
UCLA
UCLA Previously Published Works

Title

Serum lipids are associated with nonalcoholic fatty liver disease: a pilot case-control study 
in Mexico

Permalink

https://escholarship.org/uc/item/5qm5q3nv

Journal

Lipids in Health and Disease, 20(1)

ISSN

1476-511X

Authors

Flores, Yvonne N
Amoon, Aryana T
Su, Baolong
et al.

Publication Date

2021-12-01

DOI

10.1186/s12944-021-01526-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5qm5q3nv
https://escholarship.org/uc/item/5qm5q3nv#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

Serum lipids are associated with
nonalcoholic fatty liver disease: a pilot
case-control study in Mexico
Yvonne N. Flores1,2,3*† , Aryana T. Amoon2†, Baolong Su4, Rafael Velazquez-Cruz5, Paula Ramírez-Palacios3,
Jorge Salmerón6, Berenice Rivera-Paredez6, Janet S. Sinsheimer7,8, Aldons J. Lusis9,10, Adriana Huertas-Vazquez9,
Sammy Saab11,12, Beth A. Glenn1,2, Folasade P. May1,2,11,13, Kevin J. Williams4,14, Roshan Bastani1,2 and
Steven J. Bensinger4,10

Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and cirrhosis.
NAFLD is mediated by changes in lipid metabolism and known risk factors include obesity, metabolic syndrome,
and diabetes. The aim of this study was to better understand differences in the lipid composition of individuals
with NAFLD compared to controls, by performing direct infusion lipidomics on serum biospecimens from a cohort
study of adults in Mexico.

Methods: A nested case-control study was conducted with a sample of 98 NAFLD cases and 100 healthy controls
who are participating in an on-going, longitudinal study in Mexico. NAFLD cases were clinically confirmed using
elevated liver enzyme tests and liver ultrasound or liver ultrasound elastography, after excluding alcohol abuse, and
100 controls were identified as having at least two consecutive normal alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) (< 40 U/L) results in a 6-month period, and a normal liver ultrasound elastography
result in January 2018. Samples were analyzed on the Sciex Lipidyzer Platform and quantified with normalization to
serum volume. As many as 1100 lipid species can be identified using the Lipidyzer targeted multiple-reaction
monitoring list. The association between serum lipids and NAFLD was investigated using analysis of covariance,
random forest analysis, and by generating receiver operator characteristic (ROC) curves.

Results: NAFLD cases had differences in total amounts of serum cholesterol esters, lysophosphatidylcholines,
sphingomyelins, and triacylglycerols (TAGs), however, other lipid subclasses were similar to controls. Analysis of
individual TAG species revealed increased incorporation of saturated fatty acyl tails in serum of NAFLD cases. After
adjusting for age, sex, body mass index, and PNPLA3 genotype, a combined panel of ten lipids predicted case or
control status better than an area under the ROC curve of 0.83.
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Conclusions: These preliminary results indicate that the serum lipidome differs in patients with NAFLD, compared
to healthy controls, and suggest that assessing the desaturation state of TAGs or a specific lipid panel may be
useful clinical tools for the diagnosis of NAFLD.

Keywords: Lipidomics, Triacylglycerol desaturation, Triglycerides, Nonalcoholic fatty liver disease, NAFLD,
Biomarkers, Latinos, Mexican, Cross-sectional study

Background
Nonalcoholic fatty liver disease (NAFLD) is a leading
cause of chronic liver disease with an estimated global
prevalence of 24% [1]. NAFLD is the accumulation of
excess fat in the liver, without a clear secondary cause of
lipid accumulation (e.g., significant alcohol consumption,
use of steatogenic medication, or genetic disorders) [2].
NAFLD ranges from simple hepatic steatosis to nonalco-
holic steatohepatitis (NASH) characterized by hepatic in-
flammation and hepatocellular injury. NAFLD and
NASH can progress to cirrhosis and hepatocellular car-
cinoma (HCC) [3, 4]. Treatment options for NAFLD are
limited and it has become the fastest growing cause of
HCC among liver transplant candidates [5]. Predicting
which individuals will progress from NAFLD to more
advanced liver disease remains difficult to assess, and
finding prognostic markers remains an important object-
ive. Therefore, the identification of key biomarkers that
could improve the non-invasive detection of NAFLD
and the development of new treatment strategies that re-
duce chronic liver disease incidence and mortality would
be a major benefit to public health.
In the United States, NAFLD and NASH are most

