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Summary. We describe a system supporting the interactive exploration of three-
dimensional scientific data sets in a virtual reality (VR) environment. This system
aids a scientist in understanding a data set by interactively placing and manipu-
lating visualization primitives, e. g., isosurfaces or streamlines, and thereby finding
features in the data and understanding its overall structure.

We discuss how the requirement of interactivity influences the architecture of
the visualization system, and how to adapt standard visualization techniques to
work under real-time interaction constraints.

Though we have implemented our visualization system to work with multiple
types of data sets structures – cartesian, tetrahedral, curvilinear-hexahedral and
adaptive mesh refinement (AMR) – we will focus on AMR grids and show how
their inherent multiresolution structure is useful for interactive visualization.

1 Introduction

Contemporary scientific research is performed by gathering and analyzing
vast amounts of data. Regardless of whether this data is the result of real-
world measurements or numerical simulations, extracting information from
data becomes more and more difficult as the amount of data grows. Scientific
visualization is becoming a major tool for research: The human visual system
is unparalleled in its capacity to see patterns or detect features in data.

We concentrate on scalar- or vector-valued trivariate functions, i. e., func-
tions of the type fs:Ω → R or fv:Ω → R3, where Ω ⊂ R3 is some three-
dimensional domain. We will also consider time-varying data sets, where the
functions’ domains are Ω × [a, b], where [a, b] ⊂ R is some interval of time.

1.1 Visual Exploration

Typically, visualization is used for two different purposes: First, it can be
used to gain understanding of phenomena underlying data; second, it can be
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used to communicate this understanding to an audience. We concentrate on
the first purpose, visual exploration. A scientist is typically confronted with
a data set from an experiment or a simulation, and the task is to gain insight
into the data. Often, especially when data is generated by a simulation, it is
also necessary to show that the simulation system generated meaningful data
at all; in this context, visual exploration becomes a debugging tool.

Visual exploration is most useful when applied early during data genera-
tion. Simulations generating large data sets typically run for long periods of
time, even when using a supercomputer. If a visual exploration system can
be used to visualize preliminary or evolving simulation results, it might be
possible to detect errors in the simulation early, and to fix them by changing
simulation parameters “on the fly.” This interplay between visualization and
simulation, also referred to as computational steering, can be very helpful in
increasing the performance of a simulation system and its value for the over-
all scientific investigation process. To allow coupling visualization and sim-
ulation, the visualization system should be able to read the data generated
by the simulation with as little pre-processing as possible. Since simulation
systems create data in a variety of different formats (tetrahedral, cartesian,
(curvilinear) hexahedral, AMR, etc.), the visualization system must support
all these data structures directly, without having to resort to converting them
to a standard format by re-sampling.

When working directly on the native data structure used by a simula-
tion system, the debugging power of the visual exploration system is greatly
increased. For example, an AMR simulation program creates the grid hier-
archy without intervention [1], by considering certain properties of the data
itself. If the visualization system can display the AMR data directly, it can
also display the grid structure, providing the scientist with clues about the
simulation process. We explain how to isolate the data set structure from the
rest of the visualization program in Sec. 3.

1.2 Benefits of VR Methods

A standard visualization system that addresses both uses of visualization
(exploration and communication) usually sacrifices interactivity for image
quality. This fact can reduce the usefulness of a general-purpose system for
visual exploration. For example, a data set might be the result of a numerical
simulation of air flow around an aircraft wing, and the task is to determine
whether the design fulfills the required aerodynamic objectives and how the
wing design could be improved. In a standard visualization system, this task
might be handled in the following way:

1. Place some visualization primitives, e. g., streamlines, at points consid-
ered “interesting.”

2. Generate an image or multiple images.
3. If the imagery does not reveal anything exciting, repeat from step 1.
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There are several problems with such an approach. First, a user has to
specify at which points to place primitives. Specifying positions in 3D space
using a 2D input device, e. g., a mouse, is awkward. Second, the process of
image generation is time-consuming, and with placement of primitives essen-
tially being a trial-and-error process, the overall time spent on analysis can
grow prohibitively large. Even worse, merely seconds of delay between placing
a primitive and seeing a resulting image can make intuitive exploration of a
data set almost impossible. Third, even when an image reveals some features,
it is only a 2D projection of a 3D data set and can be misleading concerning
spatial relationships of features.

