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1 Introduction 
The transportation sector is the largest contributor to climate change and air pollution in 
California, accounting for approximately 50% of the state's greenhouse gas (GHG) emissions, 
nearly 80% of nitrogen oxide (NOx) pollution, and 90% of diesel particulate matter (PM) 
pollution1,2. Exposure to traffic-related air pollution (TRAP) has been consistently linked to 
increased risks of respiratory and cardiovascular diseases, preterm birth, cognitive function, and 
premature death, posing a significant health concern that necessitates the attention of 
policymakers and the public3–5. Clean vehicles, particularly zero-emission vehicles (ZEVs), 
produce no tailpipe emissions compared to conventional gasoline and diesel vehicles6,7. Thus, the 
transition towards clean vehicles presents an opportunity to improve air quality and yield health 
benefits8,9. 
 
Policymakers worldwide have committed to accelerating the transition to clean vehicles, leading 
to the implementation of various regional policies supporting these goals10,11. For instance, the 
European Union has outlined a plan to strive towards achieving 100% sales of ZEVs by 2035, 
with the goal of achieving this target no later than 204012. China has set ambitious targets for 
clean vehicle adoption, aiming for electric and plug-in hybrid vehicles to account for 25% of all 
new car sales by 202513. The United States has a patchwork of clean vehicle transition policies, 
with some states offering more incentives for clean vehicles than others14. California, which is 
the largest market for new cars in the country, has set a goal including putting 5 million ZEVs on 
the road by 2030 and achieving 100% ZEVs sales for new passenger cars and light trucks by 
2035 through Executive Orders B-48-18 and N-79-20, respectively15. To promote the transition 
towards clean vehicles, governments often employ financial incentives, such as tax credits, 
rebates, and subsidies16. Such policy instruments are designed to alleviate the financial burden 
associated with purchasing clean vehicles. Moreover, the development of charging infrastructure 
is an essential part of the clean vehicle transition, and governments frequently provide financial 
incentives to support its expansion17–19. 
 
In Los Angeles (LA), addressing air pollution has been an ongoing challenge for many decades, 
with a particular focus on emissions from motor vehicles20–22.  Disadvantaged communities 
(DACs) in the city are confronted with a wide range of socio-economic challenges, including 
high levels of poverty, unemployment, and limited access to essential healthcare services23. 
Furthermore, DAC residents are more likely to live near-roadway, which exposes them to higher 
levels of TRAP, ultimately resulting in environmental inequities24–28. Although previous studies 
have quantified the ambient air quality and health benefits linked to ZEVs adoption to some 
extent, there is a crucial knowledge gap in the literature on evaluating the distribution equity of 
air quality and health benefits during the transition to clean vehicles from an environmental 
justice perspective29–31. 
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In this study, we build upon the previous LA100 study, which aimed for the transition to 100% 
renewable energy in LA City, and introduce a new focus on Equity Strategies. This new focus 
aims to ensure a just transition by investigating the potential environmental and public health 
benefits of replacing conventional vehicles with ZEVs in the city of LA, especially among 
DACs. We first utilize state-of-the-art methods to estimate future emission trends under different 
scenarios, with a focus on ZEVs disparity among DACs. A personal trip-level transportation 
model is used to generate precise spatial emission patterns for the on-road sector under different 
ZEVs distribution scenarios. We then simulate consequent changes in ambient particulate matter 
with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) and ozone (O3) 
concentrations using a high-resolution chemical transport model at about 1 km x 1 km. Finally, 
we assess the related public health benefits and monetized economic benefits in the city of LA 
using racial and ethnic specific concentration-response data.  
 
This new study emphasizes the importance of not only transitioning to cleaner energy sources 
but also ensuring that the benefits of this transition are equitably distributed among all 
communities, particularly those that have been historically underserved. By evaluating the 
potential health and economic impacts of increased ZEVs adoption, this study provides valuable 
insights for policymakers, stakeholders, and communities as they work together to create a more 
sustainable and equitable future for the city of LA. 
 

2 Results 
To gain a deeper understanding of how the adoption of light-, medium-, and heavy-duty ZEVs 
by 2035 will impact various communities, particularly those that are disadvantaged, we 
developed three distinct future scenarios:  

(1) Disparity: a 2035 ZEVs Disparity scenario that maps emission reductions based on 
varying ZEVs ownership adoption rates;  
(2) Equity: a 2035 ZEVs Equity scenario where emission reductions in on-road 
transportation based on a uniform ZEVs ownership adoption rate at 50% for every census 
tract; and  
(3) Equity_MSS: a 2035 ZEVs Equity scenario that emphasizes increased ZEVs usage in 
medium- and heavy-duty vehicles, with mobile source (both on-road and off-road) 
emission reductions aligned with the California Air Resources Board (CARB) 2020 
Mobile Source Strategy (MSS)1  

 
To assess the changes in ambient air quality for these 2035 scenarios, we use a baseline scenario 
reflecting the 2017 emission levels (i.e., Base). Table A1 in the Appendix reports the technical 
details for each scenario.  

2.1 Emission Inventory 
Figure 1 illustrates the total emission rates of all source categories for NOx and PM2.5 in LA City 
in 2035, relative to the Base scenario. The figure highlights that intensive emissions, especially 
for NOx, are predominantly transportation-related, as they are concentrated along the 
transportation networks within the city. The total emissions of NOx and PM2.5 in the Disparity 
scenario are reduced by 55% and 11%, respectively, relative to the Base scenario. Since the 
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Equity scenario is set with same total emissions as the Disparity scenario (see Table 1), both 
NOx and PM2.5 emissions change only slightly (<1%) due to the offsetting changes in emissions 
at different locations. In the Equity_MSS scenario, the emissions are further reduced on the base 
of the Disparity scenario by 14% and 1% for NOx and PM2.5, respectively. This reduction is 
attributed to the increased electrification of medium- and heavy-duty vehicles. 
 

 

 
Figure 1. The total emission rates of all the source categories for PM2.5 and NOx in LA City in 2035 

relative to the 2017 Base 
Black line marks LA City boundary. 

 
 
Table 1 summarizes the total primary air pollutant emissions from all emissions sectors for the 
future. Compared to the Base scenario, the Los Angeles countywide total emissions of carbon 
monoxide (CO), NOx, reactive organic gas (ROG) and sulfur oxides (SOx) in the Disparity 
scenario are considerably reduced by 57%, 45%, 29%, and 7.7%, respectively, and the primary 
PM2.5 is slightly reduced (3.1%) in 2035 relative to 2017. In 2035, ammonia (NH3) and 
particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (PM10) 
emissions increased by 2.2% and 1.0%, respectively. These increases are likely associated with 
the economic development and population growth observed between 2017 and 2035. Compared 
to the Equity scenario, the Equity_MSS scenario shows slight decreases in emissions of most 
pollutants except for NOx. The emission of NOx in the Equity_MSS scenario is reduced by 
about 30% from the Equity (or Disparity) scenario. The primary PM2.5 emission is further 
reduced by 3.2% in the Equity_MSS scenario.  
 
