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Characterizing Phenotypes of Musculoskeletal Degeneration Using Medical 

Imaging and Deep Learning 

Claudia Iriondo 

Abstract 
 

Musculoskeletal disease is the leading cause of disability worldwide, with the 2019 Global 

Burden of Disease study reporting global disease prevalence of approximately 1.714 billion1. X-

ray and magnetic resonance imaging (MRI) are routinely used for clinical diagnosis and 

monitoring of musculoskeletal disease, however, due to an increasing volume of acquired 

images and limited time, image assessments are mainly qualitative. This thesis aims to elevate 

the role of imaging in the assessment of musculoskeletal disease by developing fully automatic 

image analysis tools to improve image analysis sensitivity, speed, and/or precision. We target 

the two conditions with the highest prevalence and healthcare expenditure in the United States: 

knee osteoarthritis (OA) and back pain. We use deep learning to develop fully automatic tools 

for image analysis and demonstrate their utility in the assessment and analysis of research and 

clinical datasets. I will be presenting four main projects:  

(1) A deep learning segmentation method for quantitative analysis of knee cartilage from 

structural MRI to conduct longitudinal analysis on cartilage thickness over 8 years  

(2) A point cloud algorithm for feature learning from structural and compositional knee MRI 

to assess the importance of shape and composition features in predicting OA onset  

(3) A registration pipeline for voxel-based analysis of MR imaging of the lumbar spine to 

examine local associations between T1ρ, T2, and patient reported outcomes  

(4) A curve extraction algorithm for analysis of global spine shape from x-ray imaging to 

build a shape model that examines 3D spine shape variations in the UCSF patient population 
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1 Overview 
Chapters 2 and 3 serve as a general introduction to the anatomical systems and tissues 

examined in the remainder of the thesis, as well as the imaging methods used to study them. In 

Chapter 4, we introduce representation learning and discuss challenges in the application of 

machine learning for medical imaging. Lastly, we walk through the development of a software 

tool for training deep learning segmentation algorithms. Chapters 5-8 are presented as self-

contained, experimental studies including study specific background, methods, results, 

discussion, and future directions.   
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2 Structure-function of 
musculoskeletal tissue in health and 
disease 

 Articular cartilage, mensici, and intervertebral discs are hydrated, load-bearing tissues 

integral to the stability and normal function of the musculoskeletal system. The beginning of the 

chapter will discuss the structure and function of these tissues in health, comparing their 

biochemical composition and biomechanical properties. Then, the pathophysiology of common 

knee and spine diseases will be presented, examining how structure is changed and function is 

impaired by physical or chemical disruptors. This will serve as a general introduction for Chapter 

3 which focuses on imaging methods for disease diagnosis and monitoring.  

2.1 Articular cartilage 

 Healthy articular cartilage has high compressive and shear strength which provides smooth 

articulation, and in the knee, transfers load between the surfaces of the femur, tibia, and patella 

bones. The mechanical properties of cartilage arise from compositional and structural gradients 

within the tissue2; 3. Cartilage has a layered structure and can be divided into zones: superficial, 

middle, deep, and calcified. The superficial zone is a thin layer of tightly packed type II collagen 

fibrils4; 5running parallel to the cartilage surface providing tensile strength and resistance to 

shear forces6; 7. This layer is in direct contact with the synovial fluid and functions as barrier, 
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isolating cartilage from the synovial immune system8. It is also the most hydrated layer 

containing 75-80% water5. The middle zone is a thicker layer with randomly oriented collagen 

fibrils and a higher density of proteoglycans (primarily aggrecan) which together provide high 

hydrostatic pressure to resist compressive loads4; 9. The deep zone is approximately 35% water 

and has the highest proteoglycan density and hydrostatic pressure10. Its collagen fibrils are 

larger in diameter and aligned perpendicular to the cartilage surface4; 11. A partially calcified 

region of the deep zone provides a physical barrier to prevent angiogenesis from the 

subchondral bone12; 13. The tidemark line is a thin, acellular region that separates the deep zone 

from the calcified cartilage zone. Large collagen fibrils in the calcified cartilage zone anchor into 

the underlying bone matrix, acting as an attachment between articular cartilage and 

subchondral bone14. The calcified zone is partially mineralized, has low proteoglycan density, 

and is semi-permeable to small solutes15. The highly organized collagen structure in cartilage 

can affect MR imaging through the ‘magic angle effect’ which will be described in Chapter 3. In 

healthy cartilage, the calcified zone is vascularized, but the remainder of the articular cartilage is 

avascular and chondrocytes rely on diffusion from the synovial fluid for nutrients13; 14.  

 

Figure 2.1 Schematic of layered structure in healthy articular cartilage. Left: Cell density, 
distribution, and shape. Right: Collagen fibril organization. Reproduced with permission from 
Wolters Kluwer Health, Inc: Buckwalter et al. 199416. 
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2.2 Meniscus 

There are two menisci in the knee: the lateral “O-shaped” meniscus and medial “C-shaped” 

meniscus. Menisci are fibrocartilage structures that provide shock absorption, lubrication, and 

stability to the knee joint 2; 17. During loading, the meniscus transfers axial compressive loads 

into circumferential “hoop” stresses and experiences local compressive, shear, and tensile 

forces2; 17. In a similar way to articular cartilage, the meniscus is divided into distinct 

compositional and structural zones, each contributing to its load-bearing properties. In the 

outermost surface layer of the meniscus, a thin network of randomly oriented collagen type I 

fibrils are bridged by elastin fibers, providing structural support and a barrier from the synovial 

fluid. Right beneath, the lamellar layer is composed of collagen fiber bundles with a combination 

of radial and parallel alignments17; 18. In the meniscal core, or the deep layer, thick collagen type 

I fibers are oriented circumferentially and bridged by radially positioned “tie fibers”, creating a 

network with high tensile and shear resistance18; 19. Proteoglycan content in the deep layer 

provides compressive resistance to the tissue. Up to a third of the peripheral meniscal region is 

perfused while the rest is avascular, relying on nutrient diffusion from the synovial fluid20. 

 

Figure 2.2 Schematic of zonal organization and collagen fiber arrangement in a healthy 
meniscus. A: Anterior, P: Posterior Reproduced with permission from Raven Press: Mow et al, 
Knee meniscus: basic and clinical foundations, 199221. 
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2.3 Intervertebral discs  

 Intervertebral discs are fibrocartilage structures that link the vertebra of the spine together 

and provide mechanical support by absorbing and transferring axial loads through the spinal 

column. The disc can be divided into three components: the annulus fibrosus (AF), the nucleus 

pulposus (NP), and the upper and lower cartilage endplates (CEP). The AF is a thick, fibrous 

ring surrounding a pressurized, gelatinous NP core. Approximately 15-25 concentric lamellae 

make up the AF, with each lamellar layer composed of thick type I collagen fiber bundles 

oriented at approximately 60˚ to the transverse plane, with alternating directionality between 

layers22. Like the structure of the deep layer in the meniscus, lamellae are bridged by a network 

of radially positioned collagen fibers23, providing tensile strength and resistance to shear. 

Moving inward, type I collagen content decreases while type II collagen and proteoglycan 

content increase24. The AF is approximately 70% water, with a higher concentration of water in 

the inner AF25; 26. The NP is made of a loose meshwork of randomly oriented type II collagen 

fibers, a high density of proteoglycans, and is approximately 80% water25. The strong negative 

charge on proteoglycans, specifically aggrecan, maintains NP hydration. This results in high 

hydrostatic pressure that allows the NP to transfer axial compressive loads to “hoop” stresses in 

the AF and vertical loads to the CEP. The CEP is a thin 0.6mm layer that caps the upper and 

lower ends of the vertebral bodies27, acting as an interface between the AF, NP and bone. Intact 

CEP and AF encapsulate the NP functioning as a passive immune barrier. Type II collagen 

fibers run parallel and perpendicular to the CEP surface, anchoring the AF lamellae and the NP 

mesh to the underlying bone27. Healthy adult intervertebral discs are largely avascular, as 

vascularization has only been observed in a small region of the outer AF28. Intervertebral disc 

cells rely on diffusion of nutrients from the adjacent vertebra through the CEP29; 30. 
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Figure 2.3 Schematic of intervertebral disc structure by disc regions. Reproduced from Sharabi 
et al., The Mechanical Role of Collagen Fibers in the Intervertebral Disc. 2018 with 
permission31. NP: nucleus pulposus, AF: annulus fibrosus, EP: endplate 

2.4 Bones 

 In contrast to the soft tissues described above, high cell density and rich vascularization 

provide bones with strong regenerative potential. Modeling refers to the formation of new bone 

(osteogenesis) while remodeling describes changes in internal tissue organization and 

composition, both of which are regulated by metabolic and mechanical factors. There are two 

bone compartments: cortical and trabecular. Cortical bone lines the bone exterior, has low 

porosity and is responsible for providing mechanical support in the appendicular skeleton32; 33. It 

is composed of highly oriented, densely packed type I collagen fibrils, hydroxyapatite, and 23% 

water33. A 4-14 mm thick layer of cortical bone surrounds the tibial and femoral diaphyses34; 35 

while a thinner layer exists at epiphyses, including at the interface with the calcified cartilage 

layer. Similarly, a thin 0.244-0.290 mm shell of cortical bone surrounds the vertebrae36. 

Trabecular bone (also called cancellous bone) is localized in the bone interior and is a highly 

porous, complex meshwork of rodlike and platelike structures called trabeculae. Trabeculae are 
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similarly composed of hydroxyapatite, collagen type I, and 27% water33. However, in-vivo, 

trabecular bone is filled with a mixture of fat, water, and proteins from bone marrow which has 

important implications for the imaging methods discussed in Chapter 3. In vertebrae, trabecular 

bone bears most of the compressive load while in the appendicular skeleton, it provides 

secondary support to the cortical bone32; 33. During bone remodeling, it has been observed that 

trabecular bone microstructure aligns itself with the principal stress axes37.  

 There are three main bones in the knee joint: femur, patella, and tibia. Chapters 5 and 6 will 

focus on the cartilage compartments of these bones as well as the meniscus. The spine is made 

of up of approximately 33 fused and non-fused vertebrae, divided into 5 regions: coccyx (4), 

sacral (5), lumbar (5), thoracic (12), and cervical (7). A 3D render of the tissues discussed in this 

dissertation is visualized in Figure 2.5. Chapter 7 studies the lumbar intervertebral discs, while 

Chapter 8 examines global spine shape dictated by the 3D position of the thoracic and lumbar 

vertebrae. 

 

Figure 2.4 Axial cross section of a proximal femur highlighting regions with cortical and 
trabecular bone structures. Patterns in alignment of trabeculae follow principal loading 
directions. Reproduced with permission from Lovejoy et al. The maka femur and its bearing on 
the antiquity of human walking 200238. 
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Figure 2.5 Volumetric rendering of the relevant knee and spine tissues. A) Oblique sagittal view 
of the left knee with bones, cartilage, and menisci visualized; synovium, ligaments, tendons, 
muscles not shown. B) Lateral and frontal views of a spine with anatomically normal, color 
coded by spine region. Intervertebral discs and vertebra are visualized; spinal cord, ligaments, 
and muscles excluded for clarity. Visualizations reproduced with permission from BIODIGITAL. 

 

2.5 Pathophysiology of common musculoskeletal disorders 

Low oxygen tension and lack of vascularity in cartilage, meniscus, and intervertebral discs 

contribute to their limited regenerative potential39; 40. It follows that maintaining tissue 

homeostasis and immune privilege is integral to preserving tissue structure and biomechanical 

function. Contrary to the “wear and tear” hypothesis, tissues dynamically respond to their 

environment. Tissue health depends on a delicate balance of cellular anabolism and catabolism 

which can be disrupted by trauma, abnormal mechanical loading, metabolic changes, or cell 

senescence41-45. Perturbations in tissue homeostasis can initiate a degenerative cycle: a 

positive feedback loop between cells, extracellular matrix, and biomechanics. This disease 
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model was proposed for degenerative disc disease (DDD)46 but is generally applicable to other 

degenerative musculoskeletal diseases such as osteoarthritis (OA)47 and adult spinal deformity 

(ASD)48. 

2.5.1 Osteoarthritis 

Knee osteoarthritis is considered a heterogeneous disease with different mechanistic 

phenotypes based on the cause of initial tissue disruption, from mechanical overloading to low-

grade systemic inflammation42; 47; 49. Etiology aside, osteoarthritis presents similarly in the joint 

as cartilage loses its structural integrity in stages. First, collagen in the superficial zone becomes 

disorganized which results in a decrease in proteoglycan content and increase in water content, 

effectively increasing tissue permeability and decreasing hydrostatic pressure14. Fraying of the 

superficial layer compromises its ability to withstand shear forces which leads to flaking of the 

cartilage surface and eventually fissures extending into the transitional zone50. Abnormal 

mechanical loading is propagated through all the cartilage layers up to the subchondral bone, 

activating a cellular response that attempts to stabilize the tissue initiating a vascular invasion of 

the cartilage14; 51. Eventually, further disruption of collagen organization and loss of proteoglycan 

and water content lead to thin cartilage and areas of exposed bone. Menisci play an interesting 

role in OA, as meniscal damage can lead to the development of OA in otherwise healthy knees 

while knee OA can degenerate a healthy meniscus52, this is likely explained by abnormal 

biomechanical loading in both scenarios. Disorganization of collagen fibers causes fraying of the 

meniscus, starting at the deep layer then moving towards the surface53, resulting in a loss of 

tissue tensile strength. Proteoglycan content increases, type I and II collagen content decrease, 

and water content is unchanged. In later stages of degeneration, meniscal tears in the avascular 

region are frequent53. 
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2.5.2 Degenerative Disc Disease 

Changes in the NP are typically the first to occur in intervertebral disc degeneration in 

response to biomechanical or chemical disruption. NP cells shift from producing type II collagen 

to type I collagen. Aggrecan becomes fragmented, losing its ability to bind water26, causing a 

decrease in hydrostatic pressure and an increase in shear stress to the NP and AF54; 55. Loss of 

disc height reduces axial tension in the AF causing bulging of the inner and outer lamellae and 

lead to instability of the vertebra-disc motion segment56. The NP is unable to evenly distribute 

loads and increased localized stresses on the AF and CEP57 lead to annular tears or endplate 

fractures22. In turn, damage to the annulus and endplate can compromise NP cells’ immune 

privilege58, triggering a strong inflammatory response. In late-stage degeneration, the disc is 

dehydrated, severely narrowed, and disc regions are indistinguishable as the AF and NP are 

entirely fibrotic26; 54. There is significant vascular ingrowth to the disc and mineralization of the 

CEP. 

2.5.3 Adult Spinal Deformity 

Degenerative changes in the intervertebral discs and vertebrae along several segments of 

the spine can cause global spinal instability. Adult spinal deformity is a broad spectrum of 

conditions related to the abnormal curvature of the thoracic and lumbar spine. Degenerative 

deformities are the most common type of adult spinal deformity59. As discussed, local 

degenerative changes due to aging occur in the intervertebral disc54, which change the 

distribution of mechanical loads55. A portion of the mechanical load is shifted to the facet joints 

and anterior vertebral bodies, causing local bone remodeling and a slight change in global 

balance60. These maladaptive loading patterns exacerbate tissue degeneration, as paraspinal 

muscles compensate for this change in balance by opposing forward motion61 which exerts 

additional compressive stress on the weakened intervertebral discs. Changes in vertebra shape 

and bone marrow are also observed62. Severe spinal deformities interfere with normal 
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biomechanical function: adults with deformities report lower physical function scores in health-

related quality of life metrics, with the anatomical location of the deformity (lumbar, thoracic) and 

time of onset influencing these metrics63.  

2.5.4 Adolescent Idiopathic Scoliosis 

Spinal deformities can also present in the pediatric population although the underlying 

pathophysiology is often different from adults. For example, in adolescent idiopathic scoliosis 

(AIS), while the exact etiology is not known, the early stages of the deformity are not 

characterized by intervertebral disc or vertebral degeneration. However, mechanical loading 

does play a part64, as evidence suggests a mismatch between skeletal growth and muscular 

development reduces axial loading which triggers cells to produce more proteoglycans. Disc 

pressure and disc height increase, placing large amounts of tension on the paraspinal 

ligaments, limiting their ability to grow65 and vertically locking the spine into place causing 

torsion and bending (differential growth hypothesis)66. However, the Disc and vertebra 

degeneration have been observed in AIS patients67, but are believed to be secondary to the 

deformity rather than a cause of the deformity. Calcification of the CEPs along with lower water 

and proteoglycan content in the NP have been observed in scoliotic discs67; 68 resulting in 

reduced cell viability67. AF collagen and elastic fiber organization is also disrupted23, particularly 

at the curve apex on the convex side of the curve68.  

Osteoarthritis, degenerative disc disease, and spinal deformity are common causes of knee 

and back pain. Early to mid-stage therapeutic interventions for these diseases are largely 

unsuccessful at halting or reversing degeneration but can provide pain relief47; 69; 70. Surgery –

knee arthroplasty or spinal fusion– are effective procedures to treat end-stage disease but carry 

significant risk of complications. Better understanding of disease subtypes and progression 

could assist in the development of disease-modifying drugs. The next chapter will introduce 

imaging methods for the characterization of musculoskeletal tissue in health and disease. 
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3 Clinical and quantitative imaging 
Osteoarthritis (OA) and back pain are typically assessed via non-invasive imaging where 

clinicians search for pain generating structures by examining anatomy for signs of degeneration. 

The basic physics of x-ray and magnetic resonance (MR) imaging will be presented, with 

particular emphasis on the appearance of the tissues introduced in Chapter 2 and how they are 

clinically evaluated. Then, quantitative MR imaging will be discussed, highlighting its benefits, 

and identifying key roadblocks preventing its integration into the clinical workflow. This will set 

the stage for Chapter 4, where convolutional neural networks for image analysis are introduced. 

3.1 X-ray physics 

There are three components to clinical x-ray imaging: x-ray generation, attenuation, and 

detection71. An x-ray source is made of a vacuum chamber with a cathode, which supplies 

electrons, and an anode, which serves as electron target, held at a potential difference. Current 

is run through the cathode filament such that it heats up and releases electrons. These 

electrons gain kinetic energy as they accelerate towards the anode target. Upon colliding 

against the metallic anode, the electrons’ kinetic energy is converted into electromagnetic 

radiation, specifically heat and Bremsstrahlung radiation (x-ray beam). The energy of the beam 

is modulated by the potential difference of the anode and cathode, the current supplied to the 
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cathode filament, and the material composition of the target anode. The x-ray beam 

characteristics– energy, beam shape, intensity distribution– can be further modified through 

collimation and beam filtration. The x-ray beam then interacts with the patient, as photons pass 

through, scatter, or are absorbed by the body. A screen-film or digital detector is placed on the 

other side to detect outgoing photons and capture a 2D projection image of patient anatomy. 

Photon interactions with tissue are determined by the tissue’s attenuation coefficient and 

geometry. Moreover, a portion of these interactions produce energetic electrons that cause 

damage to surrounding tissue though ionization72. High intensity values on x-ray images 

correspond to anatomical regions of high attenuation, low intensity to regions of low attenuation. 

In the 10-80keV energy range used for x-ray imaging, bone is well visualized since bone mass 

attenuation coefficients are approximately 0.20-29 cm2/g, which is higher than the surrounding 

tissues. For comparison: water 0.18-5.3 cm2/g, fat 0.18-3.2 cm2/g, and air 0.17-5.1 cm2/g73. Soft 

tissues such as cartilage, menisci, and discs have very low attenuation (0.18-5.3 cm2/g) which 

result in extremely poor soft tissue contrast on x-rays.  

3.2 Clinical x-ray imaging 

X-ray imaging is frequently used in clinical settings, as it is one of the fastest and most cost-

effective imaging modalities, although precautions are taken to limit a patient’s cumulative 

exposure to ionizing radiation. A routine x-ray imaging series to assess knee degeneration 

includes frontal and lateral views. Radiographs are qualitatively examined for degeneration, 

mainly tibio-femoral joint space narrowing, presence of osteophytes, subchondral sclerosis, and 

bone deformity. For epidemiological studies, the Kellgren-Lawrence system74 is used to grade 

these changes and define the presence of radiological OA. In some research studies, 

measurements of joint space width are recorded75; 76. However, the utility of joint space 

measurements for knee x-rays has come into question as the apparent joint space width is 

extremely sensitive to changes in projection geometry due to patient positioning77.  
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Frontal and lateral view radiographs are acquired for specific regions of the spine: sacral, 

lumbar, thoracic, or cervical. Radiologists inspect images for signs of disc narrowing, endplate 

calcification, vertebral dislocation (listhesis), fractures, and osteophytes. Observations are rarely 

detailed at the disc level and only remarkable findings are reported. In the lateral sacral / lumbar 

view, measurements for pelvic parameters (pelvic tilt, sacral slope, pelvic incidence) and 

listhesis are sometimes recorded. Research studies favor the use of magnetic resonance 

imaging over x-ray imaging for the assessment of local degenerative changes in the spine due 

to improved soft tissue contrast78. For global degenerative changes, however, weight-bearing 

full spine frontal and lateral radiographs are the gold standard as they capture changes in global 

posture79. Radiologists qualitatively report on the location and severity of abnormal spine 

curvature and well as global balance. Spine curvature measurements, such as Cobb angles80, 

and classification for curvature types (Lenke81, SRS-Schwab82) are not routinely used in the 

clinic but are heavily relied on by orthopedic surgeons during treatment planning83.   

3.3 Physics of magnetic resonance imaging 

Magnetic resonance imaging (MRI) is the study of the magnetic properties of atomic nuclei. 

Several biologically relevant nuclei with odd atomic number possess magnetic moments 

including 1H, 23Na, 31P. The nucleus of the hydrogen atom (1H, a single proton) has the highest 

intrinsic magnetic moment (2.79) and is the most abundant in the human body, making it the 

ideal candidate for medical imaging. While magnetic moments from individual nuclei are 

undetectable, signals from collections of nuclei (~1015) can be treated as a system by 

performing the vector sum of all magnetic moments. Under normal conditions, individual 

magnetic moments are randomly oriented, resulting in zero net magnetization. In the presence 

of a strong, external magnetic field (B0), magnetic moments continue to be randomly oriented 

but show a slight tendency to point along the magnetic field line. This slight tendency results in a 

net non-zero magnetization Mz.  



 14 

 

Figure 3.1 Net magnetization under a static magnetic field. Without the presence of an external 
magnetic field, magnetic moments are randomly distributed, resulting in zero net magnetization. 
Under a B0 field, spins show a slight preference towards the magnetic field, resulting in a net 
magnetization in the direction of B0. The collection of spins can be treated as a unit, whose net 
magnetization is a vector in a Bloch sphere. 

 
Moreover, under a B0 field, individual magnetic moments experience a torque, causing 

precession at the Larmor frequency. The Larmor frequency ω 0 is defined as the product of the 

nuclei’s intrinsic gyromagnetic ratio and the external magnetic field strength. Precessing nuclei 

can be treated as a collection of oscillators that can absorb and emit energy at this resonant 

frequency. A short radiofrequency (RF) pulse tuned to ω 0 and perpendicular to B0 is sent to 

excite the nuclei. The magnetic component of the RF pulse exerts a torque on the collection of 

nuclei, rotating the net magnetization Mz towards the transverse plane by an angle determined 

by the duration and amplitude of the pulse. Mz returns to equilibrium through relaxation 

processes. Signals in the transverse plane are detected by an external coil also tuned to ω 0. 

