. These changes are driven by the 

need to strengthen the countries’ food bases (Micklin 2014). Kazakhstan and Uzbekistan being the 

largest rice producers, also dropped their rice plantation area by 23% between 1990-1995 and 72% 

between 1990-2001 respectively (Index, 2012e; Index, 2012f). Legume crops such as dry peas, 

dry beans and chickpeas were also introduced (Suleimenov, 2014). 

In western China, agriculture has been developed since the 1950s and has been rapidly 

expanding (Sun and Gao 2010). The widespread irrigation combined with inefficient water 

management strategies has led to severe desertification and ecological deterioration in Ebinur lake 
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basin in Xinjiang (Zhang et al., 2015). In efforts to restore ecological stability in Ebinur basin, 

Ebinur lake wetland nature reserve was established in the late 1990s (Bai, 2007). Highly efficient 

drip irrigation was also introduced around the late 1990s (Xu et al., 2003). 

In light of the importance of agriculture to the local economy as well as the impact of 

agriculture on water resources, it is crucial to understand the development of agriculture in Central 

Asia in the modern era. It is especially important to understand agriculture changes in the former 

Soviet Central Asian republics as they have undergone drastic re-organizations of agriculture land 

since independence in 1991 (Hamidov et al., 2016). The goal of this study is to 1) examine changes 

in agriculture extent in the most populated lake/river basins in Central Asia; 2) compare and 

contrast patterns shown in different basins and countries and 3) discuss the implication of those 

changes on water resources in the region. 

4.2 Study area 

Figure 4.1 shows the study area which includes the most fertile and populated regions in 

Central Asia. The study area includes nine lake or river basins namely: Alakol, Amu Darya, Ebinur, 

Ili, Issykkul, Sayram, Sarykamish, Songkul, Syr Darya. Countries that share the basins include 

Afghanistan, China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. Table 4.1 

shows basic characteristics of the countries that share these basins. Kazakhstan has the largest 

share of all basins accounting for 670,005 km2 (38%) followed by Uzbekistan accounting for 

380,042 km2 (22%). All other countries share a similar area ranging between 121,435 km2 and 

166,081 km2. The largest basin by area is Amu Darya at 793,131 km2 (45%) and is shared by all 

countries except China. The most notable agriculture regions in the area is the Fergana valley 

which is in the Syr Darya river basin and shared by Kyrgyzstan, Tajikistan and Uzbekistan. 

4.3 Data and methods 
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We collected the 16-day MODIS Vegetation Indices product at 250 m resolution 

(MOD13Q1) from 2000 to 2017 and used the Normalized Difference Vegetation Index (NDVI) 

data set to derive agriculture extent in our study area. This period was chosen because it takes 

some time for the re-organization of agriculture to take settle after the former Soviet Central Asia 

republics gained independence (Hamidov et al., 2016). A total of 2,055 images were collected to 

cover the entire spatial and temporal extents. To map the extent of agriculture in the region, we 

used a simple thresholding technique based on the annual mean NDVI as in Rembold and Maselli 

(2006) with additional criteria based on the terrain. Three criteria were used to determine whether 

a pixel is considered to be agricultural or not. 1) Its annual mean NDVI value is between 0.25 and 

0.45; 2) its elevation is below 2,000 m and 3) its slope is less than 5%. This set of criteria effectively 

identifies agriculture lands from the surrounding barren lands while also removes forested regions 

in the high mountains. The results were then partitioned into basins and countries for further 

analysis. 

We removed misclassifications through manual inspection using Google Earth high 

resolution imagery to remove misclassifications of wetlands and grasslands. We also collected the 

agricultural cropland area product for Central Asia from the Global Food Security Support 

Analysis Data (GFSAD30) Cropland Extent 30 m for nominal year 2015 (Phalke et al., 2017; 

Telunguntla et al., 2017). This product was derived using Landsat data collected between 2013 

and 2015. Accuracy of our classification for 2015 was validated against this product to assess the 

reliability of our results. 

4.4 Results 

Figure 4.2 shows the maximum agriculture extent from 2000 to 2017 with the extent in all 

years combined. Most agriculture land occurs near water sources such as the foothills of the 



 

138 

 

Tianshan mountains, along river channels and river deltas near the river terminus. Significant 

amount of agriculture has also expanded into the desert area in Kazakhstan, Uzbekistan and 

Turkmenistan.  