 
 
 



 

LA100 Equity Strategies  Chapter 15, page 4 
 

 
Table 1. Pollutant-specific Emissions (tons per day) Under Base, Disparity, Equity, and 

Equity_MSS Scenarios and Their Relative Changes for Los Angeles County 
 Note that Disparity and Equity are designed with same total emission amount but different spatial 

distributions. 

Scenarios CO NH3 NOx PM10 PM2.5 ROG SOx 
Base 1032 46 252 96 32 303 13 
Disparity 446 47 138 97 31 216 12 
Equity 446 47 138 97 31 216 12 
Equity_MSS 425 46 97 97 30 215 12 
Disparity - Base -57% 2.2% -45% 1.0% -3.1% -29% -7.7% 
Equity_MSS - 
Disparity 

-4.7% -2.1% -30% 0.0% -3.2% -0.5% 0.0% 

 

2.2 Changes in Ambient Air Quality 
For each emission scenario, four sets of one-month-long simulations are conducted, representing 
the winter, spring, summer, and fall seasons for January, April, July, and October, respectively. 
To evaluate the overall sensitivity of ambient air quality to emission scenarios, the simulated 
changes in concentrations of PM2.5 and O3 over LA City are examined. 
 
Figures 2 and 3 display the monthly mean spatial distributions of daily PM2.5 and daily 
maximum 8-hour average (MDA8) O3 concentrations in four representative months under 
various scenarios. Additionally, Figure 4 shows the citywide means of daily PM2.5 and MDA8 O3 
concentration for each season. As shown in Figure 2, the PM2.5 concentration hotspots (i.e., 
regions with high PM2.5 concentration) over LA City are located over the city center areas and its 
southern part in both January and October, over the city center areas in April, and over the city 
center areas and its northern part in July. The LA citywide mean PM2.5 concentrations exhibit 
similar seasonal variations across different scenarios, with summer being the least polluted 
season and winter and fall being the most polluted seasons (Figure 4A). The seasonal 
dependence of PM2.5 concentration and spatial pattern reflects the seasonal variations in pollutant 
emissions and meteorological conditions in LA City. The sensitivity of PM2.5 to emission 
scenarios exhibits little seasonal variation, with Base having the highest concentration and 
Equity_MSS having the lowest concentration across all seasons. The spatial patterns of O3 are 
consistent across different seasons (Figure 3), with two regions of low O3 concentration in the 
domain: the central areas of LA City and the coastal region next to the San Pedro Bay. The 
domain mean O3 concentration over the LA City region varies by season, with the lowest 
concentration in winter and the highest concentration in spring (Figure 4B).  
 
It's worth noting that over a larger simulation domain, e.g., Southern California as shown in 
Figure A1 in the Appendix, both simulations and observations show that the month of July has 
the highest inland O3 concentration, followed by April and October, while January shows the 
least O3 pollution. The seasonal distribution of simulated O3 over Southern California differs 
from that in LA City, which is also evident in the observed seasonality based on the Air Quality 
System (AQS) measurements from the U.S. Environmental Protection Agency (EPA) (Figure 
A2). The seasonality shift could be attributed to the following processes: Although the summer 
season is generally conducive to O3 production, the prevailing westerly and southerly winds 
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(Figure A3) from the ocean can dilute and blow O3 pollution away from the coastal areas of the 
LA Basin towards its inland regions. The mountain ranges to the north and east could block the 
air flow, leading to a rapid accumulation of O3 pollution in the mountain hill areas. 
Consequently, the western part of the LA Basin, where LA City is located, is cleaner than the 
eastern part of the Basin in July. In April and October, when there are no prevailing winds, 
pollution disperses more evenly in the LA Basin than in July, resulting in more O3 pollution in 
LA City during these months. As for LA County and Southern California, they cover almost the 
entire LA Basin, including those mountain hill regions where severe pollution accumulates. 
Since summer produces more O3 than other seasons, the domain-averaged O3 concentration 
over LA County and Southern California is higher in July than in April and October. In 
summary, the spatial heterogeneity of O3 concentration over LA Basin caused by the prevailing 
winds in July leads to the distinctive seasonal patterns among LA City, LA County and/or 
Southern California. The sensitivity of O3 concentration to emission scenarios is similar across 
different seasons, with Base having the highest O3 concentrations and Equity_MSS having the 
lowest concentrations. 
 
Table 2 summarizes the citywide average of annual mean daily PM2.5 concentrations and MDA8 
O3 in all scenarios. The annual mean values are obtained by averaging the four simulated 
months, as these months provide a representative view of the significant seasonal variations in 
emissions and meteorological conditions. The annual mean PM2.5 concentrations over LA City 
are 11.5, 10.6, 10.6, and 10.2 µg m-3 for the Base, Disparity, Equity and Equity_MSS scenarios, 
respectively. Reductions in emissions of precursors to secondary PM2.5 (e.g., NOx and VOC) 
result in a decrease of 0.8 µg m-3 (7.4%) in annual mean PM2.5 in the Disparity relative to the 
Base scenario. The Equity scenario does not show any significant change in annual mean PM2.5 

concentrations, maintaining the 10.6 µg m-3 level that was achieved in the Disparity scenario. 
The Equity_MSS scenario shows a further reduction, bringing the annual mean PM2.5 down to 
10.2 µg m-3. This signifies a reduction of 1.3 µg m-3 (11%) compared to the Base scenario.  
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Figure 2. Monthly mean daily PM2.5 concentrations for four representative months in LA City for 

Base, Disparity, Equity, and Equity_MSS 
 Black line marks the LA City boundary. 
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Figure 3. Monthly mean daily maximum 8-hour average O3 concentration for four representative 

months in LA City for Base, Disparity, Equity, and Equity_MSS 
 Black line marks the LA City boundary. 
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Figure 4. Monthly mean of LA City region daily PM2.5 concentrations (A) and daily maximum 8-hour 

average O3 concentrations (B) for Base, Disparity, Equity, and Equity_MSS scenarios 
 

Table 2. Simulated LA Citywide Annual Average of Daily Maximum 8-hour O3 and Daily PM2.5 
Concentrations for all Evaluated Scenarios 

 Percentages in parentheses show relative changes between different scenarios and the Base. 
Pollutants  Base Disparity Equity Equity_MSS 

O3 (ppb) 38 42 (+12%) 42 (+12%) 45 (+18%) 
PM2.5 (μg m-3) 11.5 10.6 (-7.4%) 10.6 (-7.4%) 10.2 (-11%) 

 
In contrast, the annual mean MDA8 O3 concentrations show an increase from the Base scenarios 
(i.e., in 2017) to future scenarios (i.e., in 2035), and the concentrations for the Base, Disparity, 
Equity, and Equity_MSS scenarios are 38, 42, 42, and 45 ppb, respectively. The O3 concentration 
increases on average by 12% from Base to Disparity. The Equity scenario also has O3 
concentration of 42 ppb, maintaining the same level as the Disparity scenario. This represents the 
same increase of 12% in comparison to the Base scenario. The Equity_MSS scenario shows an 
increase to 45 ppb, which equates to an 18% rise in O3 concentration relative to the Base 
scenario. The overall increase in O3 concentrations occurs despite the reductions in NOx 
emissions noted above, which is because O3 production depends on the particular ratio of the two 
precursors: NOx and volatile organic compounds (VOCs), and the nonlinearities of O3 formation 
chemistry. Currently, LA City is generally in a transition regime whereby VOC reductions can 
lead to reductions in O3, yet NOx reductions can lead to increases in O3. It is important to note 
that the CARB 2020 MSS does not include a specific regulatory target for VOC reduction, which 
is why we did not model the VOC emission inventory change in our analysis. However, it is 
reasonable to assume that future VOC emissions would likely decrease in a real-world scenario, 
as the reduction in PM and NOx emissions is expected to be achieved through the electrification 
of both on-road and off-road vehicles and devices. Consequently, the increase in O3 levels found 
in our simulation results might be an overestimation, as it does not account for the potential 
reduction in VOC emissions that would accompany the transition to electric vehicles and 
equipment. 
 
