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HIV-1 subtypes maintain distinctive physicochemical signatures 
in Nef domains associated with immunoregulation

Susanna L. Lamersa,*, Gary B. Fogelb, Enoch S. Liub, David J. Nolana, Rebecca Rosea, 
Michael S. McGrathc

aBioInfoExperts , Thibodaux, Louisiana, USA

bNatural Selection, San Diego, California, USA

cUniversity of California, San Francisco, California, USA

Abstract

Background: HIV subtype is associated with varied rates of disease progression. The HIV 

accessory protein, Nef, continues to be present during antiretroviral therapy (ART) where it 

has numerous immunoregulatory effects. In this study, we analyzed Nef sequences from HIV 

subtypes A1, B, C, and D using a machine learning approach that integrates functional amino 

acid information to identify if unique physicochemical features are associated with Nef functional/

structural domains in a subtype-specific manner.

Methods: 2253 sequences representing subtypes A1, B, C, and D were aligned and domains 

with known functional properties were scored based on amino acid physicochemical properties. 

Following feature generation, we used statistical pruning and evolved neural networks (ENNs) 

to determine if we could successfully classify subtypes. Next, we used ENNs to identify the 

top five key Nef physicochemical features applied to specific immunoregulatory domains that 

differentiated subtypes. A signature pattern analysis was performed to the assess amino acid 

diversity in sub-domains that differentiated each subtype.

Results: In validation studies, ENNs successfully differentiated each subtype at A1 (87.2%), 

subtype B (89.5%), subtype C (91.7%), and subtype D (85.1%). Our feature-based domain 

scoring, followed by t-tests, and a similar ENN identified subtype-specific domain-associated 

features. Subtype A1 was associated with alterations in Nef CD4 binding domain; subtype B 

was associated with alterations with the AP-2 Binding domain; subtype C was associated with 

alterations in a structural Alpha Helix domain; and, subtype D was associated with alterations in a 

Beta-Sheet domain.
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Conclusions: Recent studies have focused on HIV Nef as a driver of immunoregulatory disease 

in those HIV infected and on ART. Nef acts through a complex mixture of interactions that are 

directly linked to the key features of the subtype-specific domains we identified with the ENN. 

The study supports the hypothesis that varied Nef subtypes contribute to subtype-specific disease 

progression.
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1. Introduction

Despite more than three decades of research and improved antiretroviral therapies (ART), 

low-level immune activation during HIV infection continues to promote immunoregulatory-

associated disease processes (Lamers et al., 2012; Sereti et al., 2017). These diseases include 

a variety of cancers, metabolic issues, and HIV-associated neurological disorders. While 

AIDS-defining diseases have seen a dramatic reduction in the modern-treatment era, other 

non-AIDS-defining diseases are on the rise in HIV-infected individuals (Shiels and Engels, 

2017).

Current antiretroviral agents used to treat HIV-1 infection target several different pathways 

and have varied mechanisms of action (Gandhi et al., 2023). When used in combination, 

these drugs have been extraordinarily successful in the long-term management of HIV 

infection and limit transmission; however, they do not clear latent reservoirs (Pereira and 

daSilva, 2016; Chun and Fauci, 2012). HIV integrates into the genomes of tissue-based 

macrophages and T-cells (Hendricks et al., 2021; Shacklett et al., 2019), where a lower cell 

turnover rate combined with lower drug penetration enables HIV to persist in reservoirs 

(Cohn et al., 2020; Sung and Margolis, 2018). Furthermore, even with ART-reduced viral 

load, copies of HIV mRNA transcripts that may be translated to protein persist (e.g., Nef 

and Tat), which provides a mechanism for chronic inflammation, immune activation, and 

ongoing immunoregulatory interference (Nolan et al., 2022; Fischer et al., 2002).

Nef is an HIV accessory protein with several intracellular functions that prime host cells 

for HIV replication and ensures the infectivity of progeny virions (Kirchhoff et al., 1995; 

Deacon et al., 1995). Nef downregulates CD4, MHC-1, Tetherin and SERINC at the trans 

Golgi apparatus and at the interior cell surface membrane (Kwon et al., 2020). These 

functions are regulated through the interactions of Nef with >30 other partner proteins 

in both membrane-bound and cytoplasmic Nef (Fackler and Baur, 2002; Arold and Baur, 

2001). Recent studies have shown that Nef is found in circulating exosomes (Mukhamedova 

et al., 2019; McNamara et al., 2018; Khan et al., 2016; Puzar Dominkus et al., 2017) 

indicating that Nef also acts extracellularly within the vesicular trafficking machinery. 

Extracellular Nef has the potential to alter host gene expression and dysregulate the host 

immune response in bystander cells (Felli et al., 2017). Intracellularly and extracellularly, 

the molecular actions of Nef align with the pathogenic effects of a lengthy infection in an 

individual on ART (Olivetta et al., 2016; Zhu et al., 2014).
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Given the many immunoregulatory functions of Nef, there is increased interest in Nef-

targeted therapies (Painter et al., 2020; Bouchet et al., 2011; Kamalzare et al., 2019; Lv 

et al., 2020). For instance, a successful drug candidate would limit the ability of Nef to 

downregulate cellular factors, promoting the clearance of infected cells while simultaneously 

reducing extracellular Nef trafficking. However, implementing any therapy targeting Nef 

requires an improved understanding of its sequence diversity across HIV subtypes and the 

role of this diversity in protein-protein interactions. To date, most Nef-associated molecular 

modeling studies have typically suffered from a limited focus on a single molecular clone 

of HIV subtype B Nef (NL.43) (Kwon et al., 2020; Shen et al., 2015). While this is an 

essential strategy in understanding molecular docking to Nef, such a restricted view avoids 

sequence/structural Nef diversity altogether, providing information about docking for only 

one subtype, and within that subtype, only one specific sequence.