Figures 4.3 – 4.9 show the area changes of agriculture land by country. All countries except 

for China, Turkmenistan and Kazakhstan had an overall stable area from 2000 to 2017 with some 

interannual variability. The average agriculture area in these basins of Afghanistan, China, 

Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan are 4,289, 17,812, 41,202, 

5,335, 8,051, 6,535 and 55,384 km2 respectively with the majority being in Kazakhstan and 

Uzbekistan. Over the 18 years, agriculture area in China and Turkmenistan had an increasing trend 

of 478 and 174 km2/yr respectively while Kazakhstan had a slight decreasing trend of 728 km2/yr. 

China has shown a steady expansion of agriculture area, while  all other countries shared similar 

patterns of interannual variability. For example, Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, 

Turkmenistan and Uzbekistan all had a sharp decline of agriculture area in 2001, 2008, 2011 and 

2014 and remarkable growth in 2003, 2009, 2010, 2015 and 2016.  

Figures 4.10 – 4.16 show the area changes of agriculture land by basin. The average 

agriculture area in Alakol, Amu Darya, Ebinur, Ili, Issykkul, Sarykamish and Syr Darya are 4,875, 

52,655, 6,062, 26,374, 2,055, 4,030 and 45,310 km2 respectively with the majority being in Amu 

Darya, Ili and Syr Darya. Over the 18 years, four out of seven basins had an increasing trend in 

agriculture area while two of them had a decreasing trend and one basin remained relatively stable. 

Agriculture area in Alakol, Ebinur, Sarykamish and Syr Darya increased by 141, 266, 164 and 279 

km2/yr respectively while Amu Darya, Ili and Issykkul slightly decreased by 258, 104 and 1 km2/yr 

respectively. Ebinur showed significant growth while all other basins shared similar patterns of 

interannual variability as well. For example, they all had lower agriculture area in 2001, 2008, 
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2011 and 2014 and larger area in 2003, 2009, 2010 and 2016, which is similar to patterns seen 

when grouped by countries. 

4.5 Discussion 

4.5.1 Accuracy assessment 

The overall accuracy of our binary classification (agriculture or non-agriculture) is 91.5%. 

The user accuracy for agriculture area is 75.1% while the producer accuracy is 50.3%. Figure 4.17 

shows a map of the accuracy assessment. We also compared the reference data to Google Earth 

imagery in 2015 and we found a general over-estimation especially in Alakol and Ili basin which 

in part explains the low producer accuracy. 

4.5.2 Cause of agriculture area changes 

The percentage of agriculture area that is irrigated in Kyrgyzstan, Tajikistan, Turkmenistan, 

and Uzbekistan ranges between 75% and 100% (Frenken, 2013). Thus, agriculture is highly 

dependent upon available water in the region. Figure 4.18 shows mean annual precipitation in the 

entire study area derived from the Climate Research Unit data set (Harris et al., 2014). Mean annual 

precipitation is low in 2001, 2008 and 2017 while high in 2003, 2009 and 2016. This is similar to 

agriculture patterns in Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and 

Uzbekistan and all basins except Ebinur.  

Table 4.2 shows the correlation between agriculture area and mean annual precipitation in 

each country and basin. The correlation between agriculture area and precipitation in Afghanistan, 

Tajikistan and Uzbekistan and in Amu Darya, Ili and Syr Darya basins are all above 0.7. This 

suggests that available irrigation water in these countries and basins are highly dependent upon 

precipitation from the same year. In the Ebinur basin (98% area is in China), where agriculture has 

expanded continuously regardless of annual precipitation, other water sources are available for 
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irrigation. Groundwater is likely the source that is used for irrigation. In fact, in a field survey 

conducted in the summer of 2018 we found widespread groundwater pumps in the agriculture 

fields in Ebinur basin. Drip irrigation is also widely adopted in Ebinur basin (Su, 2014). This is a 

much more efficient irrigation technique compared to furrow irrigation that is generally used in 

the other countries (Micklin, 2007). 

In the former Soviet Central Asian republics (i.e. Kazakhstan, Kyrgyzstan, Tajikistan, 

Turkmenistan, and Uzbekistan), groundwater infrastructures are largely underdeveloped 

(Rakhmatullaev et al., 2010). Groundwater withdrawal accounts for 4.0% - 19.6% in the former 

Soviet Central Asian republics (FAO, 2016) Most of the groundwater extraction in the Amu Darya 

basin still uses equipment developed during the Soviet period (Rakhmatullaev et al., 2010) and it 

is not economically profitable in Uzbekistan due to the extraction cost (Borisov, 1990). Also, the 

canals transferring water deep into desert regions for irrigation suffers from large evaporation and 

exfiltration (Micklin 2007). 

