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Abstract
Complex biological systems often display a randomness paralleled in processes studied in
fundamental physics. This simple stochasticity emerges owing to the complexity of the system
and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing
stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent
population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a
cell population, but also allows reversible transitions back and forth between multiple states.
This phenotypic interconversion tends to restore a population to a previous composition after
that population has been depleted of specific members. We call this tendency homeostatic
heterogeneity. These concepts of dynamic heterogeneity can be applied to populations
composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic
stochasticity both underlies the generation of heterogeneity within a cell population and can be
used to control population composition, contributing, in particular, to both the ongoing
emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using
notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our
use of Markov processes to model the generation and eradication of drug-resistant cells. Using
these insights, we have developed a graphical tool, called a metronomogram, that we propose
will allow us to optimize dosing frequencies and total course durations for clinical benefit.

S Online supplementary data available from stacks.iop.org/PhysBio/9/065005/mmedia

1. Introduction

In this paper, we will describe the conceptual development of
a tool for utilizing dynamic heterogeneity in cancer therapy.
In section 2, we argue that the large numbers of interactions
between biological components in a population can generate
apparent stochasticity in the copy numbers of molecules in a
single cell. These fluctuations can manifest as interconversion
of individual cells among different phenotypic states, resulting
in homeostatic heterogeneity at the cell-population level. In
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section 3, we provide experimental examples that illustrate
the generation of phenotypic heterogeneity and a tendency
to restore homeostatic heterogeneity. In sections 4 and 5,
we demonstrate how these insights illustrate that dynamic
heterogeneity is both a clinical challenge and an opportunity.
We develop a tool (metronomogram) to identify variables
to consider when optimizing dosing schedules on a patient-
individualized basis. For this analysis, we demonstrate that
it is important to compare the kinetics of the generation
of homeostatic heterogeneity with the kinetics of population
expansion. In an accompanying paper [1], we generalize these
principles and provide examples of how they scale in time,
population number, and spatial extent.

2. Theory

Non-genetic phenotypic variation has now been observed in
a multitude of systems, including in the swimming motion
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of bacteria [2], in the life-cycle of the λ-phage [3], as well
as in mammalian cells, where cell–cell variation in protein
levels equaling 10–60% of mean values has been reported
in clonal populations [4]. What are the origins of such
variety? As reviewed by Raj and van Oudenaarden [5], an
entire area of research has developed in the last two decades
based on the fundamental assumptions (a) that the numbers
of biological molecules, including intracellular mRNA and
protein, fluctuate, (b) that these copy-number fluctuations
result from stochastic noise in the timings of biochemical
reactions, and (c) that these fluctuations manifest as transitions
between different biological phenotypes at the single-cell
level. A large body of literature has established the importance
of these hypotheses in specific biological systems. The purpose
of this section is to describe physical sciences rationales for
this perspective that are often implied, but not always explicitly
developed.

2.1. Fundamental origins of stochasticity

It is commonly said that biological networks and cells are
stochastic, i.e. they seem to play games of chance. This
idea of stochasticity derives from the physicist’s concept that
molecules follow a ‘disorderly heat motion’ in environments
at finite temperature [6–8]. While this concept is correct,
the complete mechanistic basis of this explanation is not
always fully appreciated. We will offer a perspective of
how ‘disorderly’ timings of chemical reactions can arise
in deterministic systems and generate apparent stochasticity
(sections 2.1.1 and 2.1.2). These mechanisms are distinguished
from and layered upon the non-determinism fundamental to
the quantum mechanical description of molecular fragments,
atoms and electrons (section 2.1.3). It is also commonly said
that stochastic fluctuations are significant in systems with
‘small’ numbers (not that small numbers cause stochastic
fluctuations) [6, 9, 2, 10]. In section 2.1.4, we will clarify this
probabilistic relationship by providing an example and then
explaining that dramatic molecular fluctuations can occur even
when the copy numbers of some biomolecular components at
first appear ‘large.’

2.1.1. Aspects of stochasticity can be produced by deterministic
systems with periodic dynamics. We provide a cartoon
example of how the approximate appearance of chance
protein translation can arise, at least temporarily, in a
highly predictable, deterministic system containing periodic
dynamics. Figure 1(a) is a highly deterministic simplification
of a cell. DNA ‘breathes’, periodically moving between
accessible (orange) and closed (blue) states. A copy of RNA
polymerase (green) moves back and forth through the cell.
It crosses the dashed line representing the spatial position of
the gene of interest (green dots). If the gene of interest is
accessible, mRNA is transcribed and then becomes available
for translation a time interval later when it finally arrives in
the cytosol. mRNA also degrades after a precise duration in
the cytosol, so the windows of opportunity for translation are
sharply defined (green rectangles). A lone ribosome (red) also
moves throughout the cell, occasionally passing through the

location (dashed line, red dots) where translation can take
place. If mRNA is available for translation in the cytosol
when the ribosome is nearby (green box and red dot overlap
in time), a protein is translated. Consider the case where
the time periods for the histone ‘breaths’, the movement of
the RNA polymerase, and movement of the ribosome differ.
Initially, the time intervals between consecutive instances
of protein translation can appear random. However, single-
molecule tracking of the DNA, RNA polymerase and ribosome
in this cartoon would quickly reveal that each molecule
undergoes periodic dynamics. Apparent short-time disorder
can arise from incommensurate periodic dynamics.

2.1.2. Deterministic chaos. In a second example we present
a slightly more complicated toy deterministic system familiar
to physicists and engineers (figure 1(b)). Here the timings of
chemical reactions appear stochastic for the same reasons that
timings of collisions between particular billiards on a pool
table can be difficult to predict. Slight differences in initial
conditions can explosively accumulate, allowing very similar
initial conditions to quickly generate a variety of qualitatively
distinct outcomes [11, 12]. For example, a ribosome (red)
collides with a protein (blue), which then collides with another
protein before deflecting a segment of mRNA toward the right.
The ribosome and mRNA then interact, leading to protein
translation. In figure 1(c), we have displaced the initial position
of the ribosome slightly to the right. Its initial trajectory is
nearly unchanged; it still manages to collide with the same
protein at roughly the same place, which deflects it toward the
right at roughly the same angle. However, the error in the initial
conditions visibly accumulates elsewhere as the two blue
proteins graze each other, allowing both molecules to move
out of the way of the approaching mRNA, which thus fails to
encounter the ribosome. Imagine submerging this reaction in
a bath of water molecules. Initially, the cells in figures 1(b)
and (c) are nearly identical, but soon one cell has produced a
copy of a protein, while the other has not. The time until the
next productive chemical reaction is difficult to predict; it can
vary, and, in this way, appear stochastic.

When the components within a cell collide and re-shuffle
themselves, that cell can ‘forget’ how long it has already
persisted in a state with molecules present at their current
levels. If a cell cannot remember how long it has resided in a
particular state, probability rates for chemical reactions must
be the same whether the cell has waited in that state a short or
a long time (i.e. memory-free chance). Modeling memory-free
chance is particularly simple since only the immediate state of
the system needs to be accounted for; the system’s history can
be neglected. A familiar example of ‘memory-free’ chance
is seen in the probabilities for drawing specific cards: they
do not depend on how many times a deck has already been
shuffled.

It is important to understand that features of stochasticity
can arise in deterministic biological systems by virtue of the
large numbers of interactions between parts [13]. Physical
scientists often describe noise and randomness as ‘intrinsic’
to biochemical reactions [9, 14–17]. It is important to
avoid misunderstanding these descriptions as claims that the
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Figure 1. Fundamental origins of stochasticity and the contribution of ‘small’ numbers to the magnitude of noise. (a) A system of
components oscillating individually and deterministically between conditions periodically can sample a variety of waiting times between
events. (b) and (c) Small changes in the initial position of the ribosome explosively accumulate in its ensuing trajectory as molecular
constituents within a cell ricochet off each other, quickly leading to qualitatively distinct outcomes, i.e. protein production in (b) and the
absence of protein production in (c). (d)–( f ) The effect of small numbers. The proportion of outcomes that deviate from average behavior
decreases as the number of independently fluctuating parts increases. (g)–( j) Central limit theorem and ‘

√
N’ rule.

appearance of noise can arise in biological systems only
because the constituent molecules are found at the microscopic
scale. Instead, ‘intrinsic’ noise should be understood as noise
arising from interacting collections of biological components
even in the absence of experimental error.