prevalent among Latinos [6–10], and those of Mexican
origin have the highest prevalence [11, 12]. Known risk
factors for NAFLD and disease progression include
obesity, insulin resistance, metabolic syndrome, and dia-
betes. NAFLD is found in 80–90% of obese adults, 30–
74% of patients with diabetes, and 90% of patients with
hyper-lipidemia [6, 13]. Other risk factors include larger
waist circumference [14, 15], and older age [16–19], and
elevated triglycerides [14, 15, 20–22]. Hypertriglyc-
eridemia has been identified as an important and early
predictor of NAFLD [23, 24]. While total cholesterol,
often measured as part of a standard lipid panel, is not
generally related to NAFLD overall, but cholesterol car-
rying lipoproteins, including high density, low density,
non-high density and very-low density lipoproteins have
been associated with NAFLD [25–30].
There is also some evidence that NAFLD may be a

heritable disease, in which gene-environment interac-
tions contribute to the progress and severity of dis-
ease [31]. A single variant in the PNPLA3 gene
(rs738409) has the most robust and consistent associ-
ation with hepatic steatosis [32, 33]. This variant is a

cytosine to guanine substitution that modifies codon
148 from isoleucine to methionine (I148M). PNPLA3
encodes a 481 amino acid protein of unknown func-
tion that belongs to the patatin-like phospholipase
family [34]. The PNPLA3-I148M allele is more com-
mon among Latinos (49%), than non-Hispanic Whites
(23%), or non-Hispanic Blacks (17%) [34–36]. Studies
with health workers in Mexico also confirm that the
PNPLA3-I148M allele is associated with a greater
risk of persistently elevated aminotransferase levels
[37, 38].
Dysregulation of hepatic lipid metabolism underlies

the pathogenesis of NAFLD and alterations in systemic
lipid metabolism are found in patients with NAFLD and
NASH [3, 39–41]. Various lipid markers have also been
associated with NAFLD and NASH including triglycer-
ide [e.g., TAG (48:0)], phosphatidylethanolamine [e.g.,
PE (40:6)], and lysophosphatidylcholine [e.g., LPC (16:0)]
[42]. The very long chain dihydroceramides and polyun-
saturated PEs can discriminate NAFLD from NASH sub-
jects [43]. Certain lipid subclasses are generally higher in
NAFLD cases, including diacylglycerols [25, 26, 44, 45]
and free fatty acids [26, 44], while other lipid subclasses
are mostly decreased in NAFLD cases compared to con-
trols (e.g. LPC, [46] PE [25, 46], ceramides (CER) [47],
cholesterol esters (CE) [47], and phosphatidylcholines
(PC) [25]. However, none of these studies included
Latino adults, so very little is understood about how
specific lipid types contribute to NAFLD susceptibility
among Latinos.
The primary objective of this pilot study was to better

understand differences in the lipid composition of indi-
viduals with NAFLD compared to healthy controls, and
to identify potential detection markers for NAFLD in an
understudied population that is at high-risk for develop-
ing NAFLD. Targeted direct infusion “shotgun” lipido-
mics were performed on serum biospecimens from 98
NAFLD cases and 100 controls in Mexico, to observe
changes in the circulating lipidome of patients with
NAFLD. The study hypothesis was that the circulating
lipids in serum among NAFLD cases would be different
than in healthy controls. A secondary objective of this
study was to investigate how individual triacylglycerol
(TAG) species may vary between NAFLD cases and
controls.
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Methods
Study design
The study used a nested case-control design and exam-
ined lipidomics, genetic, and clinical data to compare a
sample of NAFLD cases to healthy controls from adult
participants in a longitudinal study in Mexico. All study
procedures were approved by the Institutional Review
Boards, and all participants provided informed consent.
This research followed the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE)
guidelines [48].

