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Abstract 
Memory represents a major bottleneck in modern embedded systems. Traditionally, memory orga­
nizations for programmable systems assumed a fixed cache hierarchy. With the widening processor­
memory gap, more aggressive memory technologies and organizations have appeared, allowing 
customization of a heterogeneous memory architecture tuned for the application. However, such 
a processor-memory co-exploration approach critically needs the ability to explicitly capture het­
erogeneous memory architectures. We present in this report the mechanism for describing memory 
subsystems in EXPRESSION, an Architecture Description Language(ADL)for processor-memory 
systems. The memory subsystem for the retargetable simulator can be generated from the de­
scription automatically. We have demonstrated the technique by generating memory subsystems 
for C6x, RI OK, Itanium and Power PC architectures. We present a set of experiments using our 
memory aware ADL Language to drive the exploration of the memory subsystem for the TIC6211 
processor architecture, demonstrating a range of cost and peiformance attributes. 
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1 

The advent of System-on-Chip (SOC) technology has resulted in a paradigm shift for the de­
sign process of embedded systems employing programmable processors with custom hardware. 
Modem system-level design libraries frequently consist of Intellectual Property (IP) blocks such 
as processor cores that span a spectrum of architectural styles, ranging from traditional DSPs and 
superscalar RISC, to VLIW and hybrid ASIPs. Furthermore, SOC technologies permit the incorpo­
ration of novel on-chip memory organizations (including the use of on-chip DRAM, frame buffers, 
streaming buffers and partitioned register files), allowing a wide range of memory organizations 
and hierarchies to be explored and customized for the specific embedded application. 

Recent work on language-driven Design Space Exploration (DSE) ([1], [3], [4], [5], [6], [10], 
[27], [28], [30]), uses Architectural Description Languages (ADL) to capture the processor archi­
tecture, generate automatically a software toolkit (including compiler, simulator, assembler) for 
that processor, and provide feedback to the designer on the quality of the architecture. While these 
approaches extensively address processor features (such as instruction set, number of functional 
units, etc.) to our knowledge no previous approach allows explicit capture of a customized, het­
erogeneous memory architecture, and the attendant tasks of generating a software toolkit that fully 
exploits this memory architecture. In this report we show how to describe memory subsystem in 
EXPRESSION [1 O] ADL. A Memory aware compiler and simulator is generated automatically 
from the EXPRESSION description of processor and memory subsystem. , 

Section 2 outlines our approach and the overall flow of our environment. Section 3 surveys the 
contemporary memory architectures. Section 4 presents the memory access abstractions necessary 
to describe variety of memory configurations and describes the primitives used in EXPRESSION 
ADL to describe the memory subsystem abstractions. Section 5 presents how to describe the C6x 
memory subsystem using these primitives. Section 6 describes implementation details. Section 
7 illustrates memory architecture exploration using experiments on the TIC6211 processor, with 
varying memory configurations to trade-off cost versus performance. Section 8 concludes the 
report. 

2 

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration 
(DSE) scenario, the designer starts by selecting a set of components from a processor IP library 
and memory IP library. Our EXPRESSION Architectural Description Language (ADL) descrip­
tion (containing a mix of such IP components and custom blocks) is then used to generate the in­
formation necessary to target both the compiler and the simulator to the specific processor-memory 
system. 

Traditionally, the memory subsystem was transparent 1 to the processor and the software toolkit. 
While the processor pipeline was captured in detail to allow aggressive scheduling in the compiler, 
the memory subsystem pipeline was not explicitly captured and exploited by the compiler. How-

1i.e., assumed an implicitly defined memory architecture, e.g., a fixed cache hierarchy 
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ever, by describing the pipelining and parallelism available in recent memory organizations, there 
is tremendous opportunity for the compiler to generate performance and power improvements. 
Indeed, as shown in Figure 1, our previous work on RTGEN [9] (Reservation Tables generation 
algorithm) and TIMGEN [7] (Timing Generation algorithm) already generates the timing informa­
tion for both the processor and memory subsystem pipelines starting from the ADL description of 
the memory. The compiler uses this detailed timing information to hide the latency of the lengthy 
memory operations in the presence of efficient memory access modes (e.g., page/burst modes), 
and cache hierarchies [8], to generate significant performance improvements. Such aggressive op­
timizations are only possible due to the explicit representation of the detailed memory architecture. 