Globally, HIV is divided into twelve major subtypes that continue to evolve and recombine, 

resulting in well-defined hybrid or “recombinant” forms. HIV subtypes are defined by 

their genotype and can be visualized through independent branching in a phylogenetic 

tree. Temporal studies in Africa have demonstrated that HIV disease progression also 

varies among the major infecting subtypes, which coincides with changes in the rates 

of infection with different subtypes (Conroy et al., 2010; Lamers et al., 2020; Blanquart 

et al., 2016). During the 1990s in Uganda, HIV subtype D represented the majority of 

infections; however, individuals infected with subtype D progressed faster to AIDS than 

another circulating infecting subtype, subtype A (Lamers et al., 2020; Collinson-Streng et 

al., 2009). Over an 18-year time frame, the proportion of subtype D infections in Uganda 

decreased from an average of 71% to 40%, whereas subtype A increased from an average 

of 21% to 31% in the six communities (Lamers et al., 2020). Another study demonstrated 

that rapid progression with subtype D infection is associated with rapid development of high 

viral loads (Amornkul et al., 2013). A similar study in Brazil, where subtypes B, D, and F1 

cocirculate, found that subtype D and a recombinant form of B + F1 resulted in more rapid 

disease progression (Leite et al., 2017).

One of the problems in understanding the impacts of HIV diversity is that it is difficult 

to distill vast amounts of genetic data into single experiments. Using a machine learning 

approach called the Zoetic Amino Acid Protein Profiler (ZAPP), we previously linked 

specific physicochemical amino acid signatures in Nef to diseased and non-diseased tissues 

to provide an improved understanding and prediction of HIV progression to neurological 

disease (Lamers et al., 2018; Liu et al., 2020). ZAPP combines amino acid sequence 

data, functional domain constraints, and amino acid physicochemical scales derived from 

biochemistry studies regarding the behavior of amino acids under certain conditions 

(e.g., shape, polarity, hydrophobicity scales). Features that survive statistical pruning 

were provided as input to neural networks optimized on training data using evolutionary 

computation. This same process of neural network optimization also includes a further 

process of feature reduction that results in small sets of features and their associated neural 

networks that can be used to help predict outcomes well and yet still be explainable. The 

best feature sets and their associated domains can then be examined independently and 

understood more carefully in terms of defined outgroups.
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In this study, we used ZAPP to examine Nef functional domains and their relationship to 

predominant Ugandan HIV subtypes (A1, C, and D) and subtype B, the predominant HIV 

subtype in Western countries. Our goal was an improved understanding of the structural/

functional variation among Nef subtypes from a biochemical and structural perspective 

as this variation may be associated with varied disease progression and/or assist in the 

development of Nef-targeted therapies.

2. Materials and methods

2.1. Sequences

As described in Fig. 1, 2343 Nef gene nucleotide sequences from four subtypes were 

obtained from the Los Alamos HIV database (subtype A1 (n = 579); subtype B (n = 

631); subtype C (n = 704); subtype D (n = 429)) (Apetrei et al., 2021). Search criteria 

included subtype and country designation. Subtype A1 and D sequences originated from 

Uganda, subtype C sequences originated from Uganda and nearby East African countries, 

and subtype B sequences were derived from the United States. Subtypes associated with 

these sequences were confirmed using CONtext-based Modeling for Expeditious Typing, 

or COMET (Struck et al., 2014), which is an alignment-free typing algorithm for HIV-1 

and other viruses. Any potential recombinant sequences, identical sequences, or those that 

were discordant with the Los Alamos Database designation were removed, leaving a total 

of 2253 sequences. All nucleotide sequences were translated to Nef protein amino acid 

sequences and aligned using Geneious Prime software (version 2021.2.2) with manual 

modifications adhering to a previously described alignment protocol (Lamers et al., 2018). 

Sixteen well-characterized domains in Nef from the literature were identified. These were 

Alpha Helix A, Alpha Helix B, Alpha Helix CD, AP-2 Binding, Positions Associated 

with Molecular Signaling, Beta-Sheet A, Beta-Sheet B, CD4 Downregulation, Cytokine 

Binding, MHC-1 Downmodulation I (MHC-1 DM1), MHC1 Downmodulation II (MHC-1 

DM2), MHC-1 Association with Signaling Molecules (MHC1-signaling), Myristoylation, 

Nef Loop, Dileucine binding motif, and Sh-3 Binding. The positions and variations within 

the Nef aligned sequences are represented graphically in Fig. 2.

2.2. Feature generation

For each amino acid in the 16 Nef domains we calculated 70 physicochemical 

characteristics. These 70 characteristics were collected from sources in the literature 

(Lamers et al., 2016) and are representative of six broad classes, including amino acid size, 

shape or structure (n = 25), polarity (n = 6), composition (n = 3), hydrophobicity (n = 27), 

and other features such as HPLC and pKa (n = 9) (Table 1).

In order to generate domain-level scores, for each domain and for each characteristic we 

summed the per-amino acid scores across each domain as a single value. For instance, one 

characteristic such as “Molecular Weight” applied to the domain “Alpha Helix A" would 

be the summed score of the value of Molecular Weight for each amino acid within the 

Alpha Helix A domain. This process was repeated for all 16 Nef domains over all 70 

characteristics generating 1120 domain-characteristics (termed “features”) gathered from 

Nef sequences representing subtypes A1, C, D and B. Initial box-and-whisker plots were 
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used to qualitatively observe differences across the four HIV-1 subtypes over these 1120 

features.

2.3. Evolved neural networks

Initially, we used evolved neural networks to determine if there was sufficient information 

represented in the 1120 features for reasonable classification across all four subtypes 

simultaneously (A1 vs. B vs. C vs. D) without feature reduction. We divided the 2253 

Nef sequences from subtypes A1, B, C, and D into three separate training, testing, and 

validation sets. A subset of 10% (n = 225) of the total data was chosen at random 

across all four subtypes as a held-out validation set. The remaining 2028 sequences were 

assigned at random into training (n = 1352) and testing (n = 676) sets. Each of these three 

divisions were then used for the development of feed-forward neural networks using an 

optimization process of evolutionary computation rather than traditional backpropagation. 

