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The landscape of AI research is dominated by the search for powerful deep learning models

and architectures that enable fascinating applications from the edge to the cloud. Indeed, we

have witnessed the emergence of efficient, on-device deep learning models that facilitate smart

edge applications (autonomous vehicles, AR/VR systems), and the emergence of billion

parameter foundation/LLM models that excel at tasks thought achievable only through

human-level understanding. On the other hand, the calls for more advanced hardware and

systems continue to grow considering the scale at which deep learning model workloads

evolve, and to facilitate sustainable, efficient model operation across the various application

contexts.

This suggests a natural way to design deep learning models and their systems: viz, through

hardware/software co-design methodologies, capturing the interplay and mutual dependen-

cies across various HW/SW layers of the computing stack to guide different design choices.

From the algorithmic side, an awareness of the target platform’s compute capabilities and

resources guides the deep learning model architectural and optimization choices (e.g., com-

pression) towards maximizing performance efficiency on the target hardware at deployment

time. From the hardware side, understanding the deep learning workloads and computing

kernels can shape future architectures of AI hardware that improves on efficiency from the
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lower levels (as seen through customized accelerators). Even more so, frameworks like TVM

and ONNX Runtime have also emerged to standardize model deployment on various target

hardware systems, offering unified interfaces to enact necessary compiler optimizations.

As hardware and software continue to undergo continuous innovation, this dissertation aims

to investigate relevant emergent technologies and challenges at this unified research frontier to

guide the design of future AI systems and models. The dissertation focuses on characterizing

nascent design spaces, exploring various optimization opportunities, and developing new

methodologies to maximize the impact of such innovations. In brief, this dissertation goes

over the following topics:

• Understanding the benefits of dynamic neural networks for efficient inference, and how

to optimize their design for target platform deployment

• Studying emergent models (like Graph Neural Networks) with irregular computational

flows and how their design can be optimized for deployment on heterogeneous SoCs

• Understanding how multi-model workloads can be scheduled and co-located on multi-

chip AI Accelerator modules based on 2.5D chiplets technology while accounting for

workloads’ diversity, affinities, and memory access patterns

• Exploring new methodologies to maximize the impact of split computing inference in

edge-cloud architectures, and elevate resource efficiency of edge devices

• Studying the impact emergent schemes like split computing could have on the broader

cyber-physical system and application with regards to safety and privacy, and propos-

ing methods to counteract potential disruptions and maintain desired formal guarantees

xviii



Chapter 1

Introduction

The AI ecosystem is going through seismic transformations driven by recent innovations in

the field. Though the release of ChatGPT is widely regarded as the watershed moment

for the AI field, its success can be attributed to decades of technological advancements

across multiple sectors leading up to that moment. To put it succinctly, the brilliance

and promise of AI technology rests on the strong, mature foundation of enabling industries

of semiconductor, hardware manufacturing, and software development. And today, AI is

becoming a vortex around which these industries - and more - are oriented. In fact, the nature

of AI’s relationship with these industries is shifting from reliance towards co-dependence. For

instance, AI advancements and application use cases are fueling innovation and shaping the

vision of semiconductor and hardware manufacturing industries, while at the same time they

remain dependent on breakthroughs in the very same fields to realize their full potential.

This mutual co-dependence underpins an intuitive philosophy: Hardware/software co-design

is pivotal to bringing the best out of AI applications by enhancing their performance efficiency

on target systems. From an algorithmic perspective, optimizing the design and deployment

of underlying machine learning models is to be performed in a hardware-aware manner. This
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is driven by how underlying resource constraints and hardware capabilities could influence

decisions pertaining to the extent of a model’s representational capacity through architec-

ture parameter choices, compression techniques, scheduling options, and so on. As for the

hardware, understanding the emerging trends in AI model workloads guides the design of

the next generations of AI hardware, as we see today through the progression of computing

capabilities in GPUs, domain specific accelerators, and heterogeneous SoCs.

While standard tools such as ONNX Runtime and TVM have emerged to optimize model

deployment on target hardware platforms, the rapid evolution of AI usage scenarios, model

architectures, semiconductor technologies has outpaced current optimization practices. That

is, despite the effectiveness of standard model optimization techniques like quantization, Au-

toML, operator fusion, new challenges have emerged from the trends of multi-model work-

loads in AR/VR systems and data center multi-tenancy, as well as from recent innovations in

dynamic and graph neural networks. Similarly, advancements in semiconductor technologies,

such as chiplet-based 2.5D multi-chip module AI accelerators, have expanded the HW/SW

optimization space beyond the capabilities of existing practices.

In this dissertation, our aim is to study and understand these nascent frontiers, exploring the

optimization opportunities they present from a hardware/software co-design perspective. As

detailed in the following chapters, our research consistently guides us towards characterizing

novel design spaces, for which we propose methodologies to maximize the performance of AI

applications and systems in these evolving settings.

1.1 Research Scope

Figure 1.1 illustrates our abstract hardware/software research vertical that is traversed

throughout this dissertation. This characterization serves to organize the the various con-
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Semiconductor

Hardware Architecture

Platform (HW/SW)

AI/ML

Application Usage Scenarios, AI Applications

ML Models, Frameworks, Algorithms

Holistic System View, System Modeling, HW Platforms, SDKs, Compilation Toolchains

Customized Designs, Computing units, Accelerators, Dataflows, Topologies, Profiling

Packaging Technologies (3D, 2.5D), Specifications

Figure 1.1: Abstract model of the HW/SW research vertical in this dissertation.

cepts, technologies, and innovations pertaining to different layers of abstraction from the

broader hardware/software stack. That way, not only do we analyze and innovate meth-

ods/techniques in isolation, but also understand cross-layer impacts, and how to improve

the overall AI system utility and efficiency. For instance, advancements in 2.5D packaging

technology in the ‘Semiconductor’ layer enable new customized designs in the ‘Hardware

Architecture’ layer, improving the efficiency of AI/ML workload processing, and providing

better application usage experiences at the higher levels of the stack.

In this dissertation, we study the hardware-software co-design challenges for AI algorithms

and systems from a variety of perspectives, and propose novel methodologies to enhance

the efficiency of AI on respective target hardware systems. Our studies are motivated by

and shaped through real-world, practical applications, use cases, and emerging trends of AI

models and systems from the edge to the cloud. In particular, emphasis is drawn from:

(i) The Edge-AI application domain, which entails machine learning models deployed on

constrained edge computing devices in the wild (e.g., autonomous driving systems). (ii) The

multi-model AI workload trend, which entails a diverse set of large, complex models running

simultaneously on a target system to meet application demands (e.g., multi-tenancy and

AR/VR). From here, our studies take us to understand the underlying model architectures

and classes (transformers, CNNs, GNNs), computational workflow (static, dynamic), and

constituent compute kernels (GEMMs, Non-GEMMs), enabling us to shape the design space

of algorithmic optimizations.
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As for the hardware, we focus our analysis on two classes of systems corresponding to the

above areas. (i) Heterogeneous SoCs, which service numerous Edge-AI applications (e.g.,

Tesla FSD for autonomous driving), and constitute a diverse set of computing units, such as

CPUs, GPUs, and DSPs, all integrated onto the same die. (ii) Chiplet-based 2.5D multi-chip

modules, which - owing to the mix-and-match characteristic of chiplets - enable integration of

heterogeneous accelerator chips on the package level to efficiently service multi-model work-

loads. Through both, we are able to characterize hardware design spaces that cover different

dimensions of hardware optimization options, including scheduling, pipelining, hardware

reconfigurability, and accelerator hardware parameter choices.

Furthermore, we study the emerging paradigm of split-computing and how its effectiveness

can be maximized through co-optimization approaches. As inferred from the name, split-

computing partitions a machine learning model between a constrained user edge device and

a compute capable edge server, offering a viable alternative for enabling powerful, on-device

machine learning without compromising on the model’s representational capacity. We also

engage specific challenges of split-computing including context-aware runtime adaptation

and maintaining formal safety guarantees when applied to mission-critical systems.

1.2 Primer: Neural Architecture Search

A recurring theme throughout this dissertation is Neural Architecture Search (NAS), which

is an automated design space exploration technique to optimize the design of neural archi-

tectures for target machine learning tasks. NAS can provide DNN architectures that are

on-par or outperform their manually-crafted counterparts [22,25,26,232]. In a nutshell, the

purpose of NAS is to effectively navigate an enormous design space of neural architectural

parameters to identify optimal candidate model architecture designs suited for the target

objectives. Primarily, there are three foundational pillars to any NAS framework:
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Search Space. Through the coalescence of various combinations of architectural design

parameters, a pool of candidate designs can be constructed for the NAS engine to access.

Thus, DNN architectural parameter choices such as the #layers, # channels, type of layer

operation, etc can all be encoded into a single unified search string.

Search Controller. Due to the colossal size of typical DNN architectural search spaces,

NAS frameworks employ search controllers adopting sophisticate search strategies to effec-

tively balance the exploration/exploitation of the search space. In particular, search con-

trollers learn to identify promising design subspaces from which they can sample superior

population of architectural candidates, reducing the likelihood of considering sub-optimal de-

signs in the interim. These controllers are typically adopt strategies that follow a learning-

based approach (e.g., reinforcement learning based [26, 232]) or a metaheuristic approach

(e.g., evolutionary algorithm [22]).

Performance Evaluation. In order to guide the search controller on promising architec-

tural design sub-spaces, performance evaluations of the candidate model design on the target

objectives (e.g., accuracy and execution latency) are fed back to the search controller for it

to exploit optimizations around the top-performing candidates in a progressive manner.

Traditionally, classical NAS frameworks [142, 232] relied on training candidate models from

scratch to determine the accuracy scores needed for comparison. However, to circumvent

the inefficiency of training each candidate model to convergence before throwing away all its

parameters, recent NAS approaches [22, 25, 26] proposed a one-shot approach in which all

candidate models are trained simultaneously through the concepts of supernet and shared

weights. Briefly, the idea relies on specifying the search space as a single, multi-path over-

parameterized network model (i.e., a supernet) that encapsulates all candidate architectural

designs within (i.e., subnets). In this case, the sampling of a candidate model from the

supernet is achieved through selecting for each potential layer position a particular path

reflecting a specific architecture choice, as in choosing a path representing a 3×3 convolution.
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Then, the weights associated with the 3×3 convolution are loaded within the supernet, used

for the candidate model evaluation, and are updated in the next update step.

1.3 Organization

The rest of the disseration is organized as follows. Chapter 2 discusses how to co-optimize

dynamic neural networks design and deployment onto heterogeneous MPSoCs. Chapter

3 introduces our novel mapping-aware graph neural architecture search for heterogenous

MPSoC deployment. Chapter 4 addresses the challenges of scheduling multi-model workloads

on emerging 2.5D architectures, and presents a novel framework to effectively enact such

scheduling. Chapter 5 moves on to discuss efficient split-computing approaches for Edge-

AI autonomous system applications, and chapter 6 engages the offloading challenges with

regards to maintaining guarantees on safety in the cases of autonomous driving. Chapter 7

presents our overall findings and insights from our studies, lays out our study limitations,

and provides directions for future research.
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Chapter 2

Optimizing Dynamic Neural

Networks Design and Deployment

onto Heterogeneous MPSoCs

2.1 Introduction

The hardware era has witnessed the emergence of various computing devices, from powerful

GPUs to tiny Micro-controllers. To meet the requirements of compute-intensive applications,

such as Deep Learning workloads, MPSoCs are designed to incorporate heterogeneous com-

puting units (CU) within the same die, typically sharing the same system memory (DRAM).

This hardware architecture paradigm enables the collaborative usage of multiple CUs to ac-

celerate different operations of the same application, hence providing energy savings and

performance benefits. However, the causality between the hardware heterogeneity of MP-

SoC and the obtained performance for similar and different operations remains an open

research question. Indeed, some CUs (e.g., GPUs) can offer high execution speedup at the
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cost of being energy-hungry, while others, such as NPUs, are power-friendly at the cost

of being slow. Conventional deployment schemes lack a holistic overview of how heteroge-

neous CUs may behave regarding various computing workloads. In addition, the systematic

approach of considering a single CU to deploy an entire application is suboptimal since it

overlooks opportunities for further performance gains through maximizing the utilization of

the MPSoC’s hardware resources.

Recent works have shed light on the computation mapping problem for MPSoC by providing

comprehensive modeling methodologies in [40,132,173,212] to characterize computing work-

loads performances. The resulting models are typically used to map computations onto CUs

in a sequential pipeline fashion. However, for workloads exhibiting a high degree of paral-

lelism, such as Neural Networks (NN ), there’s still room for improvement by refashioning

the execution pipeline into parallel stages running concurrently on different CUs, especially

considering the inherent capacity for concurrency within NN layers such as convolutional

and multi-head self-attention layers [66].

On the other hand, recent research works have introduced Dynamic Neural Networks (DyNNs)

[69] which contrary to conventional static neural network models with fixed computational

graphs, offer to adapt their model structure or parameters to suit the runtime context, of-

fering resource efficiency at the edge while maintaining the models’ utility. The motivation

behind DyNNs being the in-the-wild deployment of machine learning models at the edge

which makes them susceptible to considerable runtime variations. One prominent DyNN

technique is early exiting which facilitates concluding the processing of the “easier” input

samples at earlier layers of a model for resource efficiency. This feature is often realized

through a multi-exit architecture that integrates intermediate classifiers onto a shared back-

bone model [140,144,186].

Typically, the design workflow of dynamic networks like multi-exit models initially assumes

that a backbone architecture has been optimally designed to maximize performance on a
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target task. Evidently, backbones in related works were either based on renowned state-

of-the-art NN architectures, e.g., ResNets in [186], or models rendered through the design

automation frameworks of Neural Architecture Search (NAS) [194]. This means that back-

bones were originally designed to serve as standalone static models. Thus, a subject of

debate is whether such design optimality of these models would hold when auxiliary tasks

are added – as in to serve as the backbone of a dynamic model.

Given this pretext, we identify several limitations of current practice for designing and de-

ploying DyNNs onto heterogeneous MPSoCs:

• The backbone model architectures of DyNNs are not optimized for dynamic inference

• State-of-the-art NN design frameworks (e.g., NAS) do not characterize the runtime

aspects of dynamic inference, potentially leading to suboptimal DyNN design

• The co-optimization synergy between DyNNs design, underlying heterogeneity of hard-

ware, and DVFS configuration settings remain under-exploited.

2.1.1 Novel Contributions

Addressing these limitations, we present the following contributions in this Chapter:

• We present HADAS [21], a novel hardware-aware Dynamic Neural Architecture Search

Framework for joint optimization of multi-exit DyNNs design and DVFS settings for

efficient edge operation. HADAS can be integrated on top of modern pretrained su-

pernets of existing state-of-the-art NAS frameworks.

• We present Map-and-Conquer [23], a framework for transforming static neural net-

works to DyNNs with multiple inference stages leveraging heterogeneous pipelining

parallelism across the model width dimension.
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2.2 Related Works

Dynamic Neural Networks. Dynamic Neural Networks serve as attractive solutions to

scale computation according to the input complexity, providing latency speedup and en-

ergy gains. Incorporating dynamicity into NN inference has been widely studied for CNN

architectures through early-exiting along the architecture’s depth [144, 186] or width [225].

Early-exiting has also been successfully applied for emerging classes of models like Vision

Transformers (ViT) [155,224]. In the above works, the multi-exit networks have been manu-

ally designed based on heuristic choices of exits’ positions, structure, and count conditioned

on their respective backbone architecture [103]. Recent works [140, 225] have investigated

the applicability of NAS techniques to automate the design of multi-exit networks, where

the backbone and exits’ design spaces can be jointly explored to reach superior DyNN archi-

tectures. However, a scalable, more generic solutions for designing DyNNs remaind lacking.

Computation mapping on MPSoCs. Recent MPSoCs contain diverse heterogeneous

CUs that usually share system memory, making them more flexible for collaborative exe-

cution. Recent works have explored this specificity of MPSoC to optimize the execution of

NN . AxoNN and MEPHESTO [40, 132, 212] propose modeling strategies to characterize

execution latency and energy consumption for computation mapping on the AGX Xavier

MPSoC. Jedi [82] provides a framework built upon TensorRT to accelerate NN via model

parallelism to maximize throughput for batched inference. [87, 90] proposes evolutionary-

based scheduling for NN layers on heterogeneous MPSoCs with DVFS by exploiting both

data and model parallelism to optimize the throughput. DistrEdge [76] provides a detailed

analysis of different model parallelism schemes for distributed computing over edge devices.

However, none of the prior works have considered the design of dynamic NN in the compu-

tation mapping problem for collaborative execution on MPSoCs.

Dynamic hardware reconfiguration: Dynamically scaling NNs results in different com-
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putational and energy footprints that require adapting the hardware configuration accord-

ingly. In [52, 149], the hardware has been co-designed with the multi-exit networks using

FPGAs, showcasing how further energy efficiency gains can be achieved through having

specialized hardware for exits. Nevertheless, the considerable switching overheads of hard-

ware configurations in FPGAs are not typically acceptable for runtime applications. A

viable alternative came in the form of hardware reconfiguration through supported DVFS

features, where the operational frequency can be scaled after exiting to preserve energy

resources [108,182].

2.3 HADAS: Hardware-Aware Dynamic Neural Archi-

tecture Search

We formulate the dynamic neural architecture search formulation, present the HADAS frame-

work, and provide evaluation results on its efficacy compared to conventional approaches.

2.3.1 Problem Formulation

As the combined design space size for the DyNNs and hardware configurations can be enor-

mous, we characterize three separate subspaces to manage the joint optimization of their

parameters as follows: (i) The backbones (B); which are models originally designed in

a monolithic fashion for static inference with no adaptive behavior, (ii) The exits (X );

which are the dynamic components to be integrated onto a backbone, and (iii) The DVFS

settings (F); constituting the space of operational frequencies for the underlying hardware

components. For the DyNNs, our reasons for designating B and X as separate subspaces are

twofold: (a) To maintain the generality of the approach by having the X subspace indifferent

to the “type” of candidate backbones in B, and (b) To leverage the existing infrastructure
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of pretrained supernets from established NAS frameworks (as in [25, 194]) so as to provide

high-caliber backbone models for the B subspace.

In order to rank candidate dynamic architectural designs, we denote S and D as generic

performance objectives under static and dynamic deployments, respectively. Mainly, S rep-

resents the backbone evaluations when designated as a fixed standalone model (e.g., baseline

energy), whereas D is for the evaluations of its dynamic variant after integrating the exits

(e.g., average energy when effective mapping of inputs to exits). Hence, this implies a bi-level

optimization problem with the B as the outer-level subspace and (X , F) as the inner-level:

b∗ = argmax
b∈B

ψ[S(b),D(x∗, f ∗ | b)] (2.1)

s.t. x∗, f ∗ = argmax
x∈X ,f∈F

D(x, f | b) (2.2)

where the global optimization objective to identify the ideal parameter combination (b∗, x∗,

f ∗) that maximizes a global function ψ combining the performance objectives of S and D. In

practice, the underlying optimization objectives are conflicting by nature – e.g., the larger,

expensive models enjoy higher accuracy scores and vice versa. Thus, the problem can be

approached as a multi-objective optimization searching for Pareto optimal solutions.

2.3.2 HADAS Framework

HADAS solves the bi-level optimization via a nested metaheuristic framework in Figure 2.1.

Outer Optimization Engine (OOE)

The OOE considers two primary tasks: (i) Searching through B to identify the best backbone

candidates, and (ii) Ranking DyNNs according to their aggregate S and D evaluations.
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Figure 2.1: HADAS co-optimization framework.

B Subspace. Modern NAS frameworks employ a Once-For-All (OFA) approach which en-

tails first training a large over-parameterized supernet on a target task, prior to applying a

search algorithm to identify the optimal subnet designs within. The enabling factor of OFA

approaches is that all of the supernet’s parameters are shared by its subnets, effectively ren-

dering the training and search procedures as disjoint processes, which dramatically reduces

the overall overheads within the NAS framework [25, 194]. From here, HADAS is built to

leverage the pretrained supernets of existing NAS frameworks to construct the B subspace
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of backbones, where the search space can be encoded into discrete variables usable by the

search algorithm, and each viable subnet (backbone) can be denoted as b ∈ B.

B Evolutionary Search. With B defined, the dynamic architecture search initiates in the

OOE through an evolutionary search algorithm (e.g., NSGA-II) that can navigate through B

to sample promising backbone models. In particular, the evolutionary algorithm is set to run

for a predefined number of generations G, generating with every generation, g, a population

of backbones, Pg
B, from which the encoded pretrained subnets can be sampled. Afterwards,

∀b ∈ P g
B, a fitness evaluation under static conditions is performed as:

S(b) = Fit(Accb, Lb, Eb) (2.3)

where S(b) is a vector of the static performance evaluations with regards to the accuracy

(Accb), latency (Lb), and energy (Eb), respectively. Estimates for Lb and Eb are obtained

based on hardware measurements – as through a HW-in-the-loop setup (adopted here),

lookup tables, or prediction models. At this stage, we remark that hardware evaluations are

based on default HW settings, leaving the DVFS optimizations for the IOE. Based on the

S scores, every b ∈ P g
B is ranked using the NSGA-II non-dominated sorting algorithm. If a

number of backbones shared the same rank, their diversity scores are used for re-ranking.

This early selection procedure enables pruning the population to reach a smaller subset Pg′

B

⊂ Pg
B, where every b′ ∈ P g′

B is mapped to an IOE (detailed later) to obtain the overall

dynamic architecture evaluations D(x∗, f ∗ | b′).

Once an IOE concludes its procedures, a Pareto optimal set of exits placement and DVFS

settings is returned to the OOE for every b′ ∈ P g′

B . These Pareto sets are then collectively

aggregated for a second selection algorithm that ranks backbones based on their combined

S and D scores, leading to another population subset Pg′′

B ⊂ P
g′

B . Lastly, Pg′′

B undergoes

mutation and crossover operations to construct a new population Pg+1
B for generation g+1.
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This outer loop cycle repeats until generation G at which the Pareto optimal set (b∗, x∗, f ∗)

is returned as the final solution.

Inner Optimization Engine (IOE)

The IOE is invoked for every b′ ∈ Pg′

B . Its primary responsibility is to search through the

defined X and F subspaces to identify optimal pairings (x∗, f ∗ | b′) as follows:

X subspace. To define the exits’ search space, we characterize the total number of exits

and their positions as search parameters. In practice, present-day backbone structures (as

those from AttentiveNAS) constitute M sequential computing neural blocks (i.e., an aggre-

gation of interrelated layers) between which effective placement of the exits can be realized.

We illustrate this in Figure 2.2 through how the X subspace is conditioned on a b ∈ B.

Specifically, we define a vector of indicators [I1, I2, ..., IM−1] where Ii ∈ {0, 1} to indicate

whether exit branch at position i is sampled for the corresponding instance. Regarding the

composition of exit branches, we fix a simple structure across all potential exits positions for

three reasons: (i) Re-usability as such a straightforward structure can act as a base mod-

ule compatible with numerous backbone model architectures and classes, (ii) The smaller

search space size of the exits leads to smaller search overheads – especially relevant when

considering the additional subspaces as well, and (iii) Minimizing the training costs of the

exits. Our exit structure constituted a single sequential computing block of a convolutional,

batch normalization and activation layers, followed by a final classifier layer.

Exits Training. Once a b′ is mapped to the IOE, every x ∈ X needs to be trained for

a fair evaluation of the exit candidates. In this scheme, the weight parameters of b′ are

kept frozen independent of the exits’ training procedure, where the rationale here is to avoid

negatively influencing the performance of b′ with regards to its static accuracy score (i.e.,

the backbone accuracy) – which can occur when the weights are optimized for more than

15



nth

Input
Block 1 Block 2 Block 3 Block 4

Exit 

1

B subspace: optimizing NN design for every computing block along the primary path

X subspace:

potential exits 

placement 

conditioned 
on b  B

Exit 

4

Exit 

3

Exit 

2

LKD LNLL

I1 I2 I3 I4Indicators
Classifiers 

Figure 2.2: The combined B and X search spaces

one objective [186]. Combining this notion with the compact structure of the exits, the

exits’ training overheads can be kept to a minimum within the IOE, all while leveraging the

representational power of b′ across its various stages to attain the desired resource efficiency.

For the training loss function itself, we adopt a hybrid loss function (Ltotal) combining the

Negative log-likelihood (LNLL) and knowledge distillation (LKD) loss components to simul-

taneously train every x ∈ X as follows:

L =
1

N

N∑
n=1

[
1

M -1

M−1∑
m=1

(LNLL(yn, ŷm,n) + LKD(ŷm,n, ŷM,n)] (2.4)

where N is the total number of training samples and M − 1 is the total possible number of

exits. For the LNLL term, it aggregates the losses from every exit at m when comparing its

predicted outputs, ŷm,n, against the ground truth labels, yn, for every sample n. Whereas

the LKD term aggregates the losses from comparing the error between every ŷm,n and that

of the final model classifier, ŷM,n. Due to space limitations, we illustrate how these loss

components are defined in Figure 2.2, and refer interested readers to [150] for more details.

F subspace. The hardware search space entails the DVFS configurations for enhancing the

DyNN’s resource efficiency from the HW’s perspective. Given how different computational

workloads utilize the underlying hardware components differently, DyNN design candidates
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can attain maximal resource efficiency at different DVFS settings. In practice, edge devices

constitute heterogeneous computing units that support DVFS features. Thus, depending on

the underlying hardware, the operational frequencies of CPU, GPU, and External Memory

Controllers (EMC) can be used to construct F .

(X , F) Evolutionary Search. Similar to the OOE, an IOE also operates an evolutionary

NSGA-II algorithm to navigate the combined search spaces of X and F . With each gener-

ation, a population PX ,F is generated from the combined subspaces’ encoding and provided

for the dynamic fitness evaluation:

D(x, f | b′) = 1∑M -1
i=1 Ii

M -1∑
i=1

Ii · [scorei] (2.5)

s.t. scorei = Ni ∗
Exi,f

Eb

∗ Lxi,f

Lb

∗ (dissimi)
γ (2.6)

where equation (2.5) reflects the mean dynamic performance score of a sampled dynamic

model (x, f | b′) through averaging scores for every sampled exit (recall Ii ∈ {0, 1}). An

exit’s score is given by scorei in equation 2.6, which constitutes: Ni, the fraction of samples

that can be correctly classified at exit i;
Exi,f

Eb
, as the normalized dynamic energy at exit

xi and DVFS settings f relative to the backbone energy consumption;
Lxi,f

Lb
is similarly

the normalized dynamic latency term. (dissimi)
γ is a regularization term with a trade-off

parameter γ measuring the dissimilarity of exit xi and its preceding ones as:

dissimi = 1−max (N0:i−1) (2.7)

where xi’s score is regularized in proportion to the fraction of samples that can be already

classified by its preceding exits. The rationale behind this metric is to: (i) avoid sampling

exits of similar performance characterizations, and (ii) realize a compact decision space for

the DyNN when deployed.
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Based on the D scores, every (x, f | b′) ∈ PX ,F is also ranked using the NSGA-II non-

dominated sorting algorithm so as to realize subset P ′
X ,F ⊂ PX ,F that would then undergo

mutation and crossover for the following generation. This loop cycle continues until the final

generation where a 2-D Pareto optimal set (x∗, f ∗ | b′) is returned to resume the OOE.

2.3.3 Runtime Controller

When a DyNN design is chosen for the final deployment, a runtime controller needs to

be implemented to provide the effective input-to-exit mapping policies needed for dynamic

inference. Concerning HADAS, its architectural optimizations are applied at the design

stage of DyNNs under ideal mapping policies, that is, when every input is mapped to the

first exit module xi that can classify it correctly. This is evident through how the score of

each exit in eq. (2.6) is scaled based on Ni – the true fraction of correctly classified samples.

Thus, models from HADAS are compatible with any class of runtime controllers existing in

the literature (e.g., entropy-based [69,144,186]).

2.3.4 Evaluation and Results

For evaluation, we implement HADAS on top of the AttentiveNAS framework [194]. To con-

struct B, we reuse their search space which contains more than 2.94× 1011 neural networks

generated by scaling different dimensions as stated in Table 2.1. Our experiments are con-

ducted on the CIFAR-100 dataset where the pretrained supernet of AttentiveNAS has been

fine-tuned accordingly. Backbones and baselines are all sampled from the same fine-tuned

supernet. We dynamically generate the exits’ search space X according to the supported

depth (l) of the backbones in B. In our case, potential exit positions occur at a layer-wise

granularity starting from the fifth layer to the backbones’ last layer (For AttentiveNAS [194],

potential exit positions are set after their “MBConv” layers).
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Table 2.1: Details on HADAS joint search spaces in our experiments

Decision variables Values Cardinality
Backbone Search Space (B)

Number of blocks (n block) 7 1
Input resolution (res) {192, 224, 256, 288} 4
Block depth (l) {1, 2, 3, 4, 5, 6, 7, 8} 8
Block width (w) [16, 1984] 16
Block kernel size (k) {3, 5} 2
Block expand ratio (er) {1, 4, 5, 6} 4

Exits Search Space (X )
Number of exits (nX) [1, (

∑nb
i=1 li)− 5] max(nX)

Exit positions (posX) [5,
∑nb

i=1 li)]
(

nx∑nb
i=1 li)

)
DVFS Search Space (F)

GPU frequency (AGX Volta GPU) [0.1GHz, 1.4GHz] 14
CPU frequency (Carmel ARM v8.2 CPU) [0.1GHz, 2.3GHz] 29
GPU frequency (TX2 Pascal GPU) [0.1GHz, 1.4GHz] 13
CPU frequency (NVIDIA Denver CPU) [0.3GHz, 2.1GHz] 12
EMC frequency (AGX SOC) [0.2GHz, 2.1GHz] 9
EMC frequency (TX2 SOC) [0.2GHz, 1.8GHz] 11

We evaluate our approach on 4 different hardware combinations from NVIDIA Edge devices:

a) AGX Volta GPU , b) Carmel ARM v8.2 CPU , c) TX2 Pascal GPU , and d)

NVIDIA Denver CPU . For each hardware setting, we leverage the supported DVFS

configuration settings to generate F as in Table 2.1. Regarding the optimization process, we

fix a budget of 450 iterations for the OOE and 3500 iterations for the IOE, where #iterations

= G × P . We use a cluster of 32 GPUs to train the exits for every sampled backbone, taking

up to ∼ 8-10 GPU hours for each G. In our experiments, we used a HW-in-the-loop setup for

latency and energy measurements which pushed the overall search time of HADAS to ∼2-3

GPU days. Nevertheless, based on our analysis, HADAS’s search overhead can be reduced

to 1 GPU day if a proxy model replaced the HW-in-the-loop setup.

OOE Analysis: The top row of Figure 2.3 compares the static performance results from

the OOE of HADAS against those of the top models from AttentiveNAS [194] (denoted

as [a0-a6]). As shown, our obtained Pareto fronts (PF) generally dominate the baselines

on the four hardware settings. Furthermore, HADAS can identify comparable backbones

to the baselines with just a few evaluations. For instance, on the AGX Volta GPU, a6 is

dominated by another backbone from HADAS with an energy reduction of ∼ 33% under the
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Figure 2.3: The top row gives the results of the outer optimization on 4 hardware settings of
(from left to right): a) AGX Volta GPU, b) Carmel ARM v8.2 CPU, c) TX2 Pascal GPU, and
d) NVIDIA Denver CPU. The bottom row shows the results of the inner optimization engine,
with the same hardware settings. The points in the top row depict the static performance
of the explored backbone neural networks in (B) by the OOE, without early-exit or DVFS.
The points in the bottom row represent the performance of the explored combinations of
backbones, early-exits, and DVFS in (B,X ,F) by the IOE.

same accuracy level. Similarly, a1 is dominated by another backbone from HADAS with an

accuracy improvement of 2.34% under the same energy gain.

IOE Analysis: The results of the IOE are shown in the bottom row of Figure 2.3. For

a fair comparison, we fix the same optimization budget when running the IOE for the

baselines and HADAS. The dynamic performance of the explored (b, x, f) combinations and

the obtained Pareto fronts are given for both approaches, where the dynamic comparison

metrics are the energy efficiency gains when early exiting and DVFS are supported, as

well as the average of Ni values from equation (2.6). Across the four hardware settings,

HADAS seemingly dominates the majority of the optimized baselines with an average ratio of

dominance 58.4% (detailed in the following paragraph). This can be attributed to HADAS’s

better understanding of the global search space, where it samples backbones that are more

poised to benefit from the IOE optimizations with regard to early exiting and DVFS. This

is also evident through how HADAS can sample dynamic parameters for its models that can
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Figure 2.4: Comparing search efficacy for HADAS and the optimized baselines with regards
to: a) hypervolume (left) and b) ratio of dominance (right)

Table 2.2: DyNNs Comparison using the TX2 Pascal GPU

Model
Baseline
Acc(%)

EEx
Acc(%)

Baseline
Ergy(mJ)

EEx
Ergy(mJ)

EEx DVFS
Ergy(mJ)

AttentiveNAS a0 86.33 89.95 173.78 119.83 116.14
AttentiveNAS a6 88.23 93.02 335.48 256.80 218.34

HADAS b1 87.34 93.16 212.44 119.84 93.78
HADAS b2 88.06 91.83 341.3 187.92 126.06
HADAS b3 86.54 88.31 205.48 130.20 86.84
HADAS b4 88.40 89.24 358.01 232.77 201.01

realize substantial energy or accuracy gains near the extremes of its Pareto frontier, which

are not realizable by the optimized baselines. For instance on the Caramel ARM v8.2 CPU,

energy gains reach 63% for one of the extreme dynamic models on the Pareto frontier of

HADAS, compared to 52% for the extreme dynamic variant from the optimized baselines,

under the same level of accuracy.

Hypervolume (HV) and Ratio of Dominance (RoD): we expand further on the IOE

analysis and leverage hypervolume (HV) and ratio of dominance (RoD) as comparative eval-

uation metrics. The former metric measures the volume of the dominated portion of the

objective space, whereas the latter measures the percentage of solutions found by HADAS

that dominate the optimized baselines (and vice-versa). Figure 2.4 shows that HADAS

consistently outperforms the optimized baselines with regards to both metrics across the 4

hardware platforms. Taking the Pascal GPU as an example, we find that the HV coverage

and RoD are 16% and 95% more for HADAS over the optimized baselines, respectively.