Figures 5 and 6 illustrate the spatial distributions of annual mean PM2.5 and MDA8 O3 
concentrations over LA City in the Base scenario and their changes in future scenarios. As 
shown in Figure 5, areas with high PM2.5 concentrations are located in the city center while the 
suburban and/or rural areas in the western and northern parts of the city typically have lower 
levels of PM2.5. These high PM2.5 regions coincide with areas of larger emissions of primary 
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PM2.5 and precursors to secondary PM2.5 as shown in Figure 1. From the Base to Disparity 
scenarios, the PM2.5 concentration decreases greatly over the entire LA City (Figure 5B). 
However, the adoption of the equal distribution of transportation emission reduction due to ZEVs 
implementation (i.e., the Equity scenario) results in relatively small changes in PM2.5 
concentrations (Figure 5C), with slight increase over the city center and slight decrease over the 
southern part of the city, corresponding to the relatively small emission changes between the two 
scenarios observed over the two regions (Figure 1). In the Equity_MSS scenario, additional 
reduction in PM precursors contributes to a further decrease in PM2.5 concentrations from the 
Disparity scenario (Figure 5D).  
 
Figure 6 shows that the O3 concentration over the city center areas and its southern part is 
remarkably lower than that over its northern and western suburban and/or rural areas. This is 
mainly due to O3 scavenging by nitric oxide (NO) which is emitted from traffic mainly over the 
urban source areas. In the Disparity scenario, O3 levels are considerably elevated over almost all 
the areas in the city relative to the Base scenario, particularly over the urban centers of LA City 
(Figure 6B). This is consistent with the larger reduction in NOx over the urban center areas, 
given that LA City is still in the VOC-limited regime and the reduction in NOx results in more 
O3 production. With the equal distribution of transportation emission reduction in the Equity 
scenario, the O3 concentration shows slight decrease over the city center areas, consistent with 
the overall small positive changes in NOx emissions over there from Disparity to Equity 
scenarios (Figure 6C). Further reductions in certain precursor emissions (e.g., NOx in Table 1) in 
the Equity_MSS scenario yields even more O3 production over the entire city (Figure 6D). Note 
that VOC is slightly reduced from the Disparity to Equity_MSS scenarios (see ROG emissions in 
Table 1), suggesting that the O3 production over LA City is VOC-limited in the simulated future 
scenarios.  
 
The DAC designation in LA City is obtained from the Senate Bill (SB) 535 DAC Designation32. 
Figures 5 and 6 also highlight the annual mean spatial distribution of PM2.5 and MDA8 O3 
concentrations over DACs in the city. In the Base scenario, higher PM2.5 concentrations are more 
frequently found over DACs than non-DACs (Figure 5), while O3 concentrations are generally 
lower over DACs than non-DACs (Figure 6). The differences in PM2.5 and O3 concentrations 
between DACs and non-DACs in the Base scenario are generally consistent with the emissions 
contrast between the urban center areas and suburban regions in LA City.  
 
Figure 7 shows the LA citywide mean of daily PM2.5 and MDA8 O3 concentrations over DACs 
and non-DACs under different emission scenarios. The PM2.5 concentrations over DACs are 
considerably higher than those over non-DACs, on average by 3.7-4.0 µg m-3 (~40%), depending 
on the scenario examined, while the O3 concentrations are lower over DACs than over non-
DACs, on average by 4.6-6.0 ppb (~13%).  
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Figure 5. Annual mean daily PM2.5 concentrations in LA City for the Base scenario (A) and the 
differences between Disparity and Base (B), between Equity and Disparity (C), as well as between 

Equity_MSS and Disparity (D) 
 Thick grey line marks the LA City boundary and hatch-filled areas denote disadvantaged communities in 

LA City. 
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Figure 6. Annual mean daily maximum 8-hour average O3 concentration in LA City for the Base 
scenario (A) and the differences between Disparity and Base (B), between Equity and Disparity 

(C), as well as between Equity_MSS and Disparity (D) 
 Thick grey line marks the LA City boundary and hatch-filled areas denote the disadvantaged 

communities in LA City. 
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Figure 7. Community means of PM2.5 (A) and O3 (B) concentrations averaged over DAC and non-

DACs in LA City for Base, Disparity, Equity and Equity_MSS scenarios, as well as the relative 
differences between the Disparity, Equity, and Equity_MSS scenarios compared to the Base 

scenario (C) 

2.3 Public Health  
Figure 8 depicts the total avoided mortality in LA City, accounting for both PM2.5 and O3 
mortality changes. As observed in Figures 5 and 6, numerous census tracts experience health 
benefits due to the decrease in air pollution concentrations from 2017 to 2035. The public health 
benefits are more pronounced under the Equity_MSS scenario, which demonstrates the potential 
advantages of electrifying more medium- and heavy-duty vehicles. It is important to note that 
some areas exhibit disbenefits, primarily driven by the increase in O3 concentrations in the future 
scenarios. Spatial distribution maps for both PM2.5 and O3 related mortality changes between 
Equity_MSS and Base scenarios are presented separately in Figure A4. This highlights the need 
to consider both PM2.5 and O3 levels when evaluating the overall impact of ZEVs adoption 
strategies on public health.  
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Figure 8. Total avoided mortality in LA City for the differences between Disparity and Base (A), 
and between Equity_MSS and Base (B) 

Table 3 presents a detailed summary of the changes in both morbidity and mortality due to 
changes in PM2.5 concentrations, in addition to the mortality changes highlighted in Figure 8. The 
changes are categorized by census tracts into DACs and non-DACs. As shown in Table 3, a total 
of 480 and 703 avoided mortalities attributed to PM2.5 reduction using the uniform beta 
coefficient, were observed between the Disparity and Base scenarios, and between the 
Equity_MSS and Base scenarios, respectively. However, when the beta coefficient is adjusted 
based on race and ethnicity, the number of avoided mortalities related to PM2.5 reduction 
increases to 567 and 831 between the same scenarios. 

