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Continuous quantum error correction has been found to have certain advantages over discrete
quantum error correction, such as a reduction in hardware resources and the elimination of error
mechanisms introduced by having entangling gates and ancilla qubits. We propose a machine learn-
ing algorithm for continuous quantum error correction that is based on the use of a recurrent neural
network to identify bit-flip errors from continuous noisy syndrome measurements. The algorithm is
designed to operate on measurement signals deviating from the ideal behavior in which the mean
value corresponds to a code syndrome value and the measurement has white noise. We analyze
continuous measurements taken from a superconducting architecture using three transmon qubits
to identify three significant practical examples of non-ideal behavior, namely auto-correlation at
temporal short lags, transient syndrome dynamics after each bit-flip, and drift in the steady-state
syndrome values over the course of many experiments. Based on these real-world imperfections, we
generate synthetic measurement signals from which to train the recurrent neural network, and then
test its proficiency when implementing active error correction, comparing this with a traditional
double threshold scheme and a discrete Bayesian classifier. The results show that our machine
learning protocol is able to outperform the double threshold protocol across all tests, achieving a
final state fidelity comparable to the discrete Bayesian classifier.

I. INTRODUCTION

The prevalence of errors acting upon quantum states,
either as a result of imperfect quantum operations or
decoherence arising from interactions with the environ-
ment, severely limits the implementation of quantum
computation on physical qubits. A variety of methods
have been proposed to suppress the frequency of these
errors, such as dynamic decoupling [1], application of a
penalty Hamiltonian [2], decoherence-free subspace en-
coding [3], and near-optimal recovery based on process
tomography [4, 5]. In addition to these tools for error
prevention, there exist many schemes for quantum error
correction (QEC) that are able to return the system to its
proper configuration after an error occurs [6]. The ability
to correct errors rather just suppress them is vital to the
development of fault-tolerant quantum computation [7].

An essential feature of QEC is the measurement of cer-
tain error syndrome operators, which provides informa-
tion about errors on the physical qubits without collaps-
ing the logical quantum state. In the canonical approach,
quantum error correction is conducted in a discrete man-
ner, using quantum logic gates to transfer the qubit in-
formation to ancilla qubits and subsequently making pro-
jective measurements on these to extract the error syn-
dromes. However, in contrast to this theoretical idealiza-
tion of instantaneous projections of the quantum state,

experimental implementation of such measurements in-
herently involves performing weak measurements over fi-
nite time intervals [8], with the dispersive readouts in su-
perconducting qubit architectures constituting the prime
example of this in today’s quantum technologies [9–12].
This has motivated the development of continuous quan-
tum error correction (CQEC) [13–22], where the error
syndrome operators are measured weakly in strength and
continuously in time.

CQEC operates by directly coupling the data qubits
to continuous readout devices. This avoids the ancilla
qubits and periodic entangling gates found in discrete
QEC, reducing hardware resources. Additionally, the
presence of these entangling gate sequences and ancil-
las introduces additional error mechanisms, occurring in-
between entangling gates or on ancillas, that can cause
logical errors [20, 22]. On noisy quantum hardware, mul-
tiple rounds of entangling gates and ancilla readouts are
required to accurately identify the system state [23]. All
of this is also avoided by measuring data qubits directly,
as in CQEC.

In addition to quantum memory, CQEC naturally
lends itself to modes of quantum computation involv-
ing continuous evolution under time-dependent Hamil-
tonians, such as adiabatic quantum computing [24] and
quantum simulation [25]. Given that the Hamiltonians
considered generally do not commute with the error oper-
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ators, the action of an error induces spurious Hamiltonian
evolution within the corresponding error subspace until
the error is ultimately diagnosed and corrected, resulting
in the accrual of logical errors [21]. CQEC can effec-
tively shorten the spurious evolution time in the error
subspaces, and therefore increase the target state fidelity
in quantum annealing.

Previous theoretical work on CQEC has focused pri-
marily on measurement signals that behave in an ideal-
ized manner [19–21], such that each sample is assumed
to be i.i.d. Gaussian with a mean given by one of the
syndrome eigenvalues. However, in real dispersive read-
out signals we observe a wide variety of “imperfections”
caused by hardware limitations and post-processing ef-
fects, which can lead to more complicated syndrome dy-
namics or significant alterations to the noise distribution.
A well-calibrated CQEC protocol should be designed to
take into account any significant non-ideal behavior for
a given architecture. However, it is often difficult to gen-
erate a precise mathematical description of the imperfec-
tions present in real measurement signals.

Machine learning algorithms offer a solution to this
problem, as they can be optimized to solve a task by
looking directly at the relevant data instead of relying
on hard-coded decision rules. Highly expressive models
involving multiple neural network layers have proven to
be particularly effective at solving complex tasks such
as image recognition and language translation [26]. The
recurrent neural network (RNN) is a popular sequential
learning model, because it operates on inputs of varying
length and provides an output at each step. After being
trained on a set of non-ideal measurement signals, an
RNN can function as a CQEC algorithm by generating
probabilities which describe the likelihood of an error at
a given time step. Most importantly, the flexibility of the
algorithm allows it to handle imperfections in the signal
that would otherwise be impractical to model.

In this paper we investigate the performance of an
RNN-based CQEC algorithm which acts on measurement
signals with non-ideal behavior. We emphasize here ac-
tive correction, in which errors are corrected during the
experiment as soon as they are observed. To quantify the
benefits of using a neural network, we compare the RNN
to a conventional double threshold scheme as well as to
a discrete Bayesian classifier. The first threshold scheme
for CQEC was by Sarovar et al. [16], who used the sign
of the averaged measurement signals (i.e., a threshold at
zero) to identify the error subspace. This filter was im-
proved upon in Atalaya et al. [19] and Atalaya, Zhang et
al. [21], as well as in Mohseninia et al. [20], by adding a
second threshold to better detect errors that affect mul-
tiple syndromes. We chose to compare our RNN model
to the threshold scheme in [21], since it had superior per-
formance in numerical tests (see App. G).

The remainder of the paper is structured as follows.
Sec. II reviews the three-qubit bit-flip code that will be

used to evaluate the three models, and outlines the ideal-
ized mathematical formulation of CQEC. In Sec. III we
use physical experimental data to characterize the im-
perfections that are present in typical superconducting
qubit signals. We find that the noise possesses a signif-
icant amount of auto-correlation, while the syndromes
demonstrate complex transient behavior after every bit-
flip, as well as drift of the mean values over time. Sec. IV
then describes in detail the double threshold, discrete
Bayesian, and RNN-based models that we will be com-
paring. In Sec. V we test the error correction capabilities
of the models using four different sets of synthetic data,
each displaying a different characteristic feature or set of
features of non-ideal behavior. We show that the RNN
is able to outperform the double threshold across all syn-
thetic experiments, achieving results comparable to those
of the Bayesian model. Sec. VI summarizes our findings
and proposes directions for future work.

II. BACKGROUND

We exemplify our CQEC protocol by operating it on
the three-qubit bit-flip stabilizer code; in general, the
protocol works with any QEC codes. The three-qubit
bit-flip stabilizer code encodes the logical states |0〉 and
|1〉 into |0〉L = |000〉 and |1〉L = |111〉, respectively, where
the stabilizer generators are chosen to be S1 = Z1Z2 and
S2 = Z2Z3, which also serve as the error syndrome oper-
ators. The states |000〉 and |111〉 span the code subspace,
in which the syndromes have values (S1 = +1, S2 =
+1). The (S1 = −1, S2 = +1), (S1 = −1, S2 = −1),
(S1 = +1, S2 = −1) subspaces are known as the er-
ror subspaces, which are spanned by the basis states
{|011〉 , |100〉}, {|010〉 , |101〉} and {|001〉 , |110〉}, respec-
tively. A logical error in quantum memory, i.e., when
there is no Hamiltonian evolution, is an error attributed
to the logical X operator, XL = X1X2X3.

In the continuous operation of the three-qubit bit-flip
code, the error syndrome operators Sk, k = {1, 2} are
continuously and simultaneously measured to yield the
following idealized signals for each Sk as a function of
time t:

Ik(t) =
√

Γkmtr[Skρ(t)] + ξk(t). (1)

Here ρ(t) is the density matrix of the three physical
qubits and Γkm is the measurement strength that de-
termines the time to sufficiently resolve the mean val-
ues of the syndromes under constant variance. Specif-
ically, 1/Γkm is the time needed to distinguish between
the eigenvalues of Sk with a signal-to-noise ratio (SNR)
of 1 [27]. In the Markovian approximation, ξk(t) is
Gaussian white noise, i.e., ξ(t) = Ẇ (t) where W (t) is
a Wiener process, with a two-time correlation function
〈ξk(t)ξk′(t

′)〉 = δkk′δ(t − t′), where the 〈·〉 denotes aver-
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age over an ensemble of noise realizations. In the contin-
uous operation, the observer receives noisy voltage traces
with means proportional to the syndrome operator eigen-
values and variances that determine the continuous mea-
surement collapse timescales. Monitoring both error syn-
dromes with streams of noisy signals represents a gradual
gain of knowledge of the measurement outcome to diag-
nose bit-flip errors that occur. We shall refer to the parity
of Ik(t) as even or odd depending on whether the mean
value of Ik(t) is positive or negative. In an actual ex-
periment we will only have access to the averaged signals
taken at discrete time steps separated by ∆t, which we
denote by Ik,t at time step t:

Ik,t =
√

Γkm tr [Skρ(t)] +
∆W

∆t
(2)

where ∆W ∼ N (0,∆t). We shall assume that ρ(t) only
changes due to bit-flips at the beginning of each time step

∆t for very small ∆t.