DyNNs comparison: In Table 2.2, we compare the top DyNNs obtained by HADAS with
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Figure 2.5: Inner optimization improvement by regularizing the exits scores with the dissim-
ilarity function (dissim)γ over two ranges of γ values

two AttentiveNAS models: a0, the most energy-efficient baseline, and a6, the most accu-

rate baseline. Models are compared with regards to their static (i.e., baseline accuracy and

energy) and their dynamic performances (i.e., accuracy and energy with early exiting and

DVFS). As shown, the optimal models from HADAS outperform the baselines of Attentive-

NAS in both static and dynamic evaluations. For instance, b1 from HADAS is 57% and

19% more energy-efficient than the a6 and a0, respectively, while enjoying similar accuracy

scores like the most accurate model a6.

Dissimilarity Ablation Study. We perform an ablation study to investigate the impact of

the dissimilarity term (dissimγ) in equation (2.6) through the performance of the explored

models under each case. Specifically, we run the IOE for one backbone twice, with dissimγ

not included and one when it is included. In Figure 2.5, we compare the results obtained

with and without the dissimilarity with different values of γ. As shown, the inclusion of the

dissimilarity term allows the optimization algorithm to focus more on exploring dissimilar

early exits with a high contribution to the prediction accuracy, improving RoD by 41%.
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2.4 Map-and-Conquer: Efficient Mapping of Dynamic

Neural Nets onto Heterogeneous MPSoCs

We model how to conduct a static-to-dynamic transformation of a NN , designating it as a

multi-stage network along the width dimension (channels/attention heads), and characterize

its performance overheads when deployed in a distributed manner on heterogeneous MPSoCs.

2.4.1 Dynamic Transformation of NNs on MPSoC

Consider an unaltered basic neural network, NN , constituting a sequence of n layers:

NN = Ln ◦ Ln−1 ◦ ... ◦ L1 (2.8)

each computing layer, Lj, consists of weight parameter matrices whose count represents the

‘width’ of the layer. Without losing generality, we refer to these weight matrices here as

‘channels’, such as those in a convolutional NN . Therefore, we can define the jth layer as:

Lj = {Cj
1 , C

j
2 , · · · , C

j
W} (2.9)

in which Cj
i represents the ith channel in the jth layer. Now, consider an SoC that comprises

M computing units CU = {CU1, CU2, ..., CUM}, the goal is to devise a strategy to partition

every Lj into M subsets according to its width dimension (i.e., the channels), and thus, Lj

is redefined as:

Lj = {lj1, l
j
2, ..., l

j
M} (2.10)
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which enables every contiguous subset of channels, ljm, to be mapped onto one of the comput-

ing units, CUm ∈ CU. In this sense, we define two operations to characterize this mapping

problem: (i) Partitioning ; to divide layers and generate the subsets ljm, and (ii) Con-

catenation ; to reuse the generated intermediate features, F j
m, in set of the immediate next

layer in all subsequent stages, {lj+1
m+1:M}. In accordance, we define two parameter matrices

to characterize these operations:

P =


p11 · · · pn1
...

. . .
...

p1M · · · pnM

 , I =

I11 · · · In1
...

. . .
...

I1M · · · InM

 (2.11)

where P is the partitioning matrix in which every pji represents the fraction of channels

in a layer Lj (equation 2.9) are to be assigned to lji . I is an indicator matrix in which

Iji ∈ {0, 1} indicates whether the intermediate features, F j
i , are to be used in the j+1 layers

in the following stages. Figure 2.6 provides an illustration for how these matrices govern the

partitioning and concatenation operations of a neural network. As shown, each CUm on the

SoC can host a unique sequence of channel subsets, which we denote as a stage, Si:

Si = lni ◦ ln−1
i ◦ ... ◦ l1i (2.12)

and ultimately, we obtain the following set of stages:

S = {S1, S2, ..., SM} (2.13)

if we augment each stage Si with an exit at its tail (e.g., a classifier layer), each stage can

now act as a separate inference sub-model, to be invoked based on some established runtime

criteria during deployment (e.g., input processing difficulty).

Lastly, we define an additional vector, M, to parameterize the mapping of stages onto the
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Figure 2.6: Transformation of NNstatic into NNdyn and mapping NNdyn onto multiple CUs

SoC: Si → CUm ∀ Si ∈ S, CUm ∈ CU. M can by given as:

M = [π1, . . . , πM ] s.t. πk ̸= πk′ ∀ 1 ≤ k ≤ k′ ≤M (2.14)

in which every entry πk is one CUm ∈ CU to whom Sk is mapped. The condition is for

enforcing that no two stages are mapped onto the same CUm.
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Figure 2.7: Concurrent execution of S2 and S1 considering timing dependencies

2.4.2 Distributed Performance Modelling for Dynamic Inference

Here, we model the dynamic inference execution overheads given the partitioned deployment

of a model on a heterogeneous MPSoC with regards to latency and energy consumption.

Given the scope of this work, we assume ideal input mapping in which the number of stages

needed to process an input sample i is known apriori. In practice, input mappings can be

determined using runtime controllers as those stated in [22].

Execution Latency. Let τ ji denotes the execution latency overhead of sublayer lji in Si.

We first aim to derive an expression for the latency overhead of every stage, denoted by

TSi
. At this point, we highlight that stages are indexed by the order of their execution.

For example, S2 is only instantiated if S1 is deemed insufficient to terminate the processing.

Thus, there exists inter-stage dependencies of Si on its predecessors S1:i−1 (as indicated by Ii)

whose overheads need to be accounted for, especially when stages are mapped onto different

hardware units.

To avoid the demerits of a sequential execution model, we leverage the underlying separation

of the compute units and propose a concurrent model of execution that considers these

dependencies. Specifically, any sublayer lji in an ‘instantiated’ Si can immediately proceed

to execute its inputs once all of its required input features, {(F j−1
1:i−1 · I

j−1
1:i−1) ∪ F

j−1
i }, are

readily available within its local vicinity. From here, we can give the cumulative latency
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overhead at lji by:

T j
i = τ ji +max{T j−1

i , T j−1
k + uj−1

k→i | Ik = ⊮ ∀ 1 ≤ k < i} (2.15)

where the second term captures the maximum cumulative latency experienced in a previous

layer from all stages preceding Si. Thus, T j
i captures the cumulative latency estimate in

stage i at j while accounting for inter-stage dependencies, while uj−1
k→i is the data transmission

overhead of the features F j−1
k to the local buffer of the computing resource assigned to Si

(See Figure 2.7 for an illustrative example). Given n layers in Si, the execution latency of

Si can be estimated:

TSi
= T n

i (2.16)

Energy Consumption. For every CUm ∈ CU, we first characterize its power consumption:

Pm = P s
m + P d

m(ϑm) ≈ α + β · ϑm (2.17)

P s
m and P d

m are the static and dynamic components, respectively. The latter is parameterized

by the scaling factor ϑm based on the supported DVFS features on CUm, where αm and βm

are constants. From here, the energy required to complete processing at sublayer lji during

inference is given by:

eji = τ ji · Pm (2.18)

and as such the total energy consumed by Si is:

ESi
=

n∑
j=1

eji (2.19)
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Figure 2.8: Illustration of data movement and feature storage on the MPSoC

Overall Characterization. Under the concurrent model of execution, the overall perfor-

mance characterization is given by the following two equations:

TP,I,M,ϑ = max{TSi
∀ Si ∈ S} (2.20)

EP,I,M,ϑ =
M ′∑
i=1

ESi
s.t. 1 ≤ i ≤M ′ ≤M (2.21)

where for a dynamic inference on a MPSoC, described through the parameters choices of

(P, I,M, ϑ), its execution latency is the maximum from all its stages due to concurrency,

whereas its energy consumption is the aggregation of energy consumed by the M ′ ‘instanti-

ated’ stages to process an input sample.

2.4.3 Problem Formulation

Let Π = (P, I,M, ϑ) combine all parameters that characterize a neural network’s mapping

onto an MPSoC. Our main optimization goal is to find the ideal parameters that can enhance

a performance objective, P , given a set of constraints:

Π∗ = min
Π
P(Π) (2.22)

s.t. TΠ∗ < T TRG, EΠ∗ < ETRG, sizeΠ∗(F, I) < M
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Figure 2.9: Overview of our proposed optimization framework

where T TRG and ETRG are the respective target latency and energy constraints as set by

the practitioner. The constraint sizeΠ(F, I) < M is to bound the size of the intermediate

features that need to be made readily available for the duration of the inference (denoted as

F), for they are limited by the MPSoC’s shared memory size, M (see Figure 2.8). P is kept

generic and can be tuned to the designers’ objectives.

2.4.4 Map-and-Conquer Framework

We propose the Map-and-Conquer optimization framework to solve the mapping problem.

Figure 2.9 gives an overview of our framework, whose key components are detailed below.

Search Space. Here we describe how to generate a search space, X of mapping strategy

parameters, namely the space of (P, I,M, ϑ). Firstly, given a pretrained NN and an MPSoC

with M CUs, we can generate X based on the NN ’s layer specifications and the MPSoC’s

underlying hardware composition. For the former, the attainable depth and width parame-

ters of every layer Lj ∈ NN define the (P, I) parameter matrices. For the latter, M = |CU|

specifies its mapping space and the total number of inference stages. Lastly, ϑ is specified

through the hardware reconfiguration parameters (DVFS ). For instance, the mapping search
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space complexity of one layer from the Visformer [34] is O(1.5 × 105) = O(83 × 3! × 50),

considering 8 channel partitioning ratios, M = 3, and |ϑ| = 50.

Performance Objectives. Next, a performance objective needs to be designated as P for

the main optimization function in equation (2.22), to be specifically used for the candidate

mapping evaluation. For our case, we used the following expression for P :

P = (
Accbase
AccSM

)× (
M∑
i=1

TSi
·Ni)× (

M∑
i=1

ES1:i
·Ni) (2.23)

In which Accbase is the baseline accuracy of the pretrained NN model; AccSM
is the accuracy

of the last stage of the dynamic version of NN as its base accuracy. The aforementioned

terms are included to ensure that no accuracy drops ensue when a model’s structure changes

through the I matrix. Ni is the number of input samples -from the validation dataset-

correctly classified at Si, given that every prior stage misclassifies them. TSi
is the latency

experienced by the MPSoC at stage Si based on equation (2.16); ES1:i
is the energy consumed

as a result of executing i stages of the model – each Ei is evaluated as in equation (2.19).

Search Algorithm. We develop an evolutionary-based algorithm to effectively explore

the search space. Following the workflow in Figure 2.9, every new search iteration entails

a new population, say X ′
i ⊂ X. Then for every configuration Π ∈ X ′, its corresponding

dynamic NN and hardware settings are evaluated using a predefined objective function,

P . Based on results, configurations that do not meet the search constraints (e.g., memory

usage) are omitted, whereas the remaining ones are ranked according to P , and a subset of

elite configurations is taken for a mutation and crossover stage to obtain the new population

X ′
i+1. Once the search budget expires, a Pareto set in calculated from all the generated

populations from which the ideal dynamic mapping strategy is extracted.

Channel Partitioning and Reordering. Before a candidate configuration Π ∈ X ′ is

evaluated on the objective function P , the NN should be partitioned according to the

30



ratios in P. Yet to maximize performance when partitioning, the width channels in each

model layer are arranged according to their degree of importance. The logic being that given

the sampled partitioning matrix P for a configuration Π, it would be beneficial to assign the

most important channels in the layer to the earlier inference stages for dynamic inference.

This would enable numerous samples to terminate processing prematurely if deemed feasible,

which will consequently aid in enhancing the dynamic inference performance of theNN with

regards to experienced latency and energy on the MPSoC. This reordering method is feasible

as all channels within the same layer share the same dimensions. Channel ranking is widely

used in pruning, and we follow the approach in [131] to estimate each channel’s importance.

Performance Evaluation. Once a model is transformed to its dynamic version through

P and I, the hardware measurements needed for the performance evaluation of each NN

in equation (2.23) need to be estimated for each input sample. One way to achieve this is

through surrogate models, which are able to predict τ ji and eji of each layer j mapped onto

stage i (also CU i) based on input configurations while abiding by any inter-stage execution

dependencies, and taking into account the computation cost and feature map communication

overheads. Hence, a predictor (XGBoost [33] in our case) is first trained on a benchmarked

dataset of diverse layer specifications, deployment hardware and DVFS settings. Afterwards,

the predictor is deployed to characterize the performance of each model sampled within the

population, providing estimates for its base latency, τ ji , and energy consumption, eji . In our

case, we use the TensorRT library to first evaluate performance overheads on a layer-wise

granularity, construct the dataset, and then deploy the predictor for hardware evaluations.

2.4.5 Evaluation and Results

Our experiments are conducted on the MPSoC provided by NVIDIA: Jetson AGX Xavier.

This platform embeds CPU, GPU, and DLA cores on the same chip, sharing the same system
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Figure 2.10: Results of three different search strategies: Left) No constraint is set on the
Fmap Reuse. Middle) Under a constraint of reusing only less than 75% of feature maps.
Right) Under a constraint of reusing only less than 50% of feature maps. All the results
are reported for Visformer on the AGX Xavier MPSoC. In the three plots, we highlight
the configurations that exhibit the highest latency-energy tradeoff while preserving less than
0.5% drop in accuracy

memory. To run the NN workloads on the DLA, we use TensorRT and ONNX to build

inference engines from the PyTorch model. As NN s, we use Visformer [34] as ViT-based

architecture and VGG19 [172] as CNN-based architecture to validate our approach for both

cases. The dataset used for accuracy assessment is CIFAR100. Regarding the optimization

framework, we run the optimization algorithm for 200 generations, each with a population

size of 60, resulting in 12K overall evaluations. Furthermore, the evaluation step is performed

on a cluster of 12 GPUs taking up to ∼ 10 GPU hours to run the entire optimization process.

Search Process Analysis. In this section, we analyze the results of the search process

conducted by our framework under two main cases: 1) When no constraint is set to limit the

feature map reuse between inference stages, 2) When only less than 75%, 50% of feature maps

can be reused, respectively. In Figure 2.10, we show the optimization results for each case.

Firstly, we observe that most of the explored configurations achieve a good tradeoff between

DLA energy efficiency and GPU latency speedup. Furthermore, under the same baseline

accuracy of Visformer, we notice an energy gain up to ∼ 2.1x compared to the GPU-only

mapping with latency ≦ 30ms. Similarly, a latency speedup up to ∼ 1.7x compared to the

DLA-only mapping, with comparable energy efficiency. Secondly, we can notice an accuracy

drop of ∼ 6% when setting up hard constraints on the feature map reuse (See the 50%

case), underlining the importance of defining optimal inter-stages concatenation strategies
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Figure 2.11: Comparison between the most energy-oriented models selected from the ob-
tained Pareto sets by each search strategy and the baseline on DLA

in maintaining accuracy while minimizing inter-CUs dependencies.

Pareto Optimal Models Analysis. In this section, we delve further into the performance

breakdown of the Pareto optimal models obtained from the three search strategies. We select

the most energy-oriented models and compare them with the baseline Visformer mapped

entirely on the DLA. Figure 2.11 and Table 2.3 detail the obtained results. By exploring

neural network dynamicity and concurrency on heterogeneous CUs, our models achieve better

latency-energy tradeoff, providing latency speedup of ∼ 1.83x and up to ∼ 14.4% of energy

gain as shown in the left sub-figure. In addition, the correlation between feature maps reuse

and accuracy is highlighted in the right sub-figure. Reducing the feature maps reuse across

stages decreases the inter-CUs data transmission at the cost of accuracy drops. However,

some models can achieve comparable accuracy to the baseline while only reusing 60% of the

necessary feature maps (See No constr. and 75% constr. cases)

Generalization to other architecture. To further demonstrate our approach’s appli-

cability, we evaluate our optimization framework on a typical CNN architecture, VGG19.

Table 2.3 details the obtained results. Regarding the baseline performances, VGG19 depicts

a high energy consumption on GPU and slow execution latency on DLA. This is explained

by its many weights and large feature maps, which entail high memory footprints for both

CUs. Moreover, the large number of weights may exhibit a high degree of redundancy. Our
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Table 2.3: Performances comparison for Map-and-Conquer models against the baselines

Opt.
Strategy

NN
Implment.

TOP-1 Acc
(%)

Avg. Enrg.
(mJ)

Avg. Lat.
(ms)

Fmap. reuse.
(%)

Visformer (ViT-based Architecture)

None
GPU

88.09
197.35 15.01 -

DLA 69.22 53.71 -
No Fmap
Constr.

Ours-L 86.12 108.44 25.58 68.75
Ours-E 87.58 59.21 30.40 61.25

75% Fmap
Constr.

Ours-L 84.64 102.67 24.65 65.00
Ours-E 87.67 65.12 29.46 75.00

50% Fmap
Constr.

Ours-L 82.69 116.00 24.51 50.00
Ours-E 84.16 82.44 32.70 50.00

VGG19 (CNN-based Architecture)

None
GPU

80.55
630.11 25.23 -

DLA 164.89 114.41 -
No Fmap
Constr.

Ours-L 84.81 251.63 25.67 52.94
Ours-E 84.63 153.97 34.02 70.58

75% Fmap
Constr.

Ours-L 84.76 247.34 26.07 64.70
Ours-E 82.64 136.31 37.22 47.05

50% Fmap
Constr.

Ours-L 84.62 250.80 25.83 50.00
Ours-E 82.53 136.41 37.24 50.00

approach has exploited these two properties of VGG19 well, resulting in up to ∼ 4.62x

energy gain and ∼ 4.44x latency speedup.

2.5 Concluding Remarks

We studied how the synergy of DyNNs, distributed computation mapping, and hardware re-

configurability can elevate performance of DNNs on heterogeneous MPSoCs. We developed

two novel frameworks that showcased promising results in elevating performance efficiency,

highlighting the merit of considering dynamic inference at design time, and motivating fur-

ther exploration along this direction.
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Chapter 3

A Mapping-Aware Graph Neural

Architecture Search Framework for

Heterogeneous MPSoC Deployment

We draw on our insights from the previous chapter and study how to design Graph Neural

Networks (GNNs) for heterogeneous MPSoC deployment. The motivation for this study is

threefold: (i) the rising trend of GNNs at the edge (e.g., vision in autonomous driving). (ii)

GNNs’ unique irregular sparse-dense computational flow. (iii) Commercial Heterogeneous

MPSoC platforms being not optimized for GNN workloads. We add special emphasis on

Vision GNNs (ViGs) case. The full study details and results are in our published work [137].

3.1 Introduction

Due to their inherent capacity in learning meaningful feature representations from non-

Euclidean graph-structured data, the employment of Graph Neural Networks (GNNs) has

35



extended beyond typical graph learning applications, e.g., molecular inference and social net-

works [204], to encompass the field of computer vision. By transforming an image structured

as a regular grid of pixels into a graph, irregular and complex objects can be better captured

by the more flexible graph-level features generated throughout the model architecture. As

such, recent works employing GNNs to operate on this generalized form of image data have

demonstrated remarkable successes across a variety of visual tasks, e.g., object detection

and image classification [68,198,215,216]. In fact, the application of GNNs has been further

studied for more nuanced visual-based tasks in critical application settings, such as collision

prediction in self-driving vehicles [121,223].

Commercial SoC platforms, such as the Nvidia Xavier [1] and Tesla FSD [180], have suc-

cessfully integrated a variety of proven hardware computing units (CUs) and industrial IPs

on a single chip to balance the low-latency and energy efficiency requirements of compute-

intensive workloads. Through such advanced platforms, conventional deep learning vision

models (e.g., CNNs) can be run effectively in an edge computing setting to meet stringent

application requirements (think real-time object detection for autonomous driving [109]). By

extension, any consideration for applying GNNs for vision in the such deployment scenarios

must ensure that the execution constraints are still satisfied.

However, this is challenging in the case of vision GNNs as they are characterized by an

irregular, multiphase sparse-dense computational flow [61] compared to the regular, dense

DNN workloads. Particularly, this irregularity emanates from the repeated sequence of Ag-

gregation and Combination phases. The former employs a message-passing algorithm for

feature exchange between graph vertices, exhibiting sparse kernels with random memory

access patterns. The latter constitutes typical multi-layer perceptron (MLP) layer(s) for

feature transformation, exhibiting dense kernels and regular access patterns. As such, the

complication arises as neither the architecture of typical CUs (e.g., GPU) nor that of con-

ventional accelerators (e.g., DLA) is designed to efficiently support this unique sequence.
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Figure 3.1: Comparing ViG model variants [68] with different graph learning operators
when trained on the Oxford-Flowers dataset and deployed onto the NVIDIA Jetson AGX
Xavier SoC. All values are normalized by the baseline performance evaluations incurred by
the original ViG with MRConv layers when fully deployed onto the GPU only. The left
figure shows how performance characteristics differ from one variant to the other regarding
accuracy, latency, and energy consumption. The right figure illustrates how distributed
mapping strategies across the GPU and DLA can yield different latency-energy trade-offs.

Naturally, considerable research works have dedicated efforts to design customized GNN

accelerator architectures that can support the multi-phased computational flow [13, 30, 95,

177, 214, 218]. Unfortunately, these designs are not flexible enough to be consolidated into

standard MPSoCs, for GNNs belong to a nascent, rapidly-evolving field, and SoCs silicon

die area restrictions limit the number of specialized CUs that can be integrated. As vision

GNN applications on the edge continue to proliferate, an alternative approach is needed.

3.1.1 Motivational Example

In Figure 3.1, we showcase the potential performance trade-offs as offered by the architectural

and mapping optimization spaces for a vision GNN model when deployed onto a heteroge-

neous SoC. In this example, the backbone GNN architecture is the ViG-S [68], the target

platform is the NVIDIA Xavier AGX SoC, and the models are trained on the Oxford-Flowers

image dataset. Given how the ViG belongs to the Graph Convolutional Network (GCN) class

of GNNs, we construct three (03) additional variants of the baseline ViG with different GCN

operators. Specifically, the original ViG architecture employs the Max-Relative Graph Conv
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(MRConv) graph operation throughout the entirety of its model, whereas the variants employ

other GCN layer types, namely EdgeConv, GIN, and GraphSage. After training the ViG vari-

ants, we characterize their accuracy, latency, and energy consumption scores relative to the

original MRConv ViG variant when deployed onto the NVIDIA platform. In the left Figure,

we can observe some performance trade-offs from varying this singular GNN architectural

setting, i.e., the GCN layer operator. For instance, the EdgeConv ViG variant can achieve

slightly higher accuracy (0.69% more) than the MRConv one at the expense of a considerable

increase in latency and energy consumption. Contrarily, the GIN operation is 6.6% more

energy-efficient than MRConv at the expense of a 3.7% decrease in accuracy. Though there

is no clear dominance for one variant over the other, this analysis sheds light on the poten-

tial performance trade-off gains from optimizing the architectural design parameters. These

gains can be further compounded when considered alongside feasible deployment options. In

these first experiments, only the GPU was used as the target computing unit.

In the right Figure, we showcase how additional performance trade-offs are attained consid-

ering the various deployment options for the ViG variants on the SoC. In this example, the

considered options are standalone deployment on either the GPU or DLA components or

distributed deployment across the two. We remark that the distributed deployment options

follow the mapping strategies for GNN processing workloads provided by our optimization

engine, detailed in a later Section. From the Figure, the straightforward observation is that

for every ViG architecture, standalone GPU deployment is the option with the fastest exe-

cution speeds, standalone DLA deployment is the most energy-efficient alternative, and the

distributed option compromises between the two. However, a more interesting perspective

on mapping optimizations can be taken when considered part of a broader design problem.

That is, combining both the architectural and mapping optimizations to achieve better per-

formance trade-offs compared to performing optimizations for each design space in isolation.

For instance, assume a designer’s primary objective is to improve the ViG’s energy efficiency

while incurring minimal execution slowdown. From a pure resource efficiency perspective, a
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distributed mapping strategy for the GIN architectural variant can be more beneficial than

directly distributing the original MRConv ViG workloads since the former achieves comparable

energy efficiency gains to those of the latter (28.1% to 33.8%) at the expense of reduced la-

tency costs (14% to 39%). Still, the caveat remains that the GIN variant is less accurate than

the original ViG. Thus, the question becomes how to provide a generalized characterization

of this architecture-mapping design space.

3.1.2 Novel Contributions

In light of these challenges, we make the following contributions thorugh this study.

• We study how vision GNNs can leverage distributed deployment across multiple CUs

for performance efficiency when deployed onto a heterogeneous SoC.

• We present MaGNAS, a Mapping-aware Graph Neural Architecture Search Frame-

work for co-optimizing the design of ViG architectures and their SoC mappings.

• MaGNAS first contributes a self-contained framework for designing ViG supernets to

characterize their search space of GNN-based architectural design choices.

• To identify optimal ViG architecture-mapping pairs, MaGNAS solves a bilevel op-

timization problem via a two-tier evolutionary search algorithm of two optimization

engines: an outer engine to optimize GNN architectural design choices; an inner engine

to identify optimal mapping strategies for ViG workloads onto heterogeneous CUs.

• We conduct extensive experiments, in-depth analysis, and ablation studies using a

real MPSoC platform (Nvidia AGX Xavier [1]) and hardware simulator (MAESTRO

[98]) on four (04) state-of-the-art vision datasets. Our findings have demonstrated the

superiority of MaGNAS in designing and mapping ViG models on these platforms.
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3.2 Preliminaries and Related Works

3.2.1 A Primer on Vision Graph Neural Networks

We describe the main constituents of the ViG architecture [68], which pioneered a generic

approach for graph-based image processing by modeling raw input images as graphs.

Graphing Image Data Structures. The ViG operates on images modeled as graphs of

patches. A W ×H×C image is first partitioned into N patches of dimensions W ′×H ′×C ′.

Each patch’s dimensions can be viewed as a single feature vector xi ∈ RD where D =

W ′ × H ′ × C ′. To construct the graph, a node vi is assigned to each patch, forming an

unordered set of N nodes V = {v1, v2, . . . , vN} associated with the corresponding set of

feature vectors X = {x1, x2, . . . , xN}, where xi can be called the feature embedding of vertex

vi. To build graph edges, K edges are constructed for each vi based on the K nearest vertices

in its neighborhood N (V), that is, for every vj ∈ N (V), an edge eji is constructed from vj to

vi. Finally, the full graph structure of the image is given by G(V , E), which can be inputted

into the ViG model for processing.

Graph Processing Layer. Describing a graph through its features, G = G(X) s.t. X ∈

RN×D, a typical GCN layer on G can be represented by the following abstract formula:

G ′ = Combine(Aggregate(G,Wagg),Wcomb) (3.1)

where G is processed through an aggregation and a combination stages of the GCN layer.

Wagg and Wcomb resemble the respective learnable weights of each stage. The aggrega-

tion stage employs a feature exchange procedure in which every node vi receives features

xj ∈ N (xi)s.t.i ̸= j from its neighboring nodes and aggregates them to provide x′i. The com-

bination stage involves further treatment of features x′i (as through an MLP layer) to obtain
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refined representation x′′i . We remark that for each of the two stages, a variety of operations

can be employed (e.g., aggregation through sum, max-relative, mean), which correspond to

the variety of GCN layer types existing in the literature (e.g., GraphSage, GIN, etc.). Lastly,

The resulting output feature set from both stages, X ′, is used to construct the output graph

G ′ = G(X ′).

Grapher and FFN Modules. To enrich feature representation, graph processing layers

can be interleaved with typical DNN layers in a GNN model. As such, the standard ViG

architecture comprises a stack of two basic building blocks: Grapher and Feed Forward

Network (FFN) given by:

LGrapher = lpost ◦ lcomb ◦ lagg ◦ lpre, LFFN = lfc2 ◦ lfc1 (3.2)

The Grapher comprises at its core the GCN layer with its aggregation, lagg, and combination,

lcomb, operations, injected between two linear layers, namely pre-processing, (lpre), and post-

processing, lpost, layers, to promote feature diversity. The FFN block constitutes two fully

connected layers that further elevate feature capacity, lfc1 and lfc2 . For every GCN or fully-

connected layer in either module, non-linear activation and batch normalization operations

are applied. From here, every Grapher can be followed by an optional FFN to form the ViG

block, and the sequence of ViG blocks form the ViG backbone architecture.

3.2.2 Related Works

GNNs for vision. Through learning graph-level features, GNNs achieved remarkable per-

formance on a variety of computer vision tasks, such as activity recognition and point clouds

classification [102, 198, 215]. Scene graph generation [121, 209, 223] has emerged as a viable

approach to generate a graph of objects and their relations from an image through cascading

an object detector and a GCN model. The ViG [68] studied here relies on a standard GCN
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Table 3.1: Comparison between related Graph Neural Architecture Search works and ours.

[60] [59] [231] [170] [228] [230] MaGNAS
Training-in-the-loop NAS ✓ ✓ ✓ ✓
Once-for-all NAS ✓ ✓ ✓
Vision GNN ✓
Hardware Awareness ✓ ✓ ✓
GNN-Hardware co-design ✓
Edge Computing Setting ✓ ✓
Distributed Mapping ✓

backbone to generate and process graphs from raw images directly.

Hardware acceleration for GNNs Numerous works [13, 30, 95, 177, 214, 218] have pro-

posed hybrid accelerator architectures comprising separate engines and specialized hardware

components to effectively manage the non-uniform GNN dataflow on both an intra- and

inter-phase level. More recent work [61] attempted to characterize the design space of

dataflow choices to enable running GNNs on customary reconfigurable spatial accelerators

to serve various GNN use cases.

Distributed Computing of GNNs. Distributing DNN workloads across the hetero-

geneous computing resources of CPU, GPU, DLAs, and FPGAs, is an active field of re-

search [23, 40, 93, 151, 213], with different forms of GNN workload distribution (task-level,

data-level, and pipelining) have been explored in the literature [31].

Graph Neural Architecture Search. Our work falls under the category of HW-aware

NAS for GNNs as these two, with several distinctive features summarized in Table 3.1 as

will be seen in the following discussions.

3.3 System Model and Problem Formulation

In this section, we model the mapping problem of GNN kernels onto heterogeneous SoC CUs.

Then, we derive a formulation for the global design-mapping bi-optimization objective.
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3.3.1 System Model for mapping GNNs onto Heterogeneous SoCs

GNN Workload Characterization. Let a standard GNN model architecture, α, be

formally described as a sequence of n computing blocks as follows:

α = Ln◦Ln−1◦· · ·◦L1, s.t. Li ̸= Li−1, Li ∈ {LFFN , LGrapher}, LFFN ∈ {LFFN , ϕ} ∀1 ≤ i ≤ n

(3.3)

where each GNN computing block Li can either be the Grapher or FFN blocks as defined

in the previous section, denoted by LGrapher and LFFN , respectively. The condition ensures

that each LGrapher block can be succeeded by an optional LFFN block.

Let Xj be the input graph-level features for block Lj ∈ α. Then, the output feature embed-

ding vector, Xj+1, can be obtained as:

Xj+1 = Lj(Xj) s.t. xjk ∈ RD′ ∀ xjk ∈ Xj (3.4)

where the condition ensures that feature embedding dimensions remain consistent throughout

each computing block within the GNN. That is the feature embedding for xjk (the kth node

within the graph representation at the jth block) retains the same D′ dimensions before

and after being processed through block Lj. Note that D′ can either be equivalent to D

or a downsampled version of it as some architectures (e.g., Pyramid [68]) can include extra

downsampling layers in-between computing blocks to promote abstract feature learning.

Let CU = {CU1, CU2, · · · , CUM} be the set of available computing units within a heteroge-

neous MPSoC. Considering a blockwise granularity, we can define a mapping vector, m, to

characterize the workload distribution for each GNN computational block as follows:

m = [π1, π2, · · · , πn], s.t. πi ∈ CU ∀ 1 ≤ i ≤ n | support(πi, Li) == True (3.5)
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where each entry πi in M describes the mapping assignment of Li onto a computing unit

CUm ∈ CU as long as this corresponding CUm hardware supports running Li.

Performance Modelling. For a mapping strategy m, the total latency and energy con-

sumption overheads, Ttotal and Etotal, experienced by a GNNmodel under distributed pipelined

deployment can be modeled as the sum of the overheads incurred by its individual blocks:

Ttot(m) =
n∑

i=1

Ti(m), s.t. Ti(m) = τ comp
i + I[πi−1 ̸= πi] · τ ini + I[πi ̸= πi+1] · τ outi (3.6)

Etot(m) =
n∑

i=1

Ei(m), s.t. Ei(m) = ecomp
i + I[πi−1 ̸= πi] · eini + I[πi ̸= πi+1] · eouti (3.7)

where the τ comp
i and ecomp

i are the respective computational latency and energy consumption

experienced by Li given its corresponding mapping, πi. τ
in
i and τ outi are the latency overhead

sustained when loading and writing back graph features from and to the shared system

memory on the SoC, respectively. The indicator function I[·] evaluates to 1 only when the

associated condition is met; that is, no transmission overhead penalties are sustained between

two consecutive layers when they are both assigned the same computing unit. For the energy

formula, the same logic of notation applies for every layer Li.

Mapping Problem Formulation. Define P (m) = f(Ttot(m), Etot(m)) to be a combined

evaluation function for a mapping configuration m. Let M be the set of feasible mapping

configurations. Then, we can formulate the mapping objective function for an architecture

α deployed on a heterogeneous SoC platform as follows:

m∗ = max
m∈M

P (m), s.t. Ttot < TTRG, Etot < ETRG (3.8)

where the goal is to identify an optimal mapping strategy, m∗, for α such that performance

objective function P is maximized with respect to latency and energy under user-specified

constraints on latency and energy consumption, T TRG and ETRG, respectively.
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3.3.2 Nested Search Formulation

Given our observations in the motivational study, we further refine our formulation to an

architecture-mapping bi-level co-optimization problem, where the goal is to identify the op-

timal set of design choices for the GNN architecture and its mapping strategy. At the top

level, a GNN architecture subspace (A) describes the set of architectural design choices as-

sociated with the GNN model. At the inner level, a mapping subspace (M) specifying the

possible distributed mapping options given the underlying CUs. Through this designation,

mapping choices become conditioned on architectural choices, which promotes the generality

of this approach. Formally, the nested optimization formulation can be given as follows:

α∗ = max
α∈A

ψ[Acc(α), P (m∗|α,CU)] (3.9)

s.t. m∗ = max
m∈M

P (m|α,CU) (3.10)

where the outer optimization equation targets identifying the optimal set of GNN archi-

tectural parameters, α∗, that yield the best scores on a combined function, ψ, of both the

accuracy, Acc(·), and performance efficiency P (·). Evaluation of P (·) is based on the results

from the inner optimization equation. That is, energy and latency performance evaluations

used for scoring a candidate architecture, α, are for the architecture’s optimal mapping, m∗.