Figure 9 provides a more detailed analysis of the results, highlighting the underestimation of 
health benefits, particularly for the Hispanic population, when using a uniform exposure-
response beta coefficient. When a racial and ethnic-specific beta coefficient was employed, the 
estimated avoided mortality increased from 169 to 270 (a 60% increase) between the Disparity 
and Base scenarios, and from 250 to 400 (a 60% increase) between the Equity_MSS and Base 
scenarios. This is due to social health disparities, such as varying access to medical services, 
knowledge, and coping mechanisms among different racial and ethnic groups, resulting in 
distinct response rates to changes in air quality. Given the high proportion of people of color in 
LA City, using a uniform exposure-response beta coefficient would underestimate the health 
benefits for this population. These findings underscore the importance of considering racial and 
ethnic-specific factors in health impact assessments to more accurately capture the disparities in 
health outcomes and ensure a more equitable evaluation of air quality improvement strategies. 
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Regarding morbidity, while positive health benefits are observed for PM2.5-related respiratory 
emergency room (ER) visits, the overall morbidity exhibits a disbenefit due to the increase in O3 
levels. This highlights the need for a comprehensive approach to air quality management that 
considers the complex interplay between different air pollutants, ensuring that strategies aimed at 
reducing one pollutant do not inadvertently exacerbate the health impacts of another. 

Table 3. Summary of Annual Health Changes Between Scenarios (Mortality and Morbidity)            
Total mortality is the sum of O3 mortality and PM2.5 mortality.  

Health Endpoints Disparity - Base Equity_MSS - Base 
Mortality Total non-DAC DAC Total non-DAC DAC 

PM2.5 Mortality (Uniform Beta) 480 214 266 703 321 383 
PM2.5 Mortality (Racial/Ethnic Specific 

Beta) 567 231 336 831 347 484 

O3 Mortality -337 -155 -182 -499 -222 -277 
Total Mortality 230 76 154 332 125 207 

Morbidity  

PM2.5 ER Visits, Respiratory 239 88 151 349 132 217 
O3 ER Visits, Respiratory -677 -264 -413 -1017 -379 -638 

Total Morbidity -438 -176 -262 -668 -247 -421 
 

 
Figure 9. Differences in PM2.5-related avoided mortality, comparing the use of uniform beta 

coefficients with racial/ethnic-specific beta coefficients 
 Upper panel represents the differences between Disparity and Base. Lower panel represents the 

differences between Equity_MSS and Base. This illustration highlights the disparities in health outcomes 
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when accounting for race and ethnicity in the analysis. Other: Asian American, Pacific Islander and Native 
American. 

2.4 Monetized Benefits 
Table 4. Monetized Health Benefits Between Scenarios for Both Mortality and Morbidity 

 Disparity – Base  
(in 2015 million U.S. dollars) 

Equity_MSS – Base  
(in 2015 million U.S. dollars) 

 Mean Low High Mean Low High 
non-DAC $660 $90 $1,200 $1,090 $190 $1,940 

DAC $1,340 $190 $2,430 $1,800 $220 $3,310 
Total $2,000 $280 $3,630 $2,890 $411 $5,250 

 
Table 4 summarizes the health benefits, including their 95% confidence intervals for both lower 
and higher estimates, associated with PM2.5 and O3 concentrations in LA City. The Disparity 
scenario, compared to the Base scenario, could result in $2 billion in health benefits, with $1.3 
billion directed towards DACs. By implementing the Equity_MSS scenario, which promotes 
electrification of medium- and heavy-duty truck fleets and off-road equipment, $2.9 billion can 
be gained, with $1.8 billion benefiting DACs as compared to the Base scenario. Although the 
uncertainties in the valuation and health impact functions lead to a wide range of estimates, 
significant benefits are observed. The findings highlight the potential for targeted air quality 
improvement strategies to result in substantial improvements in public health and economic 
gains, even when considering the uncertainties in the underlying models and assumptions. 
 

3 Discussion 
In this study, we investigated the potential health impacts of various scenarios for ZEVs adoption 
in the city of LA. To do so, we developed three different scenarios: (1) a 2035 ZEVs Disparity 
scenario, (2) a 2035 ZEVs Equity scenario, and (3) a 2035 ZEVs Equity scenario with more 
ZEVs in medium- and heavy-duty vehicles following the 2020 Mobile Source Strategy 
(Equity_MSS). Our analysis focused on how these scenarios would affect DACs and other 
populations, taking into account the complex interplay between air pollutants such as PM2.5 and 
O3. 
 
Our findings suggest that implementing ZEVs policies can substantially reduce PM2.5 
concentrations, leading to improved health outcomes for both DACs and non-DACs. 
Specifically, from the Base to Disparity scenarios, the citywide mean PM2.5 concentration 
decreases by 7.4% and 7.3% over both DACs and non-DACs, respectively. There is little change 
between Disparity and Equity scenarios over both types of communities. However, the 
enhancement in ZEVs portion of medium- and heavy-duty vehicles, i.e., from the Equity to 
Equity_MSS scenarios, leads to 3.6% and 4.6% more reductions in PM2.5 concentrations over 
DACs and non-DACs, respectively. In contrast, from the Base to Disparity scenarios, the 
increases in O3 concentrations are about 16% and 10% over DACs and non-DACs, respectively. 
From the Disparity to Equity scenarios, the O3 concentrations over DACs and non-DACs both 
show a decrease, but the decrease is relatively small, less than 1%. The O3 concentrations 
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increase further from the Equity to Equity_MSS scenarios by 8.8% and 5.4% over DACs and 
non-DACs, respectively. In general, the implementation of ZEVs policy in the future will 
improve air quality in terms of the PM2.5 over both DACs and non-DACs, and the benefits are 
comparable between DACs and non-DACs.  
 
While implementing ZEVs policy can improve air quality by reducing PM2.5, our findings 
suggest that it may also lead to temporary increases in O3 pollution, particularly over DACs. This 
phenomenon, referred to as temporary “growing pains” in the original LA100 report, occurs 
when O3 concentration increases despite NOx reduction. However, once NOx emissions reach a 
certain level, further reductions can result in marked improvements in O3 levels. To address this 
issue, decision-makers should prioritize reducing NOx emissions further, while also working to 
reduce VOC emissions in conjunction with PM and NOx emissions reductions. 
 
Our study highlights several key points. 

1. Vehicle electrification offers substantial reductions in PM2.5 that can lead to improved 
health outcomes for both disadvantaged and non-disadvantaged communities. This 
demonstrates the potential for significant improvements in public health and economic 
gains through targeted air quality improvement strategies. 

2. Electrifying medium- and heavy-duty trucks will bring additional health benefits, 
particularly for DACs. Implementing the Equity_MSS scenario, which encourages the 
adoption of ZEVs in medium- and heavy-duty truck fleets and off-road equipment, would 
result in the highest health benefits in the city, with a substantial proportion of these 
benefits directed towards DACs. 

3. The use of ethnic and racial-specific exposure-response functions can help reveal greater 
health benefits, particularly for the Hispanic population, than previously estimated. This 
underscores the importance of incorporating racial and ethnic-specific factors into health 
impact assessments to ensure a more equitable understanding of air quality improvement 
strategies. 

