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Abstract

Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by 

inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to 

paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the 

basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 

(AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. 

NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes 

complement-dependent cytotoxicity and secondary inflammation with granulocyte and 

macrophage infiltration, blood–brain barrier disruption and oligodendrocyte injury. Current NMO 

treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. 

Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils 

and CD19—all initially developed for other indications—are under clinical evaluation for 

repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and 

AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options 

include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of 

complement inhibitor expression, restoration of the blood–brain barrier, and induction of immune 

tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients 

with this condition have been conducted to date.
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Introduction

Neuromyelitis optica (NMO) is a rare inflammatory demyelinating disease of the CNS, with 

a predilection for the optic nerves and spinal cord. NMO was thought to be a variant of 

multiple sclerosis (MS), but in 2004, a serum antibody specific to patients with NMO was 

detected.1 This antibody, initially termed NMO-IgG, was subsequently shown to recognize 

extracellular conformational epitopes of the astrocytic water channel protein aquaporin-4 

(AQP4).2 NMO-IgG—later named AQP4-IgG (or AQP4-Ab)—has a key role in the 

pathogenesis of NMO.3

The currently used diagnostic criteria for NMO—the revised Wingerchuk 2006 criteria4—

incorporate the presence of AQP4-IgG. These criteria comprise two absolute criteria (optic 

neuritis and acute transverse myelitis) and three supportive criteria (brain MRI not meeting 

criteria for MS at disease onset, spinal cord MRI with contiguous T2-weighted signal 

abnormality extending over three or more vertebral segments, and AQP4-IgG-seropositive 

status). The diagnosis of NMO requires the presence of two absolute criteria and at least two 

of the three supportive criteria. Patients with NMO who have AQP4-IgG antibodies are 

referred to as seropositive (AQP-IgG+) and those without are seronegative (AQP4-IgG−). 

Seropositive patients who do not fulfil enough conditions to satisfy the diagnostic criteria of 

NMO are said to have NMO spectrum disorder (NMOSD). With improved understanding of 

NMO pathogenesis, the Wingerchuk criteria are being revised; the new criteria will be 

published in 2014.

The epidemiology of NMO is not clearly established, because NMO is often misdiagnosed 

as MS. Reported prevalence ranges from 0.1–4.4 cases per 100,000.5–7 The mean age at 

presentation is 34–43 years, although children and older adults are also affected.8–12 Patients 

with AQP4-IgG+ NMO have a marked female predominance with reported female:male 

ratios of about 10:1 in Japanese9 and white10 populations.

Various autoimmune diseases have been reported in up to 30% of patients with NMO,13 

suggesting that individuals with this condition might have a genetic predisposition to 

aberrant autoimmunity. AQP4 mutations do not account for susceptibility to NMO.14 

Although some studies have reported associations between HLA alleles and NMO,15–17 

others have found no association,18 suggesting a complex, multifactorial genetic 

susceptibility, with only 3% of patients with NMO having relatives with this condition.19

Individuals of African and East Asian origin have a higher risk of NMO than MS, whereas 

in white populations, MS is about 40 times more common than NMO.5,20–22 Distinguishing 

NMO from MS is clinically important because the treatments differ and, importantly, some 

MS treatments, such as IFN-β, natalizumab and oral fingolimod, can exacerbate NMO.

In this Review, we outline the pathogenetic mechanisms of NMO and discuss currently 

available pharmacological therapies, as well as therapies that have potential for repurposing 

in NMO. Furthermore, we review the therapies that are currently being developed.
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Pathology

The working hypothesis for NMO pathogenesis involves entry of AQP4-IgG into the CNS 

and binding to AQP4 on perivascular astrocyte endfeet, which causes activation of the 

classical complement cascade with an inflammatory response that leads to marked 

granulocyte and macrophage infiltration, causing secondary oligodendrocyte damage, 

demyelination and neuronal death (Figure 1). The evidence in support of this mechanism, as 

discussed in recent reviews on the subject,12,23–25 comes from pathology of human NMO 

lesions, and a substantial body of in vitro and animal model data.

The events initiating AQP4-IgG production and its access to the CNS remain unclear; 

speculations have included AQP4 molecular mimicry,26 precipitating infection, 27 and 

circulating blood–brain barrier permeabilizing factors.28 Two independent studies29,30 have 

proposed an extrathecal origin of AQP4-IgG in NMO. Recent data suggest that AQP4-IgG-

producing plasmablasts from the periphery might enter the CNS, creating foci of 

inflammation. 31 The relative contribution of extrathecal versus intrathecal AQP4-IgG 

production during an NMO attack is, therefore, unclear. The central involvement of AQP4-

IgG binding to AQP4 on astrocytes and complement-dependent cytotoxicity (CDC) in NMO 

lesion formation is strongly supported by experimental data,3,32–34 as is the involvement of 

infiltrating granulocytes and macrophages.35–37 Recent data also indicate the importance of 

antibody-dependent cellular cytotoxicity (ADCC) in NMO pathogenesis.38

The precise mechanisms by which the inflammatory cascade in NMO produces 

oligodendrocyte injury and demyelination, possibly quite early in the disease process, 

remain unclear.39 The role of T cells—which, in addition to their involvement in initial 

AQP4-IgG generation, might be involved along with other factors in permeabilization of the 

blood–brain barrier—is also not well understood,40 but current data suggest that these cells 

are probably not involved in the progressive stage of NMO lesion pathology.41,42 Various 

propositions for alternative NMO pathogenesis mechanisms, such as excitotoxic injury,43 

AQP4-IgG-mediated inhibition of AQP4 water permeability and AQP4-induced AQP4 

aggregation,44 are controversial in light of the more-recent data.45,46 Interestingly, 

transgenically induced destruction or dysfunction of astrocytes exacerbates inflammation 

and demyelination in mice.47,48 The contributions of AQP4-IgG-mediated loss of astrocyte 

function to NMO pathogenesis are understudied and could present novel treatment 

opportunities.