We present here the memory subsystem description in EXPRESSION, along with the abstrac­
tions that allow capturing a set of heterogeneous memory modules, and connecting them to form 
customized memory architectures. Furthermore, in a DSE environment it is crucial to provide the 
designer with detailed feedback on the choices made in the processor and memory architectures. 
In [24] we presented our cycle-accurate structural simulator generation approach for the processor 
descriptions in EXPRESSION. In this paper we present the memory simulator generation (shown 
shaded in Figure 1) that is integrated into the SIMPRESS simulator, allowing for detailed feedback 
on the memory subsystem architecture and its match to the target applications. 
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Processor 
IP Library 

Figure 1. The Flow in our approach 

Modern processors cover a wide spectrum of architectural styles, ranging from traditional DSPs 
and superscalar RISC, to VLIW and hybrid ASIPs. Each architectural style comes with a wide 
variety of memory configurations. In the following, we review representative architectures for 
each class. 
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Motorola 56K [25] and TI C5x [29] belong to traditional area. Motorola 56K has two data 
paths. 2 24-bit data registers in each path (xO, xl, yO, and yl). Register xis the concatentation 
of xl and xO and can store 48 bits of an accumulator. Likewise for register y. DSP56002 [13] 
permits simultaneous accesses to on-chip program and two data memories (Harvard architecture). 
It has 512 x 24-bit on-chip Program RAM, 64 x 24-bit bootstrap ROM, two 256 x 24-bit on­
chip data RAMs, two 256 x 24-bit on-chip data ROMs containing sine, A-law and µ-law tables. 
External memory expansion is done using 16-bit address and 24-bit data buses. Bootstrap loading 
is possible from external data bus, Host Interface, or Serial Communications Interface. TI C5x 
[29] has on-chip 16 x 1056 dual access RAM, variable size on-chip single access RAM (0 to 16 x 
9K), and variable size on-chip ROM (16x2K to 16x32K) with bootloading facility in most of the 
configurations. 

TI C6x [22], MAPlOOOA [2] and Starcore [16] lie in area. TIC6x [22] family 
comes with on-chip configurable SRAM and off-chip DRAM with page/burst access modes. They 
support DMA and parallel data transfers. They differ in terms of cache support. C6201 [22] and 
C6202 [22] does not have any data cache whereas C62 l 1 [22] and C6711 [22] have 2 levels of data 
cache. MAPlOOA has data cache and 4K SRAM. It supports a data streamer which enables on chip 
memory modules to route data from the main memory to the CPU. It has 64 address generation 
channels and 64 FIFO pointers. In Starcore, memory is external to the SC140 core, and can be 
configured in many ways, e.g., 32K groups on-chip unified data/program memory and no data 
cache. Memory accessed through 2 data buses (XDBA, AXDBB) and one program bus(PDB). 

Trimaran [30], IA-64 [11] and PA 8500 [15] belong to the EPIC category. They come with 
prefetch capabilities to bring the data earlier into the cache, to insure a hit. They have multiple 
levels of caches. IA-64 supports data speculation which moves loads earlier, possibly past store 
instructions, breaking dependencies. ALAT table stores 32 such simultaneous loads which need to 
be checked for validness. 

Superscalar processors like Motorola Altivec [18] and SUN UltraSparc III [21] allow cache 
prefetches. In UltraSparc, on-chip memories allow a software-controlled cache behavior. They 
support multiple level of data caches. Alpha 364 has victim buffer (sometimes called cache) for 
better cache performance. PowerPC [17] and RlOOOO [20] processors belongs to this category. 

RISC processors like StrongARM [12], NEC V830 [14] and QED Alpine RM57x [19] have on 
chip SRAM _and off-chip DRAM. QED Alpine RM57x and NEC V380 have write cache buffer 
and DMA support. StrongARM has prefetch buffer and read buffers. The four 32 byte read buffers 
are loaded explicitly by software. 

Table 1 summarizes the memory features for different architectures. Each row of the table cor­
responds to particular memory feature. Each column shows how many of the memory features are 
supported by a particular processor. An entry in this table, TAB [F, A], represents the behavior of an 
architecture A towards an memory feature F. If an entry is marked x then that feature is supported 
by that architecture. If an entry is blank then that feature is not supported by that architecture. 
An entry containing and integer number n means that features is supported n times. For example, 
the table entry with memory feature Levels of Data Cache (second row) and processor name IA64 
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(column 14) has value 3, This implies IA-64 has 3 levels of data cache. The ? mark in an entry 
means that it is not obvious whether it supports or not. Motorola 56K and TI C5x are not shown in 
the table since they do not have any of the memory features shown in the table. 

Architecture C6201 C6211 MAP SC AV U3 PA Alpine V830 SA RlOK IA64 

C6711 
Levels of 0 3 1 0 2 2 2 0 1 2 2 

Data Cache 
cache prefetch x x x x 

cache hints x 
On-chip SRAM x x x x x x x x 

configurable x x 
SRAM size 

Off-chip DRAM x x x x x x x x x 
page/burst modes x x ? ? x 

Write Cache x x x x 
Buffer 

Victim Buffer 
Stack ' 
FIFO x 

Frame buffer 
DMA x x x x x 

#transfers 2 2 ? 2 ? 2 2 1 
in parallel 
pipelining ? x x 

Table 1. Memory features of different architectures. c6x: TI C6x, MAP: MAP 1 OOOA, SC: Starcore, 
AV.· MotorolaAltivec, U3: SUN UltraSparc III, PA: PA 8500, Alpine: QED Alpine RM57x, v830: NEC 
V830, SA: StrongArm, a.364: Alpha 364 

4 of memory subsystem 

3 

x 
x 

2 

? 