4. To reduce O3, it is crucial to further reduce NOx and reduce VOCs in parallel with PM 
and NOx emissions reduction. Since our study does not account for the potential 
reduction in VOC emissions that would likely accompany the transition to electric off-
road equipment, the increase in O3 levels found in our simulation results might be an 
overestimation. By addressing VOC emissions alongside PM and NOx, decision-makers 
can work towards a more comprehensive approach to air quality management. 
 

In conclusion, our study highlights the necessity for holistic approaches to air quality control that 
account for the intricate interplay of various pollutants and prioritize equitable treatment for 
vulnerable communities. By understanding these complexities and targeting appropriate 
strategies, decision-makers can work towards improving public health and promoting greater 
equity in vehicle electrification. 



 

LA100 Equity Strategies  Chapter 15, page 17 
 

4 Methods 
4.1 ZEVs Adoption Trends Estimation 
In this study, we applied a logistic growth model to estimate the number of light-duty ZEVs in 
each census tract within LA County for the year 2035. The logistic growth model is a 
mathematical framework commonly used to predict the adoption rate of new technologies. It 
describes a sigmoidal, or S-shaped, curve, representing a slow initial adoption, followed by rapid 
growth as the technology becomes more prevalent, and eventually leveling off as the market 
becomes saturated. This model has been widely applied in various fields, including technology 
diffusion, population growth, and resource consumption, to forecast future trends and inform 
decision-making processes. We utilized ZEVs ownership data for each census tract from 2015 to 
2020 to establish a growth trend from EMFAC2021 v1.0.233, an official emission and fleet 
inventory database developed by the CARB. After estimating the number of ZEVs for each 
census tract in 2035, we adjust the total ZEVs count in LA County to achieve a final ZEVs 
penetration rate of 50%, in accordance with the value used in the CARB MSS report1. We then 
proportionally scale the ZEVs count for each census tract to reflect this target penetration rate.  
 
To represent this methodology mathematically, we use the following logistic growth equation: 
 

𝑁(𝑡) = !

"#!"#$#$ $"%&
       (Eq 4.1 -1) 

where: 
N(t) is the number of ZEVs at time t (in our case, t = 2035), 
K is the carrying capacity, representing the total vehicle population in 2050 (as per EMFAC 
data), 
N0 is the initial number of ZEVs (at t = 2015), 
r is the growth rate, estimated from the ZEVs ownership data from 2015 to 2020, 
t is the time (in years) since the initial year. 
 
The ZEVs fleet penetration rates at the census tract level in 2035 were subsequently utilized in 
both the transportation and air quality models to provide a comprehensive analysis of the air 
quality and health impacts of ZEVs adoption. 

4.2 Transportation System Modeling 
We developed an integrated transportation system model to predict the traffic volume 
distribution in a typical weekday for the Greater Los Angeles Area in 2035. The integrated 
model consists of two components: an activity-based model (ABM) to predict travel demand and 
an agent-based model to simulate transportation supply (infrastructure and mobility services). 
Each component is explicitly explained below.  

4.2.1 Travel Demand Forecast 
In this project, we adopted the ABM developed by Southern California Association of 
Governments (SCAG), which is one of the largest ABMs being implemented in the United 
States. The system design of SCAG ABM is presented in Figure A5 in the Appendix. At the first 
layer, a synthetic population is generated to represent the population in Southern California with 
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specific demographic and socio-economic attributes. The base year of the SCAG ABM is 2016, 
which indicates that the aggregated distributions of demographic and socio-economic attributes 
of the synthetic population are calibrated to 2016. We adopt the 2035 synthetic population from 
SCAG for this project. From the second to sixth layer, people’s travel-related choices are 
predicted and coordinated based on their socio-economic attributes and the travel demand at the 
individual level is generated as the output. In this project, we select the travel demand of 
residents in Los Angeles County.  

The demand of heavy-duty truck in Southern California is also modeled in the SCAG ABM. 
Three classes of trucks are modeled separately: light-heavy (8,500 to 14,000 lbs. gross vehicle 
weight (GVW); medium- heavy (14,001 to 33,000 lbs. GVW); and heavy-heavy (>33,000 lbs. 
GVW). The truck trips are generated according to the land use and socioeconomic data of origin 
and destination zones.  

4.2.2 Agent-based Traffic Simulation 
The transportation supply of LA County is modeled by an agent-based simulation. The model is 
developed based on an open-source toolkit: Multi-Agent Transport Simulation (MATSim). The 
movement of travelers and vehicles in a multimodal network is explicitly simulated. The 
multimodal network comprises a road network (generated from Open Street Map) and a transit 
network (generated from the General Transit Feed Specification, GTFS), including 
approximately 354,000 links. Considering the scale of LA County (more than 10 million 
populations in 2016), 10% of the population is simulated in MATSim, and the roadway capacity 
is calibrated accordingly. The heavy-duty truck trips are also simulated in the road network with 
passenger cars. A heavy-duty truck is converted to passenger car equivalents (PCE) to account 
for the effects of trucks on link capacity in the mixed traffic flow. In the simulation, a truck is 
regarded as a 3.5 PCE.  

The validation results of the simulation model are present in Figure A6. Freeways with top 10 
daily volumes in LA County are selected as reference, and historical traffic count data are 
obtained from the Performance Measurement System (PeMS) as the validation data set.  

4.3 Emission Inventory Development 

4.3.1 Scenario Development 
The county-level and source-specific emission data except the mobile sources are collected from 
California Emissions Projection Analysis Model (CEPAM2019 v1.03)34 with a base year of 
2017. For mobile source (both on-road and off-road sectors), we used EMFAC2021 v1.0.233, 
which is an updated version as compared to the EMFAC2017 embedded in CEPAM2019. For 
the Base, Disparity, and Equity scenarios, we adjusted the emission for upstream and 
downstream energy use and production changes due to increased ZEVs population. For 
Equity_MSS scenario, we further adjusted the medium- and heavy-duty vehicle ZEVs 
penetration rate and off-road emission rates using EMFAC META model33, which is created 
based on CARB 2020 MSS1 document. We used CARB default settings for the META model.  
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4.3.2 Emission Inventory Development for On-road Sector 
Based on the ZEVs ownership percentage in a specific census tract in 2035, we assume that the 
same percentage of trips originating from the census tract will be ZEVs trips. The ZEVs trips are 
randomly selected from all trips originating from a census tract. 
 