In previous work, Ref. [20] compared the performance
of a linear approximate Bayesian classifier and the double
threshold model with one threshold fixed at y = 0 and
another threshold at y > 0 in correcting the three-qubit
bit-flip code for quantum memory. Ref. [21] analyzed
the double threshold model with two varying thresholds
in correcting the three-qubit bit-flip code, and applied it
to quantum annealing under bit-flip errorsXq with which
the chosen annealing Hamiltonian does not commute. In
the current work, we shall study the performance of ma-
chine learning algorithms both in quantum memory and
in quantum annealing.

The stochastic master equation (SME) [8] governing
the evolution of ρ(t) under measurements with a finite
rate of information extraction implied by Eq. (1) in the
presence of bit-flip errors is given by [16, 21]

ρ̇(t) = −i[H(t), ρ] +
∑
k=1,2

[
Γkφ
2

(SkρSk − ρ) +
√

Γkmξk(t)

(
Skρ+ ρSk

2
− ρ 〈Sk〉ρ

)]
+

∑
q=1,2,3

γq (XqρXq − ρ) . (3)

The first term describes coherent evolution of the three-
qubit state under a Hamiltonian H(t), which can, for
instance, be a quantum annealing Hamiltonian. The sec-
ond term describes the back-action induced by the simul-
taneous continuous measurement of the error syndrome
operators S1 and S2 on the three-qubit state, where Γkφ
is the measurement-induced ensemble dephasing rate of
the corresponding error syndrome operator Sk. The mea-
surement strength Γkm, is related to the detector effi-
ciency ηk as Γkm = 2Γkφηk The first two terms can be ob-
tained by substituting operators ck ∝ Sk into the general
SME dρ = −i[H, ρ]dt +

∑
k(D[ck]ρdt +

√
ηkH[ck]ρdW ).

The third term describes the decoherence of the three-
qubit state in the presence of bit-flip errors, with γq, q =
{1, 2, 3} denoting the bit-flip error rate of the qth physi-
cal qubit. While the idealized measurement signals men-
tioned above assume no effect induced by physical experi-
mental apparatus in the qubit readouts, there are various
imperfections of the measurement signals in practice that
make the error diagnosis more challenging. We shall first
present the characteristics of these measurement signals
from physical experiments below and explain their impli-
cations for our purpose.

III. PROBLEM SETUP

A. Characteristics of CQEC Measurement Signals

The superconducting qubits are monitored using volt-
age signals from homodyne measurements of the parity
operators that are derived from tones reflected off the
resonator (see App. B). The resonator signal is fed into
a Josephson parametric amplifier (JPA) in order to in-
crease the signal strength without adding a significant
amount of noise. The amplified radio frequency signals
are then demodulated and digitized. After a further digi-
tal demodulation, the signals are processed with an expo-
nential anti-aliasing filter with a time constant of 32 ns.
This filtered signal, which is averaged in ∆t = 32 ns bins,
is then streamed from the digitizer card to the computer.

Due to the effects of the amplifier and resonator, we
expect that measurements performed on such real super-
conducting devices will deviate from the idealized behav-
ior predicted by Eq. (1). In particular, we can anticipate
the following three imperfections:

1. The noise will possess a high degree of positive
auto-correlation at short temporal lags due to the
narrow low-pass bandwidth of the JPA and anti-
aliasing filter.

2. When a bit-flip occurs, the syndrome means will
change gradually rather than instantaneously as
the resonator reaches its new steady state. These
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FIG. 1. The measurement signals of the two syndrome opera-
tors S1 = Z1Z2 and S2 = Z2Z3 on the transmon qubits. The
even(odd) parity signal, i.e., Sk = +1(−1) has a voltage read-
out that is centered at an arbitrary negative(positive) value,
according to Eq. (B3). We note that the experimental voltage
readout of even parity is centered at the negative mean by de-
sign. The upper figure is the raw voltage signal readout of a
single experimental run. The lower figure is the averaged volt-
age readout over 47, 494 post-selected runs. The qubits are
initialized to |100〉 and an X2 bit-flip is artificially injected
at t = 3.0 µs, resulting in a new state |110〉. The oscillation
pattern is explained in App. E.

periods are referred to as resonator transients to
stress their temporary nature, and arise because
of time-dependent changes in the measurement
strength Γkm (see App. E).

3. The values of the syndromes will drift over time
due to small changes in experimental conditions
(e.g. temperature). Unlike the other imperfections,
this effect is only noticeable when comparing across
quantum trajectories rather than within them.

These non-ideal behaviors in the measurement signals ex-
tracted from our typical physical experiments will be in-
corporated into our simulated experiments in Sec. V.

Fig. 1 shows experimental dispersive readouts taken
from three transmon qubits [28] over the span of 6 µs [22].
The blue and orange lines are a record of the outputs
from the two resonators, each measuring a different pair
of qubits for their syndromes. The top figure shows the

measurement signals from a single experiment, which
contain large amounts of auto-correlated noise. Dur-
ing the experiment an X2 error was injected at 3.0 µs,
flipping the system from |100〉 to |110〉, but the weak-
measurement noise largely obscures its effect on the syn-
drome values.

To reveal these underlying syndromes, the bottom fig-
ure of Fig. 1 shows an average over the measurements
from roughly 47,500 experiments, each initialized to |100〉
and injected with an X2 error at 3.0 µs. It takes approxi-
mately 2 µs after initialization for the syndromes to reach
their steady-state values for |100〉, as the number of pho-
tons in each resonator increases from zero gradually. We
ignore this effect in our analysis, as it will only occur
once at the start of an experiment. After the X2 error
is injected, the syndromes do not instantaneously jump
to a new pair of values but instead enter a transitory
period which can include significant oscillations. These
transients derive from the time-dependent changes in the
measurement rate Γkm(t) analyzed in App. E. This period
lasts for roughly 2 µs, after which the syndromes stabilize
at their new steady-state values for |110〉.

Depending on the underlying hardware, a measure-
ment signal may be generated on a wide variety of differ-
ent scales, such as the arbitrary voltage scale in Fig. 1.
To denote a signal generically on any scale, we write the
measurement samples as

Ik,t = S̄k,t +
√
τkεt, (4)

where S̄k,t is the scaled mean of the k-th resonator at
step t, τk is the scaled variance of the k-th resonator, and
εt ∼ N (0, 1). In this notation, the physical quantities Γm
and ∆t from Eq. (2) have been absorbed into S̄k,t and
τk.

B. Impact of Auto-correlations

Unlike the other imperfections, the challenge posed by
auto-correlated signal noise can be characterized theo-
retically. If the Gaussian noise in Ik,t is correlated, then
the distribution of noise samples can be parameterized
in terms of a covariance matrix Σ whose off-diagonal
elements determine the degree of correlation. For sim-
plicity we restrict our analysis to dependencies that are
Markovian, such that Ik,t depends only on the preced-
ing measurement Ik,t−1, though our conclusions are not
limited to this regime. Using a correlation coefficient of
0 < ρ < 1, the joint Gaussian log-density describing Ik,t
and Ik,t−1 is

log p(Ik,tIk,t−1|S̄k,t) =

− 1

2τk(1− ρ2)

[
Ĩk,t Ĩk,t−1

] [ 1 −ρ
−ρ 1

] [
Ĩk,t
Ĩk,t−1

]
+A,
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where Ĩk,j ≡ Ik,j − S̄k,j denotes the centered signal sam-
ple at step j and A is the log of the normalization con-
stant. We shall assume hereafter that the signal has been
rescaled such that S̄k,j = ±1.

The effect of auto-correlations on error correction is
best characterized in terms of how it impacts the use-
fulness of the syndrome measurements. To be more pre-
cise, we know that the purpose of each measurement is to
provide some information about whether the underlying
syndrome value of the state is 1 or −1. When framed in
these terms, we can formalize and quantify a notion of
measurement “usefulness” using Bayesian theory, specifi-
cally a ratio called the Bayes factor which we denote as
φ [29]. This factor can be written in log form as

log φk,t =

log p(Ik,t|Ik,t−1, S̄k,t = 1)− log p(Ik,t|Ik,t−1, S̄k,t = −1),

(5)

and quantifies how much evidence Ik,t gives about the
underlying syndrome value if we have already seen the
previous measurement Ik,t−1. The larger the magnitude
of log φk,t the more useful Ik,t is for our task, with its
sign simply indicating whether the evidence supports a
value of 1 or −1.

Let Q = Σ−1. By making the substitutions σ−1 = Q22

and µ = S̄k,t−Q12/Q22(Ik,t−1−S̄k,t) in the unconditional
log-densities−(Ik,t−µ)2/(2σ)+A, each of the conditional
log-densities in Eq. (5) can be written as

log p(Ik,t|Ik,t−1,S̄k,t) =

− [Ik,t − S̄k,t − ρ(Ik,t−1 − S̄k,t)]2

2τk(1− ρ2)
+A,

where A is again the normalization constant [30]. Ex-
panding the numerator and keeping only the terms that
depend on S̄k,t gives

log p(Ik,t|Ik,t−1, S̄k,t)→
S2
k(ρ− 1) + 2S̄k,t(Ik,t − ρIk,t−1)

2τk(1 + ρ)
,

where we ignore the other terms since they will cancel
when computing log φk,t. After substituting this repre-
sentation back into Eq. (5) we get

log φk,t =
2(Ik,t − ρIk,t−1)

τk(1 + ρ)
, (6)

where the value of log φk,t depends not only on Ik,t and
Ik,t−1 but also on the variance and auto-correlation of
the measurements.