Study sample
The Health Worker Cohort Study (HWCS) is investi-
gating the genetic and lifestyle risk factors associated
with various chronic diseases in Mexico. The study
design and methodology are described in detail else-
where [49–51]. At baseline (2004–2006) and follow-
up (2011–2013 and 2017–2018), study participants
completed self-reported questionnaires, a physical
examination, and provided blood samples for labora-
tory testing. A convenience sample of 98 NAFLD
cases and 100 healthy controls aged 36 to 78 years,
who are long-term participants in the HWCS was
used for the current pilot study. The inclusion criteria
for this study was having a hepatologist-confirmed
diagnosis of NAFLD for the cases, and a history of
normal ALT and AST results (< 40 U/L) plus a nor-
mal ultrasound elastography result for the controls.
Liver enzymes (ALT, AST), total cholesterol, high-
density lipoprotein (HDL-C), low-density lipoprotein
cholesterol (LDL-C), triglycerides, glucose, body mass
index (BMI), waist circumference, and blood pressure
were measured. Participants reported fasting for ≥12 h
at blood draw. Serum samples that were collected
during 2011–2013 and stored at − 70 °C, as well as
self-reported data and laboratory results that were ob-
tained during the same time period, were used for
the cases and controls. Targeted genetic studies have
also been performed in a larger sample of the HWCS
participants to identify single nucleotide polymor-
phisms (SNPs) associated with NAFLD (n = 632),
osteoporosis (n = 689) and other complex diseases
(n = 1936) [37, 38, 52, 53].

Clinical confirmation of NAFLD cases and controls
The primary outcome variable was a diagnosis of
NAFLD, which was determined by a hepatologist using
established guidelines [2]. Liver ultrasound or ultrasound
elastrography was used to assess the presence of hepatic
steatosis, as well as persistently elevated ALT or AST
levels ≥40 international units per litre (IU/L). Addition-
ally, NAFLD cases were confirmed to have no significant
alcohol consumption (< 20 g/day for females, < 30 g/per

day for males), no competing etiologies for hepatic stea-
tosis (e.g. chemotherapy or toxic exposures), and no
coexisting causes of chronic liver disease (e.g. infection
with hepatitis B or hepatitis C). Stratified randomization
was used to select age- and sex-matched controls from
the HWCS participants who had at least two consecutive
normal ALT and AST measures (< 40 U/L) over a period
of 6 months, during 2004–2006, 2011–2013, and 2017–
2018. All controls were confirmed not to have a NAFLD
diagnosis from the results of an ultrasound elastrography
evaluation that was conducted in January 2018.

Covariates
Body mass index (BMI)
The study participants’ BMI was determined from stan-
dardized measures of weight and height and was calcu-
lated as a ratio of weight (in kilograms) to height (in
square meters). Participants were classified as normal
weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2)
or obese (≥30 kg/m2), based on recommendations from
the National Heart, Lung, and Blood Institute [54].

Diabetes
Type 2 diabetes was defined as having any of the follow-
ing: a medical history of diabetes (excluding during preg-
nancy), currently taking medication for diabetes, a
plasma glucose level > 125 mg/dL after fasting 12 h, or a
random glucose test > 200 mg/dL [55].

Metabolic syndrome
Based on the 2009 Criteria for Clinical Diagnosis of the
Metabolic Syndrome by Alberti et al., participants were
classified as having metabolic syndrome if they pre-
sented three or more of the following: (1) waist circum-
ference ≥ 90 cm for males and ≥ 80 cm for females; (2)
HDL-C < 40mg/dL for males and < 50mg/dL for fe-
males; (3) triglycerides ≥150mg/dL; (4) fasting glucose
≥110 mg/dL, or currently taking medication for elevated
glucose; and (5) systolic blood pressure ≥ 130 mmHg,
diastolic blood pressure ≥ 85mmHg, or currently taking
medications for high blood pressure [56].