We then aggregate link-level hourly emission rates for PM2.5 and NOX. On-road emission rates 
for LA County are retrieved from EMFAC2021 v1.0.233, an official emission inventory database 
developed by the CARB. Vehicle category-specific emission rates from EMFAC are matched 
with vehicle types in the MATSim model by vehicle weight class (Table A2). Unlike EMFAC, 
which uses a more detailed vehicle category classification, the MATSim model only classifies 
vehicles into four vehicle weight-based categories. Thus, we calculate MATSim-weighted 
emission rates from EMFAC using the equation below: 

𝐸𝑅_𝑀𝐴𝑇𝑆𝐼𝑀%
& = ∑𝐸𝑅_𝐸𝑀𝐹𝐴𝐶'& × 𝑉𝑃'  (Eq 4.3 -1)           

where 𝐸𝑅_𝑀𝐴𝑇𝑆𝐼𝑀%
& stands for the emission rate of pollutant i for MATSim weight class j, 

𝐸𝑅_𝐸𝑀𝐹𝐴𝐶'&  stands for the emission rate of pollutant i for EMFAC vehicle category k that falls 
into MATSim weight class j, and 𝑉𝑃' stands for the vehicle population proportion of EMFAC 
vehicle category k with regard to the total vehicle population that falls into MATSim weight 
class j. 
 
Emission rates are then matched with link-level hourly vehicle volumes and vehicle activities 
(starting or stopping a vehicle) to calculate emissions from different emission processes, 
including running exhaust emissions, start exhaust tailpipe emissions, and brake and tire wear 
emissions. The emissions from all processes are then aggregated together to reflect the total 
emissions of a specific link. We then convert the link-level data into grid cells that represent the 
spatial emission inventory pattern, which is subsequently incorporated into the chemical 
transport model for ambient air quality simulation.  

4.3.3 Emission Inventory Development for Upstream and Downstream 
Production 

As the future ZEVs population will increase the demand for electricity from the electricity 
generating sector while simultaneously reducing reliance on oil and gas production, it is essential 
to adjust the emissions from these two sectors accordingly. Therefore, we modify the emissions 
projections for both the electricity generating units and oil and gas production sectors based on 
the anticipated ZEVs population in 2035, ensuring a more accurate reflection of their 
environmental impact. We modified the stationary emissions from petroleum and gas industry 
for all 2035 scenarios. The overall Petroleum industry scaling down factor is calculated using the 
following equation: 
 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔	𝐷𝑜𝑤𝑛	𝐹𝑎𝑐𝑡𝑜𝑟 = !"#$	&'()*+,-	"./#0	1234	50
6#7	&'()*+,-	"./#0	1234	50

	´	𝑂𝑛𝑟𝑜𝑎𝑑	%								(Eq 4.3 -2) 
 
where the PC stands for Petroleum Consumption (includes the gasoline, diesel, and gas energy 
consumption) from on-road vehicles in EMFAC 2035 database under different scenarios, 
Onroad% stands for the on-road transportation sector consumption percentage. Based on a report 
from the U.S. Energy Information Administration35 in year 2019, 68% petroleum is used in the 
on-road transportation sector. The final scaling down factor for the petroleum and gas industry is 
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0.80 for Disparity and Equity scenarios and 0.78 for Equity_MSS scenario, assuming the 
emission factors and the on-road petroleum consumption percentage stay the same in 2035. 
 
Similarly, we also modify the emissions from the electric generating units. We first obtain the 
2017 California electricity net generation data from the Energy Information Administration36.We 
then apply activity growth factor from CEPAM to project the electricity net generation data in 
2035. The overall scaling up factor for electric generating units was calculated using the 
following equation: 

                𝑆𝑐𝑎𝑙𝑖𝑛𝑔	𝑈𝑝	𝐹𝑎𝑐𝑡𝑜𝑟 = ('(%')*#	((+&	
((+&

	               (Eq 4.3 -3) 
Where the 𝐸*+,*-. stands for the electricity needed from the on-road transportation sector and 
𝐸/$0 stands for the projected net electricity generation in year 2035. The final scaling up factor is 
1.20 for Disparity and Equity Scenarios, and 1.21 for Equity_MSS scenario. While our scaling-
up calculation method for estimating emissions from electric generating units serves as a useful 
proxy, it is important to note that it remains a rough approximation due to the complexity 
involved in modeling the entire energy system. Given our study focuses on equity strategies, we 
have prioritized other aspects of the analysis, and we do not anticipate that uncertainties in 
energy system estimation will affect our main conclusions on equity analysis. 
 
We utilized emission factors for power plants in LA City from the previous LA100 study37, 
specifically adopting those from the Early & No Biofuels Scenario. In this scenario, emissions 
stem solely from NOx and NH3, as power plants have transitioned to using hydrogen as their fuel 
source, significantly altering their emission profiles. 

4.4 Air Quality Modeling 
We use WRF-Chem version 3.9.1, a fully coupled meteorology-chemistry model that considers 
highly nonlinear and complex meteorological and atmospheric chemistry processes. The 
simulations are conducted for January, April, July, and October, representing winter, spring, 
summer, and fall, respectively. We apply the model to three nested domains (Figure 10): Domain 
1 covers the western United States and its surrounding areas at a 12 × 12 km2 horizontal 
resolution; Domain 2 covers Southern California with a 4 × 4 km2 resolution; and Domain 3 
covers LA County with a high resolution of 1.33 × 1.33 km2.  
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Figure 10. Illustration of triple nested modeling domains used in this study 

 
The vertical resolution of the WRF-Chem includes 24 layers from the surface to 100 hPa, with 
denser layers at lower altitudes to resolve the planetary boundary layer. We employ an extended 
Carbon Bond 2005 with chlorine chemistry coupled with the Modal for Aerosol Dynamics in 
Europe/Volatility Basis Set (MADE/VBS). MADE/VBS uses a modal aerosol size representation 
and an advanced secondary organic aerosol module based on the VBS approach. The aqueous-
phase chemistry is based on the AQChem module used in the Community Multiscale Air Quality 
model38. The National Centers for Environmental Prediction Final Analysis (NCEP-FNL) 
reanalysis data in year of 2017 was used to force the meteorology initial and boundary conditions 
for all simulations, which is able to isolate changes in air pollution resulting from future 
emissions changes, without additional confounding factors such as changing meteorology or 
climate. 
 
As described above, we obtain the county-level, source-specific anthropogenic emissions from 
the CARB CEPAM estimations and then convert the county-level emissions into 1.33 × 1.33 
km2 gridded data based on high-resolution spatial distribution information provided by the 
California Nexus project39.The on-road transportation emission maps are based on the ZEVs 
ownership and the MATSim simulated trips in each year, as mentioned above. We then distribute 
the CEPAM on-road emission estimation in each county in the corresponding years to the grid 
level following the new emission map. The biogenic emissions are calculated online using the 
Model of Emissions of Gases and Aerosols from Nature40. Dust emissions are calculated online, 
based on the Goddard Chemical Aerosol Radiation Transport dust emission scheme41. Sea-salt 
emission calculation follows parameterization in a previous study42. 

We compared the simulated and observed monthly average PM2.5 concentrations and monthly 
average of daily MDA8 O3 concentrations at each individual monitoring site over Southern 
California (shown in Figure A1). The observed O3 concentrations were obtained from the U.S. 
EPA AQS, and the data were converted to MDA8 O3 concentrations. Daily averaged PM2.5 
concentrations for the innermost domain were also gathered from AQS. We evaluated the model 
performance against these observations using various statistical measures, including normalized 
mean bias (NMB), normalized mean error (NME), mean fractional bias (MFB), and mean 
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fractional error (MFE), which are listed in Table A3. The evaluation benchmarks suggested by 
the EPA and previous studies are also summarized in Table A3. 