2.1.3. Quantum mechanical non-determinism. The basis for
memory-free chance in biological systems we have described,
until now, is different from the way that randomness and
lack of memory appear at the quantum mechanical level.
Quantum mechanics is necessary for accurate calculation of
the dynamics of light particles (i.e. atoms, protons, electrons)
[18]. In contrast to classical Newtonian mechanics, quantum
mechanics does not predict for each point in time a unique
outcome for each possible measurement. Instead, the state of
the system is fundamentally expressed as a distribution of
probability amplitudes for obtaining a variety of different
outcomes [19]. For example, such non-determinism can
characterize the spin-state (‘up’ versus ‘down’) of an electron

or the position of the nitrogen atom in an ammonia molecule.
As has been noted in stochastic systems modeling, ‘Quantum
indeterminacy unavoidably enters; e.g., in a unimolecular
reaction we can never know exactly when a molecule
will transform itself into a different isomeric form’ [20].
The timings of chemical reactions are non-deterministic.
Furthermore, the probability per unit time for a system to
make a transition between quantum states, in many cases, is
constant. When calculating the lifetime of an excited atomic
state using ‘Fermi’s golden rule’, one determines that the
‘probability of (an) atom decaying’ by emitting a photon in
a ‘time interval dt does not increase the longer the atom
survives’ [19]. The memory-free aspect of chance in these
cases is sometimes rationalized by saying that fundamental
particles lack the detailed internal structure to keep track of
‘age’. They do not contain the gears and springs necessary
to function as clocks. In contrast, biological systems may
generate memory-free chance because they are filled with
colliding and re-shuffling components. Memory-free chance

3



Phys. Biol. 9 (2012) 065005 D Liao et al

can arise, not only as simple randomness from simple particles,
but also as simple randomness from complicated interacting
systems. Stochasticity arises in biology in both of these
ways. Complicated re-shuffling of biological components
generates apparent randomness in the times at which molecules
encounter each other, and, once molecules are arranged to
allow for reactions, quantum indeterminacy characterizes the
time intervals that elapse before chemical reactions finally
occur, if they occur at all.

2.1.4. Importance of low copy numbers. While multitudes
of interacting parts might generate noise in the first place, low
copy numbers of some components can allow the magnitude
of noise to be significant, leading a system to be noisy. To
develop our argument, it would be helpful to describe how the
presence of some molecular species in small numbers could
influence the magnitude of fluctuations within a population.

If a population consists of members individually
displaying random fluctuations, the magnitude of random
fluctuations of the population overall, relative to average
values, increases as the number of independently fluctuating
members decreases. Figure 1(d) shows the two outcomes
possible when tossing a fair coin. Half of the tosses will land
on heads, and half not on heads (on tails). Figure 1(e) shows
the four outcomes that can result from tossing a fair coin twice
in succession. Both tosses land on heads in a quarter of the
outcomes. Both tosses land not on heads in another quarter
of the outcomes. One toss lands on heads and another not on
heads in half of the outcomes because this mixture can result
either with the first toss not on heads followed by heads or vice
versa. Figure 1( f ) shows the possible outcomes of tossing a
fair coin three times in succession. In this case, we expect,
on average, to obtain 1.5 heads. Examples of outcomes within
33% of this result (1 or 2 heads) are highlighted with orange
(lighter shading), while examples further away from average
(0 or 3 heads) have blue backgrounds (darker shading). Three-
quarters of the outcomes are ‘near average’, in this sense. When
tossing a coin only twice, only half of all possible outcomes are
near average, and when tossing a coin once, neither outcome
is near average. Whether tossing a coin once or many times,
it is always possible to obtain an instance where the deviation
between the actual number of heads realized and the number
of heads expected is comparable in magnitude to the expected
value itself. However, far-from-average fluctuations become
relatively more likely as the number of coin tosses decreases
[21, 22].

Another way to develop this intuition is to stack the
configurations from figures 1(d)–( f ) into the histograms in
figures 1(g)–(i). An additional histogram for N = 25 tosses
is shown on the same horizontal scale (figure 1( j)). As
the number of tosses, N, increases, the histograms become
increasingly similar to Gaussian distributions. The averages
(red circles) and standard deviations (double-headed arrows)
of these mound-shaped distributions increase with different
power-law scalings with the number of tosses, N. Whereas
the average increases linearly in N, the standard deviation
increases only as

√
N [23], so the ratio of the standard deviation

to the mean, or coefficient of variation (CV), decreases as

1/
√

N. According to the central limit theorem, the approach
toward Gaussian distributions and the power-law scalings for
the standard deviation, the average, and the CV that we have
just described appear when the random variable of interest is
a sum of independently fluctuating ‘samples’, with no small
number of these samples dominating either the fluctuations
or the average of the sum. As the number of tosses, or more
generally, fluctuating components, N, increases, the relative
width of the probability distribution, and the probability of
landing in the blue ‘tails’, decreases. Stochastic fluctuations
that result in far-from-average behavior are expected to be
more prevalent in biological systems where some components
are present in small numbers.

Physicists often say that stochastic fluctuations are
significant in systems with small numbers of parts, i.e. cells
with low copy numbers of molecules [6, 9, 2, 16, 15, 10, 24].
These statements are not necessarily claims that random
chance is a result of small numbers. Instead, these statements
mean that small numbers can contribute to the magnitude of
noise in a system already containing noisy components. In
this sense, Spudich and Koshland noted that ‘there may well
be certain molecules which are present in such low amounts
that they are subject to Poissonian variation.. .. for example,
there are only 10–20 molecules of lac repressor per [E. coli
bacterium]’ [2]. According to the 1/

√
N-rule, this corresponds

to a CV ∼ 20%–30%. It is also important to remember that
high copy numbers do not guarantee freedom from noise.
Spudich and Koshland explained that for some molecules
present in high numbers, ‘their ultimate number may have
been determined by a small number of generating molecules
(for example, there are only 6–14 trp mRNA molecules
per bacterial cell, and each mRNA molecule is translated
an average of 20 times)’. In a cascade of reactions leading
from species A to B and then to C, a slow reaction from
A to B can maintain a low level of B with a relatively
broad distribution, which is inherited by the distribution of
C. Rapidly producing large numbers of copies of C from B
can faithfully propagate, rather than suppress, noise already
present in the levels of B. Examples of this principle include
translational bursts in the expression of the cI gene in
λ-phage [25], transcriptional bursts in mammalian cells [26],
and protein number noise in yeast, where proteins are found at
levels of ‘50 to one million copies per cell’, but where 75% of
‘genes have steady-state transcript levels of one or fewer copies
per cell’ [27]. Additionally, even small amounts of stochastic
noise can trigger dramatic fluctuations in the intracellular
molecular atmosphere. In excitable systems, small stochastic
excursions from a deterministic stable state can initiate
exploration of comparatively large loops in molecular state
space. Excitability has been used to describe fluctuations in
the pluripotency protein Nanog [28], the competence switch
in B. subtilis [29], and circadian clocks [30].

In this section, we explained (i) how the multitude
of dynamically interacting parts of intracellular molecular
networks could generate stochasticity and (ii) how the presence
of some molecular species in small numbers could contribute
to the magnitude of fluctuations. Owing in part to subtle ways
that ‘low’ copy numbers can be present in a system, the
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magnitude of fluctuations in the levels of chemical species can
be large even for species present in copy numbers much greater
than unity. Taken together, these features underlie a physical
expectation that biological systems display noise at the single-
cell level, and that noise can be comparable in magnitude to
average values. Thus, biological systems can generate noise
and be noisy.