3.4 MaGNAS Framework

We present MaGNAS, a mapping-aware Graph Neural Architecture Search framework for

heterogeneous SoC deployment. MaGNAS solves the co-optimization problem through:

(i) the construction and training of a ViG supernet as a viable GNN design space, (ii)

developing a bi-level evolutionary algorithm for optimizing architecture-mapping pairings.
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Figure 3.2: The ViG supernet implementation for MaGNAS co-search framework. The
supernet comprises D ViG search super blocks, each of which constitutes a sequence of di
Grapher and FFN computing modules. Architectural search parameters characterizing A
subspace are highlighted in red and detailed in the text.

3.4.1 Supernet Construction and Training

We extend the ViG architecture introduced in Section 3.2.1 to construct a supernet of various

design choices to characterize an architectural search space A. Briefly, a supernet represents

a network of networks that can be trained simultaneously to facilitate providing diverse

model designs for different deployment scenarios [25]. In the context of ViGs, each subnet

within a supernet is defined by a unique set of architectural parameter choices (e.g., choice of

GNN layers, #layers, etc.). Additionally, supernets entertain the property of weight-sharing,

meaning that during the supernet’s training, weight updates for a candidate layer are applied

and reused across all subnets that share that particular layer, which enables the simultaneous

training of all subnets within it. Once the supernet is trained, a search algorithm can be

employed to identify an ideal subnet that meets the target specifications. The ViG supernet

is illustrated in Figure 3.2, where the choice of architectural search parameters for A is

based on observations from both related works [59, 68, 218, 220] as well as from our initial

experiments. The supernet construction is detailed in the following.

ViG Superblocks. The backbone ViG-S architecture in [68] comprises 16 computing

blocks, each comprising a stack of a Grapher and an FFN module. On the one hand, char-

acterizing A on a per-layer or a per-block basis can lead to an explosion in the search space,

given the number and cardinality of various search parameters. Conversely, associating the
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parameters of A with the entire backbone restricts fine-grained architectural optimizations,

not fully exploiting the power of diversified architectural settings at different model stages.

As a compromise, we propose ViG superblocks to characterize A, where each ith superblock

constitutes a collection of di ViG blocks sharing the same design choices. The merits of

the ViG superblocks are twofold: (i) they balance the trade-off between architectural di-

versity and search space complexity; (ii) They facilitate effective management of the depth

parameter through di while preserving key architectural features.

A search parameters. For each superblock i, we specify the following parameters to

construct our architectural search space A:

• The depth, di, to indicate how many ViG blocks exist in the ith superblock i.

• Grapher pre-processing as a binary decision variable to indicate whether a pre-processing

layer exists before every graph processing layer.

• Graph Op to specify the graph operation employed throughout the ith superblock.

• FFN module as a binary decision variable to indicate whether FFN modules should

exist in this superblock.

• FC hidden layer dimension to specify the size of the intermediate features in the FFN.

Supernet Training. We train the supernet for our target task using a combination of

Cross-Entropy and knowledge distillation loss functions, where for the latter, we employ a

pretrained model as a teacher for more representative training on soft labels’ training [22,222].

This training is performed from scratch due to: (i) The ViG is a relatively new GNN

architecture and the availability of pretrained weights is still limited.(ii) loading the exact

pretrained model weights from the original ViG backbone [68] can introduce a bias towards

certain design choices during training.
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To train the supernet, we sample and train a set of subnets at each iteration. The choice of

subnets is realized through 3 separate samplers following the Sandwich sampling rule [222]:

• Maximum Sampler: sample the largest subnet from A, that is, the one with the max-

imum depth and width (i.e., hidden dimension features).

• Minimum Sampler: sample the smallest subnet from A.

• Balanced Sampler: sample a number of random subnets of different architectures.

This scheme enables improving the performance of all subnets within the search space si-

multaneously by pushing the upper and lower performance bounds with every iteration.

Furthermore, given how numerous GNN architectures leverage a homogeneous structure,

that is, one where the choice of the Graph OP is kept consistent throughout the entire archi-

tecture, we modify the Maximum/Minimum samplers so that they sample architectures of

maximal/minimal sizes, but constituting a randomly selected Graph Op repeated through-

out the model. This ensures training fairness by pushing the upper and lower boundaries of

architectures of different graph operations and avoids bias towards specific implementations.

3.4.2 Nested Evolutionary Search: Outer Optimization Engine

In order to solve the bi-level architecture-mapping optimization problem formulated in equa-

tions (3.9) and (3.10), we construct the two-tier evolutionary search framework illustrated in

Figure 3.3 to identify optimal architecture-mapping pairings. Specifically, an evolutionary

search works by creating a population of candidate solutions from a search space, evaluating

each one, and propagating the top-performing solutions to the gene pool of subsequent gen-

erations. These solutions can then endure and undergo the genetic operations of mutation

and crossover to contribute new derivative solutions for the following generations. Thus with
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Figure 3.3: MaGNAS two-tier evolutionary search framework

each evolution, only new non-dominated solutions from the current population are added,

and the newly-dominated ones in the archive are removed.

We first describe the Outer Optimization Engine (OOE), which employs a higher-level evo-

lutionary algorithm whose purpose is to: (i) search through the supernet to identify the

most-promising GNN subnets and (ii) rank candidate subnets

Subspace A Description. By adopting a Once-For-All (OFA) NAS approach [25], the

training and search stages within MaGNAS are decoupled, significantly reducing the search

process overheads as once the supernet has been trained, its search subspace, A, can be

reused for the search to identify beneficial subnets. Accordingly, subspace A in the search

stage is encoded as a sequence of 04 discrete vectors, each representing the architectural

parameters for each ViG superblock listed in 3.4.1, facilitating the sampling of subnets as

GNN architectural design candidates, α ∈ A.

OOE Evolutionary Search. The next step is to employ a search algorithm to solve the

optimization objective in (3.9) by searching for optimal GNN architectural implementations,

α∗. Here, we implemented the NSGA-II evolutionary search algorithm to navigate through

A and explore the subspace of viable design choices. Typically, the search algorithm is run

for a pre-specified number of generations, where a new population of candidate architectural

designs, Pg
A, is sampled with every generation, g. Then, ∀α ∈ Pg

A, a fitness evaluation
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function, F (·), is applied as follows:

F (α) = f(Accα, Tα, Eα) (3.11)

which scores every α based on its target task accuracy, latency, and energy consumption

on the target platform denoted by Accα, Tα, and Eα, respectively. Accα evaluation can

be obtained directly by evaluating the α model predictive performance on the test dataset,

whereas estimates of Tα, and Eα are provided by the inner optimization engine based on

evaluations of the ideal mapping strategy, m∗ (which will be detailed in the following sub-

section). Though we used for F (·) a weighted product function of the objective evaluations

in our implementation, we kept its definition here abstract for generality. According to the

fitness evaluation scores, every α ∈ Pg
A is ranked via the NSGA-II non-dominated sorting

algorithm. Based on the rankings, an elimination process is initiated afterward to yield a

population subset P ′g
A ⊂ P

g
A. Subset P ′g

A then undergoes mutation and crossover opera-

tions to provide a new population Pg+1
A for the following generation g + 1. This iterative

search continues until the search budget expires. At the last iteration, a Pareto-optimal

set, {α∗|m∗}, is provided. In our experiments, we sample 100 architectures for Pg
A out of

a total |A| ≂ 229 candidates. After fitness evaluations, we select a subset of 30% from the

top-ranked candidates as P ′g
A.

3.4.3 Nested Evolutionary Search: Inner Optimization Engine

To estimate Tα and Eα ∀α ∈ Pg
A, we develop an Inner Optimization Engine (IOE) to specify

an ideal mapping strategy of α onto underlying SoC (α→ CU) and evaluate its performance.

Subspace M Description. The mapping configuration,m, defined in equation (3.5) reflects

the encoded discrete vector within the IOE search space that characterizes potential mapping

options for each Grapher and FFN modules from α. We also extend the specification of m
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in the IOE to incorporate two further mapping options for the stem and prediction modules.

IOE Evolutionary Search. Given how the mapping decision space is at least |CU|n (see

equation (3.3)), a brute-force search to determine the ideal mapping, m∗, can be costly. As

such, we implement another NSGA-II evolutionary algorithm in the inner optimization level

to effectively explore mapping choices within M and identify the best candidates. Particu-

larly, a population of mapping configurations, denoted by Pg
M, is sampled every generation g

by the search algorithm. Then for every m ∈M, a fitness evaluation function P (·) is applied

as given in the below formula:

P (m|α,CU) = (
Em

α

max{ECU
α }

)γ1 × (
Lm
α

max{LCU
α }

)γ2 ∀CU ∈ CU (3.12)

where Em
α and Lm

α are the respective energy and latency sustained by α when its components

are deployed onto the underlying hardware following a mapping strategy m. Each of these

values is then normalized by the best standalone deployment option from CU, denoted here

by ECU
α and LCU

α , respectively. The reasons for this normalization are twofold: (i) To ensure

fairness when comparing various mapping options for α; (ii) To enforce achieving compa-

rable, if not improved, performance scores over those obtained by the canonical standalone

deployment options. γ1 and γ2 are user-specified tunable hyperparameter values to enable

prioritizing one performance objective or the other. For our experiments, we constructed

low-cost, accessible hardware lookup tables for the target CUs.

Accordingly, another non-dominated sorting algorithm is instantiated to rank mapping con-

figurations, retaining the top-ranked configurations to provide population subset P ′g
M ⊂ P

g
M.

Afterwards, subset P ′g
M undergoes mutation and crossover to provide Pg+1

M as the new popu-

lation for the next generation. Once the search budget expires, Em∗
α and Lm∗

α are returned as

evaluations for the best configuration, m∗, to be used for Eα and Tα in the OOE, respectively.

Performance Characterization. Generally, estimates of Em
α and Lm

α for every m ∈ Pg
M
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can be provided through a multitude of approaches (e.g., predictive models). As was shown

in equation (3.4), the dimensional consistency of graph features offered throughout the ViG

backbone has led to a tractable space of evaluation possibilities, enabling the construction

of low-cost lookup tables to directly retrieve performance estimates of various architecture-

mapping configurations. Simply put, the lookup tables are indexed by the architectural

parameters of a computing block, Li, and the CU to whom it is mapped. By invoking

the tables for every block in α given m, the performance overheads of each block can be

aggregated to estimate the total Em
α and Lm

α . Although lookup tables work for our case,

proxy prediction models can be more feasible for a different GNN architecture in which the

graph features dimensions change as a result of inconsistent graph structures.

DVFS Search Support. We also include the option to supplement M subspace with the

configuration setting choices of dynamic voltage and frequency scaling (DVFS) features. We

specify a DVFS search block in the IOE as a third optional optimization level contingent

upon the choices of m and α. This is convenient as the search space of the DVFS is small

compared to A and M. Formally, if we denote a single set of DVFS configuration settings as

ϑ and the overall DVFS search space as Ψ, then the DVFS search objective is given as:

ϑ∗ = max
ϑ∈Ψ

P (m|α,CU, ϑ) (3.13)

where the performance evaluation of m becomes also contingent upon the choice of ϑ ∈ Ψ.

3.5 Experiments

We conduct extensive experiments using a real MPSoC platform and hardware simulation

on four(04) state-of-the-art image classification datasets to assess the merit of MaGNAS in

designing ViG architectures and mapping them onto heterogeneous CUs.
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Table 3.2: Search space parameters for GNN architectures.

Decision variables Values Cardinality

Supernet Search Space (A)
Superblock depth (d) {2, 3, 4} 3

Graph Op {Max-Relative, EdgeConv, GraphSAGE, GIN} 4

Skip pre-process (fc use) {False, True} 2

Skip post-process (ffn use) {False, True} 2

FFN hidden features (w) {96, 192, 320} 3

Mapping Search Space (M) for NVIDIA Xavier AGX

Computing units {GPU, DLA} 2

Mapping granularity {Stem, Grapher, FFN, Cls} O(1.7×1012)
DVFS Settings Search space (Ψ) for NVIDIA Xavier AGX

CPU clock frequency {1728MHz, 2265MHz} 2

GPU clock frequency {520MHz, 900MHz, 1377MHz} 3

EMC clock frequency {1065MHz, 2133MHz} 2

DLA clock frequency {1050MHz, 1395MHz} 2

3.5.1 Experimental Setup

Supernet Design. We build our supernet on top of the ViG-S variant [68] with 16 comput-

ing blocks, each a Grapher and an FFN block. We group every four (04) computing blocks

into a ViG superblock, and assign to each K nearest neighbor values of 12, 16, 20, and 24,

respectively, which enables aggregation of features from farther nodes with each superblock.

To support dynamic width and depth configurations, we transform each ViG superblock

into a slimmable neural network following [221]. To support varying graph operations, we

specify a dynamic graph processing layer in the Grapher with four concurrent branches re-

flecting different GCN operational choices for Graph Op: 1) EdgeConv [198], 2) GIN [210], 3)

GraphSAGE [67], and 4) Max-Relative GraphConv [106].

Datasets and Training. We employ four (04) image classification datasets of CIFAR-10,

CIFAR-100, Tiny-Imagenet, and Oxford-Flowers. To transform the images to graphs, images

are first scaled to 224×224×3 resolution, and transformed through the Stem block into a

graph of nodes N = 196, each of dimension D = 14 × 14 × 320. The supernet training for

each dataset is run for 150, 150, 250, and 250 for each respective dataset in the order in which
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they were stated. The training is performed using an Adam optimizer with a momentum of

0.9, weight decay of 0.05, and dropout set to 0.2. We use cosine as a learning rate scheduler

with an initial LR of 0.003 and batch size of 320 on a 20 Nvidia RTX 2080 Ti GPU cluster.

Evolutionary Search Settings. Table 3.2 lists the search sub-spaces of A, M, and Ψ

designated within our optimization framework. For the optimization process, we fix the

population size to 100 and 200 and the number of generations to 50, and 10 for the OOE

and IOE, respectively. Combining the OOE and IOE, we explored ∼ 1.6 × 106 candidates

of GNN architectures and deployment settings on an Nvidia Xavier AGX platform.

Hardware experimental settings. We evaluate our approach using two hardware setups

presenting a variety of computing units and architectural features: (i) NVIDIA Jetson AGX

Xavier [1], as an MPSoC platform; (ii) MAESTRO [98,99], a hardware simulator tool. The

Jetson AGX Xavier comprises a Volta GPU and an energy-efficient DLA, which use for

our CU. Whereas using MAESTRO, we simulate a use-case of an SoC with three (03)

heterogeneous CUs. We use the native dataflows in MAESTRO of kcp ws, ykp os, and dpt

for our 3 CUs, which for simplicity, we denote by DSA-k, DSA-y, and DSA-d. W

GNN architectures baselines: These include the original isotropic ViG-S model in [68]

as well as its variants by altering Graph Op (i.e., the GCN operation) where the Graph

Op remains consistent across all the layers. Specifically, we identify the baselines by their

recurring Graph Op operation: 1) b0: ViG-S/Max-Relative, 2) b1: ViG-S/EdgeConv, 3)

b2: ViG-S/GIN, and 4) b3: ViG-S/GraphSage. For the scalability analysis of the IOE,

we also consider the PyramidViG-M as the alternative ViG backbone that sustains graph

features dimensional reductions as the network deepens.

HW-mapping baselines: We consider the default standalone deployment options – i.e.,

the full mapping of an entire ViG model to a singular CU (e.g., to the GPU only). We

also consider hybrid mapping strategies in which inter-CU transitions are limited, as pro-
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Figure 3.4: The first two rows show the performance of the explored GNNs in (A) by the
OOE on four datasets (from left to right : a) CIFAR-10, b) CIFAR-100, c) Oxford-Flowers,
and d) Tiny-ImageNet. The Hardware metrics (i.e., latency and energy) are shown for GPU-
only deployment in the first row and for DLA-only deployment in the second row. The third
row shows the IOE results on CIFAR-10 grouped by prediction error intervals.

posed in [40]. We also use the aforementioned PyramidViG-M GIN-variant for our hardware

scalability experiments using MAESTRO.

3.5.2 OOE Results: GNN Architecture Optimization

In Figure 3.4, the first two rows depict the explored GNN architectures from A by the OOE

on the four (04) datasets given standalone mapping strategies on GPU-only (top row) and
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DLA-only (middle row). Compared to the baselines defined above, our obtained Pareto-

optimal GNN architectures generally dominate all baselines on the four image classification

datasets with regard to the three performance metrics of accuracy, latency, and energy

consumption. Specifically, the OOE can identify GNN architectures that achieve up to

∼3.6× latency speedup than baselines when deployed onto the GPU; can realize up to

∼2.8× more energy efficiency gains compared to the baselines when deployed onto the

DLA – all while maintaining comparable accuracy scores. As will be emphasized in the

subsequent Section 3.5.4, the reasons for this dominance by the OOE’s GNN architectures is

attributed to the allowed diversification of Graph Op across the different ViG superblocks,

which has facilitated achieving better accuracy-performance trade-offs. Moreover, skipping

the FFN and the Grapher’s FC pre-processing layers offers attractive design choices to avoid

unnecessary computation, especially when the set of features is limited and can be already

captured by the basic layers of the Grapher modules – which is the case for the simpler

datasets (e.g., CIFAR-10). Our OOE recognized this property and leveraged its knowledge

to concentrate its search on identifying GNN architectural parameters that achieve the best

accuracy levels with the minimal number of FFN and FC pre-processing layers.

3.5.3 IOE Results: Hardware Mapping Optimization

The bottom row of Figure 3.4 shows the optimization results when exploring mapping strate-

gies from M for the top-performing GNN architectures (as ranked by equation 3.11) provided

to the IOE. The results are reported for CIFAR-10 and grouped by TOP-1 error intervals in

each sub-figure. A similar trend has also been observed in the other datasets. At each top-1

error interval, we can observe that the IOE explored various mapping strategies, as illus-

trated by the latency-energy trade-offs. The bulk of these trade-offs are captured within the

range of performance values between the GPU-only and DLA-only mapping options values.
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Table 3.3: Detailed performance results, GNN architectural parameters, and mapping strate-
gies of our Pareto optimal models (a0-a3). The original ViG-S and its variants (b0-b3) on
the four datasets on the NVIDIA Jetson Xavier AGX SoC platform. ’G’ and ’D’ in the
latency and energy columns indicate GPU and DLA, respectively.

Datasets GNN Models TOP-1 Acc
(%)

Graph-Ops
(M, E, G, S)

FFN-use
(%)

FC pre-use
(%)

Latency
(ms)

Energy
(mJ)

GPU-use
(%)

DLA-use
(%)

All-datasets

Φ Baseline-b0 C10: 94.15, C100: 82.13
F: 89.71, Ti: 68.12

M-M-M-M 100 100 G: 25.28
D: 40.11

G: 459.44
D: 224.41

- -

⋆ Baseline-b1 C10: 94.15 C100: 82.13
F: 90.29, Ti: 68.15

E-E-E-E 100 100 G: 33.74
D: 62.11

G: 770.36
D: 323.70

- -

▷◁ Baseline-b2 C10: 94.20, C100: 81.49
F: 86.37, Ti: 67.62

G-G-G-G 100 100 G: 22.49
D: 39.62

G: 429.07
D: 214.35

- -

Ω Baseline-b3 C10: 94.27, C100: 82.10
F: 88.92, Ti: 68.32

S-S-S-S 100 100 G: 29.57
D: 57.77

G: 623.76
D: 263.48

- -

CIFAR-10
(C10)

⃝ Ours-a0 94.25 G-G-G-G 25 25 16.02 97.0 09 91

⃝ Ours-a1 94.46 G-G-G-G 100 0 19.49 118.00 17 83

⃝ Ours-a2 94.32 G-M-G-G 25 0 11.19 121.14 75 25

⃝ Ours-a3 94.32 G-M-G-G 25 0 14.18 105.11 33 67

CIFAR-100
(C100)

⃝ Ours-a0 82.13 S-G-S-G 100 25 17.72 180.56 50 50

⃝ Ours-a1 82.17 S-S-S-S 100 75 34.72 271.62 30 70

⃝ Ours-a2 81.63 G-G-G-G 50 50 15.06 131.81 50 50

⃝ Ours-a3 82.13 S-G-S-G 100 25 17.29 197.80 55 45

Oxford-Flowers
(F)

⃝ Ours-a0 89.90 M-G-M-M 75 75 14.37 153.54 69 31

⃝ Ours-a1 88.43 G-G-G-G 0 50 9.60 119.07 90 10

⃝ Ours-a2 88.43 G-G-G-G 0 50 12.30 105.88 40 60

⃝ Ours-a3 89.02 M-G-G-G 25 25 12.82 116.63 50 50

Tiny-ImageNet
(Ti)

⃝ Ours-a0 68.40 M-G-G-G 25 0 13.07 114.89 50 50

⃝ Ours-a1 68.40 M-G-G-G 25 0 15.47 102.06 17 83

⃝ Ours-a2 68.51 M-G-G-G 75 25 16.37 122.56 38 62

⃝ Ours-a3 68.51 M-G-G-G 75 25 17.87 115.78 19 81

Furthermore, as both GNNs and mappings are considered together in the IOE design space,

superior energy gains can be realized through more compact GNN architectures. For in-

stance, as illustrated in the third sub-Figure, an energy gain up to ∼3.42× can be attained

compared to the b2-gpu while preserving comparable latency and accuracy levels by opting

for another GNN architecture and distributed mapping. Upon comparing the curve lines, we

can observe that GNN architectures that outperformed the baselines in the OOE (i.e., in the

standalone deployment options shown by the extremes) typically maintain their dominance

within the IOE and proves that rank is preserved across GNN architectures and mapping

schemes in this joint search space.

3.5.4 Analysis of Pareto Search and Models

Results Discussion. In Table 3.3, we provide a detailed analysis of performances, archi-

tectural parameters, and mapping strategies of the ViG baselines [b0-b3] and a selection
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of our final Pareto optimal models from the two-tier search [a0-a3] for each dataset. As

shown, although our models maintain comparable accuracy scores to the baselines, they

generally achieve better speedups and energy efficiency results. To be more precise, our

models achieve on average ∼1.57× and ∼2.49× latency speedups; ∼3.38× and ∼1.65×

more energy efficiency when compared against the original ViG baseline fully-deployed onto

the GPU and DLA, respectively. This dominance is primarily attributed to 3 factors: (i)

the enabled diversification of Graph Op parameter throughout the ViG superblocks, which

enables interleaving both powerful and resource-efficient operators within a model architec-

ture. For instance, examining the Oxford-Flowers results in the Table, model a0 interleaves

both Max-Relative and GIN operators. The former contributes to the model’s representa-

tional capacity and compensates for the inadequacy of GIN operators in capturing long-range

dependencies from the graph nodes features, ultimately leading the model to surpass baseline

b0’s accuracy score (89.9% to 89.71%). On the other hand, the employment of GIN operator

– alongside other factors – leads a0 to achieve superior latency and energy efficiency scores.

(ii) The additional varying architectural parameters from A (e.g., FFN-use) enable tuning

the model’s size and learning capacity to the task and dataset complexity. (iii) The dis-

tributed mapping strategies, as indicated by the GPU-use and DLA-use columns in Table

3.3, further balance the latency-energy trade-offs by effectively utilizing different CUs.

Hypervolume and Pareto Composition Analysis. To appraise the efficiency of our
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nested evolutionary search algorithm in identifying meaningful and mapping configurations,

we compare its Hypervolume [166] against those of baseline OOE searches conducted on

the standalone deployment options on the GPU and DLA. Succinctly, the Hypervolume

measures the volume of the dominated area in the objective space by the estimated Pareto

fronts. In Figure 3.5 (left), we can observe that the nested search (w/IOE ) improves the

Hypervolume scores over the baseline OOE GPU search by ∼5.7% on average across the

four (04) datasets, indicating the IOE’s merit in extending the dominated area in the search

space. In Figure 3.5 (right), we complement the Hypervolume analysis with a breakdown of

the Pareto front composition with regard to the mapping strategies. Specifically, we consider

the non-dominated solutions by combining Pareto fronts obtained at every generation. As

seen, the distributed mapping options constitute 23.5%-53.7% of the solutions on the Pareto

front, indicating their value in elevating resource efficiency for the various models.

Analysis of GNN workload distribution. We showcase how different GNN workload

assignments across the GPU and DLA influence the latency-energy tradeoffs. In Table 3.4,

we select one of the Pareto-optimal models, Ours-a3 on CIFAR-100, and compare three

mapping configurations: (i) Standalone options in which the model is fully deployed on either

GPU or DLA. (ii) Constrained transition options (as introduced in [40]) where the number

of allowable inter-CU transitions is limited to those that offer the best tradeoffs in order

to mitigate data transmission overheads (i.e., the write-back and initial cold cache misses).

(iii) Ours (IOE) are the mapping options provided through our IOE with unconstrained

inter-CU transitions.

We ensure a fair comparison by focusing on one objective (energy) while fixing the other

(latency). As such, for each constrained transition option, we use two (02) Pareto optimal

solutions whose latency values are closest to our solution – i.e., solutions with latency closest

to 17.29 ms. From the reported results in Table 3.4, we can observe that with our uncon-

strained mapping strategy, a single inference sustains 197.8 mJ on average, which is more
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Table 3.4: Details and comparison of the GNN workload Assignment. ‘G’ and ‘D’ indicate
GPU and DLA assignment, respectively. Note that each Grapher block is first succeeded by
a corresponding FFN block.

Mapping option Stem Grapher FFN Cls #transit Lat. Enrg.
DLA-only D D-D-D-D-D-D-D-D D-D-D-D-D-D-D-D D 0 25.56 121.74
GPU-only G G-G-G-G-G-G-G-G G-G-G-G-G-G-G-G G 0 13.42 273.22
constr-transit1 D D-G-G-G-G-G-G-G D-G-G-G-G-G-G-G G 1 16.31 232.60
constr-transit1 G G-G-G-G-G-D-D-D G-G-G-G-G-D-D-D D 1 17.42 226.79
constr-transit2 D D-G-G-G-G-G-G-D D-G-G-G-G-G-G-D D 2 17.58 220.23
constr-transit2 G G-G-D-D-D-G-G-G G-G-D-D-D-G-G-G G 2 17.11 227.15
Ours (IOE) D G-G-G-G-G-G-G-G G-D-D-D-D-G-D-D D 12 17.29 197.8

efficient than the best energy numbers, 226.79 mJ and 220.23 mJ, experienced by each of the

other distributed mapping baselines, ‘constr-transit1’ and ‘constr-transit2’, respectively. The

reasons for this improvement can be attributed to the following: (i) graph feature sizes are

relatively small throughout the ViG models, leading to low inter-CU transmission overhead

penalties to be experienced on the Xavier SoC. As Such, our IOE optimization strategy was

able to exploit this property to identify more efficient mapping configurations with a larger

number of transitions. (ii) Each computing block type within the ViG exhibits different

affinities towards the underlying CUs. Thus, our IOE optimization strategy leveraged the

other property of unconstrained transitions to map as many Grapher blocks to the GPU as

feasible and as many FFN blocks to the DLA before transmission increase.

3.5.5 Generality and Scalability

We assess the scalability and generality of the IOE on the levels of: (i) the ViG archi-

tectural backbone ; where the supernet’s backbone is implemented as a pyramid variant

with dimensional reductions across the ViG superblocks, and (ii) the hardware CUs ; by

simulating a case with 03 heterogeneous CUs.

On the ViG architectural level. We first compare the mapping results from the IOE

between the isotropic (ViG-S) and pyramid (PyramidViG-M) variants on the Nvidia SoC. As

we analyze the effectiveness of the inner EA, we fix the GNN from the OOE for both variants
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Figure 3.6: The results of the IOE EA optimization on the Isotropic Vision GNN (left) and
Pyramid Vision GNN (right).

by setting the design parameters, A, in Table 1 (i.e., d=4, Graph Op=GIN, fc use=False,

ffn use=False, w=192), and specify an optimization budget of 2×104 evaluations.

As depicted in Figure 3.6, we can observe in the left subfigure that for the isotropic ViG,

the explored mapping options follow well-defined spaced patterns between the two mapping

extremes of GPU-only and DLA-only, offering almost uniform linear trade-offs between the

energy efficiency and execution latency across various mapping options on the Pareto front.

This results from the Grapher and FFN blocks being replicated throughout an isotropic

architecture. As such, the performance evaluation of the different mapping options becomes

predominantly influenced by the percentage of Grapher/FFN blocks assigned to each CU,

irrespective of their order. However, for the PyramidViG on the right, this property does not

hold as each Grapher/FFN block entertains different dimensions of their input and output

features depending on its position, leading to varying performance characterizations, and a

stronger convexity in the Pareto front reflecting a richer mapping space.

On the hardware CU level. Using the PyramidViG-M, we investigate how MaGNAS

scales when the search space is further compounded with an increasing number of viable CUs.

We simulate such use-case using MAESTRO tool [99] to specify 3 DSAs of diverse dataflows
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Figure 3.7: The results of the IOE optimization on MAESTRO [99] with: i) Block-wise
mapping granularity (left) and ii) Layer-wise mapping granularity (right).

for CU heterogeneity. We also perform an additional search experiment on the layerwise

granularity to assess further how the EA in the IOE scales when the number of mappable

options dramatically increase. To provide context, the mapping space of the PyramidViG-M

is O(1.72×1012) in the blockwise using 2 CUs; O(1.67×1016) in the blockwise using 3 CUs;

and O(1.67×1023) in the layerwise 3 CUs case, indicating a rising problem complexity.

In Figure 3.7, we demonstrate how the inner EA scales effectively as the search space is

expanded from the blockwise to the layerwise mapping granularity. We specify a fixed

optimization budget of 6×104 evaluations for both. In the blockwise case (left), the EA

focuses on exploring more mapping solutions at the energy consumption extremes due to

coarse-grained characterization of the Grapher block, leading it to identify a distributed

mapping configuration that achieves 1.25× energy gains over DSA-y for the same latency.

Contrarily for the layerwise search, where the EA was capable of recognizing benefits from

distributing the aggregation and combination across different DSAs, leading it to concentrate

the search more at the centralized latency-energy trade-off region. For example, at execution

latency of ∼ 2.2×108 cycles, the layerwise search by the IOE was able to identify a mapping

option that incurs 28.6 mJ compared to 31.9 mJ from the blockwise search.
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Figure 3.8: Evolutionary Vs. Random Search

On the power of evolution. We further analyze the hypervolume improvement when using

an EA compared to a random search. We fix an optimization budget of 5000 evaluations for

each and showcase the results in Figure 3.8 at different evolution stages for the mapping onto

3 CUs experiment. Normalized by a maximum achievable value from our previous results,

we observe that the normalized hypervolume in the Figure reaches ∼92% improvement for

the EA compared to ∼75% for the random search. We also notice that both blockwise and

layerwise converge to proximate values despite the larger gap at the earlier evolutions (i.e.,

generations), further indicating the EA’s capacity to scale.

3.6 Summary and Concluding Remarks

We have demonstrated through MaGNAS the merit of HW/SW co-design for the emerging

ViG class of DNNs. Given the nascence of ViGs, the design, characterization and training

of their supernets can only improve as the application of ViGs continue to proliferate. This

is also seen through the push reconfigurable spatial accelerators to support new dataflows

for the irregular graph computational sequences. Our approach is complementary to these

efforts and remains generalizable to the broader applications of GNNs.
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Chapter 4

Scheduling Multi-Model Workloads

on 2.5D Chiplet-based Architectures

In this chapter, we study the scheduling optimization problem of multi-model AI models onto

heterogeneous 2.5D multi-chip modules (MCMs). Multi-model workloads emerged toady as

a result of modern trends in AI workloads (multi-tenancy, AR/VR systems) which constitute

multiple, diverse models requesting simultaneous service. Whereas the 2.5D chiplet integra-

tion is gaining traction as a key technology in the post-Moore era from the edge to the cloud.

Hence, we extend our HW/SW co-design studies to these technologies, characterizing this

nascent scheduling space, and proposing a corresponding novel scheduling methodology.

4.1 Introduction

Recent artificial intelligence (AI) inference workloads have increased their scale in both of

the model size (e.g., large language models [24, 187]) and the number of models deployed

together (e.g., augmented and virtual reality; AR/VR [101]), which constructs multi-model
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workloads with heavier models than those in the past. Such trends led to heavy demands

on compute capabilities in AI hardware from edge to cloud devices. As an approach to

scale up the hardware for AI and increase the compute capability, chiplet-based multi-chip

module (MCM) package has emerged as a promising solution [143, 167, 183, 199]. Such

MCM packages facilitate the scaling of AI hardware based on their composability and cost-

effectiveness, unlike monolithic designs, which are often constrained by fabrication yields,

power, heat, and other engineering costs such as verification [133].

Researchers have actively explored the MCM for AI, focusing on the dataflow mapping (i.e.,

loop ordering, parallelization, and tiling) and workload orchestration onto chiplets consider-

ing the network-on-package (NoP) and other communication constraints [143,167,183,199].

For example, Simba [167] proposed a scalable MCM inference architecture that enables

chiplets to either act as standalone inference engines or collaborate as groups for a layer.

Although such works have successfully delivered promising performance and energy effi-

ciency than monolithic designs, they mostly focused on single-model workloads targeting

homogeneous chiplets. Unlike single-model workloads, multi-model workloads introduce ma-

jor challenges to such homogeneous MCMs because of the ML operator heterogeneity (e.g.,

operator types and tensor sizes) and resulting diverse dataflow preferences [100]. Also, multi-

model workloads often involve model level dependency and concurrency [101], which adds

complex considerations to the scheduling problem.