Using evolutionary optimization, it is possible to adjust both the weights associated with 

each connection and the features that are used as input to the classifier simultaneously. 

In this manner, we could pre-specify the number of features to use that were sub-selected 

from a larger set of possible features, thus allowing evolutionary optimization to determine 

which features in their combination provide the most information. Such sub-selection offers 

the opportunity to evaluate the predictive performance of neural networks designed with an 

equal and small number of features as input, providing a rough means of comparison of 

predictive utility. For the purpose of this section of the effort, we chose to sub-select 10 

features as input to the evolved neural networks, with 5 hidden nodes, and 1 output node, 

where the output node was in the range [0,3] with thresholds assigned on the training set to 

infer categorization on the testing and validation sets (Table 2A).

A population of feedforward fully-connected multilayer neural networks with sigmoid 

activation functions were generated and subjected to initial random weight assignments 

to all connections. Each neural network was scored for its ability to correctly predict the 

HIV subtype represented by each input sequence. Those neural networks with minimum 

squared error (MSE) (e.g., a Brier score) in each generation of the evolutionary process 

were used as “parent” neural networks for the generation of “offspring” neural networks, 

subject to another round of random variation in the weights associated with the connections. 

Each neural network population comprised 50 parents and 50 offspring with a tournament 

selection of 4. As evolutionary optimization proceeded on the training data, the best neural 

network performance in the population was assayed every 50 generations on the testing data 

to monitor possible overfitting.

The number of generations of optimization in training that led to a minimum MSE on 

testing without overfitting was then used to re-run the experiment again for each same fold 

of the data using the same random seed. At the end of each of these processes, the best 

neural network was assayed for performance on the training, testing, and, most importantly, 

the validation set. Decision thresholds were used on the output node of the training data 

to associate the output with four bins representing each of the four subtypes with those 

thresholds used to determine performance on the testing and validation sets.
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We then sought to understand subtype-specific differences by examining four comparisons: 

(1) subtype A1 vs. [C, D and B]; (2) subtype B vs. [A1, C and D]; (3) subtype C vs. [A1, B, 

and D]; and (4) subtype D vs. [A1, B, and C]. For each of these four comparisons we used 

a two-tailed Student's t-test with equal variance over all of the 1120 features to determine 

if the samples in each comparison were derived from populations with the same mean. 

Those features with low p-values thus had a statistically significant difference in one subtype 

relative to the others. For each of the four comparisons, we ranked the features according 

to their p-value and retained the features with the 25 lowest p-values (Table 3). We noticed 

that many of these features were associated with one or two Nef domains. For instance in the 

comparison of Subtype C vs. Subtype A1, B, or D, all of the top 25 features were associated 

with the Alpha Helix A domain of Nef. For Subtype D vs. Subtype A1, B, or C, 16 of 

the top 25 features were associated with Beta Sheet A. This suggested that characteristics 

associated with specific Nef domains could be directly relevant to HIV subtype.

To verify this finding, we then used evolved neural networks to produce a binary 

classification about each subtype relative to the set of all other subtypes combined (e.g., 

subtype A1 (0) vs. subtype B, C, or D (1)). Given the above understanding that specific Nef 

domains may be relevant, for each of the four comparisons we restricted the sub-selection 

only to the primary domain that was associated 25 lowest p-values from the t-test process. 

These processes combined enabled us to determine the degree to which is it possible 

to predict subtypes using very specific Nef domains combined with small feature sets 

(functional/structural characteristics) of those domains, rather than use long amino acid 

sequences to infer subtype but provide no meaningful biological differentiation of the 

samples, other than subtype alone.

For each domain, using the lowest p-value features as input, we allowed the evolutionary 

process to sub-select five features as input to the neural networks using very simple 5 

input, 3 hidden node, 1 output node perceptrons. This process was repeated three times with 

separate divisions of the training and testing data as noted previously and then the three 

resulting sets of five features for each subtype were examined for similarity and performance 

on the validation set (Table 4).

We used a notation that includes N possible input features, F sub-selected input features, 

H hidden nodes, and 1 output node (e.g., N [F]-H-1) as these varied by experiment to help 

force the evolution into smaller and smaller sets of input features to assist with downstream 

biological interpretation. For instance, for subtype A1 vs. all other subtypes here we present 

neural networks with a 15[5]-3–1, an architecture where the output node was over the range 

[0,1] with specific thresholds on the output that maximized performance over the training 

examples per subtype decision. Using the training data, the threshold was adjusted until 

there was roughly equal accuracy on true positives and true negatives to avoid any bias. The 

code base for this approach was developed internally at Natural Selection, Inc. and has been 

presented previously in the literature (Lamers et al., 2018; Liu et al., 2020; Lamers et al., 

2016; Liu et al., 2021; Lamers et al., 2017; Fogel et al., 2015; Fogel et al., 2014; Lamers et 

al., 2008).
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2.4. Signature pattern analysis and protein modeling

The initial Nef multiple sequence alignment was separated into subtypes A1, B, C, and D 

and then further pruned to the domains of interest (CD4-I, AP-2 Binding, Alpha Helix A, 

and Beta-Sheet A). VESPA (Korber and Myers, 1992) was used to identify amino acids and 

their alignment positions that may have caused the significant t-test p-values and the ENN 

subtype-specific domain assignment. VESPA calculates the frequency of each amino acid 

at each position in an alignment for the query and background set, selects the positions for 

which the most common character in the query set differs from that in the background set, 

and provides a frequency score. Comparisons were made between the following populations 

of sequences: 1) Background: subtype A1 CD4 Downregulation vs. Query: subtype B, C, 

or D; 2) Background subtype B AP-2 Binding domain vs. Query subtype A1, C, or D; 

3) Background subtype C Alpha Helix A vs. Query subtype A1, B, or D; 4) Background 

subtype D Beta-Sheet A vs. Query subtype A1, B, or C). When a signature was identified, it 

was noted in along with its associated domain-characteristic and the value of the amino acid 

in the characteristic scale. Domains that were important for distinguishing subtypes were 

mapped onto a previously published Nef protein model (Lamers et al., 2018) using Pymol 

(The PyMOL Molecular Graphics System, 2021)(ver 2.5.4).