2.2. Phenotypic interconversion

As mentioned above, fluctuations can occur in units at
many levels (molecules, cells, people). The consequences of
these fluctuations can result in the generation of variation
in observable traits called phenotypes. Phenotypes can be
expressed on molecular, morphological, behavioral, or social
levels. For example, the expression of the molecule melanin
in abundant levels in an individual creates a phenotype of dark
skin. Building on our previous examples, we will describe
how phenotypes can acquire variability through stochastic
fluctuations. This dynamic process is ongoing.

Owing to stochasticity in the timing of synthesis and
degradation, a cell can momentarily accumulate a surplus, or
experience a trough, in mRNA or protein copy number which
generates fluctuating protein levels (figure 2(a)). The blue
(darker) and orange (lighter) subpopulations in the distribution
in figure 2(b) refer to cells with relatively high and low
protein levels, respectively. Differences in protein levels can
correspond to differences in drug-sensitivity. In support of
this association, we note that relatively high protein levels
have been suggested [31, 4, 2] and demonstrated [32, 33]
to correspond to drug-resistance. The relationship between a
cell’s resistance to the drug methotrexate (MTX) and the level
of the enzyme dihydrofolate reductase (DHFR) in the cell
is a specific example. MTX binds to DHFR, preventing the
enzyme from participating in essential steps in DNA synthesis.
However, cells can proliferate in the presence of MTX if
they contain enough copies of the enzyme so that a sufficient
number of DHFR proteins continues to contribute to DNA
synthesis even after some copies of the enzyme are bound by
drug. A higher concentration of MTX requires a higher level
of DHFR for cell survival. There is no single threshold level of
DHFR that universally separates relative drug-resistance from
drug-sensitivity. The vertical line separating the orange and
blue portions of the distribution in figure 2(b) moves to the
right when the concentration of MTX is increased and moves
to the left when the concentration of MTX is decreased. The
timescale characterizing interconversion between relatively
drug-sensitive and drug-resistant states depends on the position
of this interface. Survival in high concentrations of MTX is
made possible by large increases in DHFR protein levels owing
to gene amplification, which can reverse on timescales of
months or years. Lower concentrations of MTX may, instead,
position the interface between DHFR protein levels connected
by comparatively rapid proteomic fluctuations. As the level of
DHFR fluctuates and momentarily increases, a cell can convert
from a relatively drug-sensitive state to a relatively drug-
resistant state. Thus, dynamic stochastic fluctuations in protein
levels can correspond to stochastic transitions from phenotypes

of drug-sensitivity to drug-resistance. Note that these insights
also predict that drug-resistant cells can rapidly become drug-
sensitive cells. In this view, drug-resistance may be modulated
in a continuous fashion by the level of a protein, for example
with increasing drug-resistance corresponding to increasing
protein level. Drug-resistance can also be simultaneously
modulated by the levels of multiple proteins [34]. To simplify
our description, we ‘coarse-grain’ the model illustrated in
figure 2(c) by considering the case in which drug-sensitivity
depends on one protein, and in which the protein explores
two possible levels, as opposed to the continuum of levels in
figure 2(a). The relatively high-protein (blue) and low-protein
(orange) conditions thus identify relatively drug-resistant and
drug-sensitive states.

Drug-resistance is just one of many examples of pheno-
typic interconversion found throughout biology. Phenotypic
interconversion, often called phenotypic switching, is an
active area in stem cell and developmental biology. For ex-
ample, in an experimental study of the murine hematopoietic
system, Chang et al reported that ‘EML’ progenitor cells jump
back and forth between alternative molecular states: one state
more rapidly differentiates into erythroid cells while the other
state more rapidly differentiates toward the myeloid lineage
[35]. In a computational and experimental study by Kalmar
et al fluctuations in the level of the core pluripotency circuit
protein Nanog are associated with transient opportunities for
individual cells to differentiate [28, 36]. Phenotypic switch-
ing may also underlie chronic parasitic infection. The try-
panosome, which is the causative agent of sleeping sickness in
Africa, can change its coating of variant surface glycoproteins
in a process called antigenic variation, which allows it to evade
immune clearance [37, 38]. Additional studies of phenotypic
switches in bacteria, yeast, and mammalian systems have been
recently reviewed [5, 39, 40].

2.3. Stochastic phenotypic interconversion at the individual
level generates dynamic heterogeneity at the population level

Over time, stochasticity can create different phenotypes within
an individual unit. This is manifested in populations as
heterogeneity. We now show how this ‘dynamic heterogeneity’
arises using a mathematical description of interconversion
between phenotypes at the individual-cell level. As we will
show, this is a novel (emergent) phenotype belonging to the
whole population, which cannot be specifically ascribed to any
of its individual units.

2.3.1. Markov model. In this subsection we describe
a Markov model, and in the next subsection we use it
to explain dynamic heterogeneity. Markov processes are
transitions between states described by memory-free chance.
Such ‘states’ can refer to atomic energy states, ecological
habitats, or populations of predators and prey. Here, we use
a Markov model to describe the generation and eradication
of heterogeneity (for example: drug-sensitive and -resistant
cells). This kind of model is traditionally presented using
a flow schematic as in figure 2(c) and the corresponding
set of differential equations in (1) and (2). During time
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(a)

(b)
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Figure 2. Stochastic fluctuations in mRNA and protein level manifest as phenotypic interconversion at the single-cell level, which generates
heterogeneity and a tendency to restore homeostatic heterogeneity at the population level. (a) and (b) Local interconversion exploring a
graded phenotypic distribution. (c) Rate coefficients for a minimal Markov model with simplified drug-sensitive and drug-resistant
compartments. Drug-sensitive cells replicate with rate coefficient rS, are cleared with rate coefficient mS, and convert to the drug-resistant
phenotypic state with rate coefficient cS. Analogous rate coefficients describe the dynamics of the drug-resistant cells. (d) Microscopic
description of the minimal model in (c) and equations (1) and (2): individual cells adopt future phenotypes according to the outcomes of
spins of wheels of fortune. The configurations of the roulettes depend on the cells’ immediate phenotypes, rather than their historical states.
(e) Gradual approach toward steady-state mixture of drug-sensitive and drug-resistant cells from an initial population of 20 drug-sensitive
cells (rS = rR = mS = mR = 0 and cS = cR = 1). ( f ) Gradual approach toward steady-state heterogeneous population composition from an
initial population of 15 drug-resistant cells. (g) Approach toward both steady-state population composition and limiting net expansion rate
starting from a purely drug-resistant population (rS − mS = 1, rR = mR = 0, and cS = cR = 1).

intervals when drug is not applied, a cell from the drug-
sensitive population, S, replicates with rate coefficient rS, dies
(mortality) with rate coefficient mS, and converts to the drug-
resistant state with rate coefficient cS. A cell from the drug-
resistant population has analogous rate coefficients rR, mR, and
cR, leading to the dynamics for the drug-sensitive population,
S, and the drug-resistant population, R

dS

dt
= cRR + (rS − mS − cS) S (1)

dR

dt
= (rR − mR − cR) R + cSS. (2)

To more clearly illustrate how (1) and (2) represent a
memory-free process, we provide the equivalent schematic in
figure 2(d). At time t, a population of drug-sensitive cells,
here S = 10, stands ready to take turns, each launching
a ball onto a roulette. The ball might eventually fall into
slots corresponding to replication, mortality, phenotypic
conversion, or maintenance of the status quo. The outcomes
of the spins of this wheel of fortune are adopted as the fates of
the cells at time t + �t. The proportion of slots, and thus
probability, corresponding to replication is rS�t, the proportion

of slots corresponding to death is mS�t, the proportion
corresponding to phenotypic conversion to the drug-resistant
state is cS�t, and the proportion corresponding to maintaining
the status quo is, by necessity, the remaining probability
1 − (rS + mS + cS)�t. The initial population of drug-resistant
cells (R = 10 shown) at time t adopts fates specified using
a similar roulette. The sizes of the sectors corresponding to
replication, mortality, conversion, and maintaining status quo
in the two roulettes can differ because the drug-resistant cells
have their own rate coefficients rR, mR, and cR. The cells present
at time t + �t adopt subsequent states by reusing the roulettes
already illustrated.