The model generally reproduces the magnitude and spatial distribution of PM2.5 concentrations, 
with an overall slight overestimation of 2% in January and underestimation in the other three 
seasons of 5%, 25%, and 9% in April, July, and October, respectively. The performance statistics 
for PM2.5 meet the model performance goal (MFB within ±30% and MFE ≤ 50%) in all months, 
indicating an overall good model-measurement agreement. For O3, the model is able to capture 
the spatial variability but slightly overestimates the MDA8 O3 concentrations in January by 4% 
on average and underestimates it in the other three seasons by 9%, 15%, and 10% in April, July, 
and October, respectively. The overall performance statistics for O3 concentration meet the 
model performance criteria (i.e., NMB within ±15% and NME < 25%), indicating a generally 
good agreement between the model and measurements. 
 

4.5 Public Health Benefits Assessment 
The Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-
CE) is a versatile and widely-used tool developed by the U.S. EPA43. BenMAP-CE is designed 
to estimate the health benefits and potential economic value associated with improvements in air 
quality, particularly those resulting from policy interventions or changes in emission sources. 
The program uses spatially-resolved air quality data, along with concentration-response 
functions and population data, to assess the health impacts of changes in air pollution levels. By 
quantifying the number of avoided premature deaths, respiratory illnesses, hospitalizations, and 
other health outcomes, BenMAP-CE enables policymakers and researchers to better understand 
the implications of various air quality improvement strategies. 
 
We used BenMAP-CE v1.5, the latest version published in March 2023 for our analysis. 
Drawing upon the changes in ambient concentrations of air pollutants simulated by the WRF-
Chem model for the scenarios, we estimate the health impacts associated with PM2.5 and O3, 
focusing on changes in mortality and morbidity. This analysis provides a clearer understanding 
of the potential consequences of different ZEVs adoption scenarios on public health. The 
following equations are used to calculate the health impact,  

where Δ𝑋 is the pollution-specific concentration change based on scenarios, 𝛽 is the exposure-
response factor, HR is the hazard ratio found in relevant epidemiologic study which uses Δ𝑌, a 
10 ppb and 10 µg/m3 value that links the change in cause-specific mortality rates to incremental 
O3 and PM2.5 exposure, respectively, AF stands for the attributable fraction of the disease 
specific mortality attributable to a certain air pollutant, Δ𝐼𝑚𝑝𝑎𝑐𝑡 is the estimated changes in 
health impacts incidences, 𝑦1 is the baseline incidences, and Pop. is the population studied.  

             𝐻𝑅 =	𝑒89:                       (Eq 4.5 -1) 

𝐴𝐹 = ;<=>
;<

	= 1 − 𝑒=89?              (Eq 4.5 -2) 

Δ𝐼𝑚𝑝𝑎𝑐𝑡 = 𝑦2;1 −	𝑒89?<𝑃𝑜𝑝.    (Eq 4.5 -3) 



 

LA100 Equity Strategies  Chapter 15, page 23 
 

We used the BenMAP-CE v1.5 default baseline incidences rates (𝑦1) for our analysis. For 
mortality, BenMAP-CE projected baseline incidences rate to 2035 for each racial and ethnic 
group. For morbidity, the available data are limited to 2014 for each racial and ethnic group, as 
BenMAP-CE v1.5 does not include projections for 2035. Consequently, our morbidity analysis is 
based on the 2014 data. For population (Pop.), we utilized the 2035 projected population data 
available within BenMAP-CE. 
 
In order to select appropriate epidemiological studies for our analysis, we ensured that the 
selected studies are up-to-date with the most recent EPA guidelines on health impact assessment 
and comply with the EPA Standard Health Functions, which were updated in 2021. This ensures 
that our analysis adheres to the latest recommendations and best practices in the field. 
Table 5 lists the exposure-response factors we used in this study. 
 

Table 5. Exposure-response Factors Used 

Pollutant Category Health 
Endpoint 

Author Metric Beta type Age 
Range 

PM2.5 Long-term 
mortality 

All-cause 
mortality 

Pope et al. 
(2019)44 

D24HourMean Uniform and 
racial/ethnic 

specific 

18-99 

Morbidity ER visit - 
Respiratory 

Krall et al. 
(2016)45 

D24HourMean Uniform only 0-99 

O3 Long-term 
mortality 

All-cause 
mortality 

Turner et al. 
(2016)46 

D8HourMax Uniform only 30-99 

Morbidity ER visit - 
Respiratory 

Barry et al. 
(2018)47 

D8HourMax Uniform only 0-99 

 

4.6 Monetization of Public Health Benefits 
To determine the worth of the health benefits, we employ a methodology that involves assigning 
monetary values to the estimated health outcomes derived from our previous steps. To achieve 
this, we use BenMAP-CE v1.5 which allows us to quantify the financial value of these health 
outcomes. First, we identify appropriate valuation functions from 2021 EPA Standard Health 
Functions database43, which are derived from relevant economic studies or guidelines. These 
valuation functions typically express the economic value of health outcomes in terms of dollars 
per unit (e.g., dollars per avoided premature death, hospitalization, or respiratory illness). 
Valuation functions used are listed in Table 6. 

Table 6. Valuation Functions Selected from BenMAP-CE v1.5 

Endpoint Reference Value (2015$) 
Mortality VSL based on 26 studies, no discount rate applied $8,700,000 

ER visit - Respiratory Healthcare Cost and Utilization Project $875 
 
We then apply the selected valuation functions to the estimated health outcome changes for each 
scenario. This involves multiplying the change in health outcomes (e.g., avoided premature 
deaths, hospitalizations) by the corresponding monetary values per unit, as provided by the 
valuation functions. Finally, we calculate the total monetized health benefits by summing the 
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monetized health benefits across all health endpoints for each scenario comparison. This 
provides a comprehensive understanding of the economic impact associated with the changes in 
air quality due to different ZEVs adoption scenarios. 
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6 Appendix 
 
 

 
Figure A1. Observed (dots) and simulated (contours) monthly mean PM2.5 concentrations (left), 

and monthly mean daily maximum 8-h O3 concentrations (MDA8 O3, right) over south California in 
January, April, July, and October 2017 

 The observations are from US EPA Air Quality System (AQS). 
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Figure A2. First row shows the seasonal variations of MDA8 O3 concentrations over LA City, LA 

County, and Southern California based on EPA AQS observations (https://www.epa.gov/aqs). 
Second row shows the corresponding spatial distribution of AQS observed O3 concentrations in 

April and July. 
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Figure A3. Wind direction climatology in Los Angeles (adapted from 

https://weatherspark.com/y/1705/Average-Weather-in-Los-Angeles-California-United-States-Year-
Round#Figures-WindDirection)  

Note that westerly and southerly are prevailing in summer months. 