Current therapies

Two consensus papers on the treatment of NMO have been published by panels of experts in 

the field.49,50 The overall rationale of NMO therapy is to minimize neurological disability 

by ameliorating acute attacks and preventing future exacerbations (Table 1). Acute therapies 

are designed to minimize injury and accelerate recovery, whereas preventative therapies are 

focused on reducing attack frequency and severity. Since disease progression in the absence 

of clinical relapse is rare in NMO,51 beneficial treatments will limit the accumulation of 

permanent neurological injury in affected individuals.
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Treatment of acute attacks

Intravenous methylprednisolone (IVMP) and plasma exchange comprise the standard 

treatments for acute disease exacerbations in NMO. These therapies have been co-opted 

from the treatment of acute demyelinating attacks in MS, transverse myelitis and optic 

neuritis. Corticosteroids have a myriad of anti-inflammatory and immunosuppressive 

effects, including reduction in circulating lymphocytes and monocytes; decreased expression 

of cell adhesion molecules and metalloproteinases; and altered transcription of 

proinflammatory cytokines.52 Interestingly, T-helper cell 17 (TH17) cytokines such as 

IL-17A, IL-6 and IL-23p19,53,54 the levels of which are elevated during NMO 

exacerbations, are downregulated by corticosteroids.55 In addition to a direct role in 

removing pathogenic AQP4-IgG, plasma exchange could similarly reduce levels of 

proinflammatory cytokines, alter the numbers of T cells and B cells, and modify TH-cell 

phenotypes.56

No prospective therapeutic trials for acute NMO exacerbations exist to date, meaning that 

optimal dosages, duration and sequence for acute therapy have not been established. In 

general, IVMP (1 g) is delivered daily for 3–5 days and, if the symptoms do not clearly 

improve, plasma exchange is administered daily or every other day for up to five treatments. 

If plasma exchange has been successfully used in the past in an individual patient, it can also 

be considered as a first-line treatment for acute relapse. Although retrospective studies and 

case series have reported marked improvement in visual and neurological function in 

patients with NMO following plasma exchange,57,58 improvement was independent of 

AQP4-IgG seropositivity.58

Male sex, preserved reflexes and early initiation of therapy have been found to increase the 

likelihood of improvement in response to plasma exchange.59 A recent retrospective study 

showed that rapid sequencing or concurrent use of plasma exchange with IVMP resulted in 

better visual acuity, improved visual fields, and greater retinal nerve fibre layer preservation 

as measured by optical coherence tomography.60 Hence, any delay in neurological 

improvement following IVMP therapy should prompt consideration of rapid initiation of 

plasma exchange. Additional case series have reported benefits of IVIg therapy61 and 

cyclophosphamide infusion62 in patients with NMO.

Prevention of attacks

Due to the high morbidity associated with NMO exacerbations, immunosuppressive therapy 

is typically instituted after the first attack. Unfortunately, interventional studies with level I 

or II evidence are not yet available; therefore, treatment decisions are typically made after 

balancing the best available data on clinical efficacy, short-term and long-term adverse 

effects, comorbid conditions, disease-associated risk factors, functional status, and prior 

treatment. Possible predictors of disability in NMO patients include male sex, Afro-

Caribbean or Asian ethnicity, young age at onset,63 motor symptoms or tetraparesis at first 

myelitis attack, and more than one myelitis attack in the first year.10

Active NMO lesions demonstrate antibody-mediated and cell-mediated immunopathology. 

As a result, current preventative therapies are used to deplete immune cell populations, 
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diminish circulating AQP4-IgG, or interfere with immune cell proliferation or activation. 

Interestingly, the most commonly used agents, azathioprine, mycophenolate and rituximab, 

primarily target lymphocytes and seem to diminish disease activity without consistent 

effects on AQP4-IgG titre. The clinical response suggests that lymphocytes might promote 

disease activity through diverse and complex roles, including antigen presentation, 

proinflammatory cytokine production, and altered regulatory immune networks.

Corticosteroids and plasma exchange—In addition to their use in the treatment of 

acute exacerbations, oral corticosteroids and plasma exchange can be used on a chronic 

basis for prophylactic therapy. Low-dose oral prednisolone (2.5–20.0 mg daily) was 

evaluated retrospectively in a cohort of 25 patients over a median observation period of 19.3 

months.64 Treatment success showed a dose-dependent relationship; doses greater than 10 

mg daily were significantly more efficient than lower doses. Low dose corticosteroid 

decreased the median annualized relapse rate (ARR) from 1.48 to 0.49.64 Regular plasma 

exchange treatment in association with additional immunosuppression has also shown 

benefit in reducing relapse activity.65

Azathioprine—Azathioprine is converted to nucleotide antimetabolites that interfere with 

lymphocyte proliferation. A retrospective study of 99 patients with NMO or NMOSD 

demonstrated an ARR reduction from 2.20 to 0.52 relapses over a median treatment interval 

of 22 months.66 Improvement was noted to be greater in patients receiving doses larger than 

2 mg/kg daily, and in those showing an increased erythrocyte mean cell volume. The main 

reasons for discontinuation of therapy included lack of efficacy, systemic adverse effects 

and lymphoma. Two smaller studies of azathioprine have reported similar results.67,68 ARR 

was reduced by more than 50% by use of moderate to high dosages of azathioprine (2–3 

mg/kg daily), with or without concurrent steroids. Due to a delay in therapeutic effect (3–6 

months), therapy is often initiated in combination with corticosteroids.

Mycophenolate mofetil—Mycophenolate mofetil, a prodrug of the active metabolite 

mycophenolic acid, suppresses lymphocyte proliferation by inhibiting guanosine nucleotide 

biosynthesis. In a retrospective study of 24 patients, a reduction in the median ARR from 

1.28 to 0.09 over a median follow-up of 28 months (median dose 2 g daily) was observed.69 

Disability remained relatively unchanged. 19 patients remained on medication, 25% of 

patients noted adverse events, and one patient died of disease complications.

Methotrexate—Methotrexate inhibits folate-dependent enzymes and interferes with purine 

and thymidylate synthesis. 14 AQP4-IgG-seropositive patients with NMO or NMOSD 

treated with methotrexate (median dose: 17.5 mg weekly; median duration: 21.5 months) 

showed a significant reduction in the median ARR from 1.39 before treatment to 0.18 during 

treatment.70 Nearly half of the patients were relapse-free, and none discontinued therapy. 