The reuse of the same roulettes regardless of the history
of the cells’ previous states is the expression of the concept
of memory-free chance described previously. This is the
graphical representation of the use of constant coefficients in
(1) and (2). When modelers use constant rate coefficients,
they are not necessarily neglecting long-term changes in
biology that alter the kinetics of stochastic fluctuations of
molecules inside cells. Instead, they are supposing that a
cell can perform many phenotypic state transitions before the
rate coefficients need to be appreciably changed. The idea of
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constant coefficients and memory-free chance are implicitly
meant to be temporary.

2.3.2. Generation of homeostatic heterogeneity at the
population level. Now that we have explained the model,
we use it to understand how phenotypic interconversion
at the individual cell level can generate a tendency to
restore phenotypic heterogeneity at the population level (i.e.
homeostatic heterogeneity). In the mathematical field of
stochastic matrices, it is known that models with the structure
of (1) and (2) have the property that they tend to re-establish
heterogeneous steady-state population distributions [41]; they
tend to restore demographic homeostasis. While this idea is
often understood using eigenvector–eigenvalue analysis, we
can also conceptualize this process using the microscopic
picture offered by figure 2(d).

For clarity, we temporarily set the probabilities for
proliferation and death to zero. Suppose we start with a
pure population of drug-sensitive cells (S > 0, R = 0, as
indicated in figure 2(e)). Upon spinning the roulette, some
of the population will remain drug-sensitive, but if cS > 0,
other members of the drug-sensitive population will convert
to the drug-resistant state. These cells that have newly joined
the drug-resistant population can now land on the slots on the
roulette corresponding to phenotypic conversion back to the
drug-sensitive state. Initially these events of back-conversion
are rare owing to the initial scarcity of drug-resistant cells.
However, the drug-resistant population accumulates more
immigrants from the drug-sensitive population. This increases
the number of drug-resistant cells that are available to undergo
phenotypic conversion. At the same time, the drainage of
the drug-sensitive population reduces the number of drug-
sensitive cells that are available for phenotypic conversion
in the opposite direction. The number of drug-resistant cells
converting to drug-sensitive cells per unit time gradually
increases while the number of drug-sensitive cells converting
to drug-resistant cells per unit time gradually decreases, and
the two rates approach equality. In the limit of long times, the
flow of drug-resistant cells to the drug-sensitive population
and the flow of cells in the reverse direction cancel. As a
consequence, there is no additional net accumulation of drug-
resistant cells. This limiting situation is an example of detailed
balance, i.e. equilibrium that occurs when opposing flows
cancel [42]. Coming from the other direction (figure 2( f )),
a pure drug-resistant population repopulates a heterogeneous
mixture in the same qualitative way. Thus, (1) and (2) gradually
regenerate a steady-state mixture of drug-sensitive and drug-
resistant cells in populations that have been depleted of drug-
sensitive cells, or alternatively, depleted of drug-resistant cells.

The same intuition applies when considering proliferation
and death, which we initially neglected. The example in
figure 2(g) is modified from the previous two illustrations
by assigning drug-sensitive cells a finite rate of expansion
(proliferation less death = rS − mS = 1). As previously
described in figure 2( f ), a population initially composed
entirely of drug-resistant cells relaxes toward a heterogeneous
mixture of drug-sensitive and drug-resistant cells. In this
example, however, the plot of the drug-sensitive population

then crosses and surpasses the plot of the drug-resistant
population because the drug-sensitive population is expanding
while the drug-resistant cells have a net replication rate of
zero. The drug-resistant population eventually increases by
accumulating cells that have converted from the expanding
drug-sensitive subpopulation. When a steady state ratio of
drug-sensitive to drug-resistant cells is achieved, the number
of drug-sensitive cells converting to drug-resistant cells
is larger than the number of conversions in the opposite
direction in the same time period. Some of the proliferation
of the drug-sensitive population is ‘borrowed’ to become
‘effective’ proliferation for the drug-resistant population. The
two subpopulations then expand at the same rate.

We have just described how a population purified so as
to have a ‘lopsided’ distribution (i.e. over-representation of
cells with a low protein level or, alternatively, a high protein
level) tends to restore its original distribution over time. Not
only does interconversion generate phenotypic variation from
a single phenotype, interconversion can also underlie this
restoration of ‘homeostatic’ heterogeneity.

3. Experimental examples

In this section we present experimental examples of the
generation of phenotypic heterogeneity and the tendency to
restore the homeostatic heterogeneity we have described in
the previous section.

3.1. Generation of phenotypic heterogeneity

We provide an example of the generation of phenotypic
heterogeneity from a phenotypically homogenized population
using flow cytometry. In figure 3, we monitored the levels
of DHFR in MDA-MB-231 cells using a fluoresceinated
MTX assay described previously [43]. The parental population
in figure 3(a) was sorted for a subpopulation representing
the middle 6.3% of the parent distribution (vertical dashed
lines). Figure 3(b) shows the population immediately
following enrichment, with a much narrower full-width-at-
half-maximum (FWHM) value. The distributions at 30, 51,
77, and 95 h following the sort in figures 3(c)–( f ) display
broader FWHMs, as quantitated in (g). A population initially
purified for a specific range of levels of DHFR explores a
variety of DHFR levels over time. The purified population in
figure 3(b) explores phenotypes to the left and to the right.
Phenotypic conversion occurs in both directions.

3.2. Generation of homeostatic heterogeneity

In a second example, we illustrate the tendency to restore
homeostatic heterogeneity. A population purified in a
lopsided fashion will restore, not only the breadth, but
also the average position of the parent distribution. The
same parental population in figure 3(h) was sorted for a
subpopulation representing the 5.3% most intensely stained
portion of the parent distribution. The distribution immediately
following enrichment has a narrower FWHM and an average
fluorescence twice the original value (figure 3(i)). Over
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Figure 3. Experimental examples of the generation of heterogeneity from a purified phenotype and the restoration of homeostatic
heterogeneity. Levels of DHFR were measured in single cells from a mammary carcinoma cell line (MDA-MB-231) using flow cytometry.
(a)–(g) Generation of heterogeneity from a purified population. (a) Parental cell population with FWHM indicated by dots on the
logarithmic histogram. (b) The FWHM is narrower after sorting to enrich for the marked fluorescence values (dashed lines). (c)–( f )
Histograms with increasing FWHMs at 30, 51, 77, and 95 h following sort. (g) Quantification of mean fluorescence (m) and FWHM (w).
Broadening FWHM is consistent with generation of phenotypes absent in purified population. (h)–(n) Histograms obtained from the same
parental cell population, purified for the most intensely stained members, display a return toward parental mean fluorescence values within a
day after sort. The purified population tends to restore the shape and position of the original distribution even though it is initially skewed
toward the right. (n) Mean fluorescence values.

the following 30, 51, 77, and 95 h, the distribution broadens
and returns to an average fluorescence intensity closer to its
parental value (figures 3( j)–(n)).

3.3. Previous experimental reports

In addition to the experimental examples we have just
provided using single-cell measurements of DHFR levels, the
generation of heterogeneity and homeostatic heterogeneity
have been reported in a variety of biological systems. In
2006, Sigal et al observed that single-cell levels of 20
proteins in a human lung cancer cell line wandered up
and down, even during time intervals between cell division
events [44]. The authors showed that initially well-ordered
‘rankings’ of cellular protein levels became progressively
mixed. A subpopulation of cells with relatively high protein
levels gradually spreads out across protein-abundance space
to populate relatively low-protein-level states. In the study
by Chang et al mentioned above, progenitor cells with low,
moderate, or high expression of the surface marker Sca-1
all asymptotically repopulated the broader steady-state
phenotypic distribution from which they were drawn [35].