3. Results

3.1. ENNs utilizing domain specific amino acid features for the classification across all 
four subtypes

In this experiment, our goal was to determine if there was sufficient information represented 

in the 1120 features for reasonable classification across all four subtypes simultaneously. 

For each of the three divisions of the data (training, testing, and validation) different sets of 

10 features were identified in the best-evolved neural network during training with different 

thresholds (Table 2A). The ENN performed reasonably well in classifying subtypes based 

on functional domain amino acid physicochemical properties. Validation performance across 

subtype A1, B, C and D sequences was 87.2%, 89.5%, 91.7%, and 85.1% respectively 

(Table 2B). A box and whisker plot for the first division as a representation of performance 

is provided (Fig. 3).

3.2. ENNs to determine if the 25 features with lowest p-value differentiated subtypes

In this experiment, we compared each subtype to all of the others (e. g., subtype A1 vs 

{subtypes B, C, D}; subtype B vs. {subtypes A1, D, C}; subtype C vs. {subtypes A1, 

B, D}; and subtype D vs {subtypes A1, B, C}. t-tests were used to identify the top 25 

features with the lowest p-value that differentiated each subtype (Table 3). All significance 

values for the features shown were highly significant (p ⟨10−20). Interestingly, when each 

of the four subtypes was compared to the other three, different Nef domains for each 

comparison were considered most informative. For instance, in the comparison of subtype 

A1 vs. {B, C, D}, the majority of the features with lowest p-values (13 out of 25), were 

found in the positions associated with CD4 Downregulation. For subtype B, there was 

more variability, with a mixture of AP-2 Binding (n = 10) and Alpha Helix CD (n = 

11) domains being most discriminatory; however, AP-2 Binding was a unique feature not 

found in the lists for subtypes A, C, or D domain features. For subtype C, all 25 of the 
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top features were associated with the Alpha Helix A domain, which was not represented 

in the subtype A1, B, D discriminating features list. For subtype D, 15 of the top 25 

features were associated with the Beta-Sheet A domain and 7 top features were associated 

with the complementary Beta-Sheet B domain. It is also interesting to note that many 

Nef domains had no representation in the top features from this test (Association with 

Signaling Molecules, MHC-1 Downmodulation I (MHC-1 DM1), MHC-1 Downmodulation 

II (MHC-1 DM2), MHC1-signaling, Myristoylation, and Sh-3 Binding), indicating that only 

specific Nef domains are associated with subtype differences.

3.3. ENNs to determine if domain-specific features alone perform better than the 25 
lowest p-values

For subtype A1 vs. {B, C, D}, we used the 15 top features associated with CD4 

Downregulation identified by t-tests with p < 10−20 and provided these to a neural network 

in a 15[5]-3–1 architecture. Each of the three divisions of the data resulted in best neural 

networks with different sets of 5 input features. One feature (pI at 25 °C) was present 

in all three best neural networks, while four features (HPLC/TFA, Welling, Browne, and 

Retention at pH 2.1) were found in two out of the three best neural networks. The best 

classification by the ENN used two hydrophobicity characteristics (Welling and Browne) 

and three characteristics from the “other” category (pI at 25 °C, HPLC/TFA, and Retention 

at pH 2.1) (Fig. 4A). Using just these five features in combination, the ENN successfully 

differentiated subtype A1 from the other subtypes in training, testing, and validation with 

perfect accuracy (Fig. 4B and C). The AP-2 domain consists of only four amino acids, with 

two of the positions highly conserved among all Nef sequences. An amino acid signature 

was identified at position 1 between subtype A1 and D, where 89% of subtype A1 Nef 

sequences preserved an alanine (A) in contrast to 25% of subtype D Nef; alternatively, 58% 

of Subtype D sequences preserved an aspartic (D) or glutamic acid (E) at this position, both 

of which are strongly negatively charged amino acids. The same signature was identified 

between subtype A1 and subtype B and C, where subtype B and C preserved an asparagine 

(N) at >80% of the sequences and 65% of subtype A1 sequences preserved a threonine (T) 

(Fig. 4D).

For subtype B vs. {A1, C, D}, because AP-2 binding was considered a unique feature 

associated with the subtype, we used the 17 top features associated with AP-2 binding 

with a t-test p < 10−20 and provided these to a neural network in a 17[5]-3–1 architecture. 

Each of the three divisions of the data resulted in best neural networks with different sets 

of 5 input features. One feature (Charge Polarity) was present in all three best neural 

networks, while three features (Refractivity, Retention at pH 2.1, and Grantham) were found 

in two out of the three best neural networks. The best ENN identified the following five 

features as most discriminatory, which included two polarity characteristics (Grantham and 

Charge Polarity), two hydrophobicity characteristics (Cowan and Whittaker and Browne), 

and one characteristic based on the amino acid retention coefficient in HPLC at pH 2.1 

(Fig. 5A) and on average the best neural networks over the three splits of the data retained 

reasonable classification accuracy; however, this subtype was the most difficult of the four 

to differentiate via the ENNs, with validation experiments correctly classifying subtype B 

sequences at 91% (Fig. 5B and C). The AP-2 Binding domain is located within the Nef loop, 
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a highly unstructured and multifunctional binding domain. A variety of signature positions 

were identified between the subtypes in the AP-2 Binding domain. The most interesting, 

and ubiquitous among subtypes was position 17, where a leucine (L) appears in >50% of 

subtype B sequences; however, subtypes A1 and D maintain a glutamine (Q) at >90%, and 

subtype C a glutamine appears in 49% of sequences. Cysteines (C) appear in a majority 

of the AP-2 domain in subtype A1 at position 16 and in subtypes C and D (position 10). 