The design and timing of RF pulses, gradients, and signal acquisition contribute to the final 

contrast of the MR image. RF radiation is non-ionizing, as it is lower energy compared to x-ray 

radiation. Tissues absorb RF energy in the form of heat, therefore prolonged or repeated 

exposure to MRI poses comparatively minimal risk.  
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3.4 MR imaging contrast mechanisms 

The structure and biochemical composition of a tissue determines its magnetic properties, 

and thus, its appearance on a specific MR sequence. A simple model can help conceptualize 

MR contrast mechanisms from a non-phenomenological perspective: the collection of nuclei are 

the system and the environment is a source of noise84. Noise can exist at various frequencies, 

and different imaging sequences are sensitive to different ranges of noise. This is best 

visualized through the power spectral density function which describes the power of noise at 

each frequency. The spectral density function J(ω) for a tissue depends on its local composition 

and is a measure of how long a spin system takes to lose memory of its interactions. 

Macromolecular motion contributes to the noise spectrum in MR imaging acquisitions. These 

motions cause random field fluctuations which are correlated in time. The autocorrelation 

function compares the field at time t and time t+τ, where the fields are most highly correlated for 

short τ, and least correlated for long τ, measuring the system’s ‘memory’ of these interactions. 

Rapid fluctuations have a small correlation time (τc), while slow fluctuations have a long τc. 

There is a non-linear relationship between τc and a tissue’s relaxation time and there is a 

certain correlation time at which relaxation is most efficient. The power spectral density function 

J(ω), is defined as twice the Fourier Transform of this autocorrelation function G(τ) 84. Several 

other mechanisms contribute to the noise spectrum in MR imaging including dipolar interactions, 

chemical exchange, and J-coupling.  

The noise spectrum for biological tissues is dominated by water. Water can exist in a 

bound state or a free state. Bound water exists as a hydration shell surrounding 

macromolecules (loosely or tightly bound), has restricted motion, and thus has a longer τc. Free 

water can freely diffuse out of the tissue and has a shorter τc. Water in intervertebral discs and 

cartilage is mostly free water (AF 89% and NP 97%, cartilage 96%85) with a smaller portion 

bound to collagen and proteoglycans matrix macromolecules.  
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Figure 3.2 Spectral density functions for fast and slow fluctuations in local magnetic field. From 
L to R, field fluctuations, autocorrelation function, and spectral density for fast fluctuations 
(τc=0.2ns) and slow fluctuations (τc=2.0ns). Figure reproduced with permission of Wiley, from 
Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance84. 

 
 

 

Figure 3.3 Log-log plots for power spectral density function and T1/T2 relaxation times vs 
correlation times of liquids, solids, and tissues in between. Liquids such as cerebrospinal fluid 
(CSF) have a shorter correlation time than solids like bone, values are approximate and depend 
on chemical composition of nearby tissue. Source: Prof Daniel Spielman, Stanford Rad226b 
2016 Lecture 11 (https://web.stanford.edu/class/rad226b/Lectures/Lecture11-2016-T1rho.pdf) 
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T1 relaxation probes the spectral density at ω 0. The higher the noise at this frequency, the 

more opportunities the nuclei will have to exchange their energy with the environment, thus the 

lower the T1 relaxation time. Since the Larmor frequency is a function of the external magnetic 

field strength, it follows that T1 relaxation measurements at varying field strengths (1.5T vs 3T) 

are sampling slightly different windows of the spectral density function. T2 relaxation describes 

the loss of nuclei coherence due to a combination of energy relaxation (T1) and pure dephasing 

(TΦ). Pure dephasing is the dominant component in the T2 relaxation processes because 

biological tissues have long T1 relaxation times compared to TΦ. Unlike T1 relaxation, pure 

dephasing does not require energy transfer: pure dephasing (TΦ) occurs when fluctuations in 

the local magnetic field cause fluctuations in the nuclei’s ω 0. In the simplest T2 setup (spin-echo 

experiment), a T2 measurement probes the spectral density function both at the nuclei’s Larmor 

frequency and at very low frequencies, therefore contains a T1  and a TΦ contribution. For the 

pure dephasing processes (TΦ), the higher the noise near J(ω=0), the more quickly dephasing 

will occur, thus the lower the T2 relaxation time. At a specific field strength, T2 relaxation time of 

a tissue depends on both the acquisition sequence parameters and the intrinsic tissue 

parameters, unlike T1 relaxation which is intrinsic to the tissue.  

3.5 Clinical MR imaging  

T1 and T2 relaxation times can be derived from specific MR imaging sequences (see 

Quantitative Imaging section below), however, scan times are long as they require the 

acquisition of several images. Instead, clinical imaging relies on the acquisition of a single 

image to examine relative, rather than absolute, signals from tissue. An image is said to be T1, 

T2, or proton-density (combination of T1,T2) weighted based on the tissue properties the 

acquisition parameters emphasize. The exact weighting is determined by the pulse repetition 

time (TR) and echo time (TE): T1 weighting has short TR/ short TE, T2 weighting has long TR/ 

long TE, and PD weighting has long TR/short TE. Fat appears bright on T1-weighted 
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sequences. Yellow bone marrow is roughly 80% fat and has high signal intensity on a T1 

weighted image. Cartilage, menisci, discs, muscles, red bone marrow, and cerebrospinal fluid 

have low signal intensity on T1 weighted sequences. Cortical bone, menisci, calcified cartilage, 

ligaments, and cartilage endplates have the lowest signal intensity. Specific pulse sequences for 

fat suppression can be applied to null the fat signal for contrast enhancement. Fat and free 

water appear bright on T2-weighted sequences, therefore the disc nucleus, inner annulus, 

cerebrospinal fluid, and superficial cartilage have higher signal intensity on T2 than on T1. 

Cortical bone, menisci, calcified cartilage, and the cartilage endplate have very short T2 

relaxation times and appear dark on both T2 and T1 weighted sequences. 

A standard degenerative knee MR imaging protocol includes proton-density (PD) weighted, 

T1-weighted, T2-weighted images in the sagittal and coronal planes, with and without fat 

suppression. Radiologists examine these images for signs of damage in the bone (bone marrow 

edema, osteophytes), cartilage (thinning, lesions, denudation), menisci (meniscal tears, cysts), 

and other soft tissues (ligament tears, synovitis). A small set of research studies have 

radiologists apply semi-quantitative scoring methods such as WORMS/MOAKS86; 87 to evaluate 

the knee. An even smaller set of research studies perform a quantitative evaluation of the knee 

by means of cartilage/menisci thickness or volume measurements, given the time-consuming 

nature of the annotations.   

Compared to knee imaging, spine imaging is slightly more varied as MR protocols are 

catered to specific radiological specialties and tend to focus on isolated anatomical regions. To 

give an example, a typical musculoskeletal lumbar spine protocol includes T1-weighted and T2-

weighted sagittal and axial views, with and without fat suppression. Radiologists will look for 

signs of degeneration in the nucleus (loss of signal intensity, thinning, inhomogeneity), annulus 

(bulging, herniation), endplate (defects, calcification), and vertebra (marrow edema, 

inflammation, sclerosis). Semi-quantitative scoring methods such as Pfirrmann grading 88 for 

discs and Modic grading 89 for vertebra are not common in clinical practice. Similarly, 
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quantitative measurements of disc and vertebra volume are useful but are only performed for 

research studies. The use of MR imaging to assess global spinal deformities is not common, as 

it requires the acquisition of several localized views at oblique angles and therefore, has long 

scan times. Moreover, supine positioning during MR image acquisition does not reflect true 

sagittal spinal curvature.  

3.6 Quantitative MR imaging 

Standard MR imaging sequences are effective for the characterization of gross 

morphological changes in the knee and spine. However, as explained in Chapter 2, local 

biochemistry and structure determine tissue biomechanics. Therefore, it is desirable to detect 

early degenerative changes in microstructure (collagen organization) and biochemical 

composition (proteoglycan, collagen, and water content) before irreversible damage occurs. 

Several quantitative MR imaging sequences including T2 mapping and T1ρ mapping have shown 

promising results for in-vivo characterization of musculoskeletal tissues. In contrast to standard 

MR imaging, quantitative MR imaging creates parametric maps of the tissues, where voxel 

values are measurements of tissue relaxation properties and can be used for cross-sectional or 

longitudinal comparisons. T2 mapping and T1ρ mapping are used in Chapters 6,7 and will be 

introduced in detail.  

3.6.1 T2 mapping  

T2 and T1ρ relaxation time parameter maps are derived by acquiring several image 

snapshots that differ only by varying a single parameter in the acquisition sequence, echo time 

and spin lock time, respectively, then performing pixelwise exponential fitting on the set of 

images to calculate the exponential decay constant for each pixel. Many T2 mapping sequences 

are based on the Carr-Purcell-Meiboom-Gill (CPMG) sequence used for NMR spectroscopy 90. 

When measuring the contribution of pure dephasing to the relaxation processes, CPMG probes 

the spectral density function near a frequency. First, a π/2 pulse along the x-axis rotates the net 
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magnetization onto the y-axis. Then, a train of equally spaced π pulses are applied along the y-

axis, acting to refocus the dephased spins. The number of π pulses (N) and acquisition time 

determine the window of the spectral density function that will be probed. For a fixed experiment 

length, a greater number of pulses (N) will create a bandpass filter whose center is shifted to 

higher frequencies. For fixed pulse to pulse spacing, each additional pulse alters the width of 

the bandpass filter and shifts it towards 0 frequency. N=0 (no π pulse) is equivalent to a 

Ramsey acquisition, and N=1 (a single π pulse) is equivalent to a spin-echo acquisition. 

Experiment length is bounded by T1 relaxation time, as signal intensity decreases over time and 

can reach a noise floor.  

 

Figure 3.4 The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. A) Bloch sphere schematic 
representation of a single π pulse. M0 magnetization is tipped down into the xy plane, and spins 
start to dephase. Then, a short π pulse flips the spins about the y-axis, spins rephase and form 
an echo. This process can be repeated for several π pulses, with Mxy net magnetization 
approximately exponentially decreasing with each additional echo. B) Simplified pulse sequence 
diagram for CPMG with 5 π pulses, each equally spaced by echo time (TE).  

 
The maximum number of π pulses that can be delivered in a specific time frame is 

determined by the total RF energy deposited into the tissue (specific absorption rate limits avoid 

tissue overheating), as well as the RF pulse characteristics. Due to these constraints, CPMG 

based T2 mapping sequences typically probe a spectral window close to 0. The higher the noise 
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at the spectral window probed, the more quickly nuclei will dephase and the lower the T2 

relaxation time. T2 relaxation time depends on the specific acquisition sequence, mainly, the 

number and spacing of pulses. An important consideration for T2-weighted images and T2 

mapping is the magic angle effect. The magic angle effect is a localized increase in T2 relaxation 

time when regions of highly organized collagen are aligned 55˚ relative to the main magnetic 

field B0. At this alignment, dipole-dipole interactions due to B0 field are minimized and T2 

becomes longer. Cartilage has a highly organized, layered structure and is located on a surface 

with high curvature (distal femur), which makes it susceptible to magic angle effects. 

When normal values for T2 relaxation times of biologic tissues are reported in literature, they 

are derived from a variety of CPMG-based sequences (including Fast Spin Echo) which probe 

slightly different ranges of the spectral density function depending on acquisition parameters. It 

follows that correlations between T2 relaxation values and proteoglycan/collagen content will 

vary with tissue orientation, pulse sequence, and biochemical assay. 

T2 relaxation times in disc and cartilage are widely regarded as proxies to quantify 

proteoglycan, collagen, and/or water content, however literature on the relationship between T2 

values and tissue biochemistry is inconclusive. In cartilage, T2 relaxation times have shown 

moderate91-93 and no94; 95 correlation with proteoglycan content. Studies have shown moderate 93 

and no 92; 94 correlation between cartilage T2 relaxation times and collagen content measured 

with biochemical assays. In-vivo, higher cartilage T2 relaxation times have been observed in 

patients with OA96; 97 as water that was restricted by the highly organized collagen structure and 

bound to proteoglycans becomes mobile. There is evidence to suggest T2 values sensitive to 

changes in cartilage collagen content, as T2 values increased after collagenase treatment98. In 

the meniscus, correlation with proteoglycan content is moderate and correlation with collagen 

content is weak95. 

In intervertebral disc nucleus, T2 relaxation times showed strong99; 100, moderate101, and 

no102; 103 correlation with proteoglycan content. T2 relaxation measurements in the annulus were 
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moderately100 and not102 correlated with proteoglycan content. Whole disc measurements 

showed strong correlation between T2 and proteoglycan content99. Nucleus and whole disc 

measurements in one study showed moderate negative correlations between collagen content 

and T2 relaxation time (r=-0.554 and r=-0.735, respectively)99. A different study also found a 

moderate positive correlation between 1/T2 and nucleus and whole disc collagen content 

(r=0.532, r=0.672) 102. In-vivo, degenerated discs have lower nucleus T2 relaxation values than 

healthy discs. 

3.6.2 T1ρ mapping  

T2 relaxation sequences are sensitive to the orientation-dependent magic angle effect and 

are not designed to probe processes in the higher spectral range (0.1-3kHz). Continuous wave 

T1ρ measurements present a feasible alternative to sample different windows of the spectral 

density function and minimize the contribution from dipolar interactions. T1ρ is often called “spin-

lattice relaxation in the rotating frame” but it is more accurately described as transverse 

relaxation in the presence of a continuous RF pulse. First, a π/2 pulse along the x-axis rotates 

the net magnetization onto the y-axis. Then, a continuous RF pulse is sent along the y-axis, 

preventing the spins from precessing away and ‘locking’ magnetization to rotate about the y-axis 

for a specified spin lock time (TSL). The carrier frequency of the RF pulse is the Larmor 

frequency (ω 0) and the spin-lock frequency (FSL) is determined by the amplitude of this pulse. 

Similarly to the CPMG sequence, the spin-locking pulse refocuses the dephased magnetization 

but does so in a continuous manner.  

By creating a local magnetic field B1, the spin-lock pulse determines the window of the 

spectral density function nuclei relaxation will be sensitive to, or the “filter function”. In a 

continuous wave T1ρ experiment, the FSL is fixed and several spin lock times TSL are acquired. 

T1ρ relaxation has an energetic exchange component near the Larmor frequency and a 

dephasing component at the user specified frequency (FSL). The greater the noise at the  
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Figure 3.5 Spin-relaxation under a continuous RF pulse (T1ρ). A,B) Bloch sphere representation 
of the spin-locking pulse. First, magnetization is tipped down into the xy plane by a short RF 
pulse, then a continuous spin-lock pulse is applied along the y axis, causing the spins to 
dephase and rephase locally. Mxy decreases over the duration of the spin lock pulse, 
approximately following an exponential decay. C) A simplified pulse sequence diagram for T1ρ: 
after the tip-down pulse, a pulse at a desired spin lock frequency (FSL) is applied for a set time 
(TSL). The experiment is repeated for several TSL and fit using an exponential decay model. 

 

specified spectral window, the faster the dephasing and the lower the T1ρ relaxation time. 

Several modifications to the basic T1ρ sequence have been devised to increase robustness to 

imperfections in RF pulses and B0 field inhomogeneities, including the addition of refocusing 

echoes and composite phase pulses (reviewed in Chen 2015104). At higher spin lock 

frequencies (1kHz, 2kHz) the spectral range probed is less affected by dipolar interactions, 

which in turn minimizes the sensitivity of the imaging sequence to magic angle effects. This is 

nicely illustrated in a study by Hanninen et al105 examining the orientation dependence for T2 

and T1ρ at different spin lock frequencies. Increased specific absorption rates at higher spin lock 

frequencies often limit the spin-lock frequencies feasible to apply in-vivo. An alternative to 
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continuous wave T1ρ is Adiabatic T1ρ, where the TSL is fixed and the FSL is modulated. The 

clinical utility of adiabatic T1ρ over continuous wave T1ρ has not been established.  

Empirically, literature has found mixed associations between continuous wave T1ρ and 

matrix content. In cartilage, T1ρ relaxation times have shown to be strongly106, moderately91; 94, 

and not correlated107 with proteoglycan content. However, several studies have reported T1ρ is 

sensitive to changes proteoglycan content106; 108; 109. Studies have not found a correlation 

between cartilage T1ρ and collagen content94; 107. In menisci, T1ρ is moderately correlated to 

proteoglycan content, and moderately correlated to collagen content95. The correlation with 

proteoglycan content is negative: as cartilage and menisci become degenerated and lose 

proteoglycans, T1ρ relaxation times tend to increase. 

In the intervertebral disc nucleus, T1ρ shows strong positive correlations with proteoglycan 

content101; 110; 111. As the nucleus becomes degenerated and proteoglycan content decreases, 

T1ρ relaxation times tend to decrease. T1ρ’s correlation with collagen content has not been 

verified with biochemical assays. T1ρ measurements have been correlated to radiographic 

measures of degeneration such as WORMS grades in knee OA for cartilage and meniscus112; 

113  or Pfirrmann grades for disc degeneration 114. 

Overall, mixed results in literature are unsurprising, as different experimental setups for T1ρ 

measurement fundamentally probe different ranges of the power spectral density function, this 

includes variations in sample source (human/bovine), scanning in-vivo/in-vitro, biochemical 

assays, B0 strength, FSL, tissue orientation, and pulse sequence. Readers are referred to work 

by Rautiainen et al where cartilage tissue is examined with multiparametric imaging (Figure 3.6).  

To summarize, x-ray imaging is well-suited for imaging of gross structural changes in the 

musculoskeletal system but provides limited soft tissue contrast. MRI, on the other hand, is a 

powerful imaging modality for the characterization of cartilage and disc structure and 

composition115. Both x-ray and clinical MR imaging are routinely used in practice, yet images are 

analyzed qualitatively, as quantitative annotations are time-intensive and require clinical  
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Figure 3.6 Multiparametric imaging of cartilage sample from a human knee with early stages of 
osteoarthritis, indicated by the loss of proteoglycan in the superficial layer. Top row: T1ρ and T2 
imaging sequences. As the spin lock frequency for CW- T1ρ decreases, T1ρ contrast starts to 
resemble T2 contrast, with slightly higher relaxation times. T2:T2 echo, DE-T2: adiabatic double-
echo T2 Bottom row: T1 relaxation sequence, amide I (collagen content), carbohydrate 
absorbance (proteoglycan content), parallelism index (collagen anisotropy), and tissue histology 
(proteoglycan content). Absorbance maps acquired using Fourier transform infrared imaging. 
Reproduced with permission from Rautiainen et al 201593. 

 
expertise. Quantitative MR imaging is not routinely used in clinical practice, as acquisition, post-

processing, and analysis methods are complex and time-consuming. In this Chapter, we have 

introduced two imaging modalities, explained their underlying physics and contrast 

mechanisms, and explored their role in the diagnosis and characterization of knee osteoarthritis 

and spinal degeneration in clinical and research studies. Imaging information is underutilized, 

and there is a need to improve image analysis sensitivity, speed, and precision. In this 

dissertation, we develop fully automatic tools for the analysis of medical images. The next 

chapter will introduce the technical advancements that have spurred the development of several 

fully automatic analysis tools for medical imaging, specifically representation learning. 
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4 Representation learning in medical 
imaging  

Over the past two decades, hardware advancements have vastly increased the efficiency of 

computers. This increase in computational power, coupled with wide clinical adoption of digital 

picture archiving and communication systems (PACS), has enabled researchers to develop 

automatic tools for medical image analysis. An introduction to representation learning will be 

presented, followed by an overview of problem formulation using convolutional neural networks 

and a discussion on longstanding challenges in the field of machine learning for medical 

imaging. The last part of the chapter will include a walkthrough of DioscoriDESS: our research 

group’s modular, user-friendly codebase for developing deep-learning segmentation algorithms. 

4.1 Representation Learning 

The performance of machine learning algorithms relies heavily on the representation of the 

input data. Good representations– or features– capture the variations and structure in the input 

data that are most useful to the downstream predictor. In feature engineering for images, 

significant effort is dedicated to the design of filter sets to extract relevant features (textures, 

edges, averages). One such example are Gabor filters, consisting of Gaussian kernel functions 

of a set scale modulated by sinusoidal plane waves with specific rotations.  
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Figure 4.1 Example feature extraction using Gabor filters. Each Gabor filter is convolved with 
the input image to create the output feature map. Figure adapted from 

(https://medium.com/@anuj_shah/through-the-eyes-of-gabor-filter-17d1fdb3ac97) 

 
Filters slide along the input image and convolve with the image patch to extract local texture 

information which is then used as input to a machine learning algorithm. Over the years, similar 

approaches have fallen out of favor, given the high manual effort and difficulty in determining 

optimal features a-priori. Rather than engineering features, representations can be learned from 

data. Representation-learning is broadly used to refer to the supervised or unsupervised 

process of discovering variations and underlying structure in the input data116. Unsupervised 

representation learning techniques do not have information about the downstream task and only 

rely on prior assumptions about data smoothness, sparsity, and natural clustering. In addition, 

for regularly sampled, spatially coherent data like medical images, the intrinsic dimensionality of 

the input is assumed to be much lower than the input dimensionality, i.e. data is expected to 

concentrate on a lower dimensional manifold. Some common unsupervised learning techniques 

include autoencoders117, k-means clustering, and principal component analysis118. On the other 

hand, in supervised representation learning, the feature extraction and prediction tasks are 
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connected, where the optimal feature extraction approach is learned for the task at hand. 

Supervised learning techniques still exploit the prior assumptions discussed above, but benefit 

from access to labeled examples to guide the learning process. Most convolutional neural 

networks (CNNs) fall under this category. Instead of convolving hand-engineered filters with 

images, CNNs have learnable filters, whose weights are randomly initialized and automatically 

adjusted during network training to improve feature representation for the prediction task116. 

Abstract, non-linear representations are learned through the stacking of several convolutional 

layers, activation layers, pooling layers, batch normalization layers, and fully connected layers, 

from which the term ‘deep’ in deep-learning originates.  

 

Figure 4.2 Convolutional kernels (filters) learned during training in Krizinshky et al.’s AlexNet. 
Each filter is size [11x11x3]. In addition to kernels resembling Gabor filters (at a variety of 
sinusoidal frequencies and rotations), the network learns filters for specific colors from the 

multichannel (RGB) image input. 

Well formulated representation-learning approaches have outperformed methods with 

carefully engineered features across nearly all computer vision applications. This is evident as 

the top scoring teams in imaging challenges have used deep learning: a popular example is the 

Common Objects in Context (COCO119) challenge which has object segmentation, object 

classification, keypoint detection, and captioning tasks, all of which have been successfully 

tacked using deep learning. More broadly, this highlights two important points for discussion. 

First, optimal imaging features are more abstract and dataset dependent than previously 

thought. This suggests effort should be focused on problem formulation and engineering of 

effective representation-learning systems. Machine learning algorithms should adapt to or easily 
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be re-trained on changing clinical data, such as a change in MR receive coil or a shift in patient 

demographics). Second, expanding beyond the initial task scope, success with representation 

learning raises the question whether the learning task itself would also benefit from being 

redefined. This can include an upstream or downstream change in the final task and is 

dependent on the availability of annotated data and clinical utility of the final outcome. A clinical 

grade, such as Lenke classification81 for spinal curvature in x-rays, may be an obvious target for 

a machine learning algorithm; when in reality, there exists a more informative intermediate 

representation, spinal contours, from which Lenke and other classifications could be derived. In 

a similar way, optimizing a task downstream of the original task can improve the accuracy of the 

final outcome. For example, starting with under-sampled K-space images of the knee, the most 

straightforward step is to learn a mapping between under-sampled and fully-sampled K-space 

images120. However, if the downstream application is to extract accurate knee imaging 

biomarkers, an end-to-end formulation can yield more effective feature representation as 

demonstrated by Caliva et al121. 

4.2 Convolutional Neural Networks 

Machine learning can be divided into four major levels of abstraction: Application/Data, 

Model, Optimization Problem, and Optimization Algorithm. In the next section, these levels of 

abstraction will be used to explain the basic principles behind convolutional neural networks. 