However, 13 of the 14 patients were co-treated with prednisolone, tacrolimus or rituximab, 

the impact of which is unknown. In an earlier case series, seven NMO patients treated with 

methotrexate (50 mg weekly) and oral prednisolone (1 mg/kg daily) demonstrated disease 

stabilization, as measured by disease activity and the expanded disability status scale 

(EDSS).
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Mitoxantrone—Mitoxantrone inhibits topoisomerase II, suppresses lymphocyte and 

macrophage development, and inhibits B-cell activation. 20 patients with NMO or NMOSD 

treated with mitoxantrone (three to six monthly cycles of 12 mg/m2 followed by 6–12 

mg/m2 maintenance doses) for an average of 17 months showed a reduction in ARR (2.8 

before treatment to 0.7 after treatment) and mean EDSS score (5.6 to 4.4).71 In another 

small case series, four of five patients with NMO showed clinical benefit and three of five 

patients became relapse-free.71 A significant decline in left ventricular ejection fraction was 

observed in one patient after a cumulative dose of 72 mg/m2. Mitoxantrone-related 

leukaemia, a serious consequence of treatment, has not been reported in any NMO patient, 

probably owing to the low number of patients treated with mitoxantrone to date.

Cyclophosphamide—Cyclophosphamide is a cytotoxic alkylating agent that is used in 

the treatment of severe autoimmune disorders. This drug has been evaluated in NMO in two 

small clinical case series, with differing results. One small study of four patients with 

NMOSD reported a reduction in median EDSS score from 8.0 to 5.75;72 by contrast, no 

improvement in relapse rate or disability was observed in another study of seven patients 

with NMO.73

Rituximab—Rituximab is a chimaeric anti-CD20 monoclonal antibody that depletes both 

naive and memory B cells. Multiple dosing regimens have been explored for NMO 

rituximab therapy. In most studies, rituximab was administered at regular 6-month intervals 

beginning with four weekly doses of 375 mg/m2 followed by two biweekly doses of 1 

g.74–78 Other studies used more-frequent infusions (usually 1 g every 12 months)77 or 

administration depending on circulating B-cell numbers.74–76,79 In each study, patients 

treated with rituximab demonstrated a significant reduction in ARR, and stabilization of 

disability. In general, the reduction in ARR was substantial—in two studies, the post-

treatment ARR was zero. EDSS scores stabilized or improved in most patients.75,77–79

To date, no definitive biomarker of disease activity has emerged in rituximab-treated 

individuals. According to one study, AQP4-IgG titres and CD19+ B-cell counts rise before 

relapse and fall with remission,80 whereas another study suggests that the suppression of 

disease activity by rituximab correlates with the extent of B-cell depletion, but not with 

serum AQP4-IgG titre or serum levels of B-cell-activating factor (BAFF) or a proliferation-

inducing ligand.81 Additional studies are needed to determine whether the benefits of 

CD20+ B-cell depletion are mediated by a reduction in AQP4-IgG production or through 

effects on other proinflammatory B cell functions.82 Most of the serious adverse events were 

attributable to disease relapse; however, severe infections and cardiovascular failure were 

also reported. Progressive multifocal leukoencephalopathy has been reported in rituximab-

treated patients (though not yet in NMO), and can present a potential limitation, especially 

in combination therapies.83

Combination therapies—Combination therapy with cytotoxic, immunomodulatory, and 

B-cell-depleting therapies is a fundamental approach to the treatment of many autoimmune 

disorders such as rheumatoid arthritis. In NMO, the rarity of disease, the risk of infectious 

complications, and the cost of therapeutics have limited the employment of combination 

therapy. To date, the use of combination therapy in NMO has been limited to oral 
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corticosteroids (prednisolone or prednisone) plus immunosuppressive agents such as 

azathioprine66 and cyclosporine;84 combination of corticosteroids with both azathioprine 

and cyclosporine have demonstrated a reduction in ARR and EDSS. Prospective studies 

comparing combination therapy, sequential therapy and induction therapy will be needed to 

balance benefits and risks.

Selection of therapies

Although no prospective clinical trials have been conducted in NMO, retrospective and 

prospective case series have been used to develop a framework to guide treatment decisions. 

Owing to the more-extensive availability of clinical data, azathioprine, mycophenolate 

mofetil and rituximab tend to be the most-recommended first-line therapies for NMO 

prophylaxis. Second-line therapies include methotrexate, mitoxantrone and cyclosporine. 

Due to the potential toxicity of mitoxantrone and the limited clinical data on methotrexate 

and cyclosporine, physicians should consider restricting their use to refractory cases. Certain 

emerging therapies could also be considered for off-label use in patients with refractory 

NMO; however, long-term safety issues remain of particular concern.

Special circumstances

Pregnancy—NMO exacerbations are not substantially increased during pregnancy; 

however, the frequency of exacerbations increases in the postpartum period and during the 

year following childbirth.85,86 In relation to pregnancy, the FDA classifies drugs as category 

A (no adverse effect on fetus in human trials), B (no adverse effect on fetus in animal 

studies), C (adverse effects on fetus in animal studies without good data from human 

studies), D (adverse effects on fetus in human studies) and X (adverse effects on fetus in 

human and animal studies). Azathioprine, mycophenolate and methotrexate are pregnancy 

category D or X and should not be continued during pregnancy. Although rituximab and 

prednisone are pregnancy class C, the absence of an increase in ARR during pregnancy 

makes continued therapy during pregnancy questionable unless the patient displays evidence 

of renewed disease activity. Given the increased relapse rate following delivery, rapid 

introduction of prophylactic therapy could be warranted; however, the benefits of these 

therapies should be balanced against the benefits of breastfeeding. Ringelstein et al.87 

reported an uneventful pregnancy in an AQP4-IgG-seropositive NMO patient who received 

low-dose rituximab (100 mg) 7 months before pregnancy without complications to the 

mother or newborn. Interestingly, despite a low rituximab dosage, the newborn’s umbilical 

cord blood showed decreased CD19+ B cells and evidence of adoptive transfer of AQP4-

IgG.

Fetal and paediatric NMO—Unlike the CNS of fetal rodents, which express little or no 

AQP4,88 the human fetal CNS strongly expresses AQP4,89,90 thus raising the possibility that 

AQP4-IgG might attack the human fetal CNS. To date, no published evidence is available to 

support this hypothesis. Both mouse and human placenta also express AQP4,90–92 and 

intraperitoneal administration of AQP4-IgG in pregnant mice caused dose-dependent 

placental inflammation and spontaneous abortion.90 In addition, one case of AQP4-IgG 

attacking the placenta causing spontaneous abortion in humans has been reported.93 Several 

case studies have reported normal pregnancies in women receiving treatment for 
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NMO.87,94,95 Overall, it is unclear whether the effects of maternal NMO on the 

fetoplacental unit in humans are sufficient to justify treatment in the presence of AQP4-IgG, 

but without active maternal disease.