Additional examples in both mammalian and prokaryotic cell
populations have been described [45, 46, 2, 47].

4. Clinical consequences of the generation of
heterogeneity in drug sensitivity

In light of the prevalence of the generation of homeostatic
heterogeneity, investigators have proposed that the process
may have clinical consequences. As we now explain, the
phenomenon is considered a source of resistance to therapy.
We propose that homeostatic heterogeneity also provides a
clinical opportunity.

4.1. The tendency to restore heterogeneity in drug-resistance
can be a clinical challenge

Dynamic heterogeneity is a source of therapeutic recalcitrance.
Of particular relevance to cancer therapy, consider the
stochastic variation in DHFR protein levels and the ensuing
dynamic heterogeneity. Cells containing relatively greater
numbers of DHFR proteins are relatively more resistant to the
therapeutic agent MTX. Niepel et al commented that ‘natural
fluctuations in the proteome and resulting dispersion in drug
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responsiveness of cells are likely to be important but poorly
appreciated factors’ contributing to incomplete inhibition of
tumor expansion, known as ‘fractional kill’ [4]. ‘Enduring
outlier cells’ in a phenotypic distribution could provide a non-
genetic source of short-term drug-resistance, which could then
serve as targets for more permanent mutations [31, 48, 49].
More recently, Settleman et al have reported on epigenetic,
reversible resistance of cancer cell lines to chemotherapeutic
drugs [48], which resembles reversible resistance of bacterial
‘persisters’ to antibiotic drug reported earlier by Balaban
et al [47, 50, 51]. By establishing an equilibrium mixture
of cells with cell–cell variation in drug-sensitivity, phenotypic
interconversion contributes to the maintenance of a relatively
drug-resistant subpopulation prepared to survive the next event
of drug kill.

4.2. Homeostatic heterogeneity provides an opportunity to
kill newly generated drug-sensitive cells

While we anticipate, alongside these authors, that phenotypic
interconversion has the potential to contribute to therapeutic
resistance, we also view phenotypic interconversion as a
clinical opportunity for cancer treatment. The expansion of
a surviving cell population following drug exposure is not
merely an expansion in cell number, but also (as we discussed
in section 2.3) a regeneration of a heterogeneous population
containing a drug-sensitive subpopulation. As so beautifully
explained by computational modeling of antibiotic treatment
of bacteria [50] and chemotherapeutic treatment of mammalian
cells [52], some populations of phenotypically interconverting
cells are amenable to therapeutic ablation if the timing of drug
doses appropriately matches the kinetics of the generation of
drug-sensitivity.

As we have just described, phenotypic interconversion
can be viewed both as a potential source of therapeutic
recalcitrance and as a source of therapeutic effectiveness
(drug-sensitivity). Both of these perspectives represent
the importance of phenotypic interconversion for clinical
outcome. We use these insights to develop a tool to understand
personalized drug therapy.

5. Developing a tool for choosing dosing frequencies:
a metronomogram

Current cancer therapeutic strategies are not always maximally
effective. Thus, our goal is to understand the biological
basis of drug resistance and how these insights may improve
therapy. Traditionally it is thought that drug-resistance results
from genetic mutations and that reducing the population of
proliferative tumor cells reduces the size of the target that
can acquire resistance [53]. In some cases, a higher dose of
drug will kill drug-sensitive cells faster than the same drug
at a lower concentration [46, 54]. Thus, it makes sense that
‘oncologists are usually trained to expect maximal benefit at
the maximal dose’ [55, 56]. The maximal dose administered
is known as the maximum-tolerated dose (MTD). Doses
exceeding the MTD would cause morbidity and mortality, also
known as dose-limiting toxicity (DLT). The current strategy of

maximum-tolerated dose means killing the cancer just before
killing the patient, more is better, or ‘no pain no gain’ [57].
Many regimens of chemotherapy are, in fact, begun with
cycles of maximum-tolerated-dose therapy, a strategy known
as debulking or induction [56, 58].

Paradoxically, however, MTD is not always best. This
has now been illustrated in a variety of cancers. In 2008,
Seidman et al reported on a clinical trial of women with
metastatic breast cancer [59]. Women randomized to one
trial arm received the drug paclitaxel at MTD. Doses were
separated by rest periods of 3 weeks to allow for patient
recovery, e.g. of bone marrow function. Women randomized
to an alternative schedule received the same drug paclitaxel,
but at a lower dose allowing more frequent administration,
once every week, rather than once every three weeks. High-
frequency, low-dose therapy has been called ‘maintenance’
or ‘continuation’ therapy and more recently ‘metronomic’
therapy [58, 56, 60]. While the survival rate after several years
for the advanced condition in both arms of this study was low,
overall survival in the cohort treated metronomically at six
years was, remarkably, quadruple the overall survival in the
cohort treated conventionally.

In another clinical trial, Klingebiel et al reported on the
treatment of children with metastatic rhabdomyosarcoma, a
cancer of muscle tissue [61]. Both arms of this trial began
with a period of conventional MTD therapy. Children in one
study arm were then followed with 2 cycles of very high-dose
chemotherapy with autologous stem cell support. Children in
the other arm instead received follow-up with metronomic
chemotherapy. In this study, the increase in overall survival
was dramatic in both absolute and relative terms. Both survival
curves plateaued after 3 years, but whereas the high-dose
chemotherapy group displayed 15% overall survival, the group
treated metronomically displayed 52% overall survival.

These results followed earlier hints of a beneficial
role for metronomic scheduling including clinical responses
during metronomic paclitaxel treatment in patients already
pre-treated with taxanes [62, 63], an advantage in overall
survival for children with acute lymphoblastic leukemia
(ALL) treated with extended maintenance therapy [64, 65],
and an advantage in overall survival for young adults with
ALL treated according to metronomic pediatric schedules,
rather than adult schedules [66]. For these, and additional
applications, high frequency dosing has been reported or
postulated to be effective (supplementary table 1, available
from stacks.iop.org/PhysBio/9/065005/mmedia).

If metronomic therapy has provided clinical benefit and
sometimes advantage over conventionally scheduled MTD
therapy, why has metronomic therapy not been more broadly
adopted as a standard of care? Klement and Kamen have
commented that there is ‘a random and very erratic manner
in which doses and frequencies are chosen’ [67]. Even though
the clinical trials for metastatic breast cancer and metastatic
rhabdomyosarcoma described above both demonstrated a
survival advantage for metronomic therapy, the advantage in
one case was dramatic while in the other minimal. The purpose
of designing the metronomogram is to try to identify variables
that will maximize effectiveness of metronomic therapy.
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5.1. To deplete the therapeutically targeted population, the
generation of drug-sensitivity should be faster than net
population expansion

Based on the insights we have presented in this paper, we
hypothesize that metronomic therapy can be effective when
drug-resistant cells convert to a drug-sensitive phenotype.
Persistent, frequent application of low-doses of drug then
depletes the emerging drug-sensitive cells before they have
time to proliferate or become repatriated to the drug-resistant
subpopulation. The overall dynamics of the target population
are a combined result of drug kill and expansion during periods
of drug-free recovery. In order for frequent low doses of
therapy to be effective, the rate of restoring full homeostatic
heterogeneity in drug-sensitivity must be greater than the rate
of population expansion. This requirement relates time-scales
for the generation of heterogeneity in drug sensitivity to time-
scales for the overall expansion of cell population number. To
compare these processes quantitatively, we next introduce a
graphical device called a metronomogram that expresses the
efficacy of drug administration frequencies applied to a target
cell population undergoing phenotypic interconversion.