Therefore, considering the new trend with multi-model AI workloads such as multi-tenancy [70,

104, 201] and AR/VR [101], we propose to explore heterogeneous chiplet-based MCM with

AI accelerator chiplets with various dataflows to address the workload heterogeneity and

concurrency. We consider inter-layer pipelining to enhance in-package data reuse and reduce

offchip traffic. We formulate the scheduling problem and develop effective heuristics to nav-

igate the huge scheduling space, whose problem scale is as big as O(1018) on a 6x6 chiplet

MCM AI accelerator system even running a single model (BERT-L).
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Figure 4.1: Proposed scheduling framework for multi-model workloads on 2.5D MCMs.

We evaluate five MCMs including three heterogeneous MCMs on ten multi-model scenarios:

the first five scenarios are curated using MLPerf [158] to represent datacenter multi-tenancy

scenarios. The models are selected based on recent datacenter model usage trends [70,83] and

the trend of large language model adoptions (e.g., GPT-L [153]), future-proofing emerging

AI workloads such as AI assistant [125]. The other five scenarios are curated for AR/VR

usage scenarios from XRBench as a practical use case for edge multi-model workloads [101].

The evaluation results show the effectiveness of heterogeneous MCM combined with our

scheduling method. Compared to the homogeneous MCM [167] running NVDLA [135] and

Shi-diannao [45] style dataflows, heterogeneous MCM, on average, achieved 35.3% and 31.4%

less energy-delay product (EDP) in each domain, respectively.

In brief, we summarize our contributions as follows:

• We propose to explore heterogeneous dataflow MCM for emerging AI workloads with

multiple models running concurrently for the first time.

• We formulate the MCM AI accelerator scheduling problem into a multi-tiered opti-

mization problem to address intractably large scheduling space.

• Based on the formulation, we develop a scheduler that thoroughly considers heteroge-

neous MCM and multi-model workloads. The scheduler employs advanced scheduling

techniques, such as inter-layer pipelining, dynamic chiplet regrouping utilizing latest
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representation such as the resource allocation tree [27].

• We codify our scheduling method and integrate it with a heterogeneous MCM AI

accelerator cost model. We extend MAESTRO [98,99] to model the latency and energy

of MCM accelerators.

• We analyze the costs and benefits of heterogeneous dataflow MCM using future-proof

multi-model workloads motivated by recent industry use cases and present the impor-

tance of the scheduling problem.

4.2 Background and Preliminaries

We discuss examples of multi-model AI workloads and chiplet-based MCM AI accelerators.

4.2.1 Multi-model AI Workloads

The success of AI algorithms in individual tasks (e.g., hand tracking, depth estimation,

and speech recognition) led to the emergence of multi-model AI workloads, which include

multi-tenant workloads at data centers [70, 104, 201] and real-time multi-model workloads

such as AR/VR [101]. We summarize example multi-model AI workloads from industrial

use cases in Table 4.2. The models in such workloads are diverse in terms of the tasks and

input modalities. For example, an industrial data center multi-tenant AI workload suite [70]

includes a face recognition model based on support vector machine, recommendation models

based on multi-layer perceptron, and a speech recognition model based on recurrent neural

network (RNN). More recent workloads in data center AI workload include large language

models [126], which adds more heterogeneity to the multi-model AI workloads. As discussed

in prior works [100, 101], such multi-model workloads involve high heterogeneity in AI op-
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erators (or layers), which is one of the major challenges to accelerators that specialize the

architecture and dataflow for a specific set of workloads.

4.2.2 MCM AI Accelerators

Multi-chip Modules (MCM) comprise small functional dies (chiplets) that are packaged to-

gether to build a larger system. Chiplets are interconnected via on-package links typi-

cally through silicon interposer or organic substrates to create a network-on-package (NoP)

[15, 89, 193]. A typical chiplet, in the context of a DNN accelerator, comprises off-chip

memory, a global shared memory, and an array of processing elements connected via a

Network-on-Chip (NoC) [29]. Advantages of the chiplet-based MCM architecture include

the modularity and scalability to systems of varied scales simply by adjusting the number of

chiplets placed on the package as well as low verification cost [133]. Based on such benefits,

many chiplet-based MCMs have been developed for scalable DL inference [28,143,167,181].

Such MCM accelerators successfully scaled up the systems up to 256 chiplets with 1 million

processing engines [143]. However, the effectiveness of a chiplet-based MCM system heav-

ily depends on the careful distribution of computation amongst the different chiplets while

balancing the added NoP/NoC communication costs.

4.2.3 Scheduling space

As discussed in previous works [27,100,147], scheduling AI workloads on an accelerator can

be considered as assigning a set of computations in various granularity (e.g., layer or compute

tile) to each compute unit and ordering the computation. That is, the scheduling process is

spatially and temporarily partitioning a workload onto a target accelerator architecture [27].

However, with that formulation, the scheduling space of multi-model workloads onto shared

MCM accelerators is intractably large and high-dimensional, as discussed in section 4.1.
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One approach to address the complexity is formulating the problem into multi-level decision

problem where each decision subspace is a tractable problem [29, 100].We adopt a similar

approach and formulate the multi-model workload scheduling on MCM as multiple-level

decision problem, as shown in Figure 4.2. We discuss details of our problem formulation in

detail and performance modeling methodology next.

4.3 System Modeling and Problem Formulation

To develop a systematic approach to navigate complex scheduling space, we formulate the

scheduling problem of multi-model workloads on a heterogeneous MCM AI accelerator.

4.3.1 Base Formulation

To formulate the MCM scehduling problem, we first define multi-model workload scenario

(Sc) and MCM hardware (H).

We formulate the workload in the granularity of layers in each model. Therefore, we formulate

a multi-model workload scenario (Sc) as the collection of layers in the models included in

the scenario. Letting the number of models included in Sc as |Sc| and the number of layers

included in a model m as |m|, we define Sc as follows:

Definition 4.1. Multi-model Workload Scenario (Sc)

Sc = {layeri,j|0 < i ≤ |Sc|, 0 < j ≤ |mi|}

where layer(i,j) refers to the j-th layer of model i in Sc.

AI accelerator chiplets consist of a PE array, memory, and on-chip interconnection among
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memory and PEs. In addition to them, we also include the dataflow in the formulation to

model heterogeneous chiplet MCM AI accelerator. Accordingly, we define an AI accelerator

chiplet (c) as follows:

Definition 4.2. AI Accelerator Chiplet (c)

c = {df,NPE, BWnoc, BWmem, Szmem}

In 4.2, df refers to the dataflow, NPE is the number of PEs, BWnoc is the NoC bandwidth,

BWmem is the chiplet-level shared memory bandwidth, and Szmem is the memory size in c.

Based on the definition of the chiplet, we formulate the MCM accelerator as the set of

chiplets (C = {c1, c2, ..., cNcpl
}), NoP, and off-chip interface as follows:

Definition 4.3. MCM AI Accelerator (H)

H = {C,BWoffchip, BWnop}

We assume the 2D mesh topology for NoP like Simba [167], and chiplets on two sides (left

and right) of the packages have off-chip interfaces.

4.3.2 Workload Partitioning Space

To reduce the complexity of the scheduling problem, we adopt a multi-level scheduling

method, which splits the end-to-end workload defined in the layer granularity into coarse-

grained layer groups, termed as the time window. Figure 4.2 shows an example of the time

window that contains six layers from Model A and five layers from Model B.
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A time window (tw) is defined by the start time and the duration (TS and Ttw) and a set of

assigned layers to the time window, as shown in 4.4.

Definition 4.4. Time Window (tw)

For a target workload scenario Sc, a time window tw is defined as follows:

tw(Sc) = (Ts, Ttw, L)

where L = {l|l ∈ Sc}

The time window describes a set of layers to be executed on an MCM AI accelerator package,

which is used for describing package level scheduling. For each chiplet, we define a finer-

grained group of layers within a time window. We term the sub-set of layers within a time

window as segment.

Definition 4.5. Segment (sg)

For a time window tw(Sc) and its layers L(tw(Sc)), the segment sg(tw(Sc)) is defined as

follows:

sg(tw(Sc)) = {l|l ∈ L(tw(Sc))}

To develop a systematic optimization algorithm for layer segmentation within each time

window, we need to define the conditions of valid layer segments. We define the condition

as follows:

Theorem 4.1. The validity of segments in a time window

For a time window tw(Sc) and its layers L(tw(Sc)), let the set of all segments for tw(Sc)

be SG, then SG is valid if the following condition is satisfied:

⋃
sg∈SG

sg = L(tw(Sc)) ∧ ∀sgi ̸= sgj ∈ SG, sgi ∩ sgj = ∅
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Theorem 4.1 states two conditions (1) the set of segments needs to cover all the layers in

their time window for completing assigned layer computations for the time window and (2)

all segments are exclusive to prevent redundant computing. The same idea extends to the

time window as follows:

Theorem 4.2. The validity of time window partitioning

For a multi-model workload Sc, its layers L(Sc), and the set of time windows TW (Sc),

TW (Sc) is valid if the following condition is satisfied:

⋃
tw∈TW (Sc)

tw = L(Sc) ∧ ∀twi ̸= twj ∈ TW (Sc), twi ∩ twj = ∅

Both Theorem 4.1 and Theorem 4.2 indicate that the time windows and segments need to be

partitions of the workload and time window layer, respectively. Combining all definitions in

this section, we formulate the workload partitioning space into the time window and segment

as follows:

Definition 4.6. Workload Partitioning Space

For a multi-model workload Sc, the time window partitioning space (Sptw(Sc)) and the layer

segmentation space for a time window (Spsg(tw)) are defined as follows:

Sptw(Sc) = P(L(Sc))

Spsg(tw) = P(L(tw))

where P(A) refers to all possible partitioning of a set A
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4.3.3 Scheduling Space

A segment contains layers to be executed on a chiplet. Therefore, spatial (i.e., which segment

runs on which chiplet) and temporal mappings (i.e., execution order of segments on each

chiplet) of segments construct the scheduling space within each time window when segments

are determined. Therefore, the scheduling space within a time window tw(Sc) can be defined:

Definition 4.7. Scheduling Space in a Time Window (SSTW)

For a given time window tw(Sc) and a target MCM accelerator hardware H, the scheduling

space within the time window (SSTW (tw(Sc), H) is defined as follows:

SSTW (tw(Sc), SG,H)

={(sg, c, j)|sg ∈ SG ∧ c ∈ CH ∧ j ∈ N ∧ valid(sg, tw(Sc))}

where CH refers to the set of chiplets in H and val(sg, tw(Sc)) indicates the validity of sg

for tw(Sc)

Each entry in SSTW describes the spatial and temporal mapping of a segment (sg). Spatial

mapping can be defined as the target chiplet to execute sg. Accordingly, a target chiplet (c)

is specified for sg. The temporal mapping is defined as the execution order. Therefore, a

natural number j is used to represent the execution order. Note that the execution order is

defined separately on each chiplet. Based on 4.7, we can define the entire scheduling space

as the collection of that in each time window.

Definition 4.8. MCM Scheduling Space for a Multi-model Workload (SSSc(H))

For an MCM AI accelerator (H) and a multi-model workload (Sc), the scheduling space
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(SSSc(H)) is defined as follows:

SSSc(H) ={(TW,SGTW , (SSTW (tw, SGTW (tw), H))|

TW ⊂ Sptw(Sc) ∧ SGTW (tw) ⊂ Spsg(tw)

∧ tw ∈ TW}

where SGTW refers to the set of layer segments for each time window in TW

4.8 defines the entire scheduling space of an MCM AI accelerator for a multi-model workload

as the cross-product of all possible time window partitioning, layer segmentation for each

time window, and corresponding scheduling space within each time window.

4.3.4 Scheduling Problem

Based on 4.8, we define a schedule instance as the collection of spatial and temporal mapping

for given valid time windows (TW ) and segments for each time window (SGTW ).

Definition 4.9. MCM Schedule

A schedule instance (sched(Sc,H)) is defined as follows:

sched(Sc, TW,SGTW , H)={(TW,SGTW , s)|valid(TW,Sc)

∧ ∀tw ∈ TW : valid(SGTW (tw), tw)

∧ s ∈ SSTW (tw, SGTW (tw), H)}

where SGTW refers to the set of layer segments for each time window in TW

Using 4.9, we formulate the scheduling problem as a minimization problem of an optimization

metric of choice (e.g., latency and energy), as follows:
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Definition 4.10. MCM Scheduling Problem

argmin
TW,SGTW ,Sched

OptMetric(TW,SGTW , Sched,H)

where Sched = sched(Sc, TW, SGTW , H)

The optimization metric can be chosen by users depending on the use case. In our scheduler,

we adopt a comprehensive and customizable score that thoroughly consider all of latency,

energy, and energy-delay product (EDP), allowing users to configure their own optimization

metrics, which can the mentioned frequently used metrics or a user-defined function that

takes a schedule instance and generates a custom metric.

4.3.5 Latency Modeling

To develop a scheduler based on the scheduling problem formulation in subsection 4.3.3, we

need to be able to evaluate each schedule on target MCM AI accelerator hardware. For

that, we extend MAESTRO [98] to the chiplet domain and model the latency of MCM AI

accelerators concurrently executing multi-model workloads on a shared MCM system in a

bottom-up fashion. We discuss our latency evaluation methodology in detail, focusing on

our extension for the MCM and multi-model workloads.

Layer Latency. The latency incurred by an individual layer, l, mapped onto an accelerator

chiplet is defined as:

Lat(l) = Latip com(l) + Latcomp(l) + Latop com(l)

Latcomp(l) being the layer computation cost dependent on the AI accelerator chiplet param-

eters 4.2; Latip com(l) is latency incurred from loading the layer operands (input activations
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and weights), and Latop com(l) from transmitting the output activation to a subsequent layer.

As for Latcom, it is defined as:

Latcom =


0, if same chiplet

Szdata
BWnop

+ nhops × Lathop + δ, if same package

Szdata
BWmem

+ nhops x Lathop + Latmem + δ, if offhcip

where assuming sufficient memory for double-buffering on each chiplet accelerator, commu-

nication costs become incurred when transmitting data to/from another chiplet on package

or the offchip memory. The first term Szdata
BW

reflects transmission latency; the second term

is captures propagation latency across nhops between the source and destination; δ is an ad-

ditional latency term for potential NoP traffic conflicts; Latmem is the cost from read/write

access of data at the offchip memory.

Time Window Latency. We first model a layer segment’s latency in a time window as:

Lat(sg) =
N∑

n=1

Latcomp(ln) + Latip com(sg) + Latop com(sg)

The first term represents the sum of individual layer computational latencies; Latip com is

the initial external data transfer loading costs of necessary off-chiplet input activation and

parameter weights; Latop com is the transmission latency from transmitting segment output

data to the next segment or writing back to memory.

Based on the segment’s latency, the time window latency can be defined as:

Lat(tw) = max
SGm⊂SG


∑

sgk∈SGm
Lat(sgk), if end-to-end

max
sgk∈SGm

Lat(sgk), if pipelining

where SGm represents the set of segments in a time window associated with a model m.
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The latency of SGm can either be the maximum out of all m segments if pipelining or

their summation in the base case. The latency of the entire window is the max out of all

SGm ⊂ SG.

Overall Latency. The overall Scenario latency can then be estimated as the aggregate

across all time windows:

Lat(Sc) =
∑

twj∈TW

Lat(twj)

4.3.6 Energy Modeling

Albeit similar to latency, Energy costs are always aggregated. The base communication

energy cost is defined as:

Ecom =


0, if same chiplet

Szdata × Etx bit × nhops, if same package

Szdata × Etx bit × nhops + Emem, if offchip

where the energy incurred from moving data across the package is equal to the product of

data size, number of hops, and the per-bit transmission energy (Etx bit). In case of an offchip

data transmission, the cost of memory access Emem is added.

The overall energy consumption across the entire time windows can be computed as the sum

of energies of its constituent components as follows:

E(l) = Eip com(l) + Ecomp(l) + Eop com(l)

E(tw) =
∑

sgk∈SG

E(sgk), E(Sc) =
∑

twj∈TW

E(twj)
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Figure 4.3: Our proposed multi-model scheduling framework on heterog. MCM.

4.4 Scheduling Framework

We discuss our scheduling framework for multi-model workloads on heterogeneous MCMs

based on the hierarchical search space characterization and problem formulation in sec-

tion 4.3. As illustrated in Figure 4.2, our scheduling algorithm is a two-level approach: top-

level and per-window searches. Top-level search is responsible for selecting layers in each

model to be scheduled within a time window and determining the initial number of chiplet

nodes for each model. Per-window search explores the spatial and temporal partitioning (i.e.

tiles or layer segments) of the layers in each model at the chiplet granularity. To explore the

chiplet granularity tiling space, we generate valid inter-chiplet-pipelined schedules utilizing a

scheduling tree structure inspired by the RA Tree [27]. Each schedule is evaluated using our

custom heterogeneous MCM cost model which provides feedback to the chiplet level tiling

(”layer segmentation” in Figure 4.2) with expected metrics (latency, energy, EDP, etc.).
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We codify our scheduling algorithm into a software framework, as illustrated in Figure 4.3. As

inputs, our scheduling framework receives (1) description files of the multi-model workloads

(layer parameters, topology, dependencies, etc.) and (2) a description file of the MCM

hardware specification, such as the number of chiplets, the shape, and dataflow organization

of the chiplet arrays, NoP bandwidth, on-chiplet memory size, and so on. As outputs, our

scheduling framework reports an optimized schedule with expected metrics such as latency,

energy, EDP, or other user-defined metrics as a combination of latency and energy. Our

framework consists of four software engines, which handle each step of the scheduler discussed

in this section. Each engine is responsible for each step of our two-level scheduling method

as illustrated in Figure 4.2. We discuss each engine and our cost model next.

4.4.1 MCM Reconfiguration Engine (MCM-Reconfig)

The MCM-Reconfig engine at the top-level step receives the multi-model workload descrip-

tions with layer information in each model, layer dependency, and expected latency and

energy of each layer on each chiplet class offline-analyzed by MAESTRO [98]. The MCM-

Reconfig engine is responsible for the window assignment in Figure 4.2, which (1) generates

candidate time window partitioning strategies via sampling a set of discrete points in time

reflecting the boundary points between execution windows and (2) assigns layers from mod-

els to each time window. As the final assignment of layers to chiplets is not yet known, the

decisions in MCM-Reconfig engine are based on expected execution times. Formally, given

|DF | dataflow style classes, the expected execution latency for a layer l is:

E(Lat(l)) =
|DF |∑
i=1

ndfi

|C|
× Lat(l→ i) (4.1)

where ndfi indicates the number of class i chiplets integrated onto the MCM having |C|

chiplets in total; Latl→i is layer l latency when scheduled on the class i chiplet, which
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is retrieved offline from latency database generated by MAESTRO [98, 99]. The average

execution time information is utilized inMCM-Reconfig for window assignment in Figure 4.2.

Time Windows Characterization. MCM-Reconfig engine first specifies the number of

windows, which is the coarse-grained scheduling granularity in our scheduling algorithm. We

define nsplits as a user-defined parameter to characterize the number of time windows and

explore proper cut points for each model. For example, in Figure 4.2, the model A has a cut

after layer 6, which led to having layers 1-6 in Window 1. The worst-case latency experienced

by a model in the multi-model workload is set as the time horizon which we partition into

periodic time windows. Based on preliminary analysis, we set nsplits=4 (5 time windows) as

our default unless otherwise stated. Ablation is performed in the evaluation Section 4.5.

Greedy Layer Packing Algorithm. Multi-model workload introduces a challenge: the

time window boundary determined by the cut points of one model might not be aligned

with other models. Therefore, we adopt a first-fit greedy-packing heuristic where layers are

assigned to an execution window if their execution time is expected to be within a time

window (see Algorithm 1), even if the start and finish time is not aligned with those of a

time window. Any layer with execution time lies across two time windows is deferred to the

next time window. This approach not only solves the time window - layer execution time

misalignment problem, but also facilitates (i) running low-latency layers in earlier windows,

preventing starvation of small workloads blocked by heavy workloads. (ii) Dynamically

controlling number of time windows by skipping trivial windows without any workloads.

4.4.2 Provisioner Engine (PROV)

The PROV engine is responsible for providing an initial estimate on the number of chiplet

needed by each model workload in every time window given a candidate partitioning strategy.

This assignment is agnostic to the underlying chiplets’ resources or dataflow, and hence we
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Algorithm 1 Greedy Layer Packing Algorithm

Input: M (workloads), T , C, DF
Output: L2W (Layer(s) to windows assignments)
1: Function LayerAssignment(M , C, T )
2: for m ∈M do
3: exec win = ()
4: win idx, used cycles = 0, 0
5: for l ∈ m do
6: E(Lat(l)) =

∑|DF |
i=1

ndfi

|C| × Lat(l→ i)

7: while True do
8: if win idx == |T | then
9: Slack = None
10: else
11: Slack = ρ[win idx]− used cycles

12: if Slack == None or E(Lat(l)) <= Slack then
13: exec win += (l, )
14: used cycles += E(Lat(l))
15: Break
16: else
17: L2W [win idx][m] = exec win
18: used cycles = T [win idx]
19: exec win = ()
20: win idx += 1

21: L2W [win idx][m] = exec win

refer to chiplet resources in this state as nodes.

We implement our PROV engine for nodes’ distribution across various model workloads using

a set of rules. The rules are based on expected latency, energy, EDP, or user-defined metric

for each corresponding window. This computational effort is associated with a specified

performance optimization goal, denoted as P where P ∈ {Lat, Ergy, EDP}, Following a

uniform distribution rule, the number of nodes Ni allocated to the ith model is:

Ni = round(
E(Pi)∑
j(E(Pj)

× |C|) (4.2)

where E(Pi) represents the expected value of the performance optimization goal for model,

computed in a manner similar to the expected execution latency formula in (4.1), whereas

the sum term in the denominator represents the sum of all expected values for every model

workload in the current time window. Though in principle other allocation strategies can be
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implemented for the Provisioner, the benefits of having a rule-based Provisioner are twofold:

• The Provisioner becomes specialized in warranting a fair spatial distribution of re-

sources per window across the various model workloads, leaving temporal allocation

tasks to be handled through the other engines.

• Circumventing an additional top-level search space specification with a high degree of

uncertainty, acting instead as a regulator mid-way throughout the framework without

aggravating the search complexity.

To ensure the progression of all model workloads assigned to a window, we enforce the

allocation of at least one resource per model per window to account for rounding errors

in Equation 4.2 when a model workload assigned to the window has negligible computational

overhead compared to its peers. The reallocation process iteratively reassigns nodes from

models with max number of resources until the constraint is satisfied.

4.4.3 Segmentation Engine (SEG)

As the first module in the per-window level, the SEG module is instantiated for every time

window, receiving topologically sorted sets of layers from each model to be further partitioned

into segments. Segmentation is the process of partitioning a set of layers into smaller subsets

of layers (i.e., segments or tiles) that can be mapped to a computing resource for exclusive

execution throughout the duration of a time window. Different segmentation choices reflect

various trade-off points between the layer-sequential and layer-pipelining execution features:

the former controls the granularity of layers within each segment to be co-located for se-

quential execution on a single chiplet resource; the latter exploits inter-layer and -chiplet

pipelining opportunities between various segments.

Segmentation Search Space. As per our formulation in Section 4.3, a segmentation
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candidate is represented by a sequence of splitting points, where candidate splitting points

are specified after each layer for each model’s set of layers provided to the SEG Given |Li|

and |Ni| as the respective number of layers and number of assigned nodes (from PROV ) for

a model workload mi, the max number of segments that can be generated for mi becomes

upper bounded by Ni. Hence, the overall segmentation space complexity is O(Πi |Li|×|Ni|),

with the Πi indicating the combinatorial space across all models. To aid in managing the

rising multi-model segmentation space complexity, we introduce the following heuristics.

Heuristic 1. Product to summation reduction. We enable SEG to navigate the

segmentation search space with reduced complexity through a two-step process: (1) SEG

leverages the independence of segments from different models to initially explore the seg-

mentation subspace for each model separately (2) Segmentation point candidates from the

top-k configurations for each model are used to construct a smaller search space for the

combinatorial co-exploration of the segmentation space. Through this heuristic, the search

space complexity can be reduced from O(Πi |Li| × |Ni|) to O(max(|Li| × |Ni|)).

Heuristic 2. Node allocation constraint. We designate an additional user-specified

constraint to restrict the number of nodes provisioned to a model within a window based on

its number of layers. The constraint is beneficial in cases where there is mismatch between

the multi-models’ distribution of computational efforts across their respective layers. For

instance, a scenario may arise where a single compute-intensive layer may be assigned to same

window alongside dozens of layers from smaller models, leading to an unnecessary explosion

in the segmentation search space. PROV is responsible for enforcing this constraint.

4.4.4 Scheduling Engine (SCHED)

The innermost Scheduling engine (SCHED) is responsible for generating the final mapping

of layer segments to the physical chiplet accelerators on the target MCM.
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Figure 4.4: Schedules creation through the SEG and SCHED engines.

Scheduling Search Space. As illustrated in Figure 4.4, the scheduling search space

for the mapping of M model workloads onto C chiplets can be represented as a forest of

scheduling trees. Throughout this sub-section, we use three terms to describe different parts

of the scheduling search space: (i) forest ; as the entire collection of search trees. (ii) tree;

characterizing a single scheduling tree modeling with all theM models involved. (iii) subtree;

representing a subset part of each tree exclusively associated with a model mi ∈M .

Scheduling Tree Composition. every node in a scheduling tree corresponds to a

unique chiplet resource on the MCM showcasing its distinctive heterogeneous features (i.e.,

dataflow). Each chiplet is assigned a unique identifier based on a row-major order traversal

across the MCM grid. Tree edges are constructed based on each chiplet’s XY neighbors

connected directly through an interposer. Though a node j can be replicated throughout

the tree, it can only be visited once, indicating its exclusive occupancy by a model.

Trees Distinction. within each tree, the root nodes of the subtrees specify different

chiplets as potential starting positions for candidate model schedules. This is particularly
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relevant when the underlying pattern of heterogeneity is non-uniform, causing scheduling

options to be dependent on the starting position (see Figure 4.4). Thus, the scheduling space

coverage starts by selecting a tree, represented by a permutation sequence of subtrees’ root

nodes – e.g., permutation sequence [i,j,k] indicates exploring scheduling candidates for a tree

with scheduling candidates starting at chiplet positions i, j, and k for a 3-model workload.

The depth of model i’s subtree is determined by its number of provisioned resources Ni.

Candidate Schedules Generation. Through traversing each subtree, we can obtain

candidate execution schedules for each model by assigning segments orderly to the subtree’s

nodes. Starting from the root node of the first model’s subtree, a constrained depth first

search (DFS) is performed generating a candidate schedule path once the full subtree depth

(Ni) has been reached. This traversal is repeated for each subsequent subtree, constrained

on the preceding subtree’s prior visited nodes. Traversal paths from each subtree are then

aggregated to form the overall scheduling candidate.

Encoding and Search Algorithm. As shown in Figure 4.4, use a 2× |M |-length tuple

to represent the final scheduling encoding, where the first M entries reflect segmentation

decisions for each model mi, and the latter |M | entries reflect schedule mappings of segments

to chiplets for each workload. This form of encoding facilitates supports having different

search algorithms for each engine. We tested both brute-force and evolutionary algorithms

as will be shown in section 4.5.

Schedules Starting Positions. We constrain the number of scheduling trees to chiplet

nodes that satisfy either of the following two conditions: (i) chiplets that maintain a direct

link to an offchip DRAM memory interface (as in the right and left-most chiplets of the

MCM in Figure 4.4). (ii) ending chiplet positions from the preceding window, which enable

leveraging data locality across time windows.

Search Space Complexity. Given |M | as the number of models in a given window, |T |
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Table 4.1: MCM microarchitecture parameters from [143,167]. All numbers are scaled to 28
nm process node technology.

Offchip
Memory

DRAM latency 200 ns
DRAM energy 14.8 pJ/bit

DRAM bandwidth 64 GB/s

Package
NoP intercon. latency 35 ns/hop
NoP intercon. energy 2.04 pJ/bit

NoP intercon. bandwidth 100 GB/s/Chiplet

the number of scheduling trees in the search space, d is a traversal path’s degree of freedom,

and Nmax representing the max number of resources allocated to any model in this window.

The scheduling search complexity can be given by O(|M | × |T | × dNmax).

4.4.5 Cost Model and Scoring

We implement a cost model for evaluating scheduling candidates on different performance

efficiency metrics.

Cost Model. The overall cost model constitutes three distinctive cost model compo-

nents: offchip communication model, inter-chiplet communication model, and intra-chiplet

cost model. We follow our latency and energy modeling characterization in subsection 4.3.5

and subsection 4.3.6, and use the architectural parameters provided in [143, 167] for the of-

fchip and inter-chiplet communication costs as shown in Table 4.1. For the intra-chiplet cost

model, we utilize the open-source accelerator cost model, MAESTRO [98, 99], to evaluate

intra-chiplet performance based on a chiplet’s underlying dataflow and hardware parameters.

Scoring. Scores are estimated based on latency, energy, or EDP metrics following Section

4.3 modeling. The SCHED aggreages scores for each model’s schedule, and returns the top

performing configuration to the SEG engine to rank segmentation strategies. Top segmen-

tation strategies in each window are aggregated to score the overall scheduling strategy at

MCM-Reconfig (see the scoring flow in Figure 4.3).
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Table 4.2: Our Multi-model workload scenarios for datacenter and AR/VR use-cases inspired
by MLPerf [129,158] and XRbench [101] benchmarks. ‘sl’ indicates sequence length

Use-Case Scenario Models Batch Size

Datacenter
(MLPerf)
[129,158]

(1) LMs
GPT-L [153] (sl=128) 1
BERT-L [43] (sl=128) 3

(2) LMs +
Image (light)

GPT-L [153] (sl=128) 1
BERT-L [43] (sl=128) 3

ResNet-50 [71] (224×224×3) 1
(3) LMs +
Image
(heavy)

GPT-L [153] (sl=128) 1
BERT-L [43] (sl=128) 3

ResNet-50 [71] (224×224×3) 32
(4) LMs +
Segmentation
+ Image
(heavy)

GPT-L [153] (sl=128) 8
BERT-L [43] (sl=128) 24

U-Net [161] (512×512×1) 1
ResNet-50 [71] (224×224×3) 32

(5) LMs +
Segmentation
+ Image
(heavy)

GPT-L [153] (sl=128) 8
BERT-L [43] (sl=128) 24

BERT-base [43] (sl=128) 24
U-Net [161] (512×512×1) 1

ResNet-50 [71] (224×224×3) 32
GoogleNet [179] (224×224×3) 32

AR/VR
(XRBench)
[101]

(6) AR
Assistant

D2GO [124] (Object Det.) 10
PlaneRCNN [111] (Plane Det.) 15

MiDaS [154] (Depth Est.) 30
Emformer [171] (Speech Rec.) 3
HRViT [51] (Semantic Seg.) 10

(7) AR
Gaming

PlaneRCNN [111] (Plane Det.) 15
Hand S/P [62] (Hand Track.) 45
MiDaS [154] (Depth Est.) 30

(8) Outdoors
D2GO [124] (Object Det.) 30

Emformer [171] (Speech Rec.) 3

(9) Social
EyeCod [219] (Gaze Est.) 60

Hand S/P [62] (Hand Track.) 30
Sp2Dense [117] (Depth Ref.) 30

(10) VR
Gaming

EyeCod [219] (Gaze Est.) 60
Hand S/P [62] (Hand Track.) 45

4.5 Evaluation

4.5.1 Experimental Settings

Multi-Model Workloads. Our evaluations are performed on multi-model workload

scenarios based on models from (i) MLPerf inference benchmark [129,158] for the datacenter

multi-tenancy setting; (2) XRBench [101] for AR/VR workloads. The full list of scenarios

is provided in Table 4.2 covering a wide range of use-cases with varying degrees of diversity
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and complexity. We implement our MLPerf following datacenter usage trends in [70,83,148].

MCM System. We follow Simba’s on-package chiplet arrangement to implement our

MCM experimental templates [167]. Simba comprises a total of 36 chiplets connected

through a Mesh topology and arranged as four 3 × 3 groups of chiplets. We implement

(1) 3×3, and (2) 6×6 MCM templates for our experiments. For each, we adopt XY routing

for on-pacakge data movement, and integrate further memory interfaces on the sides of the

outer chiplets, providing direct links to the offchip DRAM via double-sided memory chan-

nels as in [58]. We consider 4096 PEs/chiplet and 256 PEs/chiplet for the datacenter and

AR/VR settings, respectively. We set the L2 shared memory size in each chiplet to 10 MB,

inspired by the on-chip memory size in a recent mobile accelerator [152].

Baselines and Heterogeneity Patterns. We choose Shi-diannao [45] and NVDLA [135]

dataflow styles for our accelerator chiplets. We accordingly implement two baselines:

• Standalone. Each model in a multi-model workload is assigned a single chiplet for

execution, all chiplets posses the same dataflow.

• Simba-like Pipelining. In each time window, Model workloads can be assigned to more

than one chiplet to leverage pipelining benefits. All chiplets posses the same dataflow.

We implement several patterns for the heterogeneous on-package integration of Shi-diannao

and NVDLA chiplet accelerators illustrated in Figure 4.5, we test heterogeneous checker-

board, sides, and cross patterns.

Optimization Targets. We perform our search space exploration experiments to target

optimizing a single metric at a time, coining the terms Latency Search, Energy Search, and

EDP Search. EDP Search is our default experiment.

Search Algorithms and Evaluation. We adopt a brute-force search for all experiments
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Simba(Shi.) Het-Sides Het-CrossHet-CBSimba(NVD.)

Figure 4.5: The evaluated MCM chiplet organizations.

entailing the 3 × 3 MCM template. For the scaled 6 × 6 experiment, we implement an

evolutionary algorithm for the SEG module as a meta-heuristic approach to navigate the

rising complexity. We set the population size and max number of generations to 10 and

4, respectively. The evaluation criteria follows the scoring function based on hierarchical

latency and energy models derived in Section 4.3.