(a) (b)

Fig. 1. Exploration of vector field on tetrahedral mesh with embedded geometry.
(a) Visualization with streamlines (b) Visualization with streamribbons

VR can attack all three of these problems, making the exploration process
much more productive. There are probably more contradicting definitions of
VR in existence than there are VR researchers; but for the purposes of this
paper, a system is considered a VR system if it offers at least the following
functionalities:

• True 3D (stereoscopic) display with head tracking, i. e., support of a dis-
play that is dependent on a user’s true eye position in space, updated at
least at 30 Hz to create the illusion that the visualization is “real,”

• support of six-degree-of-freedom (6-DOF) input devices to allow a user
to directly interact with and manipulate the visualization, and

• interactivity, meaning that the system’s response time to user actions is
small enough to seem immediate (within 0.05 s to 0.1 s).

With a VR system like this, the basic exploration loop remains the same;
but with immediate response, a user is able to move a visualization primitive
directly through a 3D data set until something interesting is visualized. The
immediate update of displayed imagery, leading to an animation of a visu-
alization primitive’s behaviour, provides valuable clues as to where to move
the primitive next in order to “close in” on a feature.
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1.3 Real-time Constraints

The goal of implementing an interactive, real-time visualization system im-
poses several constraints on the visualization methods that can be supported.
A severly limiting constraint is the display constraint, which requires that all
imagery can be rendered at a frame rate of at least 30 Hz per eye. If the frame
rate drops below 30 Hz, the display will appear “choppy,” which can lead to
eye strain and even motion sickness. Since users cannot hold their heads per-
fectly still, displayed stereo images have to be updated continuously, even
if the visualization itself does not change. This forbids using very costly vi-
sualization methods, e. g., high-quality volume rendering [7]. Visualization
methods of choice are the ones based on graphics primitives supported by
available graphics hardware, e. g., isosurfaces, streamlines or streamribbons.

Even when considering only visualization methods supported by available
graphics hardware, generating the visualizations can still be time-consuming.
Though it is not necessary to update the visualization for every frame, should
updating require more than 0.1 s, the system is “lagging,” defeating the goal
of interactivity. We refer to this constraint as the update constraint. This
implies, for example, that a standard implementation of the Marching-Cubes
(MC) isosurfacing algorithm [8–10] is not appropriate for visual exploration:
Though the resulting isosurface triangulation might consist of a relatively
small number of triangles, small enough to satisfy the display constraint, the
time to generate the triangles might require seconds or minutes for large data
sets, violating the update constraint. In Sec. 3.2, we explain how to adapt
standard visualization methods to an interactive environment.

1.4 Related Work

Data visualization based on VR is not new. Several early important contri-
butions were made by NASA scientists: The NASA Virtual Wind Tunnel,
described, for example, by Bryson and Levit [5], is a visualization system for
time-varying vector-valued data. Meyer and Globus [6] describe an interactive
isosurface generator for scalar-valued data.

2 User Interface

User interfaces for virtual-reality environments are still an area of active
research, and an interface paradigm agreed upon by most researchers has
still to be developed. For our system, we implemented the simple gesture-
and menu-driven user interface described in the following sections.

2.1 Available VR Devices

The design of the user interface is dependent on the underlying VR hard-
ware, especially on the number of input devices and their degrees of freedom,
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and the number and arrangement of buttons available. We implemented our
system for two classes of VR hardware:

Virtual Workbench A virtual workbench is a semi-immersive VR system
consisting of a large display screen, a pair of head-tracked shutter glasses,
and three 6-DOF input devices: One stylus with a single button, and two
pinch gloves with four buttons each, that can be activated by pinching
the thumb and one of the other fingers.

CAVE A CAVE is a semi-immersive VR system consisting of one or more
large display screens, a pair of head-tracked shutter glasses, and a single
6-DOF input device: A wand with three buttons and a pressure-sensitive
joystick on it. CAVE systems come in different configurations, from a
single-screen desk-like environment (ImmersaDesk) to a ten-by-ten-by-
ten foot cube with five display screens as walls (“classic” CAVE). For the
purposes of our system, we can treat all these identically, because they
provide the same functionality in input devices, and the differences of the
display hardware are hidden by a common application program interface,
the CAVE library.

2.2 VR Toolkit

To simplify the task of writing VR applications, we implemented a VR toolkit
to isolate the application program from the VR hardware and from basic
interaction techniques. The toolkit’s programming paradigm is similar to that
of the Motif window environment toolkit: It supplies callback mechanisms,
actions and simple widgets. The toolkit’s architecture is shown in Fig. 2.