To relate the cellular processes essential for developing
this tool, we provide a toy model (figure 4(a)). In this
timeline, cell populations are cyclically killed. The surviving
populations repeatedly regenerate heterogeneous mixtures
of drug-sensitive and drug-resistant individuals during time
intervals between drug administration. For clarity, we take
advantage of the simplifying assumptions, made elsewhere,
that drug-resistant cells display no drug response and that
drug-sensitive cells die immediately upon exposure to drug
[49]. Thus, instantaneous drug-kill occurs periodically at time
intervals of duration �t. The total number of cells at any time
is N(t), i.e. the total population of both drug-sensitive and
drug-resistant cells immediately following the drug-kill event
at time t = 0 is N(0+) while N(�t−) and N(�t+), respectively,
denote the populations immediately preceding and following
drug-kill at time t = �t.

We seek to reduce the tumor population with each cycle
so that the population surviving after drug kill at time t = �t
is smaller than the population surviving the previous event of
drug kill at time t = 0.

N(�t+) < N(0+) (3)

Adding to both sides the population immediately preceding
drug kill at time t = �t, we determine

N(�t−) − N(0+) < N(�t−) − N(�t+) (4)

that the increase in the population during a kill-free interval
of duration �t (left-hand side of the equation) must be less
than the decrease in population associated with drug-kill at the
end of the interval (right-hand side of the equation). Defining
the kill fraction, or effective drug-sensitized fraction fS(�t),
at time t = �t as the number of cells killed divided by the
number of cells exposed to drug

fS(�t): = N(�t−) − N(�t+)

N(�t−)
(5)

and defining the population expansion fraction fP(�t) as the
net number of cells added to a population during a drug-free
interval divided by the number of cells at the end of the interval

fP(�t): = N(�t−) − N(0+)

N(�t−)
(6)

we rewrite (4) concisely as the requirement

fS (�t) > fP (�t) (7)

that the kill fraction exceed the population expansion fraction.
Following a round of drug-kill, the regeneration of the drug-
sensitive subpopulation must occur, in this sense, faster than
the generation of overall cell population number. If therapy
continues until the total cancer cell population N(t) falls
below unity, the expected number of drug-resistant cells in
the population will also fall below one, and by chance the
entire cell population confronting the next dose of drug could
be drug-sensitive. Drug-kill then eliminates the last residue of
the target cell population. The duration of the total course of
therapy is denoted TCD.

5.2. Metronomogram

Equation (7) is a condition for evaluating the efficacy of
a particular dosing period �t. To compare different dosing
frequencies, we express this condition graphically. The
timeline in figure 4(a) describes cellular population dynamics
for a particular dosing time interval �t, corresponding to a
particular pair of values fP(�t) and fS(�t), indicated by a single
circle in figure 4(b). It is important to remember that both the
drug-sensitized fraction fS(�t) and the fraction fP(�t) by which
the population expands in (7) can vary as functions of the drug-
free interval �t. We can repeat the experiment in figure 4(a)
using the same kinds of cells and drug dose per administration,
but exploring other values of �t. This produces additional
values of fP(�t) and fS(�t) that trace out, for example, the
solid curve in figure 4(b). The example curves in figure 4(b)
illustrate solutions to the Markov model in (1) and (2) with
rate coefficients for population expansion and phenotypic
interconversion chosen to have similar magnitude (see [1]).
We call an fS versus fP plot a ‘metronomics nomogram’
or ‘metronomogram’. The dynamics of a population of
interconverting drug-sensitive and drug-resistant cells is a
combined result of population reduction during periodic drug-
kill and population expansion during intervals of drug-free rest.
If restoration of homeostatic heterogeneity in drug-sensitivity
is faster than population expansion, the population shrinks over
time. This corresponds to positions on the metronomogram
above the diagonal line fS = fP, which satisfy condition (7).
In contrast, the generation of drug-sensitivity is relatively
slow in the region below the diagonal. Here, the population
expands long term. The diagonal fS = fP distinguishes dosing
frequencies that can reduce tumor size (above the diagonal)
from dosing frequencies that allow tumor expansion (below
the diagonal).

5.3. Choice of drug administration schedule

We now provide an example to illustrate how the
metronomogram we have described can be used to
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(a) (b)

Figure 4. Using a metronomogram to graph the dynamics of phenotypic interconversion and expansion in a heterogeneous population of
cells. (a) Dynamics of a mixture of drug-sensitive and drug-resistant subpopulations with rest periods of duration �t between pulses of cell
kill via drug exposure. Therapy continues until all targeted cells have been eradicated. (b) Each curve on a metronomogram expresses the
kill fractions fS and population expansion fractions fP explored by varying the interdose rest period �t for a particular population of cells.
The dashed curve labeled cR = 1.0 corresponds to the solution of the model in figure 2(c) with parameters rR − mR = rS − mS = 1, cR = 1,
and cS = 1. The dotted curve labeled cR = 0.5 and the solid curve labeled cR = 1.5 correspond to these alternative values of cR, with the
remaining coefficients unchanged.

(a) (b)

Figure 5. Clinical uses of metronomograms. During therapy, metronomograms could facilitate (a) dosing frequency selection and
(b) recommending changes in dosing strategy in response to changes in efficacy of therapy over time.

choose dosing frequencies (figure 5(a)). Consider the situation
where we measure the cancer cell population at three times in
figure 4(a): right before and right after one of the pulses of drug
kill, as well as once immediately preceding the subsequent
pulse of drug kill. Then the values of fS and fP can be determined
and plotted in figure 5(a), e.g. circle 1.

Because circle 1 turns out to fall below the fS = fP diagonal,
another drug administration frequency needs to be found.
Extrapolating along horizontal dashed line 2 suggests that a
shorter drug-free rest interval �t might bring us to circle 3,
located within the burden-reducing region where fS > fP. As
a first approximation we assume that the net replication rate
coefficients (proliferation less clearance) of the drug-sensitive
and drug-resistant populations are equal. If this approximation
is accurate, then an attempt to realize circle 3 will succeed

in achieving a data point with the expected fP, corresponding
here to ∼1.1 population doublings. We might obtain circle 3
itself, or another outcome, such as circle 4. Circle 4 has the
expected horizontal position of circle 3, but the actual kill
fraction achieved differs, i.e. circle 4 falls vertically below 3.
Here circle 4 lies in the region below the fS = fP diagonal,
representing dosing frequencies that fail to sustain reduction
of tumor burden.

However, such a therapeutic ‘failure’ is actually an
opportunity for improving drug administration schedule. The
gradual approach toward homeostatic heterogeneity we have
described manifests as simple, smooth solutions to the Markov
model in (1) and (2), which are plotted in figure 4(b). This
qualitative simplicity makes it easy to use circle 1 and 4 to
estimate visually the shape of the blue curve labeled 5 in
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figure 5(a). This curve then indicates a range of interdose rest
periods that might provide points in the therapeutic region
above the fS = fP diagonal. Upon treatment at a fast frequency,
we might achieve circle 6 as expected. If toxicity proves
intolerable at this schedule, the blue curve we have established
can help identify slower dosing frequencies that nevertheless
remain in the region fS > fP. For example, the more relaxed
schedule represented by circle 7 might be tolerable long-term.
Information obtained from ‘productive failures’ would provide
data to optimize dosing schedules for each individual.

Proceeding with this schedule, we would continue to
monitor tumor burden frequently to look for changes in the
rate coefficients in (1) and (2) reflecting long-term changes
in tumor biology. Despite maintaining a fixed interval �t, we
might find an increase in kill fraction as in figure 5(b), circle 8.
We might drift toward the right on the previously established
blue curve, reaching circle 9. Alternatively, we might fall to
another curve containing circle 10. The positions of the curves
on the metronomogram suggested by these additional data
would help us identify modifications to dosing frequency. If we
obtained circle 8, a larger range of dosing frequencies might
prove capable of reducing tumor burden with less toxicity.
Circle 9 would be consistent with the sharing of molecular
mechanisms in phenotypic interconversion and proliferation.
In this case, cytostatic agents (which would minimize rR and
rS) might move us left, back to the original position above the
fS = fP diagonal. We would address circle 10 by investigating
ways to hasten the return to homeostatic heterogeneity
(maximize cR) in drug-sensitivity in a proliferation-
independent, rather than a proliferation-dependent fashion, as
discussed in [1].