4.5.2 Search Space Exploration Analysis

We compare the 3×3 MCM brute-force search experiments for the heterogeneous and baseline

configurations across the different optimization targets for the datacenter and AR/VR usage

scenarios. All evaluations are normalized by the standalone NVDLA baseline. We illustrate

our results in Figures 4.6 and 4.7 for Scenarios 3 and 4 from the datacenter use cases; the

AR Gaming, Outdoors, and VR gaming scenarios from the AR/VR use-cases.

Pipelining Speedups. We observe that the combination of pipelining and chiplet hetero-

geneity lead to Pareto-optimal operating points that offer performance improvement opportu-

nities. In Figure 4.6, we see that pipelining individually can offer speedups over standalone

baselines. For example, Scenario 3 (Latency Search) – top-left most sub-Figure – shows

Simba (NVDLA) realizing configurations achieving up to 4× speedup over the standalone

NVDLA. This results from potential multiple chiplet assignments per window to each model,

speeding up compute-intensive layers of GPT-L,BERT-L, and the 32-batch ResNet-50.
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Figure 4.7: Pareto optimal results on the EDP search experiments for the labeled XRBench
usage scenarios. Results normalized by standalone NVDLA
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Heterogeneous Integration Synergy. As the density of multi-model workloads in-

crease (Scenario 4 from Figure 4.6), we observe the effectiveness of homogeneous pipelining

drops due to the increased competition for chiplet resources from heavier workloads. Het-

erogeneous MCM solutions become viable in such cases as they add another dimension for

boosting performance through heterogeneous pipelining schedules, which compensate for the

rising complexity through considering the varying affinities of diverse model layers, improv-

ing both latency and energy efficiency as seen in their respective search experiments. This

benefits of heterogeneous pipelining also hold for the AR/VR scenarios as seen by up to

1.25× execution speedups in Figure 4.7.

Model Suite Diversity. The degree of diversity within the multi-model use-case influ-

ences the overall performance improvement. In Scenario 3 (Figure 4.6 top), GPT-L and

BERT-L were dominant transformer-based workloads with strong affinities towards NVDLA

style, contributing to the homogeneous Simba (NVDLA) solutions dominating the Pareto

frontier. In Scenario 4 (Figure 4.6 bot) and the AR/VR (Figure 4.7), the more workload

diversity leads more heterogeneous pipelining solutions to dominate the frontier.

Target Optimization. As illustrated in Figure 4.6, the dominance of MCM configurations

is also dependent on the target optimization metric. For instance in Figure 4.6 Scenario 4,

the Standalone NVDLA baseline is the most energy-efficient solution as it does not incur

NoP data movement costs from pipelining. However for Energy Search experiment, Het-

Sides configuration identifies scheduling solutions that become the most energy efficient ones

by leveraging heterogeneity to overcome extra NoP costs.

4.5.3 Top Performing Schedules Comparison

Next, we compare the top-performing scheduling configurations for each MCM configuration.

NoP and Inter-chiplet Pipelining. We take barplot A1 in Figure 4.8 as an example
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Figure 4.8: Comparing latency, energy, and EDP evaluations for the top-scoring candidates
from every search experiment with different optimization criteria across every scenario in
Table 4.2. Values normalized by NVDLA standalone.
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Figure 4.9: EDP and Latency comparison for the AR/VR usage scenario on various MCM
templates for the EDP search experiment.
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and and zoom in on the Simba (NVDLA) configuration (2nd category) in each scenario. In

Scenarios 1-3, the small number of models and limited diversity lead the benefits of inter-

chiplet pipelining to outweigh the added NoP costs, enhancing throughput and achieving

latency speedups over the standalone NVDLA baseline reaching 1.4×, 1.4×, 3.3×, respec-

tively. Scenarios 4 and 5 sustain larger NoP overheads due to the increased traffic contention

from more workloads, causing Simba (NVDLA) 1.05× slowdown compared to the baseline.

Heterogeneity Pattern Choices. Across the heterogeneous MCM scheduling options

in Figure 4.8 (Het-CB and Het-Sides), we notice that in the majority of cases, Het-Sides

outperforms Het-CB. The reason being is that Het-Sides presents workloads with inter-chiplet

pipelining options that can either be homogeneous or heterogeneous based on the chiplets

heterogeneous arrangement . This is especially beneficial in cases where are sequences of

layers that can benefit from pipelining while sharing the same dataflow affinities, unlike

Het-CB which can only offer the heterogeneous pipelining option.

Scenario and Optimization Target. In all matching criteria plots (A1, B2, and C3),

Het-Sides configuration at the most compute-intensive and diverse scenarios 4 and 5 con-

sistently outperforms all baselines. For example, Scenario 4 EDP in barplot C3 is reduced

by factors of 2.3× and 2.6× compared to Simba (NVDLA) and Simba (Shi-diannao), re-

spectively, while being 9.25× less than the standalone NVDLA. We also show in Figure 4.9

the matching EDP barplot for the AR/VR experiments. We observe that Het-Sides option

remains the most efficient option compared to the Simba baselines, achieving on average

5.2% improvement over the standalone NVDLA.

Het-Sides Top Scheduling Strategy. In Figure 4.10, we illustrate the overall schedul-

ing strategy for the top-scoring Het-Sides solution from the EDP search in Scenario 4. The

Figure depicts the per-window inner schedules and the progression of accumulative latency

for processing the workloads packed into each window. The distinguishing feat from this top

scheduling strategy is the non-uniformity of time windows resulting from the greedy-packing

93



GPT-L

BERT-L

ResNet-50

U-Net

0.8 sec 1.0 sec 2.5 sec 2.9 sec

NVDLA

Shi-diannaoWin 0 Win 4Win 3Win 2Win 1

3.8 sec

Figure 4.10: The top-scoring partitioning strategy for the Het-Sides scenario 4 experiments.
Each window showcases the top-performing schedule within, and the mapping of models
onto chiplets. Time boundaries between successive windows are computed over 500 MHz.

Table 4.3: End-to-end latency breakdown in seconds for the top partitioning candidate in
Figure 4.10. ‘Ideal‘ indicates individual model latencies unconditioned on window times.

W0 W1 W2 W3 W4 ideal tot #layers
GPT-L 0.23 0.21 1.02 0.28 0.23 1.97 3.1 120
BERT-L 0 0 1.47 0.4 0.90 2.77 3.76 60
U-Net 0.21 0.14 0.46 0 0 0.8 1.45 23
ResNet 0.78 0.17 0.11 0 0 1.1 1.1 66
Window 0.78 0.21 1.47 0.4 0.9 - 3.8

269
#layers 60 30 131 25 23 - -

heuristic, where smaller workloads (ResNet-50) are assigned to the earlier windows at the

expense of larger workloads (e.g., from BERT-L) being delayed to subsequent windows. This

facilitates (i) optimizing the schedules of smaller workloads at a finer level of granularity;

(ii) avoiding starvation of smaller workloads. Starting from window 2, GPT-L and BERT

workloads dominate the schedule, having their segmentation and mapping strategies opti-

mized to minimize the experienced EDP in each window. In Table 4.3, we breakdown how

the latency of each window is estimated alongside their assigned number of layers.

4.5.4 Ablation on Windowing and Chiplets Scaling

Ablation Study on Time Partitioning. Using Scenario 4 and Het-Sides EDP Search

experiments, we study how performance changes when varying nsplits and repeating the

experiment in Figure 4.11. We observe the rate of EDP improvements starts to plateau after
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Figure 4.11: Sweep of nsplits for the 3× 3 Het-Sides EDP search showing top candidates.

nsplits=4, where EDP of the top candidate is reduced from nsplits=4 to nsplits=5 by 1.04×.

Ablation on Greedy Packing Algorithm. Using Scenario 4 and Het-Sides configura-

tion, We tested the efficacy of our first-fit greedy layer packing algorithm against a uniform

packing baseline, which uniformly distributes layers from each model across time windows in

a uniform fashion. The Greedy layer packing algorithm was superior, improving execution

speedups and energy efficiency by 21.8% and 8.6%, respectively.

Scalability. We assess the scalability of our search framework using the full 6×6 Simba

MCM system, where we implement an evolutionary algorithm for the SEG considering the

rising problem complexity from the inclusion of more chiplets. We perform the search for our

default experimental settings and Scenario 4 given nsplits ∈ {2, 3}. We employ a Heterog-

Cross pattern and compare it against the Simba baselines in Figure 4.12. We find that the

Heterog-Cross top-scoring schedule outperforms those from Simba baselines in all cases across

all metrics. At nsplits=3, Heterog-Cross leads to 2.3× and 1.9 × reduction in EDP; 2.1× and

1.8× reduction in latency; over Simba (Shi-diannao) and Simba (NVDLA), respectively.

4.6 Related Works

Scheduler for Accelerators. Table 4.4 compares our work against prior scheduling works.

As shown, the related works can be categorized into two groups: one which has considered
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Figure 4.12: Comparing EDP and Latency at nsplits ∈ {2, 3} for the 6 × 6 MCM for target
EDP optimizaiton and an evolutionary search algorithm.

aspects of inter-layer pipelining and chiplet-based systems [27,28,58,167,183], while the other

category of works focused on multi-model workloads on heterogeneous platforms [63, 92, 94,

100, 114]. Only this work addressed MCM, multi-model workloads, inter-layer pipelining,

and heterogeneous dataflow.

Multi-chiplet Modules. Several works have proposed to address the performance scal-

ability challenge for high-performance computing and DNN acceleration via MCM integra-

tion [12, 80, 143, 167, 183]. Simba [167] is one notable workload which pioneered a scalable

deep learning inference accelerator employing MCM integration leveraging non-uniform work

partitioning, communication-aware data placement, and cross-layer pipelining.

Intra- and Inter-layer Parallelism. Numerous works have explored intra-layer par-

allelism to maximize performance efficiency and resource utilization by partitioning DNN

layers into smaller parallelizable tiles [74,75,79,116,147,203,206]. Other works have studied

the inter-layer scheduling space to compensate for workloads characterized by low degrees

of parallelism [27,58,91,118,229].
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Table 4.4: Comparison against prior related scheduling works.

Work
Chiplet-based Multi- Inter-Layer Heterog-

Systems Models Pipelining Aware
Simba [167] ✓ ✓
Tangram [58] ✓
NN-baton [183] ✓
SET [27] ✓
Gemini [28] ✓ ✓
Herald [100] ✓ ✓
MAGMA [92] ✓ ✓
Planaria [63] ✓ ✓
Veltair [114] ✓
MoCA [94] ✓
This Work ✓ ✓ ✓ ✓

4.7 Summary

In this work, we explored the scheduling space of a new class of MCM accelerator architecture,

heterogeneous MCM AI accelerator, targeting multi-model AI workloads. We identify that

the scheduling problem is intractably large but multi-level problem formulation and heuristics

we proposed are effective for the extended scheduling problem. The results also show that

heterogeneous MCM accelerator is beneficial for multi-model workloads, which motivates

further exploration.
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Chapter 5

Efficient Split Computing for Edge-AI

Autonomous Systems applications

We shift gears and study the emerging split-computing paradigm and how it can be effectively

implemented for Edge-AI applications like autonomous systems. The theory behind split

computing is to partition a target DNN across two platforms: (i) the user end device with

limited computational resources and compute capabilities. (ii) a compute-capable server

with abundant resources. We propose new techniques to maximize the effectiveness of split

computing at design and run times with an emphasis on the autonomous driving use case.

5.1 Introduction

Advances in the theory and application of Neural Networks (NNs), particularly Deep NNs

(DNNs), have spurred revolutionary progress on a number of AI tasks, including perception,

motion planning and control. As as result, DNNs have provided a feasible engineering

solution to supplant formerly human-only tasks, most ambitiously in autonomous systems.

98



However, state-of-the-art platforms, like autonomous driving systems (ADS), require the

use of very large DNN architectures to solve essential perception and control tasks, which

generally involve processing the output of tens of cameras, LiDARs and other sensors.

As a result, contemporary ADSs are only possible with significant computational resources

deployed on the vehicle itself, since their DNNs must process such high-bandwidth sensors in

closed loop, in real time. The practical energy impact of high-capacity on-vehicle compute is

understudied, but current research suggests that it is profound: e.g., up to a 15% reduction

in a vehicle’s range [109,130,189,191,192].

At the same time, advances in semiconductor design and packaging have made possible

cheap, low-power silicon; and advances in wireless networking have made high-bandwidth,

low-latency radio links possible even in challenging multi-user environments. Together, these

advances have led to increasingly ubiquitous, cheap, wirelessly-accessible computational re-

sources near the edge of conventional hard-wired infrastructure. In particular, it is now pos-

sible to achieve reliable, millisecond-latency wireless connections between connected ADSs

and nearby edge computing [14,112,119].

The ubiquity of edge compute thus suggests a natural way to reduce the local energy con-

sumption on ADS vehicles (and the broader autonomous systems): viz., by wirelessly offload-

ing onerous perception and control DNN computations to abundant nearby edge compute

infrastructure. Figure 5.1 illustrates how this edge computing paradigm can be adopted in

the field of vehicular computing via advanced wireless technologies, where edge devices rep-

resent connected vehicles (CVs) while vehicular edge servers (VECs) are stationed at Road

Side Units (RSUs) [14].

More Recently, split-computing has been introduced as a nuanced form of edge computing

where rather than offloading the input sensory data to the edge, DNN computations can

be split between the edge device (ADS) and server to balance computation-communication
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Figure 5.1: A Practical Example of the Edge Computing Paradigm for Vehicular Applications

overheads. Particularly, the concept emanates from the observation that data sizes can

shrink as DNN computation proceeds, yielding split layers with lower transmission overheads

[88, 142]. Even more so, recent research works have proposed the artificial construction of

a bottleneck layer early within the model architecture, enforcing feature data compression

prior to wireless transmission without degrading the model’s utility [49, 119,123].

5.1.1 Current Limitations of Split Computing

Despite the promise of split computing, the volatile nature of wireless connection (path

propagation loss, network congestion) and the lack of a systematic approach to account for

it remain a serious challenge for latency-critical applications like autonomous systems. In

particular, we identified the following limitations.

• The lack of a systematic design approach for split-computing models for autonomous

systems, where the design problem can be seen as that of a multi-branch neural net-

works distributed across two platforms while possessing stringent latency constraints.

• Scaling considerations of offloading optimizations for onerous edge systems like ADS

given bandwidth restrictions and shared execution deadlines (e.g., processing 8 camera

inputs from Tesla Autopilot [5]).

• The need for a learning-based adaptive controller for smooth adjustment of edge com-
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puting modes and offloading granularity based on experienced runtime variations (wire-

less conditions, scene complexity) while meeting latency and robustness constraints.

5.1.2 Novel Contributions

In light of the aforementioned challenges, we make the following contributions.

1. We present a novel framework to design multi-branch split-computing model architec-

tures for autonomous systems using knowledge distillation and NAS, scalable to both

single and multi-sensor DNNs.

2. We propose a deep reinforcement learning (DRL) solution that leverages spatio-temporal

correlations in the sensory input data streams to adjust offloading granularity at run-

time according to the seen context and wireless conditions.

3. We perform a myriad of experiments using various autonomous driving datasets and

evaluations on the industry standard ADS platform (Nvidia Drive PX2) which demon-

strate the merits of our methods.

5.2 Related Works

DNN Split Computing: To identify optimal offloading points within DNN architec-

tures, [88, 142] analyzed the expected computation and communication costs for each po-

tential offloading layer. For a considerable number of architectures, either direct raw inputs

offloading or pure local execution represented the most efficient option. Therefore, works

in [49,122,123] proposed to modify a DNN’s structure to include an early optimal offloading

layer that shrinks the size of transmissible data, minimizing the costs of both computation
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and communication. This split-computing concept was applied for end-to-end control in

autonomous vehicles [119].

Vehicular Edge Computing (VEC): Numerous research efforts have targeted system-

wide resource optimization for VEC through optimal task offloading and scheduling strate-

gies given a variety of servers, vehicles, and tasks [202, 226]. Typically, such strategies are

complemented with runtime solutions that can tune the operation according to variations in

the deployment environment, such as the network connectivity conditions [39]. Nonetheless,

delayed responses from edge servers are not tolerated in autonomous driving application as

the safety of the road, vehicles, and passengers [14] can be compromised. Hence, [195] pro-

posed a customized communication protocol for a stable and fast offloading of autonomous

driving tasks. Even more so, the authors in [119] proposed a fail-safe routine to re-invoke

local computation if responses are delayed beyond a certain threshold to account for the

uncertainty of wireless links.

Mutli-Sensor Perception: To maximize information extraction from a driving scene,

data is collected from a diverse set of sensors, e.g., cameras, lidar, and radar, to promote

perception robustness. Mainly, There are two primary schemes for processing these multi-

sensory inputs: early fusion [164, 217] and late fusion [120, 208]. The former combines all

sensory features to a single feature at an early point in the ADS pipeline, but is susceptible to

sensing noise. Conversely, the latter offers more resilience at the expense of more redundancy

across the sensor pipelines.

5.3 Design of Split Computing Models

We study the structure of bottlenecks, how to train them using knowledge distillation, and

how to leverage NAS to realize optimized multi-branch architectures for edge computing.
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5.3.1 Bottleneck Design

Bottleneck Structure. One prominent approach for achieving efficient split-computation

between the local platform and the edge server is the application of in-model compression

to obtain optimal offloading points. Formally, a DNN model M can be split into two

parts: a head MH and tail MT to be deployed on the local and edge server platforms,

respectively. The direct approach to select the splitting layer, ℓ, has been to identify the

layer at which the output zℓ =MH(x) becomes smaller in size than the input x to decrease

transmission overhead. Oftentimes, this criterion is only met at the latter layers for many

DNN architectures, which leads to increased local computation [88,142]. Instead, recent split

computing works proposed the notion of in-model compression through a bottleneck [49],

in which a modified model version M′ would comprise 3 sections: ME, MD, and MT .

Submodels ME and MD represent a specialized form of an encoder-decoder architecture

replacing the original MH . From here, ME would serve as the new head M′
H while the

concatenation ofMD andMT would be deployed on the edge server. Conceptually,ME is

introduced to obtain the compressed form z′ℓ =ME(x) prematurely in the network to realize

an early optimal offloading point (the bottleneck) withinM′. MD on the other hand serves

two purposes: (i) ensuring that z′ =MD(ME(x)) maintains the same spatial dimensions as

the original input toMT , and (ii) minimizing the loss incurred byM′ due to the proposed

structural modifications ofME andMD.

Bottleneck Training. Rather than retraining the entire modified model from scratch, we

apply knowledge distillation [123] to trainME andMD through minimizing a loss function,

e.g., mean squared error (LMSE), between MD outputs and those from the original parts,

Morig. Figure 5.2 illustrates this for our ResNet-18 with the loss component for a single

input x given by:

LSE = ||Morig(x)−MD(ME(x))||22 (5.1)
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Figure 5.2: Our ResNet-18 feature extractors undergo Knowledge Distillation to trainME ·
MD using the first 2 blocks

Thus, unaltered DNN components can retain their weight values with only the parameters

of the new structure being trained to produce the same output values as the originals.

5.3.2 NAS for Distributed Multi-Branch Model Architecture

As illustrated in Figure 5.3, we propose to adopt a blockwise neural architecture search (NAS)

approach for designing multi-branch neural network for edge computing. Briefly, blockwise

NAS relies on a teacher model pretrained on the target task and constituting a sequence

of computing blocks (e.g., the four blocks of a ResNet architecture), and a student model

comprising the same number of search blocks, each reflecting a subspace of the overall NAS

search space. As such, the NAS problem is reduced to identifying the optimal combination

of student blocks where each can be searched and trained separately.

The advantages of this approach are threefold: (i) A modular approach aids in identifying

which blocks are the most sensitive to alterations, allowing optimizations to be targeted

towards the less-sensitive blocks, (ii) Customization of search blocks is supported, enabling

the inclusion of a bottleneck design space in one of the earlier search blocks (see Figure

5.3), (iii) The modularity enables rendering multiple computing paths of varying degrees of

complexity for diverse runtime scenarios.

Blockwise NAS using Knowledge Distillation. To manage the colossal search over-
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traversal search (bottom). PM is for partial model and its indices are for the stage and the
PM’s ranking based on the loss defined in (5.5).

heads of NAS, the approach in [105] proposed to divide the NAS search space A into smaller

successive independent supernets Ai with each block i possessing its shared weightsWi, lead-

ing to an exponential reduction in the search space size and the overall design turnaround

time. Thus, given inputs X and ground truth values Y , an optimized subnet architecture,

α∗, is formed by aggregating N subnets from the search blocks which satisfy:

α∗ = argmin
α∈A

N∑
i=1

Lval(W
∗
i (αi), αi; yi−1, y) (5.2)

s.t. W ∗
i = min

Wi

Ltrain(Wi,Ai; yi−1, yi) (5.3)

where yi−1 and yi represent the inputs and ground truth labels for search block i, respec-

tively. Practically, pre-trained DNN models on the same task can be leveraged as teachers

to obtain yi and yi−1 from their intermediate data representations at different stages, which

allows guiding the search process for each search block i. In words, the main building blocks

constituting a DNN architecture, such as the 4 primary blocks of stacked layers in a ResNet

architecture [72], are designated as separate teacher blocks, each with its input and out-

put representations utilized as guides for the corresponding search block. Using knowledge

distillation (KD), the training and validation loss estimates, Ltrain and Lval, between block
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predictions ŷi(·) and the teacher ground truth values can be given by:

Ltrain(Wi,Ai; yi−1, yi) =
1

K
||yi − ŷi(yi−1)||j (5.4)

Lval(Wi,Ai; yi−1, yi) =
1

K · σj(yi)
||yi − ŷi(yi−1)||j (5.5)

in which K is the number of output neurons, σ(yi) is the standard deviation of yi, and j is

for the function degree. The loss estimate in Lval is normalized relative to the corresponding

σj(yi) to ensure fairness since feature map sizes can differ from one candidate partial model to

the other within a search block. We set respective j values to two and one in our experiments.

Model Aggregation under Constraint: After the initial search process has concluded,

partial model rankings are rendered for each search block according to Lval. If there are

no target performance constraints, then the top-ranking partial models from each block can

be concatenated to construct the complete DNN model A target performance constraint

(e.g., latency) denoted by Ctarget can be specified to guide the aggregation. To avoid the

prohibitive act of evaluating each possible combination of partial models, we construct a

lookup table for the performance costs of each candidate operation within a search block

(obtained through hardware measurements). Then, we can estimate the maximum allowable

cumulative performance cost for each block Ci as:

Ci =
i∑

n=1

costn = Ctarget −
N∑

n=i+1

min costn (5.6)

where min costn is the minimum cost for a partial model at block n estimated from the

pre-calculated lookup table. Once each block’s maximum cost Ci has been estimated using

(5.6), a traversal search can be performed starting from the first search block, and recursively

going through the partial models of the subsequent blocks as long as the corresponding Ci

constraints are satisfied. In other words, the testing of subsequent blocks is skipped if

the current partially constructed model at block i has a cumulative performance cost that

106



Local Domain

Tx

Edge Domain

Full Tail

Exit Tail

Full Tail

Control Unit

Rx
Input

receive control values

Transmit compressed data

Figure 5.4: An example end-to-end distributed multi-branch DNN architecture for reliable
and efficient edge computing in autonomous systems.

exceeds Ci. Furthermore, once a model satisfying the constraint has been identified, the

search returns to the previous block to avoid testing inferior models [105]. A walk-through

example for this traversal search is provided in Figure 5.3 (bottom).

Multi-branch Neural Network Deployment. Figure 5.4 illustrates an example on how

to deploy the multi-branch DNN distributed across the execution domains of the local device

and edge server. As shown, ME with the optimal offloading point from the first student

block is placed locally to be shared by all possible execution paths. Conversely, MD is

replicated across both execution domains. The remainder ‘Tail’ part of the model can be

constructed using modules from the teacher, student, or a hybrid of them. In the Figure, we

show subsequent computing blocks computed from the original teacher model concatenated

at the end of MD forming the full tail model, MFull
T . Furthermore, the local domain can

posses an extra local early exit tail MEx
T following MD constructed from the remaining

student blocks. All execution paths converge on the local device to to supply downstream

predictions for the control unit.
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5.4 Context Aware Runtime Controller Design

In order to adjust the edge computing mode at runtime, we propose a deep reinforcement

learning (DRL) solution that extracts contextual knowledge and discerns temporal patterns

within collected data streams (e.g., mounted camera feed) as well as the wireless network

conditions. The novelty of our DRL implementation is rooted in the following principles:

(i) AS applications process data samples collected at high sampling frequencies, exhibiting

strong spatio-temporal correlations between successive samples. (ii) Using low-dimensional

abstract representations for DRL processing so as to realize minimal processing overheads.

Figure 5.5 provides an illustrative concept of how abstract data can be pooled from concur-

rent object detectors in a multi-sensor platform before being used as inputs to the DRL.

5.4.1 Agent Design

As shown in Figure 5.6, our DRL solution constitutes a hierarchical agent. Given N process-

ing pipelines from a multi-sensor platform, we can specify the DRL components as follows.
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Contextual Encoder. In order to estimate the complexity of the corresponding scene,

we leverage the computed feature set, Ft, at time window t from the main sensor pro-

cessing pipelines to guide the decision for the following window t + 1, given as Ft =

{(F1)t, (F2)t, .., (FN)t}. The rationale behind using the feature set of the preceding time

window is twofold: (i) features do not need to be computed from scratch as they have al-

ready been generated within the primary processing pipelines (see the global pooling blocks

in Figure 5.5), and, (ii) the small window size for autonomous driving (≤ 100 ms) means

that successive frames share contextual information with high spatio-temporal correlations.

Still, the influence of Ft can outweigh other DRL inputs due to its relatively larger size.

Thus, we propose to encode Ft into a lower-dimensional representation, where Ft is processed

through a contextual encoder comprising a sequence of fully-connected layers to obtain the

final abstraction F∗
t . In our design, F∗

t was of 256× smaller in size than Ft.

State Encoder. The next component is the state encoder whose input is the final state

representation st = {F∗
t , ϕt, qt} formed from aggregating the contextual encoder outputs, F∗

t ,

the channel capacity ϕt, and server queuing delays qt. In practice, the latter two metrics can

be estimated by probing the edge server and/or through a function of the Received Signal

Strength Index (RSSI) at the edge device. However, we defined them as such to enable their

probabilistic modeling for training the DRL agent.

Action Space. Represented by the final fully-connected layer in the state encoder, the
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action space covers the set of all possible modes of operation that can be selected by the

DRL at runtime. We define it as A = {offload0, offload1, offload2, ...offloadN−1}, where

an action offloadi is for choosing the offloading option for i sensory pipelines, with offload0

being pure local execution. In the case that the same DNN structure is shared across all

pipelines, only the number of offloading pipelines matter. We do not consider offloadN as

a viable option so that the ADS is always guaranteed a new output every time window by

having at least one pipeline always processed locally. This way, even under a worst-case

scenario when tasks from N − 1 pipelines are offloaded and results are not received within

the time limit, the vehicle can still operate in a safe manner. In practice, we merely need

a subset of actions A∗ ⊆ A, with {offload0, offloadN−1} ⊆ A∗, where A∗ can contain the

actions that exhibit notable variability in performance. At runtime, action vector, at, is

mapped onto the control of each processing pipeline.

5.4.2 DRL Environment

To train the DRL agent, we emulate a training environment for learning a policy π that

makes offloading decisions based on the current state.

Training and Reward. Reinforcement learning approaches rely on having a Q function

to provide value estimates for each state-action pair so as to select the optimal action â =

argmaxa∈AQπ(ŝ, a) for each ŝ under a learnt policy π. However, estimating state-action

pair values in continuous state spaces is challenging, and DRL offers to approximate Qπ by a

policy network trained to maximize a reward. With no loss in generality, our DRL employs

a Double Deep Q-Network [188] with a compounded reward function R as:

R =


A, if mAP(y) < mAPth

B, otherwise

(5.7)
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which evaluates to different functions based on a measure of robustness. For example in

object detection, robustness can be lossely defined as meeting a certain mean Average Preci-

sion (mAP) threshold score1. In brief, our goal is for the agent to realize a policy that deters

from offloading actions when prediction confidence is low. Our method of achieving this is

through the contextual information present in Ft−1 which assess the scene’s complexity for

guiding offloading decisions and minimizing prediction uncertainty. Thus, if mAPth is not

met, R evaluates to A defined as:

A =


0, if â == offload0

P
N−i

, if â == offloadi

s.t., i ̸= 0, i < N (5.8)

where the agent is penalized whenever an offloading action is selected and mAPth is not met.

The penalty value is proportional to the number of offloading pipelines, i, out of N total,

with a maximum negative penalty of P . Recall that offloadN ̸∈ A as one pipeline always

executes locally to ensure at least one output is available irrespective of the wireless network

conditions. On the flip side, when mAPth is satisfied, R evaluates to B as follows:

B =


P, if L(X|â) > Lth

C, otherwise

(5.9)

which penalizes the agent by P when its selected action â causes the overall execution latency

for inputsX, L(X|â), to exceed the critical execution latency constraint, Lth. In other words,

this means that the agent is penalized when not all partial outputs are available in time for

late fusion. In reality, state-of-the-art ADS platforms are designed to meet the application

latency demands, and hence, we set the value of Lth to that of local execution. Contrarily,

1Chapter 6 focuses on how to address robustness for edge computing in a formal, provably safe manner
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when Lth is satisfied, R finally evaluates to C given by:

C =


0, if E(X|â) == min(E(X|a)|L(X|a) ≤ Lth)

P, otherwise

∀a ∈ A∗, A∗ ⊆ A (5.10)

penalizing the agent by P if the energy consumption footprint E(X|â) from selecting action

â is not the minimal from amongst those of all viable actions a ∈ A∗ projected to meet Lth.

A flowchart of the final adopted reward function is shown in Figure 5.7.

Latency and Energy Estimation. In order to evaluate R for each selected â, the end-

to-end estimates for energy and latency can be approximated every time window as follows:

L = Llocal + LTx + Lserver + LRx (5.11)

E = Elocal + ETx + Eidle + ERx (5.12)

where the latency L can be broken down into the respective local, transmission, server, and

receiving latencies. Similarly, energy consumption constitutes the same components except

for incorporating idling energy as we are only concerned about the ADS energy footprint.
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From here, the local components are given by:

Llocal = N × LME
+ (N − i)× Ltail | â == offloadi (5.13)

in which LME
and Ltail are the respective latencies for executing the encoder ME and

the remaining tail parts of the model, respectively. When the selected action is to offload

processing from i processing pipelines (i.e. â == offloadi), the total local execution latency

accounts for processing across the N encoders and the N − i tail models. This additive form

represents the most direct approach for modeling local execution. However in reality, the

concurrency of pipelines can speed up local execution depending on the available hardware

resources at the expense of a larger power consumption footprint, Plocal. We approximate

this trade-off through considering energy for performance evaluation, defining Elocal as:

Elocal = Llocal × Plocal (5.14)

Channel Estimation. To estimate the communication overheads, we first fit a Rayleigh

distribution curve with scale σ to throughput traces Φ collected from the real-world for dif-

ferent wireless technologies, i.e., Φ ∼ Rayleigh(σ). Then, we use the constructed distribution

to sample independent and identically distributed (i.i.d.) random variables as the channel

capacity ϕ to be used for the training and evaluation processes of the DRL agent where data

transmission parameters can be evaluated as:

LTx =
i× b
ϕ
| â == offloadi; ETx = LTx × PTx (5.15)

where b is the transmissible data size from one sensory pipeline while PTx is the transmission

power incurred by the ADS. Similarly, the formulation for the receiving parameters, LRx and

ERx, can be provided given corresponding estimates for channel capacity and data sizes in

the downlink.
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Server Queuing. Lastly, we model the server latency Lserver using queuing delays:

qc =
(1− ρ)(ρ)c

1− ρC+1
(5.16)

representing the probability that the offloaded task would encounter c other tasks before it

in the server’s processing queue, with ρ being the average server load, and C being the queue

size. From here, we are able to generate a probability density function (pdf) for values within

0-C from which we can sample queuing positions, and consequently approximate Lserver.

5.5 Evaluation

We provide our experimental evaluation results for the multi-sensor object detection use case

for autonomous driving. The full set of results can be found in our research works [32,138] .

5.5.1 Experimental Setup

Dataset. We use the RADIATE multimodal perception dataset [168] for its diverse driving

scenarios and adverse weather conditions such as snow, fog, and rain. The dataset covers

8 object classes with annotations from a Navtech CTS350-X radar, a Velodyne HDL-32e

LiDAR, and a ZED stereo camera. We implemented 4 object detection DNN pipelines: 2

stereo cameras, radar, and lidar. All inputs are mapped onto the forward-facing perspective

for late fusion.

Training and Metrics The original object detectors for each sensor pipeline comprised

a ResNet-18 followed by a Faster R-CNN. These models were trained using a batch size

of 1, learning rate of 0.005, and the multi-task loss function in [159] which combines both

classification and box regression losses. For the NMS fusion, we use a fusion IoU threshold
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of 0.4. We employ mAP as our evaluation metric with boxes IoU ≥ 0.5 since it is widely

adopted for object detection tasks [50] where the average precision is estimated using the

precision and recall values. More details about evaluating these values are in [50,159].

Hardware and Performance Evaluation We use the industry-grade Nvidia Drive PX2

Autochauffer as our ADS hardware. The concurrent DNN models are compiled using the

TensorRT library becoming inference engines. The local execution power Plocal is estimated

as the difference in the ADS power measurements when processing and idling. For the

transmission power PTx, we follow [119] and evaluate it using data transfer power models [77].

Encoder-Decoder Structure. The input frame’s resolution for each of the sensory pipelines

is 672 × 376 (≈ 740.25 kB). The encoder, ME, comprises 3 layers (2 convolutional and 1

pooling), each with a stride of 2 with only 3 channels at the output. Therefore, when the

outputs fromME are quantized to 8 bits for offloading [119], the transmissible data size b

in equation 5.15 becomes ≈ 11.57 kB (64× less than the input’s). The decoderMD mimics

the structure presented in [123] to have its output of the same dimensions as that from the

original second ResNet-18 block.