Cysteines appear less frequently in subtype B AP-2 domains, and when they do, it is in 

position 10 (Fig. 5D). This is interesting considering the unique ability of cysteines to 

participate in protein structure and folding through the formation of stable intramolecular 

and intermolecular disulfide bonds.

For subtype C vs. {A1, B, D}, we used the 45 features associated with Alpha Helix A 

domain with a t-test p < 10−20 and provided these to a neural network in a 45[5]-3–1 

architecture. Each of the three divisions of the data resulted in best neural networks with 

different sets of 5 input features. A maximum of two features (Exchange, Bull and Breese) 

were common in two out of the three best neural networks. By using three hydrophobicity 

characteristics (Rose, Bull and Breese, and Cowan), the Exchange characteristic, which is a 

categorical scale based on the frequency of amino acid substitution rates, and one categorical 

characteristic associated with amino acid surface exposure (Surface Exposure) (Fig. 6A), 

the ENN successfully differentiated subtype C from the other subtypes with validation 

tests at 98.6% (Fig. 6B and C). At position 8, 98% of subtype C sequences preserved 

a phenylalanine (F), whereas >80% of subtypes A1, B, and D preserved a histidine (H) 

(Fig. 6D). This is a rare substitution (as observed in the surface exposure and exchange 

scales). Phenylalanine (F) is strongly hydrophobic, whereas histidine (H) is hydrophilic. 

Slight alterations in Nef subtype C Alpha Helix domains have been associated with reducing 

the stability of the protein (Johnson et al., 2016).

For subtype D vs. {A1, B, C}, we used 22 features from the Beta-Sheet A domain identified 

with a t-test p < 10−20 and provided these to a neural network in a 22[5]-3–1 architecture. 

Each of the three divisions of the data resulted in best neural networks with different sets 

of 5 input features. One feature (Wilson) was found in common to best neural networks 

resulting from all three divisions, while relative mutability and charge were found in two of 

the three best neural networks. By using the following combination of features that included 

two hydrophobicity scales (Wilson and Janin), one polarity scale (Charge Conversion), one 

compositional characteristic (Relative Mutability), and one structural scale (Alpha and Chou 

Fasman) (Fig. 7A) the ENN successfully differentiated subtype C from the other subtypes 

with 89.4% accuracy (Fig. 7B and C). Only one signature amino acid was observed here, 

a glutamic acid (E) was found in 82% of subtype D sequences, whereas a lysine (K) was 

found >99% of subtype A1, B, and C sequence populations (Fig. 7D). This is considered a 

radical amino acid substitution as the amino acids are oppositely charged, differing in the 

properties of their side chains: glutamic acid (E) is acidic, and lysine (K) is basic. A key 

feature of the Nef structure is how it takes advantage of conformational changes, primarily 

through beta sheet folding in the protein core, to facilitate the recruitment of specific target 

proteins into clathrin-coated vesicles (Kwon et al., 2020). While there are a variety of forces 

that contribute to protein folding, hydrophobicity is thought to be one of the primary forces 
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(Moelbert et al., 2004). Beta-sheet changes are also associated with AP-2 Binding pocket 

formation.

4. Discussion

In this study we assembled a large number of HIV Nef genetic sequences comprising of 

four HIV subtypes and extracted structural and functional characteristics of amino acids in 

domains associated with Nef's ability to modulate cellular interactions. Using ENNs, we 

identified that Nef may modify cellular functions in a subtype-specific manner. As Nef 

proteins have a major role in establishing and maintaining infection and persist in patients 

on ART, these subtle genetic differences among subtypes may influence disease progression 

and reservoir maintenance.

The domains where we identified subtype-specific alterations in the Nef structure are 

shown (Fig. 8). Subtype A1 sequences were associated with modifications in positions 

associated with CD4 downregulation, which is comprised of four amino acids within the 

flexible AP-2 and C-terminal flexible loop. After forming a complex with AP-2, Nef 

uses these amino acids to bind the CD4 cytoplasmic tail on the cellular membrane for 

internalization (Ren et al., 2014). Interestingly, subtype B sequences were associated with 

alterations in additional positions in the AP-2 Binding domain, which could impact CD4 

internalization efficiency via a different mechanism. While CD4 binding is a direct means 

of Nef to remove CD4, highly efficient AP-2 binding can result in internal folding of 

the cell wall, generating endosomes containing both CD4 and SERINC5, which are then 

shuttled to lysosomes for degradation (Buffalo et al., 2019). Nef's ability to successfully 

downregulate CD4 and SERINC5 is associated with AP-2 and AP-1 binding at the cell 

wall and trans-Golgi-network (TGN) respectively, however with differing impacts. Without 

Nef-associated down-regulation of CD4, viral release is impacted, and super-infection is 

more likely (Lindwasser et al., 2007). Furthermore, if SERINC5 persists on cell surfaces, it 

becomes incorporated into viral particles, making them less infective (Staudt and Smithgall, 

2020; Chai et al., 2021).

One of Nef's key features is that it can deviate from its original structure to facilitate 

binding processes. The folding of Nef is accomplished through complex mechanisms in 

Nef's core, including the alpha helix and beta sheet domains (Buffalo et al., 2019). Subtype 

C signatures in the alpha helix domain are associated with reduced MHC-1 trafficking from 

the TGN (Mangasarian et al., 1999). Subtype D signatures mapped to the Beta-Sheet A, 

another structurally conserved domain within Nef sequences that is important for successful 

protein folding and downstream binding of AP-1 and AP-2 and down-regulation of MHC-1. 

Nef's fold-dependent interaction with AP-1 molecules is also required for the recruitment of 

specific target proteins into clathrin-coated vesicles (Kwon et al., 2020).