Although children as young as 2 years96 can develop NMO, the median age of children 

presenting with the disease is 10–14 years.97 Children with NMO have been suggested to be 

more likely to be seronegative and to have brain involvement than adult patients.98–100 

Therapies for children are similar to those used in adults, with IVMP and plasma exchange 

for an acute attack, and long-term immunosuppression to prevent relapses.

MS treatments that worsen NMO—Several MS therapies have poor efficacy or adverse 

effects in NMO. IFN-β increases relapse rate101 and promotes severe exacerbations,102–104 

possibly by increasing production of BAFF and IL-17.105

Natalizumab, an antibody against very late antigen-4, has been reported to have no effect or 

to worsen disease activity in AQP4-IgG-seropositive106,107 and AQP4-IgG-seronegative108 

patients with NMO. A small study of five patients with NMO treated with natalizumab 

reported nine relapses and an increase in mean EDSS from 4.0 to 7.0.109 Lesions observed 

during natalizumab treatment show florid active demyelination, severe neutrophilic and 

eosinophilic infiltrates, and severe astrocyte loss.107 Natalizumab can accelerate disease 

activity by increasing the numbers of peripheral proinflammatory T cells or eosinophils.110 

Peripheral eosinophils might be able to migrate to the CNS and exacerbate lesion 

formation111,112 or facilitate stabilization of AQP4-specific bone marrow plasma cells.113

Oral fingolimod has also been reported to cause an increase in NMO disease activity. In two 

studies,114,115 fulminant disease activity was observed quickly after the initiation of therapy. 

Like natalizumab, fingolimod promotes bone marrow egress of eosinophils116 and might 

thereby enhance lesion activity and AQP4-IgG production.

Drugs with potential for repurposing

Improved understanding of the mechanisms of NMO pathogenesis has led to discovery of 

novel therapeutic targets (Figure 2). In this section, we discuss the potential for repurposing 

of approved therapeutics in NMO, including some approaches that are currently undergoing 

clinical trials (Table 2).

Complement-targeted therapy

As discussed above, complement activation seems to be involved in NMO pathogenesis. In 

cultured cells, AQP4-IgG binds AQP4 and activates complement via the classical pathway, 

resulting in cell lysis.3 In mouse spinal cord tissue slices35 and in vivo mouse models,33 

complement activation is required for AQP4-IgG to cause the characteristic histological 

changes comprising loss of AQP4 and glial fibrillary acidic protein, inflammatory cell 

infiltration, and demyelination.

The C5 complement inhibitor eculizumab, which is approved for use in paroxysmal 

nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome, has recently been 

tested in NMO in an open-label trial.117 Eculizumab is a humanized IgG2/4 antibody that 
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binds C5 and inhibits its cleavage into C5a and C5b. AQP4-IgG-seropositive patients with 

NMOSD who had experienced at least two attacks in the preceding 6 months or three in the 

previous 12 months received 600 mg intravenous eculizumab weekly for 4 weeks, 900 mg in 

the fifth week, and then 900 mg every 2 weeks for 48 weeks. In the 14 patients studied, 

eculizumab significantly reduced attack frequency, and stabilized or improved neurological 

disability measures. The main drawbacks of eculizumab are its high cost (around US

$400,000 per patient-year), and risk of meningococcal sepsis, which was seen in one patient 

in the trial. Given these disadvantages, testing the safety and efficacy of eculizumab for 

acute NMO relapses could be worthwhile.

IL-6 receptor-targeted therapy

Interleukin-6 (IL-6) has been implicated as a driver of NMO disease activity.118 

Cerebrospinal fluid (CSF) IL-6 and soluble IL-6 receptor levels are elevated in NMO during 

an attack,119,120 and the plasma cell population in the blood and CSF expands during NMO 

relapse.31 In vitro, IL-6 enhances the survival of these cells and increases AQP4-IgG 

secretion, whereas blockade of the IL-6 receptor reduces their survival.118 Several case 

reports121–124 show reduced relapse rate in NMO patients treated with tocilizumab, a 

humanized murine anti-IL-6 receptor monoclonal antibody. Another anti-IL-6 receptor 

monoclonal antibody, SA237, which has a fourfold greater duration of action than 

tocilizumab, has recently entered a clinical trial in NMO.

Granulocyte-targeted therapies

One of the major histological differences between MS and NMO lesions is the presence of 

perivascular neutrophils, as reported in patients with NMO111 as well as in mouse33,37 and 

rat125 models of the condition. Neutrophil counts are elevated in the CSF of about 60% of 

untreated patients during relapse, but only in about 20% of patients during remission.126 In 

mouse models of NMO37 and in mouse spinal cord slices,35 elimination of neutrophils 

ameliorates tissue damage, whereas increased neutrophil counts enhance tissue damage. 

Inadvertent administration of granulocyte colony-stimulating factor in a patient with NMO 

was found to be detrimental.127

Sivelestat, a small-molecule inhibitor of neutrophil elastase, which is involved in neutrophil 

migration128 and neutrophil-mediated tissue damage,128,129 reduced NMO pathology in a 

mouse model of NMO.30 Sivelestat was originally developed to treat acute respiratory 

distress syndrome and is approved for that purpose in Japan.130 Sivelestat is well tolerated, 

but has a short half-life of 6 h, thus requiring continuous infusion to maintain therapeutic 

levels.131 Studies in animal models of NMO suggest that neutrophil entry into the CNS 

occurs early (within 24 h of lesion initiation),37 whereas macrophages might predominate at 

later stages. The pathological observations and animal data suggest the utility of sivelestat in 

an acute NMO attack, which is being tested in a small clinical trial in Japan.

In addition to neutrophils, eosinophils are found in inflammatory demyelinating lesions in 

NMO, but are absent in MS.111 Postulating that eosinophil inhibitors could be useful in 

NMO, researchers initiated a series of in vitro and in vivo studies to investigate the role of 

eosinophils in NMO pathogenesis and the efficacy of eosinophil inhibitors in reducing NMO 
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pathology.112 Eosinophils cultured from mouse bone marrow produced robust AQP4-IgG-

dependent ADCC in AQP4-expressing cells and spinal cord slice cultures and, in the 

presence of complement, eosinophils produced complement-dependent cellular cytotoxicity 

(CDCC). NMO-like pathology was also produced in spinal cord slice culture by eosinophil 

granule toxins, suggesting that eosinophil degranulation contributes to NMO pathogenesis.