4.2.1 Application/Data 

First, the target clinical task, available imaging data, and labels are defined. Data labels can 

be of several degrees of quality: gold standard (validated by biopsy, blood labs), multi-expert 

annotator, single-expert annotator, weak labels (automatically extracted from a radiology report, 

approximated by a different algorithm) or even unlabeled but categorically related. Labels are 

also of different granularity: patient-wide, image-wide, regional, or dense. During development, 

more than one problem formulation should be considered to maximize algorithm generalizability 
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and clinical utility. Data should be divided by patient into non-overlapping splits for algorithm 

development (training, validation) and testing, with particular attention given to balancing 

demographic characteristics and labels across splits. Differences between available imaging 

data and real-world clinical imaging data should be noted (population shift, prevalence shift, 

acquisition shift). Ideally, datasheets for datasets should be released alongside algorithms 

following guidelines outlined by Gebru et al122. 

4.2.2 Model 

The structure of convolutional neural networks, specifically the concept of learnable filters, 

encodes implicit assumptions about imaging data. The network examines the input image 

through a set of small, local receptive fields and extracts elementary visual features (edges, 

corners, textures) into a feature map. These local feature extractors (filters) share learnable 

weights, enforcing prior assumptions about sparsity and translation equivariance. Translation 

invariance is encoded using pooling layers, as the feature representation should not be 

sensitive to the exact position of the object of interest in the input image. Other task-specific 

assumptions (priors) can be encoded into the CNN structure. The work by Winkels et al123  

provides an elegant example of 3D roto-reflection equivariant CNNs, achieved by performing 

geometrical transformations on the learnable filters before convolving with the image. A 

thorough presentation of geometric priors for deep learning is found in Bronstein et al124. Finally, 

the number of parameters, or network capacity, can determine the model’s ability to fit to the 

data. The value of novel CNN architectures is usually demonstrated on specific benchmark 

tasks, such as image classification, but the convolutional backbone can be adapted to other 

imaging tasks. 

One of the first CNNs was introduced by Yann LeCun in 1989125. LeNet5 was a simple, 7 

layer feed forward network used for handwritten digit classification on 32x32 pixel images. 

CNNs received little attention over the next several decades as they were too memory intensive 
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for hardware at the time. This was until early 2010’s when Krizinshky et al126 entered AlexNet, 

an 8 layer CNN, into the 2012 ILSVR Challenge and won with a top-5 error rate of 15.3% 

compared to the 26.2% of the second best entry. To train on 224x224 sized images, AlexNet 

introduced several technical innovations, mainly: overcoming memory limitations by 

reimplementing the 2D convolution operation on a graphical processing unit (GPU), developing 

a layer-wise distributed training method, and proposing regularization techniques (dropout, data 

augmentation) to prevent the 60 million parameter network from overfitting.  

Hundreds of CNN architectures and training strategies have been proposed in the last 

decade, three of which will be explained in detail due to their success in various medical 

imaging tasks: ResNet (Chapter 7), DenseNet (Chapter 8), and UNet (variant used in Chapter 5, 

Chapter 7).  

ResNet127 was proposed in 2015 by Hu et al to address issues with unstable gradients and 

high training errors (degradation problem) seen in increasingly deep neural networks. ResNet 

introduced residual connections, or “shortcuts”, where the outputs of previous layers are 

summed with the outputs of the current layer block (2-3 convolutional layers), in essence, 

reformulating the network to learn a residual function or a perturbation of the input features. 

Residual learning resolved problems with gradients and facilitated training of increasingly deep 

architectures. In fact, a Resnet with 152 layers won the 2015 ILSVR Challenge* scoring a top-5 

error rate of 4.49%. CNNs with ResNet backbones have shown promise in a wide range of 

medical imaging tasks from prediction of incident osteoarthritis from knee bone shape128 to 

vertebral compression fracture detection on CT scans129.  

Layer-wise connections were further explored in 2017 by Huang & Liu130. DenseNet 

proposed to use direct connectivity between all layers in a dense block, where each dense block 

had convolutional layers with the same feature map dimensions. In contrast to Resnet, 

DenseNet features are concatenated rather than summed, which results in higher parameter 

efficiency as it encourages filter reuse. DenseNet authors claimed comparable performance to 
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ResNets with only half the number of trainable parameters. DenseNet backbones have been 

used extensively in medical imaging tasks, from hip fracture detection on x-rays131 to prediction 

of total knee arthroplasty from MR images132. In practice, DenseNets are more parameter 

efficient than ResNets and thus less likely to suffer from overfitting, however, the dense 

connectivity places high demands on GPU memory during training. 

UNet was published in 2015 by Ronnenberger et al133 for microscopy image segmentation. 

Previous work by Long and Shelhamer134 using fully convolutional networks for pixelwise 

segmentation laid the foundation for the success of UNet. Long and Shelhamer fused feature 

maps with varying degrees of spatial precision by combining the final prediction layer (spatially 

coarse, high-level abstract) with lower layers (spatially fine) enabling the network to use global 

and local information. UNet further formalized the concept of fusing multiple feature levels by 

introducing a U-shaped encoder-decoder structure with skip connections at each level. 

Specifically, through the decoder structure, high-level abstract features are progressively up-

sampled, concatenated with spatially fine information from the encoder structure, and convolved 

to extract precise features for segmentation. In many ways, UNet’s encoder with sequential 

pooling at each level is similar to a CNN for classification, an observation which has been 

leveraged in several studies since. Mehta et al used an additional output from the bottom of the 

encoding branch to perform classification and segmentation simultaneously (multi-task 

learning). The kernel weights for the encoder branch in segmentation networks can be initialized 

with weights from an image classification task. The impact of UNet cannot be understated, since 

its publication as a conference paper for MICCAI in 2015, the work has been cited over 25000 

times. UNet and its variants have achieved state of the art performance in several medical 

imaging segmentation tasks including cartilage and menisci segmentation135; 136. Volumetric U-

Net variants (3D-Unet, V-Net) are used widely in medical imaging. V-Net137 improves upon UNet 

by learning a residual function at each encoder level and by replacing pooling and upsampling 

operations with convolutions, reducing the overall memory footprint. 
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*The ILSVR challenge ended in 2017, as 29/38 competing teams surpassed 95% accuracy 

and the organizers decided it was time to curate a more challenging dataset. 

4.2.3 Optimization problem 

Defining the optimization problem by building a loss function is one of the most important 

steps in problem formulation. Considering the available data and the granularity of the labels, 

one can define several imaging tasks: classification, regression, bounding box localization, 

keypoint localization, or segmentation, among others. Supervised representation learning 

requires a differentiable loss function to assess the similarity between network predictions and 

the provided labels. Common CNN loss functions include cross-entropy loss, mean-squared 

error loss, and Dice loss137. Loss functions can be composed of one or many loss terms with 

equal or weighted contributions. The selected optimization algorithm will aim to minimize this 

loss by finding feature representations that provide information to match the provided labels. 

Unlabeled but related images can also contribute meaningfully to training through consistency 

loss functions that exploit prior assumptions about data continuity, sparsity, and semantic 

similarity138. Training with labeled and unlabeled data is called semi-supervised learning, and 

requires that the input image P(data) contain information about the posterior distribution 

P(label|data)139. 

4.2.4 Optimization algorithm 

The loss landscape for neural networks is smooth but highly non-convex, and neural 

network training is framed as an unconstrained optimization problem. Stochastic gradient 

descent (SGD) is one of the most popular optimization algorithms for this problem. In SGD, 

training samples are split into minibatches, where the upper limit for batch size is set by GPU 

memory, and is a function of input size and network size. Per batch, a forward and a backward 

pass are used to calculate partial gradients with respect to model weights. The weights are 

updated in the direction of steepest descent by an amount specified by the learning rate. 
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Learning rate schedulers and adaptive learning rates add robustness to training dynamics by 

preventing divergence of the optimization algorithm or convergence to a local minima. Learning 

rate schedulers lower or increase the learning rate as training progresses given a fixed schedule 

(exponential decay for example). Adaptive methods such as Adam140 are considered variations 

of SGD as they compute adaptive learning rates for each parameter and include methods to 

dampen oscillations near local minima and lead to faster convergence. 

4.3 Challenges in representation learning for medical imaging  

Seminal papers in medical imaging have borrowed concepts from computer vision, yet there 

are unique challenges to working with medical data. Computer vision research strives to 

develop low-latency, low-footprint algorithms while medical imaging research prioritizes 

calibrated algorithms with easily identified failure modes141.  

Unlike natural images, medical images vary widely even within the same modality. As 

discussed in Chapter 2, the visibility of anatomical structures of interest are closely linked to 

these acquisition parameters, which in turn, can introduce significant variability in disease 

presentation. For example, thick slices in knee MR imaging can obscure the presence of a small 

meniscal tear. Or two T1ρ acquisitions with spin lock frequencies at 300Hz and 1kHz are 

sensitive to different windows of the spectral density function and will have different contrast. 

Heterogeneous datasets are common in medical imaging. Overall, prospectively acquired 

research data (Chapters 5,6,7) tends to be standardized compared to real-world clinical data 

(Chapter 8). This presents several challenges when trying to generalize algorithms from 

research data into clinical practice. The value of imaging data standardization is well 

recognized142. Several efforts are underway to standardize the quality of clinically acquired 

imaging and increase robustness of medical imaging algorithms to acquisition shift143; 144. 

Beyond uncertainty introduced by the imaging parameters, uncertainty in image labels is 

common. Even with expert graders, labels suffer from intra-rater and inter-rater variability. 
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Despite being time-inefficient, repeated annotations and majority consensus labelling are the 

standard workaround. Research from Sudre et al145 found modelling individual rater labels and 

consensus labels together improved classification algorithm performance. In a multi-rater 

segmentation task, Jungo et al146 found training on all raters’ annotations led to improved 

segmentations (higher Dice scores) and better estimates of pixelwise uncertainty. 

Overcoming label uncertainty is still an active area of research, but perhaps the most 

significant challenge facing medical imaging is data scarcity. The acquisition, storage, and 

labeling of medical data is a complex and expensive endeavor. Furthermore, collecting consent 

and guaranteeing data anonymization impose additional barriers to creating large, multi-institute 

datasets. When working with small datasets, researchers rely on transfer learning techniques 

and aggressive regularization strategies to prevent overfitting.  

Transfer learning extends the concept of representation learning for two related tasks116. An 

unknown subset of the features learned from the first task– for which a sizable training dataset 

exists – is believed to be useful for the second task– which has a limited dataset size. Network 

weights from the first task are used to initialize weights for the second task, after which the 

features are frozen or further adjusted during the learning process. ImageNet pretraining is a 

classic example of transfer learning, where features from a natural image classification task are 

used to initialize a medical image classifier. Transfer learning is ubiquitous in the medical 

imaging domain and it is hypothesized to work through improved weight scaling and feature 

reuse at the first layers of the network147. Similarly, experiments using synthetic images for hip 

cartilage segmentation found that transfer learning did not improve overall accuracy but led to 

faster convergence and rescued network performance as the training dataset became smaller. It 

follows that success of transfer learning is highly dependent on network parametrization and the 

relatedness of the tasks at hand.  

Another common regularization approach is data augmentation, also called label-preserving 

transformations, where the training images are realistically modified by changing positioning, 
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noise, intensity, and shape such that the network learns to be insensitive to those image 

variations. Augmentation creates plausible image-label pairs, providing more information on the 

joint distribution of P(data, label) and a better understanding of P(data|label). 

4.4 Causality in medical imaging 

A recent perspective piece by Castro et al139 called for the reframing of medical image 

representation learning through the lens of causal reasoning, arguing that outlining key 

assumptions about the data generating mechanism can identify sources of bias that could 

prevent generalizing to real-world clinical data. In other words, understanding if the medical 

imaging task is causal (predict effect from cause) or anti-causal (predict cause from effect) can 

shed light on the best strategies to combat data scarcity and dataset shifts. This connects nicely 

with the concepts of augmentation and semi-supervised learning presented above. In causal 

medical imaging tasks, such as the contouring of cartilage on knee MR images, changes in 

image acquisition parameters would change the labels since the labels are directly derived from 

the image. Therefore, in causal tasks, the P(data) contains no additional information about 

P(label|data) and semi-supervised learning is not likely to improve performance over supervised 

learning. For anti-causal medical imaging tasks, such as classifying Kellgren-Lawrence grade 

from MR images, the label is not directly derived from the input such that input image P(data) 

contains information about P(label|data) meeting the condition for semi-supervised learning. 

Data augmentation can provide value to both causal and anti-causal tasks139. 

4.5 DioscoriDESS: developing a deep learning segmentation framework 

Democratization of convolutional neural networks for medical imaging tasks is likely to 

improve the quality and utility of published algorithms. Manual segmentation of knee cartilage 

and menisci on high resolution MRI acquisitions is a time-consuming task: an expert observer  
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Figure 4.3 Example input MR image volume and predicted segmentation. 

 
may take up to 5 hours per 3D image. If imaging biomarkers– such as cartilage thickness and 

volume– are to be translated into clinical practice, it follows that the segmentation process must 

be automated.  

4.5.1 Objectives 

The road to a deep-learning prototype is long and error prone: for an early graduate student, 

up to 3 months of engineering effort are dedicated to environment setup, building custom data 

pipelines, debugging, and developing the network architecture and monitoring dashboards. This 

iteration cycle is inefficient, produces brittle code, and is prone to the accumulation of technical 

debt148. While excellent deep-learning wrappers exist, they either cater to natural images 

(Pytorch-Lightning, Fast.ai) or have a steep learning curve (monai.io). DioscoriDESS* was 

created in 2019 with the help of Francesco Caliva when the Majumdar-Pedoia group 

participated in the IWOAI cartilage segmentation challenge, challenge results reported in Desai 

et al136. Aiming to maximize organization, reproducibility, and scalability, DiscoriDESS is a bare-

bones Tensorflow codebase for training and inference of deep-learning based segmentation 

algorithms. By reducing time-to-first prototype, researchers have time to experiment with 

alternate problem formulations and go through additional design cycles. Since 2019, nearly a 

dozen projects in the Radiology Department have used DioscoriDESS for segmentation, with 
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several additional projects extending the core template to perform classification, regression, and 

image reconstruction.  

* Pedanius Dioscorides was a Greek Physician who worked in Rome in the 1st Century A.D. 

and authored 'De Materia Medica', the first seminal pharmacology book in Europe and the 

Middle East. He recommended the use of ivy as a treatment for musculoskeletal pain. The 

codebase is an amalgamation of his name and the Dual Echo Steady State (DESS) MR imaging 

sequence.  

A step-by-step walkthrough can be found in the git repository at 

git.radiology.ucsf.edu/sf048799/dioscoridess a short summary of the key features will be 

presented here. First, the user follows instructions to activate (or create) a compatible virtual 

environment on a GPU machine. Then, a use case is selected: training, inference with labels, or 

inference without labels. Each use case has a main python file (.py) and a template 

configuration yaml file (.yaml). Only the configuration file requires minor user input and no 

python programming knowledge is assumed. Once the configuration has been specified via the 

yaml file, a simple command line call ‘python main.py —cfg config_3D_seg.yaml —desc 

train_v1’ with the appropriate configuration file and run description, will begin the training and 

validation loop. Learning is monitored through text logs and Tensorboard dashboards. 

4.5.2 Organization/Reproducibility 

All training parameters and network architecture configurations are exposed and editable 

through a yaml configuration file (Figure 4.4), a copy of the exact configuration at runtime is 

printed at the beginning of the log file, and each run is named using a unique timestamp and 

user-input description. The timestamp prevents conflicts between runs with identical parameters 

and enables chronological ordering of experiments. These unique names are used for all logs, 

checkpoints, predictions. A system-wide random seed is set through the yaml file for 

experimental reproducibility. 
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Figure 4.4 Template yaml files for training and inference of a deep learning segmentation 
algorithm. Detailed documentation is found in the user guide. In the simplest of cases the user 
would modify paths (log_path, save_path, and data root), number of compartments to be 
segmented (num_classes), and image dimensions (im_dims, num_channels). 

4.5.3 Flexibility 

Flexibility: Off the shelf, DioscoriDESS includes 2D and 3D V-Net149 architectures and 

accepts single channel or multi-channel inputs. Customizable V-Net parameters are exposed in 

the yaml and include number of initial filters, network depth, and convolutions per level. 

Moreover, several softmax and sigmoid based loss functions are available including Weighted 

Cross Entropy, Dice, Dice with Cross Entropy, and Focal Loss, with optional per class 
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weighting. A variety of filetypes are supported for images and labels (.mat, .raw, .nii, .h5) as well 

as pathlists (.txt, .csv, .xls, .pkl). Finally, several regularization options such as early stopping150 

and dropout126 are included. The breadth and depth of the options provided are sufficient for 

most segmentation tasks and require no additional programming effort. Notwithstanding, the 

underlying functions are modular and can easily be extended to support custom dataloaders, 

losses, or network architectures. 

4.5.4 Scalability  

 Jupyter Notebooks are a ubiquitous format for deep learning tutorials. Interactive runs allow 

for plotting of intermediate outputs; however, experiment organization and parallelization are 

almost impossible using Jupyter Notebooks, not to mention code versioning or testing. By 

monitoring experiments through Tensorboard dashboard and log files, DioscoriDESS is  

 

Figure 4.5 Real time monitoring of training through Tensorboard dashboard. Scores for each 
tissue compartment are plotted separately. Each experimental run is named with a unique 
timestamp and description, runs names are searchable and can be filtered ("alltissue" is used to 
filter the runs in the example). Validation curves are sparser than training curves as training data 
is logged to Tensorboard with every gradient update, while validation occurs once an epoch at 
most. 
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compatible with standard queuing systems and can accommodate large scale, computationally 

expensive tasks such as hyperparameter tuning. In addition, it is space efficient, as data is read 

in through pathlists rather than relying on pre-specified folder structures or data stored in a 

common directory. This is ideal for cross-validation setups or for multi-sourced datasets that 

may be spread across several different folders as it avoids duplication and storage of images.  

4.5.5 Interpretability 

There are two built-in tools for interpretability: Tensorboard image visualization and 

uncertainty quantification using inference with Monte Carlo (MC) dropout. Single slice or multi-

slice images and segmentation outputs are visualized as RGB images through Tensorflow. Per 

class, ground truth is encoded in the red channel and non-binarized predictions are encoded in 

the green channel. Both channels are merged with a fully saturated blue channel and an alpha 

channel which is the union of both non-zero pixels in the red and green groups. Additive color 

theory results in 4 distinct pixel values: transparent for true negatives (TN), white for true 

positives (TP), cyan for false negatives (FN), and magenta for false positives (FP). 

Visualizations and Dice scores are updated real-time in a Tensorboard dashboard, allowing for 

qualitative and quantitative monitoring of network performance.  

Uncertainty maps are another interpretability method available. The MC dropout scheme is 

implemented in Tensorflow based on the work proposed by Gal et al151 and translated to 

medical imaging by Roy et al152. During training, dropout layers act as regularization to prevent 

overfitting153. By keeping dropout enabled during inference and repeatedly running stochastic 

forward passes through the network, variability in the output predictions can provide pixel-wise 

estimates of network uncertainty. This process is called Monte Carlo Dropout, as it places a 

probability distribution over the network weights such that the samples are approximating the 

posterior distribution. Quantifying uncertainty is crucial for running inference when no labels 

exist, as high uncertainty measurements can flag out of distribution samples. 
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To summarize, DioscoriDESS was developed to reduce technical debt by establishing a 

sustainable workflow and a scalable design pattern for deep learning experimentation in the 

medical imaging domain. 

 

Figure 4.6 Real time qualitative monitoring of segmentation performance through Tensorboard. 
Segmentation outputs for each compartment are plotted above the corresponding image slice, 
for volumetric segmentation key slices are specified in the yaml file. A) Runs are uniquely 
timestamped and sequentially ordered. B) Horizontal scroll bar in Tensorboard allows user to 
scroll through time. C) True positives (TP), false negatives (FP), false negatives (FN), and true 
negative (TN) are visualized for each class. 
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5 Towards Understanding Mechanistic 
Subgroups of Osteoarthritis: 8 Year 
Cartilage Thickness Trajectory 
Analysis 

The following manuscript is reformatted and reproduced with full permission from the publisher. 

It appeared as: 

Iriondo, C, Liu, F, Calivà, F, Kamat, S, Majumdar, S, Pedoia, V. Towards understanding 

mechanistic subgroups of osteoarthritis: 8-year cartilage thickness trajectory analysis. J Orthop 

Res. 2020; 1– 13. https://doi.org/10.1002/jor.24849 

5.1 Abstract  

Many studies have validated cartilage thickness as a biomarker for knee osteoarthritis 

(OA), however, few studies investigate beyond cross-sectional observations or comparisons 

across two timepoints. By characterizing the trajectory of cartilage thickness changes over 8 

years in healthy individuals from the Osteoarthritis Initiative Dataset, this study discovers 

associations between the dynamics of cartilage changes and OA incidence. A fully automated 

cartilage segmentation and thickness measurement method was developed and validated 

against manual measurements: mean absolute error 0.11-0.14mm (n=4129 knees) and 
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automatic reproducibility 0.04-0.07mm (n=316 knees). Mean thickness for the medial and lateral 

tibia (MT, LT), central weight-bearing medial and lateral femur (cMF, cLF), and patella (P) 

cartilage compartments were quantified for 1453 knees at 7 timepoints. Trajectory subgroups 

were defined per cartilage compartment as: stable, thinning to thickening, accelerated 

thickening, plateaued thickening, thickening to thinning, accelerated thinning, or plateaued 

thinning. For tibiofemoral compartments, the stable (22-36%) and plateaued thinning (22-37%) 

trajectories were the most common, with average initial velocity [μm/month], acceleration 

[μm/month2] for the plateaued thinning trajectories LT -2.66, 0.0326; MT -2.49, 0.0365; cMF -

3.51, 0.0509; cLF -2.68, 0.041. In the patella compartment, the plateaued thinning (35%) and 

thickening to thinning (24%) trajectories were the most common, average initial velocity, 

acceleration for each -4.17, 0.0424; 1.95, -0.0835. Knees with non-stable trajectories had higher 

adjusted odds of OA incidence than stable trajectories: accelerated thickening, accelerated 

thinning, and plateaued thinning trajectories of the MT had adjusted OR of 18.9, 5.48, and 1.47 

respectively; in the cMF, adjusted OR of 8.55, 10.1, and 2.61. 

5.2 Introduction 

Osteoarthritis is a debilitating whole joint disease involving biochemical and structural 

changes in articular cartilage, bones, ligaments, and muscles. Inpatient US hospital data from 

2013 listed osteoarthritis (OA) as the first and second most expensive condition billed to private 

insurance and Medicare respectively, resulting in over $15 billion USD in direct healthcare 

costs154. The number of individuals suffering from OA and associated costs will increase as the 

population ages155; further studies on the etiology and pathogenesis of the disease are needed 

to develop effective treatments.  

Articular cartilage is a dynamic, responsive tissue that distributes load and decreases friction 

in joints. Networks of type II collagen, hyaluronan, and aggrecan imbibe water providing 

cartilage its structure and compressive strength. Chondrocytes in these networks respond to 
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local mechanical and biochemical cues by actively balancing factors involved in tissue 

production and breakdown. Animal studies have shown that the disruption of this balance by 

metabolic, mechanical, or inflammatory tissue stress, and subsequent change of cartilage 

structure are hallmarks of early OA47; 156; 157. Clinical studies using magnetic resonance imaging 

(MRI) have confirmed the concurrent and predictive validity of cartilage thickness and volume 

change as biomarkers for knee OA in humans158; 159, yet quantitative findings vary widely 

between studies.  

