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T2 Mapping
Different MRI parametric mapping tech-

niques are available, such as T2, T2*, and 
T1 mapping, but the most widely available 
and frequently obtained is T2 mapping. This 
technique typically requires acquisition of 
multiple images with different TEs that will 
yield signal intensities that follow a T2 re-
laxation curve, such as with the single-echo 
spin-echo, multiecho spin-echo, and double-
echo steady-state sequences [5, 6]. When im-
plementing T2 mapping in clinical practice, 
considerations should be given to acquisi-
tion, postprocessing, and interpretation.

Acquisition of T2-mapping techniques can 
be lengthy, and patient motion during the se-
quence can result in inaccurate mapping. In 
addition, a technical challenge that can be 
seen with some parametric mapping tech-
niques, such as multiecho spin-echo T2 map-
ping, is sensitivity to B1 inhomogeneity [7]. 
B1 inhomogeneity is particularly prominent 
at high field strengths, such as 3 T, and can 
lead to inaccuracies in quantification. Dif-
ferent T2-mapping methods have been pro-
posed to overcome this limitation, including 
the use of a T2-preparation pulse to ensure 
B1 insensitivity, followed by either a gradient-
echo readout or 3D turbo spin-echo readout 
[8]. The T2-preparation pulse consists of a 
spin-echo–like preparation pulse to transmit 
the T2-weighted contrast and a readout design 
for fast image data gathering. T2-preparation 
techniques have faster acquisition times than 
the multiecho spin-echo technique, but they 
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M
RI has been shown to be a very 
helpful tool in the diagnosis of 
many musculoskeletal (MSK) 
disorders and has been estab-

lished as a very reliable modality for nonin-
vasive evaluation of the MSK system, there-
by becoming an indispensable clinical 
diagnostic tool [1, 2]. Most clinical MRI re-
quests are for evaluation of connective tissue 
pathologic abnormalities, such as meniscal 
tears, rotator cuff tears, and ligament and 
tendon lesions. MSK MRI protocols have 
been tailored to accommodate this scenario.

For many years, MRI of the MSK system 
has relied mostly on conventional sequenc-
es with qualitative analysis. The rate of MRI 
studies and MSK applications keeps expand-
ing [3], and lately, quantitative MRI (QMRI) 
applications are gaining interest in the MRI 
community. QMRI can complement qual-
itative imaging with more detailed physi-
ologic or anatomic information, providing 
measures that could aid in earlier disease de-
tection, comparative studies, and monitor-
ing treatment [4]. However, despite recent 
advances, technical challenges and specific 
recommendations for QMRI must be taken 
into consideration.

In this article, we review new develop-
ments in QMRI, technical and software ad-
vances, and the most relevant clinical and 
research MSK applications of QMRI. In par-
ticular, we focus on quantitative techniques 
that are currently available or are among the 
most promising for clinical use.
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OBJECTIVE. For many years, MRI of the musculoskeletal system has relied mostly on 
conventional sequences with qualitative analysis. More recently, using quantitative MRI ap-
plications to complement qualitative imaging has gained increasing interest in the MRI com-
munity, providing more detailed physiologic or anatomic information. 

CONCLUSION. In this article, we review the current state of quantitative MRI, techni-
cal and software advances, and the most relevant clinical and research musculoskeletal appli-
cations of quantitative MRI. 

de Mello et al.
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acquire fewer echoes and, therefore, provide 
fewer data points along the T2 decay curve, 
with possible compromise in the accuracy of 
T2 values [9].

Postprocessing of the multiple images gen-
erated by the T2-mapping sequences can be 
performed online on the scanner or offline us-
ing algorithms written in separate programs, 
such as MATLAB (Mathworks). Automated 
processing on the scanner typically generates 
a pixel-by-pixel map of T2 relaxation times, 
with a scale bar based on the range of values 
in the FOV. With offline processing, addition-
al steps can be performed, including image 
registration, segmentation of structures, and 
selection of ROIs to generate fitting curves, 
which can be used to assess the quality of the 
data (Fig. 1). Interpretation of T2 values and 
visual maps requires many considerations. 
First, care must be taken when comparing 
absolute T2 relaxation times, because values 
may differ depending on anatomic location 
[10], with the highest values typically seen at 
the magic angle [11] (Fig. 1). In addition, val-
ues can vary depending on the scanner and se-
quence used for acquisition. However, abrupt 
changes or irregularities, which may be high-
lighted on T2 maps, can be considered abnor-
mal. Despite the challenges, T2 mapping re-
mains useful in clinical practice and has been 
validated for noninvasive quantitative analysis 
of tissue composition and structure. T2 map-
ping can be easily implemented on most clini-
cal MRI systems and has the advantage of not 
requiring contrast agent administration [12].