Input
Devices

VR Application

Display
Menu

Selection
Pointer

Movement Navigation
Pointer

Selection

Callbacks and Actions

VR Toolkit

Operating SystemOpenGL

Fig. 2. Overview of the VR toolkit’s architecture

Using this VR toolkit, we are able to port a VR application between
several different classes of VR hardware without changing the application’s
source code. Currently, the VR toolkit is available for the two VR systems
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listed above, and a version for desktop workstations is used for application
testing purposes.

2.3 3D Pointer

The main selection and interaction is done with the 3D pointer. This equiv-
alent to a single-button mouse in a 2D window system is used to inquire
data values at any point inside a data set, to place and drag new primitives,
and to select existing ones. In the Virtual Workbench environment, we use
the stylus as 3D mouse; in the CAVE environment, we use the wand and its
leftmost button, the mouse button.

2.4 Navigation

In order to explore large data sets, a user must be able to freely navigate
through the data sets. It must be possible to get an overview of the whole
data set, and it must also be possible to zoom in to a small region of space.
Furthermore, navigation must be as intuitive as possible to not interfere with
the exploration process. We chose to implement navigation by direct ma-
nipulation: Instead of using indirect navigation tools, e. g., scrollbars in 2D
window systems, a user can directly “grab” a point in space using a 6-DOF
input device. Grabbing will fix the data set’s coordinate system with respect
to the input device’s coordinate system, and any movement (translation or
rotation) of the input device while a point is grabbed will move the whole
data set accordingly, allowing panning and rotating.

In the Virtual Workbench environment, we employ pinch gloves for nav-
igation. A point can be grabbed with either hand, by pinching thumb and
index finger. This two-handed navigation suits both left- and right-handed
users, and it also allows to navigate with one hand even while the other hand
is interacting with the data set using the stylus. In the CAVE environment,
the wand is switched into navigation mode using its middle button, the nav-
igation button.

Though it is possible to grab any point in space, inexperienced users will
intuitively only grab parts of displayed geometry, either existing visualization
primitives or models embedded in the data set. Experiments have shown
that this is not a serious limitiation; users get adjusted to the navigation
paradigm quickly (in a matter of minutes) and are able to pan/rotate data
sets according to their wishes.

While navigation involving panning and rotating is very intuitive, zooming
is more difficult to implement. This is probably due to the fact that zooming
is not possible in the real world: While every child learns how to pick up an
object and move it around to inspect it from all sides from a very early age
on, there is no natural way to enlarge an object. We implemented zooming in
different ways, depending on the available input devices. In an environment
with two input devices, a user can grab one point in space with each device.
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Then, pulling the two devices apart will zoom in, and pushing them together
will zoom out. We decided to make the zoom factor proportional to the two
device’s distance1; following this principle, the apparent motion of the data
set will relate to the input devices’ motion in a natural way. In a single input
device environment, we reserved a special button combination on the input
device for switching into zoom mode. A user can zoom in by pulling the input
device towards her, and zoom out by pushing the input device away.

In the Virtual Workbench environment, both pinch gloves are used for
zooming. First, the user will grab one point with one glove, enabling panning
and rotating. Then the user will grab another point with the second glove,
enabling zooming. The data set’s coordinate system is still fixed to the first
glove while zooming; this enables panning, rotating and zooming simulta-
neously. In the CAVE environment, zooming is activated while the wand is
already in navigation mode. Pressing the mouse button while the navigation
button is held stops panning and rotating and enables zooming. Luckily, the
two buttons are close enough to allow even inexperienced users to press both
at the same time using one thumb. Still, the restriction to only one input
device limits the usability of the system. Experiments have shown that the
ambidexterous Virtual Workbench is more intuitive and makes it easier to
navigate to a desired viewpoint.

Even in an environment with two devices, experiments show that inex-
perienced users will hardly use the zoom feature. Instead, they tend to pull
a part of the data set they want to examine closer to their eyes, making it
appear larger. This is a natural reaction, but it clashes with the limitations of
the graphics system. Due to the stereo rendering, objects close to the user’s
eyes will be out of focus, and due to inaccuracies of head tracking, objects
will not appear to be stable but move erratically. Correctly using the zoom
feature to inspect an area more closely requires some training.

2.5 Higher-level Functions

To access higher-level program functions, e. g., selecting tools or changing
visualization parameters, we provide a simple system of cascading popup
menus. The main menu can be popped up at any position and orientation in
space. While it is displayed, the 3D pointer is used to select menu entries or
pop up submenus.