The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-

stabilizing actions,132 were found to greatly reduce cytotoxicity mediated by AQP4-IgG and 

eosinophils.112 In mice, demyelinating NMO lesions with marked eosinophil infiltration 

were produced by continuous intracerebral injection of AQP4-IgG and complement. Lesion 

severity was increased in transgenic hypereosinophilic mice, and was reduced in mice made 

hypo-eosinophilic by an anti-IL-5 antibody or by gene deletion, and in normal mice 

receiving cetirizine orally. Cetirizine is currently being tested in patients with NMO in a 

small clinical study. Alternative agents that reduce eosinophil numbers or activity could also 

be useful in NMO.

Intravenous immunoglobulin

Intravenous immunoglobulin (IVIg) is another approved therapy with potential for 

repurposing in NMO. IVIg, which consists of pooled human IgG from more than 1,000 

blood donors and is administered to the circulation of the patient, has been used for over 30 

years to treat idiopathic thrombocytopenic purpura,133 and has been used to treat various 

immune-mediated demyelinating diseases of the nervous system including Guillain-Barré 

syndrome, chronic inflammatory demyelinating polyneuropathy, diabetic polyneuropathy, 

multifocal motor neuropathy, and myasthenia gravis.134 IVIg has pleiotropic actions on the 

immune system, including autoantibody neutralization, blockade of antibody–target binding, 

acceleration of autoantibody clearance, inhibition of dendritic cell activation and leukocyte 

migration, complement inhibition, and blocking of Fcγ receptors.135

The data supporting the clinical benefit of IVIg in NMO are limited. In one study, IVIg 

showed efficacy in the prevention of relapses in eight NMO patients, with a reduction in 

mean ARR from 1.8 in the year before IVIg treatment to 0.006 during a mean follow-up of 

19.3 months.136 Other case studies also support a beneficial effect of IVIg in preventing 

relapse in NMO,137,138 and potentially in acute NMO relapses.61 In a proof-of-concept 

study, AQP4-IgG was administered to rats by intracerebral injection, and the size of the 

resulting neuroinflammatory demyelinating lesions was reduced by about 50% when IVIg 

was subsequently administered by intraperitoneal injection to yield serum levels of 10–25 

mg/ml IgG, which is comparable to human therapeutic levels.139 In vitro studies suggested 

that inhibition of AQP4-IgG-mediated CDC and ADCC were the primary mechanisms 

mediating the beneficial effects found in vivo. Further evaluation of IVIg in NMO thus 

seems warranted.

CD19-targeted therapy

Bone marrow-derived and tissue-resident AQP4-IgGexpressing plasma cells are considered 

to be the source of circulating AQP4-IgG in seropositive patients, and numbers of peripheral 

blood plasmablasts capable of producing AQP4-IgG are increased in the CSF and peripheral 
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blood of relapsing patients with NMO.34,118 CD19 is a B-cell surface marker that is 

expressed on the surface of plasmablasts and some plasma cells140 and might provide an 

alternative target for B-cell-depletive therapy in NMO. Owing to the expression of CD19 on 

some antibody-producing cell populations, antibodies targeted against this antigen might 

diminish serum titres of AQP4-IgG and reduce levels of circulating plasmablasts that can 

contribute to intrathecal inflammation.80 Several CD19-targeted therapies are currently 

under active investigation, 141 and could potentially be rapidly repurposed for clinical trials 

in NMO.

TNF-targeted therapy

Many of the therapies currently used for preventing NMO relapses, such as azathioprine, 

mycophenolate mofetil, methotrexate, and rituximab, are used for the treatment of 

rheumatoid arthritis. The success of these agents in both NMO and rheumatoid arthritis 

suggests that some critical immunopathology is shared between these autoimmune disorders.

Anti-tumour necrosis factor (TNF) therapies are central to the modern-day treatment of 

rheumatoid arthritis and could potentially be repurposed for the treatment of NMO. Addition 

of TNF to an ex vivo NMO spinal cord slice model has been demonstrated to exacerbate 

AQP4-IgG-mediated tissue injury.35 TNF might also impede lesion repair through 

oligodendrocyte precursor cell toxicity.142 Anti-TNF therapies could, therefore, offer a 

novel avenue for treatment of acute NMO attacks. Since serum levels of TNF are not 

elevated in patients with NMO,143 however, anti-TNF therapies might have limited in use in 

the prevention of exacerbations.

Novel therapies in the pipeline

Blockade of AQP4-IgG–AQP4 binding

Several therapeutic approaches have been developed to block the binding of AQP4-IgG to 

AQP4, thereby reducing CDC, ADCC and downstream pathogenicity (Table 3). In one 

approach, a nonpathogenic human monoclonal antibody, aquaporumab, was generated from 

a recombinant monoclonal AQP4-IgG that binds tightly to AQP4. Mutations were 

introduced into the Fc region of the antibody to eliminate its CDC and ADCC effector 

functions (Figure 3).144 Aquaporumab competitively displaces AQP4-IgG in the serum of 

patients with NMO, in part by steric hindrance, because the IgG1 antibody is large 

compared with the AQP4 tetramer (Figure 3).Aquaporumab greatly reduced AQP4-IgG-

dependent cytotoxicity and NMO pathology in animal and in vitro models of NMO.144 As 

targeting of AQP4 by aquaporumab is highly selective, immunosuppression should not 

occur and minimal toxicity is anticipated, although as with any biological drug, studies are 

needed to exclude off-target effects and immunogenicity. Aquaporumab is currently in 

preclinical development.144

In an alternative approach, a target-based small-molecule screen identified several potential 

drugs and natural products that reduced AQP4-IgG binding to AQP4 by binding to the 

extracellular surface of AQP4; these agents included the antiviral agent arbidol and the 

neutraceutical berbamine.145 Screens also identified idiotype-selective compounds that bind 

to the variable region of monoclonal AQP4-IgG.146 The compounds identified so far have 
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relatively weak affinity for AQP4 and unfavourable pharmacological properties for use in 

NMO, so more-extensive screening might be required to identify further small-molecule 

drug candidates. The level of plasma membrane AQP4 expression and its supramolecular 

assembly in orthogonal arrays of particles (OAPs) are important determinants of AQP4-IgG 

pathogenicity,147–150 so targeting of astrocyte AQP4 expression at the transcriptional or 

post-translational levels would be predicted to be beneficial in NMO, as would targeting of 

OAP formation by AQP4. Whether selective drug-like regulators of AQP4 expression or 

assembly can be identified, however, is currently unclear.