T2 maps can be used for quantitative eval-
uation of nearly any MSK tissue, but the most 
frequent use is for the assessment of articular 
hyaline cartilage. For cartilage, density and 
organization of the extracellular matrix ap-
pear as variations of T2 values that can be 
represented by either a gray-scale or color 
map [13]. T2 mapping has been shown to be 
effective in detecting and quantifying early 
changes related to water content and collagen 
concentration, even before detectable struc-
tural changes occur [14, 15]. It can be applied 
to identify early stage degeneration and car-
tilage with irreversible damage [16, 17], to 
assess functional potential, study reparative 
tissue, or monitor the effects of chondropro-
tective therapy [18, 19].

T2 maps can also be used for evaluation of 
muscle composition, especially for quantifica-
tion of edema and inflammatory changes [20]. 
A challenge with muscle T2 mapping is the ef-
fect of fatty degeneration on T2 values, because 
both edema or inflammatory changes and fatty 

degeneration lead to increased T2 values [21, 
22]. These effects should be considered when 
evaluating patients with inflammatory myopa-
thies and neuromuscular disorders, because pa-
tients can show concomitant findings of muscle 
edema and fatty infiltration [23]. Interpreta-
tion of T2 mapping in these scenarios requires 
careful analysis because of the multiple factors 
affecting T2 values [24, 25]. To reduce the ef-
fect of fat content on T2 maps, the implemen-
tation of fat-suppression techniques is an alter-
native [26], despite recognized limitations for 
the complete removal of the fat content effect 
on T2 values [27]. The use of both fat-satu-
rated and non–fat-saturated acquisitions can 
help analyze the specific findings in muscle T2 
maps [26]. Fat infiltration in obese patients and 
muscle edema related to exercise are also con-
founding factors that can contribute to elevat-
ed T2 values and need to be taken into consid-
eration when evaluating muscle T2 maps [25, 
28]. Overall, T2 mapping can be very useful in 
clinical practice, but the radiologist should be 
aware of the potential challenges because stan-
dardized T2 measurement protocols are absent, 
which make meta-analyses and multisite com-
parison difficult.

T1ρ Mapping
T1ρ, also referred to as T1rho or spin-lock 

relaxation, is another technique used to evalu-
ate biochemical changes in tissues. T1ρ is the 
time constant of spin-lattice relaxation in the 
rotating frame, characterized by magnetic re-
laxation of spins under the influence of a radio-
frequency pulse. It is sensitive for low-frequen-
cy interactions between macromolecules and 
bulk water [29, 30]. T1ρ is similar to T2 relax-
ation, except that there is an additional radiofre-
quency pulse (the spin-locking pulse) applied 
immediately after the magnetization is tipped 
into the transverse plane. Conventionally, the 
spin-locking pulse is a continuous wave radio-
frequency pulse with long duration and low en-
ergy. Because the magnetization and radiofre-
quency field are along the same direction, this 
effectively locks the magnetization vector into 
the transverse plane without phase decay (as 
with T2 decay). The signal decay is exponen-
tial with a time constant, T1ρ, and is typically 
calculated from multiple images by changing 
the duration of the spin-locking pulse. Chang-
ing the amplitude of the spin-locking pulse 
can also select for different properties within 
the tissue [5, 29, 31]. Because the convention-
al continuous wave spin-locking pulse is sus-
ceptible to field inhomogeneities, recent studies 
have evaluated techniques using adiabatic T1ρ 

spin-locking pulses, where amplitude and fre-
quency are varied in time, showing promising 
results in osteoarthritis, with reduction of the 
effects of magnetic field inhomogeneities and 
also reduced sensitivity to the magic angle ef-
fect [32, 33].