In the Virtual Workbench environment, the main menu is popped up by
pinching thumb and middle finger of one hand. While the menu is displayed,
it will move with the hand, allowing the user to move it to a position where
it is convenient to select entries using the stylus and the other hand. In the
CAVE environment, the rightmost wand button, the menu button, will pop
up the main menu at the current wand position. As soon as the menu is

1 z = ‖p1 − p2‖/d0, where pi are the device’s positions, and d0 is their initial
distance at the time grabbing occured.
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displayed, the wand is used to activate entries or popup submenus. Releasing
the menu button selects the currently active menu item.

3 System Architecture

In order to fulfill the requirements of simulation debugging and computational
steering, the visual exploration system has to be able to work as closely as
possible with the applications generating the data it has to visualize. This
means that the system must support a wide variety of data set structures.
On the other hand, the system has to support a wide variety of different
visualization primitives to address different needs. To make the system ro-
bust under changes or additions to both parts, it is necessary to isolate the
generation of visualization primitives from the underlying data set structure,
and to allow the two modules only to communicate through two well-defined
interfaces. An overview of the complete system’s architecture is shown in
Fig. 3; the following sections describe the modules in detail.

Seeded
Isosurface

Value
Display

Volume
Rendering

Stream-
line

Stream-
ribbon

Locator
Interface

IsoFragment
Interface

Tetrahedral
Mesh

Cartesian
Grid

Hexahedral
Mesh

AMR
Grid

Visualization Data Set Storage

Scalar-valued Data

Vector-valued DataV
R

 T
oo

lk
it

Fig. 3. Overview of the visual exploration system’s architecture

3.1 Interfaces

The following sections describe the two interfaces connecting the generation
of visualization primitives and the underlying data set structure.

The Locator Interface

The most basic function of any visualization system is to evaluate the function
represented by a given data set at any point inside its domain. For most types
of data sets, this involves first locating a cell that contains the query point,
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and then applying some interpolation scheme to calculate the value at the
query point’s position. To allow maximal efficiency, we defined the Locator
interface to contain both functions separately:

• bool locatePoint(p, bool traceHint) prepares a locator to interpo-
late the data set’s value at position p. The function’s return value indi-
cates whether the given point p is inside the data set’s domain. If the
return value is false, it is not possible to determine the data set’s value.
For some data set structures, locating a point “from scratch” might be
very expensive; it might become much less difficult when a locator can
use the fact that the new point it has to locate is close to the last located
point. The parameter traceHint is a hint, provided by the visualization
system, that the given point is close to the last point, and that using this
information might be beneficial. Several typical visualization primitives,
e. g., streamlines, evaluate a data set at a long sequence of points being
very close to each other. In some cases, using the traceHint parameter
resulted in speed-ups of an order of magnitude.

• ValueType interpolateValue(void) calculates the data set’s value at
the last located position.

With these two functions, iterators serve a dual purpose: They are not only
used to evaluate a data set, but also to identify positions in a data set that can
be passed between data structures and algorithms. In this way, they resemble
the iterator mechanism used in the C++ Standard Template Library. The
two steps involved in evaluating a data set at an arbitrary point are illustrated
in Fig. 4.

(a)

1
2

3

(b)

xl

yl

v00 v10

v01 v11

Fig. 4. Steps involved in evaluating a data set. (a) Locating cell containing query
point (solid dot) and determining its local coordinates. Cell 1 is tried first because
its centroid (hollow dots) is closest to the query point. The algorithm then crosses
into cells 2 and finally 3 (b) Bilinear interpolation used to evaluate the cell at local
coordinates (xl, yl)
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The IsoFragment Interface

The IsoFragment interface has a more specific purpose than the Locator
interface: It is used to generate seeded isosurfaces, as will be explained in
Sec. 3.2. An IsoFragment identifies a cell in a data set, and it provides the
following two functions:

• setCell(Locator loc) associates an IsoFragment with the data set cell
containing the point most recently located by the Locator. This function
is used to seed an isosurface.

• expandSurface(ValueType isovalue, Queue expandNext) creates the
fragment of the surface connecting all points with value isovalue inside
the associated cell, and puts all the cell’s neighbours sharing faces that
are intersected by the isosurface in the expansion queue.