We describe the memory subsystem in EXPRESSION using a set of abstractions, representing 
the different capabilities of the memory modules. Each module in the memory subsystem is char­
acterized by the following two capabilities: storage capability (allowing to store a set of data) and 
transfer capability (permitting the unit to transfer data between different modules). For instance, 
caches represent a fast storage, controlled dynamically by the hardware, which contains both a stor­
age capability (the cache data and tag blocks) and a transfer capability (when a tag is not found, 
it initiates a cache line fill from the next level). Similarly, a stream buffer contains a storage capa­
bility (the FIFO queue containing the data) and a transfer capability (when it recognizes a stream 
pattern in the sequence of memory accesses, it starts prefetching the data from the next level of 
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the memory hierarchy). Alternatively, a DMA contains only a transfer capability (which transfers 
the block of data from the source address to the destination address). The storage capability is 
characterized by the organization of the storage (e.g., word size, line size, number of lines), while 
the transfer capability is characterized by the timings and resources used. 

The connectivity between the memory modules is represented explicitly, as a netlist. The 
pipelining and parallelism available in the memory subsystem is described using the pipeline paths 
and data transfer paths in EXPRESSION [9]. 

Table 2 shows the primitives used in the memory subsystem description. The first column rep­
resents the parameter, the second column represents the possible values for that parameter, and the 
third column describes the meaning of the parameter. 

Parameter Values Operation 
STORAGE_SECTION Marks the start of memory 

subsystem description 
TYPE SRAM, DRAM, REGFILE, DCACHE Type of the component 

TYPE (Cont.) ICACHE, DMA, WRITE_BUFFER, Type of the component 
TYPE (Cont.) VICTIMJ3UFFER, STREAM_BUFFER Type of the component 
TYPE (Cont.) CONNECTIVITY Type of the component 

SIZE positive integer Number of storage locations 
WIDTH positive integer Num of bits in each storage 

ADDRESS_RANGE two positive int(start and end address) Range of addresses 
WORDSIZE positive integer Number of bits in a word 
LINESIZE positive integer Num of words in a cache line 

NUM.LINES positive integer Number of lines in a cache 
ASSOCIATIVITY positive integer Associativity of the cache 

REPLACEMENT _POLICY LRU,FIFO Replacement policy for the cache 
WRITE_POLICY WRITE_BACK, WRITE_THROUGH Write policy for the cache 

ENDIAN LITTLE, BIG Endianness 
READ.LATENCY positive integer Time for reading 

WRITE_LATENCY positive integer Time for writing 
NUMJ3ANKS positive integer Number of banks in the 

memory module 
ACCESS.MODE PAGE, BURST, NORMAL Access modes supported 

NUM_PARALLEL_READ positive integer Num of parallel reads per cycle 
NUM_PARALLEL_ WRITE positive integer Num of parallel writes per cycle 
READ_WRITE_CONFLICT 0,1 1 means Read/Write conflict 

for same bank at same time 
PIPELINE pipeline stages describes the pipeline paths 

ACCESS.MODES page, burst, pipelined etc. memory access modes 

Table 2. Memory subsystem primitives 
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The memory subsystem is described within STORAGE_SECTION of the EXPRESSION de­
scription. In the following sample STORAGE_SECTION description first one is for register file 
(RFA) description, second one is scratch pad SRAM description, third one is for L 1 CACHE 
description and final one is main memory description. Note that RFA, ScratchPad, Ll and Main­
Memory are names of the components. They are not parameters. Connections between memory 
modules can be described structurally as a netlist in terms of ports and connections or behaviorally 
as shown in the example below in terms of list of storage connections. 

(STORAGE_SECTION 
(RFA 

(TYPE REGFILE) 
(SIZE 32) 
(WIDTH 32) 

(ScratchPad 

(Ll 

(TYPE SRAM) 
(SIZE 16384) 
(WIDTH 8) 
(ADDRESS_RANGE 0 16383) 

(TYPE DCACHE) 
(WORDSIZE 64) 
(LINESIZE 32) 
(NUM_LINES 1024) 
(ASSOCIATIVITY 2) 
(REPLACEMENT_POLICY LRU) 
(WRITE_POLICY WRITE_BACK) 
(LEVEL 1) 
(ADDRESS_RANGE 0 32K) 
(NEXT_LEVEL 2) 

(MainMemeory 

(Connect 

(TYPE DRAM) 
(SIZE 4M) 

(WIDTH 8) 
(LEVEL 3) 

(TYPE CONNECTIVITY) 
(STORAGE_CONNECTIONS (Ll, MainMemory)) 

5 C6x Memory Subsystem Description 

We illustrate our Memory-Aware Architectural Description Language (ADL) using the Texas 
Instruments TIC6211 VLIW DSP processor that has several novel memory features. 

Figure 2 shows the example architecture, containing an off-chip DRAM, an on-chip SRAM, 
and two levels of cache (Ll and L2), attached to the memory controller of the TIC6211 proces­
sor 2 . TI C6211 is an 8-way VLIW DSP processor with a deep pipeline, composed of 4 fetch 
stages (PG, PS, PR, PW), 2 decode stages (DP, DC), followed by the 8 functional units. The Dl 

2For illustration purposes we present only the DI Id/st functional unit of the TIC6211 processor, and we omitted 
the External Memory Interface unit from the figure 

8 



load/store functional unit pipeline is composed of Dl_El, Dl_E2, and the 2 memory controller 
stages: MemCtrl_El and MemCtrl_E2. 