Several studies have shown that T1ρ imag-
ing is sensitive to detecting changes in proteo-
glycan content of articular cartilage, as found 
in the early stages of osteoarthritis [29, 34, 35]. 
T1ρ has also been shown to be reliable in map-
ping cartilage damage in patients with rheu-
matoid arthritis and osteoarthritis [36]. T1ρ 
depicts changes between protons and the mac-
romolecular environment of cartilage. Con-
sidering that the motion of water molecules 
in articular cartilage is restricted by the mac-
romolecules in the extracellular matrix, altera-
tions such as proteoglycan loss can, therefore, 
be reflected in T1ρ values [5, 34, 37]. In com-
parison with other techniques, T1ρ mapping 
has the advantage of providing noninvasive 
analysis of proteoglycan content in cartilage 
without the need for contrast agent administra-
tion or any extra hardware [35] (Fig. 2). Howev-
er, it requires a pulse sequence that is not wide-
ly available. Other limitations of T1ρ mapping 
are related to variability of results between dif-
ferent pulse sequences [38] and the angular and 
layer dependence of T1ρ values [39]. T1ρ mea-
surements can also be confounded by the pres-
ence of multiple tissue components [40].

Delayed Gadolinium-Enhanced MRI 
of Cartilage 

Delayed gadolinium-enhanced MRI of car-
tilage (dGEMRIC) provides indirect measure-
ment of cartilage structural composition and 
is based on the inverse relationship between 
cartilage glycosaminoglycan (GAG) content 
and cartilage distribution of the negatively 
charged gadolinium contrast agent [41]. GAG 
molecules play an important role in cartilage 
integrity by helping keep water molecules 
within cartilage and, therefore, maintaining 
swelling pressure and strength. A decrease in 
GAG molecules in the cartilage is one of the 
early steps of osteoarthritis development.

GAG molecules and gadolinium are both 
negatively charged, and gadolinium will ac-
cumulate in articular cartilage in an inverse-
ly proportional manner to the GAG con-
centration: in areas with decreased GAG 
concentration (i.e., lesser negative charge), 
more negatively charged gadolinium will 
penetrate the cartilage. Images are general-
ly obtained 90–120 minutes after IV injec-
tion of contrast agent to allow its diffusion 
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within the cartilage. dGEMRIC is based on 
a T1 relaxation time measurement technique 
that uses the negative ionic charge of gado-
linium to generate a color-coded map of the 
charge density of cartilage GAGs [42]. Ac-
cumulation of the contrast agent in areas of 
low GAG content in the cartilage will result 
in shorter T1 relaxation time.

dGEMRIC maps can reliably detect GAG 
loss even before conventional MRI can de-
tect cartilage changes. Different studies have 
shown that dGEMRIC is a valuable noninva-
sive tool in the evaluation of cartilage chang-
es, as is seen in early stage osteoarthritis and 
focal cartilage defects [41, 43, 44], femoroace-
tabular joint disorders [45], follow-up of surgi-
cally treated cartilage [46], and injured joints 
after dislocations and ligament tears [47, 48]. 
In osteoarthritis research studies, dGEMRIC 
has been used as a standard tool for the assess-
ment of articular cartilage GAG [41, 49].

Practical limitations of this technique are 
the prolonged acquisition protocol due to the 
long delay between the contrast agent admin-
istration and MRI acquisition, the lack of a 
standard physical activity protocol required 
before image acquisition, and the increased 
costs and risks associated with IV adminis-
tration of contrast agent [42, 49].

Proton MR Spectroscopy
In vivo proton MR spectroscopy (MRS) of-

fers noninvasive molecular characterization of 
different tissues, sampling the relative levels 
of metabolites in specific ROIs [50]. MRS has 
been used successfully to study the intracel-
lular contents of skeletal muscle tissue, moni-
toring such metabolites as choline, lipids, total 
creatine, and trimethyl ammonium [51] (Fig. 3). 
However, compared with other body regions, 
such as the brain, MRS has had rather restrict-
ed applications in the MSK system.

Multiple studies have used MRS for char-
acterization of MSK tumors. By quantitatively 
assessing choline content, differentiation be-
tween benign and malignant lesions is possi-
ble [52, 53]. Another application of MRS is to 
quantify skeletal muscle lipid storage, evalu-
ating both intramyocellular and extramyocel-
lular lipid compartments [54]. Muscular lip-
id metabolism measurements offer an ample 
spectrum of clinical and research applications 
for MRS, including correlations to exercise 
physiology, muscular function, insulin resis-
tance, obesity, and other metabolic disorders 
[55–59]. Muscle metabolites other than lip-
ids, such as creatine, have also been evaluat-
ed, providing a potential avenue to improve 

understanding of muscle metabolism and to 
monitor response to therapies [60].