Studies have found both cartilage thinning and cartilage thickening at different rates and 

anatomical locations in knee MRIs of healthy and diseased patients. Buck et al160 reported 

annualized rates of cartilage thickness change in 77 healthy knees of 0.28% (std 1.98) in cLF, -

0.37% (std 1.31) in LT, -0.17% (std 1.84) in cMF, and -0.32% (std 1.27) in MT; and Wijayaratne 

et al161 observed mean volume change of -1.6% (CI 1.2, 1.9) in 148 healthy patellas. In OA 

knees, rates of volume change observed are as high as -8.6% (std 12.6, n=107) in cMF, -4.6% 

(std 8.6, n=107) in MT162, and -4.5% (4.3, n=110) in P163. In a cohort of subjects followed for 5 

years after ACL injury, Eckstein et al164 observed annualized thickening of 4μm (CI -1, 9) in cLF, 

14μm (CI 10, 19) in cMF, 3μm (CI -1, 7) LT, and 10μm MT (CI 6, 13), with greater magnitude of 

change occurring in the early interval after injury. Few studies describe the distribution of values 

observed, and it has been noted that thickening and thinning often occur within the same 

dataset165, but averaging across all study subjects might obscure these differences. The ability 

to detect these changes is closely tied to study design and choice of measurement tool.  

OA etiology and pathogenesis are heterogeneous. Studies analyzing cartilage changes in 

small cohorts (n<200) may not have the power to describe rarer phenotypes of the disease. 

Large cohorts (n>1000) are preferred for sampling the full spectrum of cartilage health, but 

manual methods of quantifying cartilage thickness and volume are time-consuming. 

Furthermore, most studies perform two-timepoint comparisons where the ability to detect 

significant changes beyond measurement error relies on and improves with longer timescales (2  
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Figure 5.1 Schematic examples of net thickening, net thinning, and net stable trajectories 

 
years, 5 years, etc). However, as timescales become longer, net cartilage thickness changes do 

not always reflect true cartilage dynamics. For example, net thinning, net stable, and net 

thickening trajectories illustrated in Figure 5.1 are equivalent under two timepoint comparisons. 

To identify different trajectories associated with these changes, several longitudinal 

observations are needed. 

Early attempts to increase measurement precision and efficiency used semi-automatic 

2D/3D active contours to segment the femoral and tibial cartilage compartments 166-168. Cartilage 

volume is estimated directly from segmentations while surface to surface measurements (taken 

in normal167 or cylindrical 3D166 space) are used to estimate cartilage thickness. Recent MRI 

research has focused on the development of fully automatic algorithms for cartilage 

segmentation, using voxelwise classification (with 3D statistical shape models169), 3D active 

appearance models170, 2D/3D convolutional neural networks171; 172, and combinations thereof 173; 

174. Published methods for segmentation show strong accuracy and reproducibility, but 

thickness measurements are not validated with external data nor translated into large cohorts to 

characterize the dynamics of cartilage changes. 

In brief, the dynamics of cartilage changes are sensitive to the timescale in which changes 

are measured, the measurement tool, cohort size, and number of longitudinal observations. In 

this study, a fully automatic cartilage thickness measurement algorithm and trajectory analysis 

approach was developed, validated, and applied to 1453 healthy knees deemed at risk of 

developing OA, aiming to: 
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(1) Characterize the 8-year cartilage thickness trajectories of five cartilage compartments 

(lateral and medial tibia, lateral and medial weight-bearing femur, and patella) 

(2) Assess if specific subgroups of thickness trajectories have higher odds of incident 

radiographic OA 

(3)  Of cartilage thickness trajectories with no net thickness change over 8 years, identify 

proportion with non-stable thickness trajectories (i.e. differentiate pseudo-stability from true 

longitudinal stability 

5.3 Methods 

The Osteoarthritis Initiative is a prospective, longitudinal observational study following 

4,796 subjects with radiographic OA or considered at-risk of developing radiographic OA. 

Among the information collected, X-ray imaging is acquired at most visits to assess radiographic 

OA status using Kellgren-Lawrence grading. MR imaging is acquired at a subset of visits: 

structural imaging (DESS) is acquired for both knees while quantitative imaging (T2 mapping) is 

acquired for a single knee. An automatic segmentation and thickness measurement algorithm 

was developed to analyze structural images for subjects that did not have radiographic OA at 

the baseline visit. 

5.3.1 Segmentation Algorithm Development and Validation 

A fully automatic method was developed for reliable cartilage segmentation and thickness 

measurement of knee MRI volumes. A set of 6 convolutional neural networks were trained to 

segment femoral, tibial, and patellar cartilage and menisci (4 classes) on 176 Double Echo 

Steady State (DESS) knee MR volumes with manual segmentations of the femur, tibia, patella, 

and meniscus provided by iMorphics. Twenty-eight volumes were held out from training as a 

test set from which to report performance. A representative example of image augmentation in 

Figure 5.2 and details for each of the 6 trained networks and training procedure in Table 5.1.  
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Image volumes and ground truth segmentation masks were resampled isotropically using 

cubic interpolation before undergoing geometric transforms. Transforms included 3D rotation, 

3D affine deformation, 3D Bspline deformations, and combinations thereof. 3D rotation was 

performed about the x-axis, z-axis, or both, rotating +-6 to 17. 3D affine transforms rescaled the 

x,y,and z axes separately with a factor between 1 and 1.25. 3D B-spline deformations were  

performed by dividing the 2D image matrix into a coarse grid (1/4th of image matrix), creating a 

field of random deformations. The deformations are then smoothed with a gaussian filter with 

sigma 45 to 60 and applied to the native images and segmentations. Linear interpolation was 

performed on all segmentations, images and segmentations (after thresholding at 0.5) were 

resampled to native, anisotropic dimensions. Intensity based augmentations were used to mimic 

signal inhomogeneity without modifying the segmentation.  

Data was divided participant-wise into 3 independent splits (1/3rd training, 2/3rd validation). 

Independent training splits allowed for the development of diverse models to better correct for 

systematic errors175 and a large validation set provided accurate estimates of model 

generalizability for monitoring of network training and early stopping. Table 5.2 describes 

participant demographics for the OAI Dataset and all subsets used in this study. All models 

were implemented in Tensorflow 1.10 and trained with a weighted Dice loss149 using Adam on a 

single Nvidia TitanX (12196MiB) or Nvidia V100 (32480MiB) GPU. Per-class probability 

predictions from all models were aggregated into the final model ensemble following26. 

 

Figure 5.2 Single slice from augmented volume in training dataset. 
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5.3.2 Sub-Segmentation Algorithm Development  

The predicted cartilage compartments were then sub-segmented into lateral tibia (LT), 

medial tibia (MT), patella (P), central weight-bearing lateral femur (cLF), and central weight-

bearing medial femur (cMF) compartments Figure 5.3. Medial-lateral femur compartments were 

divided by the mid-sagittal slice of the femoral cartilage volume. Weight-bearing regions were 

defined as 60% of the distance between the trochlear notch and the posterior ends (as 

described in 176). The weight-bearing region femoral cartilage compartment was using a rule-

based method described in Figure 5.3. The weight-bearing femoral cartilage region was 

selected in order to minimize partial volume effects and such that the region definition matched 

that of the manual thickness validation data by Chondrometrics. 

 

Figure 5.3 (A) Example participant from the Osteoarthritis Initiative dataset. Input MR image is 
inferred on using the 6 trained neural networks. Probabilities from all the networks are combined 
to create the predicted segmentation, which is then sub-segmented into 5 compartments for 
thickness analysis. (B) Identification of weight-bearing region of the femur as defined by the 
“60% rule” on the example participant. The start of the intercondylar notch is identified as the 
anterior-most coronal slice with two pieces of femoral cartilage and meniscus present (yellow 
border) while the “double-bullseye” indicates the last slice of femoral cartilage (pink border). The 
60% rule is applied to define the weight-bearing region (yellow border to green border). 
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5.3.3 Automatic Thickness Measurement and Validation 

Per compartment and per sagittal slice, a Euclidean distance transform and skeletonization 

were performed Figure 5.4. The value of the distance map was sampled at each skeleton point, 

and all points across all slices were averaged to calculate mean thickness. Lateral and medial 

femoral compartments underwent Euclidean distance transform and skeletonization before sub-

segmentation. Only the weight-bearing region was included in the mean thickness calculation 

for the lateral and medial femur. 

Manual cartilage thickness measurements of the weight-bearing lateral femur, weight-

bearing medial femur, lateral tibia, and medial tibia for a subset of the OAI were provided by 

Chondrometrics. Automatic thickness measurements were tested for accuracy against manual  

thickness measurements (mean cartilage thickness of the lateral tibia, medial tibia, central 

lateral femur, and central medial femur) on 4129 knees; manual thickness measurements were 

not available for the patella. Manual and automatic method repeatability was compared in knees  

 

Figure 5.4 Binary masks of each compartment undergo a Euclidean distance transform and 
skeletonization. Average thickness values are estimated by sampling the distance map at each 
valid skeleton point and averaging across all points in all slices. 
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that were without radiographic OA (KLG<2) and had unchanged KLG one year later. Full 

automatic pipeline scan-rescan results on 15 patients from an OAI pilot study presented in 

Figure 5.5. A simulated 3D rotation experiment was conducted to investigate the effect of 3D 

positioning on average cartilage thickness measurements. 19 knees were randomly selected 

from entirety of the Osteoarthritis Initiative Dataset. These knees were resampled to isotropic 

(0.3646x0.3646x0.3646mm) resolution, rotated by +- 12˚ about the medio-lateral axis, 

longitudinal axis, and anterior-posterior axis, then resampled back to their native resolution 

(0.3646x0.3646x0.7mm). These images were then run through the segmentation, sub-

segmentation, and thickness measurement algorithms to investigate the effect of 3D position on 

average cartilage thickness. Results showing sensitivity of pipeline to 3D patient position in 

Figure 5.6. 

5.3.4 Cartilage Thickness and Trajectory Analysis 

Average cartilage thickness per compartment was computed for each timepoint, after which 

change in cartilage tissue thickness trajectories were analyzed in 1453 without radiographic OA 

at baseline (KLG<2), and complete MR imaging over 8 years (7 time points, from baseline to 96 

months). Incident radiographic OA was defined as KLG >=2 at any follow-up visit. Per 

compartment, each thickness measurement was treated as an observation in time, and a 

second-order polynomial fitting was performed to estimate a per-compartment thickness 

trajectory. The 15th percentile of least accurate polynomial fits were excluded from the analysis. 

Initial velocity and acceleration values of cartilage thickness change were derived from the first 

and second order time derivatives of the observed thickness trajectories. These time derivates 

are independent of initial thickness. Participant subgroups are defined by net cartilage thickness 

change, velocity, and acceleration per compartment. Each participant-knee is plotted as a single 

point on an initial velocity vs acceleration graph, to identify different types of cartilage 

trajectories. 
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Figure 5.6 The effect of rotation on average cartilage thickness. Mean absolute error (mm) and 
standard deviation are plotted as a function of rotation angle for each axis, for each tissue. 
Thickness measurements at angle 0 are considered the ground truth. Errors are the lowest 
within +-5˚ of the original positioning and increase with rotation angle. 
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A simulated 3D rotation experiment was conducted to investigate the effect of 3D positioning on average cartilage 
thickness measurements. 19 knees were randomly selected from entirety of the Osteoarthritis Initiative Dataset. These 
knees were resampled to isotropic (0.3646x0.3646x0.3646mm) resolution, rotated by +- 12˚ about the medio-lateral axis, 
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First, the stable subgroup contains knees with cartilage that had no net detectable change in 

thickness in the 8 year period and a steady thickness trajectory within the limit of reproducibility 

(±150μm). Then, the remaining knees are grouped according to net thickness change (μm), 

initial velocity (y-axis, μm/month), and acceleration (x-axis, μm/month2). Six additional 

subgroups are defined and color-coded: thinning to thickening (yellow), accelerated thickening 

(red), plateaued thickening (blue), thickening to thinning (green), accelerated thinning (purple), 

and plateaued thinning (orange). An example dynamics plot with possible curves is explained in 

Figure 5.7. Descriptive statistics for knee characteristics at baseline, cartilage dynamics, and 

odds-ratios for OA incidence during the 8-year period are reported for each participant 

subgroup. Lastly, knees with no net thickness change between baseline and the 8 year 

timepoint were divided into longitudinally stable (stable thickness trajectory) and pseudo-stable 

(non-stable thickness trajectory). 

 

Figure 5.7 Example dynamics plot for a single cartilage compartment. Each marker on the 
scatterplot represents a single cartilage trajectory over 8 years (n=1453 trajectories). The y-axis 
is initial velocity of cartilage thickness. The x-axis is acceleration of cartilage thickness. The 
diagonal-line (dotted) represents the line of zero net change over the 8 years, distance 
perpendicular to the line is proportional to cartilage thickness change, points further away from 
the diagonal had greater net thickness changes. Example thickness vs time curves for each 
subgroup are illustrated.  
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5.3.5 Statistical Analysis  

Segmentation method performance is assessed per compartment using mean and standard 

deviation Dice overlap scores. Accuracy and repeatability of thickness measurements and scan-

rescan are assessed by Lin’s concordance correlation coefficient, mean absolute difference, 

and root mean square coefficient of variation (RMS CV%), reported with 95% confidence 

intervals. Bland-Altman analysis is performed between manual and automatic thickness 

measurements per compartment. Mean and standard deviation for cartilage velocity and 

acceleration are reported per compartment, per subgroup. Two sided t-tests and while χ2 tests 

are used to assess baseline differences between the stable subgroup and each other subgroup. 

Radiographic OA incidence for the examined knee and contralateral knee are compared 

between the stable subgroup and all others using multivariate logistic regression adjusted for 

age, sex, and BMI, reported as Odds Ratios with 95% confidence intervals. Race was not 

included in downstream analyses given small sample size of non-Caucasian participants (91% 

Caucasian, 7% African-American and 2% other). For each analysis, significance level alpha = 

0.05 is adjusted for multiple comparisons using Bonferroni correction resulting in a p-value 

threshold of 0.001, results that meet Bonferroni threshold are bolded. 

5.4 Results 

The ensemble model had robust test set segmentation performance with mean (standard 

deviation) Dice overlap coefficients: femoral 0.890 (0.023), tibial 0.880 (0.036), and patellar 

cartilage 0.850 (0.068), and meniscus 0.874 (0.024). The ensemble model outperformed 

individual model predictions, corrected small errors in segmentation without requiring image 

postprocessing, and accurately segmented denuded bone surfaces Figure 5.8. Ensemble model 

errors were generally localized near the intercondylar notch and on cartilage edge slices with 

partial volume effects. 
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Figure 5.8 Predicted segmentation on a single slice of a test participant for the model 
ensemble, with the manual segmentation as a reference. 

Automatic cartilage thickness measurements showed good agreement with, and similar 

repeatability to, the independent sample of manual measurements. Manual and automatic 

measurements had strong concordance correlation coefficients ranging from 0.817 in the 

weight-bearing lateral femur to 0.929 in the lateral tibia Table 5.3.  The upper 95% CI for the 

largest mean absolute difference was 0.15mm, which is less than half the in-plane pixel 

resolution. As observed, the automatic method slightly overestimated cartilage thickness in the  

Table 5.3 Accuracy and reproducibility results for manual and automatic thickness 
measurements. Accuracy is assessed by comparing manual and automatic methods (n=4129) 
using Mean Absolute Difference, and Root Mean Squared Coefficient of Variation reported with 
95% confidence intervals in parenthesis. Manual and automatic method repeatability are 
assessed with the same metrics on consecutively acquired images, approximately 12 months 
apart, with unchanged KL grading of either 0 or 1 (n=313). 

      

   Mean Absolute Diff (mm) 
RMS CV 

(%)  
 

Manual vs 
Automatic 

LT 0.12 (0.11, 0.12) 6.16  
 MT 0.11 (0.11, 0.11) 5.84  
 cLF 0.14 (0.14, 0.15) 6.92  
 cMF 0.14 (0.13, 0.14) 7.55  
 

Auto 
Repeatability 

LT 0.04 (0.04, 0.04) 1.91  
 MT 0.04 (0.04, 0.04) 2.24  
 cLF 0.05 (0.04, 0.05) 2.43  
 cMF 0.07 (0.06, 0.07) 3.48  
 

Manual 
Repeatability 

LT 0.05 (0.04, 0.05) 2.25  
 MT 0.05 (0.04, 0.05) 2.63  
 cLF 0.05 (0.04, 0.05) 2.34  
 cMF 0.06 (0.05, 0.06) 2.92  
      

0.909 / 0.910 / 0.886 / 0.877

0.894 / 0.895 / 0.865 / 0.859 0.884 / 0.892 / 0.835 / 0.820

0.894 / 0.898 / 0.868 / 0.869 0.882 / 0.907 / 0.885 / 0.858 0.892 / 0.897 / 0.866 / 0.847

femur / tibia / patella / menisci

0.886 / 0.877 / 0.866 / 0.850

Dataset A Dataset CDataset B

Model Ensemble Manual Segmentation

3D Models

2D Models
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tibial compartments (bias 0.06 to 0.08mm) and the weight-bearing medial femur (bias 0.03mm), 

and underestimated thickness in the weight-bearing lateral femur ( -0.07mm) Figure 5.9. 

Stratified performance by radiographic OA grade (not shown), narrow limits of agreement reveal 

strong agreement between automatic and manual methods for KLG 0-3 knees (all LOA between 

-0.41 to 0.39mm) and more moderate agreement in KLG 4 knees (LOA between -0.52 to 

0.47mm) particularly in the weight-bearing femoral compartments. Repeatability results on a 

sample of radiographically unchanged KL0/1 knees reveals comparable performance between 

manual and automatic thickness measurements, as both methods’ RMS CV % was below 3.5% 

in all tibio-femoral cartilage compartments; results of the automatic method in a 15 patient scan-

rescan experiment had RMS CV% below 2.5% in these compartments, and CCC between 

0.957 and 0.989 for all compartments. The full pipeline was robust to small changes in 3D 

positioning. 

 

Figure 5.9 (A) Correlation plots between manual and automatic thickness measurements per 
compartment with line of best fit (n=4129 knees). (B) Bland-Altman plots with bias and limits of 
agreement per compartment, shaded portions indicate the 95% confidence interval of each. 
Manual thickness measurements were not available for patellar cartilage. CCC = Lin’s 
Concordance Correlation Coefficient, LOA = Limits of Agreement 

Manual Thickness Measurement (mm)

Mean, Automatic and Manual Thickness (mm)

Au
to

m
at

ic
 - 

M
an

ua
l 

Th
ic

kn
es

s 
(m

m
)

Au
to

m
at

ic
 T

hi
ck

ne
ss

 
M

ea
su

re
m

en
t (

m
m

)

B

A
Lateral Tibia (LT) Medial Tibia (MT)

Weight-bearing 
Lateral Femur (cLF)

Weight-bearing 
Medial Femur (cMF)

Lin CCC = 0.929


Bias (LOA) = 0.08 (-0.15, 0.32)
 Bias (LOA) = 0.06 (-0.19, 0.30)
 Bias (LOA) = 0.07 (-0.42, 0.28)
 Bias (LOA) = 0.03 (-0.31, 0.38)


Lin CCC = 0.886
 Lin CCC = 0.817
 Lin CCC = 0.881




 60 

Dynamics scatterplots for cartilage trajectories are visualized in Figure 5.10, average values 

for net cartilage thickness change over 8 years, initial velocity, and acceleration per subgroup 

are also reported. Thickness changes over time were not constant for any of the non-stable 

subgroups. Observing the points on the dynamics scatterplot, tibial cartilage trajectories had 

less variability (higher point density) than femoral and patellar trajectories. Points representing 

MT trajectories were centered on the diagonal (line of zero net change over 8 years) while a 

majority 66% of LT trajectories fell below the diagonal (net thinning). Femoral trajectories 

spanned a wider range of initial velocity and acceleration values, while patellar trajectories had 

the most variability overall (sparse point density).   

62-73% of trajectories that had no detectable net thickness change at the 8 year visit 

compared to baseline were pseudo-stable (non-stable thickness trajectories). The plateaued 

thinning and stable subgroups were the two largest subgroups for tibiofemoral compartments 

(LT, MT, cMF, cLF), together accounting for 49-67% of all knees. Thickening to thinning and 

thinning to thickening subgroups were the next most frequent, together occurring in 23-38% of 

knees. Accelerated thinning was less common 1.5-8.9%, and accelerated thickening was the 

rarest 0-1.7%, full statistics reported are Table 5.4. These relative proportions were not 

consistent in the patellar compartment (P) where plateaued thinning, thickening to thinning, and 

accelerated thinning subgroups accounted for 35%, 24%, and 24% of the knees respectively. 

Only 13% of knees fell within the stable subgroup, 2.5% plateaued thickening, and 0% 

accelerated thickening. Significant differences in baseline characteristics between the stable 

tibiofemoral compartment subgroups and other tibiofemoral subgroups were observed. The 

plateaued thinning subgroup had significantly higher baseline thickness (LT:2.1mm vs 2.02mm, 

MT:1.79mm vs 1.69mm, cMF:1.95mm vs 1.83mm, p<0.001) and a lower proportion of female 

participants than the stable subgroup (LT:52% vs 59.5%, MT:52% vs 66%, cMF:47.6% vs 

59.2%, cLF:45.7% vs 56.3%, p<0.05). A similar trend was observed in the accelerated thinning 
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Figure 5.10 8-year cartilage dynamics plot for LT, MT, cMF, cLF, and P compartments. Each 
marker represents a cartilage trajectory over 8 years. Mean (standard deviation) values are 
reported per subgroup for net 8-year change (8yr ∆ [μm]), initial velocity (vinit [μm/month]), and 
acceleration (accel [μm/month2]). 
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subgroup, with an even lower proportion of female participants (LT:46.5% vs 59.5%, MT:40.9% 

vs 66%, cMF:53.4% vs 59.2%, cLF:29.7% vs 56.3%, p<0.05). Thickening subgroups had higher 

proportions of female participants and tended to be younger. In the patella compartment, these 

observations differed: thinning subgroups had significantly lower baseline thickness than the 

stable subgroup (thickening to thinning 2.24mm, accelerated thinning 2.23mm, plateaued 

thinning 2.27mm vs stable: 2.33mm, p<0.05) and no sex differences in thinning or thickening 

subgroups were observed. The stable patella subgroup was also significantly lower in BMI than 

the thinning subgroups (thickening to thinning 27.3kg/m2, accelerated thinning 27.6kg/m2, 

plateaued thinning 27.2kg/m2 vs stable 26.1kg/m2, p<0.05), while this difference was not 

observed in the tibiofemoral compartments. In all compartments, thinning subgroups had a 

higher proportion of participants with contralateral OA at baseline and slightly older participants. 

Baseline WOMAC scores were not significantly different across any of the subgroups for all 

compartments. 

 Odds-ratios of radiographic OA incidence and contralateral OA status are estimated by 

comparing the stable subgroup against all other subgroups per compartment, adjusting for age, 

sex, and BMI, adjusted OR presented in Table 5.5. For all cartilage compartments, belonging to 

the accelerated thinning subgroup was associated with significantly higher odds of OA incidence 

(LT:2.68, MT: 5.48, cMF: 10.1, p<0.001; cLF:3.17, P:2.47, p<0.01), with the medial 

compartments having the highest OR. Both thickening and thinning cMF subgroups were 

associated with significantly higher odds of OA incidence (2.61 to 10.1 OR depending on group, 

p<0.001), with thinning subgroups also having higher odds of contralateral OA. All patella (P) 

thinning subgroups were associated with increased OR for OA incidence (2.47 to 2.56 OR, 

p<0.01). While the accelerated thickening subgroups for the medial tibia and central lateral 

femur showed high and significant OR (MT: 18.9,  cLF:4.97 p<0.001), these observations were 

limited by small sample sizes (n = 7 and 25 respectively, see Table 5.4 for counts per 

subgroup). 