DRL Settings. For safety, we always execute the radar pipeline locally [113] and define

A∗ = {offload0, offload2, offload3}. We set P = −2, C = 4000, ρ = 0.9, and mAPth =

0.68 unless otherwise stated. We set Lth = 68.12 based on pure local execution latency.

5.5.2 Bottleneck Evaluation in Multi-sensor ADS

We first assess how the inclusion ofME andMD impacts the loss and prediction accuracy

of object detection. Table 5.1 shows the changes in these metrics across different late fusion

combinations on the Radiate evaluation dataset. As seen, full sensor fusion has the best

performance in mAP, asserting how prediction robustness relates to the number of fused
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Table 5.1: Loss and mAP (%) before (orig) and after (dist) integrating ME · MD across
various late fusion combinations.

Sensor Loss (orig) Loss (dist) mAP (orig) mAP (dist)
2 Cameras 0.15 0.17 67.14 67.14
Radar+Lidar 0.10 0.11 67.14 67.14
Full Fusion 0.13 0.15 71.24 70.38

Table 5.2: Hardware Measurements on the Nvidia Drive PX2

DNN Llocal (ms) Elocal (J) Memory (MB)
Encoder 3.78 0.03 0.025
1 pipeline 17.03 0.12 80.3
4 pipelines 68.12 0.48 321.2
DRL Agent 0.66 0.005 5.4

outputs. It is also observed that the new DNN structures maintain the same level of perfor-

mance as their original counterparts, with the highest degradation in mAP from 71.24% to

70.38% experienced by the full fusion case, but still offering a better score than that of the

simpler sensor combinations.

Table 5.2 displays the processing overheads for different DNN components deployed on the

PX2 hardware. The encoder ME and DRL agent take 3.78 and 0.66 ms, respectively, em-

phasizing how the decision at is obtained before the generation of any transmissible outputs.

Moreover, the execution latency for 4 pipelines on the PX2 can add up to 68.12 ms given

the same power Plocal.

5.5.3 DRL Efficiency and Robustness Evaluation

Channel Capacity and Queuing Analysis. In this experiment, we analyze the influence

of the experienced channel capacity, ϕ, and queuing delay, qt, on the optimal action choice

when optimizing for energy consumption under the latency constraint Lth. To elaborate, we

illustrate in Figure 5.8 parametric sweeps with respect to ϕ given qt = 15 ms. As shown,

offloading options are consistently more energy efficient than the pure local option (offload0),
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Figure 5.8: Variation of Latency and Energy Analysis w.r.t. Channel Capacity. Energy as
bar charts, Latency as plot lines

but the Lth constraint dictates which action should be chosen considering how poor values

of ϕ could disqualify some offloading choices. When ϕ > 4 Mbps, the latency overhead for

offload2 does not exceed Lth making it the optimal action until ϕ > 7 Mbps, at which the

most energy-efficient option, offload3, becomes valid. Similarly, this analysis is repeated in

Figure 5.9 when sweeping across qt given ϕ = 8 Mbps. Naturally, the latency overhead

is linearly proportional to qt under fixed network conditions, demonstrating the influence

of server load over the optimal offloading decision. From here, the key takeaway is that

based on the wireless infrastructure and VEC server capabilities, the maximum number of

concurrent offloading pipelines that meet Lth can be determined, and used accordingly to

construct the decision space.

Robustness Analysis. To analyze the DRLs capacity to make robust decisions, we define 2

baseline policies for comparison: (i) a robustness-agnostic or R-agnostic policy that is aware

of ϕ and qt to optimize for energy so long as Lth is satisfied, and (ii) an Oracle resembling an

optimal strategy which in addition to the information available to the R-agnostic policy, also

possesses the true per-frame mAP estimate apriori, and consequently, the optimal sequence

of decisions satisfying the robustness constraint mAPth. All of the mentioned strategies

are more energy-efficient than pure local execution, and the mAPth values are set in the
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Table 5.3: Robustness analysis at ρ=0.97

Policy mAPth
Average mAP (%)

offload0 offload2 offload3
R-agnostic N/A 64.93 64.50 64.85

DRL
0.50 60.39 67.69 68.58
0.68 60.68 70.93 72.55
0.98 61.82 72.49 73.14

Oracle
0.50 49.58 85.34 85.26
0.68 50.58 93.68 93.62
0.98 54.84 99.51 99.49

experiments to 0.5, 0.68, and 0.98, estimated based on the cumulative distribution of the

evaluation dataset.

To evaluate robustness across each policy, we compute the average experienced mAP per ac-

tion (AMAP) given the action selection frequencies. Mainly, a robust behavior cause frames

of high uncertainty (mAP ≤ mAPth) to be processed locally, implying how the AMAP ex-

perienced locally should be low compared to those from the offloading actions. We illustrate

this concept in Figure 5.10 across the 3 policies for mAPth = 0.68 and ρ = 0.97. As seen,

the R-agnostic policy only considers performance efficiency for its action selection, and sub-

sequently, its AMAP across offload0, offload2, and offload3, are equivalent with values of

64.39%, 65.01%, and 65.25%, respectively. Conversely, the Oracle resembles the ideal em-
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Figure 5.10: Breakdown of the action selection frequencies (%) across the 3 policies at
mAPth=0.68 and ρ=0.97. Numbers next to the bars indicate the average experienced mAP
(AMAP) for the evaluation dataset inputs mapped to each action.

bodiment of robustness, assigning high uncertainty frames to offload0, despite performance

gains from offloading. In contrast to the R-agnostic policy, 66.94% of the Oracle policy

decisions are offload0 with an AMAP of 50.58%, and an AMAP as high as 93.68% for the

remaining offloading decisions. From here, our proposed DRL approach strives to learn the

Oracle’s behavior, through the observed action selection breakdown, with 63.65% of actions

belonging to offload0. Moreover, the AMAP for offload2 and offload3 are 70.93% and 72.55%,

respectively, which despite outperforming the R-agnostic policy, are far from that of the Or-

acle. This is expected considering the Oracle policy is the unrealistic ideal behavior with

apriori mAP knowledge. We extend this analysis to other thresholds values in Table 5.3,

where we observe that as the robustness constraint becomes smaller, the DRL exhibits a

behavior closer to the R-agnostic and farther from the Oracle and vice versa.

Furthermore, we vary the server load ρ in Table 5.4 and show how the action frequency varies

for each policy. As ρ increases, the selection of local processing becomes more frequent across

all policies, irrespective of the energy or robustness due to the Lth constraint. Such behavior

is learned by our DRL solution given how the action selection frequencies closely imitate

that of the Oracle.
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Table 5.4: Action frequency analysis at mAPth = 0.68

Policy ρ
Action Frequency (%)

offload0 offload2 offload3

R-agnostic
0.90 11.17 14.73 74.10
0.97 37.18 17.17 45.65
0.99 70.34 9.25 20.41

DRL
0.90 51.73 8.83 39.44
0.97 63.65 10.95 25.39
0.99 85.14 5.46 9.4

Oracle
0.90 53.19 8.00 38.82
0.97 66.94 9.17 23.89
0.99 84.37 5.04 10.60

Table 5.5: Energy analysis relative to local at mAPth = 0.98

Metric Local R-agnostic DRL Oracle
Risky Actions (%) 0 63.37 14.54 0
Robust Actions (%) 100 36.63 85.46 100
Total Energy (kJ) 2.916 1.729 2.479 2.487
Total Energy Red. (%) 0 40.7 14.99 14.72

Energy Reduction vs Risky Actions. We also compare the energy savings relative

to the pure local execution, offload0, in addition to their risky behaviors. We first define

Risky Actions as the fraction of offloading actions whose respective mAP scores fall below

mAPth, and Robust Actions as the fraction whose scores exceed the mAPth. We compare

the performance of each policy in Table 5.5, where although R-agnostic offers the highest

energy reduction of 40.7% compared to DRL’s 14.99%, 63.37% of R-agnostic’s energy savings

are Risky Actions, unlike DRL whose Risky Actions constitute 14.54% of the offloading

decisions. Through extending this analysis further to entail multiple mAPth values, i.e., a

higher threshold means a stricter offloading constraint, we observe in Figure 5.11 that the

robustness-aware DRL at higher mAPth substantially reduces the percentage of risky offloads

compared to the R-agnostic policy, with reductions reaching 77.06% at mAPth = 0.98.
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Figure 5.11: Comparing Energy and Risky Actions

5.6 Concluding Remarks and Future Directions

We studied edge (split) computing and analyzed how it can be effective in elevating the

performance efficiency for autonomous systems operating through DNNs. We first demon-

strated the merit of bottlenecks in multi-sensor ADS platforms. Then, we implemented a

novel, hierarchical DRL solutions for runtime adaptation. Our results were promising.

Still, we highlight three areas for improvement. (i) Evaluations using other wireless technolo-

gies, C-V2X and 5G, are still needed. (ii) Real-world wireless experiments are still needed

to realize more tangible outcomes considering unpredictable network conditions from unfa-

miliar dynamic factors (e.g., motion characteristics). (iii) The used datasets are relatively

small for the DRL to learn representative policies. Exposure to larger, more diversified is

needed for a large-scale adoption.

Lastly, the adoption of edge computing and data offloading methods introduce a number of

concerns such as: (i) Formal Safety Guarantees on control behavior; For autonomous systems,

provably-safe control behavior can be compromised under wireless channel uncertainty and

potential delays. (ii) Privacy Risks; Transmitting user generated data over wireless networks

to third party servers have been shown to cause serious concerns with regards to sensitive

user information leakage . We study these problems in Chapter 6 and Appendix A.
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Chapter 6

Provably-Safe Offloading for Edge

Neural Network Controllers

Neural Network controllers do not operate in vacuum, but they are rather part of a larger

system having formal properties and operational requirements. The deep-learning based au-

tonomous driving system is part of a broader vehicular system with formal guarantees on

execution latency and safety. Emerging techniques like split computing disrupt the tradi-

tional computational stack, and compromise existing formal safety guarantees due to lack of

consideration for wireless uncertainty. We present through the autonomous driving use case

a provably-safe, formal approach to achieve edge computing with safety guarantees.

6.1 Introduction

As was discussed in the prior Chapter, even modern wireless networks and offloading-friendly

DNN architectures (e.g. encoder/decoders) cannot provide formal guarantees that bringing

edge computing into the ADS control loop will have equivalent (or even acceptable) per-
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Figure 6.1: Illustration of Provably-Safe Offloading of Edge Neural Network Controllers.

formance compared to on-vehicle hardware. This is an unacceptable situation when human

lives are at stake: even relatively rare and short delays in obtaining a control action or

perception classification can have fatal consequences.

Hence, we propose the EnergyShield framework as a mechanism to perform DNN-to-edge

offloading of ADS controllers but in a formal, provably safe way. Thus, EnergyShield is

the first framework that enables significantly lower on-vehicle energy usage when evaluating

large DNNs by intelligently offloading those calculations to edge compute in a provably safe

way; see Figure 6.1. The primary idea of EnergyShield is to perform safety-aware (state-)

contextual offloading of DNN calculations to the edge, under the assumption that adequate

on-vehicle computation is always available as a safety fallback. This is accomplished using a

controller “shield” as both a mechanism to enforce safety and as a novel, low-power runtime

safety monitor. In particular, this shield-based safety monitor provides provably safe edge-

compute response times: i.e., at each instance, EnergyShield provides a time interval within

which the edge-compute must respond to an offloading request in order to guarantee safety

of the vehicle in the interim. In the event that the edge resources don’t provide a response

within this time, on-board local compute proceeds to evaluate the relevant DNNs before

vehicle safety is no longer assured. Further energy savings are obtained by incorporating

an estimator to anticipate edge-compute load and wireless network throughput; a more

intelligent offloading decision is made by comparing this estimate against the tolerable edge-
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compute delay provided by the runtime safety monitor, avoiding offloads likely to fail.

The main technical novelty of EnergyShield is its shield-based runtime safety monitor men-

tioned above. Although controller “shielding” is a well-known methodology to render generic

controllers safe, the shielding aspect of EnergyShield contains two important novel contribu-

tions of its own: first, in the use of a shield not only to enforce safety but also as a runtime

safety monitor to quantify the time until the system is unsafe; and second, in the specific

design of that runtime monitor with regard to implementation complexity and energy consid-

erations. In the first case, EnergyShield extends existing notions wherein the current value

of a (Zeroing-)Barrier Function (ZBF) is used as a runtime monitor to quantify the safety

of an agent: in particular, it is novel in EnergyShield to instead use the current value of the

ZBF to derive a sound quantification of the time until the agent becomes unsafe. Moreover,

EnergyShield implements this sound quantification in an extremely energy efficient way: i.e.,

via a small lookup table that requires only a small number of FLOPS to obtain a guaranteed

time-until-unsafe. This particular aspect of the runtime safety monitor is also facilitated by

using a particular, but known, ZBF and shield [55] in EnergyShield: these components are

both extremely simple, and so implementable using small, energy efficient NNs [55]. To-

gether, these design choices ensure that any energy saved by offloading is not subsequently

expended in the implementation of EnergyShield itself.

We tested EnergyShield in the Carla simulation environment [44] with several DRL-trained

agents. Our experiments showed that EnergyShield entirely eliminated obstacle collisions for

all RL agents – i.e. made them safe – while simultaneously reducing NN energy consumption

by as much as 54%. Additionally, we showed that EnergyShield has intuitive, safety-conscious

offloading behavior: when the ADS is near an obstacle – and hence less safe – EnergyShield’s

runtime safety monitor effectively forced exclusively on-vehicle NN evaluation; when the ADS

was further from an obstacle – and hence more safe – EnergyShield’s runtime safety monitor

allowed more offloading, and hence more energy savings.
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6.1.1 Related Work

Formal Methods for Data-Trained Controllers. A number of approaches exist to

assert the safety of data-trained controllers with formal guarantees; in most, ideas from

control theory are used in some way to augment the trained controllers to this end. A good

survey of these methods is [41]. Examples of this approach include the use of Lyapunov

methods [16, 36], safe model predictive control [96], reachability analysis [9, 56, 64], barrier

certificates [115,160,176,185,197,207], and online learning of uncertainties [169].

Controller “shielding” [10] is another technique that often falls in the barrier function cate-

gory [35]. Another approach tries to verify the formal safety properties of learned controllers

using formal verification techniques (e.g., model checking): e.g., through the use of SMT-

like solvers [46,110,178] or hybrid-system verification [53,81,205]. However, these techniques

only assess the safety of a given controller rather than design or train a safe agent.

Edge Computing for Autonomous Systems. A number of different edge/cloud of-

floading schemes have been proposed for ADSs, however none to date has provided formal

guarantees. Some have focused on scheduling techniques and network topology to achieve

effective offloading [39,54,163,184,227]. Others focused on split and other NN architectures

to make offloading more efficient [32,119,138].

6.2 Preliminaries

6.2.1 Notation

Let R denote the real numbers; R+ the non-negative real numbers; N the natural numbers;

and Z the integers. For a continuous-time signal, x(t), t ≥ 0, denote its discrete-time sampled
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Figure 6.2: Obstacle specification and minimum barrier distance as a function of relative
vehicle orientation, ξ.

version as x[n] for some fixed sample period T (in seconds); i.e. let x[n] ≜ x(n ·T ) for n ∈ Z.

Let 1a : R → {a} be the constant function with value a; i.e., 1a(x) = a for all x ∈ R

(interpreted as a sequence as needed). Finally, let ẋ = f(x, u) be a control system with

x ∈ Rn and u ∈ Rm, and let π : R×Rn → Rm be a (possibly) time-varying controller. For this

system and controller, consider a time t0 ≥ 0 and state x0, and denote by ζt0,x0
π : R+ → Rn

the t0-shifted state evolution of this system controlled by π assuming x(t0) = x0. Let ζ
n0,x0
π [n]

indicate the same, except in discrete-time with zero-order hold of π. ∥·∥ and ∥·∥2 will denote

the max and two-norms on Rn, respectively.

6.2.2 Kinematic Bicycle Model

In this paper, we will use the kinematic bicycle model (KBM) as the formal dynamical model

for our autonomous vehicle [97]. However, we consider the KBM model in terms of state

variables relative to a fixed point in the plane – the obstacle to be avoided – rather than

absolute Cartesian coordinates. That is, the positional states are the distance to a fixed

point, ∥r⃗∥, and orientation angle, ξ, of the vehicle with respect to the same. These evolve
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according to dynamics:

(
ṙ
ξ̇
v̇

)
=

(
v cos(ξ−β)

− 1
r
v sin(ξ−β)− v

ℓr
sin(β)

a

)
; β ≜ tan−1( ℓr

ℓf+ℓr
tan(δf )) (6.1)

where r(t) ≜ ∥r⃗∥ and ξ are as described above; v is the vehicle’s linear velocity; a is the

linear acceleration input; δf is the front-wheel steering angle input1; and ℓf and ℓr are the

distances of the front and rear axles, respectively from the vehicle’s center of mass. Note

that at ξ = ±π/2, the vehicle is oriented tangentially to the obstacle; and at ξ = π or 0, the

vehicle is pointing directly at or away from the origin, respectively (see Figure 6.2).

We assume that the KBM has a steering constraint, i.e. δf ∈ [−δfmax
, δfmax

]. However, we

may use β directly as a control variable, since it is an invertible function of δf . Thus, β is

also constrained as β ∈ [−βmax, βmax].

We define the state and control vectors for the KBM as: χ ≜ (ξ, r, v) and ω ≜ (a, β), with

ω ∈ Ωadmis.≜ R× [−βmax, βmax] the set of admissible controls. Thus, the dynamics of the KBM

are given by χ̇ = fKBM(χ, ω) with fKBM defined by (6.1).

6.2.3 Barrier Functions and Shielding

In the sequel, we will use a controller “shield”, which is a methodology for instantaneously

correcting the outputs produced by a controller in closed loop; the objective is to make

corrections such that the original controller, however it was designed or implemented, be-

comes safe – hence the “shield” moniker. Specifically, a controller shield is designed around

a real-valued function over the state space of interest, called a (Zeroing-) Barrier Function

(ZBF). The ZBF directly encodes a set safe states by its sign: states for which the ZBF is

nonnegative are taken to be safe. The ZBF in turn indirectly specifies safe controls (as a

1That is, the steering angle can be set instantaneously with no steering rack dynamics.
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function of state) in such a way that the sign of the ZBF is invariant along trajectories of

the dynamics.

Formally, consider a control system ẋ = f(x, u) in closed loop with a state-feedback controller

π : x 7→ u. In this scenario, a feedback controller in closed loop converts the control system

into an autonomous one – the autonomous vector field f(·, π(·)). In this context, recall the

definition of a Zeroing-Barrier Function (ZBF):

Definition 6.1 (Zeroing Barrier Function (ZBF) [211, Definition 2]). Let ẋ = f(x, π(x)) be

the aforementioned closed-loop, autonomous system with x(t) ∈ Rn. Also, let h : Rn → R,

and define C ≜ {x ∈ Rn : h(x) ≥ 0}. If there exists a locally Lipschitz, extended-class-K

function, α such that:

∇xh(x) · f(x, π(x)) ≥ −α(h(x)) for all x ∈ C (6.2)

then h is said to be a zeroing barrier function (ZBF).

Moreover, the conditions for a barrier function above can be translated into a set membership

problem for the outputs of such a feedback controller. This is explained in the following

proposition.

Proposition 1. Let ẋ = f(x, u) be a control system that is Lipschitz continuous in both of

its arguments on a set D × Ωadmis.; furthermore, let h : Rn → R with Ch ≜ {x ∈ Rn|h(x) ≥

0} ⊆ D, and let α be a class K function. If the set

Rh,α(x) ≜ {u ∈ Ωadmis.|∇T
xh(x) · f(x, u) + α(h(x)) ≥ 0} (6.3)

is non-empty for each x ∈ D, and a Lipschitz continuous feedback controller π : x 7→ u
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satisfies

π(x) ∈ Rh,α(x) ∀x ∈ D (6.4)

then Ch is forward invariant for the closed-loop dynamics f(·, π(·)).

In particular, if π satisfies (6.4) and x(t) is a trajectory of ẋ = f(x, π(x)) with h(x(0)) ≥ 0,

then h(x(t)) ≥ 0 for all t ≥ 0.

Proof. A direct application of ZBFs [211, Theorem 1].

Proposition 1 is the foundation for controller shielding: (6.3) and (6.4) establish that h

(and associated α) forms a ZBF for the closed-loop, autonomous dynamics f(·, π(·)) . Note

also that there is no need to distinguish between a closed-loop feedback controller π, and a

composite of π with a function that shields (or filters) its output based on the current state.

Hence, the following definition:

Definition 6.2 (Controller Shield). Let ẋ = f(x, u), h, Ch, α and D × Ωadmis. be as in

Proposition 1. Then a controller shield is a Lipschitz continuous function S : D ×

Ωadmis. → Ωadmis. such that

∀(x, u) ∈ D × Ωadmis..S(x, u) ∈ Rh,α(x). (6.5)

6.2.4 A Controller Shield for the KBM

In this paper, we will make use of the existing ZBF and controller shield designed for the

KBM in [55]. These function in concert to provide controller shielding for the safety property

illustrated in Figure 6.2: i.e., to prevent the KBM from entering a disk of radius r̄ centered
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at the origin. In particular, [55] proposes the following class of candidate ZBFs for the KBM:

hr̄,σ(χ) = hr̄,σ(ξ, r, v) =
σ cos(ξ/2)+1−σ

r̄
− 1

r
(6.6)

αvmax(x) = K · vmax · x (6.7)

where αvmax is per se a class K function, and σ ∈ (0, 1) parameterizes the class. Note also

that this class of ZBFs ignores the state variable, v; it is a result in [55] that this class is

useful as a barrier function provided the vehicle velocity remains (is controlled) within the

range (0, vmax]. Note also that the equation has hr̄,σ(χ) = 0 has a convenient solution, which

we denote by rmin for future reference:

rmin(ξ) = r̄/(σ cos(ξ/2) + 1− σ). (6.8)

One main result in [55] is a mechanism for choosing the parameter σ as a function of KBM

parameters (e.g. ℓr) and safety parameter, r̄ so that the resulting specific function is indeed

a ZBF as required.

Finally, we note that [55] also suggests an extremely lightweight implementation of the barrier

based on (6.6). That is, it contains a “Shield Synthesizer” that implements a controller

shield by approximating a simple single-input/single-output concave function with a ReLU

NN [55, pp 6]. This construction will also prove advantageous later. We denote by SKBM

the resulting controller shield, with associated barrier, KBM and safety parameters inferred

from the context.
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6.3 Framework

NOTE: In this section, we will denote by x, y and u the state, sensor and control variables

of an ADS, respectively; this abstract notation will illustrate the EnergyShield framework free

from specific modelling details. A formal consideration of EnergyShield is in Section 6.4.

6.3.1 EnergyShield Motivation and Context

The basic motivation for the EnergyShield framework is the following. Suppose that an ADS

contains a large NN, NNc, that is responsible for producing a control action, u, in response

to a sensor signal, y. Further assume that, by virtue of its size, computing an output of

NNc with on-vehicle hardware consumes significant energy. Thus, it would be advantageous,

energy-wise, to offload evaluations of NNc to edge computing infrastructure: in other words,

wirelessly transmit a particular sensor measurement, y, to off-vehicle edge computers, where

the output u = NNc(y) is computed and returned to the requesting ADS.

The problem with this approach is largely from a safety point of view. In particular, the

controller NNc was designed to operate in real time and in closed-loop: i.e. the control action

at discrete-time sample n is intended to be computed from the sensor measurement at the

same time sample2. In the notation of discrete-time signals (see Section 6.2.1), this means:

u[n] = NNc(y[n]). However, offloading a sensor measurement, y[n], to the edge entails that

the correct output of NNc(y[n]) will not be back on-vehicle before some non-zero number of

samples, say ∆. Thus, NNc(y[n]) will not be available at time n to set u[n] = NNc(y[n]) as

intended; rather, the soonest possible use of the output NNc(y[n]) will be at time n + ∆,

or u[n + ∆] = NNc(y[n]). This delay creates obvious safety issues, since the state of the

vehicle – and hence the correct control to apply – will have changed in the intervening ∆

time samples. More importantly, even the “correct” control action applied at n+∆ may be

2In our formal consideration, we will model a one-sample computation delay.
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insufficient to ensure safety: e.g., after ∆ samples have elapsed, it may be too late to apply

adequate evasive steering.

6.3.2 EnergyShield Structure

If we assume the ADS has enough on-vehicle compute to obtain an output NNc(y[n]) in real

time2, then the safety problem above is one of making an offloading decision: ideally one

that saves energy without compromising safety. That is, should a particular evaluation of

NNc be offloaded to the edge? And how long should the ADS wait for a response so as to

ensure the situation is correctable?

EnergyShield must address two intertwined issues in order to ensure safety of the ADS vehicle

during offloading. On the one hand, EnergyShield must be able to correct the control actions

provided by NNc after an offload decision (see explanation above). On the other hand,

EnergyShield must limit the duration it waits for each offloading request, so that actions

provided by NNc can be corrected in the first place; i.e., among all possible offloading delays,

∆, it is not immediate which may be corrected and which may not (e.g., ∆ =∞ likely cannot

be corrected). In this sense, knowing a particular response-delay, ∆′, is correctable essentially

characterizes how to take an offloading decision, since it provides an expiration on safety :

i.e., proceed to offload, and wait for a response until ∆′ samples have elapsed – at which

point resume local evaluation of NNc.

In particular then, EnergyShield has two main components:

C1: Controller Shield. EnergyShield contains a controller shield (see Section 6.2.3),

which ensures that safety is maintained irrespective of offloading-delayed controller

outputs; in other words, it corrects unsafe behavior of NNc that results from changes

in vehicle state during offloading delays.
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C2: Runtime Safety Monitor. EnergyShield contains a runtime safety monitor that

provides the ADS an upper bound, ∆max (in samples), on how long it should wait for

a response to one of its offloading requests to maintain safety, assuming no updates

to the control action in the meantime; i.e., provided the offload delay is ∆ ≤ ∆max,

then C1, the controller shield, can guarantee safe recovery after holding the last con-

trol signal update through offload delay period (C1 may use on-vehicle computation

if necessary). In other words, ∆max specifies an expiration for the safety

guarantee provided by C1 using on-vehicle computation.

Naturally, C1 and C2 need to be designed together, since their objectives are mutually

informed. Indeed, in the specific design of EnergyShield, these components are designed

from the same ZBF (defined in Section 6.2.3): see Section 6.4 for formal details.

Unfortunately, neither component C1 nor C2 can operate effectively on the same raw sensor

measurements, y[n], used by the controller; this is especially true given our intention to

implement them via ZBFs and controller shields. In particular, both require some (limited)

state information about the ADS in order to perform their tasks. Thus, EnergyShield requires

a perception/estimator component to provide state information to C1 and C2. Note that

we deliberately exclude the design of such an estimator from the EnergyShield framework in

order to provide additional flexibility: in particular, since the controller NNc may effectively

contain an estimator, we wish to allow for estimation to be offloaded, too – provided it is

executed locally just-in-time before informing C1 and C2 (see Section 6.3.3). Nevertheless

such an estimator is necessary for EnergyShield, so we include it as component:

C3: State Estimator. EnergyShield requires (minimal) state estimates as input to C1

and C2. By convention, this estimator will be a NN denoted by NNp : y 7→ x. We

assume that NNp can be computed by on-vehicle hardware in one sample period.

The interface of C3 with both C1 and C2 makes the latter two components (state-)context
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aware. That is, EnergyShield makes context-aware offloading decisions based on the

current vehicle state. Moreover, it is important to note that since the prior control action

will be held during offload ∆max, the output of C2 is control in addition to state dependent:

that is, C2 actually produces an output ∆max(x̂, u) for (arbitrary) state x and the control u

applied just before offload.

EnergyShield has one further important component, but one that is motivated purely by

energy savings with no effect on safety. Crucially, the known expiration of safety provided

by C2, i.e. ∆max(x, u), affords the opportunity to use additional information in making an

offload decision. In particular, an estimate of the anticipated edge response time, ∆̂, can

be used to forego offloads that are unlikely to complete before the expiration of the safety

deadline, ∆max(x, u). For this reason, EnergyShield contains an estimator of edge response

time to preemptively skip offloads that are likely to fail:

C4: Edge-Response Estimator. EnergyShield specifies that an estimate of the current

edge response time, ∆̂, is provided to inform offloading decisions.

We note that EnergyShield doesn’t specify a particular estimator to be used in this component :

any number of different estimators may be appropriate, and each estimator may lead to

different energy profiles. Moreover, since ∆̂ is never used to override ∆max(x, u), safety is

preserved irrespective of the specific estimator used.

The interconnection of the components C1 through C4 in EnergyShield is illustrated in

Figure 6.3. Note that component C3, the state estimator, is connected to components C1

and C2, the controller shield and safety runtime monitor, respectively. Also note that the

output of C2 provides a signal ∆max(x, u) to the offloading decision switch; also informing

that decision is the estimate of immediate edge-response times provided by component C4.
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Figure 6.3: EnergyShield Framework

6.3.3 Semantics of an EnergyShield Offloading Decision

In this subsection, we consider the timeline of a single, hypothetical EnergyShield offloading

decision to illustrate the details of the interplay between the components described in Section

6.3.2. In particular, suppose that an offloading interval has just been completed, and at time

index n0 a new offloading decision is to be taken.

We call the time between the initialization of an offloading decision and the time that offload-

ing decision has been resolved an offloading period (the resolution is either by a response

from the edge or a fail-over to on-vehicle compute). Figure 6.4 provides the timeline of

actions during a single offloading period. In particular, note two crucial facts. First, if C2

returns ∆max(x̂, u) = 0, then it effectively forces pure on-vehicle evaluation of NNc and NNp.

Second, we ensured that an up-to-date estimate of the state is always available for both C1

and C2 before they have to act.
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Figure 6.4: Timeline for an offloading period experienced through EnergyShield.

6.4 EnergyShield: Provably Safe Offloading

6.4.1 Main Formal Result

Formal Assumptions We begin this section with a list of formal assumptions about the

ADS. These are largely based around the structure of EnergyShield, as detailed in Section

6.3.

Assumption 1 (ADS Safety). Consider a fixed point in the plane as a stationary obstacle

to be avoided by the ADS, and a disk of radius r̄ around the origin to be a set of unsafe

states; see Figure 6.2.

Assumption 2 (ADS Model). Let Assumption 1 hold. Thus, suppose that the ADS vehicle

is modeled by the KBM dynamics in (6.1). Suppose further that interactions with this model

happen in discrete time with zero-order hold. Let T be the sampling period.
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Assumption 3 (ADS Sensors). Let Assumptions 1 and 2 hold. Suppose the KBM-modeled

ADS has access to samples of a sensor signal, s[n] ∈ RN , at each discrete time step, and

there is a perception NN, NNp : s[n] 7→ χ[n], which maps the sensor signal at each discrete

time to the (exact) KBM state at the same time instant, χ[n].

Assumption 4 (ADS Control). Let Assumptions 1 - 3 hold. Suppose this KBM-modeled

ADS vehicle has a NN controller, NNc : s 7→ ω, which at each sample has access to the

sensor measurement s.

Assumption 5 (ADS Local Computation). Let Assumptions 1 - 4 hold. Suppose that the

output of NNp and NNc can be computed by ADS on-vehicle hardware in less than T seconds

– i.e., not instantaneously. Thus, suppose that the control action is obtained with a one-

sample computation delay when using on-vehicle hardware: i.e., the control action applied at

sample n+ 1 is ω[n+ 1] = NNc(s[n]).

Component Design Problems. There are two central problems that need to be solved:

i.e., corresponding to the design of the two main components of EnergyShield, C1 and C2

(see Section 6.3). The solutions to these problems are deferred to Sections 6.4.2 and Section

6.4.3, respectively. We state them here in order to facilitate the statement of our main result

in the next subsection.

Problem 1 (Controller Shield Design (C1)). Let Assumptions 1 - 5 hold. Then the problem

is to design: first, design functions h and α such that they constitute a ZBF for the KBM

(see Section 6.2.3); and then using this ZBF, design a controller shield, S for the KBM

model. The resulting controller shield must have the following additional property for a

discrete-time version of the KBM with zero-order-hold inputs:

• Let χ[n0 − 1] and χ[n0] be KBM states such that h(χ[n0 − 1]), h(χ[n0]) > 0, and let

χ[n0] result from a feasible input ω̂[n0− 1] applied in state χ[n0− 1]. Then the control
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action

ω̂[n0] = S(χ[n0 − 1], ω[n0]) (6.9)

must yield a state χ[n0+1] such that h(χ[n0+1]) > 0; i.e., the controller shield preserves

safety under discretization of the KBM and one-step estimation delay (associated with

NNp), as in the case of no computations being offloaded.

Problem 2 (Runtime Safety Monitor Design (C2)). Let Assumptions 1 - 5 hold, and assume

that h, α and S solve Problem 1. Then the problem is to design a runtime safety monitor:

∆max : R3 × Ωadmis. → N (6.10)

with the following property:

• Let χ[n0 − 1] be such that h(χ[n0 − 1]) > 0. Then for constant control, ω = ω[n0],

applied to the discretized KBM starting from χ[n0 − 1] the following is true:

∀n = 0, . . . ,∆max(χ[n0 − 1], ω[n0]) . h(χ[n0 − 1 + n]) > 0 (6.11)

i.e. the constant control ω = ω[n0] preserves safety for at least ∆max(χ[n0 − 1], ω[n0])

samples from state χ[n0 − 1].

(The delay in χ[n0 − 1] accounts for the computation time of NNp.)

Main Result We can now state our main result.

Theorem 6.1. Let Assumptions 1 - 5 hold, and assume a ZBF for the KBM dynamics,

using which Problem 1 and Problem 2 can be solved.

138



Then the offloading policy described in Section 6.3.3 preserves safety of the KBM-modeled

ADS (Assumptions 1 and 2).

Proof. The proof follows largely by construction. Each offload period is limited in duration

by the runtime safety monitor; thus, a safety monitor that solves Problem 2 will ensure

safety under the specified constant control action during the offload period. Then by the

additional property of the controller shield in Problem 1, safety can be maintained after the

offloading period ends: i.e., either by performing a new offload if there remains significant

safety margin, or by executing locally if there is no offload safety margin.