Specific MRS techniques, such as 31P-MRS, 
require specialized MRI hardware, which lim-
its their clinical adequacy. Proton MRS, on the 
other hand, does not involve special hardware 
and can, therefore, be performed as part of rou-
tine MRI. However, MRS measurements are 
affected by many imaging-related factors. One 
described limitation of muscle MRS is related 
to the reliance on ratios between water and fat 
or metabolite content and to the assumption of 
consistent water content within muscle, which 
can lead to inaccurate measurements in pa-
tients who present with both muscle edema or 
inflammation and fatty degeneration, such as 
patients with dystrophinopathies [61].

Chemical-Shift MRI
MRI allows quantification of fatty infil-

tration using several approaches, including 
chemical-shift water-fat MRI, which relies on 
the difference in chemical shift between water 
and fat, enabling assessment and quantifica-
tion of the fatty elements in muscle tissue us-
ing fat fraction maps [62, 63] (Fig. 4). Chemi-
cal-shift imaging (CSI), proposed by Dixon in 
1984 [64], uses the phenomenon of signal in-
tensity alterations detected in MRI that result 
from the inherent differences in the resonant 
frequencies of lipid and water. These differ-
ences can be encoded into images, producing 
sets of images based on water and fat. Fat and 
water signals can then be used to calculate the 
fat fraction, expressed as the fraction of fat 
signal in the total signal in each voxel [65].

CSI methods have been applied mostly to 
quantify fat replacement of skeletal muscle. Fat 
fractions obtained by CSI have been shown to 
correlate well with histologic examination and 
MRS [66]. Two- and three-point Dixon imag-
ing have shown good correlations with fat lev-
els based on muscle biopsy and clinical severity 
in dystrophinopathies [67, 68]. It has also been 
applied to provide outcome measures and to 
detect disease progression [69].

In comparison with signal intensity ap-
proaches, CSI methods are less influenced 
by B0 and B1 magnetic field inhomogeneities 
and are less biased by partial volume effects 
[66]. However, it has been suggested that low 
signal-to-noise ratio images affect the accu-
racy of the results, especially when one of the 
components is predominant—namely, low fat 
fraction or low water fraction [70]. Another 
challenge to CSI is related to the definition 
of ROIs and delineation of muscle contours. 
Manual segmentation is very time consum-

ing, and recent advances in semiautomatic or 
automatic segmentation are still difficult to 
apply in the clinical setting. Faster and sim-
pler automated or semiautomated muscle 
segmentation would be highly beneficial for 
the analysis of quantitative muscle MRI [71].

DWI
DWI is an MRI technique capable of mea-

suring differences in the magnitude of diffu-
sion of water molecules within a tissue [72]. 
DWI is an established technique in neuroradi-
ology but has not been widely used for MSK 
imaging, although promising applications have 
been studied [73]. DWI generates MR images 
on the basis of the contrast derived from the 
diffusion property of water molecules, thereby 
allowing mapping of the diffusion process that 
will reflect the difference in rate of diffusion 
in tissues. Diffusion, also known as Brown-
ian motion, denotes the random thermal move-
ment of molecules. Diffusion of water mole-
cules follows a pattern according to each tissue 
composition and structure, and some patho-
logic conditions can alter this diffusion, allow-
ing abnormalities to be detected by DWI [74, 
75]. DWI can be generated by applying two ex-
tra diffusion gradients, equal in magnitude, on 
conventional MRI sequences—one dephasing 
and one, exactly opposite, rephasing gradient. 
The first gradient introduces phase shift to the 
molecules, whereas the second gradient will 
cancel these changes. With diffusion of pro-
tons, the second gradient is not able to com-
pletely reverse the changes induced by the first 
gradient on moving spins, and signal attenua-
tion can be detected. The detected signal loss is 
related to the resultant spin dephasing, varying 
according to time between pulses, strength, and 
duration of gradients applied. Apparent diffu-
sion coefficient maps can then be obtained, de-
rived from at least two DW images, displaying 
the spatial distribution of the different diffusion 
rates. Apparent diffusion coefficient maps also 
reduce T1 and T2 contrast in the images and al-
low diffusion quantification [74, 75].