The Ll cache is a 2-way set associative cache, with a size of 64 lines, a line size of 4 words, 
and word size of 4 bytes. The replacement policy is Least Recently Used (LRU), and the write 
policy is write-back. The cache is composed of a TAG_BLOCK, a DATA_BLOCK, and the cache 
controller, pipelined in 2 stages (LLS 1, LLS2). The cache characteristics are described as part of 
the STORAGE_SECTION in EXPRESSION [10]: 

(Ll_CACHE 
(TYPE DCACHE) 
(NUM_LINES 64) 
(LINESIZE 4) 
(WORDSIZE 4) 
(ASSOCIATIVITY 2) 
(REPLACEMENT_POLICY LRU) 
(WRITE_POLICY WRITE_BACK) 
(SUB_UNITS TAG_BLOCK DATA_BLOCK Ll_Sl L1_S2) 

The memory subsystem instruction set description is represented as part of the Operation Section 
in EXPRESSION [10]: 

(OPCODE LDW (OPERANDS (SRC1 reg) (SRC2 reg) (DST reg)) 

The internal memory subsystem data transfers are represented explicitly in EXPRESSION as 
operations. For instance, the Ll cache line fill from L2 triggered on a cache miss is repre­
sented through the LDW _LLMISS operation, with the memory subsystem source and destination 
operands described explicitly: 

(OPCODE LDW_Ll_MISS (OPERANDS (SRCl reg) (SRC2 reg) (DST reg) 
(MEM_SRC1 Ll_CACHE) (MEM_SRC2 L2_CACHE) (MEM_DSTl Ll_CACHE)) 

This explicit representation of the internal memory subsystem data transfers (traditionally not 
present in ADLs) allows the designer to reason about the memory subsystem configuration. Fur­
thermore it allows the compiler to exploit the organization of the memory subsystem, and the 
simulator to provide detailed feedback on the internal memory subsystem traffic3. 

The pipelining and parallelism between the cache operations is described in EXPRESSION 
through PIPELINE_FATHS [10]. Pipeline Paths represent the ordering between pipeline stages 
in the architecture (represented as bold arrows in Figure 2). For instance, a load operation to a 
DRAM address traverses first the 4 fetch stages (PG, PS, PR, PW) of the processor, followed by 
the 2 decode stages (DP, DC), and then it is directed to the load/store unit Dl. Here it traverses 
the Dl_El and Dl_E2 stages, and is directed by the MemCtrl_El stage to the Ll cache, where it 
traverses the Ll _S 1 stage. If the access is a hit, it is then directed to the Ll _S2 stage, and the data is 
sent back to the MemCtrl_El and MemCtrl_E2 (to keep the figure simple, we omitted the reverse 
arrows bringing the data back to the CPU). Thus the pipeline path traversed by the example load 
operation is: 

3Note that we do not modify the processor instruction set, but rather represent explicitly operations which are 
implicit in the processor and memory subsystem behavior. 
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(PIPELINE PG, PS, PR, PW, DP, DC, Dl_El, Dl_E2, MemCtrl_El, 
Ll_Sl, Ll_S2, MemCtrl_El, MemCtrl_E2) 

Even though this example pipeline path is flattened, the pipeline paths in EXPRESSION are 
described in a hierarchical manner. In case of an L 1 miss, the data request is redirected from 
Ll_S 1 to the L2 cache controller, as shown by the pipeline path (the bold arrow) to L2 in Figure 2. 

L2 CACHE 

R•~\~lor I DATA I 

RFA 
I TAGS I 

L2_CTRL 

DRAM 

NA DRAM_CTRL LPMR 

Figure 2. Sample Memory Architecture for the TIC6211 

The L2 cache is 4-way set associative, with a size of 1024 lines, and line size of 8 words. The 
L2 cache controller is non-pipelined, with a latency of 6 cycles: 

(L2_CTRL (LATENCY 6)) 

During the third cycle of the L2 cache controller, if a miss is detected it is sent to the off-chip 
DRAM. The DRAM module is composed of the DRAM data block and the DRAM controller, 
and supports normal, page-mode and burst-mode accesses. A normal access starts with a row 
decode, where the row part of the address is used to select a particular row from the data array, 
and copy it into the row buffer. During the column decode, the column part of the address is used 
to select a particular element from the row buffer and output it. During the precharge, the bank is 
deactivated. In a page-mode access, if the next access is to the same row, the data can be fetched 
directly form the row buffer, omitting the column decode and precharge operations. During a burst 
access, consecutive elements from the row buffer are clocked out on consecutive cycles. Both 
page-mode and burst-mode accesses, when exploited judiciously generate substantial performance 
improvements [7]. The timings of each such access mode is represented using the pipeline paths 
and LATENCY constructs. For instance, the normal read access (NR), composed of a column 
decode, a row decode and a precharge, is represented by the pipeline path: 

(PIPELINE COL_DEC ROW_DEC PRECHARGE) 

(COL_DEC (LATENCY 6)) 
(ROW_DEC (LATENCY 1)) 
(PRECHAREGE (LATENCY 6)) 
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where the latency of the COL_DEC is 6 cycles, of ROW _DEC is 1 cycle, and of the PRECHARGE 
is 6 cycles. 