5. Conclusions

Nef is a complex disease regulator with multiple functions. Nef is the first HIV protein 

that is produced in abundance (Pereira and daSilva, 2016) and also the first HIV protein 

to display host-specific adaptations (Lamers et al., 2015). The finding that Nef protein 

Lamers et al. Page 10

Infect Genet Evol. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



persists in tissues absent a measurable viral load, adds additional support that Nef may be 

a driver of disease-associated processes under ART therapy (Nolan et al., 2022; Rose et al., 

2016; Duette et al., 2022; Ferdin et al., 2018). In fact, one study found that Nef derived 

from exosomes from patients with HIV-associated dementia could increase the secretion of 

beta-amyloid in bystander cells, thus providing even more direct evidence of the Nef-disease 

correlation (Khan et al., 2016).

Only a few groups have assessed how naturally occurring Nef subtype diversity may 

influence its ability to modulate signaling. Using a transient expression assay, one study 

revealed that SERINC internalization function varied significantly among subtypes in 339 

HIV Nef sequences from subtypes A1, B, C, and D (Jin et al., 2020). Interestingly, in this 

study, subtype B demonstrated the least significant difference in SERINC internalization to 

any of the other three subtypes. We also found that subtype B Nef had the most variability 

in terms of the domains and features relative to the other subtypes. Another inter-subtype 

study used CD4 transfection assays of 360 Nef sequences followed by flow cytometry to 

assess CD4 and HLA class 1 surface levels (Mann et al., 2013). CD4 downregulation was 

marginally higher in subtype B than subtypes A1, C, and D; however HLA downregulation 

significantly varied among all subtypes, with subtype B displaying the greatest ability to 

downregulate, followed by subtypes D/A1, and then C. Finally, one other inter-subtype 

study demonstrated subtype B and D Nef clones were more successful in inhibiting T-cell 

receptor-mediated NFAT signaling when compared to subtypes A1 and C Nef clones 

(Naidoo et al., 2019). This difference alone could impact humoral immune responses, 

immunological tolerance, and immune metabolism regulation (Vaeth and Feske, 2018).

These studies complement ours by providing additional evidence that Nef subtypes vary 

in their ability to modulate the immune system, which may contribute to the variation in 

the pathogenicity of the subtypes. Further functional studies like the ones just mentioned 

using cultured cells, and studies utilizing animal models, will have to be performed to 

explore and validate the subtype distinctions in nef found by our ENN analysis. Continued 

functional characterization of different HIV-1 subtypes may improve our understanding of 

viral pathogenesis and spread and provide insights to improve anti-Nef therapies under 

consideration.
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Fig. 1. 
Data flow for two data classifications systems (A and B) using evolved neural networks. 

Each classification system had essentially four stages, 1) sequence identification, domain 

assignment, calculation of features for all domains, 2) design of evolved neural networks 

(ENNs) through training, testing and validation sets, in triplicate with random sampling, 

3) classification of individual subtype (A) or classification of one subtype relative to all 

other subtypes (B). In classification system A, we determined that sufficient information 

was present in domain-specific regions to adequately predict each subtype using an ENN 

approach. The 10 features that identify each subtype and their performance can be found 

in Tables 2A&B. In classification system B, we determined via t-tests that each subtype 

had signal in a specific domain that differentiated it from the other subtypes (Table 3). 
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We validated this assumption using ENNs and the top 25 features associated with each 

subtype-specific domain with validation scores >86% (Table 4).
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Fig. 2. 
SeqLogo consensus sequence showing Nef variation among subtypes and functional 

domains studied. The image represents the consensus alignment of 1628 sequences from 

HIV subtypes A, B, C, and D. The height of each 1-letter amino acid code correlates with its 

presence in the aligned set of sequences. Amino acids are colored by hydrophobicity value, 

where red is the most hydrophobic and blue is the most hydrophilic.
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Fig. 3. 
Performance of evolved neural networks on dataset 1 for subtype classification over all 

subtypes. Performance is shown graphically for training (A), testing (B), and validation (C) 

with the four subtypes A1 through D on the x-axis and the neural network output prediction 

on the y-axis from 0 to 3 representing the four classes.
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Fig. 4. 
Subtype A and CD4 downregulation. A) Box plots showing the ranges of the 5 features 

used by ENNs for classification. B) Box plot showing training, testing, and validation 

ENNs using the top 25 features for CD4 downregulation. C) Cross tables of predicted vs. 

actual ability of ENN to identify subtypes using features applied to functional domains. 

D) Comparative signature pattern analysis (VESPA) among subtypes over the subtype-

distinguishing domain. Only the domain positions where a > 50% difference appeared 

between the background (subtype A1) and query (subtype B, C, D) occurred are shown. 

Colored headings indicate the top five feature groups used by the ENN within the CD4 

downregulation domain with yellow = hydrophobicity scale; green = HPLC or “other” scale. 

The absolute score for each amino acid for each feature scale is shown. Red amino acids 

indicate the background data set (subtype A1) and black values indicate the query data for 

subtypes B, C, and D. Gray boxes indicate the query and the background sequences agree at 
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the specified position. Values in bold indicate that the amino acid occurred >80% of the time 

in the specified position.
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Fig. 5. 
Subtype B and AP2 binding. A) Box plots showing the ranges of the 5 features used by 

ENNs for classification. B) Box plot showing training, testing, and validation ENNs using 

the top 25 features for AP2 binding. C) Cross tables of predicted vs. actual ability of ENN 

to identify subtypes using features applied to functional domains. D) Comparative signature 

pattern analysis (VESPA) among subtypes over the subtype-distinguishing domain. Only 

the domain positions where a > 50% difference appeared between the background (subtype 

A1) and query (subtype B, C, D) occurred are shown. Colored headings indicate the top 

five feature groups used by the ENN within the CD4 downregulation domain with yellow = 

hydrophobicity scale; green = HPLC or “other” scale; orange = polarity scale. The absolute 

score for each amino acid for each feature scale is shown. Red amino acids indicate the 
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background data set (subtype A1) and black values indicate the query data for subtypes 