For muscle MRI, although conventional se-
quences are sensitive to detect larger abnormal-
ities, edema, and hemorrhage, DWI can help 
detect minor lesions and fatigue-induced mus-
cle disorders that would otherwise remain un-
detected, thus improving diagnosis [76]. DWI 
can also be combined with the diffusion-ten-
sor imaging (DTI) technique. Considering that 
the diffusion of molecules in structured tissue 
is anisotropic, DTI parameters can be used to 
measure anisotropy, to allow noninvasive eval-
uation of tissue microstructure and mechanical 
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properties, and to map the orientation of skel-
etal muscle fibers [73, 77]. DTI is able to mea-
sure the magnitude and direction of mobility 
of molecules in a particular voxel and can be-
come a useful tool for investigation of muscle 
disorders. DTI measurements allow calcula-
tion of parameters for overall diffusivity and 
for the degree of anisotropy (fractional and 
relative anisotropy) [78]. Certain conditions, 
such as mechanical injury and exercise-related 
trauma, can lead to disorganization of muscle 
fibers and altered diffusion, with consequent 
decreased anisotropy, that can sometimes be 
detected even before it becomes apparent on 
conventional images, helping with early diag-
nosis and definition of the lesion extension [76, 
79]. DTI can be applied to study skeletal mus-
cle physiology, anatomy, and pathology and 
could become diagnostically relevant for prog-
nosis and treatment of sports-related muscle in-
jury [76, 80]. However, DWI and DTI are de-
pendent on many acquisition parameters and 
are prone to artifacts from misregistration of 
data, motion artifacts, and susceptibility vari-
ants. Muscle DTI parameters are also highly 
sensitive to age, sex, body mass index, exercise 
status, and temperature [80]. Further research 
is necessary, and improvements in the tech-
nique and in postprocessing analysis are need-
ed to increase the application in both research 
and clinical medicine [73].

Ultrashort- and Zero-TE Sequences 
Tendons, ligaments, menisci, and bones con-

tain a high fraction of components with short 
and ultrashort transverse relaxation times and, 
therefore, have short mean transverse relax-
ation times [81]. These tissues yield little or no 
signal with conventional MRI pulse sequences 
and, thus, are not able to be properly charac-
terized using these sequences with longer TEs. 
Tendons, ligaments, and menisci have T2 times 
of 2–8 ms, and cortical bone and the deep lay-
ers of articular cartilage have T2 times of about 
0.2–2 ms [81]. To detect and explore signals 
from these tissues with very short T2 times, 
which are especially relevant in the MSK sys-
tem, different ultrashort-TE (UTE) and zero-
TE sequences have been designed. They are 
being increasingly improved and studied, thus 
providing the opportunity to visualize and de-
tect abnormalities of these tissues in a manner 
not previously possible [81–85] (Fig. 2).

Ultrashort-TE T2* Mapping
UTE T2* mapping, similar to quantitative 

conventional T2* mapping, is based on a se-
ries of multiple images at different TEs, in-

cluding TE of 0.5 ms or shorter [86]. T2* is 
the most popular relaxation constant used to 
detect potential collagen matrix alteration in 
tendons [87]. The number of components and 
T2* values vary according to spatial resolu-
tion and tendon orientation [88]. Biexponen-
tial T2* analysis has been successfully per-
formed in vivo using both UTE and variable 
TE sequences, and fractions and T2* values 
vary depending on tendon location, which 
is consistent with different tendon composi-
tions [81]. Recent studies have shown that bi-
exponential T2* offers robust measurements 
in both healthy individuals and patients with 
Achilles and patellar tendinopathy [83, 89, 
90]. UTE T2* can become a reliable mark-
er to guide clinical outcome, detecting ten-
dinopathy. Bicomponent analysis can also be 
useful in quantifying the injured or postoper-
ative tendon (Fig. 4). T2* limitations are re-
lated to magnetic field inhomogeneities and 
magic angle effects.

UTE and zero-TE techniques can obtain 
signal from the short T2* components of ar-
ticular cartilage, allowing direct visualization 
of the deep layers and discrimination of the 
calcified layer, which may be related to the 
pathogenesis of cartilage degeneration [91, 92] 
(Fig. 5). Conventional MRI sequences cannot 
differentiate the deep radial and calcified lay-
ers from subchondral bone [93]. Williams et 
al. [86], using a monoexponential decay mod-
el, found that UTE T2* values were more sen-
sitive to matrix degeneration than convention-
al T2 values based on histologic standards, 
showing lower UTE T2* values associated 
with severely degraded cartilage. In a recent 
study of patients 2 years after anterior cruci-
ate ligament reconstruction, UTE T2* assess-
ment could identify deep articular pathologic 
abnormalities in subclinical disease that were 
not evident at conventional MRI [94]. Chu et 
al. [95] showed that UTE T2* values were 
significantly elevated in patients who had un-
dergone ACL reconstruction with arthroscop-
ically normal articular cartilage and menisci. 
Shao et al. [96] recently found that UTE bi-
component analysis can characterize the short 
and long T2* values and fractions across the 
cartilage depth, including the deep radial and 
calcified cartilage.