In this manner EXPRESSION can model a variety of memory modules and their characteristics. 
A unique feature of EXPRESSION is the ability to model the parallelism and pipelining available 
in and between the memory modules, such as number of outstanding hits, misses or parallel loads, 
and generate timing and resource information to allow aggressive scheduling to hide the latency 
of the lengthy memory operations. Parallelism within a module is specified in terms of number 
of parallel read/writes etc. The parallelism between modules is captured at a higher level e.g., 
while cache hierarchy is active, DMA can continue to access data from DRAM. EXPRESSION 
description can be used to drive the generation of both a memory-aware compiler [7], [8], and 
cycle-accurate structural memory subsystem simulator, and thus enable Design Space Exploration 
and co-design of the memory and processor architecture. 

The EXPRESSION description of the C6x memory subsystem is shown below. 

(STORAGE_SECTION 
(ScratchPad 

) 

(Ll 

(L2 

(TYPE SRAM) 
(SIZE 16384) 
(WIDTH 16) 
(NUM_BANKS 2) 
( READ_LATENCY 1) 
(WRITE_LATENCY 1) 
(NUM_PARALLEL_READ 2) 
(NUM_PARALLEL_WRITE 2) 
(READ_WRITE_CONFLICT 1) 
(ADDRESS_RANGE 0 32767) 

(TYPE DCACHE) 
(WORDSIZE 32) 
(LINESIZE 8) 
(NUM_LINES 64) 
(ASSOCIATIVITY 2) 
(REPLACEMENT_POLICY LRU) 
(WRITE_POLICY WRITE_BACK) 
(LEVEL 1) 
(NEXT_LEVEL 2) 

(TYPE DCACHE) 
(WORDSIZE 32) 
(LINESIZE 8) 
(NUM_LINES 1024) 
(ASSOCIATIVITY 1) Direct Cache 
(REPLACEMENT_POLICY LRU) 
(WRITE_POLICY WRITE_BACK) 
(LEVEL 2) 
(NEXT_LEVEL 3) 

(MainMemeory 
(TYPE DRAM) 
(SIZE 4M) 
(WIDTH 8) 
(LEVEL 3) 
(PIPELINE COL_DEC ROW_DEC PRECHARGE) 

(Connect 
(Type CONNECTIVITY) 
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(STORAGE_CONNECTIONS (Ll L2) (L2 MainMemory)) 

6 

In this section we explain the automatic memory subsystem simulator generation process. The 
memory subsystem is specified in EXPRESSION. Figure 3 shows a basic memory subsystem that 
we will use as a running example to explain the system implementation. how memory subsystem of 
the SIMPRESS simulator gets automatically generated from the memory subsystem specification 
in EXPRESSION. The processor interacts with the memory subsystem through the load/store unit 
or memory controller. The Load/Store unit issues read, write, prefetch, flush commands. The 
memory subsystem consists of a memory hierarchy of caches, SRAM, DRAM, stream buffers, 
victim buffers etc. Once load/store unit issues a read request, the memory subsystem performs 
the read but delivers the data only in the clock cycle when data is supposed to be available to the 
processor. ReadQ in the memory subsystem keeps track of the pending read requests. WriteQ 
keeps track of pending write requests. 

D LJ Main 

RcVWr LI L2 ... 
Memory 

M SRAM 

Processor Memory Subsystem 

Figure 3. Memory Subsystem 

The Load/Store Unit sends read/write request to the memory subsystem. The memory subsys­
tem returns the data after the number of cycles equal to read latency of that read operation. Each 
storage element SRAM/DRAM/CACHE is modeled in terms of the specified parameters. Intercon­
nection is specified in terms of connections among storage elements. The instantiation of generic 
modules with appropriate parameters and their connectivity is generated automatically from the 
EXPRESSION description. For example, the following two functions are generated from the C6x 
EXPRESSION description discussed in previous section. The first function instantiates the mem­
ory modules with appropriate parameters and establishes the connections in the memory hierarchy. 
The second function determines whom to access for a given address, i.e., whether to look for the 
data in the cache hierarchy or in the SRAM. 