3.2 Supported Visualization Primitives

The choices of visualization primitives for visual exploration systems are lim-
ited by the two constraints discussed in Sec. 1.3: The graphics system must
be able to display all active primitives at a framerate of at least 30 Hz per
eye (display constraint), and the visualization system must be able to update
all primitives the user is interacting with at a rate of at least 10 Hz (update
constraint). Some common primitives, e. g., streamlines, are almost directly
applicable to visual exploration, whereas others, e. g., isosurfaces, have to be
adapted to be usable.

Data Value Display

The most basic tool, hardly a visualization primitive, is to display the data
value at the current 3D pointer location. It can be applied to both scalar-
and vector-valued data sets. The only operation required by this tool is cal-
culation of a function value for an arbitrary point, given in the data set’s
coordinate system. This operation is directly supported by the Locator in-
terface described in Sec. 3.1. Since the 3D pointer is traced by the system
at a rate of 30Hz, it usually only moves a short distance between two point
location requests. Communicating this fact to the Locator interface using the
traceHint parameter mentioned in Sec. 3.1 can increase system performance,
depending on the underlying data set structure.

Primitives for Scalar-valued Data Sets

The following primitives apply only to scalar-valued data sets, i. e., those
defining functions f :Ω → R.
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Seeded Isosurfaces The most often used visualization primitive for scalar-
valued data is the isosurface, connecting all points in space having identical
function value [8]: For a scalar-valued function f :Ω ⊂ R3 → R, the iso-
surface I(v) for isovalue v is defined by I(v) =

{
x ∈ Ω

∣∣ f(x) = v
}
. In

standard systems, isosurfaces are typically generated using some variation
of the Marching-Cubes algorithm [9]. In this algorithm, isosurface fragments
are generated independently for each cell of the data set. This algorithm has
a runtime proportional to the number of cells, and generally runs several
seconds to minutes for large data sets.

To use isosurfaces in an interactive visualization system, we have to change
their generation to satisfy both display and update constraint, see Sec. 1.3.
The basic idea is to generate isosurfaces incrementally starting from a given
point in space, instead of globally starting from a given function value. In our
system, a user can move the 3D pointer to an arbitrary position in space and
seed an isosurface there. A seeded isosurface is generated using the following
main steps:

1. Determine the cell containing the 3D pointer and calculate the function
value at the pointer’s position. Store the found value as the isovalue to
use, and put the found cell in the expansion queue.

2. Take the next cell from the expansion queue. Create an isosurface frag-
ment for the stored isovalue inside the cell, and determine the cell faces
intersected by the isosurface fragment. Put all cells sharing those faces
that have not yet been visited back in the expansion queue. An illustra-
tion of this process is shown in Fig. 5.

3. While there are cells in the expansion queue, repeat from step 2.

This algorithm will generate an isosurface for the function value at the
3D pointer’s position. It can be used in an interactive system, because the ex-
pansion loop (step 2 in the algorithm) can be stopped at any time. To satisfy
the update constraint, the system will start a timer before starting expansion,
and will stop expanding as soon as the timer expires. To satisfy the display
constraint, the loop will be stopped as soon as a certain amount of geom-
etry has been generated. This amount depends on the underlying graphics
system’s performance; typical values are between 100,000 and 200,000 tri-
angles. The described algorithm needs both interfaces described in Sec. 3.1.
The Locator interface is needed to calculate the isovalue at the 3D pointer’s
position, and the two main operations in the algorithm, surface fragment gen-
eration and queueing of neighbouring cells, are provided by the IsoFragment
interface.

The benefit of seeded isosurfaces is that they can always be generated
at interactive rates, independently of data set size and performance of the
underlying hardware. They also scale directly with hardware performance;
on a faster CPU, the program will automatically generate larger isosurface
parts. Furthermore, we found out that animation of isosurfaces, by moving
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Fig. 5. Expanding a seeded isosurface. The
IsoFragment interface generates a fragment of
an isosurface inside a cell, and puts all neigh-
bouring cells the isosurface continues into in an
expansion queue

the 3D pointer while continuosly seeding, enables a user to quickly gain un-
derstanding of the behaviour of the data set in a region of space.

Their main drawback is, that in most cases only a part of the complete
isosurface for a given isovalue is generated. This prohibits the user from get-
ting a “big picture” overview of a complete data set. To offset this drawback,
we decided to continue growing seeded isosurfaces up to the limits set by
the display constraint once the user stops moving the 3D pointer. In this
way, larger portions of an isosurface can be created. Figure 6 shows a seeded
isosurface during animation and after the user stopped animation.