UTE T2* can also be used to assess bone. 
For cortical bone, recent studies have shown 
that biexponential T2* fitting and adiabatic in-
version recovery UTE techniques can reliably 
measure bound water and pore water com-
ponents in vitro and in vivo [84, 97, 98]. Fu-
ture studies can confirm the potential of these 

techniques to assess bone quality and strength 
and to determine its implications for clinical 
evaluation of bone diseases. Challenges relat-
ed to UTE T2* are the lack of availability on 
most existing scanners, additional cost, and 
extra clinical examination times, because it 
will need to be performed in addition to clin-
ical sequences. For clinical imaging, limita-
tions related to imperfect registration and pa-
tient motion may affect measurements [99]. 
Another source of potential limitations can be 
related to issues in the processing of exponen-
tial fitting of multiecho images [40].

Ultrashort-TE Magnetization Transfer
For certain anisotropic tissues, such as ten-

dons and cortical bone, low mean transverse 
relaxation time is not the only challenge for 
imaging. An additional concern is the magic 
angle effect, which is related to unaveraged di-
polar interactions of proton nuclear spins [100]. 
Magnetization transfer (MT) refers to the inter-
actions of protons residing in different macro-
molecular environments and the transfer of lon-
gitudinal magnetization from the bound proton 
pool to the free proton pool. When combined 
with the UTE sequence, MT can be performed 
on short-T2 tissues [101]. UTE MT may pro-
vide unique information that cannot be direct-
ly obtained by other methods, such as regular 
UTE techniques, and multiple parameters can 
be obtained, including water and macromolec-
ular proton fractions, as well as relaxation and 
exchange rates [102]. UTE MT with two-pool 
modeling measurements has shown much less 
orientational dependence and has shown poten-
tial as a clinically compatible quantitative tech-
nique that is resistant to the magic angle effect 
[103]. However, UTE MT protocols with rela-
tively small saturation pulses may lead to in-
accuracy in the measurement of T2 of the wa-
ter pool, which is related to underestimation 
of the exchange rate between macromolecular 
and water pools [103]. In addition, the two-pool 
model does not account for the presence of fat, 
which would confound the measurements. Fat-
saturation methods or a three-pool model could 
be used in future studies.

Recent studies using the UTE MT tech-
nique on rotator cuff tendons have shown 
promising results that are much less sensitive 
to magic angle effects compared with trans-
verse relaxation times [103, 104] (Fig. 6). For 
cortical bone, studies by Chang et al. [105] 
and Ma et al. [106] found encouraging results 
investigating 2D UTE MT that can provide 
useful quantification information for cortical 
bone (Fig. 7).
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Conclusion
MRI is continuously being refined, and an 

ample range of quantitative sequences and 
techniques are now available, enabling the 
visualization of previously invisible struc-
tures and characterization of multiple MSK 
tissues. However, many of the newer QMRI 
techniques are not widely available in clini-
cal packages or cannot be performed during 
clinically feasible scan times, and specific 
recommendations are not adopted because 
of the lack of standardization and validation, 
especially across different equipment and 
systems. Further refinements are needed to 
facilitate and speed up its adoption, making 
it easier to compare its results over time, be-
tween subjects and with different equipment.
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A

Fig. 1—Two subjects who underwent 2D multiecho 
spin-echo T2-weighted MRI of knee (TE = 6.1, 12.2, 
18.3, 24.4, 30.4, 36.5, 42.6, 48.7, 54.8, 60.9, 67.0, and 
73.1 ms).
A, 43-year-old male volunteer with no symptoms. 
Image shows highest T2 values in posterior weight-
bearing aspect of medial femoral condyle, which is at 
magic angle. Color scale denotes T2 values.
B, 67-year-old woman with knee osteoarthritis. 
Osteoarthritis of knee was determined by clinical 
examination and radiographs. There are irregular 
areas of high T2 values at femoral trochlea, posterior 
weight-bearing aspect of medial femoral condyle, 
and medial tibial plateau, indicating areas of 
abnormal cartilage. Color scale denotes T2 values.