To see the impact of the auto-covariance more clearly,
we compute the expectation value E[log φk,t] with respect
to a Gaussian distribution centered on the true syndrome
value S′k,t = ±1. Since Eq. (6) is linear, we can simply
substitute in S′k,t for Ik,t and Ik,t−1 to get E[log φk,t].
After taking its magnitude, we have

|E[log φk,t]| =
2(1− ρ)

τk(1 + ρ)
, (7)

which decreases as the value of ρ increases. Eq. (7) shows
that positive auto-correlation (ρ > 0) in the signal makes
each of our measurements less useful than if the noise had
been uncorrelated (ρ = 0), which means that it will take
longer for us to determine the value of S̄k,t at a given
measurement strength.

This result can be understood by imagining that S̄k,t
and Ik,t−1 are competing to determine the value of Ik,t,
with smaller ρ favoring S̄k,t. The more that S̄k,t affects
the measurement, the more that the measurement in turn
tells us about S̄k,t and thus the more useful it is to us.
When ρ is large, the value of Ik,t tends to lie very close
to the value of Ik,t−1 regardless of whether S̄k,t is 1 or
−1, and therefore the measurement does not reveal much
new information about the syndrome.

IV. MODELS

A. Double Thresholds

The double threshold protocol from [21] uses two stan-
dard signal processing methods, filtering and threshold-
ing, to identify errors. The raw measurement signal is
first passed through an exponential filter to smooth out
oscillations, and then this averaged value is compared to
a pair of adjustable threshold values to determine the
state of the system. A slightly different double threshold
protocol was proposed in [20], which used boxcar averag-
ing and fixed one of the thresholds at zero.

To estimate the definite error syndromes from the noisy
measurements, we first filter the raw signals Ik(t) to ob-
tain corresponding filtered signals Ik(t) according to

İk(t) = −Ik(t)

τ
+
Ik(t)

τ
,

where τ is the averaging time parameter, and whose dis-
cretized version is similar. In the regime where t−t0 � τ
where t0 is at the last filtered signal reset, Ik(t) reads as

Ik(t) =

∫ t

t0

dt′
e−

t−t′
τ

τ
Ik (t′) .

Thresholds for Error Correction

After filtering the measurement signals, we then ap-
ply a double thresholding protocol to the filtered signals
I1(t) and I2(t) that is parameterized by the two thresh-
olds Θ1 and Θ2, where Θ1 is the threshold for the −1
value of the error syndromes and Θ2 is the threshold for
the +1 value of the error syndromes. If at least one of
I1(t) or I2(t) is found to lie within the interval (Θ1,Θ2),
we declare to be uncertain of the error syndromes and do
not perform any error correction operation. Otherwise,
we apply the following procedure, in accordance with the
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standard approach for error diagnosis and correction. If
both I1(t) > Θ2 and I2(t) > Θ2, then we diagnose the
error syndromes as (S1 = +1, S2 = +1) and accordingly
perform no error correction operation. If I1(t) < Θ1

and I2(t) > Θ2, then we diagnose the error syndromes
as (S1 = −1, S2 = +1) and accordingly perform the er-
ror correction operation Cop = X1. If both I1(t) < Θ1

and I2(t) < Θ1, then we diagnose the error syndromes
as (S1 = −1, S2 = −1) and accordingly perform the er-
ror correction operation Cop = X2. If I1(t) > Θ2 and
I2(t) < Θ1, then we diagnose the error syndromes as
(S1 = +1, S2 = −1) and accordingly perform the error
correction operation Cop = X3.

In quantum annealing, we note that the error correc-
tion operations are applied immediately after the error
syndromes are diagnosed to minimize the aforementioned
spurious Hamiltonian evolution. The action of an error
correction operation Cop, assumed to be instantaneous,
changes the three-qubit state ρ(t) according to

ρ(t)→ Copρ(t)Cop,

which applies to other models in our work as well. We
note that the parameters {τ,Θ1,Θ2} constitutes the min-
imal set of tunable parameters. When the measurement
signals Ik have white noise, their optimal values in mini-
mizing the logical error rate can be obtained by Eq. (43)
in [21] together with numerical optimizations.

We further reset the filtered signals Ik(t) to the cor-
responding initial syndrome value, at the same instant
to avoid the transient delay in the filtered signals to re-
flect the application of the error correction operation on
the state. Inherent within any error correction protocol,
however, is the implicit assumption that the correction
properly removes the error, which may not necessarily be
the case if the error was misdiagnosed.

We note that the Ik(t) used by the double threshold
model in CQEC consists of weighted contributions from
every raw signal taken prior to t and after the last correc-
tion. The discrete Bayesian model and the RNN-based
model that we discuss in this work can both be operated
on raw signals, using all historical signals taken prior to
a given t. This is in contrast to the projective measure-
ment on ancilla superconducting qubits in discrete QEC
that applies a matched filter [31] on raw signals taken
only within each detection round.

B. Discrete Bayesian Classifier

One weakness of the double-threshold scheme is that
its predictions are essentially all-or-nothing, since there
is no in-built quantity that expresses the model’s confi-
dence. This contrasts with probabilistic classifiers, which
generate probability values for each prediction class in-
stead of only a single guess. By framing the classification

problem in terms of probabilities, we can incorporate our
knowledge of the error and noise distributions into our
model in a mathematically rigorous manner.

Since each qubit in our system will experience either
one or zero net flips after every time step, there are eight
different ways that a state can be altered by bit-flips and
therefore eight different classes that our classifier must
track. We denote each of the possible bit-flip configura-
tion using the state that |000〉 is taken to by the error,
such that |001〉 denotes a flip on the third qubit, |110〉 de-
notes a flip on the first and second qubits, and so on. The
goal of a probabilistic error corrector is to accurately de-
termine the probability of all eight “error states” at time
step t given the measurement historiesMk

t ≡ {Ik,t′}t
′=t
t′=0.

We write this posterior probability as

p̂(st) ≡ p(st|M1
tM2

t ), (8)

where st ∈ {0, ..., 7} denotes the digital representation of
the error state at step t.

In the remainder of this subsection we consider a
probabilistic classifier constructed using Bayes’ theorem,
which makes prediction based on the posterior probabili-
ties of the different basis states at each time step [32].
Starting with the knowledge of the initial state, this
model uses a Markov chain and a set of Gaussian likeli-
hoods to update our beliefs about the system conditioned
on the specific measurement values that we observe.

The Bayesian algorithm described in this section is de-
rived by assuming that the mean of a given measurement
Ik,t is always determined by the state of the system at the
end of the time step. This is equivalent to assuming that
errors always happen at the beginning of each time step
(see Sec. II). Since our method for generating quantum
trajectories follows this assumption, the Bayesian model
is theoretically optimal for the numerical tests carried out
in Sec. V without mean drift or resonator transients. As
the length of the step ∆t between measurements goes to
zero, this algorithm converges to the Wonham filter [33],
which is known to be optimal for continuous quantum fil-
tering of error syndromes [34]. This filter is similar to the
discretized, linear Wonham filter derived in [20], except
that our filter does not rely on first-order approximations
of the Markov evolution or Gaussian functions.

Model Structure

Using Bayes’ theorem, the posterior probability of
Eq. (8) can be rearranged into the recursive form

p̂(st) ∝

p(I1,tI2,t|stM1
t−1M2

t−1)

7∑
i=0

p(st|st−1 = i)p̂(st−1 = i),

(9)
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where we assume that the occurrence of an error is in-
dependent of any previous measurements and that Ik,t
depends on the error state at time t along with past sig-
nal values due to auto-correlations.

This recursive expression describes a Bayesian filter
which takes prior information about the error state
of the system and updates it based on the transi-
tion probabilities p(st|st−1) and measurement likelihoods
p(I1,tI2,t|stM1

t−1M2
t−1). The filter can be easily im-

plemented once we have functional forms for these two
terms, which we describe next.

Markovian State Transitions

The Markovian assumption inherent in p(st|st−1) is
reasonable, given that the net effect of an additional bit-
flip error depends only on the error state the system be-
fore the error. We assume hereafter that the error rate γq
is identical for all three qubits, i.e., γq = γ. This allows
us to model the errors as a Markov chain [35] with an
8× 8 rate matrix Q given by

Qij =


−3γ if j = i

γ if j ⊕ i ∈ {1, 2, 4}
0 otherwise,

(10)

where we define our basis such that index i ∈ {0, . . . , 7}
corresponds to the error state whose classical binary rep-
resentation is equal to i, e.g. 5→ |101〉.

Since Q only gives the rate of transition per unit time,
we need to compute the transition matrix J in order to
get probabilities for a finite step. This matrix can be
derived from Q as

J = eQ∆t,

where ∆t is the length of the time step. Element Jij gives
the probability of transitioning from error state i to error
state j across the time step, so we can relate p(st|st−1)
to J as p(st = j|st−1 = i) = Jij . Using J , the sum in
Eq. (9) can be evaluated to give probabilities p̃(st)

p̃(st = j) ≡
7∑
i=0

p̂(st−1 = i)Jij , (11)

which take into account the transitions induced by bit-
flip errors during the time step.