 64 

Table 5.5 Adjusted Odds-Ratios of OA incidence and contralateral OA, adjusted for age, sex, 
and BMI, where * p<0.01 and ** p<0.001 (bold) between the stable subgroup and all other 
subgroups (accelerated thickening, plateaued thickening, thickening to thinning, accelerated 
thinning, plateaued thinning, and thinning to thickening). Results reported as OR (95% CI). 
Empty cells represent subgroups with 0 knees, for subgroup sizes, refer to Table 5.4. 

 

5.5 Discussion 

5.5.1 Cartilage Thickness Trajectory Analysis  

 Initial cartilage thinning and thickening rates in the non-stable subgroups fit within expected 

values reported in literature. The thinning162; 163 / thickening164 rates in disease establish lower / 

upper bounds for rates of cartilage change in knees that are at-risk of developing OA but are 

otherwise healthy. Healthy tibiofemoral rates in literature are centered close to zero with the 

weight-bearing femoral compartments having the greatest variability160; this is consistent with 

subgroup results. Cartilage change acceleration was non-zero in non-stable trajectories, which 

logically follows as cartilage could not thin or thicken indefinitely (a majority of tibiofemoral 

cartilage compartments were stable or plateaued thinning). Observed rates of change (initial 

velocity) in healthy patellar cartilage skewed negative (61.7% of total trajectories belonging to 

accelerated thinning, plateaued thinning, thinning to thickening) and were higher in magnitude 

than the tibiofemoral compartments, as similarly reported in 161; 177. Plotting all the cartilage 

thickness trajectories and estimating average rate of initial cartilage thickness change by 

subgroup highlighted the heterogeneity of the studied population, even between cartilage 

compartments as factors such as loading and varus/valgus limb alignment can differentially 

thinning to 
thickening

accelerated 
thickening

plateaued 
thickening

thickening to 
thinning

accelerated 
thinning

plateaued 
thinning

OA incidence 2.12 (0.99,  4.52) 1.53 (0.57, 4.08) 1.46 (0.93, 2.28) 2.68 (1.59, 4.51)** 1.17 (0.78, 1.76)
contralateral OA 1.85 (0.85, 4.05) 1.52 (0.61, 3.79) 1.51 (1.02, 2.24) 1.52 (0.92, 2.50) 0.96 (0.68, 1.37)
OA incidence 1.34 (0.80, 2.24) 18.9 (3.47, 102.6)** 2.28 (1.29, 4.03)* 0.82 (0.48, 1.39) 5.48 (2.10, 14.3)** 1.47 (1.00, 2.15)
contralateral OA 0.96 (0.60,1.55) 1.61 (0.28, 9.31) 1.54 (0.86, 2.77) 1.19 (0.77, 1.83) 2.83 (0.86, 9.29) 1.27 (0.90, 1.79)
OA incidence 3.17 (1.71, 5.88)** 8.55 (2.30, 31.8)* 3.26 (1.69, 6.31)** 3.67 (2.03, 6.63)** 10.1 (4.84, 21.0)** 2.61 (1.49, 4.58)**
contralateral OA 1.50 (0.93, 2.41) 0.39 (0.05, 3.11) 1.23 (0.71, 2.16) 2.13 (1.36, 3.34)** 2.56 (1.20, 5.50) 1.63 (1.09, 2.45)
OA incidence 1.03 (0.64, 1.66) 4.97 (2.03, 12.2) ** 2.18 (1.30, 3.65)* 1.74 (1.08, 2.81) 3.17 (1.39, 7.22)* 1.06 (0.66, 1.71)
contralateral OA 0.95 (0.63, 1.41) 5.05 (1.89, 13.5)* 0.54 (0.31, 0.95) 1.02 (0.67, 1.55) 1.09 (0.42, 2.84) 1.11 (0.75, 1.64)
OA incidence 2.11 (0.72, 6.18) 2.91 (0.86, 9.89) 2.56 (1.33, 4.95)* 2.47 (1.27, 4.81)* 2.53 (1.33, 4.79)*
contralateral OA 1.70 (0.65, 4.48) 1.95 (0.72, 5.27) 1.41 (0.84, 2.39) 1.81 (1.07, 3.06) 1.49 (0.91, 2.44)

net thinning

LT

MT

cMF

cLF

P

net thickening
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impact specific cartilage compartments. As suggested by 178, it is possible that previous studies 

have also observed populations with both thickening and thinning cartilage, but averaging 

procedures cancelled out any significant effects.  

Older age, female sex, and high BMI have been linked to increased likelihood of OA 

incidence179. Interestingly, although there were significant baseline differences in these factors 

between each subgroup and their stable counterpart, adjusted and unadjusted odds ratios were 

similar. In other words, age, sex, and BMI differences were not driving increased OA incidence 

risk among the trajectory subgroups in OAI. Race was not evaluated in relation to cartilage 

trajectories given insufficient numbers of non-Caucasian participants; recruitment of diverse 

cohorts remains an important effort to reduce disparities in health research. Within each 

compartment, the strength of the association between cartilage trajectory and OA incidence 

varied by subgroup, even among subgroups with similar net changes. This may indicate that 

trajectories which would be equivalent under two timepoint analysis (plateaued 

thickening/accelerated thickening/thinning to thickening or plateaued thinning/accelerated 

thinning/thickening to thinning), have different associations with clinical outcomes. Non-stable 

trajectories were associated with increased likelihood of OA incidence particularly in the medial 

compartments of the knee, which is expected given that medial loading tends to be greater than 

lateral loading. Even thinning trajectories in the patella were associated with higher odds of 

tibiofemoral OA incidence (~2.5). Cicuttini et al163 suggests tibiofemoral and patellofemoral 

cartilage changes have different disease pathways, however it is possible this increased 

likelihood reflects a common inflammatory mechanism of OA. Notwithstanding, the definition of 

structural OA incidence by radiographic narrowing (KLG) is limited: studies show joint space 

narrowing can occur without cartilage thinning (via mensical extrusion)180 and cartilage thinning 

can occur without radiographic narrowing181. 
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5.5.2 Algorithm Development and Validation 

The measurement tool and analysis approach in this study were developed with the purpose 

of describing cartilage dynamics. Despite the method’s robust performance, methodological 

choices must be justified and limitations acknowledged.  

The segmentation model ensemble had sub-voxel accuracy and results were competitive 

with those in literature (different data splits prevent a direct comparison): Dice overlap 

coefficients FC 0.897, LT 0.918, MT 0.861, P 0.842, LM 0.895, MM 0.874171; at 12m/24m FC 

0.894/0.891, LT 0.904/0.900, MT 0.861/0.858173. While creating a multi-model ensemble 

increases computational load during inference, it addresses the shortcomings of individual 

models without requiring any manually specified post-processing such as removing small 

connected components (as in 171) or introducing shape priors (in 173; 174). In fact, the 

segmentation training and testing dataset did not reflect the full spectrum of OA pathology and 

had few non-OA participants, therefore post-processing learned from this dataset could overfit 

and fail to generalize over the entire OAI dataset. Using aggressive augmentation, independent 

training splits175, large validation splits, and a creating a model ensemble182; 183 likely served to 

regularize the segmentation algorithms and improve generalizability. 

Thickness158; 159; 164; 166-170; 181; 184-193 and volume161; 162; 166; 168; 177; 192-197 are the most frequently 

used cartilage biomarkers in literature; thickness was selected as the outcome variable since it 

shows similar measurement precision and sensitivity to change as volume166; 168; 192; 193, and had 

a large external dataset available for validation, although thickness data was not available for 

the patella. Scan-rescan precision and accuracy of the thickness analysis method developed in 

this study were comparable to those of a recent study by Bowes et al170. A major limitation of 

this study is the averaging of cartilage thickness throughout each cartilage compartment. 

Ideally, analysis would be performed within the patient frame of reference188; 198 or with 

anatomical landmarks189, as location specific thickness changes have been reported in 

literature189; 190. It is possible that simultaneous thinning and thickening within the same cartilage 
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compartment could be occurring undetected. Further advancements in the thickness algorithm 

will address this shortcoming to perform local analysis of cartilage changes. 

In this study, a trajectory analysis approach used 7 longitudinal observations over 8 years to 

create a polynomial fit that was robust to individual timepoint noise. Poor polynomial fits were 

removed from analysis as they likely represent trajectories with rapid changes (ex. thinning to 

thickening to thinning) where a second degree polynomial is not sufficient to fit the data or 

significant measurement noise exists at multiple timepoints. Net thickness change, initial 

velocity, and acceleration values were independent of initial cartilage thickness (this value 

disappears in the first and second order time derivatives of the polynomial). There are normal 

variations in cartilage thickness which may be associated with OA risk199, correlations remained 

significant even after adjusting for factors associated with baseline cartilage thickness such as 

sex and BMI. While thickness change metrics were quantified reliably, subgroup definitions 

were rule-based and the data did not naturally cluster in this form. Representative subgroup 

curves and names are examples of cartilage trajectories that exist within that subgroup, as 

cartilage changes exist on a continuum. Net thickness change, initial velocity, and acceleration 

values are rich descriptors of patient trajectories which can be used with or without the 

subgrouping scheme in future analyses. 

5.5.3 Clinical Relevance of Proposed Methodology 

In a recent paper191 aiming to predict accelerated knee OA incidence from baseline 

clinical/demographic variables, the addition of cartilage thickness measurements from MRI 

provided almost no benefit to the classification models. The authors then concluded the high 

cost of acquisition and analysis of MR images for structural assessment of the joint are not 

justified. This highlights an important point: this current study is not proposing using longitudinal 

observations of at-risk populations to predict radiographic OA incidence, as this is neither 

feasible nor justified. Instead, the methodology and findings presented here hold significant 
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research potential. Results emphasize the heterogeneity of cartilage dynamics, reaffirming the 

differences in OA etiology and pathogenesis. Reference values for velocity and acceleration of 

thickness changes per subgroup per cartilage compartment are established over 8 years, which 

could serve as valuable benchmarks for developing high fidelity, patient-specific computational 

models of cartilage degeneration, such as in 198. Additionally, these velocity and acceleration 

metrics could be used as objective structural outcomes to investigate OA incidence and 

progression, understanding which modifiable and non-modifiable risk factors contribute to 

cartilage dynamics. Research on associations between baseline variables and thickness 

trajectory subgroups could assist in the a-priori selection of patients in clinical trials of disease 

modifying OA drugs (DMOAD). 

5.5.4 Conclusions  

 In summary, knees with non-stable cartilage thickness trajectories over 8 years had 

higher adjusted odds of OA incidence than stable trajectories. Non-stable trajectories did not 

have a constant rate of thinning or thickening. Up to 73% of knees that would appear stable 

under a two timepoint comparison between baseline and 8 years, did not have a stable 

trajectory. Improved phenotyping of these subgroups and further studies on associations 

between thickness trajectories and clinical endpoints could uncover important insights on the 

pathophysiology of OA. 
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6 Deep learning discovery of 
osteoarthritis biomarkers through 
dense and hollow point clouds 
This chapter contains research that was submitted to the International Society for Magnetic 

Resonance in Medicine (ISMRM) in 2020 and 2021. These are two proof-of-concept studies 

exploring the use of point clouds for feature learning from structural and quantitative knee MR 

imaging sequences. Performing averaging of measured tissue parameters (thickness, T2 

relaxation time) over a region-of-interest is standard practice in osteoarthritis literature. As 

discussed in the previous chapter, an averaging approach is not ideal as it diminishes spatial 

precision and lowers sensitivity to local changes. To improve the analysis of structural and 

quantitative knee MR images, we propose to encode tissues as point clouds and learn OA 

features directly from these points. Finally, we assess how effectively these learned features 

perform in discriminating between subjects with and without radiographic OA and examine their 

utility for predicting incident radiographic OA. Our findings suggest point cloud learned features 

are promising biomarkers for preclinical OA. 

6.1 Introduction  

Osteoarthritis (OA) is a painful, whole joint disease responsible for over $15 billion in 

direct healthcare costs annually in the United States. Greater understanding of modifiable and 
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non-modifiable OA risk factors is needed to improve preventative care. Several studies have 

reported distinct cartilage thinning patterns189 158 and meniscal shapes200 201 across subjects with 

increasing disease severity. While these studies have successfully identified morphological 

features associated with current OA, less research exists on identifying morphological features 

of preclinical OA. In contrast, quantitative MR sequences, such as T1ρ and T2 mapping, have 

been widely investigated for their potential to identify early degenerative changes characteristic 

of preclinical OA. Although promising, the power of quantitative MR sequences is limited by 

ineffective feature representation and computationally intensive image processing. As discussed 

in Chapter 4, handcrafted features, such as region-of-interest averaging, laminar analysis, and 

texture analysis are limited in their expressive capabilities. In this work, we propose a point 

cloud deep learning approach for fully automatic extraction of OA features from MR imaging, 

with the working hypothesis being that features that discriminate between subjects with and 

without OA can be used to identify preclinical OA. Hollow point clouds are created from 

structural MR images and used to learn morphological features of OA (cartilage and meniscus 

shape, thickness, etc). Dense point clouds are created from quantitative MR images, specifically 

T2 maps, to learn compositional features of OA (cartilage T2 texture, local T2 hotspots, etc). If the 

models are well calibrated, probability of OA (P(OA)) predicted by the trained network should, in 

theory, be related to the disease severity: a tissue with a P(OA)=0.1 should be a healthier than 

a tissue with a P(OA)=0.4, even if both are classified as By representing tissues as point clouds 

instead of a voxel grid or mesh, we enforce data sparsity while preserving global and local 

geometric information. Practically, point cloud encoding was chosen as an efficient way limit the 

number of trainable network parameters and reduce memory demands during training. 

6.2 Methods 

At the time of writing, the OAI dataset includes MR imaging at seven timepoints over the 

course of 8 years. Structural imaging was acquired for both knees while quantitative imaging 
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was acquired for a single knee. Therefore, the datasets for dense and hollow point cloud 

experiments were split differently and analyzed independently. Specifically, the dense T2 point 

cloud experiments use a cross-validation split, while the hollow structural point cloud 

experiments use a single train/validation/testing split. Each splitting strategy attempts to balance 

subject demographics and outcomes across the splits. 

6.2.1 Dense point cloud creation from T2 dataset 
 

The OAI dataset includes 25,729 T2 maps acquired on 3T MR scanners using a 2D 

multi-slice multi-echo (MSME) sequence202 (0.313x0.446mm in-plane resolution, 3mm slice 

thickness, 10/20/30/40/50/60/70ms TE, 2700ms TR). A V-Net137 neural network developed by 

Alaleh Razmjoo was trained on 3,921 knee MR images to segment 5 cartilage compartments 

(lateral femur, medial femur, lateral tibia, medial tibia, and patella). Segmentations were inferred 

for all the available MSME images in the OAI, after which voxel-wise exponential fitting was 

performed to calculate T2 relaxation values97.  

The final T2 dataset is described in Table 6.1. Cross-validation splits for dense point 

cloud experiments were created and roughly stratified by demographics and outcomes. Femoral 

and tibial cartilage compartments are parametrized as dense point clouds. Dense point clouds 

are a non-ordered collection of 16,384 randomly sampled, non-integer points within the 

segmentation mask (point-to-voxel ratio roughly 1.6,), where each point encodes its Cartesian 

coordinates (x,y,z) and T2 relaxation time (ms), as shown in Figure 6.1. 

Each point cloud is zero centered and scaled to its 90th percentile distance, T2 values in 

ms are divided by 100 to approximately 0-1 normalized. Creation of single point cloud takes less 

than 1.5s on IntelCore i7 6700K CPU, making it faster than other parametrization methods.  
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Table 6.1 Description of subjects and images per balanced split. 20% of data was set aside as 
a test split, and remaining data used for 5 training/validation splits (64%/16%). Variables are 
listed as mean with 95% confidence interval or count with percent total. Each split distribution is 
compared to the population distribution (orange), using a two-sided t-test for continuous 
variables, and a chi-squared contingency test for categorical variables (p<0.05). 

 

 

Figure 6.1 Dense femoral and tibial cartilage point clouds with T2 relaxation values (n x 4) are 
shown for three study subjects with increasing disease severity. Yellow arrows (L to R) show 
locally elevated T2 and loss of coverage in the posterior medial tibia; diffuse elevated T2 in the 
superficial layer of the lateral femoral condyle. Red arrows (L to R) show a small T2 hotspot in 
the medial femur; complete loss of cartilage in the lateral weight bearing region.  

T2 relaxation (ms)

Late Stage OA : KL 4Control : KL 0

medial tibia

m
edial fem

ur

lateral tibia

Early Stage OA : KL 2

lateral fem
ur

( x, y, z, T2 )  n=16384 points( x, y, z )
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6.2.2 Hollow point cloud creation from DESS dataset 
 

A total of 40,796 DESS images with cartilage and meniscus segmentations were used to 

create hollow point clouds and split into train/val/test (46%,36%,18%), demographics and 

outcomes for the dataset are described in Table 6.2. MR imaging parameters and segmentation 

network details are described in Chapter 5 and 203. Segmentations were inferred for all the 

available DESS images in the OAI. Femoral, tibial, and patellar cartilage and menisci point 

clouds were created using marching cubes and random mesh sampling of 8,192 points per 

tissue. The experimental setting examined four unique point cloud sets: PAT-FEM-TIB, PAT-

FEM, FEM-TIB, and MEN (Figure 6.2) made from patella (PAT), femoral cartilage (FEM), tibial 

cartilage (TIB) and meniscus (MEN) compartments. Each point cloud set was zero centered and 

-1 to 1 normalized. 

Table 6.2 Description of subjects and images in testing, training, and validation splits. For 
continuous descriptors, mean and 95% confidence interval is reported, differences against 
population (all OAI data) are tested using a two-sided t-test. For categorical descriptors, count 
and percent are reported and differences tested with a chi-squared contingency test. Significant 
differences (p<0.05) are highlighted in blue. OA=Osteoarthritis (r=radiographic incidence, 
sr=symptomatic and radiographic incidence), KOOS=Knee Injury Osteoarthritis and Outcome 
score, WOMAC=Western Ontario and McMaster Universities Arthritis Index, KL=Kellgren 
Lawrence.  
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Figure 6.2 Four example subjects with their processed hollow point cloud set. PAT- FEM-TIB, 
PAT-FEM, FEM-TIB, and MEN compartment combinations were used to train point cloud 
networks for OA diagnosis. Each compartment is represented by 8192 randomly sampled 
points. FEM= femur, TIB=tibia, PAT=patella, MEN= menisci 

 

6.2.3 Point cloud network training and statistical analysis 
 

After hollow and dense point cloud datasets were created, a PointNet++like network 

architecture (LSAnet 204 205 2.3M parameters, illustrated in Figure 6.3) was trained for each 

experiment. Diagnosis of current radiographic OA (binary classification of KL score>=2) was 

selected as the learning task. Label smoothing was used during model training to encourage 

learning calibrated outputs and to prevent overconfident predictions: predicted probability of OA 

should reflect the actual probability of sample OA. The architecture was implemented in 

Tensorflow 1.8 and trained on an NVIDIA V100 32GB GPU. Dense point cloud networks were 
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trained for 65 epochs using cross entropy loss with label smoothing=0.3, random point dropout, 

batch size=20, learning rate=0.0015, and Adam optimizer. At test time, logits averaging was 

used to ensemble the 5 cross validation model predictions. Hollow point cloud networks were 

trained for 20 epochs using cross entropy loss with label smoothing=0.2, batch size=20, 

learning rate=0.001, and Adam optimizer.  

 

 

Figure 6.3 Local Spatial Aware (LSA) blocks and Spatial Feature Extractors (SFE) from the 
LSA-Net architecture proposed in Chen et al, allow neural networks to learn increasingly 
abstract features from the full point cloud by lifting the dimensions of the spatial xyz features to 
match the features extracted by the previous LSA block before concatenation. Network 
parameters are specified above each block in the schematic. Figure input shows example using 
dense T2 point clouds, network architecture for hollow structural point clouds is identical with 
one fewer channel for input [BxNx3]. 

For the dense point cloud experiments, false positive predictions were examined to 

understand if the network learned patterns that are characteristic of OA but may precede 

radiographic OA. Receiver Operating Characteristic, Precision Recall, and calibration curves 
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were plotted for the test set in each experiment. For the hollow point cloud experiments, 

downstream statistical analysis was conducted to understand the utility of the learned features 

for time-to-event prediction of radiographic OA, adjusting for clinical factors. From the test set, 

patients without radiographic OA at baseline were selected to extract right censored time-to-

event data for radiographic OA incidence (860 observations, 103 events). Model concordance 

index (c-index) was compared between a baseline Cox Proportional Hazards Regression model 

using only clinical factors and four models with clinical factors and learned OA features, i.e. the 

P(OA) from a specific point cloud model. 

6.3 Results  

6.3.1 Dense T2 point clouds 
 

Test set performance for the diagnosis of radiographic OA using dense point clouds is 

reported in Table 6.3 and test set ROC, PR, and calibration curves are plotted in Figure 6.4. The 

networks had higher sensitivity on the test set than on the validation set, while specificity was 

lower in test compared to validation (except for the CV2 model). The 5-model ensemble had the 

highest performance with a final sensitivity of 0.8244, specificity of 0.8259, ROC AUC 0.904, 

and PR AUC 0.899.  

The KL grades of the false positive (FP) and false negative (FN) test set predictions from 

the model ensemble model are examined. 94.7% of FN were KL 2, 5.3% KL 3; FP were 1.5x 

more likely to be KL 1 than 0. Among the FP group, 9.3% would progress to have radiographic 

OA within 1 year, and 13.3% within 2 years, which was higher than the average for the entire 

non-OA group (3.2% within 1yr, 5.6% within 2yr). This suggests the point cloud network is 

capable of learning T2 patterns characteristic of early OA, 1-2 years before the onset of 

radiographic changes. 
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Table 6.3 Individual network performance on each splits’ validation and common test data. 
Performance of the logits-averaged ensemble on test data is also reported. Detection of T2 
changes close to the onset of radiologically defined OA requires greater sensitivity than 
specificity, therefore the checkpoints with the highest sensitivity were chosen for inference 
(epoch 5, 33, 15, 23, 7 for networks CV0-CV4). CV3 had the best standalone performance, 
while the ensemble was the highest performing overall, competitive with previous literature and 
current multimodal approaches.  

 

 

 

Figure 6.4 ROC, PR, and reliability diagram for OA classification. An ensemble of the 5 cross-
validation (CV) folds achieved an ROC-AUC and PR-AUC 0.904,0.899 respectively. Reliability 
diagram reveals overestimation of probability of OA at low probabilities.  

 
A recent study by Pedoia et al.206 performed a similar OA diagnosis task on the baseline 

OAI T2 dataset and achieved a sensitivity and specificity of 74.53%, 76.13% by using atlas-

based registration for cartilage segmentation, then flattening tibial and femoral cartilage T2 

maps, and training a DenseNet convolutional neural on the final maps. Although a direct 

comparison was not warranted due to different dataset splits, the proposed point cloud method 

for learning features from T2 maps showed a promising improvement of 7.91%, 6.46% in 
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sensitivity, specificity over the previous deep-learning based study, while benefitting from 

significantly faster processing. 

6.3.2 Hollow structural point clouds 
 

Test set performance for the diagnosis of radiographic OA using hollow point clouds is 

plotted in Figure 6.5. FEM-TIB, PAT-FEM, and PAT-FEM-TIB point cloud models had 

comparable test performance in the OA diagnosis task (ROC AUC values 0.903, 0.898, and 

0.897), while MEN was lower at 0.88. Similarly, the PR AUC values were 0.898, 0.894, and 

0.896, while MEN was 0.868. The PAT-FEM-TIB point cloud model was the best calibrated, 

followed by FEM-TIB, PAT-FEM, and MEN (Brier scores of 0.126, 0.128, 0.138, 0.14).  