B, C, and D. Gray boxes indicate the query and the background sequences agree at the 

specified position. Values in bold indicate that the amino acid occurred >80% of the time in 

the specified position.
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Fig. 6. 
Subtype C and alpha-helix A. A) Box plots showing the ranges of the 5 features used by 

ENNs for classification. B) Box plot showing training, testing, and validation ENNs using 

the top 25 features for alpha-helix A. C) Cross tables of predicted vs. actual ability of ENN 

to identify subtypes using features applied to functional domains. D) Comparative signature 

pattern analysis (VESPA) among subtypes over the subtype-distinguishing domain. Only 

the domain positions where a > 50% difference appeared between the background (subtype 

A1) and query (subtype B, C, D) occurred are shown. Colored headings indicate the top 

five feature groups used by the ENN within the CD4 downregulation domain with yellow = 

hydrophobicity scale; green = HPLC or “other” scale; blue = structural scale. The absolute 

score for each amino acid for each feature scale is shown. Red amino acids indicate the 

background data set (subtype A1) and black values indicate the query data for subtypes 

B, C, and D. Gray boxes indicate the query and the background sequences agree at the 
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specified position. Values in bold indicate that the amino acid occurred >80% of the time in 

the specified position.
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Fig. 7. 
Subtype D and beta sheet A. A) Box plots showing the ranges of the 5 features used by 

ENNs for classification. B) Box plot showing training, testing, and validation ENNs using 

the top 25 features for beta sheet A. C) Cross tables of predicted vs. actual ability of ENN 

to identify subtypes using features applied to functional domains. D) Comparative signature 

pattern analysis (VESPA) among subtypes over the subtype-distinguishing domain. Only 

the domain positions where a > 50% difference appeared between the background (subtype 

A1) and query (subtype B, C, D) occurred are shown. Colored headings indicate the top 

five feature groups used by the ENN within the CD4 downregulation domain yellow = 

hydrophobicity scale; green = HPLC or “other” scale; purple = composition scale. The 

absolute score for each amino acid for each feature scale is shown. Red amino acids indicate 

the background data set (subtype A1) and black values indicate the query data for subtypes 

B, C, and D. Gray boxes indicate the query and the background sequences agree at the 

specified position. Values in bold indicate that the amino acid occurred >80% of the time in 

the specified position.
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Fig. 8. 
3D Nef protein structure highlighting subtype-specific domains identified via ENNs. 

Subtypes A and B Nef sequence populations have unique features in domains directly 

associated in interactions with CD4 and AP2. Subtypes C and D have unique domain 

features associated with Nef's structure, which could result in protein conformation and 

changes in the inter- or extracellular Nef interactions.
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Table 1

Physicochemical and Categorical Scales (Features) Grouped by Class.

Class Feature

Size, Shape, Structure
(n = 25)

Molecular Weight
Beta Turn
Coil
Average Flexibility
% Accessible Residues
Avg. Area Buried
Recognition Factors
Beta Reverse Turn
Bulkiness
Beta-sheet Levitt
Beta Strand
Volume
Mol. Frac. Of Buried Res.
Beta Sheet

2D Propensity
Mass Membership Class
Alpha Helix Levitt
Antiparallel Beta Strand
Alpha Chou and Fasman
Parallel Beta
Surface Exposure
Beta Chou and Fasman
Transmembrane
Alpha Helix
Chou and Fasman

Polarity
(n = 6)

Polarity
Polarity 2
Charge (+1 for K,R; −1 for D,E)

Grantham
Charge Polarity
Charge Conversion Amino Acid Composition

Composition
(n = 3)

Amino Acid Composition
Relative Mutability

Swiss Prot

Hydrophobicity
(n = 27)

Abraham and Leo
Roseman
Eisenberg
Fauchere
Tanford
Cowan and Whittaker
Cowan
Meek
Black and Mould
Kyte and Doolittle
Bull and Breese
Wolfenden

Hopp and Woods
Janin

Welling
Parker
Aboderin
Miyazawa and Jernigan
Sweet and Eisenberg
Guy
Wilson
Manavalan and Ponnuswamy
Rao and Argos
Chothia
Browne
Rose
Hydrophobicity Membership
Class

HPLC and Other
(n = 9)

Retention at pH 2.1
HP Scale
pKa Amine
HPLC/TFA
Exchange

pKa Alpha
Carboxylate
pI at 25 °C
Refractivity
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Table 2A

Features and Thresholds Used for the Three Separate Subtype Classification Experiments (all in the same 

ENN).

Dataset Thresholds on
Output Node

Sub-Selected Input Features

1 0 (A1) = x < 0.8; 1 (B) = 0.8 ≤ x < 1.3; 2 (C) = 1.3 ≤ 
x < 2.2; 3 (D) = x ≥ 2.2

α-helix B (Tanford); AP2 Binding (Polarity 2); α-helix A (Cowan); AP2 
Binding (Retention at pH 2.1); CD4-II (HPLC/TFA); CD4-I (Charge); 
β-sheet B (Wilson); β-sheet A (Charge); β-sheet A (Wilson); β-sheet A 
(Charge Polarity)

2 0 (A1) = x < 0.9; 1 (B) = 0.9 ≤ x < 1.25; 2 (C) = 1.25 
≤ x < 2.2; 3 (D) = x ≥ 2.2

CD4-II (Coil); AP2 Binding (Retention at pH 2.1); α-helix A (Cowan); 
β-sheet A (Charge); α-helix A (pKA Alpha); β-sheet B (Wilson); β-sheet 
A (Exchange); AP2 Binding (Aboderin); AP2 Binding (Polarity 2); CD4-I 
(Retention at pH 2.1)

3 0 (A1) = x < 0.8; 1 (B) = 0.8 ≤ x < 1.3; 2 (C) = 1.3 ≤ 
x < 2.2; 3 (D) = x ≥ 2.2

CD4-I (Charge); α-helix A (Roseman); α-helix A (Wilson); α-helix 
A (Cowan); β-sheet A (Charge); AP2 Binding (Polarity 2); α-helix A 
(Wolfenden); CD4-II (Retention at pH 2.1); β-sheet B (Coil); CD4-II 
(Wilson)
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Table 2B

Example Performance of Evolved Neural Networks performance over all subtypes. Performance for A) 

training, B) testing, and C) validation sets are shown.