Measurement Likelihoods

The measurement likelihood p(I1,tI2,t|stM1
t−1M2

t−1)
describes the probability of generating signal values I1,t
and I2,t given that the system is in error state st and
that we had previously measured the values inM1

t−1 and

M2
t−1. Since the noise from each syndrome is indepen-

dent, we can factor the likelihood as

p(I1,tI2,t|stM1
t−1M2

t−1) = p(I1,t|stM1
t−1)p(I2,t|stM2

t−1)

with I1,t and I2,t contributing independently to the prob-
ability.

If the noise source is assumed to be Gaussian, then the
probability density for each Ik,t has the form

p(Ik,t|stMk
t−1) =

1

2πσ2
exp

[
−(Ik,t − µk,t)2

2σ2

]
,

where µk,t and σ2 are the mean and variance of the signal
conditioned on the past measurements Mk

t−1. In prac-
tice the auto-correlations rapidly decay, so we only need
to condition on a small number of recent measurements.
Hence, we let mk,t−1 be the vector of these measure-
ments, and let c be the vector of their corresponding
covariance values. Then

µk,t = S̄k,t + cTΣ−1(mk,t−1 − S̄k,t~1), (12)

σ2 =
τ

∆t
− cTΣ−1c, (13)

where ~1 is a vector of ones with the same dimension as
mk,t−1, Σ is the covariance matrix of the variables in
mk,t−1, and S̄k,t is the mean corresponding to error state
st [30]. Since the system always begins in the coding sub-
space, each error state maps to a definite error subspace
and therefore has definite syndrome values regardless of
how the logical state was initialized.

After the measurement pair Ik,t is received, the Gaus-
sian likelihood functions are used to convert the prob-
abilities from Eq. (11) into the next posteriors p̂(st) as

p̂(st) ∝ p̃(st) · p(I1,t|stM1
t−1)p(I2,t|stM2

t−1), (14)

which will become probabilities after normalization.

Procedure for Error Correction

The probabilities from Eq. (14) can be understood as
describing how likely it is that the system is in each of the
eight error states based on the judgment of the model.
Whenever |000〉 does not have the highest probability, we
can infer that at least one error has occurred and take the
appropriate action to correct it. This procedure, which
effectively takes the argmax of the posteriors, can be al-
tered if certain forms of misclassification are more costly
than others, or if the act of making a correction itself
carries some cost. The procedure can also be modified so
that it is more robust to imperfections in the signal, as
we do in Sec. IVC by introducing the τignore and τstreak
hyperparamters.
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Whenever any correction is made, we must update the
model with this information by permuting its probabil-
ities to reflect the applied bit-flip. In our example, a
correction on the second qubit would lead us to swap the
probabilities between pairs of error states which differ in
only the second qubit, e.g., |010〉 
 |000〉. Without this
update the model will continue to recommend the same
correction repeatedly, as it does not realize that the state
of system has been changed.

A connection can be made between the Bayesian al-
gorithm described here and the maximum likelihood de-
coder (MLD) commonly used in discrete error correction
[36]. Given a specific noise channel and qubit encod-
ing, the MLD is the protocol with the greatest proba-
bility of successfully correcting an error, assuming that
we have access to projective measurements of the syn-
dromes. The Bayesian model can be viewed as an exten-
sion of the MLD to the continuous measurement regime,
where the syndrome measurements provide us with in-
complete knowledge of the error subspace. As the vari-
ance of the Gaussian measurement noise goes to zero, the
Bayesian model reduces to the standard MLD protocol
for the three-qubit bit-flip code.

Impact of Signal Imperfections

Compared to thresholding schemes, the Bayesian clas-
sifier described here is far more sensitive to the assump-
tions we make about the noise and error distributions.
Such sensitivity can be an advantage, since it allows for
near optimal performance when our knowledge of these
distributions is accurate.

Of course, when our assumptions about the distribu-
tions are wrong, the accuracy of the model can suffer
significantly. Out of the three imperfections described in
Sec. III, only the auto-correlation of neighboring sam-
ples is directly accounted for in the model. The res-
onator transients occur over relatively short time inter-
vals, so they are likely to have only a modest impact on
the model’s performance. The syndrome drift also has
a negative impact, as the mean values of the Gaussian
distributions are key parameters in the model. If there is
a discrepancy between the actual signal means and our
pre-programmed values, then every measurement likeli-
hood calculation will be biased.

We explore the size and significance of these effects for
all three of our models in Sec. V.

C. Recurrent Neural Network (RNN)

Neural networks are a subset of the broader family of
machine learning methods based on acquiring a learned
representation of the data, which consists of parameter-
ized layers of linear transformations and nonlinear acti-

vation functions. RNNs are a class of neural network in
which the layers connect temporally, combining the pre-
vious time step and a hidden representation into the rep-
resentation for the current time step. They are thus well
suited for representation of the time-dependence of con-
tinuously measured error syndromes over discrete time
steps. Using a training set of labeled signals, the RNN
can learn the properties of the weak measurement sig-
nal and the structure of the underlying bit-flip channel,
which allows it to accurately detect errors as they occur.

The dynamics of a simple recurrent neural network can
be expressed by the following equations:

ht = σh (Whxt + Uhht−1 + bh) ,

yt = σy (Wyht + by) .

For each time step t, the network accepts the input vec-
tor xt and, along with the hidden state vector from the
previous time step ht−1, performs a linear transforma-
tion parameterized by the weight matrices Wh and Uh
and the bias vector bh before applying a nonlinear ac-
tivation function given by σh. The result is the hidden
state vector for the current time step ht, which is acted
upon by an analogous series of operations defined byWy,
by and σy to produce the output vector yt. We note
that the hidden state ht effectively encodes a description
of the history of inputs {xt′}t

′=t
t′=0, which therefore allows

the network to extract temporal, non-Markovian features
from the data.

In our context, we consider the input at each time step
to be the vector of measurement signals plus the initial
basis state,

xt =

 I1,tI2,t
s0

 . (15)

Moreover, instead of the standard recurrent neural net-
work architecture, we use a long short-term memory net-
work (LSTM) [37], which is a particular type of recurrent
neural network that involves cell states and various gates
to evade the vanishing gradient problem of standard RNN
architecture [38]. Nevertheless, the same principle under-
lying the standard function of RNN applies. The output
yt of the LSTM layer is subsequently passed through a
dense layer and a softmax activation to produce the pos-
terior probabilities of the eight basis states p(st|Mk

t ), and
we select the basis state with the highest posterior as the
prediction ŝt.

Training

Training samples for the RNN require accurate labeling
of the states corresponding to the measurement signals
at every time step. However, in reality, decoherence ef-
fects such as amplitude damping and thermal excitation
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prevent us from knowing the correct state of the system
at some arbitrary time. As a result, to train the RNN, we
have to resort to measurement signals with a well defined
underlying quantum state. This can be achieved by sim-
ulating the measurement signals on states in the absence
of unwanted decoherence effects, which will be described
in details in Sec V. In the simulations, we provide the
measurement strength, the single-qubit bit-flip error rate
and the initial quantum state as input parameters, and
the simulation produces a large number of quantum tra-
jectories to be the training samples of the RNN. We then
train the RNN to diagnose bit-flip errors on the three-
qubit system, and the trained RNN can be subsequently
used to actively correct for errors that occurred. That
said, the same information used to generate the training
samples is also provided as prior knowledge to the dou-
ble threshold and the Bayesian model. The two models
both require an explicit estimation of the measurement
strength as well as the assumption of a certain error rate.

We maximize the likelihood of the RNN parameters on
the training set by minimizing the cross entropy batch
total loss function, which is defined as

L = − 1

NT

N∑
n=1

T∑
t=1

log pn(st), (16)

where pn(st) stands for the posterior probability of the
true basis state st at time step t in the n-th sample, while
N denotes the mini-batch size and T denotes the total
number of steps in each training sample.

To update the parameters to minimize the loss, we per-
form an iterative training procedure where for each step
and parameter w, one applies a gradient descent update
of the form w ← w − η(∂L/∂w), where the gradients
∂L/∂w are computed via backpropagation through the
computation graph of the network.

In our experiments, the gradient descent update is pre-
formed using the ADAM optimizer [39]. We adopt a two-
layer stacked LSTM with a hidden state size of 32. This
small hidden size limits the largest matrix-vector mul-
tiplication in computations, hence the memory required,
and also limits the number of parameters, facilitating the
implementation of the network in real-time experiments.
We further provide a comparison test on the performance
of different hidden state sizes in App. D and show that
both smaller LSTM and gated recurrent unit (GRU) ar-
chitecture [40] offer comparable performance for our pur-
pose. The number of stacked layers of the LSTM/GRU
and the hyperparameters, such as the batch size in train-
ing, are tuned with the assistance of Ray Tune [41].

Re-calibration Method for Error Correction

When performing active error correction, we once
again wish to avoid the delay in the posterior probabil-

ities output by the network to reflect the application of
an error correction operation Cop on the system. In the
case of the Bayesian classifier, we permute the elements
of the vector of posterior probabilities, which encodes the
state of the model, in accordance with the error correc-
tion operation. For the RNN, however, we cannot ap-
ply a particular transformation to the hidden state such
that the vector of posterior probabilities outputted by
the network is permuted in analogous manner, since the
function mapping the hidden state to the output vector
of posterior probabilities is highly nontrivial.