 

 
Figure 6.5 Per compartment test results on pretext OA diagnosis task. (L to R) ROC curve, PR 
curve, and calibration curve with AUC and Brier performance metrics.  

Baseline Cox PH Regression with age, gender, BMI category, and KL variables resulted in 

a c-index of 0.742, while the addition of each shape biomarker increased c-index to 0.752-

0.759. Age and gender coefficients were not significant in any of the models. All shape 

biomarkers except PAT-FEM were significant, with hazard ratios (95%CI) for PAT-FEM-TIB of 

2.86 (1.13, 7.27), FEM-TIB 3.95 (1.50, 10.4), and MEN 4.71 (1.82, 12.2). Tabulated Cox PH 

model results in Table 6.4. 

Time-to-event analysis with Cox PH Regression allowed for modeling of radiographic OA 

incidence using right censored data from the OAI dataset. The results show that structural 
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features learned by the networks to discriminate OA subjects from non-OA subjects were useful 

in predicting time-to-event for onset of radiographic OA. We expected PAT-FEM-TIB model 

features to have the best discriminative and predictive ability, as it was the largest point cloud 

model (4 tissues * 8192 points = 24576 total) and could encode information on patella-femur 

and femur-tibia alignment. Surprisingly, FEM-TIB and MEN shape features were more 

meaningful in the time-to-event analysis than PAT-FEM-TIB shape features. We also observe 

that MEN network was less effective at the pretext task but had the highest hazard ratio for 

incident OA, suggesting that high discriminative task performance is not a necessary condition 

for meaningful feature encoding for downstream predictive tasks.  

6.4 Discussion 

In this work we demonstrated the potential to use both dense and hollow point clouds to 

learn OA features from quantitative and structural MR imaging. There are several advantages to 

the proposed method for OA feature learning through point cloud encoding. (1) Point clouds 

leverage the representational power of deep learning while overcoming the inefficient 

representations of such: avoiding the N3 complexity of working within a voxel grid, the N2 

complexity of mesh methods which are limited to describing the surface of an object, and the 

artifacts introduced with 2D projection and warping methods. (2) Dense point clouds are a raw 

representation of T2 values without requiring ROI placement, averaging, or pooling operations. 

Point cloud networks can be sensitive to both global changes in T2, as well as subject specific 

hotspots. Likewise, hollow point clouds capture global and local differences in tissue thickness, 

shape, and surface heterogeneity. (3) Point clouds are permutation invariant and able to extract 

meaningful features without the need to establish point to point correspondence, which could 

aid the clinical translation of these methods as it lowers the computation burden. (4) This 
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method could easily scale to other tissues such as bones and ligaments, using a combination of 

dense and hollow point clouds for a multi-structural whole-joint diagnosis. Moreover, dense 

point clouds represent a lightweight encoding for multiparametric imaging as a single point can 

encode information from several image contrasts. (5) Finally, hollow point clouds are agnostic to 

imaging parameters, that is, as long as a segmentation exists for the tissue of interest for each 

imaging type, point clouds from several sources can by combined for analysis. A potential 

limitation our method is that a point cloud parameterization for knee tissues simultaneously 

encodes cartilage shape, T2, thickness, and patellar-femur/femur-tibia alignment, which makes it 

difficult to isolate the contribution of specific tissue parameters such as cartilage thickness or T2. 

6.5 Future directions  

Encoding MR information in point clouds is a simple, yet effective method for learning 

features from structural and quantitative MR imaging. Ongoing experiments in our group are 

using point cloud networks to regress radiographic OA severity (continuous Kellgren-Lawrence 

grade rather than binary classification) and subject reported Knee Injury and Osteoarthritis 

Outcome Scores (KOOS) from structural point clouds. Using a similar setup to the hollow point 

cloud experiments, features are used in a time-to-event analysis to predict the onset of 

radiographic OA and pain. Future research will focus on implementing techniques for point 

cloud interpretability, including point occlusion and a recently proposed point-masking technique 

207 to identify regions of highest importance for OA and pain prediction. 
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7 Lumbar intervertebral disc 
characterization through 
quantitative MRI analysis: An 
automatic voxel-based relaxometry 
approach 

The following manuscript is reformatted, shortened, and reproduced with full permission from 

the publisher. It appeared as: 

Iriondo, C,  Pedoia, V,  Majumdar, S.  Lumbar intervertebral disc characterization through 

quantitative MRI analysis: An automatic voxel-based relaxometry approach. Magn Reson 

Med.  2020; 84: 1376– 1390. https://doi.org/10.1002/mrm.28210 

7.1 Abstract 

The aim of this work was develop an automated pipeline based on convolutional neural 

networks to segment lumbar intervertebral discs and characterize their biochemical composition 

using voxel-based relaxometry, and establish local associations with clinical measures of 

disability, muscle changes, and other symptoms of lower back pain. This work proposes a novel 

methodology using magnetic resonance imaging (n=31, across the spectrum of disc 

degeneration) that combines deep-learning based segmentation, atlas-based registration, and 

statistical parametric mapping for voxel-based analysis of T1ρ and T2 relaxation time maps to 
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characterize disc degeneration and its’ associated disability. Across degenerative grades, the 

segmentation algorithm produced accurate, high confidence segmentations of the lumbar discs 

in two independent datasets. Manually and automatically extracted mean disc T1ρ and T2 

relaxation times were in high agreement for all discs with minimal bias. On a voxel by voxel 

basis, imaging based degenerative grades were strongly negatively correlated with T1ρ and T2, 

particularly in the nucleus. Stratifying patients by disability grades there were significant 

differences in the relaxation maps between minimal/moderate vs severe disability; average T1ρ 

relaxation maps from the minimal/moderate disability group showed clear annulus nucleus 

distinction with a visible midline while the severe disability group had lower average T1ρ values 

with a homogeneous distribution. This work presented a scalable pipeline for fast, automated 

assessment of disc relaxation times, and voxel-based relaxometry that overcomes limitations of 

current region of interest based analysis methods and may enable greater insights and 

associations between disc degeneration, disability, and lower back pain. 

7.2 Introduction 

Low back pain (LBP) is the leading cause of disability globally1, with a 38%208 average lifetime 

prevalence. Treatments, lost wages, and reduced productivity cost the US over $100 billion209 

every year. Although LBP is widespread, its clinical presentation is complex and 

pathophysiology poorly understood210. Identifying patients’ pain generating structures and 

determining the appropriate treatment course remains a challenge69; 211: despite a sixfold 

increase in Medicare expenditures on LBP treatments over 10 years, patient outcomes have not 

been improved. There is an urgent need for the discovery of non-invasive biomarkers that 

distinguish LBP phenotypes. 

A common mechanism for developing LBP is intervertebral disc degeneration which 

occurs when disc homeostasis is perturbed by injury or aging212. A cascade of biochemical and 

micro-structural changes take place, including loss of glycosaminoglycans, disorganization of 
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annular collagen, and dehydration213. These early stage changes precede large scale 

morphological changes which are associated with pain and disability214. Conventional MR 

imaging sequences and grading systems (Pfirrmann215/modified Pfirrmann216) are used to 

determine the severity of disc degeneration through qualitative assessment of disc morphology 

and signal intensity of the nucleus and annulus. These methods are limited by moderate inter-

rater reproducibility215 and broad binning of disc phenotypes217. Quantitative MR imaging (qMRI) 

is powerful tool capable of detecting local variations in disc composition, however its use is 

limited by coarse, unreliable, and slow manual analyses methods218-222. 

T1ρ mapping, or spin-lock imaging, is a qMRI sequence that probes slow interactions 

between bulk water and extracellular matrix macromolecules by applying a continuous, low-

frequency RF pulse. T2 mapping, or spin-spin imaging, is a quantitative sequence sensitive to 

hydrated collagen and its orientation. These sequences create parametric maps that reflect the 

spatial distribution of biochemical components within an imaged tissue. Both T1ρ and T2 

relaxation times are strongly positively correlated with hydration and glycosaminoglycan 

content, and negatively correlated with clinical grades of disc degeneration in human 

intervertebral disc studies.218; 223-228 For image analysis, the referenced studies calculate 

average T1ρ and T2 relaxation times in the whole disc or within user-defined regions of interest 

(ROIs)– anterior annulus, posterior annulus, and nucleus. The averaging operation performed 

disregards potentially relevant information about the local distribution of relaxation values, thus 

decreasing the method’s ability to capture subtle changes in biochemistry. In hip and knee 

cartilage studies229; 230, local analysis of T1ρ and T2 relaxation times revealed patterns that could 

differentiate between osteoarthritic patients and healthy patients, whereas these patterns were 

not detectable with ROI analysis. Additionally, variability in manual ROI placement introduces 

selection bias in the quantification of relaxation times and limits method scalability.  

While manual ROI methods are common for qMRI analysis, there is longstanding 

interest in the automation of tools for conventional MR image analysis. For example, 
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intervertebral disc segmentation on sagittal T2-weighted images is tackled using computer vision 

methods including: graph-cuts231, fuzzy clustering219, shape modeling232, and active contours233. 

Classical computer vision approaches have been moderately successful in small datasets of 

healthy patients, however the handcrafted features they rely on do not generalize well to unseen 

data or sequences with highly anisotropic voxels. Spinal tissues vary in intensity, volume, 

shape, and position within the spine, while signal-to-noise ratio (SNR) depends on acquisition 

parameters. This data diversity presents multiple challenges to classical algorithm development. 

Recent advancements in convolutional neural network (CNN) architectures and training 

strategies, have enabled the development of algorithms that can learn the general image 

features needed to accurately segment one or multiple spinal structures, even on small 

datasets234; 235. 

We therefore propose a novel analysis pipeline to address current limitations in the 

sensitivity, reliability, and scalability of quantitative imaging analysis. Unlike ROI based 

approaches, our method combines deep-learning segmentation and atlas-registration to perform 

analyses voxel-wise. Our method leverages a recently published CNN to segment the 

intervertebral disc and guide the registration. We hypothesize that a voxel-based relaxometry 

approach will reveal localized differences in disc biochemical composition between patients, 

while still correlating strongly with established measures of disc degeneration.  

7.3 Methods  

An overview of the voxel-based relaxometry pipeline is shown in Figure 7.1 and consists of 

three parts: disc segmentation and registration, image fitting, and statistical analysis. 

Intervertebral discs are segmented automatically, after which the mask for each disc level is 

used as input into the registration algorithm. The goal of spatial registration is to find a mapping 

between the input disc mask and a template disc mask, in other words, to find a deformation 
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field that, when applied to the input disc, will create spatial correspondence between the input 

 

Figure 7.1 Overview of segmentation (I), registration (I &II), fitting (II), and statistical analysis 
pipeline for lumbar intervertebral disc characterization with qMRI. Once optimized, one or 
multiple qMRI slices are fed into the 2D segmentation algorithm, after which a single mask or a 
stack of masks enter the registration procedure. Once deformation fields for each disc are 
found, they are applied to the various echos of the qMRI sequence before mono-exponential 
fitting. For visualization purposes, the registered T1ρ relaxation map for Subject A is rendered on 
a spine mesh in step III. If multiple qMRI sequences exist, such as T2 relaxation maps, the 
deformation fields found in step I are applied to additional sequences in step II. Details on 
network implementation in Supporting Information Figure S1. TSL = Time Spin Lock, CFCM = 
Coarse-to-Fine-Context-Memory, SGD = Stochastic Gradient Descent, LM = Levenberg-
Marquardt 

and the template. This deformation is applied to all images before fitting image intensities 

to calculate relaxation times. Once all subjects are registered to the same space, statistical 

analyses are performed at each voxel. Mask-guided registration was deemed necessary when 

intensity-guided registration failed to accurately register the discs and image similarity metrics 

were unreliable indicators of registration performance. Disc and vertebra vary in intensity, 

volume, and positioning between subjects, making these tissues ill-suited for intensity-based 

registration methods. 
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7.3.1 Datasets  

The approach was developed and evaluated on lumbar spine MR T1ρ weighted images 

from two studies (study A236 and B237) in compliance with the Institutional Review Board. Results 

from Dataset A and B are presented in the text and color coding of the disc levels is carried 

throughout all the figures. Dataset A included 16 subjects (10 with documented LBP, 6 controls) 

scanned at a single time point. The study acquired a single slice T1ρ map (2D Fast Spin Echo) 

and T2 weighted images aiming to quantify the biochemical signature of symptomatic 

degenerative discs. Dataset B consisted of 15 patients with documented LBP scanned at 

baseline, with 4 returning for a followup scan within a year. The study acquired multi-slice T1ρ/T2 

maps (3D Spoiled Gradient Echo), T2 weighted images, and paraspinal muscle fat-fraction maps 

with the goal of identifying MR biomarkers related to pain and disability. Demographic variables, 

clinical variables, and MR sequences for each dataset are detailed in Table 7.1. Categorical 

variables in each dataset are compared with Fisher’s exact test, while continuous variables are 

compared with two-sided t-tests. 

7.3.2 Segmentation Method  

Ground truth masks for segmentation network training were generated by annotating 

lumbar discs L1L2–L5S1 on a single sagittal slice (Dataset A, fully manual) or multiple sagittal 

slices of the T1ρ sequence (Dataset B, 3D region growing algorithm with manual seeds and 

manual edits237) with an in-house spline-based annotation tool in Matlab 2018a (Mathworks). 

Throughput for manual annotations was ~90 seconds per disc per slice (7.5 minutes per slice). 

Data was split per-subject, and a 5-fold cross validation strategy was used to train 5 identical 

CFCM networks238 with a 80/20 (62 slices/18 slices) train-test division ensuring Dataset A and B 

were each represented in the splits. Image preprocessing, network architecture, training, and 

hyperparameter details in Figure 7.2. Each image was loaded, adaptive histogram equalized to 

enhance the appearance of local low-contrast tissues, then normalized to zero mean and unit  
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Figure 7.2 Ground truth segmentations were saved as 256x256 binary masks (one 2D 

mask per slice). The final dataset for network training included 38 scans from 31 unique 
patients, with a total of 80 segmented slices.  
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variance. A 2D coarse-to-fine context memory (CFCM) segmentation network (Tensorflow 1.4, 

Python 3.6) was trained end-to-end using full image slices (256x256) as a single channel input. 

The CFCM network replaces the decoding path in a classic encoder-decoder with a 

convolutional long-short-term-memory unit that serves as a memory mechanism to fuse different 

feature scales and receptive fields, while the encoding path is a ResNet34. Unique 

augmentations were produced every epoch, introducing enough variability to regularize network 

training. Aggressive online augmentations were applied to every batch: rotation (in-plane -20 to 

20˚), elastic deformations (1 to 3 points, σ 6 to 12), and localized gaussian brightening (image 

intensity scaled with gaussian kernel σ 3, with -100 to 100 x,y shift). Images underwent adaptive 

histogram equalization (sklearn v0.15, kernel size 32, clip limit 0.01, histogram bins 256) and 

zero mean, unit variance normalization. Xavier initialization was used for network weights, 

trained for 8000 epochs with Dice loss149, batch size 20, and Adam optimizer (learning rate 1e-

6, epsilon 1e-8) on a single Nvidia TitanX GPU, saving the last checkpoint for inference on the 

test set. After training each of the 5 networks inference was run on an independent test set and 

segmentations fed into the registration pipeline. To properly evaluate the network’s 

generalization capability, all segmentation results presented herein were inferred using the 

single network that never trained on those subject’s slices. For future applications of this 

pipeline on new T1ρ-weighted data, a 5 network ensemble (logits averaging) would be 

recommended for segmentation inference. 

The performance of the segmentation algorithm is evaluated per disc using semantic 

segmentation metrics (Dice overlap, mean surface distance, % volume difference, sensitivity, 

and precision). The 2D version of the metrics is used to analyze single segmented slices from 

Dataset A, while the 3D version analyzes stacks of segmented slices from Dataset B. To further 

evaluate segmentation performance, mean disc T1ρ and T2 relaxation times are extracted using 

the manual segmentation and the inferred segmentation. Biomarker extraction accuracy on 

each disc is evaluated by comparing manually and automatically extracted mean T1ρ,T2 values 
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with Pearson correlation, a paired two-sided t-test for differences, and Bland-Altman analysis for 

bias. Segmentation performance and biomarker extraction are contextualized with radiological 

scores for degeneration Pfirrmann/Modified Pfirrmann, scored on a 1 to 5 scale and 1 to 8 scale 

in terms of increasing degeneration. To examine the effect of changing the segmentation 

algorithm, three U-Net variants were trained and evaluated as above, results in Table. 

7.3.3 Registration  

Inferred segmentations were registered to a lumbar disc atlas using Elastix239, 

ElastixFromMatlab wrapper (CNRS/Riverside Research), and Matlab2018a. Segmentations 

were post-processed, identifying connected components in 2D or 3D larger than 125 voxels and 

labelling them inferior-superior direction (L5/S1 to L1/2). Registration was performed between 

the inferred disc mask and the atlas disc mask on a disc by disc basis. A healthy spine mask 

without gross morphological deformities was selected as the atlas to minimize registration 

artifacts (another healthy spine and a degenerated spine mask were tested as atlases in 

robustness experiments, extracted patterns were similar). Per disc, the mask is translated to 

align with the centroid of the atlas disc mask before the two-step registration. First, a 4-

resolution recursive pyramidal affine registration rigidly scales, rotates, and shears the disc 

mask providing initialization for the second step. Then, a b-spline registration elastically deforms 

the disc segmentation, guided by mutual information with a rigidity penalty term to avoid large 

local deformations. The two-step registration maximizes the overlap between the inferred disc 

mask and the template disc mask while preserving the original topology of the inferred disc. The 

resulting 2D (Dataset A) and 3D (Dataset B) deformation fields are applied to all T1ρ, T2 echos 

and a two-parameter Levenberg-Marquardt monoexponential fitting is performed voxelwise to 

create parameter maps of T1ρ, T2 relaxation times in the registered space. B-spline registration 

parameters including final grid spacing (2), iterations (200), and rigidity penalty weight (0.77) 

were selected via Bayesian optimization, a method commonly used for hyperparameter tuning 
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of machine learning models. Bayesian optimization performs registration over many iterations, 

the choice of the next registration parameters informed by the performance of the previous 

parameters, which are evaluated for all discs by calling the registration pipeline and treating the 

result of the objective function (Equation 1) as an observation with loss value L. 

 

Equation 7.1 N is the total number of discs, DSC is the Dice overlap coefficient, and σ(J) 
 is the standard deviation of the determinant of the spatial Jacobian. 

The determinant of the Jacobian of the deformation field is a pixelwise description of 

volume changes: expansion (J>1), compression (0<J<1), folding (J<0), or constant volume 

(J=1). Statistics computed across all pixels in the original disc space quantitatively describe the 

effect of registration. Per disc, Jacobian determinant values are centered around 1, with the 

standard deviation describing the severity of local expansion and compression. Evaluations of 

the objective function guide the Bayesian optimizer, maximizing Dice overlap between the 

inferred disc mask and the atlas mask, while minimizing the standard deviation of the 

determinant of the Jacobian across all registered discs for all subjects to find the optimal 

registration parameters. All resulting deformation fields and relaxation maps were checked to 

ensure local topology and distribution of relaxation values were preserved after registration. 

7.3.4 Statistical Analysis 

Four types of voxelwise statistics are performed on the registered T1ρ and T2 maps from 

each study. Only voxels meeting threshold criteria (Dataset A T1ρ  < 250ms, Dataset B T1ρ  < 

200ms, T2 < 150ms) are included. Missing data at the patient level (ex. missing questionnaire) 

or at the disc level (ex. missing Pfirrmann data) excludes patient maps from analysis concerning 

those variables. Voxel by variable statistics examine local associations between relaxation 

maps and measured outcomes with Pearson correlation or partial correlation with adjustments 

for age, gender, BMI, and group assignment when relevant. Correlation coefficient maps and p-
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value maps are visualized. Voxel-by-group statistics compare average relaxation maps of 

subjects grouped by demographic or clinical variables (for example high disability, low disability) 

or by group assignment, unpaired t-test checking for significant differences between groups. 

The average map for each group and p-value map is visualized. Voxel-by-voxel statistics 

calculate within subject voxel-wise correlation between two relaxation maps (ex. T1ρ T2 ). These 

values are compared with Pearson correlation; correlation coefficient maps and p-value maps 

are visualized. Voxel by time statistics are primarily for testing longitudinal changes in relaxation 

maps within subjects. Given the low number of follow-ups, statistical differences between 

baseline and follow-up cannot be computed. In larger studies, longitudinal difference maps 

would be tested for association with changing clinical outcomes or for differences between 

groups where baseline, follow-up, and difference relaxation maps are visualized. Correlation 

results for Dataset A are visualized as a single slice on a spine mesh while correlation results 

for 3D volumetric data are visualized as two central slices on a spine mesh. All post-processing 

and statistical tests were performed using Pingouin(0.2.6), Scipy(1.2.0), StatsModels(0.9.0) 

using Python 3.6, with α<0.05.  

7.4 Results  

7.4.1 Segmentation Performance 

The datasets used for method development are similarly distributed in age, BMI, and 

height. There exist significant differences in gender ratios, proportion of LBP patients, Oswestry 

Disability Index (ODI) scores, and degenerative grades (Pfirrmann 1: 12%, 2: 54%, 2.5: 8%, 3: 

24%, 3.5: 1%, 4: 1% vs. Modified Pfirrmann 1: 8%, 2: 36%, 3: 23%, 4: 3%, 5: 1%, 6: 14%, 7: 

10%, 8: 5%). When Dataset A and B are combined, the final dataset evenly samples the 

spectrum of morphologic and symptomatic IVDD. 



 94 

 

Figure 7.3 Input qMRI slice, ground truth mask, and predicted segmentation probabilities for 4 
test subjects, 2 from Dataset A (Left) and 2 from Dataset B (Right). The 2D Coarse-to-Fine-
Context-Memory (CFCM) segmentation network demonstrates consistent performance in both 
T1ρ acquisition sequences, across grades of disc degeneration, and spinal morphology without 
off-target segmentation predictions. Probabilities are thresholded at 0.5 to create binary masks. 
TSL = Time Spin Lock 

Across datasets and degenerative grades, the CFCM networks produced accurate, high 

confidence segmentations of the lumbar discs. Representative segmentations before 

thresholding probabilities at 0.5 are shown in Figure 7.3. Predicted probability maps show the 

network highest uncertainty along disc boundaries, particularly at the anterior and posterior 

annulus-ligament interface. Per slice, automatic segmentation of all discs took 0.393 seconds, 

over 1000 times faster than manual segmentation. 

Evaluated using segmentation metrics (Table 7.2), the network produced segmentations 

with Dice overlap (DSC) consistently above 0.85 and mean absolute surface distance (MSD) 

less than 1 pixel at all levels, approaching the limit of image resolution. As a metric, DSC is 

sensitive to the size of the ground truth structure, as a single pixel error will disproportionately 

lower DSC for a small disc compared to a large disc.  
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Table 7.2 Dice Similarity score (DSC), Mean Absolute Surface Distance (MSD) at disc 
boundary, % volume difference, sensitivity, and precision results per disc for each dataset, with 
95% confidence intervals in parentheses. 