To explain figures 5(a) and (b), we focused on the
simplifying situation where the fitnesses of the drug-sensitive
and drug-resistant cells were equal during drug-free rest
periods. This allowed the metronomogram to be used literally
as a nomogram. However, this need not be the case. We could
have obtained a different result for circle 4 in figure 5(a),
horizontally displaced from its illustrated position. If circle
4 had shifted to the right, this would suggest that the fitness
of the drug-resistant cells, rR, is greater than the fitness of
the drug-sensitive cells, rS. A shift to the left would suggest
the opposite. This result would have forced us to consider
unequal fitnesses for different phenotypic compartments.
Measurements of tumor cell population at various times during
a drug-free interval would then be important for constraining
the parameters in (1) and (2) necessary for calculating the rest
periods �t capable of reducing tumor burden. Even in these
cases, the metronomogram continues to provide a powerful
graphical tool for understanding why some ranges of dosing
schedules are appropriate for a tumor’s immediate biology,
and for proposing revisions to dosing frequency in response to
changes in tumor biology during extended therapy.

In the supplementary data, available from
stacks.iop.org/PhysBio/9/065005/mmedia, we discuss how
this simplified analysis illustrates a surprising feature. For
very high dosing frequencies, the marginal improvement
in total course duration becomes minimal. This effect of
‘diminishing returns’ is related to the finite time required for a

purified drug-resistant population to generate drug-sensitivity.
It may not be worthwhile to increase the dosing frequency
arbitrarily at all cost. Even though this simple analysis does
not explicitly describe toxicity, it nevertheless contrasts with
the idea of ‘more is better’ underlying MTD therapy.

5.4. Calculating total course duration

In addition to choosing appropriate dosing frequencies as we
have just described, it is necessary to choose a sufficient total
course duration. Therapy concluded prematurely can fail to
sustain durable response despite initially successful reduction
in tumor burden. The metronomogram can be used to estimate
the necessary total course duration as a function of dosing
interval �t. The position of a point (fS(�t), fP(�t)) encodes
the fold-reduction in tumor size that occurs over a dosing
cycle of duration �t

N(0+)

N(�t+)
= 1 − fP(�t)

1 − fS(�t)
(8)

In (9), TCD is the total course duration that must elapse before
a tumor starting with NIM cells at the initiation of metronomic
therapy is finally reduced to a size NF. The number of orders of
magnitude of fold-reduction in tumor cell population sought
during the total course of therapy divided by the number of
orders of magnitude of fold-reduction in tumor cell population
during each dosing cycle gives a deterministic estimate of the
number of dosing cycles required. Multiplied by the duration
�t of each cycle, this ratio provides the total course duration
in units of time.

TCD ∼ �t
ln(NIM/NF )

ln(N(0+)/N(�t+))
(9)

To what size NF do we seek to reduce the tumor burden? By
the time we succeed in reducing the tumor cell population to
just less than a single cell in the deterministic model, NF < 1,
we expect the cell population in the corresponding stochastic
dynamics to teeter at the brink of stochastic extinction, if the
population has not already become extinct. However, even
choices of NF > 1 may provide durable clinical response
owing to interactions with the tissue microenvironment. For
example, angiogenic and immunological barriers can prevent
the expansion of microscopic metastatic colonies for years,
e.g. tumor dormancy [68].

In the supplementry data available from
stacks.iop.org/PhysBio/9/065005/mmedia, we discuss how
in some cases the total course duration may be of similar
order to the length of time the target cell population initially
expanded preceding diagnosis and treatment. For some
cancers this corresponds to a time-scale of years [69].

In sections 5.3 and 5.4, we sought to identify variables
to compare when choosing dosing frequencies and duration.
It is important to compare timescales for the generation
of heterogeneity with timescales for population expansion
in order to evaluate whether the rate of the generation of
heterogeneity is faster than the rate of the expansion of the
population, as necessary for effective therapy.

Our perspective has been that therapy should be timed to
kill drug-sensitized cells before they have time for proliferation
and back-conversion to the drug-resistant phenotype. Because
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phenotypic interconversion is stochastic, drug-sensitive cells
can emerge from the drug-resistant population at a variety
of times. To kill all of these cells soon after they gain drug-
sensitivity, drug doses must be applied frequently. To manage
toxicity while sustaining high dosing frequencies over long
course durations, we use less than the maximum-tolerated
dose. The modeling we have used and its analysis using the
metronomogram provide one of the simplest ways we can
develop this understanding quantitatively. Understanding these
ideas at this basic level is important for being able to recognize
the same interplay (between the kinetics of the generation
of heterogeneity, the kinetics of population expansion, and
therapeutic timing) when it appears in more sophisticated
models, e.g. accounting for concentration-dependent drug
response and cell–cycle specificity [52, 70] or describing
interconversion among continua of drug-sensitive and drug-
resistant phenotypes [49].

6. Discussion

In this paper, our goal has been to develop a conceptual tool for
understanding and utilizing dynamic heterogeneity in cancer
therapy. We argued that the large numbers of interactions
between biological components in a population and the small
numbers of some molecular species could generate apparent
stochasticity at the subcellular level. This, in turn, could
manifest as phenotypic interconversion at the single-cell level,
resulting in both the generation of heterogeneity and of
homeostatic heterogeneity at the population level. In addition
to the experimental examples we provided, the processes of
the generation of phenotypic heterogeneity and a tendency to
restore homeostatic heterogeneity have been reported in other
biological studies. Viewing the understanding of dynamic
heterogeneity as a clinical opportunity, we developed a tool
(metronomogram) to help identify variables to consider when
optimizing dosing schedules on a patient-individualized basis.
To understand the clinical consequences of stochasticity in the
rates of chemical reactions at the cellular level and the dynamic
heterogeneity that results at the population level, it is important
to compare the kinetics of the generation of homeostatic
heterogeneity with the kinetics of population expansion.
This way one evaluates whether homeostatic heterogeneity
is generated faster than population expansion, as necessary for
depletion of the therapeutically targeted population according
to a dosing frequency under consideration.

In some clinical applications, the modeling and
metronomogram may provide direct insight into a patient’s
treatment options. However, the full potential of this
conceptual tool can only be appreciated by recognizing
the challenges and opportunities it points to in physical,
biological, and biomedical engineering sciences. In the
remaining discussion, we offer directions for increasing our
understanding of the application of the concepts described
in this paper to the particular cases of genetic mutations
and tumor ‘stem-cell’ biology, and for improving clinical
measurement.

6.1. Using dynamic heterogeneity to improve strategies that
address genetic mutation

While we have developed our discussion using examples of
non-genetic fluctuations in the levels of mRNA and protein,
genetic mutations can also produce stochastic transitions
in phenotypic states. Genetic point mutations are often
found in cancer, and this is the basis for a variety of
clinical strategies that have been proposed. These include
targeting altered proteins that result from mutations in gene
sequences, exploiting fitness costs associated with mutations
that confer drug-resistance, controlling tumor burden by
targeting drug-sensitive clones even after the appearance
of clonal heterogeneity, and targeting the microenvironment
or ecology surrounding mutant tumor cells. Because point
mutations are potentially permanent, it may be natural to
assume that the discussion in this paper is less effective after
the acquisition of a mutation. Instead, we propose that it is
important to apply the concepts described in this paper in
order to most effectively pursue these strategies.