Any such delay in the network remaining unaware of
the quantum state having been corrected is harmful, be-
cause another error Xq occurring during this delay, com-
pounding with the correction Cop on the first error, will
induce a logical error at the next error correction oper-
ation. To see this clearly, considering that the physical
qubits are initially in |000〉, and the first error X1 results
in the state |100〉. After detecting the error, the model
makes a correction that instantly returns the state back
to |000〉. However, the RNN still has the knowledge of
the qubits being in |100〉 until some time later at trealize
before accepting sufficient number of xt’s that allows it to
predict |000〉. If a second error X2 occurs before trealize,
the syndromes become (S1 = −1, S2 = −1) because the
state becomes |010〉, whereas the RNN, only knowing the
state in |100〉, will eventually predict |101〉 that has the
same syndromes, which is then equivalent to diagnosing
an X3 error. After applying a second error correction
Cop = X3, the physical qubits are now in |111〉, consti-
tuting a logical error. In other words, since we are not
capable of injecting the knowledge of a correction oper-
ation into the RNN, a correction operation is equivalent
to an error seen by the RNN and active correction effec-
tively increases the bit-flip error rate γ in the eyes of the
network. Although the correction is correlated with the
detected error, the network is generally trained on quan-
tum trajectories with uncorrelated random bit-flip error
instances. As will be explained in VA that a greater
γ will induce more logical errors, we conclude that the
naive approach of active correction with the RNN suffers
from more logical errors.

Therefore, we propose the following re-calibration pro-
tocol to effectively hide the action of any error correction
operation from the network, so that there is no longer
any delay in the posterior probabilities to begin with.

We specifically keep track of all the error correction
operations that has been applied up to the present t,

Nq,t = Number of Xq corrections applied.

When the measurement signals I1,t and I2,t have sym-
metric noise around their respective mean values and the
possible means of Ik,t are always equal and opposite, each
Cop correction changes the mean of I1,t by a factor of −1
if Cop = X1, changes the mean of I2,t by a factor of −1 if
Cop = X3, and changes the mean of both Ik,t by a factor
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of −1 if Cop = X2. To hide all the corrections done in
the past, the measurement signals that are provided as
input to the network for all subsequent time steps are
then flipped according to Nq,t,

I ′1,t = (−1)N1,t+N2,tI1,t,

I ′2,t = (−1)N2,t+N3,tI2,t,

which we called the re-calibrated signals. From the per-
spective of the RNN when taking in I ′k,t, it appears as
if no error correction operation has been applied to the
physical qubits.

Given that at some time step we predict a different
state ŝt, we now perform our error correction operation
relative to the previous predicted state ŝt−1.

Adaption to Resonator Transients for Probabilistic Models

When the possible means of Ik,t are not equal and op-
posite, as occurs in the resonator transients upon apply-
ing Cop, the re-calibration method breaks down, because
flipping the means of either or both Ik,t does not pro-
duce the means as if there was no correction applied. A
solution to this is to impose an ignore time period τignore
right after the correction is applied at some t. During
(t, t + τignore], no input xt is fed into the RNN. As a re-
sult, the hidden state of the network is frozen until the
ignore time period ends. The re-calibrated signals are
accepted by the network only after t + τignore, which re-
duces the risk of getting incorrect predictions during the
transients, but effectively increases the detection time of
any error that occurs during the ignore period.

Imposing τignore should be accompanied by a measure
to ensure that the RNN diagnoses any error with suffi-
ciently high confidence so that fewer false alarms of error
will be followed by an ignore period τignore upon cor-
rection. A feasible measure in practice is to determine
an error correction operation only if the RNN predicts
the same state {ŝt′}t

′=t+τstreak
t′=t for a streak of time steps

τstreak that is different from the old state ŝt−1, which
is a discrete quantity that is easy to optimize. The
{τignore, τstreak} then constitutes a minimal set of tun-
able hyperparameters for the task of active correction in
the presence of resonator transients, which applies to the
Bayesian classifier explained in Sec. IVB as well.

V. SIMULATED EXPERIMENTS

To evaluate the effectiveness of the three models de-
scribed in Sec. IV, we test their error correction capa-
bilities on a large number of synthetic measurement se-
quences. The motivation for using artificial data instead
of real data is twofold. First, by using artificial data we

can precisely control the underlying measurement distri-
bution, which allows us to separate out the effects of the
different imperfections identified in Sec. III. Second, it
is important that we know the true state of the system
at every time step, as this is necessary both to train the
RNN and to calculate intermediate fidelity values. Such
knowledge would not be possible on a near-term quantum
computer due to strong undesirable decoherence.

To ensure that our simulations are grounded in reality,
we model them on data taken from a superconducting
qubit device. Fig. 1 shows measurements taken from this
reference data, which consists of approximately 1.6×106

sequences lasting 6 µs each [42]. The sequences are com-
prised of 192 measurement pairs (one for each resonator),
sampled every 32 ns. The data contains both “flat” se-
quences, in which no bit-flip occurs, as well as sequences
in which a bit-flip is deliberately applied to one of the
three qubits to induce a state transition. Since these bit-
flips are all applied at precisely the same time, we are
able to track how the the signal mean changes during
the transient period.

Across all of our tests we employ four different simu-
lation schemes, each of which is described below. The
schemes are designated with letters A–D in order of how
much non-ideal behavior they include, with Scheme A
having no imperfections and Scheme D having all three
imperfections. In all schemes, we ignore the thermal ex-
citation for each qubit, since a typical excitation rate is
on the order of 1 ms−1.

Scheme A: Idealized Behavior

In our first scheme, the simulated signal simply con-
forms to the idealized behavior given by Eq. (1). At
the beginning of each measurement sequence the sys-
tem is set to a specified initial state in the coding sub-
space, and then the state of the next time step is de-
termined by sampling a number nq of bit-flips Xq for
each qubit from the Poisson distribution, such that nq =
exp(−γ∆t)(γ∆t)nq/nq! where ∆t is the time step size.
These errors are applied to the corresponding qubits to
get the next state. This cycle of sampling and propa-
gating errors is repeated until we have generated a suffi-
ciently long sequence of states.

To create the corresponding Ik,t, we sample a uni-
variate Gaussian distribution at each time step with vari-
ance (Γkm∆t)−1 and a mean of ±1 determined by the syn-
drome eigenvalue at that step. Our reference data has

Γkm ≈ 4.7× 106 s−1, ∆t = 32× 10−9 s, ηk ≈ 0.5,

where Γkm needed to be estimated from the measurement
signals while ∆t was known to us in advance. This se-
quence of Gaussian samples plus the underlying states
provides a complete description of a system in the con-
text of our error correction task.
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Scheme B: Auto-correlations

As a first step away from ideal behavior, we consider
noise that is correlated across time. The data genera-
tion process for this scheme is effectively the same as
that of Scheme A, except that the noise must be sam-
pled sequentially in order to correctly capture the auto-
correlations. In our reference data we find that signif-
icant auto-correlations extend back roughly four steps,
with covariance given by

cTk ≈ 5.94 ·
[
0.61 0.25 0.1 0.05

]
whose ith element is at lag-i. These values were found by
taking every contiguous subsequence of length five in our
reference data and using them all to compute a covariance
matrix. We can simulate Gaussian noise with these auto-
correlations one step at a time using Eqs. (12, 13).

Scheme C: Auto-correlations with Resonator Transients

For our third scheme, we keep the auto-correlations
from Scheme B but alter the behavior of the syndrome
values so that they include the resonator transients seen
in Fig. 1 and explained in App. E. To incorporate these
patterns into our simulation, we first extract the mean
values of the transient patterns from our reference data,
consisting of 94 steps in total, for each of the twenty-four
different single-flip transitions. Our sequence generation
process is then identical to Scheme B, except that after
an error occurs the next 94 measurements are sampled
from Gaussians centered on the transient means instead
of the syndrome eigenvalues. The pattern that we use is
matched to the state of the system before and after the
error. After the transient period has elapsed, the means
are set back to ±1 and further samples are generated as
usual until another error occurs.

Scheme D: All Imperfections

Our final simulation scheme takes the auto-correlations
and resonator transients from Scheme C and adds an un-
derlying drift term to the the syndrome means. Since
our reference data contains over a million trajectories
collected over the span of multiple hours, it is possible
to observe significant differences in the syndrome means
between trajectories that are separated by large amounts
of time, possibly due to temperature fluctuations.

For our experiments we elected to apply a linear drift
∆i governed by

∆i =
0.4

N
· i,

where i is an index that arbitrarily orders the different
measurement sequences that we generate and N is the to-

tal number of these sequences. This drift term is added
to every measurement in the ith sequence, resulting in a
uniform shift of the overall signal means. The net drift
across all runs represents a 40% change, which is con-
sistent with the magnitude of the drift observed in our
reference data.

A. Quantum Memory State Tracking

In quantum memory, it suffices to track the basis states
in response to the bit-flip errors that have occurred and
only apply error correction operations when needed. We
generated 30, 000 trajectories of length T = 20 µs from all
four simulation schemes with a pre-defined single-qubit
error rate as our testing samples, among which are equal
portions of trajectories initialized in one of the eight basis
states. While the RNN model employed here is trained
on 100, 000 quantum trajectories from the correspond-
ing simulation scheme, the error rate, noise variance and
auto-correlations input to the Bayesian model are also
estimated from those quantum trajectories. The tunable
parameters in the double threshold model are numeri-
cally optimized in schemes with imperfections; the filter-
ing time τ typically lies in the range 0.3 − 1.6 µs, with
larger τ for smaller γ.