//Initialize the memory modules 
void Connectivity::initialize() 
{ 

II Ll: <Num_Lines, linesize, associativity, wordsize(bytes), latency> 
MemoryModules[n_modules++]=(MemoryModule*)new AssociativeCache<64, 8, 2, 4, 1>(); 
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// L2: <Num_Lines, linesize, wordsize(bytes), latency> 
MemoryModules[n_modules++]=(MemoryModule*)new DirectCache<1024, 8, 4, 4>(); 

II MainMemory: <latency> 
MemoryModules[n_modules++]=(MemoryModule*)new Dram<lO>(); 

II ScratchPad: <latency> 
MemoryModules[n_modules++]=(MemoryModule*)new Sram<l>(); 

//Initialize the connections between modules 
addConnection(0,1); II Ll -> L2 
addConnection(l,2); // L2 -> MainMemory 

// Returns the memory module corresponding to an address 
MemoryModule* Connectivity: :get_module_for_address(long addr) 
{ 

if (addr < 32767) { 
//the sram 

II 32K --> 0 - 32767 

return MemoryModules[3]; 
} 

else{ 
//the assoc cache 
return MemoryModules[O]; 

return NULL; 

The Load/Store unit sends read/write request to memory subsystem. These requests get stored in 
the read/write queue in the memory subsystem. The parameter READ _QUEUE_SIZE determines 
how many read request can be pending in the read queue at a point of time. Similarly the length of 
the write queue can be controlled by the parameter WRITE_QUEUE_SIZE. These parameters are 
defined in MemDefines.h file. Note that some others parameters e.g., NUM_FARALLEL_READ, 
NUM_FARALLEL_ WRITE, NUM_BANKS, READ_ WRITE_CONFLICT , are also defined in the 
same file. 

The memory subsystem performs read/write operation and computes the latency. In case of 
a miss at any level of the memory hierarchy it initiates refill and applies the replacement policy 
specified in the EXPRESSION description. Read/write latency is computed using the specified 
read/write latency of each module accessed for read/write plus refill time in case of a miss. Every 
clock cycle this latency gets decremented and the Load/Store unit gets the data when latency be­
comes 0. The Load/Store Unit should perform the following actions every cycle to make use of 
memory subsystem. 

extern MemorySubsystem* memSubsystem; 

LoadStoreUnit: :doStep() 
{ 
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} 

memSubsystem->preprocess(); 

/I Send Read/Write requests -- Val value, long address, int tempOpcode 
// tempOpcode is generic opcode type which specifies what kind of 
II read/write. 
if read operation then 

SendReadRequest(address, tempOpcode); 
else 

SendWriteRequest(value, address, tempOpcode); 

//Allow memory subsystem to perform read/write operation. 
memSubsystem->doStep(); 

//Check if any of the read is completed. Iterate depending on how 
II many parallel read is allowed. 
int completed = ReceiveData(address, value); 
if (completed == 1) 
{ 

// 'value' contains the value read. 

The memory subsystem implementation is correct at the boundary in terms of clock cycles when 
it delivers the data but internally it is not cycle-accurate. We currently assume that the address for 
read/write to be a physical address. It may be necessary to perform some changes in the processor 
side (in terms of control) to be able to use the memory subsystem. Consider the case of modeling 
the MIPS RlOOOO memory subsystem. After the address calculation is done (virtual address), the 
load/store unit (with the help of address queue) issues read request to memory while the TLB is 
performing virtual to the physical address computation. In the next cycle physical address is ready 
and data and tags from both the cache-way are compared to determine a hit. At this point of time 
data is ready (in case of a hit). In case of a miss, refill from secondary to primary memory gets 
initiated by address queue. The current memory subsystem however, will not be able to model this 
exact behavior, since separate reading of datas and tags from all the cache-ways are not supported. 
Instead, one read request can be generated after the physical address computation. In this case 
data should be available immediately from the memory subsystem (latency 0) to ensure timing 
correctness at the memory subsystem boundary. Note that in the original case, read latency was 
one cycle. In both cases final data is available at the same time to the load/store unit. 

7 

As described earlier, we have already used this Memory-Aware Architectural Description Lan­
guage (ADL) approach to generate a Memory-Aware Compiler [7] and manage the memory miss 
traffic [8], resulting in significantly improved performance. In this section we demonstrate fur­
ther use of the memory subsystem specification to describe different configurations of the memory 
subsystem with the goal of studying the trade-off between cost and performance. 
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7 .1 Experimental Setup 

We performed a set of experiments starting from the base TIC6211 processor architecture, and 
varied the memory subsystem architecture. We generated a cycle-accurate structural memory sub­
system simulator, and performed Design Space Exploration of the memory subsystem. 

The memory organization of the TIC6211 is varied by using an Ll cache, L2 cache, an off-chip 
DRAM module, an on-chip SRAM module and a stream buffer module [23]. 

The Ll cache is a 2-way set associative cache with line size of 4 words and word of 4 bytes. The 
L2 cache shares a total of 2K on-chip SRAM memory with the direct mapped on-chip SRAM. 

The Stream Buffer [23] is used as a replacement for the L2 cache, exhibiting a much smaller 
data storage size, and slightly more complex control mechanism. It receives a sequence of miss 
addresses from Ll, storing them into a small history buffer. When it recognizes a stream, it al­
locates one of several FIFO queues to start prefetching it from the DRAM. The stream buffer we 
implemented contains 4 such FIFO queues, storing 4 cache lines each, and uses an LRU policy to 
discard a FIFO in case of conflict. When the stream buffer receives an Ll cache miss address, it 
compares it to the top of each FIFO queue. If the address is found - a stream buffer hit - it pops it 
from the FIFO and returns it to the Ll cache. If the address is not found- a miss - the stream buffer 
compares it with the addresses in the history buffer to check for a stream, and sends a request to 
the DRAM to bring the data. 