(a) (b)

Fig. 6. A seeded isosurface. (a) Isosurface while being animated (b) Isosurface after
it has been released

Primitives for Vector-valued Data Sets

The following primitives apply only to vector-valued data sets, i. e., those
defining functions f :Ω → R3.

Streamlines Streamlines are probably the most commonly used visualiza-
tion primitive for vector-valued functions. By definition, a streamline for a
vector-valued function f :Ω ⊂ R3 → R3 is an integral curve p: [t0, t1] → Ω
defined by an initial value problem p(t0) = x0, ṗ(t) = f

(
p(t)

)
. A stream-

line directly visualizes the local vector directions of a vector-valued function.
Fig. 1 (a) shows a visualization of a tetrahedral vector field using streamlines.
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In our system, a user can create a streamline by selecting a starting
point x0 ∈ Ω inside the data set’s domain. The points defining the streamline
are then generated from the initial value problem using an adaptive step-size
fourth-order Runge–Kutta method. This generation algorithm satisfies both
real-time constraints; streamlines are generated one point at a time, and the
generation can be interrupted when a computation timer runs out. As all in-
teractive visualization primitives, the user can animate a streamline by mov-
ing the 3D pointer while the streamline is continuously regenerated. We found
out that this animation is very helpful in understanding the behaviour of the
function represented by a data set. By observing a streamline’s “reaction” to
moving the start point, a user can intuitively “home in” to critical points,
and can get an understanding of the function’s vector field topology [3].

When using a Runge–Kutta method to generate streamlines, the only
functionality needed is to evaluate the given data set at a sequence of positions
inside its domain. This functionality is provided by the Locator interface. We
observe that subsequent evaluation positions in a Runge–Kutta computation
are very close to each other. Thus, to maximize performance,our system uses
the traceHint parameter to the locatePoint function to communicate this
fact to the data set storage.

Streamribbons Streamlines as described above only visualize the local vec-
tor directions of a vector-valued functions. Often it is desirable to also directly
visualize derived properties of a vector-valued function. Streamribbons are a
generalization of streamlines that directly visualize the local vector direction
and the local vorticity of a vector-valued function [4]. Instead of being a sin-
gle curve, a streamribbon is rendered as a thin strip, whose rotation around
its longitudinal axis is proportional to the dot product of the visualized func-
tion’s local vorticity and the streamribbon’s direction. Fig. 1 (b) shows a
visualization of a tetrahedral vector field using streamribbons.

Streamribbons are generated similarly to streamlines: A fourth-order Run-
ge–Kutta method is used to iteratively solve the defining initial value prob-
lem, and the data set’s vorticity is evaluated directly through the Locator
interface. As for streamlines, the computation can be interrupted at any time
to satisfy the real-time constraints.

3.3 Data Set Structures

In this section, we describe the different data set structures implemented in
our system, and how the two interfaces are implemented for each.

Cartesian Grids

For our purposes, cartesian grids are the simplest data set structure. A carte-
sian grid consists of a three-dimensional rectangular arrangement of i× j×k
rectangular hexahedral cells, where each cell is of identical size sx × sy × sz.
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Locating a point inside a cartesian grid merely involves multiplication and
modulo division operations, and interpolating the function value at a point
inside a cell is done using trilinear interpolation.

To generate an isosurface fragment inside a cell, we use a standard Mar-
ching-Cubes case table; to enumerate all intersected neighbours of a cell, we
use the implicit neighbourhood relation imposed by the grid structure.

Tetrahedral Meshes

In tetrahedral meshes, locating a point involves finding the tetrahedron con-
taining it, and calculating the point’s barycentric coordinates inside that
tetrahedron. To locate a point, we use the following two-stage approach:

1. Find the tetrahedron whose centroid is closest to the point in question.
We implemented this by computing all cell centroids upon loading a data
set, and storing them in an octree to later retrieve them using a closest-
point query. If the traceHint parameter is set, skip this step and use the
tetrahedron containing the last located point.

2. Determine the barycentric coordinates of the query point with respect to
the current tetrahedron. If the query point is not inside the tetrahedron,
i.e., at least one barycentric coordinate is negative, move to the neighbour
sharing the face whose barycentric coordinate is smallest, and repeat this
step. Neighbourhood relations between tetrahedra are stored explicitly
in the data set, see Fig. 7; thus, finding the tetrahedron sharing a given
face is an O(1) operation.