In Fig. 2, we compare the final fidelity F = |〈ψT |ψ0〉|2
against the initial state of the three models in tracking
these quantum trajectories subject to bit-flips. The trend
is that the final fidelity decreases as a function of the
single-qubit error rate γ. This is because the higher the
error rate is, the more chances there will be two differ-
ent bit-flips before the correction to the first bit-flip is
made, resulting in a logical error upon the correction,
and therefore a lower final fidelity. For instance, a state
starting at |000〉 is flipped to |001〉 at t1 and is later also
flipped to |011〉 at t2 > t1, such that t2 is smaller than
t1+tdetect where tdetect is the detection time of the first er-
ror. Subsequently, the model perceiving syndromes with
(S1 = −1, S2 = +1) will eventually make a Cop = X1 cor-
rection and change the state to |111〉, leading to a logical
error. From the above argument, it is also evident that
a shorter detection time is beneficial.

From Fig. 2, we see that the RNN and the Bayesian
classifier outperform the double threshold in all sim-
ulation schemes, whereas the RNN approximates the
Bayesian classifier in all schemes. As discussed in
Sec. IVB, the Bayesian classifier is the optimal model
of the three in Schemes A and B where there are only
auto-correlations in the signals, which is validated in this
task. The fact that their performances in Schemes C and
D are very similar to that in Scheme B indicates that the
resonator transient pattern and the drifting of the means
do not have a significant effect on all three models.

It is reasonable that the drift has a small negative effect
to the two probabilistic models, since the drift is usually
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FIG. 2. The final fidelity with respect to the initial state |000〉 in Schemes A, B, C, D with the double threshold (DT), Bayesian
and RNN classifier, as a function of single-qubit bit-flip rate γ at an operation time T = 20 µs. Each data point is averaged
over 30, 000 quantum trajectories. For better visualization, we split the figure into two plots, with the left one comparing the
RNN classifier to the double threshold, and the right one comparing the RNN classifier to the Bayesian classifier. On the
left, we see that the RNN classifier outperforms the double threshold in all schemes. Whereas on the right, it shows that the
RNN approximates the Bayesian classifier, which is the optimal one among the three, in all schemes. The error bars show the
standard error of the mean.

on the order of the separation of mean values of the two
parities, which is in turn one order of magnitude smaller
than the standard deviation of the noise. The large noise
variance obscures the drifting means, making the drifted
signals appear like more noisy signals with fixed means.

B. Extending T1 Time of the Logical Qubit

Although the models are motivated by correcting bit-
flip errors, they can also be exploited in extending the
T1 time of the logical qubit in |1〉L = |111〉. For this
task, actively correcting the state is required as opposed
to merely tracking the state. While for practical purpose
the RNN model is trained on 30, 000 quantum trajec-
tories under bit-flips with a length of T = 120 µs, the
Bayesian model, whose parameters are estimated from
the same set of trajectories, uses a different transition
matrix generated by Q′ shown in Eq. (F1) which takes
into account the asymmetric probabilities of transitions
between the ground and excited state. The parameters
for the double threshold model is numerically optimized
on the same set of quantum trajectories.

For the three-qubit system initialized to the fully
excited state |111〉, we inspect the population within
a Hamming distance 1 away from the initial state,
i.e., the population Pexc of the set of basis states
{|111〉 , |110〉 , |101〉 , |011〉}, since these states can be re-
covered to the initial state by a majority vote. We com-
pare this Pexc against the population of the excited state
|1〉 of a bare qubit as a function of time in all four sim-
ulation schemes, and the results are shown in Fig. 3. In

all schemes, the encoded three-qubit system Pexc decays
much slower under active correction by any of the three
models than the bare qubit excited state population. In
all schemes, both the Bayesian and the RNN-based model
outrun the double threshold model.

C. Protecting against Bit-flip Errors

Similar to the task of extending the T1 time of the state
|1〉L, here we employ the three models to protect the ini-
tial state |1〉L from bit-flips. Shown in Fig. 4, we compare
the population Pexc of the three-qubit system against the
excited population of the bare qubit in time. For Schemes
A and B, both the Bayesian and the RNN-based model
have an advantage over the double threshold. Further-
more, in Fig. 4 we extract the initial logical error rate
ΓL as a function of γ by computing the time derivative
of Pexc at 9.6 µs at each γ. In either scheme with any of
the three models, ΓL scales approximately quadratic in
γ, and we can see a strong suppression of ΓL relative to
a bare qubit or the uncorrected three qubits. We remark
that, by introducing feedback based on noisy weak mea-
surements, any correction protocol can underperform a
majority vote on the encoded qubits without error cor-
rection at sufficiently small γ or runtime.

To better understand the performance of the models
in this important task, we analyze the detection time
spent in true positive detection as well as the number of
false alarms when the three-qubit system is in |1〉L. The
difference between a true positive and a false alarm is il-
lustrated in Fig. 5, which shows the actual and predicted
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FIG. 3. The population of the excited states {|111〉 , |110〉 , |101〉 , |011〉} as a function of time, obtained from simulated exper-
iments with the four different schemes at a single-qubit decay rate of γ = 0.04 µs−1. Each data point is averaged over 3, 000
independent quantum trajectories. The three-qubit system is initialized to |1〉L = |111〉. As a comparison, the bare qubit
(purple curve) is initialized to the |1〉 state and is subject to amplitude damping with a time constant of T1 = 25 µs, i.e., a
decay rate of 0.04 µs−1. For reference, the uncorrected three-qubit system decay curve is shown in red (see App. F). For all
schemes, the RNN-based model outperforms the double threshold model.
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FIG. 4. Left: the population of the excited states {|111〉 , |110〉 , |101〉 , |011〉} as a function of time, obtained from simulated
experiments under Schemes A and B at a single-qubit bit-flip rate of 0.04 µs−1. Each data point is averaged over 3, 000
independent quantum trajectories. The three-qubit system is initialized to |1〉L = |111〉. As a comparison, the bare qubit
(purple curve) is initialized to |1〉 and is subject to a bit-flip rate of γ = 0.04 µs−1. As a reference, the uncorrected three-qubit
system decay curve is shown in red (see App. F). In Schemes A and B, the Bayesian model is the best among the three, and
the Bayesian and RNN-based model both outrun the double threshold model. Right: the initial logical error rate ΓL at 9.6 µs
as a function of the single-qubit error rate γ. The fitted quadratic curves show a strong suppression of ΓL for all three models
in both schemes.

states of the system when an X3 error occurs and when
the model falsely detects an X1 error. When a true er-
ror occurs, the system remains in the corresponding error
subspace for a duration determined by the detection time
of the model, after which the error is corrected. By con-
trast, when the model falsely detects that an error has
occurred due to measurement noise, it improperly applies
a bit-flip to the system and thus pushes it out of the code
subspace. After more measurements are recorded, the
model determines that the system is in an error subspace
and fixes its mistake by applying another bit-flip.

As explained in Sec. VA, a shorter detection is favor-
able and will lead to better error corrections, whereas
here we can expect more frequent false alarms arises for

models with a shorter detection time as a trade off, since
the model is prone to make a correction. This is demon-
strated in Fig. 6, where we can see that the best two
models, the Bayesian and the RNN-based, both have a
shorter detection time and more frequent false alarms at
the same time. Nevertheless, for both of these two mod-
els, the overall frequency of all false positive detection
remains low and is on the order of 0.1 µs−1.
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FIG. 5. Response of the system basis state and model to
a true bit-flip error and a false alarm as a function of time.
At 1.0 µs an X3 error is applied to the system, and after a
small delay the error is detected and corrected. At 3.0 µs
the model falsely detects and then “corrects” for an X1 error,
which results in the system being temporarily pushed into an
error subspace before the mistake is recognized and corrected.
There are visible small constant offsets between the prediction
and the system state at the false alarm due to the streak time
period imposed in the correction protocol.

D. Quantum Annealing with Time-dependent
Hamiltonians

Having demonstrated a clear advantage using the
RNN-based protocol for tasks in the quantum memory
setting over the double threshold protocol, we now study
the performance of our protocol for quantum annealing,
using a time-dependent Hamiltonian that does not non-
commute with the bit-flip errors. We note that the pro-
tocol is also applicable to evolution under quantum gate
operations.

In quantum annealing, it is imperative to perform er-
ror diagnosis and correction in a manner that is both
fast and accurate, in order to avoid accruing these logi-
cal errors while single bit-flip errors are being diagnosed
and corrected. This is because the action of an error
Xq effectively transforms the Hamiltonian from H(t) to
XqH(t)Xq in the Heisenberg picture. Until the error is
properly diagnosed and corrected, subsequent coherent
evolution of the logical state in the code subspace is due
to the modified Hamiltonian XqH(t)Xq. If the origi-
nal Hamiltonian does not commute with the error, i.e.
XqH(t)Xq 6= H(t), then such evolution will be spurious
rather than as originally intended, causing logical errors
to accrue.