We used a set of benchmarks from the multimedia and DSP domains, and compiled them us­
ing the EXPRESS compiler. We collected the statistics information using the SIMPRESS cycle­
accurate structural simulator, which models both the TI6211 processor and the memory subsystem. 

The configurations we experimented with are presented in Table 3. 
The numbers in Table 3 represent: the size of the memory module (e.g., the size of Ll in 

configuration 1 is 128), the cache/stream buffer organizations: 

num_lines x num_ways x line_size x word_size 

the latency (in number of processor cycles), and the replacement policy (LRU or FIFO). Note 
that for the stream buffer, num_ways represents the number of FIFO queues present. 

7.2 Cost Estimation of the memory configurations 

The configurations in Table 3 are presented in increasing order of the cost in terms of area. For 
the assessment of the actual silicon area occupied by the global background memory, the model 
presented in [26] is employed. Unlike simpler models proposed in the past (see the references in 
[26]), which have an acceptable accuracy only for relatively large memories, the Mulder model 
incorporates the overhead area, like drivers, sense amplifiers, address decoder, and control logic. 
If the parameters are carefully tuned in advance, this area model has proven to be suitable for com­
paring the size of (small- to medium-size) on-chip memories of different organizations, yielding 
no more than 10% error when verified against real memories [26]. 

According to this model, the actual silicon area occupied by a RAM is given by the formula: 
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Config Ll L2 SRAM Stream DRAM 
Cache Cache Buffer 

1 128B (4x2x4x4) - - 256 (4x4x4x4) latency=20 
latency= 1 cycle (LRU) latency=4 cycle cycle 

2 128B (4x2x4x4) - 2K - latency=20 
latency=l cycle (LRU) lat=l cycle cycle 

3 128B (4x2x4x4) 2K (16x4x8x4) - - latency=20 
latency=l cycle (FIFO) latency=4 cycle (FIFO) 

4 128B (4x2x4x4) 2K (16x4x8x4) -

latency=l cycle (LRU) latency=4 cycle (LRU) 
5 128B (4x2x4x4) lK (32xlx8x4) lK 

latency= 1 cycle (FIFO) latency=4 cycle (FIFO) lat=l cycle 
6 - - 8K 

lat=l cycle 

Table 3. The memory subsystem configurations 

A= TechnoFactor.bits.(1 + aPorts).(N + p).[1 +0.25(Ports+Portsrw -2)] 
where: 

TechnoFactor is a technology scaling factor, equal to (min_geometry[µ]/2) 2 ; 

bits - the width of a memory location in bits; 
N - the number of storage locations; 
Ports - the total number of ports (read, write, and read/write); 
Portsrw - the number of read/write ports; 
a and p - constants; 

cycle 
- latency=20 

cycle 
- latency=20 

cycle 
- latency=20 

cycle 

The memory configurations we have used here have all the parameters same except N, the number 
of storage locations. In other words the cost of a configuration is proportional to N. In the cost 
analysis for the configurations we have considered also the area for the control logic (not only area 
of the storage locations). 

The first configuration contains an Ll cache and a small stream buffer (256 bytes) to capitalize 
on the stream nature of the benchmarks. The second configuration contains the Ll cache and an on­
chip direct mapped SRAM of 2K. A part of the arrays in the application are mapped to the SRAM. 
Due to the reduced control necessary for the SRAM, it has a small latency (of 1 cycle), and the area 
requirements are small. The third configuration contains Ll and L2 caches with FIFO replacement 
policy. Total number of storage locations are exactly same for configuration 2 and configuration 3 
but due to the control necessary for the L2 cache (of size 2k), the cost of configuration 3 is larger 
than the configuration 2 containing the SRAM. Configuration 4 is the same as configuration 3, but 
with LRU replacement policy for the Ll and L2 caches. Due to the more complex control required 
by the LRU policy, the cost of this configuration is larger than configuration 3. Configuration 5 
contains an Ll cache, an L2 cache of size lK and a direct mapped SRAM of size lK. Due to the 
extra busses to route the data to the caches and SRAM, this configuration has a larger cost than the 
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previous one. The last configuration contains a large SRAM, and the caches, and has the largest 
area requirement. All the configurations contain the same off-chip DRAM module with a latency 

of 20 cycles. 

7.3 Results 

Figure 4 presents a subset of experiments we ran, showing the total cycle counts (including the 
time spent in the processor) for the set of benchmarks for different memory configurations attached 
to the TIC6211 processor. From the experiments we performed, we chose a representative set 
of benchmarks, which show the different trends in the cost versus performance trade-off. Even 
though these benchmarks are kernels, we observed a significant variation in the trends shown by 
the different applications. 
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Figure 4. Cycle counts for the memory configurations on TIC6211 

For instance, in Hydro, Tridiag, and Stateeq, the first configuration, lowest cost configuration, 
shows best performance (lower cycle count means higher performance), due to the capability of 
the stream buffer to exploit efficiently the stream nature of the access patterns. Moreover, in 
these applications the most expensive configuration (configuration 6), containing the large SRAM 
behaves poorly, due to the fact that not all the arrays fit in the SRAM, and the lack of Ll cache to 
compensate the large latency of the DRAM creates its toll on the performance. 