Therefore, due to irrigation inefficiency, precipitation likely limits the number of crops that 

can be cultivated each year in all countries except China. Agriculture area changes in those 

countries is likely reflecting the changes in mean annual precipitation. In China, irrigation water 

is not limited by annual precipitation as water is also extracted from groundwater aquifers. As a 

result, agriculture has been expanding continuously in China and especially in the Ebinur basin. 

4.5.3 Connection with lake changes 

Since irrigation account for over 90% of water withdrawal in five out of seven countries in 

the area (FAO, 2016), it has great impacts on the amount of water that flows into lakes. Historically, 

between the 1950s and 1980s when agriculture development in Soviet Central Asia was the fastest, 

we observed the catastrophic decline of the Aral Sea from what used to be the fourth largest lake 



 

141 

 

in the world in the 1960s to roughly one sixth of its original area at present. This is commonly 

known as the as Aral Sea disaster and its cause is widely attributed to irrigation extraction of water 

from Amu Darya and Syr Darya which feed the lake (Micklin, 2007; Kosti︠ a︡noĭet al., 2010; Cretaux 

et al., 2013). 

Since the 1980s, the majority of lakes in the region have remained stable with some decline 

(See Chapter 3). Lakes located in the remote high-elevation mountain regions are generally 

expanding throughout the period due to the increased melting of snow and glaciers in a warming 

climate. This suggests that more water is being generated from the mountains. Nevertheless, due 

to the development of agriculture in the lowland regions, lakes at low elevations have not seen 

similar expansions like mountain lakes. In basins with relatively stable agriculture extent between 

2000 and 2017 lakes have remained stable as well. For example, Aral Sea north and Qamystybas 

are both stable between 2000 and 2017. They both lie in the Syr Darya basin whose agriculture 

area have only seen a slight increase. This indicates possible influence of agriculture irrigation on 

lake volume. Some interesting exceptions are Alakol, Sassykol and Zhalanashkol lakes which have 

all expanded between 2000 and 2017 while the agriculture extent in their basin has also slightly 

expanded. Ebinur Lake as discussed in Chapter 2 has declined between 2000 and 2017 while 

agriculture has expanded continuously. Modeling results show that the natural climate conditions 

would be also responsible for the decline of Ebinur Lake.  

4.6 Conclusion 

Irrigated agriculture plays a significant role in the economy in Central Asia and has great 

influence on water resources in the region. Here, we used satellite imagery to examine the changes 

of agriculture area in various countries and basins in Central Asia from 2000 to 2017. We derived 

annual agriculture extent from a MODIS NDVI product and assessed the accuracy using Google 
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Earth imagery and Global Food Security Support Analysis Data (GFSAD30) Cropland Extent data. 

We analyzed the patterns of agriculture development and discussed its relationship with lake and 

water resource changes.  

First, we found that agriculture area remained relatively stable in Afghanistan, Kazakhstan, 

Kyrgyzstan, Tajikistan and Uzbekistan. There is a high correlation between agriculture area with 

the annual rainfall of that year. Given the older and less efficient irrigation infrastructure used in 

the former Soviet Central Asian republics, the amount of available surface water generated from 

precipitation likely limits the development agriculture in these countries. 

Second, rapid expansion of agriculture was found in China and to a lesser degree in 

Turkmenistan. Agriculture expansion in China was contributed mostly by the development in 

Ebinur basin. The use of groundwater for irrigation is widespread in Ebinur basin but not in 

counties in the former Soviet Central Asian republics. This additional source compensating surface 

water and more efficient irrigation techniques may have allowed the continuous expansion of 

cultivated land in China. 

Third, the link between agriculture development and lake changes between 2000 and 2017 

is relatively weak. There is little correlation between lake changes and agriculture area and in some 

cases the climate variability has a more dominant influence of lake changes. Future work aided by 

better data availability and quality is required to fully assess the independent contribution of 

climate and human factors on water resources in this region.  
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Figure 4.1: Study area 
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Figure 4.2: Maximum agriculture extent between 2000 and 2017 
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Figure 4.3: Annual agriculture area in Afghanistan  
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Figure 4.4: Annual agriculture area in China 
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Figure 4.5: Annual agriculture area in Kazakhstan 
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Figure 4.6: Annual agriculture area in Kyrgyzstan 
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Figure 4.7: Annual agriculture area in Tajikistan 
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Figure 4.8: Annual agriculture area in Turkmenistan 
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Figure 4.9: Annual agriculture area in Uzbekistan 
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Figure 4.10: Annual agriculture area in Alakol basin 
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Figure 4.11: Annual agriculture area in Amu Darya basin 
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Figure 4.12: Annual agriculture area in Ebinur basin 
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Figure 4.13: Annual agriculture area in Ili basin 
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Figure 4.14: Annual agriculture area in Issykkul basin 
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Figure 4.15: Annual agriculture area in Sarykamish basin 
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Figure 4.16: Annual agriculture area in Syr Darya basin 
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Figure 4.17: Agriculture classification accuracy assessment for 2015 
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Figure 4.18: Mean annual precipitation in the study area 
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Table 4.1: Characteristics of countries within the study area 