 

The lowest performing disc segmentation was L5S1, which is the smallest, most likely to 

be degenerated, and most challenging to manually segment. Highest performing disc was L3L4, 

which was usually the largest and always centered in the FOV. Volume difference (%VD), 

sensitivity (Sens), and precision (Prec) between ground truth and network segmentations 

revealed the networks were biased towards moderate overestimation of disc volume in Dataset 

B (greater number of False Positive voxels), while Dataset A had slight over and 

underestimation depending on the disc level. Comparing segmentation metrics against 

radiological grades of degeneration, the networks showed lower DSC performance in more 

degenerated discs, while MSD and %VD were invariant to degenerative grade suggesting 

lowered performance could be a result of the metric itself. Pooled lumbar spine metrics (n=88, 

n=92) were 0.904, 0.898 DSC; 0.936, 0.236 MSD; +0.07, -3.52 %VD; 0.904, 0.913 Sens; 0.912, 

0.888 Prec respectively. 

7.4.2 Relaxation Time Extraction 

Manually and automatically extracted mean disc T1ρ and T2 relaxation times show strong, 

significant correlations at all disc levels (Table 7.3). All disc correlations for Dataset A T1ρ  r = 
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0.995, p=7.4e-84, bias = -0.74ms (-4.35, 2.87), Dataset B T1ρ r = 0.990, p=4.1e-78, bias = -

0.01ms (-4.36, 4.33), and T2 r = 0.984, p=2.5e-70, bias = 0.12ms (-3.55, 3.79), with no trends 

evident in difference plots (Figure 7.4). Dataset A showed more precise biomarker extraction 

with a slight bias towards overestimating relaxation times, particularly in L5S1. Dataset B had 

less precise T1ρ biomarker extraction (as observed with the wider confidence intervals) but 

produced unbiased estimates of relaxation time. Correlations between manual and automatic 

T1ρ times in Dataset B were stronger than correlations between T2 times, in all discs except 

L5S1. T1ρ and T2 biomarker extraction accuracy did not change with increasing degenerative 

grade and remained within 5ms of manually extracted values in all but two discs. 

Table 7.3 Comparison of manually and automatically extracted relaxation values with Pearson 
correlation coefficient rcoeff, and bias measurement per disc for each dataset, p-values and 95% 
confidence intervals in parenthesis respectively. 

 

Qualitatively, the two-step registration approach successfully morphed the lumbar discs 

into the atlas space preserving the spatial distribution of relaxation times in the nucleus and 

annulus as well as the total distribution of intensity values across the disc, the effect of 

registration is visualized in Figure 7.5. Performance was consistent across degenerative grades. 

Histogram plots of disc intensities show good agreement between the values before and after 

registration, indicating deformations were applied smoothly throughout the disc and disc regions 
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are represented fairly. Disc boundaries, particularly the anterior and posterior disc-ligament 

interface, showed the most variability in registration accuracy.  

 

Figure 7.4 Correlation scatterplot for all discs and Bland-Altman plots with the 95% limits of 
agreement (LOA) for each disc level for comparison of manually and automatically extracted T1ρ 
and T2 relaxation times. In Dataset A’s L5S1 T1ρ Bland-Altman plot, the lower LOA at -8.16ms 
was omitted to maintain the same y-axis range between plots. 
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Figure 7.5 Example T1ρ maps before and after registration and distribution of T1ρ relaxation 
values within the segmented disc before and after registration, from 4 test subjects. The 
registration process preserves spatial patterns in relaxation maps, with consistent performance 
across degenerative grades. Histograms showing the density and a gaussian kernel density 
estimate of T1ρ relaxation times within the segmented disc before and after registration. 

7.4.3 Statistical Parametric Maps 

Example statistical parametric maps are visualized in Figures 7.6, 7.7, 7.8. Local patterns 

in relaxation time maps show significant associations with radiological grading, as well as 

clinical measures of disability. Imaging-based Pfirrmann/Modified Pfirrmann degenerative 

grades were strongly negatively correlated with T1ρ maps in both datasets and with T2 maps in 

Dataset B. Significant correlations are localized to lumbar disc nucleus and inner annulus, with 

correlation strength and significance increasing in Dataset A’s lower disc levels (L3-4 through 
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L5S1) while associations remain consistent across disc levels in Dataset B. T2 correlations were 

similar, yet not identically distributed to T1ρ correlations, with T1ρ showing stronger and more 

significant correlations around the superior and inferior portion of the nucleus.  

Compared correlations with T1ρ values estimated from whole-disc ROI approach, Dataset 

A (Pearson r L1L2: -0.15 p=0.60, L2L3: -0.458 p=0.07, L3L4: -0.516 p=0.04, L4L5: -0.741 

p=0.001, L5S1: -0.772 p=0.0005), Dataset B (L1L2: -0.670 p=0.003, L2L3: -0.660 p=0.003, 

L3L4: -0.715 p=0.0008, L4L5: -0.732 p=0.0008, L5S1: -0.671 p=0.003), the proposed voxel-

based method confirms ROI associations and recovers significant associations in disc 

subregions not identifiable with ROI methods. For example, in Dataset A’s L2L3 disc, Pfirrmann 

grades are weakly and non-significantly correlated with mean whole-disc T1ρ values, yet the 

voxel-based method reveals a moderate, positive correlation in the inferior region of the 

nucleus. 

Interestingly, results with respect to disability measures varied between the two datasets 

(Figure 7.7). Dataset A shows strong, negative correlations between T1ρ and Oswestry Disability 

Index (ODI) scores while Dataset B shows weak, positive correlations between the two 

particularly in the nucleus-annulus transition region of L4L5. Dataset B’s T2 correlation maps 

mostly mirrored those of T1ρ (not shown), however, positive correlations seen in L4L5 were 

stronger and had significant voxels clustered in the posterior inner annulus. The trends in 

Dataset A and B appear opposite, however the association between ODI and T1ρ is only 

consistent in Dataset A, where negative correlations are stronger and present across multiple 

lumbar disc levels, with the exception of L5S1 where no relationship is evident. Again, these 

trends support whole-disc T1ρ findings, with the advantage that the voxel-based method can 

recover the anatomical location of significant associations: Dataset A (Pearson r  L1L2: -0.800 

p=0.001 , L2L3: -0.650 p=0.016, L3L4: -0.620 p=0.024, L4L5: -0.674 p=0.011, L5S1: -0.231 

p=0.45), Dataset B (L1L2: 0.152 p=0.57, L2L3: 0.224 p=0.39, L3L4: 0.415 p=0.098, L4L5: 0.574 

p=0.02, L5S1: 0.314 p=0.24). Further stratifying patients in Dataset A by ODI –
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minimal/moderate vs severe disability– and performing a group comparison shows significant 

differences between relaxation maps. Average T1ρ relaxation maps from the minimal/moderate 

disability group showed clear annulus-nucleus distinction with a visible midline while the severe 

disability group had lower average T1ρ values with a homogeneous distribution. Relative to other 

discs, low and high disability groups in both datasets had low mean relaxation values for the 

L5S1 disc.  

Finally, T1ρ maps and T2 maps were highly and significantly positively correlated, as 

observed with whole-disc ROI analysis (Pearson r from 0.954 to 0.989 with p<1e-10) (Figure 

7.8). However, voxel-by-voxel analysis suggests correlation strength between T1ρ and T2 

relaxation values is localized: the anterior annulus and near endplate regions show weaker 

correlations than the rest of the disc space, for all lumbar discs. Additionally, correlation values 

in center of the disc are heterogeneous, suggesting the relationship between T1ρ and T2 values 

fluctuates throughout the disc. 

 

Figure 7.6 Voxelwise associations in Dataset B between T1ρ and T2 values, with Pearson 
correlation r map displayed from 0.5 to 1, and p-value map from p=0 to p=0.005. 
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7.5 Discussion 

We have demonstrated the novel pipeline proposed for qMRI analysis of intervertebral 

discs is feasible and addresses the limitations of conventional analysis methods. The 

intervertebral disc is a challenging tissue to analyze due to its deformable structure, lack of 

anatomical landmarks, and variations in image intensity. By integrating a CNN for segmentation 

into our atlas-based registration pipeline we developed a fast, robust, and scalable solution to 

analyze local patterns in intervertebral disc qMRI.  

Merging of Dataset A and B was necessary for the development of a robust analysis 

pipeline. Together, the datasets sample the full morphologic and symptomatic IVDD spectrum, 

including a range of degenerative grades and patient reported outcomes such as pain and 

disability. Similarity in T1ρ image contrast and image prescription enabled the merging of these 

datasets for 2D segmentation method development and validation. However, differences in 

acquisition parameters (spin-lock pulse duration, spin-lock frequency, and voxel size) prevented 

joint registration and statistical analysis of relaxation maps. Given the limited sample size of 

each dataset, the appearance of common trends in T1ρ correlation maps demonstrated face 

validity of our analysis pipeline. Trends in T2 correlation maps were similar but not identical to 

T1ρ maps, demonstrating the feasibility of integrating multiple, potentially complementary qMRI 

sequences into the analysis pipeline. 

Our training strategy helped the CFCM segmentation network learn to reliably segment 

image slices even with limited training data. The network was prevented from overfitting by 

aggressively augmenting every training iteration, using large batch sizes with batch 

normalization, no hyperparameter tuning, and creating data-splits by subject. Both contrast and 

geometric augmentations were chosen to introduce diversity into the images, as disc shape, 

position, intensity, and texture vary widely between datasets. The choice of network was key in 

achieving high performance: the memory mechanism in the CFCM learns how to best fuse 

features to combine local and global context, and had fewer spurious segmentation predictions 
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compared to U-Net238. State-of-the-art disc segmentation performance in the T2 2015 challenge 

and the IVD3M 2018 challenge are Dice scores of 0.918 and 0.907 respectively. We believe the 

performance of our segmentation network is competitive with and more generalizable than other 

published disc segmentation methods, although a direct comparison is not possible due to 

differences in datasets and annotation methods. Datasets provided by disc segmentation 

challenges234; 235 have more training data (576 segmented slices from 8 subjects in IVD3M) but 

are only trained on images from volunteers with healthy discs.  

There are several reasons segmentation performance in our dataset decreased in discs 

with severe IVDD. First, manual segmentations are less reliable; loss of nucleus 

glycosaminoglycans, annular collagen, and dehydration lead to a decrease in disc volume. In 

turn, these changes are reflected in shorter tissue relaxation times and lower disc signal 

intensity on the T1ρ weighted images, obscuring the boundary at the interface of the annulus and 

spinal ligaments, which compounds with partial volume artifacts on edge slices. Second, there 

are fewer training examples of severely degenerated discs and many degenerative phenotypes 

exist. Healthy discs are often surrounded by normal presenting anatomy, while severe IVDD is 

associated with fattier vertebral bone marrow, narrowed spinal canal, and even signal voids due 

to the vacuum phenomena240. Finally, Dice coefficient and % volume difference are sensitive to 

segmented tissue size, and given the smaller disc volume in severe IVDD, single pixel errors 

disproportionately impacted these results.   

Our results demonstrate that errors in disc segmentation were not propagated to errors in 

biomarker extraction. Segmentation is performed on the first echo of the mapping sequence and 

relaxation times are calculated from the monoexponential fit of all acquired echos. Errors by the 

segmentation network represent a small fraction of the total disc area thereby not significantly 

skewing the mean. Error pixels may also contain intensity values that do not have high enough 

SNR for monoexponential fitting or produce relaxation values outside of a feasible range, 

neither which are included in the calculation of mean relaxation times. Even in the worst 
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performing disc –L5S1 in Dataset A– mean disc T1ρ errors ranged from -8 to 4 ms. Calculation 

of mean disc relaxation times from automatic segmentations are an intermediate output to 

validate the segmentation portion of the pipeline. However, our automatic segmentation method 

is a viable alternative to ROI based analysis, as it is significantly faster (0.393s/slice compared 

to our 7.5min/slice manual, 12s/slice average for submissions to T2 disc segmentation 

challenge235) and more reliable than manual segmentation. 

The automatic segmentation network provides masks necessary to guide registration. 

Mutual information guided atlas-registration is successful in other tissues, but intensity-based 

methods fail to register intervertebral discs. We hypothesize this issue arises with cases of 

severe degeneration where intensity signals from normal presenting anatomy are absent. The 

disc mask allows for good initialization of the registration algorithm and calculation of overlap 

metrics for Bayesian optimization of registration parameters. Our proposed objective function is 

designed to maximize registration accuracy while preventing significant deformations which 

would perturb the local distribution of relaxation values. This highlights the flexibility of our 

proposed pipeline, with automatic parameter tuning for application to other datasets or different 

atlases.   

Local distribution of relaxation values was preserved throughout the registration procedure 

even with alternate segmentation methods and atlas selection, thus demonstrating the success 

of the full analysis pipeline. Recent studies have recognized the limitations of coarse ROI 

methods and have attempted to address this problem with smaller ROIs increasing the time, 

complexity, and bias introduced. In a group of healthy discs, our method’s average relaxation 

maps show distinctive regions corresponding to the annulus, nucleus, and disc midline; patterns 

recovered in a fully data-driven manner without introducing user bias. Additionally, our voxel-

based method showed greater sensitivity to small, significant associations within the disc such 

as that were washed out with whole disc ROI averaging. Our proposed statistical parametric 

mapping methods still performs an averaging procedure, on a voxel scale. This will show 
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common trends within the studied group, but it is not ideal for the identification of focal 

lesions241. High intensity zones (HIZs), for example, would only be identified if they co-localized 

for a large group of patients. In voxel-by-group analysis, maximum and standard deviation maps 

could potentially identify these clusters.  

Different physiological loading demands explain variations in geometry, biochemical and 

microstructural composition between disc levels. A level-specific atlas was used for registration, 

as it is inappropriate to pool relaxometry results from all discs. Relationships between relaxation 

values at different disc levels may reveal important associations with clinical outcomes. 

Additionally, the strength of the relationship between T1ρ and T2 relaxation times was highly 

spatially dependent, indicating that each of these biomarkers may reveal differences in local 

biochemistry, which are observed in human disc specimens25.  

The limitations of this work are discussed in two parts: pipeline and dataset. As a pipeline, 

segmentation network training and registration optimization impose upfront computational and 

time costs. However, once these sections have been optimized to the target task, processing 

time is faster than manual ROI analysis methods. From the dataset side, one or two 8mm 

sagittal qMRI slices do not fully capture biochemical composition of the intervertebral disc. Both 

Dataset A and Dataset B reported that SNR prevented the acquisition of thinner slices, although 

recent developments may address this limitation. 

Lastly, low sample size prevented meaningful interpretation of associations with patient 

reported outcomes. Associations between T1ρ and disability were strongly negative and 

significant in Dataset A yet were not visible in Dataset B, indicating the studies were 

underpowered. Similarly, associations with muscle data extracted from Dataset B did not reach 

statistical significance. A greater sample size is necessary to power proper statistical analysis 

adjusting for multiple comparisons and demographic/clinical confounders, and to enable feature 

extraction for IVDD characterization.  
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Image statistics can be defined in voxels clusters, or peaks. Voxel-wise inference 

examines if the t-statistic (or F-statistic) is within a predefined threshold at each voxel, to reject 

the null hypothesis at that voxel (high spatial specificity). Cluster-wise inference defines a t-

statistic threshold and minimum cluster size, to reject the null hypothesis of the whole cluster, 

indicating activity is somewhere within the cluster (high sensitivity, low spatial specificity). Peak-

wise inference identifies local maxima in t-statistics greater than a predefined threshold (high 

spatial specificity). To correct inferences for multiplicity, corrections on p-values with Familywise 

Error Rate (Bonferroni correction, Random Field Theory) and False Discovery Rate controlling 

procedures.  

There are several promising applications of our analysis method. Broadly, the main 

motivation of this work was to develop an automatic pipeline for lumbar intervertebral disc 

characterization, creating a fast, reliable, and robust tool to aid mechanistic disease research of 

IVDD. Applied to a larger clinical imaging dataset, our approach could be used for LBP 

phenotyping: selecting patient cohorts for clinical trials, matching patients to effective 

treatments, or tracking treatment effects over time. ReSPINE, a randomized clinical trial for 

mesenchymal stem cell therapy for IVDD is underway in Europe, and qMRI will be acquired 

over 4 timepoints. Our proposed pipeline could provide automatic, reliable processing of qMRI 

to follow subtle changes in spine biochemistry through statistical parametric mapping. Lastly, 

there is value for researchers validating new quantitative pulse sequences or compressed 

sensing schemes, to reliably compare the voxel-based patterns extracted by both methods. 

Application to other registration tasks and datasets is straightforward given the flexibility of our 

method. 

7.6 Conclusion 

This work proposes a novel methodology that combines deep-learning based 

segmentation, atlas-based registration, and statistical parametric mapping for automatic 
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analysis of quantitative spine imaging, addressing current methods’ issues with sensitivity, 

reliability, and scalability. Evaluation of the segmentation method demonstrates performance is 

robust and shows excellent agreement with manual methods of biomarker extraction across the 

spectrum of morphologic and symptomatic IVDD. Despite the limited data available for method 

development, the voxel-based relaxometry pipeline reveals local trends in disc qMRI values 

which were significantly associated with clinical measures of degeneration and disability in two 

independent datasets. Future research directions include the applying the proposed framework 

on larger spine qMRI datasets to investigate LBP phenotypes for pathophysiological research, 

clinical cohort selection, and treatment monitoring. 
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8 Institution-wide shape analysis of 3D 
spinal curvature and global 
alignment parameters 
The following manuscript is under review in the Journal of Orthopaedic Research as a 

Research Article. 

8.1 Abstract 

The spine is an articulated, 3D structure with 6 degrees of translational and rotational 

freedom. Clinical studies have shown spinal deformities are associated with pain and functional 

disability in both adult and pediatric populations. Clinical decision making relies on accurate 

characterization of the spinal deformity and monitoring of its progression over time. However, 

Cobb angle measurements are time-consuming, are limited by inter-observer variability, and 

represent a simplified 2D view of a 3D structure. Instead, spine deformities can be described by 

3D shape parameters, addressing the limitations of current measurement methods. To this end, 

we develop and validate a deep learning algorithm to automatically extract the vertebral midline 

(from the upper endplate of S1 to the lower endplate of C7) for frontal and lateral radiographs. 

Our results demonstrate robust performance across datasets and patient populations. 

Approximations of 3D spines are reconstructed from the unit normalized midline curves of 

20,118 pairs of full spine radiographs belonging to 15,378 patients acquired at our institution 

between 2008 and 2020. The resulting 3D dataset is used to build a statistical shape model to 

describe global spine shape variations in pre-operative deformity patients via 8 interpretable 
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shape parameters. This approach allows for the characterization of longitudinal changes in 3D 

spine shape and –if deployed into an existing database– identification of patient subgroups with 

similar shape and demographic characteristics without relying on an existing shape 

classification system. Upon publication, interested readers are encouraged to upload 

anonymized full spine radiographs through grad.io to test the automatic spine midline extraction 

and shape mode quantification. 

8.2 Introduction 

Spinal deformities are deviations from the normative, 3D articulated structure of the spine. 

Discs, vertebrae, facet joints, spinal ligaments, and paraspinal musculature are key structural 

elements responsible for spine stability. Pathophysiological changes in tissue composition or 

neuromuscular regulation can threaten the mechanical integrity of the spine and lead to local 

and global instability48; 242. In turn, biomechanical instability recruits compensatory 

mechanisms48 such as pelvic retroversion, which can exacerbate deformity progression through 

the re-distribution of load.  

Accordingly, deformities are prevalent in populations undergoing rapid physiological change. 

In the pediatric population, scoliosis is the most common spinal deformity and is defined as 

curvature in the coronal plane >10˚. An estimated 0.47% to 5.2% of the pediatric population 

(<18 years of age) has idiopathic scoliosis243, with prevalence increasing as patients go through 

peak growth velocity. Of all pediatric idiopathic scoliosis, infantile scoliosis (0-3 years) 

represents <5%, juvenile scoliosis (3-10 years) 10-15%, and adolescent (10-18 years) >80%. 

By contrast, adult spinal deformity (ASD) encompasses a heterogeneous group of conditions 

affecting the aging spine, including de novo and existing scoliosis, in addition to degenerative 

spinal conditions which can present concurrently. Although the prevalence of ASD as a group is 

not known, adult scoliosis is estimated to affect 8.3% of adults (>25 years) with prevalence 

sharply rising after age 50244, and 68% of elderly patients (>60 years)245. 
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Pain and functional disability are common concerns among patients with spinal deformities. 

Pain prevalence in adolescent idiopathic scoliosis (AIS) is 68%; pain intensity and functional 

disability are positively associated with curve magnitude246. In the ASD population, pain 

prevalence is nearly 90%; pain and health related quality of life (HRQoL) are strongly negatively 

correlated with magnitude of sagittal imbalance79; 247; 248. Moreover, in both populations, the rate 

of progression is closely linked to deformity severity249; 250. Treatments for AIS and ASD aim to 

slow or halt the progression of the deformity through conservative methods (ex. bracing, 

casting) or surgical intervention (ex. tethering, multi-level fusion).  

Treatment planning relies on accurate assessments of the spinal deformity and careful 

monitoring of its progression over time. Lateral and frontal (Anterior-Posterior/Posterior-Anterior) 

36 inch radiographs are the clinical standard for deformity evaluation. Cobb angles80 and 

sagittal/coronal imbalance measurements are used to quantify deviations from normal spinal 

curvature, although several others have been proposed251; 252. Sagittal imbalance, also called 

sagittal vertical axis, is the horizontal distance between the posteriormost point of the S1 

endplate and the vertebral center of C7 measured on lateral radiographs. Coronal imbalance, or 

coronal vertical axis, is measured as the horizontal distance between the center of the S1 

endplate and the vertebral center of C7 on frontal radiographs. To measure Cobb angles, the 

user identifies the most tilted vertebra at the top and bottom of the spinal curve and draws a 

projection line from each using the frontal radiograph. The Cobb angle for the specific curve is 

the angle formed by the two intersecting lines. However, these assessments lack widespread 

clinical adoption as manual measurements are time-consuming and sensitive to intra and inter-

observer variability244 253. These measurements help clinicians group patients by deformity type 

using 2D or 3D classification systems. 

Over the last decade, significant research has been directed towards automating spine 

measurements. Automatic methods typically start with vertebral localization using  a classic 
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computer vision algorithm254 or a deep-learning based segmentation255, object detection256, or 

keypoint regression network 257; 258.  The outputs are then used to geometrically estimate Cobb 

angles. While several studies report radiologist-level accuracy and precision using their 

automated pipelines, of the surveyed literature, no studies conducted external clinical validation 

nor made their algorithms publicly testable. Additionally, fixation on replicating current Cobb 

measurements has prevented the application of these automatic methods for data-driven 

assessments of spine shape such as the clustering analysis presented by Thong et al259.  

The main goal of this study was to develop a fully automatic method for spine midline 

extraction on clinically standard full spine radiographs– applicable to pediatric and adult 

deformity populations –to approximate 3D spine shape and describe shape variations in our 

institution’s patient population. 

8.3 Methods 

The automatic models were developed and tested on a subset of manually annotated 

images (hundreds), validated on a larger subset of images with labels extracted from radiology 

reports (thousands), and inferred on a retrospective institution-wide dataset (tens of thousands). 

8.3.1 Keypoint Model Development 

This research was approved by the Institutional Review Board (IRB305285). A random 

sample of 200 male and 200 female patients’ full spine radiographs acquired between 2008 and 

2018 were pulled from our institution’s database. Four users were trained to annotate 

radiographs by placing keypoints on each vertebral corner from L5 to T1 (68 landmarks) and on 

the superior endplate of S1 and the inferior endplate of C7 (4 landmarks). Annotations were 

checked and corrected by two trainees (R1, R2) with 5 and 7 years of experience in radiological 

image analysis. In regions with poor visibility, such as the upper-thoracic region in lateral views, 

users were instructed to accurately identify landmarks on the inferior endplate of C7 and 
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interpolate the points in-between such that an anatomically standard number of thoracic 

vertebrae are identified. Trained users took more time to annotate lateral views compared to 

frontal views, suggesting that sagittal landmark detection would be a more challenging learning 

task than coronal detection, thus sagittal annotations were prioritized. A total of 194 coronal 

images and 366 sagittal images were annotated. Dicom images were read into Python, 

windowed, inverted (if necessary), 0-1 normalized, and zero-padded / cropped to a common 

FOV based on header information. Finally, images were resized to 1024x512, maintaining 

float32 precision and image aspect ratio throughout all processing steps. Annotated data did not 

include bending radiographs, images with spinal hardware, or partial spine views.  