The expected trend of higher cost - higher performance was apparent in the applications ICCG, 
Integrate, and Lowpass, While the stream buffer in configuration 1 has a comparable performance 
to the other configurations, the configuration 6 has the best behavior due to the low latency of the 
direct mapped on-chip SRAM. 
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Thus, using our Memory-Aware ADL-based Design Space Exploration approach, we obtained 
design points with varying cost and performance. We observed various trends for different appli­
cation classes, allowing customization of the memory architecture tuned to the applications. Note 
that this cannot be determined through analysis alone; the customized memory subsystem must be 
explicitly captured, and the applications have to be executed on the configured processor-memory 
system, as we demonstrated in this section. 

Figure 5, 6, 7, 8, 9, and 10 show the distribution of latency spent in different parts of the 
processor-memory system for the different configurations shown in Table 3. For each bench­
mark, the bars show the percentage of time spent in processor(non-load/store) operations, store 
operations, Ll loads, Stream Buffer loads, L2 loads, SRAM loads, and DRAM loads. 
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Figure 5. Cycle accounting for memory configuration 1 

As mentioned earlier, the performance for configuration 6 is worst for the benchmarks Hydro, 
Tridiag, and Stateeq whereas other configurations perform equally well on them (Figure 4). Fig­
ure 10 shows that for these three benchmarks most of the time(20 - 40%) is spent in DRAM loads 
whereas for other configurations the time spent for DRAM loads is much lower, 5 -10%. This is 
due to the fact that not all the arrays fit in the SRAM for configuration 6, and the lack of Ll cache 
to compensate the large latency of the DRAM creates its toll on the performance. 

Configuration 1 has worst performance (see Figure 4) for the benchmark Linear inspite of the 
success of stream buffer (see Figure 5) in detecting and prefetching streams. Due to the small size 
of the input data set, most of the Joads are covered either by SRAM or L 1 for other configurations 
and generated very few DRAM loads as compared to configuration 1. 

The accurate analysis of the design space exploration results (Figure 4) is possible due to the 
detailed cycle accounting information available in Figure 5, 6, 7, 8, 9, and 10. The automatic gen-
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Cycle Accounting 2) 
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Figure 6. Cycle accounting for memory configuration 2 

eration of these detailed information during rapid design space exploration of memory subsystem 
is possible due to our ADL driven approach. 

8 Conclusion 

Memory represents a critical driver in terms of cost, performance and power for embedded sys­
tems. To address this problem, a large variety of modern memory technologies, and heterogeneous 
memory organizations have been proposed. 

On one hand the application is characterized by a variety of access patterns (such as stream, 
locality-based, etc.). On the other hand, new memory modules and organizations provide a set of 
features which exploit specific applications needs (e.g., caches, stream buffers, page-mode, burst­
mode, DMA). To find the best match between the application characteristics and the memory 
organization features, the designer needs to explore different memory configurations in combi­
nation with different processor architectures, and evaluate each such system for a set of metrics 
(such as cost, power, performance). Performing such processor-memory co-exploration requires 
the capability to capture the memory subsystems. 

In this report we presented a Memory-Aware Architectural Description Language (ADL) ap­
proach which captures the memory subsystem explicitly. 

This Memory-Aware ADL approach is used to drive the generation of a cycle accurate memory 
simulator, and also facilitate the exploration of various memory configurations, and trade-off cost 
versus performance. Our experimental results show that varying price-performance design points 
can be uncovered using the processor-memory co-exploration approach. 
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Figure 7. Cycle accounting for memory configuration 3 

Cycle Accounting (Config 4) 
100% 

80% 

60% 

40% 

20% 

0% 

~&o .. ,.rs.ft> ,~~ "~~~ F .fl:~e -~/> A..*~ ,~rlf # 
~ ,~fl,i" '(J'' rj>~· " ~ 

Benchmark 

Figure 8. Cycle accounting for memory configuration 4 
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Figure 9. Cycle accounting for memory configuration 5 
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Figure 10. Cycle accounting for memory configuration 6 
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Our ongoing work targets the use of this ADL approach for further memory exploration exper­
iments, using larger applications, to study the impact of different parts of the application (such as 
loop nests) on the memory organization behavior and overall performance, as well as on system 
power. 

The memory subsystem for the cycle-accurate retargetable simulator is automatically generated 
from the EXPRESSION description. The memory subsystem is modeled using EXPRESSION de­
scription for C6x, RlOK, IA-64 and PowerPC architectures. The automatic generation of memory 
subsystem from EXPRESSION description is tested on livermoore loop and multimedia kernels 
for C6x, Rl OK and PowerPC processors. Endianness is not supported in the current version of the 
memory subsystem simulator implementation and is subject of on-going work. 
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