Country Basin Area (km3) 

Afghanistan Amu Darya 166,081.7 

China Alakol 20,243.9 

 Ebinur 50,922.5 

 Ili 56,895.8 

 Sayram 1,331.5 

Kazakhstan Alakol  43,586.8 

 Amu Darya 128,732.3 

 Ebinur 891.4 

 Ili 357,385.2 

 Syr Darya 139,409.7 

Kyrgystan Amu Darya 7,728.6 

 Ili 717.8 

 Issykkul 21,925.8 

 Songkul 1,079.0 

 Syr Darya 111,333.7 

Tajikistan Amu Darya 124,101.6 

 Karakul 4,454.1 

 Syr Darya 12,883.7 

Turkmenistan Amu Darya 57,774.8 

 Sarykamish 63,661.1 

Uzbekistan Amu Darya 308,613.3 

 Sarykamish 8,679.0 

 Syr Darya 62,750.3 
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Table 4.2: Correlation between agriculture area and mean annual precipitation in countries and 

basins 

Country Correlation Basin Correlation 

Afghanistan 0.71 Alakol 0.41 

China 0.20 Amu Darya 0.73 

Kazakhstan 0.59 Ebinur 0.14 

Kyrgyzstan 0.51 Ili 0.70 

Tajikistan 0.70 Issykkul 0.59 

Turkmenistan 0.58 Sarykamish 0.47 

Uzbekistan 0.77 Syr Darya 0.79 
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CHAPTER 5 

SUMMARIES  

Water is a crucial resource in arid Central Asia and is heavily influenced by climate 

change and human activities. Lakes, especially endorheic lakes, are particularly sensitive to 

climatic and human impacts. Thus, lakes were used as proxy indicators of climate and 

anthropogenic change in Central Asia. After a thorough literature examination of past changes in 

climate, agriculture, and lakes in Central Asia the following questions were proposed and 

addressed in this dissertation: 

1. How have lakes changed in the past 30 years in Central Asia? 

2. What are the climatic impacts (precipitation and temperature) on water storage in lakes in 

Central Asia?  

3. How has human activities (irrigation and water management) affected water storage in 

lakes in Central Asia? 

In Chapter 2, a methodological framework was identified and applied to a pilot study area 

that includes the Ebinur and Sayram lake basins in Xinjiang, China. These lakes were chosen 

because they are located in proximity yet affected in different degrees by human activities. 

Ebinur Lake is located in an agriculture valley whose cultivated area expanded consistently over 

the study period while Sayram Lake is located in the mountains with little human activities.  

Optical remote sensing (Landsat and MODIS) was used to estimate the area of both lakes and 

satellite altimetry was used to estimate the water level of those lakes. Area and water level 

estimates were combined to derive observed volume changes. Hydrologic modeling was used to 

estimate hypothetical volume changes under no human influence. Optical remote sensing was 

also used to map annual extent of agriculture land to assess the impact of agriculture on lake 
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changes. It was found that Sayram lake expanded steadily since the 1970s. Its area increased by 

2%, level by 1.5 m, and its volume by 0.5 km3 between 1977 and 2016. Ebinur lake showed large 

interannual variabilities since the 1980s. Its area increased dramatically by 45%, and volume by 

0.2 km3 between 1999 and 2003. The area then decreased by 25%, level by 2.5 m and volume by 

0.2 km3 between 2003 and 2016. Its volume increased again by 0.2 km3 between 2016 and 2018. 

The modeled volumes had similar trends as the observed changes though the model showed 

much greater seasonal variability. Though it seems that the changes in both Sayram and Ebinur 

lakes are likely to be controlled by climate factors, they have distinct mechanisms. Changes of 

Sayram Lake are merely climate-driven as human activities are rather low, while Ebinur Lake is 

regulated by both the climate and human activities in the basin.  Though agriculture expanded 

consistently between 2000 and 2017, Ebinur lake did not seem to be affected.  The expansion of 

agriculture however may not have led to an increase in water consumption as more efficient 

irrigation technologies such as drip irrigation were introduced in the basin since late 1990s, 

compensating the agriculture expansion effect.  