Data were split by patient into training, validation, and test (77%/8%/15% coronal, 

69%/17%/14% sagittal). A 72 point landmark detection algorithm was developed for 

each view. All algorithms were implemented in PyTorch and used a convolutional neural 

network backbone with a differentiable layer for landmark predictions260. Image 

preprocessing (adaptive histogram normalization), augmentation severity, network 

backbone (Densenet-201261, DilatedResNet-54262), batch size, dropout, weight decay, 

and initial learning rate were selected through a random hyperparameter search with 

200 runs. The best performing hyperparameter combinations (Table 8.1) were selected 

based on the lowest validation mean squared errors.  
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Table 8.1 (Top) Hyperparameter settings for best performing algorithms on validation data. 
(Bottom) Hyperparameter settings investigated using random hyperparameter search with 200 
runs. 

 
 

 

8.3.2 Keypoint Model Testing 

Test performance was assessed between ground truth landmarks and predicted landmarks 

with pointwise mean absolute error (MAE), imbalance mean absolute difference (MAD), and 

imbalance concordance correlation coefficient (CCC). CCC was selected over Pearson 

Correlation Coefficient as it measures bias as well as correlation between two variables. 

Coronal imbalance was calculated as the x-axis difference between the midpoint of S1’s 

superior endplate and the midpoint of C7’s inferior endplate. Sagittal imbalance was estimated 

as the x-axis difference between the posterior point of S1’s superior endplate and the 2/3rd point 
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of C7’s inferior endplate. To assess inter-reader variability and algorithm performance in a 

clinical scenario, R1 and R2 independently measured imbalance in a small, independent set of 

images using tools available on a PACS workstation. MAD and CCC were used to assess 

agreement across measurements. 

8.3.3 Quality Control, Midline Extraction, and 3D Reconstruction 

Per view, points along each side of the spine were fit using an polynomial degree 8, 

following an approach similar to the one proposed by Bonnani et al.263. Automatic quality control 

(autoQC) consisted of two tests: (1) polynomial fitting errors are below a predefined threshold 

and (2) predicted landmark order follows anatomical sequence, for example L3 vertebrae 

landmarks should be positioned above L5 landmarks. The polynomial fitting threshold was set to 

0.01, which was selected empirically by examining 100 predictions and identifying a cutoff with 

specific to low-quality predictions. The autoQC step was included as a safeguard to detect 

predictions from out of distribution inputs. Finally, per view, the vertebral midline curve was 

extracted by averaging points from each side and fitting a polynomial through the vertebra 

midpoints. Midlines and contours were overlaid onto input images for visualization. For 3D 

reconstruction, the S1 midpoint was defined as the origin and 0-1 normalization of the z-axis 

was used to scale the S1 to C7 distance between views, resolving slight differences in 

magnification. Coronal and sagittal midlines were each sampled with 1000 points, combined 

using a common z-axis, and isotropically normalized. Due to the lack of calibration objects in the 

field of view, three major assumptions were used to accomplish the reconstruction: patient 

posture did not change between acquisitions, intrinsic parameters of the x-ray source were 

identical for both acquisitions, and acquisition planes were orthogonal to one another. Plots with 

sagittal, coronal, and axial projections were used to visualize the resulting 3D curve (Figure 8.1).  



 116 

 

Figure 8.1 [Left] Input images, with predicted spine contours shown in magenta. White markers 
indicate x-axis coordinates of the C7 plumb line, text annotations show imbalance 
measurements in cm. [Right] Approximate 3D reconstruction of spine shape using midlines 
extracted from AP and LL views, from the upper endplate of S1 (light orange) to the lower 
endplate of C7 (dark purple). Coronal/sagittal/axial shadow projections are shown on each 
plane, axes are scaled isotropically. 

8.3.4 Institution-wide Validation  

To further test algorithm validity and generalizability, predicted imbalance measurements 

were compared to measurements mined from radiology reports. Radiology reports were parsed 

with a simple regular expression tool to extract imbalance measurements in centimeters. 

Predicted results were visualized as scatterplots and error histograms, agreement was 

assessed using MAD and CCC. A final qualitative check of algorithm generalizability was 

performed by running inference on images from the 2019 Accurate Automated Spinal Curve 

Estimation (AASCE) challenge test set264 and examining the vertebral overlays (Figure 8.2). 
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Figure 8.2 Example midline and contour predictions on JPEG data from the AASCE 2019 
challenge. One low visibility image (not shown) failed quality control. 

8.3.5 Retrospective Institution-wide Inference 

Musculoskeletal radiologists and neuroradiologists compiled an exhaustive list of 28 

radiology exam codes to identify relevant patient accessions between 2008 to September of 

2020. All associated Dicom images and reports were anonymized. Data filtering steps are 

detailed in a flowchart (Figure 8.3). First, accessions with radiology reports mentioning 

(‘hardware’, ‘fusion’, ‘rods’, ’screws’) were removed. Then, Dicom headers missing view or pixel 

information were excluded. The remaining 20788 sagittal and 22893 coronal images were 

preprocessed identically to the model development images, then run through the landmark 

detection and midline curve extraction algorithm. Approximately 6.6% coronal images and 4.5% 

sagittal images failed autoQC; failed images were primarily mislabeled views, patients with 

spinal hardware not mentioned in the report, and bending radiographs.    
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Figure 8.3 Data selection pipeline for institution-wide validation and deployment. 

8.3.6  Shape Modeling  

20118 3D spines described by 2000 anatomically corresponding points were to construct a 

statistical shape model. Features were centered before using Singular Value Decomposition 

based Principal Component Analysis to project the data to a lower dimensional, linear 

subspace. This resulted in 8 new shape axes (modes) describing shape variability within the 

patient population. In other words, the curvature of each 3D spine is described by 8 numbers, 

each describing specific shape characteristics. The average spine shape is visualized alongside 

-3 to 3 standard deviations of each shape mode to interpret shape characteristics. T-distributed 

stochastic neighborhood embedding (t-SNE) was used to visualize the distribution of patient 

spine shapes by creating a nonlinear embedding of the 8 dimensional shape vector into a two 

dimensional subspace. Twelve patients with scoliosis were randomly selected for Cobb angle 

evaluation: measurements from two trainees and one radiologist were averaged (R1, R2, 

radiology report) and plotted alongside the t-SNE datapoints. 
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8.3.7 Hosted model  

For interested readers, the spinal landmark algorithm and radiology report parser will be 

hosted on gradio265, pending approval by the Data Security Team at UCSF. Anonymized lateral 

and frontal (AP) Dicom image pairs are required to extract spine contours, a 3D spine plot and 

shape parameters. 

8.4 Results 

Dataset information for model development and institution-wide deployment is detailed in 

Table 8.2. From 2008 to early 2020, acquisition of spine radiographs has been growing at 19% 

per year. As a result, imaging acquired within the last 6 years constitutes a large proportion of 

the data used in this study. Ratio of female/male patients was consistent across all datasets 

(54.9%-66.2%) except Srad and Crad which were 87.5% and 83.3% female. Age distribution was 

bimodal, with a mean age of 12.6 (3.6) years for pediatric acquisitions and 58 (16) years for 

adult acquisitions. 

Table 8.2 Detailed acquisition and demographic information for each dataset. Acquisition year 
and age are expressed as mean (range). Calgo, Salgo, Crad, and Srad were used for model 
development and validation; C,S,iC, iS, and B were used for institution-wide model deployment 
and validation. When the number of patients was less than the number of accessions for a given 
dataset, this indicated a subset of patients had more than one visit. When the number of images 
was greater than the number of accessions, a subset of patients had repeat images within the 
same accession. 
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8.4.1 Model testing 

The spinal landmark detection models showed robust performance across the test set 

(Table 8.3). On average, pointwise MAE for coronal and sagittal images was <10mm, with a 

majority of pointwise errors <5mm and few errors >20mm. The largest errors were driven by a y-

axis shift, where predicted landmarks were placed on vertebra edges rather than corners due to 

regions with low image quality or disagreement on the location of the landmark endplates. Y-

axis shift was preferable over x-axis shift since the former still allowed for accurate fitting of 

spinal contours. Although a direct comparison is not possible due to different training and testing 

datasets, transforming our landmark predictions and ground truth points to match Multi-View 

Correlation Network MVC-Net’s257 scale we saw 79%, 66% lower test error (0.0095 vs 0.0459, 

0.0136 vs. 0.0398) in sagittal and coronal views, despite MVC-Net requiring both views as input.  

Table 8.3 Model performance on test set, continuous values are expressed as mean with range 
in parenthesis. Imbalance describes the range of imbalance measurements as defined by the 
ground truth landmarks. MAE = mean absolute error, MAD = mean absolute difference, CCC= 
concordance correlation coefficient, mm= millimeters 

 
 

Overall, S1 and C7 endplate landmark identification and midline curve extraction was highly 

reliable, example overlays in Figure 8.5, Figure 8.6. Imbalance measurements derived from 

ground truth landmarks in the test set spanned from -19.6 to 43.4mm of coronal imbalance and -

62.3 to 127mm of sagittal imbalance similar to pathological ranges reported in the literature79; 

266, and included patients with varied spinal deformities. Predicted imbalance measurements 

were in excellent agreement with landmark measurements (CCC of 0.993 and 0.973 for sagittal 

and coronal imbalance respectively). In a small clinical dataset (Srad, Crad), algorithm imbalance 

measurements remained in good agreement with each radiologist (CCC of 0.974, 0.943 for 
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sagittal and 0.941, 0.948 for coronal, MAD <10mm for all samples, Figure 8.7). For sagittal 

imbalance rater-algorithm agreement was 3.3% to 6.2% higher than inter-rater agreement. For 

coronal imbalance, rater-algorithm agreement was 0.3% to 1.1% lower than inter-rater 

agreement.  

 

Figure 8.5 Frontal spine radiographs from test set. Ground truth curves in cyan, predicted 
curves in magenta. Dashed lines are spine contours, solid line is midline. Filled circles are S1 
and C7 landmarks for coronal imbalance calculation. 

 

Figure 8.6 Lateral spine radiographs from test set. Ground truth curves in cyan, predicted 
curves in magenta. Dashed lines are spine contours, solid line is midline. Filled circles are S1 
and C7 landmarks for sagittal imbalance calculation. 
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Figure 8.7 Matrices show inter-rater and rater-algorithm agreement on coronal and sagittal 
imbalance measurements performed on a PACS workstation. Pred = algorithm, R1,R2= Rater 
1,2 , CCC=concordance correlation coefficient, MAD=mean absolute difference [mm] 

8.4.2  Institution-wide validation 

There was moderate agreement between radiology reports and predicted imbalance (CCC 

0.916 sagittal, 0.731 coronal) (Figure 8.8). Reduced agreement in this dataset was expected 

given human errors in radiology reports and errors in automatic text parsing for label extraction. 

Differences >5cm between reported measurement and predicted measurement were 

investigated: 60% caused by errors in reporting (for example sagittal and coronal 

measurements flipped, or use of qualifiers “more than”, ”at least”), 18% from errors in text 

extraction (for example previous value for imbalance extracted from report), and 12% had report 

text and accession number potentially mismatched (deep learning prediction overlays are 

reasonable but significantly off of the reported measurements). This further demonstrated 

algorithm validity and generalizability to the institution-wide dataset, as this dataset included 

measurements from several radiologists and x-ray sources. Promising qualitative results on the 

AASCE challenge images suggested the landmark detection algorithm may be robust to shifts in 

patient population, data acquisition between institutions, and image compression. However, 
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understanding how performance is affected by more severe domain shift will require additional 

investigation.  

 

Figure 8.8 Scatterplot showing agreement between absolute imbalance measurements in cm 
extracted from radiology report and predicted imbalance measurements. Blue points indicate 
errors within 5cm, red points are errors greater than 5cm. Blue line represents the line of best fit 
to all data points. A plot of the distribution of errors is shown as a grey histogram, where 
negative errors correspond to overestimation of imbalance. CCC=concordance correlation 
coefficient, cm=centimeters 

8.4.3 Global Alignment Parameters  

Sagittal and coronal imbalance were measured using predicted keypoints and image header 

information. Figure 8.9 shows the resulting mean value and 95% confidence ellipsoid of sagittal 

and coronal imbalance parameters by age group. After age 50, global sagittal alignment 

became increasingly positive. However, these results should be interpreted with caution due to 

sampling bias: the patient population undergoing full spine x-rays are not likely a representative 

sample of the population. 
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Figure 8.9 Sagittal and coronal imbalance parameters for all patients with bilateral x-ray 
imaging, separated by age groups. Filled datapoints represent centroid per age group while 
surrounding ellipse is the 95% confidence interval of the parameter set. 

8.4.4 Shape modes 

A total of 8 shape modes (Figure 8.4) described 99.68% of shape variation in the patient 

population. Modes 1 / 3 / 7 were dominated by sagittal plane variations, while variations in 

modes 2 / 4 / 8 were localized to the coronal plane. Modes 5 / 6 were a combination. Modes 1 / 

2 accounted for 58.3%, 20.2% of the total shape variation and reflected changes in sagittal and 

coronal imbalance respectively. Mode directions agreed with imbalance conventions (positive, 

negative). Mode 3 plot (11.5% of variation) had a single point of intersection near T6, where 

increasingly negative values showed exaggerated lumbar lordosis and posterior sagittal balance 

while positive values a C-shaped lateral spine and anterior sagittal balance. In the coronal 

plane, negative values were linked to a minor rightward thoracic curve. 

Mode 4 plot (4.84% of variation) had a single point of intersection near T11, negative values 

indicated major rightward lumbar curves, positive values major leftward curves, with curve 

magnitude scaling with mode values and a compensatory change in imbalance. 

Mode 5 (2.36% of variation) and mode 6 (1.78% of variation) plots had two points of 

intersection, near T4 and L2. Negative values of mode 5 were linked to a ‘flat back’ shape with a 
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small rightward lumbothoracic curve, while positive values were associated with mid-thoracic 

kyphosis. Negative values of mode 6 showed a double curve shape with a major rightward 

lumbothoracic curve and minor leftward lumbar curves and upper thoracic curves, with the 

opposite true for positive values. Lastly, mode 7 (0.43%) and mode 8 (0.34%) plots had three 

intersection points and reflected local changes in sagittal and coronal curves. Positive values for 

mode 7 were linked to upper thoracic kyphosis. While shape modes were interpreted using 

common clinical terms for spinal deformity, important observations were gleaned by examining 

shape mode plots. For example, positive and negative values in mode 2 appeared mostly 

symmetric, however axial projections revealed a twisted loop shape in the negative values. 

Several axial projection shapes described in Pasha et al267– V-shape, S-shape, closed loop– 

were similarly identified in this study. T-SNE (Figure 8.10) did not separate patients into visually 

distinct clusters, instead creating a large point cloud where the main directions of variation 

corresponded to variations in shape modes 1 and 2. Patients with similar cobb angle 

measurements were only co-localized if sagittal plane curves were also similar. Coloring the 

point cloud by age, sex, image acquisition year did not uncover any obvious patient clusters. 

8.5 Discussion 

The developed landmark extraction algorithms demonstrated robust performance across the 

tested datasets. Once validated, algorithms were run on institution-wide data with pairs of frontal 

(Anterior-Posterior) and lateral (Left-Lateral) view radiographs to reconstruct approximations of 

3D spine shape. A detailed discussion of merits and limitations of this approach is warranted.  

As a first point of merit, the proposed method could enhance current clinical assessment of 

spine radiographs. Landmark annotations are not feasible within the clinical workflow as they 

require significant user-input and are vulnerable to user error. Several factors can reduce 

visibility and prevent the reliable manual identification of landmarks including severe spinal 

deformity, overlapping soft tissues, and visible lead shields. Moreover, anatomical landmarks  
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Figure 8.10 T-SNE embedding of 8 3D spine shape modes. Coronal Cobb angle 
measurements from 12 randomly selected spines displayed near colored point or above inset 
with frontal and lateral radiographs. Cobb angles were taken as the average measurements 
from 3 radiologists. Notice the similarities in Cobb between the upper left and upper right 
coronal images. TSNE parameters: learning rate 200, perplexity 100, iterations 800. 

 

may present differently in patients with obesity, osteoporosis, transitional anatomy, fused bone, 

or at variable skeletal maturities. The sacral plateau (S1) and lower endplate of C7 were chosen 

as reliable anchor points, since nearby anatomical landmarks (ribcage, spinous processes, 

sacrum) allow for reliable identification even in low visibility settings. Automatic imbalance 

measurements were validated using both manual annotations and a large clinical dataset, 

providing evidence of the accurate identification of these anchor points. The landmark 
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prediction, midline curve fit, quality control, and 3D reconstruction for the proposed method are 

fully automatic and therefore have the potential to scale and integrate into the clinical workflow. 

Once deployed, prediction algorithms could run online–where clinicians would request results 

for a specific image pair– or offline– where inference would run on images shortly after 

acquisition and results would be stored in PACS. For patients with one or more previous visits, 

clinicians could quickly assess changes in 2D and approximate 3D curvature of the spine 

(example longitudinal case presented in Figure 8.11).  

For patients without historical data, clinicians would be presented with a set of similar cases 

at their institution based on age, sex, and curvature similarity (defined as Mahalanobis distance 

in shape space). Retrieval of similar cases, as first proposed for coronal radiographs by Menon 

et al.268, would allow for treatment planning based previous experiences with similar patients. 

 

Figure 8.11 (L, Top R) Sagittal, coronal, and axial views of spine midlines for a single patient: a 
12M with back pain at initial visit (t=0) monitored over the course of 6.5 years. Bilateral imaging 
was acquired during each. Slight changes in patient positioning and spinal curve are identifiable 
between visits. (Bottom Right) Shape mode scores over time. Notice a gradual increase in score 
for shape mode 4 starting at 37 months, which coincides with the onset of a leftward lumbar 
curve. 
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 Furthermore, similarity grouping would enable the identification of patient subgroups for 

retrospective observational research or provide prevalence estimates of specific spine 

deformities for future cohort designs.  

Second, an approximate 3D spine shape provides a rich description of global deformity 

compared to single plane evaluations, even with noise arising from an imperfect biplanar 

reconstruction. Shape mode embedding highlighted differences between patients with high  

curve similarity in the coronal plane but low similarity in the sagittal plane. Global curvature 

informs the distribution of biomechanical loads on the spine and might be important to 

understand risk of curve progression and assist in clinical management269. For example, recent 

AIS literature showed that pre-operative 3D shape, early post-operative shape, and information 

on fusion levels could be used to predict surgical outcomes 2 years post-op267. A significant 

body of literature exists on classification of 2D and 3D spine shapes for AIS and ASD patients48; 

270. While it would be worthwhile to see if these classes naturally group in 3D shape space, the 

proposed method does not impose a specific classification scheme on the results, which more 

appropriately displays the spectrum of spinal deformities.   

Third, it is well known that deep learning models are sensitive to shifts in data acquisition 

and can behave unexpectedly when tested on new populations271. Therefore, we have hosted 

the algorithms online such that they are easily accessed by the research community. To our 

knowledge, we are the first testable algorithm for spine midline extraction from biplanar 

radiographs, with an approximate runtime of 20 seconds per image pair.  

A major limitation of the proposed method is that the 3D curve reconstruction is only an 

approximation of 3D shape since it is based on two non-calibrated acquisition planes. 

Calibration of the two image planes was not feasible for this study as the minimum set of 

parameters required to establish stereocorrespondence using epipolar geometry (6 anatomical 

landmarks per vertebra, known calibration parameters, a known distance landmark for scale or 

focal length information) were not available on all images. Additionally, published methods that  
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Figure 8.12 Similarity retrieval using Mahalanobis distance. Spine shape is extracted from 
query images and compared to a patient database of spine shapes. Patients with high 
demographic and shape similarity are returned. 
 

perform self-calibration on landmarks such as spinal contours or midlines rely on statistical  

shape models based on separate databases of CT scans to infer or constrain a full 3D spine 

reconstruction272-274. Given our interest in understanding global shape variations across our 

institution we opted against using pre-existing shape models for reconstruction. It is important to 

emphasize that limitations associated with non-calibrated acquisitions apply to all spine 

measurements performed on biplanar radiographs including imbalance, Cobb angles, lordosis, 

kyphosis, and pelvic parameters. It follows that our proposed method would not be appropriate 

for applications where high-precision 3D skeletal reconstructions of pedicles and vertebral 

bodies are required, such as finite element simulations.  

Calibration issues can be addressed during acquisition by using dedicated simultaneous 

low-dose stereoradiographic (EOS) systems achieving equivalent or improved image quality 

and measurement reliability with less radiation than a conventional radiograph275; 276. While this 

technology holds great promise, upgrading to these systems can be cost-prohibitive and even 

institutions with EOS systems have a wealth of historical data available that could be analyzed 

retrospectively to aid clinical decision making. 
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A minor limitation of the proposed method is the limited scope of the development dataset. 

While the dataset included a wide range of spinal deformities, radiograph sources, and 

demographics, it did not include bending or post-operative radiographs. Therefore, an 

abstention mechanism was built into the pipeline: algorithm predictions for these out-of-

distribution images have high variability and are flagged as invalid during the autoQC step. 

Automatic landmark prediction for instrumented spinal radiographs has been investigated in258, 

but was considered out of the scope for this study given that key landmarks are often 

obscured277. Furthermore, fused spinal levels in an instrumented patient population were likely 

to result in different spine shape modes as compared to the pre- or non-operative population. 

The most surprising finding in this work was the range in actual sagittal and coronal 

imbalance among images linked to radiology reports stating “no imbalance”. Our early 

experiments attempted to train an image classifier to recognize balance/imbalance on full spine 

radiographs using labels extracted from the radiology report, but performance was suboptimal. 

After pivoting to keypoint annotations, we ran inference on images whose radiology reports 

stated “no imbalance” and found true measurements of approximately +/- 2.5 cm of coronal 

imbalance and +/- 5 cm sagittal imbalance, beyond the clinical threshold for imbalance of 2 cm. 

This has important implications: when no exact measurement was provided, qualitative 

descriptions of spinal alignment (‘no imbalance’, ‘neutral balance’, ‘mild’) were subjective. 

 

Figure 8.13 Predicted coronal and sagittal imbalance measurements for images whose report 
stated “no coronal imbalance” or “no sagittal imbalance”. 
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8.6 Conclusion 

Future work will focus on: (1) Testing and documenting the landmark algorithms’ robustness 

to domain shift and identifying new failure modes. Specifically, automatic vertebral midline 

extraction and shape modeling will be tested on radiographs pooled from several collaborating 

institutions. Moreover, individual researchers are encouraged to test the algorithm online and 

provide feedback, reporting cases of success or failure. This follows guidelines outlined in a 

recent review of machine learning for scoliosis by Chen et al.278 calling for “heterogenous test 

sets” for spine deformity research and evaluation of ML tools by multidisciplinary teams. (2) 

Using a curated subset of pre-operative AIS, ASD images and surgical outcomes, determining if 

specific partitions of the 3D shape space may have more favorable surgical response. 

In summary, this study describes a new method for automatic extraction of the vertebral 

midline from biplanar radiographs and a method describing 3D spine shapes through 8 

interpretable shape modes. Deployed institution-wide, this method has the potential to enhance 

clinical assessment of spine deformities in AIS and ASD. 
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