Corollary 1. Let Assumptions 1 - 5 hold, and consider the ZBF for the KBM dynamics

specified in Section 6.2.4. Then the controller shield in Section 6.4.2 uses this ZBF and

solves Problem 1; likewise, the runtime monitor in Section 6.4.3 uses this ZBF and solves

Problem 2. Hence, our implementation of EnergyShield is safe.

6.4.2 KBM Controller Shield

Fortunately, we have access to a preexisting ZBF and controller shield designed for the KBM:

see Section 6.2.4 [55]. That is, the ZBF is available after using the design methodology in [55]

to choose the parameter σ (see Section 6.2.4); for simplicity, we will omit further discussion

this design process. Thus, for this section, we refer to a fully implemented controller shield

as SKBM, with the understanding that it has been designed for the relevant KBM model and

safety parameter r̄ (see Figure 6.2); viz. Assumptions 1 and 2.

Thus, SKBM must be altered so that it satisfies the additional property required in Problem

1, hence the following Lemma.

Lemma 1. Let Assumptions 1 - 5 hold as usual, and let SKBM be a controller shield designed

under these assumptions as per Section 6.2.4.
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Then there exists a ρ > 0 such that the following controller shield:

Sρ
KBM : ((r, ξ, v), ω) 7→


SKBM((r−ρ,ξ,v),ω) r−ρ≥rmin(ξ)

βmax r−ρ<rmin(ξ)∧ξ≥0

−βmax r−ρ<rmin(ξ)∧ξ<0

(6.12)

solves Problem 1; parameters other than ρ are defined in Section 6.2.

The proof of this Lemma is found in [139].

A further remark is in order about Lemma 1. Note that the altered controller shield Sρ
KBM

maintains the energy efficient implementation of the controller shield SKBM as designed

in [55]; the modified shield in (6.12) amounts to a threshold override of the original shield,

SKBM, using ρ and the value of rmin(ξ), which is trivial to compute.

6.4.3 KBM Runtime Safety Monitor

Recall that the runtime safety monitor of EnergyShield must provide an expiration on the

safety of the vehicle during an offload period, throughout which only a single, fixed control

input is applied. This expiration must come with a provable guarantee that the vehicle safety

is not compromised in the interim. In the formulation of EnergyShield and Problem 2, this

means only that hr̄,σ must remain non-negative until the expiration of the deadline provided

by the runtime safety monitor: see the condition (6.11) of Problem 2.

This formulation is convenient because it means that the problem can again be analyzed

in continuous time, unlike our consideration of Problem 1 above: the conversion back to

discrete time involves a floor operation; and compensating for the one-sample state delay

induced by computing NNp involves subtracting one sample from the result. That is, to
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solve Problem 2 and design an EnergyShield-safety monitor, it is sufficient provide a (real)

time, ν, s.t.:

∀t ∈ [0, ν] . h
(
ζ0,χ[n0−1]
1ω[n0]

(t)
)
> 0. (6.13)

That is, the flow of fKBM started from χ[n0 − 1] and using constant control ω[n0] maintains

h > 0 for the duration [0, ν]. We emphasize that such a ν can be converted into the sample

units expected for ∆max(χ[n0 − 1], ω[n0]) by using a floor operation and subtracting one.

Thus, we have the following Lemma, which solves Problem 2.

Lemma 2. Let Assumptions 1 - 5 hold as usual. Let

∆max(χ[n0 − 1, ω[n0]) ≜ max(⌊ν(χ[n0 − 1], ω[n0])⌋ − 1, 0) (6.14)

where ν = ν(χ[n0 − 1], ω[n0]) solves the equation:

√
2 · Lhr̄,σ · ∥fKBM(χ[n0 − 1], ω[n0])∥2 · ν · eLfKBM

·ν = h(χ[n0 − 1]) (6.15)

for Lhr̄,σ and LfKBM
upper bounds on the Lipschitz constants of hr̄,σ and fKBM, respectively.

Then ∆max(χ[n0 − 1, ω[n0]) solves Problem 2.

The proof of Lemma 2 is detailed in our full article [139].

Lemma 2 specifies a complete solution to Problem 2, as claimed. However in its immediate

form, it requires numerically solving (6.15) with each evaluation of ∆max(χ[n0 − 1], ω[n0]);

i.e., each time a safety expiration time is requested from the runtime safety monitor (every

sample in the case where the offloading period is terminated before offload). The nature of

(6.15) is such that solving it numerically is not especially burdensome – especially compared

to the NN evaluations it replaces; however, it is also possible to implement soundly as a LUT

to achieve greater energy efficiency.
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6.5 Experiments and Findings

We assess EnergyShield on: (i) the extent of energy savings compared to the conventional

local execution methods, (ii) its ability to enforce the safety through obstacle collision avoid-

ance, (iii) how representative the upper bounds of the edge response time (∆max) are of the

inherent risks, and (iv) its generality across controllers with different learnt policies.

6.5.1 Experimental Setup

Operational Policies: In addition to the baseline continuous local execution, we designate

two EnergyShield offloading modes:

• Eager: a new offloading period is immediately started if the edge response has been

received at the ADS or ∆max expired.

• Uniform: the start of a new offloading interval is always delayed until ∆max expires,

regardless of whether edge responses have been received or not.

We define both these modes to reflect the attainable behavioral trade-offs of EnergyShield

with regards to realizing an ideal control behavior or maximizing energy efficiency. The

distinction between the two modes is shown in Figure 6.5 within the first offloading interval.

Experimental Scenario: We perform our experiments using the CARLA open-source

simulator for autonomous driving research [44]. We follow the setup proposed in [55], and

implement a similar experimental scenario. Basically, the scenario involves a four-wheeled

vehicle travelling from a starting position A to destination B along a 100m motorway track

with 4 pedestrian obstacles in its path. The first obstacle spawns after 40m of the track,

while the remaining spawning positions are uniformly spaced between the first obstacle’s

position and the final destination with possible ±10m variation along the longitudinal axis.
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Figure 6.5: The operational policies in our experiments given base time window τ . Darker
instances imply local execution.

Experimental Settings: Throughout this section, all of our experiments are conducted

under different combinations of the following two binary configuration parameters:

• S: indicating whether the Controller Shield component is active.

• N: indicating whether this is a noisy version experimental test case.

In particular, the noisy version entails perturbing the obstacles’ spawning positions by adding

values sampled from a normal distribution N (0, 1.5m) along both the longitudinal and lati-

tudinal axis.

Simulation Setup: For the controller model, its first stage entails two concurrent modules:

an object detector as the large NN model of the ADS and a β Variational Autoencoder

(β-VAE) providing additional latent feature representations of the driving scene. Both com-

ponents operate on 160×80 RGB images from the vehicle’s attached front-facing camera.

In the subsequent stage, a Reinforcement Learning (RL) agent aggregates the detector’s

bounding box predictions, latent features, and the inertial measurements (δcf , v, and a) to

predict vehicle control actions (steering angle and throttle). The inertial measurements can

be fetched directly from CARLA, whose positional and orientation measurements are also

used directly to calculate r and ξ relative the vehicle’s current nearest obstacle for obsta-

cle state estimation. We trained the RL agents using a reward function, R, that aims to
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maximize track completion rates through collision avoidance and minimize central deviance.

Performance Evaluations: We use a pretrained ResNet-152 for our object detector and

benchmark its performance in terms of latency and energy consumption when deployed on

the industry-grade Nvidia Drive PX2 Autochauffer ADS. We found that a single inference

pass on the ResNet-152 took ≈ 16 ms, and accordingly, we fixed the time-step in CARLA

at 20 ms. We use the Wi-Fi power model from [78] for transmission power evaluation.

Wireless Channel Model: We model the communication overheads between the ego

vehicle and edge server as: Lcomm = LTx + Lque s.t. LTx = data size
ϕ

, where Lque represents

potential queuing delays at the server whereas LTx is the transmission latency defined by

the size of the transmission data, data size, over the experienced channel throughput, ϕ.

6.5.2 EnergyShield Evaluations

The purpose of this experiment is to assess the controller’s performance when supplemented

with EnergyShield in terms of energy efficiency and safety. For every configuration of S and

N, we run the test scenario for 35 episodes and aggregate their combined results.

Energy Efficiency: We first assess the energy efficiency gains offered by EnergyShield com-

pared to the baseline continuous local execution. As illustrated Figure 6.6, the left barplot

demonstrates that both modes of EnergyShield substantially reduce the energy consumption

footprint of the NN compared to local execution across all S and N configurations. For

instance, under the default configuration (S = 0, N = 0), EnergyShield energy reductions

reach 20% and 40.4% for the eager and uniform modes, respectively. These numbers further

improve for the subsequent configurations in which N = 1 or S = 1. Upon inspection, we

find that this is the result of the ego vehicle encountering more instances in which obstacles

are not in the direct line-of-sight of its heading. The reasons being that at N = 1, some ob-
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Figure 6.6: EnergyShield’s energy efficiency gains with respect to continuous local execution
(left) and safety analysis in terms of the R evaluation and % TCR (right).

stacles can be displaced out of the primary lane that the ego vehicle follows to complete the

track, whereas at S = 1, such instances result from the Controller Shield applying corrective

behaviors on the NN’s predicted steering outputs, resulting in more tangential orientations

of the vehicle with respect to the obstacles (i.e., ξ → ±π/2). Accordingly, large values of

∆max – about 4-5 time samples (equivalent to 80-100 ms) – are increasingly sampled, and

that automatically translates into more offloading decisions. For instance at (S = 1, N = 0),

the energy efficiency gains reach 24.3% and 54.6% for respective eager and uniform modes.

Safety Evaluation: To assess the EnergyShield’s ability to enforce safety, we designate

track completion rates (TCR %) as a comparison metric to signify the proportion of times the

vehicle was able to complete the track without collisions. Taking the local execution mode

as the test scenario, the right barplot of Figure 6.6 shows that without an active Controller

Shield (S = 0), collisions with the pedestrian obstacles cause the TCR% to be 65.7% at N

= 0, and even less at 22.9% for the noisy test case (N = 1). However, when the Controller

Shield is active (S = 1), collisions are completely avoided and the TCR (%) values jump to

100% for both cases. This is also visible through the respective improvements in R which

reached 13.3% and 61.1%. To further demonstrate such occurrences, we analyze in Figure

6.7 the ego vehicle’s chosen trajectories across 3 episodes of dissimilar (S, N) configurations.

As shown, the (S = 0, N = 0) instance incurs a collision with the pedestrian object and does

not complete the track. An active Controller Shield (S = 1), however, enforces a left or right

corrective maneuvering action for obstacle avoidance and maintaining safety; see Figure 6.7
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Figure 6.7: Top: Example trajectories followed by the ego vehicle with the start point at
the top. Bottom: illustration of how the ego vehicle under the aforementioned operational
modes behaved in reaction to the first encountered obstacle.

146



Energy vs. Distance: To assess how representative the ∆max upper bounds provided

by the Runtime Safety Monitor are of the corresponding driving scene context, we examine

EnergyShield’s energy consumption at different distances from the nearest obstacle (r). The

hypothesis is that larger r values imply relatively “safer” driving situations, which would

result in larger values of ∆max to be sampled, and accordingly more offloading instances en-

hancing the NN’s energy efficiency. As shown in Figure 6.8, we plot the average experienced

normalized energy ratings of the two modes of EnergyShield with respect to local execution

against r across every configuration’s set of 35 episodes. Each tick on the horizontal axis

accounts for an entire range of 1m distances rather than a single value – e.g., a value of 2

on the horizontal axis encompasses all distances in the range [2 - 3). At close distances (r ¡

4m), we find that EnergyShield modes incur almost the same energy consumption overhead

as that from the default local execution. This is mainly accredited to the Runtime Safety

Monitor recognizing the higher risks associated with the close proximity from the objects,

and accordingly outputting smaller values of ∆max that can only be satisfied by local execu-

tion. As the distance from obstacles increases, so do the values of ∆max, causing a gradual

increase in the number of offloading instances, followed by a progressive reduction in energy

consumption. For instance, the eager and uniform modes achieve 32% and 66% respective

reductions in energy consumption at r = 13 m for the (S = 1, N = 1) configuration. Even

more so, all configurations of the respective eager and uniform modes at the (r > 20m)

bracket realize 33% and 67% respective energy gains.

6.5.3 Wireless Channel Variations

In this experiment, we assess how the performance gains of EnergyShield are affected given

variations of the wireless channel conditions. Specifically, given potential changes in the

channel throughput, ϕ, or the queuing delays, q, we investigate to what extent do the energy

savings offered by EnergyShield vary. Additionally, we examine for every set of experimental
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Figure 6.8: Normalized Energy Gains for the eager (solid) and uniform (dashed) Ener-
gyShield modes with respect to the distance from obstacle (r) in m.

runs what percentage of their total elapsed time windows were extra transition windows

needed to complete a single offloading instance, which we denote by the % Extra Transit

Windows metric. From here, we first analyze such effects when varying σϕ ∈ {20, 10, 5}

Mbps given a fixed q = 1 ms, and then when varying q ∈ {10, 20, 50} ms given a fixed

σϕ = 10 Mbps. For the uniform EnergyShield, we notice in Figure 6.9 that the % Extra

Transit Windows drops for the contrasting conditions of high throughput (σphi = 20 Mbps)

and high queuing delays (q = 50 ms), reaching medians of 7% and 8%, respectively. This can

be justified in light of how the benign channel conditions (σϕ = 20 Mbps) indicate that the

majority of offloading instances are concluded in a single time window with no considerable

need for extra transmission windows. Whereas at unfavorable wireless conditions (q = 50

ms), ∆̂ values often exceed ∆max, leading EnergyShield to opt for local execution more

often so as to avoid wireless uncertainty, lowering the total number of transmission windows

alltogether. Such effects are also visible in the twin Figure 6.10 as EnergyShield’s energy
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Figure 6.9: Analyzing the % extra transit windows over 35 episodes of uniform EnergyShield
given various σϕ and q.
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Figure 6.10: Analyzing the Normalized Energy cons. over 35 episodes of uniform Ener-
gyShield given various σϕ and q.

consumption varies across these contrasting conditions, reaching respective medians of 45%

and 93% of the local execution energy at σϕ=20 and q=50.

6.5.4 Generality

We train 3 extra RL controllers to evaluate how consistent EnergyShield is with regards to

maintaining safety guarantees, and how the energy efficiency gains would vary across diverse

driving behaviors. Our detailed results in [139] highlight EnergyShield’s effectiveness.
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Chapter 7

Conclusion and Future Directions

We have studied different perspectives of the HW/SW co-design space, and proposed various

methodologies to enhance the performance and efficiency of AI applications and systems.

Below we discuss our overall findings, explain the limitations of our study, and contemplate

future research directions along this path.

7.1 Overall Findings and insights.

We go over the key findings and insights we derived from our studies.

Dynamic Neural Networks are efficient, even more so when their design is opti-

mized for the underlying hardware. Through an awareness of the operational context

and system state, dynamic neural networks have been shown to elevate efficiency for DNN

models operating in the wild. However, when dynamic neural network optimization is con-

ducted alongside the base model design for a target hardware, we find model designs that

are more suited for dynamic inference operation over the original static base models as was

evident through our evaluation results.

150



Dynamic search space characterization is promising, but still in the heuristics

phase. We have characterized a diverse set of dynamic search spaces depending on the

application context and accessible hardware computing units (e.g., HADAS [21] and Map-

and-Conquer [23]). Despite their effectiveness, considerable room for improvement remains

given the lack of a principled design methodology for dynamic neural networks.

Understanding the synergy of operator and mapping co-optimization can be a

fast, cost-efficient solution to elevate efficiency. We have seen this particularly in

MaGNAS [137], where through the synergistic construction of a design space entailing GNN

operations, the hardware computing units, and pipelining parallelism, we were able to realize

operating points with superior performance compared to existing methods. This is another

effective approach to consider aside from specialized hardware design.

Speaking of SoCs, heterogeneous integration goes a long way. Beyond their orig-

inal purposes (e.g., GPU for speedup and NVDLA for low-power) elevating efficiency from

different angles), the composition of heterogeneous computing units can lead to superior

performance for unfamiliar workloads patterns (e.g., the multi-phase sparse-dense dataflow

in GNNs).

Even more so, understanding the workloads affinities is the foundation towards

efficient servicing of emerging AI trends like multi-model workloads. Cases where

diverse models with different computing affinities as we see in multi-tenancy and AR/VR are

only bound to increase in number, diversity, and complexity. Still, the principle remains the

same as efficiency can be improved through understanding the different workloads properties

down to the operator level, the different forms of parallelism, as well as the heterogeneity

and layout of the underlying hardware.

2.5D Multi-chip modules are here to stay and they are getting better. The

demonstrated effectiveness of 2.5D multi-chip module architecture in servicing emerging
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trends of multi-model workloads from the edge to the cloud is a testament to their potential

in the semiconductor and domain-specific industries. We can only project bigger pushes for

chiplet adoption in both the semiconductor and domain-specific industries (e.g., autonomous

driving) [65].

Split-Computing, Bottlenecks, and NAS enhance the effectiveness of edge com-

puting. The combination of these techniques enable on-device machine learning while cir-

cumventing potential severe accuracy loss from using simpler or compressed model versions.

The adoption of split-computing is dependent on the application context. In autonomous

systems, split-computing can be seen as a dynamic, multi-branch neural network distributed

across an edge device and server.

DRL Runtime Controllers are effective in capturing spatio-temporal correlation

in input data streams to guide offloading decisions. Our hierarchical DRL approach

which relies on measured wireless network conditions and abstract data representations has

yielded effective offloading policies in multi-sensor autonomous system that outperform rule-

based, conventional offloading methods, meeting runtime constraints while improving on

energy efficiency.

The vulnerabilities due to split-computing are domain-specific and remain an

open area of research. We have demonstrated how split-computing can compromise the

existing guarantees on vehicular control safety, and proposed a novel, provably-safe offload-

ing framework that is capable of realizing the benefits of split-computing while upholding

formal guarantees on safety. Derivation of such formal guarantees under offloading actions

depends on the dynamical model of the autonomous control system, which can differ from one

application to another. Another vulnerability is privacy from exposing the end user data

to a cloud provider. We have showcased a potential effective approach through inference

differential privacy which can aid in preserving user sensitive information.
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In closing, we can make the following generic conclusions. (i) Bringing runtime characteriza-

tion into the design stage can lead to better design points with regards to different metrics.

(ii) Incorporating specialized aspects of the application domain context into the design pro-

cess can yield models more suited for the target application. (iii) HW/SW co-design can be

an overloaded term. The idea is to extract the computing layers of the stack which are of

interest, before analyzing their impact on the overall system.

7.2 Study Limitations and Future Directions

We discuss the limitations of our studies and future research directions along these topics.

Extension to training scenarios. Our HW/SW co-design methodologies mainly targeted

inference workloads. Studying how to apply similar methods for training workloads - be

it in a distributed setting, multi-chip module, or heterogeneous SoC - is still an important

research direction to be explored.

Multi-application co-location on heterogeneous SoCs. Scenarios where multiple ap-

plications are running on the same heterogeneous SoC computing units could aggravate

memory traffic and cause additional overhead on the computing application. Implement-

ing a partitioned DNN solutions under process memory contention schemes remains to be

investigated.

The design space of 2.5D multi-chip modules. A broader design space exploration

process for the multi-chip module acceleration schemes can cover alternative topologies of

NoP/NoC connectivity (e.g., Torus), additional forms of parallelism, and various memory

hierarchies (e.g., 3D stacked HBMs). Furthermore, additional forms of heterogeneity can be

studied, including having digital-in-memory-compute chiplets within the multi-chip module.
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Dynamic scheduling of multi-model workloads. We demonstrated a novel characteri-

zation of the scheduling search space of multi-model workloads onto heterogeneous chiplet-

based architectures. Our scheduling framework can be seen as a form of static scheduling

which attempts to identify optimal schedules for recurring workload usage scenarios. From

this characterization and the static schedule, investigating how to derive a dynamic sched-

uler for the multi-model workloads while meeting operational constraints remains an open

discussion.

The chiplets supply chain is relatively nascent. This means that the still limited

standardization between the semiconductor manufacturers and application-domain vendors

leaves room for innovations across different stages of the pipeline. Where novel tools and

methods can be implemented to improve the merits of existing chiplet-based design method-

ologies. Furthermore, domain-specific research, particularly in areas like autonomous driving,

can benefit from advancements in chiplet technology.

Adopting HW/SW co-design methods for emerging model classes. We showcased

the effectiveness of HW/SW co-design with regards to a representative population of model

classes. Still, emerging model architectures require careful consideration and may need

the development of specialized frameworks and tools. For instance, language models can

use a multitude of the multi-chip modules compared to other models given their unique

computational requirements (e.g., KV caching), which means that we can characterize our

design space through an additional level of hierarchy that consider the interconnects between

different MCMs using high-speed interconnects within and across racks. Furthermore, the

application of split-computing for transformer-based architectures remains an interesting

research direction.

Split-Computing optimizations in the wild. More research work still needs to be

performed to assess the effectiveness of split-computing approaches on real-world autonomous

systems in the wild (e.g., UAVs). That way, the impact of motion dynamics and wireless
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uncertainty can be evaluated in real-world settings.

Split-Computing and Formal Methods. We have derived a provably-safe offloading

scheme for neural networks controllers in autonomous driving systems. Similar analysis can

be conducted for other control systems at the edge such as autonomous drones which would

require characterizing their own dynamical model (which can be more complex considering

the additional degrees of freedom) to derive formal safety guarantees on offloading.

Privacy in Edge Computing. Research along privacy-preserving inference direction can

investigate implementing novel frameworks that promote the privacy of user data during

inference via a context-aware, mutual information based approach, which have been shown

to achieve better privacy preservation. Further evaluation is needed for such methods given

known adversarial privacy attacks (model inversion, membership inference).
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Appendix A

Privacy-aware Neural Architecture

Search for Split Computing

A.1 Overview

This appendix discusses the inference privacy concerns from split-computing as data is ex-

posed to cloud servers that can cause sensitive user information leakage, and how to incor-

porate privacy awareness in DNN model design. The full study details are listed in [136].

A.2 Introduction

the transmission of user’s data to the cloud poses privacy concerns as users have no control

over how the data is used once it has been made available to the provider [190]. Previ-

ous incidents have already seen providers sharing users’ personal information with other

third parties (e.g., Facebook incident in 2018 [134]). Another study has demonstrated that

aggregate user data at the cloud which are reused for model training are liable to model
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inversion attacks, mainly due to the model weights leaking users’ sensitive attributes (as

was demonstrated in a model inversion attack recovering images from a facial recognition

system [57]).

Addressing this, researchers have proposed numerous techniques to provide privacy guaran-

tees under such remote inference model [84, 127, 128, 196]. Despite their effectiveness, these

methods were applied to models originally targeted for single platform deployment, that is,

models whose design was not optimized for edge-cloud system operation. As works in [6,107]

have observed that varying a subset of architectural parameters can impact privacy guar-

antees, the inherent privacy-preserving capabilities of a model can be affected by the choice

of architectural parameters. Hence, an argument can be made that architectural parameter

choices can be optimized to enhance a DNN model’s privacy preserving capabilities, giving

rise to the following questions from a DNN model designer’s perspective:

• How to assess candidate model architectural designs with regards to upholding infer-

ence privacy guarantees given a remote inference operational scheme?

• How to model the relationship between architectural design choices and the inherent

privacy-preserving capabilities given a split computing model of computation?

• How to implement a design framework for non-monolithic DNN models balancing the

underlying accuracy-performance-privacy trade-offs?

A.2.1 Novel Contributions

In this work, we study the value of incorporating privacy as a design metric given a remote

inference deployment scheme. To achieve this, a formal metric needs to be utilized for

to quantify privacy as a design objective such as the rigorous Differential Privacy (DP)

standard [47,48] with its quantifiable privacy loss budget ϵ. In DP, calculated noise is added
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to user’s data from Gaussian/Laplacian distributions for obfuscation and minimizing its

likelihood of revealing sensitive information before transmission to the cloud. From here, we

summarize our contributions in this study as follows.

• We propose a methodology to design DNNs for remote inference applications in a

privacy-aware fashion using the Differential Privacy (DP) standard.

• We conduct extensive empirical evaluations on the well-know VGG [172] and Mo-

bileNetv2 [162] DNN models to analyze how inference privacy budget ϵ can vary ac-

cording to the choices of DNN architectural parameters.

• We develop a customized privacy-aware NAS framework for remote inference to search

for optimal architectural designs with respect to accuracy, performance, and privacy.

Experiments demonstrate promising accuracy-performance-privacy trade-offs compared

to conventional approaches.

A.3 Preliminaries

A.3.1 Differential Privacy (DP)

Differential Privacy [47, 48] has been established as a rigorous standard for providing quan-

tifiable privacy guarantees on users’ sensitive data. A formal definition for ϵ-DP is given:

Definition 1: A randomized mechanism A is ϵ-differential private, iff for any adjacent

inputs d and d’, and any output S of A,

Pr[A(d) = S] ≤ eϵPr[A(d′) = S]
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where ϵ is a measurable privacy budget, whereas d and d′ represent adjacent inputs differing

by a single data item. d and d′ are defined according to the application, where they can range

from entire datasets differing by a single entry [6], or acquired signals instances differing in

content by a single item (e.g., two sentences differing by at most i number of words) [196].

Generally, smaller ϵ values indicate stronger privacy guarantees.

For a deterministic function f , obtaining its ϵ-DP compliant randomized mechanism Af

entails the addition of noise calibrated to the global sensitivity of f . Global sensitivity, ∆f ,

represents the maximum absolute distance |f(d)− f(d′)| for any adjacent input pairs d and

d′, and the additive noise can be incorporated as follows:

Af (d) = f(d) + u (A.1)

where u represents the noise tensor which can be sampled from a Laplacian distribution

Lap(0, ∆f
ϵ
) of mean 0 and scale ∆f

ϵ
to attain a privacy budget of ϵ [48].

Added to its quantifiability, DP is characterized by the two essential properties of postpro-

cessing immunity and composition [48, 85]. The first ensures that after the data has been

processed through an ϵ-DP randomized mechanism to generate a specific output, further

handling or processing of this output by other algorithms will not degrade the original pri-

vacy guarantee, i.e., the output would still remain ϵ-DP. Whereas the latter composition

property characterizes aggregation of privacy losses when similar or neighboring data are

processed by two DP algorithms [11,85].

If noise perturbation is applied at the user’s device, this resembles an instance of local

differential privacy [11]. Owing to its inherent property of immunity to post-processing,

local DP can ensure data privacy for remote inference models, where Af represents the local

model deployed on the user device, and the privacy guarantee is associated with making each

data sample indistinguishable at the provider’s side [196].
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Figure A.1: Inference Privacy Model of Computation for DNNs using ϵ-DP.

A.4 ϵ-DP Remote Inference Model

Figure A.1 illustrates the basic inference privacy model of computation for deep neural

network (DNNs) achieved through ϵ-DP. As shown, additional computing blocks are added

on the user’s mobile-edge device following the local model,Ml, to incorporate ϵ guarantees

prior to offloading. These computing blocks are described in further detail as follows:

Norm Clipping: ∆f is estimated by restricting the effect of each input to an absolute

maximum threshold. As the privacy guarantee ϵ is to be associated with the local model’s

output a, each a first needs to be bounded according to the ∆f estimate at the data offloading

point. Thus, each output a is scaled down to become a ← a/max(1, ∥a∥∞
B

), where ∥a∥∞ is

the infinity norm of a and B is a clipping threshold leading ∆f to become 2B. The Bound B

can be approximated based on the median of infinity norms belonging to output activations

of public training data samples [6, 196].

Additive Noise: Next, perturbation is applied to the scaled down activation a proportional

to the desired privacy budget ϵ (see equation A.1). In particular, a noise tensor n of the

same dimensions as a is populated with random samples from the distribution Lap(0, ∆f
ϵ
),

and added to a to generate the noisy representation a′, which can then be transmitted to the

cloud. In this scheme, the cloud-side DNN can be viewed as a post-processing stage for the
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local-side DNN given how local DP is applied at the client’s part of the model. Accordingly,

the DP composition property becomes primarily associated with the local DNN side of the

model, and from the cloud perspective, its outputs can typically be only traced back to the

noisy intermediate representation a′.

DNN noisy retraining: As noise addition can lead the model’s utility to deteriorate,

retraining on publicly-available noisy data representations is beneficial. Typically, the cloud-

side modelMr is retrained on perturbed representations of public data instances to enhance

the model’s resilience when dealing with noisy representations a′. Meanwhile, local models

Ml remain unaltered [196]. The retraining loss function forMr can be as:

Ltotal(wr; a, a
′) = λLclean(wr; a) + (1− λ)Lnoisy(wr; a

′) (A.2)

where wr represent Mr’s weight parameters while λ trades off the contribution of the clean

and noisy representations, taking values in the range of [0, 1].

It should be noted that there are additional techniques to further strengthen formal ϵ privacy

guarantee, as the data nullification technique in [196]. However, our analysis in the following

sections is conducted using the basic form of ϵ-DP remote inference model to analyze in the

vanilla form the relation between a model’s architectural build and privacy budget.

A.5 Analysis of the relation between DNN architec-

tural parameters and ϵ-DP

Through intensive empirical evaluations, we examine how the ϵ-DP guarantees for remote

inference can vary according to the underlying DNN structure. Our analysis is established

based on the benchmark CIFAR-10 image dataset following relevant DP works [6, 107,196].
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Table A.1: The variation of ϵ with architecture and noise injection layer.

Layer
DNN Architecture

VGG11 VGG13 VGG16 VGG19

MP C
Bound 0.8 0.775 0.825 0.625
Acc. 21.0 25.7 32.7 47.4

ϵ@b=0.5 3.2 3.1 3.3 2.5

Conv E1
Bound 0.175 0.15 0.15 0.275
Acc. 19.7 19.9 20.6 12

ϵ@b=0.5 0.7 0.6 0.6 1.1

Proposition 1. ϵ variability per layer. Within a model, the strength of ϵ-DP

guarantee varies depending on the chosen noise injection layer. Across model vari-

ants, the noise injection layer capacity to influence ϵ varies based on its relative position

within the computational graph.

In this experiment, we analyze how the sensitivity bounds and the ϵ privacy guarantee

vary when the position of noise injection layer changes within and across different model

architectures. This first analysis is performed using pretrained models directly with no cloud-

side retraining after noise injection (we leave that analysis for the immediate subsequent

experiments). Briefly, the choice of offloading (noise injection) layer influences the amount

of perturbation needed to achieve ϵ-DP guarantee, and in turn affects the DNN model’s

utility. As a motivational study, We analyze how ϵ would vary across 4 pre-trained variants

of the VGG family of DNNs [172] under two potential injection layers: MP C, which is the

3rd Max Pooling layer, and Conv E1, the first Conv layer in the 5th block of the VGG

architecture. We assume additive noise tensors are sampled from a Laplacian distribution

with a scale of b = 0.5 (recall b = ∆f
ϵ
). As shown in Table A.1, we observe that not only do

clipping bounds B differ based on the choice of injection layer but also across the distinct

variants. This implies that ϵ budget computed would be different under the same b for

different layers. For instance, the privacy guarantee in VGG16 at MP C is ϵ = 3.3 opposed

to ϵ = 0.6 at Conv E1. Also for the same layer across different VGG variants, a stricter

181



ϵ of 2.5 at MP C can be attained for VGG19 compared to ϵ values from the other VGG

variants. More interestingly, despite providing ϵ = 2.5 budget at MP C for VGG19, the

model’s utility does not degrade as much as that for the other variant models with looser ϵ

budgets at MP C.

Key Takeaway. The noise injection layer position is to be optimized alongside the design

process of DNN model architectures supporting ϵ-DP for inference privacy.

Proposition 2. Depth. For the same required ϵ budget, the likelihood of a model

sustaining severe drop in accuracy decreases as the noise injection layer position tends

towards the model’s deeper layers.

Depth: In this analysis, we assume a tight privacy budget requirement of ϵ = 2.8 based on

results from [146,196]. We use two DNNs, VGG11 and VGG16 [172], trained to ∼ 94% test

accuracy on CIFAR-10 using the training hyperparameters in [2]. These two architectures

resemble architectural depth variation since VGG16 possess one more Conv layer per each

block than VGG11, but they share other architectural configuration parameters. Then for

each layer, we evaluate how the overall DNN utility would degrade when the layer applies

noise injection. We also retrain the cloud-side DNN on noisy perturbations in each case,

and re-evaluate the overall utility. The two upper bar plots in Figure A.2 demonstrate

how the accuracy is impacted for every potential injection layer for both DNNs. At a first

glance, we can observe that the deeper injection layers generally offer better overall accuracy

under a specific ϵ. This is comprehensible given how they already deal with more abstract

representations of data. We also notice that the required perturbation level b (shown in red)

to achieve 2.8-DP differs for each layer depending on the corresponding bounds, which are

estimated using infinity norms’ median at each respective layer. We also notice that the

model’s classification capability suffers significantly when the injection layer is set prior to

MP C. On the other hand, we also note that the accuracy does not degrade as much for the

VGG16 as its counterpart does across the latter layers for the same b requirement.
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Figure A.2: The effect of varying architectural depth on utility illustrated through VGG11
and VGG16 before and after retraining for each potential injection layer (red values on top
of the bars indicate b values).
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The other two bar plots show the accuracy of the DNNs after the noisy retraining of the cloud-

side DNN. The key insight is that some of injection layers which initially led to a complete loss

of utility (e.g., Conv C1 ) can reach acceptable levels of accuracy after retraining. We observe

that the deeper VGG16 layers generally sustain better recovery of utility after retraining.

Key Takeaway. Retraining cloud-side DNNs on noisy representations can enhance the

inference privacy model’s accuracy. Thus, the chosen depth of noise injection presents a

trade-off between privacy, accuracy, and computational complexity.

Proposition 3. Operation type. The choice of kernel operations within a DNN model

after ϵ-DP noise injection affects its degree of utility drop.

Operation type: We compare the pretrained VGG16 against a variant which possess 5× 5

Conv layers at blocks A and C (1st and 3rd) instead of the traditional 3 × 3 operations.