Antibody inactivation

Antibody inactivation is considered to be a potential therapeutic approach for autoimmune 

diseases caused by pathogenic antibodies. Several bacterial enzymes selectively target IgG-

class antibodies. Some of these enzymes interfere with the binding site for complement 

component C1q on the antibody, thereby neutralizing the Fc effector functions that are 

involved in CDC, whereas others target the Fcγ receptor binding motif that is involved in 

ADCC. One such enzyme, endoglycosidase S (EndoS), is a 108 kDa protein, derived from 

Streptococcus pyogenes, that selectively digests asparagine-linked glycans on IgG heavy 

chains (Figure 3).151 The enzymatically deglycosylated antibody has virtually no 

cytotoxicity effector functions. In a proof-of-concept study, treatment of serum from NMO 

patients with EndoS prevented CDC and ADCC in vitro, and counteracted the development 

of NMO pathology in vivo in animal models.152 The deglycosylated antibody also 

competitively displaced pathogenic NMO-IgG bound to AQP4, thus converting pathogenic 

AQP4-IgG into a therapeutic blocking antibody.

Another S. pyogenes-derived enzyme, IgG-degrading enzyme (IdeS), selectively cleaves 

IgG antibodies to yield Fc and F(ab′)2 fragments.148 As found with EndoS, IdeS treatment 

of NMO patient serum abolished CDC and ADCC in vitro and NMO pathology in vivo.153 

Notwithstanding the challenges related to IgG inactivation kinetics, manufacturing, and 

effects of general IgG neutralization, EndoS or IdeS treatment of blood by therapeutic 

apheresis using surface-immobilized enzyme might be useful in NMO. The blocking activity 

of nonpathogenic AQP4-IgG fragments in EndoS-treated or IdeS-treated blood could confer 

additional therapeutic benefit over that obtained with plasma exchange.

Other complement-targeted therapies

Motivated by the central role of complement activation in NMO pathogenesis and the initial 

success of C5 inhibition by eculizumab, as discussed above, other complement-targeted 

therapeutics are under consideration in NMO (Figure 4). The infectious adverse effects of 

eculizumab are thought to result from inhibition of the lectin pathway and alternative 

complement activation pathway, which are necessary for killing bacteria.154 C1-targeted 

monoclonal antibodies have been shown to be efficient in both in vitro and in vivo models of 

NMO.155 In contrast to C5 inhibition, C1 inhibition has multiple therapeutic effects: it 

prevents the generation of C3a and C3b, which participate in CDCC by causing effector cell 

chemotaxis, binding and degranulation; prevents amplification of the classical complement 

pathway by the alternative complement pathway; and does not interfere with defence against 

bacteria because the lectin and alternative activation pathways remain intact. Selective 
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inhibition of the classical complement pathway in NMO is, thus, predicted to be superior to 

generalized complement inhibition. Alternative agents that might be useful in NMO include 

a peptide inhibitor of C1 esterase activity (C1inh), a cyclic oligopeptide targeting C3 

(compstatin), inhibitors of C3a and C5a receptors, and monoclonal antibodies and small 

molecules against other complement components, which are currently under development 

(Figure 4).156,157

Complement inhibitor CD59

Another potentially attractive target in NMO is CD59, the major complement inhibitor 

protein in astrocytes. CD59 is a glycophosphoinositol-anchored membrane protein that 

inhibits formation of the terminal C5b–9 membrane attack complex.158 Other complement 

inhibitor proteins that might be present in astrocytes, albeit to a lesser extent, include CD55 

(also called decay acceleration factor), CD46 (membrane cofactor protein) and CD35 (type 1 

complement receptor).159 Various human diseases, including atypical haemolytic uraemic 

syndrome, membranoproliferative glomerulonephritis, C3 glomerulonephritis and dense 

deposit disease, involve mutation or dysregulation of complement regulatory proteins.160 

Pharmacological upregulation of CD59 or other complement inhibitors on astrocytes is be 

predicted to be beneficial in NMO by reducing AQP4-IgG-dependent CDC. In two proof-of-

concept studies in mouse models of NMO created by passive transfer of AQP4-IgG,161,162 

CD59 deletion or neutralization greatly increased NMO pathology in the spinal cord, optic 

nerve and brain. Small-molecule screening might yield upregulators of astrocyte CD59 

expression that are of potential therapeutic value in NMO.

Antibody-dependent cellular cytotoxicity

Although CDC has a central role in NMO pathogenesis, an expanding body of evidence also 

indicates an important role for ADCC, which involves binding of AQP4-bound AQP4-IgG 

to Fcγ receptors on effector cells, causing their accumulation, phagocytosis and 

degranulation. In addition to in vitro studies showing AQP4-IgG-dependent ADCC by 

granulocytes and natural killer cells,163 in vivo evidence from rodent models demonstrates 

ADCC-initiated NMO pathology,36,125 as well as involvement of AQP4-IgG ADCC effector 

function in the initiation of NMO pathology.38 Administration of a neutralizing FcγIII-

receptor antibody reduced NMO pathology in a mouse model.38 Notwithstanding the 

complexity of Fcγ receptor expression on human effector cells,164 targeting of Fcγ receptors 

using antibodies or small molecules might have therapeutic benefit in NMO.

Targeting the blood–brain barrier

Targeting of the blood–brain barrier could be beneficial in NMO. Two in vitro studies28,163 

have reported that serum from AQP4-IgG-seropositive patients increases permeability of 

human astrocyte–endothelial cell cocultures and reduces expression of tight junction 

proteins in cultured brain microvascular endothelial cells, thereby recapitulating the 

mechanisms involved in blood–brain barrier opening. Dysfunction of the blood– brain 

barrier—detected as raised albumin levels in CSF or blood—was more common in patients 

with NMO during relapse than during remission (55% versus 33% of patients), and CSF and 

blood albumin levels were significantly increased during a relapse.126 Although the 
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mechanisms are unclear, the secretion of vascular endothelial growth factor (VEGF) by 

astrocytes or endothelial cells has been suggested to be involved.28 The matrix 

metalloproteinase MMP-9, levels of which are elevated in the serum of patients with 

NMO,165 might be released from neutrophils in the NMO lesion and degrade the blood– 

brain barrier basement membrane. The humanized murine monoclonal antibody 

bevacizumab, a VEGF inhibitor, is currently in a clinical trial to determine whether it 

reduces blood–brain barrier opening in NMO.