This algorithm, illustrated in Fig. 8, works very well in practice. From-scratch
point locations take on the order of O(log n) steps for n tetrahedra to locate
an initial tetrahedron, but they occur rather infrequently. Tracing a point
from the initial tetrahedron to the final one containing it usually requires no
more than two or three steps, which is sufficiently fast to generate streamlines
or streamribbons interactively. Once a point is located, interpolation is done
as a convex combination of vertex values using the query point’s barycentric
coordinates.

Fig. 7. “Exploded” view of a tetrahedral mesh.
Each tetrahedron stores pointers to its four ver-
tices and pointers to the up to four tetrahedra
sharing its faces. This allows crossing of tetra-
hedron faces in O(1) time during point tracing.
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Fig. 8. Tracing a point in a tetrahedral mesh. If
the point is not contained in the current tetrahe-
dron, the face associated with the smallest (nega-
tive) barycentric weight is crossed

To generate isosurface fragments, we use a standard marching tetrahedron
case table. Finding neighbours just involves traversing the explicit neighbour
pointers stored with each tetrahedron.

Curvilinear Hexahedral Meshes

Point location in curvilinear hexahedral meshes works very similarly to point
location in tetrahedral meshes. We store cell centroids in an octree to quickly
locate cells “close” to a point; then we perform the tracing loop to find the fi-
nal cell containing the query point. Due to the curvilinear cells’ almost-cubic
structure, tracing usually takes even less steps than for tetrahedral meshes.
Similarly to tetrahedral meshes, we store the neighbourhood information ex-
plicitly for each cell. This allows O(1) traversal between neighbouring cells,
and also allows “stitching” one or more curvilinear meshes together to form
a larger one without having to treat traversal between different grids as a
special case. An example where stitching is necessary is a fusion plasma data
set, shown in Fig. 9, which closes around its x and z axes to form a hollow
torus.

The difficult part in point location is calculating a point’s local coordinates
with respect to a cell. The transformation from cell coordinates to world
coordinates is defined by trilinear interpolation of a cell’s vertex positions;
to transform the other way, the inversion of trilinear interpolation has to be
calculated.

Let a hexahedral cell be defined by its eight vertices v0, . . . ,v7 ∈ Ω ⊂ R3.
Then trilinear interpolation converts a point p = (x, y, z)T ∈ [0, 1]3 in local
cell coordinates to a point

pw = T (p) = v0 · (1− x) (1− y) (1− z) + v1 · x (1− y) (1− z)
+ v2 · (1− x) y (1− z) + v3 · x y (1− z)
+ v4 · (1− x) (1− y) z + v5 · x (1− y) z
+ v6 · (1− x) y z + v7 · x y z

To invert this transformation, we rewrite the vector equation pw = T (p)
as T (p) − pw = 0 and solve for the unknown p using Newton–Raphson
iteration [11]. The derivative of T (p) needed for the Newton–Raphson method
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x
z

Fig. 9. A curvilinear hexahedral grid forming a hollow torus. Left: A crossection
along the main torus axis; right: A view along the main torus axis.

is given by the 3× 3-matrix D(p) := ( ∂
∂x , ∂

∂y , ∂
∂z ) · T (p), given by

∂

∂x
T (p) = (v1 − v0) · (1− y) (1− z) + (v3 − v2) · y (1− z)

+ (v5 − v4) · (1− y) z + (v7 − v6) · y z

∂

∂y
T (p) = (v2 − v0) · (1− x) (1− z) + (v3 − v1) · x (1− z)

+ (v6 − v4) · (1− x) z + (v7 − v5) · x z

∂

∂z
T (p) = (v4 − v0) · (1− x) (1− y) + (v5 − v1) · x (1− y)

+ (v6 − v2) · (1− x) y + (v7 − v3) · x y

Using T (p) and D(p), the iteration step can now be written as pi+1 :=
pi−D(p)−1T (p). As long as the cells are not too oddly shaped, the iteration
will converge to a solution after only a few iterations.

Generating isosurface fragments works exactly as for cartesian grids. We
use a Marching-Cubes case table to generate fragments, and the explicitly
stored neighbourhood information to find neighbouring cells.

AMR Grids

AMR grids [1] are difficult to handle for our visualization system due to their
complicated structure, but they offer benefits for interactive visualization due
to their inherent multiresolution structure. The AMR grids supported by our
system consist of several levels, where each level consists of several cartesian
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grids of identical cell sizes. The grids inside each level are non-overlapping,
and the union of their domains forms the domain of the level. The domain
of the whole data set is the domain of the first grid level. Let Li and Li+1 be
two adjacent levels; then the cell sizes of all grids in Li must be an integer
multiple of the cell sizes of all grids in Li+1. Furthermore, each cell of each
grid in Li+1 must be completely contained in a cell of some grid of Li. This
implies that the domain of level Li+1 is a subset of the domain of level Li.
Figure 10 shows an illustration of an AMR data set’s grid structure.