 

LA100 Equity Strategies  Chapter 15, page 31 
 

 
Figure A4. Avoided mortality between Equity_MSS and Base scenarios  

From left to right: Ozone-related, PM2.5-related, and total avoided mortality. Ozone-related avoided 
mortality values are negative, indicating disbenefits due to increased ozone concentrations. 
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Figure A5. System design of the SCAG ABM (SCAG, 2020)  

SED=Socio-economic and demographic, LU=Land use 



 

      

 

 

  

Figure A6. (A) Traffic count locations selected across Los Angeles County; (B) Comparison of simulated and real 
traffic volumes in Los Angeles County 

 

 



 

       

Table A1. Technical Specifications of Scenarios Analyzed in This Study 

 
LA 100 Early & No Biofuels - 

High LA 100 ES UCLA1 
Time 2035 2035 ZEV Disparity 2035 ZEV Equity 2035 ZEV Equity (more MD-HD) (MSS) 

Energy Profile 100% clean2 energy 100% clean2 energy 100% clean2 energy 100% clean2 energy 
  On-road Transportation Electrification Profile 

Light-duty 50% 50% 50% 50% 
Medium-duty  0% 15.6%3 15.6%3 22% 
Heavy-duty 0% 19.6%3 19.6%3 39% 

School and urban buses 100% EMFAC EMFAC 100% 
 On-road Transportation Emission Spatial Distribution 

Passenger Vehicle 

Equally distributed 
Emission reduction map based on 

(1) ZEV ownership and (2) the 
MATSim simulated trips 

Equally distributed Equally distributed Medium-duty  
Heavy-duty 

School and urban buses 
 ZEV Fleet Profile (LDV / MDV / HDV)4 

PHEV 50% 25% / 0% / 0% 
BEV 50% 67% / 100% / 100% 

FCEV 0% 8% / 100% / 100% 
 Off-road Transportation5 

Heavy-duty in ports 100% No data in EMFAC No data in EMFAC No data in EMFAC 
Ocean-going Vessels 90% 

EMFAC 2035 Original EMFAC 2035 Original 
EMFAC META Off-road 

(https://arb.ca.gov/emfac/meta/off-road, 
check "?" for detailed supporting 

regulations) MSS 

Cargo Handling Equipment 100% 
Commercial Harbor Craft N/A 

Construction, Mining, 
Industrial N/A 
Forklift N/A 

Airport GSE N/A 
Locomotive N/A 

Recreational Marine Vessel N/A 
Small Off-road Engine N/A 

Transport Refrigerator Unit N/A 
 Buildings Electrification 

Commercial Scaling factor ~3-5% N/A N/A N/A 

Residential Scaling factor ~12-15% N/A N/A N/A 
 Oil & Gas Industry 

Demand Reduction N/A Scale down based on ZEV population 
1. Electrification %s for LA 100 ES (if not specified) are in line with CARB most recent MSS (2020), and a recent CEC report (2021, 
https://efiling.energy.ca.gov/getdocument.aspx?tn=238853) 
2. "clean energy" defined as no natural gas generation or biofuels. Natural gas electricity generation are replaced with gas electricity generation with wind, solar 
and battery storage. LA city has approved LA100 Early & No Biofuels (https://www.utilitydive.com/news/la-approves-100-clean-energy-by-2035-target-a-decade-
ahead-of-prior-goal/605980/) 
3. Based on EMFAC V2021.  
4. For MDV and HDV, we assume 100% BEV and FCEV. During emission calculation, BEV and FCEV will both generate zero tailpipe emissions. 
5. Will be equally distributed into "Area" source in WRF-Chem, "Aircraft" has specific spatial emission inventory  
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Table A2. Correspondence Between MATSim and EMFAC Vehicle Categories 

MATSim Vehicle 
Type 

Passenger 
Vehicles 

Light-heavy Truck Medium-heavy 
Truck 

Heavy-heavy 
Truck 

Corresponding 
Weight Class 

< 8,500 lbs 
GVW 

8,500 to 14,000 
lbs. GVW 

14,001 to 33,000 
lbs. GVW 

>33,000 lbs. 
GVW 

EMFAC Vehicle 
Category 

"LDA", 
"LDT1", 
"LDT2", 
"MDV" 

"LHD1", "LHD2" "T6 CAIRP Class 4", 
"T6 CAIRP Class 5", 
"T6 CAIRP Class 6", 
"T6 CAIRP Class 7",  
"T6 Instate Delivery 
Class 4", "T6 Instate 
Delivery Class 5",  
"T6 Instate Delivery 
Class 6", "T6 Instate 
Delivery Class 7", 
"T6 Instate Other 
Class 4", "T6 Instate 
Other Class 5", "T6 
Instate Other Class 
6", "T6 Instate Other 
Class 7", "T6 Instate 
Tractor Class 6", "T6 
Instate Tractor Class 
7", "T6 OOS Class 
4", "T6 OOS Class 
5", "T6 OOS Class 
6", "T6 OOS Class 
7", "T6 Public Class 
4", "T6 Public Class 
5", "T6 Public Class 
6", "T6 Public Class 
7", "T6 Utility Class 
5", "T6 Utility Class 
6", "T6 Utility Class 
7", "T6TS" 

"T7 CAIRP 
Class 8", "T7 
NNOOS Class 
8", "T7 NOOS 
Class 8", "T7 
POAK Class 8", 
"T7 POLA Class 
8", "T7 Public 
Class 8", "T7 
Single 
Concrete/Transit 
Mix Class 8", 
"T7 Single 
Dump Class 8", 
"T7 Single Other 
Class 8", "T7 
SWCV Class 8", 
"T7 Tractor 
Class 8", "T7 
Utility Class 8", 
"T7IS" 
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Table A3. Statistics of Model Performance for Chemical Predictions 

  Month Site 
number 

Mean 
Sima  

Mean 
Obsb   

NMBc 
(%) 

NMEd 
(%) 

MFBe 
(%) 

MFEf 
(%) 

PM2.5 
(μg m-3) 

Jan 34 8.2 8.1 2 53 4 39 

Apr 36 8.5 9.0 -5 60 -13 41 

Jul 35 8.1 10.8 -25 47 -21 36 

Oct 31 10.8 13.4 -19 47 -23 36 

Recommended performance benchmarks* <±30 <50 <±30 <±50 
MDA8 O3 
(ppb) 

Jan 53 37 35 4 18 2 13 

Apr 58 48 53 -9 16 -5 11 

Jul 59 48 57 -15 23 -8 16 

Oct 49 47 53 -10 19 -6 13 

Recommended performance 
benchmarks** 

<±15 <25 - - 

 
 
aMean Sim stands for the spatially and temporally averaged simulated concentrations at those 
observation sites; bMean Obs is the spatially and temporally averaged observed concentrations 
across all observation sites; 
cNMB is normalized mean bias; 
dNME is normalized mean error; 
eMFB is mean fractional bias; 
fMFE is mean fractional error. 
*Based on Boylan and Russell (2006); 
**Based on U.S. Environmental Protection Agency (EPA), 
https://www3.epa.gov/ttn/scram/guidance/guide/O3-PM-RH-Modeling_Guidance-2018.pdf. 
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