Tolerance and transplantation

Antigen-specific tolerance against AQP4 provides a novel approach for suppression of the 

immune response in NMO. AQP4 tolerance could effectively halt the pathological immune 

response that drives CNS tissue injury while leaving the remainder of the immune 

surveillance system intact. Methods for inducing antigen-specific tolerance include DNA 

vaccination, altered peptide ligands, and low-dose oral or nasal antigen administration.166 In 

MS, initial attempts at antigen-induced tolerance either failed to produce clinical 

efficacy167,168 or worsened disease activity.169 The failure of antigen-specific therapy in MS 

could be related in part to the lack of a definitive disease-specific antigen in affected 

individuals, and similar strategies targeting AQP4 in seropositive NMO might yield more-

substantial clinical and immunological effects.

An alternative and aggressive strategy for restoring immune tolerance in NMO is autologous 

haematopoietic stem cell transplantation (HSCT). HSCT has shown benefit in the treatment 

of severe MS170 and systemic lupus erythematosus,171 and aggressive cases of NMO might 

demonstrate a similar robust and prolonged response. Owing to the considerable mortality 

associated with HSCT, however, careful selection of cases is mandatory.

Challenges and future directions

Clinical trials

The burgeoning environment of NMO therapeutics mandates clinical studies that provide 

definitive evidence of efficacy. These future clinical trials, however, present substantial 

challenges. First, the potential severity of NMO disease activity can limit the ability of 

investigators to accumulate extensive longitudinal data. Second, there are no defined criteria 

for clinical end points in NMO trials. Third, the number of potential trial participants is 

limited, necessitating the incorporation of sensitive primary end points. Last, there are 

concerns in trials designs involving a placebo arm because untreated NMO produces 

irreversible neurological deficits. The landscape is further complicated by the lack of a 

definitive preventative therapy, requiring investigators to try to balance the increased 

enrolment requirements of active comparator trials with the potential safety concerns 

associated with immunosuppressant or placebo therapy. Eventually, NMO clinical trials will 

need to address the above issues within an experimental design that allows regulators to 

determine the definitive risks and benefits of the investigational agent. Currently, NMO 

clinical trials are focused on preventative therapy and use time to first relapse as the primary 

end point. Future prophylactic trials will need to incorporate additional metrics to assess 

NMO relapse severity and progressive disability to begin to differentiate the entire spectrum 
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of therapeutic efficacy. In addition, NMO clinical trials will need to focus on the evaluation 

of acute therapeutics and the development of new clinical metrics for evaluation of relapse 

recovery.

Seronegative NMO

Management of AQP4-IgG-seronegative patients poses a challenge, because it is currently 

unclear whether their disease is caused by an AQP4-IgG-like antibody that recognizes an 

antigen different from AQP4, or whether these patients have a different disease altogether 

that shares clinical features with seropositive NMO. No animal models of AQP4-IgG-

seronegative NMO currently exist. Several studies172–177 have reported IgG antibody 

against myelin oligodendrocyte glycoprotein (MOG-IgG) in the serum of 10–15% of 

patients with AQP4-IgG-seronegative NMO. The MOG-IgG-positive patients often have 

better clinical outcomes than the AQP4-IgG-seropositive patients, including resolution of 

their radiological abnormalities. The role of MOG-IgG in NMO disease pathogenesis is 

unclear,178 although a recent study179 reported that NMO MOG-IgG injected in the mouse 

brain causes changes in the expression of axonal proteins that are required for the integrity 

of the nodes of Ranvier and normal action potential firing. Interestingly, MOG-IgG did not 

produce inflammation in this model, and the tissue changes were independent of 

complement activation. Unlike AQP4-IgG-induced damage in the mouse brain, which was 

complement-dependent and irreversible, the MOG-IgG-induced changes disappeared within 

2 weeks. The differences in lesion pathology and recovery are reflected in the clinical 

outcomes of MOG-IgG+ NMO and AQP4-IgG+ NMO patients.173–177 Further studies are 

needed to understand the pathogenesis of seronegative NMO, and to determine whether 

MOG-IgG+ NMO is pathologically related to or is a phenocopy of AQP4-IgG+ NMO.

Conclusions

In summary, the NMO therapeutics pipeline is quite full, with approved drugs being 

evaluated for repurposing in NMO, and new agents targeting a wide range of pathways in 

disease pathogenesis. Development of effective, highly selective drug therapy without 

general immunosuppression or off-target toxicity is a central goal in NMO therapeutics. 

Despite the inherent challenges of future clinical trials in NMO, such as patient enrolment 

and clinical variability, significant advances in treatment of NMO are anticipated.
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Key points

• Most patients with neuromyelitis optica (NMO) have serum IgG antibodies 

against astrocytic aquaporin-4 (AQP4) channels, a minority have antibodies to 

myelin oligodendrocyte glycoprotein, and some have neither

• Current NMO treatments include corticosteroids and plasma exchange, which 

reduce the severity of acute attacks, and prednisolone, rituximab, 

cyclophosphamide, azathioprine, mycophenolate, mitoxantrone, methotrexate 

and cyclosporine, which prevent relapses

• Some multiple sclerosis treatments, such as IFN-β, fingolimod and natalizumab, 

can be harmful in NMO

• Approved therapies with potential for repurposing in NMO include eculizumab 

(complement inhibitor), tocilizumab (IL-6 receptor inhibitor), sivelestat and 

cetirizine (granulocyte inhibitors), intravenous immunoglobulin, CD19-

depleting agents, and anti-TNF therapy

• Potential therapeutic approaches include inhibition of AQP4-IgG binding 

(aquaporumab, small molecules), AQP4-IgG inactivation (endoglycosidase S, 

IgG-degrading enzyme), alternative complement inhibitors (C1inh, compstatin, 

CD59), anti-FcγRIII antibody, VEGF inhibition (bevacizumab), and antigen-

specific tolerization

• Challenges for NMO therapeutics include optimization of drug penetration into 

NMO lesions, clinical trial design (given the small patient numbers), and 

management of seronegative patients
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Review criteria

We searched PubMed (all years) using the search terms “NMO”, “neuromyelitis optica” 

and “aquaporin-4”. We also read abstracts from the Guthy-Jackson Charitable 

Foundation NMO and the ECTRIMS meetings (2009–2013).
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Figure 1. 
Mechanisms of NMO pathogenesis. Serum AQP4-IgG and plasma cells that produce AQP4-

IgG penetrate the CNS, resulting in binding of AQP4-IgG to AQP4 channels on astrocytes. 