For this simulated experiment (see App. C), the an-
nealing Hamiltonian with a strength Ω0 evolving ρ0 =
|ψ0〉 〈ψ0| , |ψ0〉 = (|0〉L + |1〉L)/

√
2 is chosen to be

H(t) = −Ω0

[
a(t)X1X2X3 + b(t)

Z1 + Z2 + Z3

3

]
, (17)
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FIG. 6. The distribution of detection time (with the left y-
axis) and the distribution of false alarms of bit-flips (with the
right y-axis) when the state is originally in |111〉, over 100, 000
quantum trajectories with an operation time T = 120 µs and
with a single-qubit bit-flip rate γ = 0.04 µs−1. The three
qubits are initialized to |111〉. The overall frequencies of
all false alarms for the RNN-based, Bayesian, and double
threshold models are 0.155(5), 0.117(2), 0.0022(2) µs−1, re-
spectively.

where a(t) = 1 − t/T and b(t) = t/T . In the code sub-
space, it is equal to

h(t) = −Ω0 [a(t)σx + b(t)σz] , (18)

whereas in any error subspace it is equal to the spurious
Hamiltonian,

hspurious(t) = −Ω0

[
a(t)σx + b(t)

σz
3

]
.

We adopt the reduction factor [21] as the metric for
evaluating the model performance, which is defined as,

R =
1−Fune

1−F
, (19)

whose numerator is the final infidelity of an unencoded
bare qubit initialized to |0〉 under the annealing Hamil-
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FIG. 7. The final infidelity reduction factor as a function of
single-qubit bit-flip rate γ, with an operation time T = 120 µs,
and the strength of the annealing Hamiltonian in Eq. (17)
equal to Ω0 = 0.04Γm where the measurement strength is set
to Γm = 4.7 µs−1. The quantum efficiency is set to η = 0.5.
Each data point is averaged over 10, 000 quantum trajectories.

tonian Eq. (18), and whose denominator is the final infi-
delity of the three-qubit encoded state in the code sub-
space with respect to the target quantum state. As
ȧ(t), ḃ(t) → 0, the target quantum state becomes the
ground state of the target Hamiltonian.

As shown in Fig. 7, at relatively low γ, the Bayesian
model achieves the highest reduction factor in Scheme
A, while both the Bayesian and the RNN-based model
outperform the double threshold. However at sufficiently
high error rates γ, the encoded qubits under active cor-
rection using any of the three models show no improve-
ment over a single unencoded qubit, as expected.

VI. DISCUSSION

We have proposed an RNN-based CQEC algorithm
that is able to outperform the popular double threshold
algorithm across all tasks for each of the four simulation
schemes tested in Sec. V. This result holds regardless of
whether the algorithms are protecting a system from bit-
flip errors or from amplitude damping, and applies in the
case of both quantum memory and quantum annealing.
The relative performance of the three models does not
depend significantly on the underlying error rate or the
duration of the experiment, unless either of these values
is exceptionally large.

The mathematical simplicity of Eq. (1) is a product
of many idealized assumptions, so we can expect that
measurements taken from real quantum devices will not
necessarily be as easy to describe. Our analysis of super-
conducting qubit measurements in Sec. III reveals sev-

eral examples of non-ideal behavior in both the syndrome
and noise distributions, and we expect similar findings in
the outputs of other devices. While some signal imper-
fections can be accounted for in traditional CQEC al-
gorithms, such as the incorporation of auto-correlations
into the Bayesian classifier, most of them will not be
easy to precisely characterize. It is in these situations
that neural networks can best demonstrate their advan-
tage, since they do not require any a priori description of
the patterns within the measurement signals, but instead
learn them directly from the training data. An interest-
ing direction for further study is the extension of the
RNN-based CQEC algorithm to correlated and leakage
errors.

A CQEC algorithm should be practical to run on a
sub-microsecond timescale, typically using an FPGA or
other programmable, low-latency device. The Bayesian
model requires division to normalize the posteriors, which
is a very costly operation on FPGAs. This makes it chal-
lenging to efficiently implement the Bayesian model, al-
though a more practical log-Bayesian approach has re-
cently been developed [43]. The RNN-based model, by
contrast, does not require division and avoids this prob-
lem. There are many precedents for running RNNs on
FPGAs (see e.g. [44]). Since the RNN architecture used
in our paper is small in size (more simplifications are
discussed in App. D), its computational latency is sub-
microsecond. Nevertheless, more work will be needed in
order to determine how best to interface the RNN with
the quantum computer in a feedback loop. For super-
vised learning, there is the need for generating a suffi-
cient amount of training data that incorporates the error
information and the signal features. Further work could
focus on determining the minimum amount and type of
data that the RNN needs to train effectively, and under-
stand how these needs change as the number of physical
qubits in the error code increases.

Given low-latency implementations of the Bayesian
and RNN-based models, an obvious next step for fu-
ture work would be a direct comparison between these
CQEC protocols and existing discrete QEC protocols on
quantum hardware. Ristè et al. [45] have already demon-
strated discrete QEC for a three-qubit bit-flip code on
transmons, and recent work by Livingston et al. [22] has
implemented a triple threshold CQEC protocol on similar
hardware. By running experiments on a given physical
device, a full comparison between discrete and continuous
CQEC can be made under realistic conditions. Due to
the lack of both entangling gates and ancillas, we are op-
timistic that CQEC could significantly improve the speed
and fidelity of many QEC codes.
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APPENDICES

Appendix A: Source Code

The code developed for all models and simulated ex-
periments can be found here. Use of the code for any
publication should reference this paper. The data that
support the findings of this study are available upon re-
quest.

Appendix B: Homodyne Measurements

The interaction Hamiltonian for the transmission line
and the cavity field is given by

H = i

√
γ

∆t
(ba† − b†a), (B1)

where γ is the coupling strength and ∆t is some coarse-
grained time-scale in the collision model (see Eq. (14, 16,
17) in [47]), b and a are the lowering operators of the
cavity field and the transmission line, respectively.

The original Hamiltonian in Eq. (B1) then generates a
unitary which we keep up to order ∆t:

U = e−iH∆t ≈ 1 +
√
γ∆t(ba† − b†a)− γ

2
(ba† − b†a)2∆t.

The homodyne measurement readouts the quadrature
basis of the probe, in-phase I, quadrature Q, or some
linear combination thereof, and can be implemented by
a variety of devices. In our physical experiments, we
use JPAs. For our analysis, we will measure in the I
quadrature, in which we construct the quadrature oper-
ator R = a + a†. Measuring in this basis, the output
is a continuous variable r with associated Kraus opera-
tors [48]

Ωr = 〈r|U |0〉

= 〈r|0〉+ 〈r|1〉
√
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2
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〈r|0〉 b†b+ 〈r|2〉

√
2b2
)
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[
1 + r

√
γ∆tb− γ
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FIG. 8. The learning curves of LSTMs with hidden sizes of 16 and 32, and of GRUs with hidden sizes of 16 and 32, on the
state tracking task in quantum memory as described in Sec. VA. The accuracy is defined to be the fidelity with respect to the
initial state averaged across all time steps, and the loss is computed by Eq. (16).

Table I. The testing performance of LSTM (left) and GRU (right) with different hidden sizes and the corresponding number
of trainable parameters. The testing performance is measured by the final excited states population Pexc. The hidden size
determines the largest matrix-vector multiplication operation performed when computing the model.

Hidden size 8 16 32 64
Parameter count 1064 3256 13448 51464
Final Pexc (±0.002) 0.851 0.880 0.884 0.882

Hidden size 8 16 32 64
Parameter count 816 2776 10152 38728
Final Pexc (±0.002) 0.816 0.880 0.879 0.881

where 〈r|0〉 = (2π)−1/4 exp(−r2/4) =
√
P0(r) is the

probes’s ground state in the position basis and P0(r) is
the probability of measuring r when the probe is in the
ground state. In the last line, we have used the Hermite
polynomials to express the harmonic oscillator’s first and
second excited states in terms of its ground state.

We determine the probability of measuring a particular
outcome r as

pr = 〈Ω†rΩr〉ρ
= P0(r)

[
1 + r

√
γ∆t 〈b+ b†〉ρ + γ∆t(r2 − 1) 〈b†b〉ρ

]
,

where the average is taken over the states ρ of the cavity
field coupled to the transmons [49].

If we approximate r as a Gaussian variable, we then
want to determine the mean and variance of this:

〈r〉ρ =

∫ ∞
−∞

rprdr =
√
γ∆t 〈b+ b†〉ρ ,

〈r2〉ρ =

∫ ∞
−∞

r2prdr = 1.

Let ∆W be drawn from a Gaussian distribution with
variance ∆t. The statistics of the measurement record of
r can be reproduced by

r
√

∆t =
√
γ 〈b+ b†〉ρ ∆t+ ∆W. (B2)

The voltage operator to be measured will be of the form

V̂ ∝ a+ a†√
∆t

,

resulting in a classical voltage

V = A
r√
∆t

,

where A is a constant scaling factor in units of V · s1/2

characterising the physical noise power in a certain band-
width. Using Eq. (B2), the measured voltage V , which
is written in terms of

V∆t = A
(√

γ 〈b+ b†〉ρ ∆t+ ∆W
)
, (B3)

has variance that scales as ∆t−1. The state of the trans-
mons can be inferred from the homodyne measurement
voltage in Eq. (B3) [49].