Training Actual

Predicted

Subtype A Subtype B Subtype C Subtype D

Subtype A 90.7% 1.8% 0.2% 1.2%

Subtype B 6.7% 94.0% 1.9% 8.0%

Subtype C 2.5% 3.9% 90.0% 1.6%

Subtype D 0.0% 0.2% 7.8% 89.1%

Testing Actual

Predicted

Subtype A Subtype B Subtype C Subtype D

Subtype A 89.6% 2.2% 0.0% 1.6%

Subtype B 9.1% 93.8% 2.7% 7.1%

Subtype C 0.9% 3.9% 90.9% 1.6%

Subtype D 0.0% 0.0% 6.4% 89.7%

Validation Actual

Predicted

Subtype A Subtype B Subtype C Subtype D

Subtype A 87.2% 6.0% 0.0% 2.1%

Subtype B 10.2% 89.5% 2.8% 6.4%

Subtype C 2.5% 4.5% 91.7% 6.4%

Subtype D 0.0% 0.0% 0.5% 85.1%
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Table 3

Top 25 Features by Subtype that Separated Classes. All significance values were p < 10−20.

Subtype A1 Subtype B

Domain Feature Domain Feature

Beta Sheet B Coil Nef Loop Grantham

CD4 Downregulation Charge AP2 Binding Retention

CD4 Downregulation Charge Conversion Alpha CD Guy

CD4 Downregulation Welling AP2 Binding Grantham

CD4 Downregulation Retention AP2 Binding Hplctfa

CD4 Downregulation Abraham-Leo AP2 Binding Meek

CD4 Downregulation Wilson AP2 Binding Browne

CD4 Downregulation Cowan Alpha CD Rose

Beta Sheet B Wilson AP2 Binding Abordin

Alpha Helix B Tanford Alpha CD Average Flex

Alpha Helix B Number of Codons AP2 Binding Roseman

Nef Loop Parker AP2 Binding Refractivity

CD4 Downregulation Accessible Residues Nef Loop Hplctfa

Beta Sheet B Parallel Beta Alpha CD Ave. Area Buried

Alpha Helix B Eisenberg Alpha CD Accesible Residues

Cytokines Binding Eisenberg Alpha CD Charge

Beta Sheet B Manavalan AP2 Binding Cowan Whittaker

Nef Loop Wilson AP2 Binding Wolfenden

Nef Loop Cowan Whittaker Alpha CD Polarity

CD4 Downregulation Janin Alpha Helix B PI

CD4 Downregulation Welling Alpha CD Beta Sheet Levitt

CD4 Downregulation Browne Alpha CD Abrahan-Leo

CD4 Downregulation 2D Propensity Alpha CD Janin

CD4 Downregulation ChouFausman Alpha CD Black-Mould

Subtype C Subtype D

Domain Feature Domain Feature

Alpha Helix A Guy Beta Sheet A Accessible residues

Alpha Helix A PKA Alpha Beta Sheet A Welling

Alpha Helix A Exchange Beta Sheet A Janin

Alpha Helix A Hydrophobicity Beta Sheet A Charge Conversion

Alpha Helix A Black Mould Beta Sheet B Recognition Factors

Alpha Helix A Surface Exposure Beta Sheet A Charge Conversion

Alpha Helix A Chothia Beta Sheet A PI

Alpha Helix A Cowan Beta Sheet A Cowan

Alpha Helix A Eisenberg Beta Sheet A Wilson

Alpha Helix A BullBreese Beta Sheet B PI

Alpha Helix A Wilson Beta Sheet A Abraham-Leo
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Subtype C Subtype D

Domain Feature Domain Feature

Alpha Helix A Aboderin Beta Sheet A Renetion

Alpha Helix A Abraham-Leo Beta Sheet B PKA Alpha

Alpha Helix A Meek Beta Sheet A Relative Muatability

Alpha Helix A Tanford Beta Sheet B Charge

Alpha Helix A Roseman Beta Sheet B Charge Conversion

Alpha Helix A Miyazawa Beta Sheet A Volume

Alpha Helix A Fauchere Beta Sheet A Charge Polarity

Alpha Helix A Charge Polarity Alpha CD PKA Alpha

Alpha Helix A Welling Beta Sheet B Alpha Chou Fasman

Alpha Helix A Retention Beta Sheet A Alpha Chou Fasman

Alpha Helix A Parker Beta Sheet A Alpha Helix

Alpha Helix A Cowan Whittaker Alpha CD PI

Alpha Helix A HP Scale Beta Sheet B Volume
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Table 4

(A-D). Average Subtype Specific Classification Accuracy across all Subtypes. A) Subtype A1 vs. Subtype 

(B,C,D), B) Subtype B vs. Subtype (A1,C,D). C) Subtype C vs. Subtype (A1,B,D), D) Subtype D vs. Subtype 

(A1,B,C).

Subtype A1 Subtype (B,C,D)

Train 92% 79%

Test 91% 80%

Validation 86% 80%

Subtype B Subtype (A1,C,D)

Train 92% 83%

Test 89% 84%

Validation 90% 89%

Subtype C Subtype (A1,B,D)

Train 100% 90%

Test 98% 92%

Validation 98% 89%

Subtype D Subtype (A1,B,C)

Train 91% 100%

Test 92% 99%

Validation 89% 100%
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