Antibody-dependent astrocyte damage involving complement-dependent cytotoxicity, 

CDCC and ADCC mechanisms lead to inflammation, oligodendrocyte injury, demyelination 

and neuronal loss. The CD59 glycoprotein inhibits cell lysis by inhibiting formation of the 

MAC. Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; AQP4, aquaporin-4; 

CDC, complement-dependent cytotoxicity; CDCC, complement-dependent cellular 

cytotoxicity; MAC, membrane attack complex; NMO, neuromyelitis optica.
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Figure 2. 
Pharmacological targets in NMO. Green boxes show mechanism-based approches currently 

used to treat NMO (anti-CD20 antibody [rituximab]; immunosuppressive agents; plasma 

exchange), purple boxes show approved drugs under evaluation for repurposing for NMO, 

blue boxes show drugs in preclinical development, and orange boxes show pharmacological 

intervention strategies at early, proof-of-concept stage. See Table 1 for additional 

information. Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; AQP4, 

aquaporin-4; CDC, complement-dependent cytotoxicity; IVIg, intravenous immunoglobulin; 

NMO, neuromyelitis optica.
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Figure 3. 
AQP4-IgG blocking and inactivation strategies for NMO therapy. An AQP4 array with 

bound AQP4-IgG antibody is shown in the middle of the figure. High-affinity, 

nonpathogenic anti-AQP4 antibody (aquaporumab) competes with pathogenic AQP4-IgG 

for AQP4 binding. Streptococcus pyogenes-derived enzymes IdeS and EndoS selectively 

inactivate IgG through proteinase and endoglycosidase actions, respectively, producing 

blocking nonpathogenic antibody remnants. Abbreviations: ADCC, antibody-dependent 

cellular cytotoxicity; AQP4, aquaporin-4; C1q, complement component C1q; CDC, 

complement-dependent cytotoxicity; CDCC, complement-dependent cellular cytotoxicity; 

CL, constant region of light chain; EndoS, endoglycosidase S; Fab, fragment antigen-

binding region; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; IdeS, IgG-

degrading enzyme; Man, mannose; NMO, neuromyelitis optica; Sial, sialic acid; VH, 

variable region of heavy chain; VL, variable region of light chain.
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Figure 4. 
Complement activation pathways and complement drug targets. The major components of 

the classical, alternative and lectin complement activation pathways are shown, along with 

C1mAb and eculizumab—monoclonal antibodies that target complement components C1 

and C5, respectively; C1inh, which targets C1; and the cyclic oligopeptide compstatin, 

which targets C5. C3a and C5a anaphylatoxins cause granulocyte activation by binding to 

specific receptors. Abbreviations: AQP4, aquaporin-4; C1inh, complement protein 1 

inhibitor; MAC, membrane attack complex; MASP, mannan-binding lectin serine protease; 

MBL, mannose-binding protein.
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Table 1

Commonly used NMO treatments in adults

Treatment Typical dose Mode of action

For acute exacerbation

Methylprednisolone60 1 g daily, for 3–5 days Multiple

Plasma exchange57–60 Five to seven cycles Depletion of AQP4-IgG and cytokines

Intravenous immunoglobulin61,136 0.7g/kg for 3 days; treatment period 8 weeks Multiple

Cyclophosphamide62 2 g daily for 4 days Inhibits mitosis

Relapse rate reduction

Prednisolone64 2–20 mg daily Multiple

Rituximab74–80,180,181 For example, 1 g at day 1 and day 14, repeat every 
6 months (optional: monitoring of CD19 counts)

Anti-CD20, B-cell depletion

Plasma exchange65 Immunosuppression Depletion of AQP4-IgG and cytokines

Cyclophosphamide 2 g daily for 4 days Inhibits mitosis

Azathioprine66–68,180 2.5–3.0 mg/kg daily Blocks synthesis of adenine and guanine

Mycophenolate69,180 750–3000 mg daily Inhibits inosine monophosphate dehydrogenase, 
primarily the type II isoform found in T cells and 
B cells

Mitoxantrone71,182 Initiation with 12 mg/m2 monthly for 3–6 months, 
maintenance with 6–12 mg/m2 every 3 months; 
maximum cumulative dose of 120 mg/m2

Intercalates DNA, inhibits mitosis

Methotrexate70 7.5–25 mg once weekly Folic acid antagonist

Cyclosporine A84 2–5 mg/kg daily Inhibits T cells

Harmful in NMO or insufficient safety data

IFN-β101–104 NA Harmful in NMO

Fingolimod114,115 NA Might be harmful in NMO (insufficient data)

Natalizumab106,107 NA Might be harmful in NMO (insufficient data)

Abbreviations: AQP4, aquaporin-4; CD20, B-lymphocyte antigen CD20; NA, not applicable; NMO, neuromyelitis optica.
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Table 3

Compounds in the pipeline

Compound Target molecule Mechanism of action

Anti-CD1934,118 B-cell surface marker Depletion of naive and memory B cells, plasmablasts, and some plasma cells

Anti-IL-1754,183 Cytokine Blocks IL-17 signal transduction

Aquaporumab144 AQP4 Binds to AQP4 on CNS astrocytes and blocks AQP4-IgG binding

IdeS153 AQP4-IgG Cleaves circulating AQP4-IgG

EndoS152 AQP4-IgG Deglycosylates AQP4-IgG to eliminate CDC and ADCC function

Small-molecule blockers145 AQP4-IgG Competitive inhibition of AQP4-IgG binding

Peptoid inhibitors184 AQP4-IgG Competitive inhibition of AQP4-IgG binding

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; AQP4, aquaporin-4; CDC, complement-dependent cytotoxicity; NMO, 
neuromyelitis optica.
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