L1 L2 L3

G1,1 G2,1 G1,2 G2,2G3,1 G3,2

Fig. 10. Structure of an AMR grid
with three levels L1, L2 and L3.
Each level Li consists of two grids
Gi,1 and Gi,2

These restrictions stem from the AMR simulation algorithm: After each
iteration step, those cells that have to be subdivided in order to guarantee
certain error limits are subdivided independently, and all the subdivided cells
are clustered together to form a set of cartesian grids.

The problem in locating points in AMR grids is to find the smallest cell
in the hierarchy containing the query point. We implemented this by over-
laying the AMR grid’s domain with an octree structure. Octree leaves are
restricted to only contain cells from a single grid of the most refined grid
level whose domain intersects the octree leaves. Octree nodes not satisfying
this property are subdivided until their children do, see Fig. 11. From this
construction, we know that every point inside an octree leaf must be located
in the level and grid associated with the leaf, and that it cannot be overlayed
by a grid on a more refined level. Thus, locating a point inside an octree leaf
is reduced to location in cartesian grids. When the tracingHint parameter
to the locatePoint function is true, the program first checks if the new
point position is inside the same octree leaf as the old one. In that case, the
point is relocated using the cartesian grid algorithm. Otherwise, the program
will traverse the octree structure upwards from the leaf to find an interior
node containing the new position, and then downward again to find a leaf
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containing it. Inside this leaf, the point is finally located using the cartesian
grid algorithm again.

Fig. 11. AMR grid with
overlayed octree structure
used to locate points. Octree
leaves only contain complete
cells from a single grid of
the most refined level whose
domain intersects the octree
leaf

Creating isosurfaces inside AMR grids is even more complicated. Gener-
ating the isosurface fragment itself is done by using a Marching-Cubes case
table, since all finest-level cells are cartesian grid cells. The problem arises
when cell neighbours have to be enumerated. As long as a cell is not touch-
ing the border of the octree leaf containing it, its neighbours are determined
as for cartesian grids. Otherwise, the octree is traversed upwards and then
downwards again to find all cells sharing the originating cell’s traversed face.
Depending on the local refinement, the possible configurations can be one
neighbour of identical or larger size, or several smaller neighbours. Both cases
are handled by the recursive octree traversal mechanism.

The major problem with this approach is that isosurfaces can exhibit
“cracks” when they cross boundaries between differently refined grids. This
problem might be fixed in the future by using the grid structures and algo-
rithms described in [2]

Multiresolution Visualization AMR grids in the form described here
are inherently a multiresolution representation of their underlying functions.
Since grid cells that are overlayed by grids in more refined levels still have
meaningful values, usually generated by some subsampling technique, one
can visualize a lower-resolution version of an AMR grid by just ignoring
several of the more refined levels. This can be done on-the-fly by tagging
each octree node with the level of the grid they are contained in. This way,
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interior nodes can be treated like leaves when their grid level is at least as
refined as the maximum level that should be considered at the selected level of
resolution. The other parts of the AMR grid code do not have to be changed
to accomodate multiresolution visualization in this way.

4 Conclusions and Future Work

We presented an interactive VR visual exploration system that can be used
by scientists to explore large data sets of different structures. It is specifically
designed to work closely with the simulation systems generating the visual-
ized data, to allow exploration of preliminary or evolving data and to enable
“computational steering.” We discussed how the requirement of interactivity
has influenced the architecture of our system and the choice of supported vi-
sualization primitives and their implementation. We described how to isolate
the two major system components, visualization and data set storage, from
each other by introducing small, well-defined interfaces, and how these inter-
faces are implemented for the supported data set structures. We concentrated
on visualizing AMR data, and on how to exploit the inherent multiresolution
structure of AMR grids for interactive visualization.

The main areas for future work are increasing the range of visualization
tools available, especially by adding localized volume rendering, implementing
a crack-free isosurface algorithm for AMR grids, and implementing a feedback
mechanism that allows our system to be used for computational steering, by
visualizing “live” data from a running simulation and allowing to change
simulation parameters from within the visualization program.
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