In Chapter 3, seventeen major lakes across the most populated regions of Central Asia 

were examined from 1980s to 2016 using a similar methodology as developed in Chapter 2. The 

lakes were categorized into three groups by type: endorheic, open and reservoirs and two groups 

by elevation: above and below 2,000 m. It was found that seven out of ten endorheic lakes 

showed increase in area between 1.0 – 15.4% while the three lakes decreased by 0.04 – 4%. Six 

out of ten lakes showed increase in water level between 0.05 – 5.2 m while four lakes showed 

decline between 0.3 – 1.9 m. The same six lakes showed increase in volume between 0.13 and 

3.91 km3 and the rest four lakes showed decline between 0.01 – 4.87 km3. All three open lakes 

showed increase in area between 0.8 – 1.4%, level between 0.8 – 1.6 m and volume between 
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0.03 – 0.58 km3. All four reservoirs showed increase in area between 0.02 – 8.4%. Three 

reservoirs showed increase in volume between 0.35 – 1.17 km3 while one declined by 0.17 km3. 

All reservoirs showed significant seasonal variability in two patterns. One reservoir located in 

the mountain region, whose major function is to generate hydropower, showed increasing 

volume during summer and declined during fall and winter. Three reservoirs located in the 

lowland region, whose major function is to provide irrigation water, showed increasing volume 

during winter and spring and declined during summer. Three out of four high elevation lakes 

showed consistent increase in volume. Results suggest that high elevation lakes were 

consistently expanding due to the increased melting of snow and glaciers under a warming 

climate. Lowland lakes showed variable changes possibly linked to agriculture developments in 

their vicinity. Reservoirs showed different seasonal patterns due to their function. 

In Chapter 4, agriculture extent in the same area as Chapter 3 was examined from 2000 to 

2017. The areas were examined by basins as well as by countries. It was found that all countries 

except for China, Turkmenistan and Kazakhstan had an overall stable area from 2000 to 2017. 

They also show similar interannual variabilities. China and Turkmenistan showed increasing area 

at 478 and 174 km2/yr respectively while Kazakhstan showed decreasing trend of 728 km2/yr. 

Four out of seven basins showed increasing trend while two showed decreasing trend and one 

remained stable. Two out of four basins that showed increasing trend have significant portions 

that lie within China while one lie within Turkmenistan. There is a strong correlation (> 0.7) 

between the agriculture extent and annual precipitation in Afghanistan, Tajikistan, and 

Uzbekistan while the correlation in Kazakhstan, Kyrgyzstan and Turkmenistan ranged between 

0.51 – 0.59. China had the lowest correlation of 0.2. This suggests that agriculture in the former 

Soviet Central Asia republics countries are highly dependent on the amount of surface water 
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available due to less efficient irrigation infrastructure. China, having widely adopted drip 

irrigation, consistently expanded their agriculture extent. The development of agriculture is 

linked in a limited degree with lake changes. For example, in high mountain basins with no 

agriculture such as Karakul, Sayram and Songkul, lakes have expanded consistently. In basins 

with relatively stable agriculture such as Syr Darya, Aral Sea north, Qamystybas and lakes were 

also relatively stable. However, the expansion of agriculture in Alakol and Ebinur basins did not 

seems to affect changes in Alakol, Sassykol, Zhalanashkol and Ebinur lakes. This suggests that 

the climate is a more dominant factor influencing water availability in these basins. 

This dissertation has examined changes in climate, agriculture, and lakes across Central 

Asia. Chapter 2 provides a methodological framework to assess changes in lakes and agriculture 

in an arid but data sparse environment while Chapter 3 and 4 uses this framework to assess such 

changes across Central Asia. This dissertation presented observational evidence on 1) the 

expansion of mountain lakes due to the melting glaciers and snow; 2) the relative stability of 

lowland lakes as influenced by agriculture activities; and 3) the different seasonal patterns of 

reservoir changes due to their major function. However, the influence of climate and human 

factors on water resources in Central Asia is still entangled. Quantitative attribution of lake 

change to climate and anthropogenic factors is still lacking. Hydrologic modeling of lake natural 

changes is limited by the lack of and/or the poor quality of forcing data. In situ precipitation and 

runoff measurements are lacking especially in mountain regions in the former Soviet Central 

Asia republics. Many station data, which are essential input and calibration data to hydrologic 

modeling, ended after the Soviet era due to the lack of station maintenance. Combining 

precipitation outputs from regional climate models and limited in situ measurements is a 

promising route to create precipitation forcing. Nevertheless, it still requires ancillary data such 
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as that from remote sensing to constrain model outputs. Future work aided by better data 

availability and quality is required to fully assess the independent contribution of climate and 

human factors on water resources in this region.  

 