Modern ‘targeted’ therapeutics are designed to bind
the proteins resulting from genetic alterations. For example,
erlotinib is a tyrosine kinase inhibitor that binds to mutant
copies of the protein EGFR. In light of our discussion, it
is important to remember that the sensitivity of a cell to
erlotinib can be transient even though the sensitizing mutation
it harbors is permanent. Even when a drug-sensitizing mutation
remains in a cell population, cells can reversibly convert from
an erlotinib-sensitive state to an erlotinib-resistant ‘persister’
state [48]. We view redundancy in the pathways through
which EGFR stimulates oncogenic phenotypes as an additional
possibility [71]. Cells may convert transiently to phenotypic
states which rely on other receptors, such as ErbB2, to ‘stand
in’ for EGFR. For these reasons, the concepts in this paper
may be important for understanding optimal scheduling of
targeted therapeutics. Remarkably, most modern therapeutics
are currently delivered at daily frequencies. This is consistent
with the idea that reduction of tumor burden can be achieved
through frequent drug treatment of populations undergoing
phenotypic interconversion. Strategies to increase the rate of
conversion to the drug-sensitive state or decrease the rate of
acquisition of the drug-resistant state may prolong responses to
therapy. For example, in the study by Sharma et al the persister
phenotype depended on a temporary chromatin state requiring
IGF-1R signaling and activity of the histone deacetylase
KDM5A. Inhibiting these molecules reduced the number of
persisters surviving treatment by erlotinib and other drugs.

Another consequence of distinguishing between perma-
nent mutations and transient phenotypes is the possibility for
continued interconversion between relatively drug-sensitive
and drug-resistant states, perhaps with altered kinetics,
after the acquisition of ‘resistance’ mutations. Because some
mutations increase a cell population’s ability to survive drug
at the cost of proliferative capacity (e.g. reduced fitness and
a shift to the left), analysis using a metronomogram may
still identify dosing frequencies capable of reducing tumor
burden. The range of beneficial dosing frequencies for a
primary chemotherapeutic may be expanded by using the
metronomogram to discover biologic agents that accelerate
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the generation of drug-sensitivity in proliferation-independent
ways (see [1]).

A tumor is not necessarily composed exclusively of cells
containing a targetable genetic alteration or, instead, harboring
a particular resistance mutation. The genetic variants we
have just described may coexist alongside phenotypically
and genotypically distinct clonal subpopulations [72, 73].
In some situations, some clones may remain sensitive to
drug after other clones have become drug-resistant. In these
situations, clinicians may recommend prolonging therapy to
slow the expansion of the drug-sensitive clones [74]. Another
possibility is that all of the clones in a tumor are sensitive, but
to different drugs delivered according to different schedules.
We anticipate that assessing tumor burden and adjusting
therapeutic administration frequency using a tool like the
metronomogram will assist in pursuing both of these strategies,
especially when the clonal subpopulations can be measured
separately. It is also possible that none of the clones are
directly responsive to any drug being applied. In this case early,
frequent measurement could indicate the need to consider
additional drugs and the opportunity to prevent prolonged
exposure to unnecessary side effects. When a targeted cell
population does not immediately respond to a therapeutic
regimen, it may also prove useful to look for responses in cell
types traditionally regarded as being distinct from the frank
carcinoma.

One strategy for depleting a robustly resistant population
is to kill secondary cell populations upon which the primary
target cell population depends for survival. The concepts in this
paper can be applied to optimize the scheduling of therapy
to deplete these secondary targets. Browder et al observed
more effective control of tumor burden when administering
a metronomic schedule of cyclophosphamide as compared
with a conventional MTD schedule in the treatment of
a preclinical model of Lewis lung carcinoma [75]. The
Lewis lung carcinoma cells were already highly resistant
to cyclophosphamide before inoculation, indicating that
therapeutic efficacy against the carcinoma cells was indirectly
mediated through the host. Specifically, Browder et al
proposed that the efficacy of metronomic cyclophosphamide
was mediated through death of endothelial cells.

6.2. Tumor ‘stem-cell’ biology

Current research has suggested that tumors contain drug
sensitive and drug resistant populations associated with the
acquisition of ‘stem-cell-like’ features. It has been suggested
that while current therapies are optimized toward removing
the bulk of the tumor cells, application of a different class of
drugs is needed to remove the tumor ‘stem-cell’ population.
If interconversion between the two phenotypes occurs, tumor
‘stem-cells’ will be continuously generated, and therapeutic
strategies based on attacking a static cell population alone
may not succeed. A more recent rationale has postulated
the need to target both compartments [41]. We hypothesize
that the properties exhibited by tumor ‘stem-cells’ are a
manifestation of the fundamental biological principles and
processes described in this paper. This would suggest that

targeting one phenotype judiciously may suffice to deplete
multiple interconverting populations.

6.3. Clinical measurements

In addition to providing additional targets to manipulate
therapeutically, identifying multiple cell and tissue types
beyond the frank carcinoma may provide more targets for
ongoing measurement. In order to re-assess dosing schedules
using a tool like the metronomogram (figure 5(b)), we need
to be able to continue to measure the tumor burden and its
response to therapy at multiple time points throughout a course
of treatment.

For some patients, tumor burden is already assessed
long term. The minimal residual burden of leukemic cells
can be monitored in a patient’s circulation using PCR
methods for years [76, 77]. Unfortunately, the assessment
of solid tumor burden continues to be a challenging area
of study. Current imaging techniques, including positron-
emission tomography and x-ray CT, have difficulty detecting
tumors smaller than about 5 mm in diameter (corresponding
to ∼108 cells for cell diameters of ∼10 microns) [78–80].
Magnetic resonance imaging provides 1 mm × 1 mm × 1 mm
spatial resolution in clinical settings, in principle resolving
lesions containing ∼106 cells. However, distinguishing tumor
cells from background tissue remains a challenge, and
the development of dynamic contrast-enhanced methods to
improve specificity is ongoing [81]. As a consequence, the
expansion of many solid tumors cannot be directly imaged
using these methods during at least half of the time preceding
diagnosis and treatment, as Klein has shown in figure 3 of
[69]. In the discussion in the supplementary data, available
from stacks.iop.org/PhysBio/9/065005/mmedia, we show how
the initial duration of tumor expansion can be similar to the
total course duration subsequently required for therapeutic
depletion. This suggests that, in some cases, the solid tumor
burden may be technically undetectable for the majority of the
total course of therapy.

One strategy for addressing this limitation in detection
is to identify other cell populations and biological materials
(surrogate markers) that track the tumor burden, but are easier
to measure. The detection of circulating tumor cells (CTCs)
may provide one such ‘proxy’ for monitoring both early and
late stages of treatment. In a recent study, Nagrath et al
isolated CTCs from patient blood using a microchip technique.
The CTC populations qualitatively tracked tumor burden
for a variety of cancers during treatment measured by CT
methods [82]. CTCs have also been detected in blood decades
after remission of disease [68, 83]. Because CTCs occur in
low abundances (1 out of 109 blood cells), CTC detection
likely needs to be combined with measurement of other cell
populations and biomarkers for a more precise assessment
of overall tumor burden. These may include extracellular
matrix, carcinoma-associated fibroblasts, subpopulations of
immune cells, or serum biomarkers. Examples of circulating
proteins include MUC-1, which is used to monitor metastatic
breast cancer [84], and prostate specific antigen [85]. Serum
biomarkers can also include non-protein materials, such as
circulating micro-RNAs [86].
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Whichever option we choose for quantifying tumor
burden, we need to quantify therapeutic response. We
simplified the analysis in this paper by considering the
cartoon in which drug-kill occurs instantaneously. In contrast,
biological cell death can be delayed by days and rounds of cell
division following exposure to a chemotherapeutic agent. For
high dosing frequencies, measured changes in cell population
on a given day reflect a combination of proliferation and cell
death events triggered by various previous doses of drug,
making it difficult to tease apart which cells were ‘killed’
by the most recent dose. The diffuse optical spectroscopic
imaging method developed by Cerussi et al may reveal drug-
response before the (delayed) manifestation of cell death and
clearance. This non-invasive method can be applied daily to
assess changes in tissue metabolism by measuring changes in
the spectra of infrared light scattered from tumors [87].

These directions will require an interdisciplinary
effort, with physicists, chemists, and biologists elucidating
mechanisms of stochasticity at various levels, with biologists
and clinicians identifying targets for therapy, and with
engineers, clinicians, and patients improving techniques for
frequent, non-invasive measurement. This integrated effort
will someday, hopefully, allow a ‘quantitative’ oncologist to
optimally drain a tumor to extinction.
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