B
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A

Fig. 2—70-year-old woman without symptoms. 
A, T1ρ measurement obtained with conventional MRI technique with longer TE (10 ms) can be used to evaluate cartilage. Color scale denotes T1ρ values.
B and C, Using ultrashort TE (UTE) (0.032 ms), additional information is obtained from short T2 components. High signal intensity at posterior portion of medial femoral 
condyle (arrow, B) suggests loss of proteoglycan. In addition, using UTE technique, T1ρ measurements can be obtained from tissues with short mean T2 values, such as 
menisci (arrowheads, C). Sequences used were 2D spiral T1ρ measurement (time to spin lock [TSL] =  0, 20, 40, and 80 ms) and 3D UTE-Cones T1ρ measurement (TSL = 0, 
5, 10, and 20 ms). Color scales denote T1ρ values.

CB

A

Fig. 3—28-year-old man without symptoms. 
A and B, T1-weighted MRI (A) shows voxel location 
(square) used for MR spectroscopy. Graph (B) shows 
corresponding water-suppressed spectrum from 
that region. Lipids dominate signal in this region 
with distinct peaks from CH2 groups on extra- 
and intramyocellular lipids (red and blue arrows, 
respectively). Distinct peak from trimethylamine is 
visible (orange arrow), as are peaks from CH3 and 
CH2 groups of creatine (green and yellow arrows, 
respectively). Numbers on graph axis denote 
frequency (ppm).

B

A

Fig. 4—28-year-old man without symptoms. 
A and B, Chemical-shift imaging was performed to 
generate fat (A) and water (B) fraction maps, which 
allow quantification of skeletal muscle. Low fat and 
high water fractions in musculature of leg in this 
volunteer are normal.
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Fig. 5—54-year-old male cadaveric specimen with osteoarthritis. 
A and B, Ultrashort-TE MRI highlights deep layers of articular cartilage of medial femorotibial compartment (A) 
and at femoral trochlea (B). Abnormal areas, represented by missing bright lines, can be identified on weight-
bearing medial femoral condyle (thick arrow, A), medial tibial plateau (thin arrow, A), and patella (arrowhead, B). 
Subtle areas (red lines) can also be quantified.
C, Graphs show TE times for femoral condyle (top) and femoral trochlea (bottom).
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Fig. 6—Two subjects who underwent shoulder 
imaging.
A and B, 25-year-old man with intermittent 
shoulder pain. Coronal oblique ultrashort-TE (UTE) 
magnetization transfer (MT) image of supraspinatus 
tendon with macromolecular map (A) shows low 
macromolecular fraction, as denoted by color scale 
on right, suggesting tendinopathy. Graph of fitting 
curves from two-pool MT modeling (B) shows 
excellent fit, with mean macromolecular fraction (f) 
of 12.7% ± 1.0%. 
C and D, 33-year-old woman without symptoms. 
Coronal oblique UTE MT image of supraspinatus 
tendon with macromolecular map (C) shows high 
macromolecular fraction, as denoted by color scale 
on right. Graph of fitting curves from two-pool 
MT modeling (D) shows excellent fit, with mean 
macromolecular fraction (f) of 13.8% ± 0.9%. This 
technique enables acquisition of macromolecular 
fractions that are much less sensitive to magic 
angle effects.
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A

Fig. 7—35-year-old man without symptoms.
A–C, Ultrashort-TE (UTE) magnetization transfer (MT) images of left leg provide color mapping with quantification information of tibial cortical bone, including 
macromolecular fraction (A), proton exchange rate from macromolecular to water pools (B), and spin-lattice relaxation rate of water pool (R1w; C). Color bars indicate 
gradation of MT measures, and regional variations can be seen in different portions of tibial cortex, reflecting compositional and structural differences. For UTE-Cones 
MT modeling, flip angle was 500°, 1000°, and 1500°, and frequency offset was 2, 5, 10, 20, and 50 kHz. For UTE-Cones T1 measurement for MT modeling, actual flip angle 
was 45° and TR was 20 and 100 ms; with variable TR, flip angle was 45° and TR was 20, 50, and 150 ms.
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