As shown in the top two entries in Table A.2, same layers with disparate operations affect

the model’s utility differently. Specifically, some injection layers can degrade utility severely

in one architecture but not the other. For example, when MP C is set as the injection

layer, performance drops significantly in VGG16 but not in its variant even after retraining.

The opposite occurs when the injection layer is Conv D3, showing how the operations’ type

influence utility under privacy constraints.

Key Takeaway. The inference privacy-by-design approach for DNN model architectures is

to co-optimize the choice of DNN operators alongside the noise injection position.

Proposition 4. Width (# Channels). Wider models with larger #channels can

leverage computational redundancy to support inference privacy with tighter ϵ budgets.

Width (# Channels): We provide a VGG16 variant containing half the number of output

channels at its 2nd and 4th blocks, B and D. Despite being more concise, the variant’s

performance for different injection layers, shown in the last entry of Table A.2, is almost
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Table A.2: Operation and Width variations effect on utility for ϵ=2.8; all architectures are
pre-trained to ∼ 94% test accuracy.

Architecture Layer b Eval. Acc. Ret. Acc.

VGG16
MP C 0.6 27.3% 63.9%

Conv D2 0.1 62.1% 91.1%
Conv D3 0.1 66.5% 91.2%

VGG16 MP C 0.5 51.4% 83.8%
5×5 ops.@ Conv D2 0.1 52.4% 90.2%
blocks A&C Conv D3 0.1 29.4% 42.2%
VGG16 MP C 0.6 26.5% 65.2%

0.5×#Cin@ Conv D2 0.2 68.6% 91.7%
blocks B&D Conv D3 0.1 27.9% 87.4%

equivalent to that of the original VGG16 after retraining. In principal, this experiment is

analogous to an analysis of the impact of channel pruning [73], except that the evaluation

of performance degradation is performed on a mixture of clean and noisy samples.

Key Takeaway. Designing model architectures for ϵ-DP inference privacy is to enable

compensating for the accuracy drop incurred from noise injection through including redundant

computations along the width dimensions that aid in recovering utility.

Proposition 5. Residual Models. To uphold the ϵ-DP inference privacy guaran-

tee for residual models, the noise injection process must consider the model’s multi-

execution paths along its branches.

Residual Models: For residual models like MobileNetV2 [162], we perform the same per-

layer empirical performance analysis at ϵ = 2.8, and evaluate the model’s utility before

and after retraining. The main takeaway was that partitioning and noise injection options

should be restricted to the final concatenation/addition layer of every residual block, i.e., on

an inter-block basis to avoid costly noise injection across multiple paths.

Key Takeaway. The joining nodes that follow multi-path residual blocks represent the most

adequate candidates for noise injection layers for a residual DNN model.
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A.6 PrivyNAS: Privacy-Aware Neural Architecture Search

Framework for Split Computing

We establish our customized PrivyNAS framework over the ProxylessNAS framework [26],

which constructs a supernet out of the MobileNetv2 architecture [162], with a learnable

gating mechanism to control the sampling of architectural parameters. We support ϵ-DP

within the NAS frameworks as follows through the following added features.

A.6.1 Bounds estimation within NAS

In Section A.5, bounds B were determined for a pre-trained model using the infinity norms

of training data at the corresponding splitting layers. In a NAS framework however, the final

model architecture is not known a priori, meaning that parameter weights – and accordingly

B estimates – are susceptible to changes as the search progress.

Hence, we propose a successive refinement approach for the B estimates to enable the ap-

plication of fine updates to the Laplacian noise distributions as the search progresses. As

illustrated in Figure A.3, this is motivated by the observed pattern in which infinity norm

estimates for B change during the training of a MobileNetV2 architecture on CIFAR10. In

particular, we notice that the norm values across the various layers progress in the exact

opposite manner of training accuracy, where the initial sharp increase in accuracy is mir-

rored by a sharp decline in infinity norms. Additionally, once training enters the fine-tuning

phase (after ∼ epoch 10), the rate of change of infinity norm values remarkably drops until

the training concludes, as shown in the Figure through how the median and mean estimates

changes. Analogously, NAS approaches like ProxylessNAS with the supernet and shared

weights features can leverage this proposed successive bounds refinement technique as the

supernet represents a generalized DNN model.
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All Norms follow the same pattern

Norms can remain almost 

constant over long intervals

Major swings lasted ~ 10 epochs 

Figure A.3: The change in infinity norms (i.e., sensitivity bounds) and the training accuracy
for a MobileNetV2 network on the CIFAR-10 dataset.

Successive bounds refinement is instantiated after an initial warmup training phase using

clean data representations to bypass large swings. Afterwards, preliminary B estimates

are computed to construct Laplacian noise distributions that meet ϵ for every candidate

operation in the supernet, from which noise tensors can be sampled during the search. B

estimates can then be updated using the clean data samples every number of iterations.

A.6.2 Joint Training

For inference privacy, cloud-side DNN retraining on noisy data representations is needed

to maintain a model’s utility (see Section A.4). In NAS, this is infeasible as neither the

architecture nor the splitting layer are known beforehand. Alternatively, we propose to

jointly train the supernet from the start on clean and noisy data representations where the

injection layer is to be chosen dynamically as the search progresses. This is feasible in one-

shot NAS techniques as all candidate architectures are trained simultaneously, and noisy

representations can be provided through pre-specified ϵ budgets. Hence, the formulation of
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the training loss function in equation A.2 is to be modified to include the entire weights of

the supernet w rather than only the cloud-side parameters. Compared to the fixed noisy

layer approaches, we found that joint training across different layers could lead to severe

accuracy degradation. Hence, the NAS would need to learn how to filter under-performing

noise injection layers, and learn to focus the training effort on most promising layers.

A.6.3 Search Parameters Setup

Formally, the DNN model can be characterized as a DAG M(e1, ..., en), with each edge,

ek, representing the kth layer operation. In the context of NAS, the supernet represents a

more generalized form of the DNN model, where instead of a singular operation, a set of all

possible N operations, O = {oi}, becomes associated with each edge at layer k. Thus, ek

represents a mixed operation edge, mk
O, with N parallel paths. Hence, the overall supernet

DAG can be characterized asM(m1
O, ...,m

n
O).

To sample a candidate model design (i.e., subnet) from within the supernet, a single path is

to be selected out of the |O| choices from mk
O for every kth layer to form a subnet. To guide

the selection of paths, N learnable architectural parameters, {αi}, are specified for the N

edge paths for each kth layer in order to guide the selection of oi, and ultimately provide

the output features from the mixed operation mk
O. To elaborate, the application of mk

O on

an input x can be seen as mk
O(x) =

∑N
i=1 gioi(x), where gi ∈ {0, 1} represents a binary gate

associated with each oi, and only one gi can be active at a time. In this case, αi can be used

to determine the probability of gi being the active gate through Softmax probabilities.

For edge-cloud inference privacy, the NAS search is also to be responsible for identifying

the optimal splitting/noise injection layer between the edge and cloud. Similar to candidate

architecture sampling, we define additional customized K injection parameters, denoted as

{γk}, that are associated with theK possible injection layer positions in the supernet. Hence,
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Figure A.4: Sampling of operations and the injection layer. MBx y×y are candidate opera-
tions from our experiments’ search space inspired by [26]

the activation of an injection layer becomes also governed by a separate set of gates, {µk},

where only a single µk can be active at any time via Softmax probability. Given the active

noise injection layer at position k, the output from mk
O is perturbed via a noise addition

function, ρk as follows:

m̂k
O = ρk(m

k
O) = mk

O + uk (A.3)

where uk represents a noise tensor to be added to the output of mk
O at the kth. An example

for sampling a candidate and the noisy injection layer is shown in Figure A.4.

A.6.4 Architecture and Injection Parameters Updates

The main objective from this customized NAS implementation is to jointly optimize the

supernet’s architecture α, injection γ, and weight w parameters. Consequently, this bi-level
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Figure A.5: Basic workflow for the privacy-aware NAS for split computing.

optimization problem can be formulated as follows:

min
α,γ
Lval(w

∗(α, γ), α, γ) (A.4)

s.t. w∗ = argminw Ltrain (A.5)

where the search is for the optimal parameters α∗ and γ∗ which minimize a validation loss Lval

given optimal parameter weights w∗ that minimize the training loss Ltrain. Ltrain is defined

based on the hybrid loss function in A.2 except that it is jointly training all the weight

parameters w of the supernet. Lvalid uses REINFORCE [200] to update the architectural

and injection parameters based on a reward R. The details of the update rule are in [136].
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A.6.5 Privacy-Aware NAS Workflow

From here, we conceptualize a privacy-aware NAS workflow in Figure A.5 for designing

DNN models suited for split-computing operation under a desired privacy budget ϵ. As

shown, the warmup phase first trains the supernet on clean data representations to obtain

initial estimates of Bk
i for each candidate operation oki at the kth layer within the supernet.

Subsequently, their corresponding Laplacian distributions Lap(0,
2Bk

i

ϵki
) are constructed to

maintain the ϵ guarantee across all possible operations and injection layers. Next, the main

search procedure can be invoked to train the shared parameter weights, w, each iteration. As

stated in Section A.6.2, training is based on a mix of clean/noisy public data representations.

For validation, sampled models’ accuracy on a clean/noisy validation data mix are used to

estimate the reward R, and update the α and γ parameters accordingly. In the background,

the successive bounds refinement is invoked periodically to update Laplacian distributions.

The best performing submodel architecture and its optimal noise injection layer are returned.

A.6.6 Extension to Privacy-Accuracy co-search

We also support privacy-accuracy co-search within PrivyNAS to facilitate the minimization

of ϵ as an optimization objective. As such, rather than defining a single Laplacian distribu-

tion per each oki given a predetermined ϵ, we associate a multitude of distributions with each

operation satisfying different ϵ guarantees. Consequently, a dictionary of Z Laplacian distri-

butions for each operation would be continuously updated as part of the successive bounds’

refinement. To avoid sampling trivial noise distributions, we define distribution parameters

θkϵ at each k layer to be associated with each prospective ϵ value that can be sampled from

Z at layer k. That way, θkϵ parameters would be able to learn which ϵ values, and in turn

distributions, to select for layer k when k is sampled as the noise injection layer.

We provide an illustrative example with numbered steps in Figure A.6 on how this co-search
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Figure A.6: Numbered step-by-step privacy-accuracy co-search (detailed in text)

progresses during a single epoch: (1) In the forward pass, a single operation oki is activated at

layer k outputting an intermediate data representation. (2) At active noise injection layer k,

parameters θkϵ are used to select privacy budget ϵ, and its corresponding set of distributions

by setting its gate Γk
ϵ to 1. (3) Based on the sampled ϵ and active operation oki , the

corresponding Lap(0,
2Bk

i

ϵ
) is retreived. (4) Samples are drawn from the selected distribution

to populate a noise tensor which is to be added to the intermediate representation. (5) The

output noisy tensor is used to compute the output. (6) Gradients from the loss function

are backpropagated to update θk parameters. The distribution parameters are updated in

a manner similar to that for the architectural α parameters using R, except that only the

subset of θk parameters belonging to the current active k layer are updated at a time.
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A.6.7 Reward definition and privacy-accuracy co-search support

For remote inference models, there exists an inherent trade-off between accuracy, perfor-

mance, and privacy guarantees. Hence, we define the search’s reward function, R, as:

R = acc(m)× (
Ltarget

L(m)
)ωL × (

ϵtarget
ϵ(m)

)ωϵ (A.6)

where acc(m), ϵ(m)1 , and L(m) are the respective clean/noisy test accuracy, privacy budget,

and latency achieved by model m. ϵtarget and Ltarget resemble the desired target privacy

budget and latency by the designer. ωϵ and ωL are configurable design trade-off parameters.

L(m) is associated with the edge device comprising execution and transmission overheads.

A.7 Experiments

We implement our PrivyNAS on top of ProxylessNAS [26] where we keep their default ar-

chitectural search hyperparameter settings with the MobileNetV2 backbone. Our search

parameters in [136] enables having 21 potential candidate positions for noise injection. We

use the Nvidia Jetson TX2 (TX2) as our local edge device platform and construct a corre-

sponding lookup table for benchmarking.

A.7.1 Privacy-aware Search Analysis

We first assess the privacy-aware NAS in comparison to a conventional privacy-agnostic NAS.

Here, the conventional approach is emulated through a regular search from ProxylessNAS

[26], followed by a separate independent process to integrate ϵ-DP inference privacy onto the

1We slightly abuse the ‘ϵ‘ notation and reuse it for the privacy objective function in addition to the
privacy budget. Purpose can be inferred from context.
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Table A.3: Comparing models’ accuracy (%) at ϵ=2.8. For the NAS models, we set ωe=0,
and Ltarget = 50ms when ωl ̸= 0. (c) indicates training using only clean data while (ret.)
stands for retrained.

Model
Total Clean Noisy Total
Train Test Test Test

MobileNetv2 98.9 (c) 92.5 27.9 60.24
MobileNetv2 (ret.) 85.72 88.7 65.1 76.92

ProxylessNAS (ωl = 0) 91.1 (c) 80.35 65.58 72.23
ProxylessNASret (ωl = 0) 85.86 80.05 78.36 79.16
Privacy-aware (ωl = 0) 90.76 80.44 79.22 79.90

Privacy-aware (ωl = 0.05) 88.99 79.36 76.99 78.11

final model. Performance evaluations for Mthe baselines are estimated based on their best

accuracy scores by choosing their optimal splitting layer. A privacy budget of ϵ = 2.8 is used

for all implementations. As shown in Table A.3, our privacy-aware search renders a model

which outperforms others in terms of average overall accuracy with 79.9%, indicating the

value of the joint training during the search itself (Section A.6.2). Also, the variance between

the clean and noisy test accuracies for the privacy-aware search reached 1.22%, indicating

how the supernet is trained during the search to generalize its classification performance to

samples perturbed in proportion to the desired ϵ budget.

A.7.2 Injection Parameters γ Analysis

We further analyze the accuracy of both our privacy-aware and the retrained ProxylessNAS

models for each potential injection layer position to assess the merit of the γ parameters.

In Figure A.7, the two DNNs are compared over the 21 potential injection layer positions

from the search space. Note that not only does the Figure compare optimal noise injection

layer choices, but all potential choices including suboptimal ones. This is to demonstrate

how the γ parameters of PrivyNAS learn to sample more frequently the most promising

splitting layer candidates, and subsequently focus the supernet’s training around them. As

such, we find that the ProxylessNAS model outperforms PrivyNAS at subopitmal noise
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injection layer choices as the former randomly samples candidate injection layers with the

same probability. However, ProxylessNAS does not outperform PrivyNAS at the latter’s

best injection positions (layers 12, 16, 17, 18, and 19) which provide the highest accuracy

overall under ϵ guarantees. This is attributed to the γ parameters that learn to optimize the

model architectural design around these most promising injection layer positions as a result

of their higher rewards compared to sub-optimal candidates.

A.7.3 Optimizing for performance and inference privacy

Since one motivation of split computing is to reduce computational overheads on user edge

devices, we conduct another experiment in which both our privacy-aware model (ωl = 0.05,

Ltarget = 50ms and the ProxylessNAS architectures from Table A.3) are first trained from

scratch on clean data samples. Afterwards, their cloud-side parameters are trained on noisy

samples at ϵ = 2.8. Our analysis of accuracy and latency is performed at layers 8 and 12,

which were the respective optimal noise injection layers for our privacy-aware model and

the conventional ProxylessNAS one, respectively. As illustrated in Figure A.8, the latency-

agnostic ProxylessNAS model achieved the highest accuracy scores at its best injection

layer, 12. This is because its architecture was only optimized for accuracy without any

consideration of performance overheads, and thus it incurs a high execution latency for its

local DNN components reaching 101.09 ms. Whereas at injection layer 8 (our model’s best),

we find that our model, designed with an Ltarget=50 ms, takes 53 ms latency to execute

its local DNN components (Ml) – a 35.2% reduction from that of ProxylessNAS model.

Though such performance improvement comes at the expense of 2.2% accuracy drop from

the layer 12 accuracy of ProxylessNAS model, our model improves accuracy by 3.4% in the

scope of layer 8 only.
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A.8 Discussion and Concluding Remarks

The consideration of inference privacy during the architectural design phase of DL models

can be perceived as analogous to building a model that generalizes well to inputs from a

different data distribution. For ϵ-DP inference, generalization is targeted towards samples

experiencing randomized perturbations according to a formal measure of noise injection [38].

Subsequently, a privacy-aware design approach exhibits in essence a behavior similar to its

conventional counterpart. That is, a more complex DNN architecture would generally lead

to a better model utility under privacy considerations. Still, fine tuning the architectural

design well-characterization of the desired privacy budget can lead to a good balance between

generalization and overfitting.

Further experimentation and analysis are needed along this direction to justify the value of

accuracy-privacy co-design in practical application settings. One direction is to scale the

inference privacy problem setting to practical application domains entailing the edge-cloud

architecture. An example is mobile health application through which sensitive time-series

data can be processed on the cloud. Another one is to study how the quality of a privacy

leakage attack (e.g., membership inference or model inversion) degrades when applied to

models provided by PrivyNAS compared to the baselines.
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Appendix B

HW/SW Co-design for Digital Mobile

Health Applications

B.1 Overview

At the early stages of my PhD, I worked on a number of projects pertaining to mobile health

and tinyML, where the premise was to deploy tiny machine learning models onto constrained

wearables having limited compute capabilities and few kBs of memory. Our approach entailed

proposing a number of neural architecture search frameworks that consider extreme model

compression (account for binary neural networks) and dynamic neural networks. In the

following, I showcase some of the principles we adopted for the mobile health use cases

in our works [140, 141], with applications in human activity recognition and Myocardial

Infarction detection.
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B.2 Introduction

Adopting data-driven methodologies using Machine Learning (ML) in healthcare has become

an essential practice for analyzing numerous patients’ physiological signals. More so, to

provide continuous real-time monitoring, the utilization of wearable devices across different

applications has been growing. Traditionally, the modus operandi of these wearable devices

instantiates sending the collected raw data to an intermediate device (e.g., smartphone)

using a low-power wireless technology (e.g., Bluetooth). Then, the data is relayed further to

a central server where the processing can take place.

However, the overheads associated with data transmission, added to the privacy consider-

ations of sending personal physiological data over the wireless medium, represent pressing

concerns for the traditional approach. As a result, the current growing trend promotes the

adoption of edge computing, where the bulk of the processing is moved to the wearable

device. In this setting, the wearable device can contain an ML model to perform the needed

processing, and only the final result is relayed further up the hierarchy of devices. Although

the traditional approach concerns are addressed, fitting adequate ML models within the

resource-impoverished wearable devices is the main challenge in edge computing.

Furthermore, for mobile health applications, the patients’ physiological data mostly comes

in a time-series data format. Principally, time-series data can be processed through a variety

of ML techniques, including Support Vector Machines (SVMs), Random Forests (RFs), 1D

Convolutional Neural Networks (CNNs), and so on [8, 156, 157, 174, 175]. Although these

techniques are adaptable for wearable devices’ deployment, the 1D CNNs possess the merit

of automatically capturing the features of time-series data through their inherent convolution

operations, omitting the need for an expensive preceding feature extraction process. Further-

more, if the wearable device solution is complemented with an Early Exit (EEx) option [145],

significant resource savings can be attained. This is mainly because in real-time monitoring
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applications, many data segments are easily identifiable like the normal segments, and they

do not require much computational effort to be classified. Therefore, a policy can be set

in motion determining for each data segment whether enough confidence exists at the EEx

block to either terminate processing or continue execution.

Figure B.1: The template baseline architecture from EExNAS with potential objective func-
tions associations.

B.2.1 Problem Statement and Research Contributions

Based on the previous arguments, the research challenges we aim to address in this work

include:

• What techniques should be utilized to provide a generic design methodology for wear-

able applications that can render accurate and resource-efficient solutions?

• How to include potential EEx benefits at design time within the global design opti-

mization problem?

Addressing the above-mentioned challenges, we propose a platform-aware Multi-Objective

Neural Architecture Search (NAS) approach, namely EExNAS, that explores a pre-defined

search space of architectural parameters to provide optimal model implementations with

EEx capability. The most promising architectures are identified through their estimated
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evaluations over a designated set of objective functions. These objective functions can be

accuracy- or performance-related (e.g., energy consumption and memory utilization). Also,

they can be defined at different parts of the backbone architecture to promote the EEx

capability, as shown in Figure B.1. Our research contributions can be summarized as follows:

• We propose EExNAS, a Multi-Objective NAS-based design methodology to develop

resource-efficient solutions for wearable applications employing time-series data.

• We separately associate objective functions at the EEx block to optimize its imple-

mentation.

• We demonstrate the effectiveness of EExNAS across two wearable applications, My-

ocardial Infarction (MI) detection and Human Activity Recognition (HAR).

• On the PTB ECG dataset [20], EExNAS final solutions achieve state-of-the-art accu-

racy for MI detection on wearable devices, reaching 96.5% and 98.54%.

• On the w-HAR dataset [18], EExNAS final solution incurs a 0.584% accuracy drop

from the state-of-the-art but is 47.076% more energy-efficient.

B.3 Related Works

B.3.1 Myocardial Infarction (MI)

MI represents one of the leading causes of death in the USA, leading to more than 600,000

deaths per year [3]. Its silent and recurrent nature necessitates continuous monitoring, where

wearable devices equipped with Electrocardiogram (ECG) monitoring capability can be a

viable option for real-time MI detection. In this regard, we focus on studies using only one

lead ECG signal for MI detection as one lead suits the wearable devices’ small form factor.
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Works targeting MI detection to be compared against include k-NN [7], SVM [174], RF [175],

and CNN [8, 42, 156]. All the works are suited for deployment on wearable devices except

the k-NN because all the training data are required on the target device.

B.3.2 Human Activity Recognition (HAR)

HAR is used in a variety of applications like health monitoring or health tracking [19].

In this work, we showcase how the EExNAS can generalize to other wearable applications

through a classification task of HAR locomotion activities using the w-HAR dataset [18].

Data segments from this dataset can belong to one of 8 existing classes, encompassing static

or dynamic activities. The work in [17] proposed a hierarchical activity-aware classifier that

first reckons whether the activity is static or dynamic through an SVM classifier. Then if

the activity is dynamic, a decision tree classifier is invoked to determine the activity type.

Their model’s accuracy reached 97.34%, and our final models will be benchmarked against

it.

B.4 EExNAS Design Methodology

Figure B.2 illustrates an overview of EExNAS methodology. We go through the main com-

ponents of the methodology in the following subsections.

B.4.1 Neural Architecture Search

The purpose of the NAS within EExNAS is not only to identify the models with the best

accuracy evaluations but also the ones that efficiently utilize the limited resources of the

target wearable device. Thus, the problem becomes a multi-objective optimization one
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incorporating performance objectives as well. Due to the conflicting nature between the

accuracy and performance objectives, the problem would not have a single solution, but a set

of Pareto optimal ones instead. These Pareto-optimal solutions dominate all other explored

solutions except each other, where formally in a minimization context, an architecture x⋆

would belong to the Pareto set if: fk(x
⋆)≤fk(x)∀k, x and ∃j : fj(x⋆) < fj(x)∀x ̸= x⋆. where

fk represents the kth objective function.

When searching for the Pareto optimal architectures, a NAS controller each iteration needs

to: sample architectural candidates from the search space, evaluate their respective objective

functions, and update its search strategy based on these evaluations. In this work, the

search strategy employed by the EExNAS controller is implemented using Multi-Objective

Bayesian Optimization (MOBO) [165]. Other strategies like RL could’ve been implemented

as well without any loss of generality. MOBO approximates each objective function with a

surrogate Gaussian Process (GP) model. Thus, previous evaluations fkn of the kth objective

function at iteration n are assumed to be jointly Gaussian with mean m and co-variance

κ, i.e., fkn|x1:n ∼ N(m,κ), making the GP model a probabilistic distribution over possible

functions of the associated objective function. From these GP models, an acquisition function

is constructed and solved analytically to identify the next query point, whose true objective

evaluations are determined and used to update the GP models.

B.4.2 Multi-Objective Formulation

To solve the multi-objective optimization problem, we apply linear scalarization across the

multiple objective function estimates to identify the next query point through:

xn = argmax
x

∑
i

wi.fi (B.1)
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Figure B.2: EExNAS Design Methodology Overview

where our aim each iteration n is to identify the sample xn which maximizes a reward

associated with the objective functions. Note that fi and wi represent the ith function

estimate sampled from the respective objective’s GP model and its associated user-assigned

weight, respectively.

To maximize the effect of the function weights, true evaluations of each objective function

Fi need to be normalized with respect to their max. and min. attainable values as follows:

Finorm. =
Fi − Fimin

Fimax − Fimin

(B.2)

Hence, each weight wi becomes the sole determiner of the extent of impact each objective

function can have on the search process. In our experiments, 4 objective functions were

defined as shown in Figure B.1, where the max. and min. values for the performance

objectives were obtained through evaluating the largest and smallest possible architectures

in the search space, respectively. Whereas for the accuracy objectives max. and min. were
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estimates from well- and poorly- trained models.

B.4.3 Search Space

Our search space encompasses a backbone macro-architecture of 1D convolutional blocks with

an additional EEx block. Variable architectural parameters from each convolution block are

used for the search space. These parameters encompass the number of output filters in

addition to the kernel and strides for each of the convolution and pooling layers, respectively

(Note that pooling layers are optional for each block). Therefore, each architecture in the

search space can be characterized by a string x defined as follows:

x = (nF1 , kc1 , sc1 , kp1 , sp1 , ...kpN , spN , fc)

where k and s are the kernel and stride for each successive convolutional c and pooling p

layer. N is the number of blocks and fc is an extra optional fully-connected layer. Although

the dimensionality increases with the number of blocks in the search space, we found that

utilizing 2-3 blocks is enough for multiple healthcare applications with time-series data,

keeping the dimensionality relatively low. Even so, our MOBO-based solution is built on

dragonfly [86], which provides techniques to handle high-dimensionality problems if needed.

B.4.4 Binary Convolutional Neural Network (BCNN)

Operators from the BCNN architecture proposed in [156] can also be used to enrich the

design space. In [156], the aim was to design an efficient CNN that can fit into wearable

devices with limited memory while conserving energy resources. To achieve this, the model

weights are limited only to +1 or -1. Moreover, only a binary activation function is used to

clamp the inputs to either +1 or -1 as introduced in the binarized neural networks [37]. This
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Figure B.3: Sampled architectures and Pareto frontiers in non-normalized (brown) and nor-
malized (blue) search approaches.

binary representation of weights achieves 32× memory efficiency compared to the standard

floating-point representation. Although the weights are in binary, temporaries generated

between convolutional layers are still represented in floating-point. They require a lot of

working memory resources which can still present an issue for wearable devices. To handle

this, the computation order of inference in a binarized neural network has been modified.

Unlike in the traditional order, the resulting temporaries after the convolution layer are not

stored in memory. Alternatively, they are directly passed to the pooling layer followed by

batch normalization and binary activation layers. This makes the models not only memory

efficient but also energy efficient because of the faster and less complex binary operations.

B.5 Experimental Setup

The MOBO-based NAS runs on a desktop machine and is built on top of Dragonfly [86].

Each search run takes 200 iterations where wrapper scripts are implemented around the

objective functions to automate the evaluation. Sampled architectures’ from the search have

their accuracy evaluations estimated after training for 30 epochs. We followed the same
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Figure B.4: Comparison between normalized, non-normalized, and random search ap-
proaches in terms of the number of architectures sampled that satisfy various criteria of
the objective functions over 200 iterations of each.

Dataset preprocessing steps like filtering and segmentation in [8,18,156]. We also follow the

training procedure in [156] for the MI ECG dataset in which the ”MI” labeled segments are

divided first into 7 groups, and then the normal segments are repeated across the 7 groups

to handle the class imbalance within the dataset. The overall accuracy is then the average

across the 10 fold cross-validations from all groups.

In terms of the target device, the EFM32 Giant Gecko [4] is selected as in [156, 175] for its

specifications emulate those of wearable devices. Mainly, it runs on an ARM Cortex-M3 with

a max operating frequency of 48 Mhz and a 128 kB RAM size. During the search process,

a C code version of each sampled architecture is automatically generated and flashed onto

the device to retrieve its energy and memory measurements.

B.6 Experiments and Results

The search strategy is first evaluated then the final models are bench-marked against other

works as follows:
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B.6.1 Search Process Assessment

First, we illustrate the effectiveness of normalizing the objective functions in Figure B.3,

in which two searches, non-normalized and normalized, are run for 200 iterations each. In

the non-normalized setting, it can be observed that the sample distribution is more skewed

towards improving upon the performance objectives. This is due to the large variations in the

energy and memory values across different models in comparison to accuracy values, making

the reward estimate more reliant on these objectives. On the other hand, the normalized

version remedies this through normalizing variations across all objectives between 0 and 1. In

this setting, the accuracy objectives were assigned 10× more the weights of the performance

objectives. Consequently, it can be seen from the samples’ distribution that the search has

become more biased towards minimizing the accuracy-related objectives.

Next, we compare the non-normalized, normalized, and random search approaches through

the quality of their sampled architectures. The results are shown in Figure B.4 where 4 crite-

ria are defined to reflect the models’ quality with regard to the various objectives. From the

figure, the first observation is that the normalized approach always outperforms the random

search in identifying architectures that meet the criteria. This is attributed to the more

balanced exploitation-exploration nature of the normalized search. The second observation

is that although the non-normalized search finds the most resource-efficient architectures,

most of these architectures are trivial and do not satisfy the accuracy-related criteria. More

importantly, the non-normalized search presents the lowest number of architectures capable

of satisfying simultaneous criteria, pointing up once again the necessity of normalization.

B.6.2 MI ECG Dataset Benchmarking

From the search process, two models, a and b, are chosen from the normalized Pareto frontier

and retrained over 100 epochs for our final benchmarking.
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We compare our models’ accuracy against those from other works in Table B.1. We also

provide the sensitivity and specificity evaluations as supplementary results. Although the

k-NN offers the best accuracy evaluation, it is not built for wearable devices as it requires

all the training data on the device. Our model b with EEx option at th=0.99 offers the

best accuracy results for a wearable-based solution at 98.54%. We can also observe how the

calibrated conditional models can offer better accuracy than their respective baselines. Note

that model a is the one we used for our motivational case study earlier.

In Table B.2, we compare the performance of our models against the CNN-based models

[8,156]. We implemented their models in C-code and flashed them onto the EFM32 device for

a fair comparison. The energy calculation for the conditional models is obtained through the

summation of products of the ratios of segments classified and the total energy consumption

at each exit point. Although the binarized nature of the BCNN [156] deems it the most

resource-efficient solution with 13.03 mJ for each inference, the more accurate model a

(th=0.7) is not far behind with 16.34 mJ . Note that more efficient versions of model a

with th < 0.7 outperformed the BCNN with respect to both accuracy and performance.

However, we focus on providing more generic model versions. Moreover, we notice model b

(th=0.99) with the best accuracy is more efficient than its model a (th=0.99) counterpart.

Because, unlike model a, the complexity of model b’s architecture is more evenly distributed

between the two convolution blocks, making it the most suited overall candidate whenever

high confidence is demanded.

B.6.3 w-HAR Benchmarking

To demonstrate how the methodology adapts to other applications, we showcase the bench-

marking results on the w-HAR dataset for HAR. After NAS,model c is selected and retrained

for 300 epochs for the final evaluation. Its optimal temperature value was found at 5.1 with
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Table B.1: Performance Benchmarking on MI ECG Dataset

Work Type Acc. (%) Sen. (%) Spe. (%)

k-NN [7] - 98.8 99.45 96.27

SVM [174]
Baseline 95 x x
Cond. 90 x x

RF [175]
Baseline 83.26 87.95 78.82
Cond. 80.32 81.02 79.63

CNN [8] - 95.22 95.49 94.19
BCNN [156] - 90.29 90.41 90.16

Model a
Baseline 95.61 93.44 97.85

Cond. (th=0.7 ) 95.66 95.55 95.77
(Ours) Cond. (th=0.99 ) 96.5 95.44 97.59

Model b
Baseline 98.03 97.26 98.82

Cond. (th=0.7 ) 97.21 96.6 97.84
(Ours) Cond. (th=0.99 ) 98.54 97.66 99.44

Table B.2: Measurements on the EFM32 for MI models

Work Type RAM Occ. (kB) Ergy/Inf. (mJ)

CNN [8] - 101.380 97.651
BCNN [156] - 3.556 13.033

Model a
Baseline

15.66
36.394

Cond. (th=0.7 ) 16.344
(Ours) Cond. (th=0.99 ) 35.978

Model b
Baseline

15.972
28.32

Cond. (th=0.7 ) 22.187
(Ours) Cond. (th=0.99 ) 28.189

an ECE of 2.29%. The relatively small temperature factor means that the initial estimates

were a relatively good indication of the true confidence, and the estimate values would not

need to be scaled down aggressively. Model c is then compared against the ones in [17]

in terms of both accuracy and performance. The WF1 score, obtained from the confusion

matrix of each classification class, is also provided as a supplementary result. As displayed

in Tables B.3 and B.4, the activity-aware implementation still achieves the best accuracy

readings. However, model c (th=0.99) incurs a 0.584% drop in accuracy for 78.985% and

47.076% gains in memory and energy efficiency, respectively.
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Table B.3: Performance Benchmarking on wHAR dataset

Work Type Acc. (%) Weigh. F1 (%)

Baseline [17] - 94.87 94.96
Act.-aware [17] - 97.34 97.37

Model c
Baseline 95.59 95.4

Cond. (th=0.9 ) 96.203 95.995
(Ours) Cond. (th=0.99 ) 96.772 96.627

Table B.4: Measurements on EFM32 for HAR models

Work Type RAM Occ. (kB) Ergy/Inf. (mJ)

[17]
Baseline

10.012
1.037

Act.-aware 1.368

Model c
Base.

2.104
0.931

Cond. (th=0.9) 0.637
(Ours) Cond. (th=0.99) 0.724

B.7 Concluding Remarks

We have introduced a design methodology to render 1D CNN-based wearable device solutions

with EEx capability. We’ve shown that EEx models are not only more resource-efficient but

also can outperform their baselines in terms of accuracy evaluations. We demonstrated the

efficiency of our methodology over MI and HAR applications,
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