To implement a single parity measurement on two
qubits, we dispersively couple two qubits to the same
readout resonator. We tune the qubits to have the same
dispersive coupling to the resonator so that the states |01〉
and |10〉 are indistinguishable on the I-Q plane. By mak-
ing the dispersive shift χ much larger than the linewidth
κ of the resonator, we can make the reflected phase of
|00〉 (close to π) and |11〉 (close to −π) overlap with one
another, making them indistinguishable as well. The re-
flected phase response is shown in Fig. 9. Altogether
we implement a full parity measurement of odd excita-
tions vs. even excitations by measuring the I quadrature.
In our experiment, we implement two of these full par-
ity measurements – one between qubits 1 and 2 and the
other between qubits 2 and 3 [22].
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FIG. 9. The reflected phase response of different two-qubit
states. χ0/2π ≈ χ1/2π ≈ −2 MHz, where χ0 and χ1 corre-
spond to the two resonators for the two parity measurements.
We set the probing frequency to be at the center of the odd-
parity resonance. Figure adapted from Fig. 1 in Ref. [22].

Appendix C: Quantum Annealing Simulations

We adopt the jump/no-jump method for bit-flip er-
rors. In this method, gradual decoherence due to the
third term in Eq. (3) is described as the average effect
of bit-flip errors Xq occurring at random times. At a
finite time interval [t, t + ∆t], a bit-flip error Xq occurs
with probability γq∆t. If this error occurs, the quantum
state jumps from ρt to ρt+∆t = XqρtXq. Otherwise, the
quantum state continuously evolves without environmen-
tal decoherence. On averaging over many instances of the
bit-flip errors, the jump/no-jump approach reduces to the
open quantum system model, where errors continuously
change the mixed system state ρ(t).

In simulating the coherent evolution, we use the first-
order Magnus expansion [50] of the annealing Hamil-
tonian H(t) in Eq. (17) at every finite time interval
[t, t + ∆t], Ũt = exp [−iH(t′)∆t] where t′ = t + ∆t/2,
such that the quantum state evolves as ρt+∆t = ŨtρtŨ

†
t .

We average over 10, 000 quantum trajectories obtained
through the above-mentioned steps to simulate the en-
semble density states ρt.

Appendix D: RNN Hidden State Size v.s.
Performance

It is desirable to limit the size of the RNN to achieve
sufficiently low computational latency in real-time ex-
periments. We present the performance in state track-
ing in quantum memory as described in Sec. VA for the
LSTM and GRU architectures with different hidden sizes
in Tab. I. In examining the performance, we see that al-

though we used LSTM with a hidden size 32 in our sim-
ulated experiments, it is possible to shrink the size of
the network to 16 without harming the performance. We
note that a smaller hidden size means smaller matrix-
vector multiplications in computing the model, which
then requires fewer memory resources in practice. The
possible simplification is also suggested by the fact that
the learning curves with a hidden size of 16 is very sim-
ilar to that with a hidden size of 32, as shown in Fig. 8.
Additionally, it is viable to use the GRU architecture to
achieve the same performance. These results suggest that
the RNN-based model may have a simpler structure and
an even faster computation speed in real-time implemen-
tation on programmables like FPGAs.

We note that the size of the RNN can be further re-
duced, if assuming a fixed initial state so that the in-
put to the RNN shown in Eq. (15) can be replaced by
x = [I1,t, I2,t]

T .

Appendix E: Resonator Transients

The resonator transients are manifested from the vary-
ing SNR before the qubit-state-dependent coherent states
|αζη(t)〉 of the microwave field in the cavity reach their
steady states when the resonator linewidth κ is small,
where ζ, η ∈ {e, g} and e/g denotes the excited/ground
state. The complex field amplitude 〈â〉ζη = αζη given
that the qubits are in state ζη satisfies [10, 49, 51]

α̇ee(t) = −iε− i(δr + 2χ)αee(t)− κ
2αee(t),

α̇gg(t) = −iε− i(δr − 2χ)αgg(t)− κ
2αgg(t),

α̇eg(t) = −iε− iδrαeg(t)− κ
2αeg(t),

α̇ge(t) = −iε− iδrαge(t)− κ
2αge(t),

(E1)

where ε is the amplitude of the driving tone, χ is the
dispersive shift and δr = ωr − ωd is the detuning of the
measurement drive to the bare cavity frequency.

The steady state (α̇ζη = 0) solutions to the above equa-
tions are {

αee/gg = −2ε
2(δr±2χ)−iκ ,

αeg = αge = −2ε
2δr−iκ

with + for ee and − for gg.
In our parity measurement, we probe at the shared odd

excitation resonance, which is also the same as the bare
cavity frequency, i.e., δr = 0. The cavity resonance when
the qubits are in |11〉 is shifted from the bare cavity res-
onance by 2χ/2π = −4 MHz, while the resonance when
the qubits are in |00〉 is shifted from the bare frequency
by −2χ/2π = 4 MHz (see Fig. 9). This results in an
asymmetry between the paths in phase-space leading up
to the steady states when the qubit pair changes parity.

When the qubits go from an even-parity state to an
odd-parity state, e.g., |00〉 → |10〉, solving α̇eg(t) in
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Eq. (E1) with the initial coherent state at αgg yields the
path αeg(t) specified by

{
αgg(t) = αgg

αeg(t) =
(
αgg + 2iε

κ+2iδr

)
e−iδrt−

κ
2 t − 2iε

κ+2iδr
.

(E2)

When the qubits go from an odd-parity state to an even-
parity state, e.g., |10〉 → |00〉, solving α̇gg(t) in Eq. (E1)
with the initial coherent state at αgg yields the path
αgg(t) specified by

{
αgg(t) =

(
αeg + 2iε

κ+2i(δr−2χ)

)
e−i(δr−2χ)t−κ2 t − 2iε

κ+2i(δr−2χ)

αeg(t) = αeg.

(E3)
These paths are shown in Fig. 10. Strictly speaking, the
two sets of solutions apply when there are no dynamics
apart from the dispersive measurements.

The measurement strength is defined as [49, 52]

Γ(t) =
1

2
κ|αgg(t)− αeg(t)|2,

which scales the separation of the two parity signal means
under constant noise variance (see Eq. (1)). In the odd-
to-even parity transition, the path in phase-space leading
up to the steady states forms a tighter spiral as the ratio
|χ/κ| gets larger. A tighter spiral translates to a more
oscillatory Γ(t), thus leading to a more oscillatory signal
mean [10].

Shown in Fig. 11, the ring-up transient without clear
oscillations is manifested in the measurement strength
corresponding to the even-to-odd parity transition in
Eq. (E2), whereas the ring-down transient with oscilla-
tions is manifested in the measurement strength corre-
sponding to the odd-to-even parity transition in Eq. (E3).
They show good agreement with experimental observa-
tions, such as those in Fig. 1.

Appendix F: Population of States Subject to
Amplitude Damping or Bit-flips

We recall that the population of the excited states Pexc
is the ensemble population of the states that are at most
one bit-flip away from the fully excited state |111〉, i.e.,
Pexc = P (|111〉) +P (|110〉) +P (|101〉) +P (|011〉) = P7 +
P6 + P5 + P3.

Under T1 decay at zero temperature, the transition ma-
trix evolving the states for time T is J ′(T ) = exp(Q′T ),

-2 -1 1

-1

0
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Q

eg in |10 |00
gg in |00 |10
gg in |10 |00
eg in |00 |10

FIG. 10. The pointer state paths leading up to the steady
state in the phase space, with κ/2π = 800 kHz, χ/2π =
−2 MHz, δr = 0 and ε set to 1. When the qubit pair goes from
an even parity to an odd parity, e.g., |00〉 → |10〉, the blue
line is the path of αeg(t) while the blue cross shows the steady
state of αgg, obtained from Eq. (E2). When the qubit pair
goes from an odd parity to an even parity, e.g., |10〉 → |00〉,
the orange spiral curve is the path of αgg while the orange
cross shows the steady state of αeg, obtained from Eq. (E3).

where Q′ is defined as,

Q′ = γ
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. (F1)

The state probabilities under the Markov chain are given
by P (T ) = J ′(T )P (0), which yields

Pexc(T ) =
(
3eγT − 2

)
e−3γT .

Under only bit-flip errors Xq, the transition matrix
evolving the states for time T is J(T ) = exp(QT ), where
Q is defined in Eq. (10). The resultant population of
excited states is

Pexc(T ) = e−3γT cosh2(γT ) [3 sinh(γT ) + cosh(γT )] .

Appendix G: Performance Comparison between the
Double Threshold Method and the Double

Threshold Boxcar Filter

The double threshold boxcar filter in [20] employs a
boxcar averaging of the measurement signals and two
thresholds, one fixed at zero and the other at a variable
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FIG. 11. The measurement rate Γ(t) on a pair of qubits with
a bit-flip transition at t = 0, with κ/2π = 800 kHz, χ/2π =
−2 MHz, δr = 0 and ε set to 1. The upper figure corresponds
to the qubit pair transitioning from an even parity to an odd
parity, obtained from Eq. (E2). The lower figure corresponds
to the the qubit pair transitioning from an odd parity to an
even parity, obtained from Eq. (E3).

position above zero. We compare the performance of this
against the double threshold model (with exponential fil-
ter and two variable thresholds) from [21] that was used
in this work, by running the state tracking task as de-
scribed in Sec. VA on Schemes A and D, as shown in
Fig. 12. The double threshold method outperforms dou-
ble threshold boxcar in both schemes at relatively low
error rates.
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FIG. 12. The final fidelity with respect to the initial state
|000〉 in Schemes A and D with the double threshold expo-
nential filter (DT) in [21], and the double threshold boxcar
filter (DT Boxcar) in [20], as a function of single qubit bit-flip
rate γ at an operation time T = 20 µs with a measurement
strength Γm = 4.7 µs−1. Each data point is averaged over
30, 000 quantum trajectories.
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