PNPLA3 (rs738409) genotyping
All participants were genotyped for the rs738409 I148M
variant using TaqMan assays (Applied Biosystems, Fos-
ter City, CA, USA). No discordant genotypes were ob-
served in 50 duplicate samples. The CC genotype
corresponds to normal/no risk, the CG represents a
medium risk, and the GG genotype corresponds to a
high risk. Deviation from Hardy–Weinberg equilibrium
was not observed.
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Extraction procedures
Serum samples from 98 NAFLD cases and 100 controls
with complete data were identified for lipid extraction.
First, samples were thawed and 25ul of serum were pi-
petted into a glass tube for extraction. A modified Bligh
and Dyer extraction [57] was carried out on the serum
samples. Prior to biphasic extraction, the Lipidyzer In-
ternal Standard Mix that contains 54 lipid standards
across 13 subclasses, was added to each sample (AB
Sciex, 5,040,156). The 13 subclasses include: cholesterol
esters (CE), ceramides (CER), diacylglycerols (DAG),
dihydroceramides (DCER), free fatty acids (FFA),
hexosylceramides (HCER), lactosylceramides (LCER),
lysophosphatidylcholines (LPC), lysophosphatidylethano-
lamines (LPE), phosphatidylcholines (PC), phospha-
tidylethanolamines (PE), sphingomyelins (SM), and
triacylglycerols (TAGs). Following two successive extrac-
tions, pooling/concentrating of the organic layers were
dried down in a Genevac EZ-2 Elite for direct infusion
lipidomic analysis. Lipid samples were resuspended in 1:
1 methanol/dichloromethane with 10mM Ammonium
Acetate and transferred to robovials (Thermo
10,800,107) for analysis. Samples were processed be-
tween November 2018 and February 2019 at the UCLA
Lipidomics Laboratory.

Mass spectrometry lipid analysis
Samples were analyzed on the Sciex Lipidyzer Platform
(Framingham, MA, USA) and quantified with
normalization to serum volume. This platform has been
described elsewhere [58]; briefly, it is a direct infusion-
tandem mass spectrometry system utilizing differential
mobility. Analysis is carried out over two infusions, with
each acquiring roughly half of the lipid targets within
the assay. As many as 1100 targeted lipid species can be
identified using the Lipidyzer targeted multiple-reaction
monitoring (MRM) list, but only 622 were quantified in
at least 33% of cases or 33% of controls. The cut point
of 33% was chosen to avoid correlational artifact
weighted by lipids detected in very few samples. This
allowed us to examine nearly 57% of the 1100 targeted
lipid species in a sample that was less likely to have
missing data. A total of 352 lipids had no missing data
in both cases or controls (i.e. were quantified for all 198
samples tested), of which 251 were TAGs. Concentra-
tions were reported as nmoles/mL. Lipid class totals
were calculated in each sample by summing the concen-
tration of all individual lipid species within each class
and presented in units of nanomoles/mL.

Statistical analyses
SAS version 9.3 (Cary, NC, USA), Python 3.7 (Freder-
icksburg, Virginia, USA), R 4.0.0 (Vienna, Austria), and
ClustVis [59] were used to conduct the data analyses.

Lipids were tested for normal distribution and log-
transformed when necessary for specific analyses. To be
included in the primary analyses, lipid species had to be
measured in at least 33% of either cases or controls. This
was done to ensure that lipids with exceedingly low
abundance across samples were not included. The me-
dian and 25–75% interquartile range (IQR) of specific
lipid subclasses and species were determined and pre-
sented in box plots with whiskers representing 1.5 times
the IQR bounded by the highest and lowest samples.
Prior to analysis, outliers with greater than 3 standard
deviations (SD) from the mean were excluded from ana-
lysis. Two-tailed unpaired Student’s t test were used to
determine differences between cases and controls.
NAFLD cases and healthy controls were also compared
using analysis of covariance (ANCOVA), adjusting for
several combinations of covariates, including: age, sex,
diabetes status, metabolic syndrome status, BMI status,
and PNPLA3 genotype. Six models were created to ad-
just for these covariates. Results were visualized using
Manhattan plots. False discovery rate (FDR) was com-
puted using the Benjamini-Hochberg method to adjust
for multiple comparisons [60]. Pearson’s linear correl-
ation coefficients were calculated for each pair of lipids
and presented in a heat map.
Random forest analysis (RFA) was performed on un-

transformed data to identify lipids with the most impact
on case/control status using Python package scikit-learn
(Fredericksburg, Virginia, USA), [61]. RFA is a classifica-
tion technique using thousands of decision trees (a.k.a. a
“forest”). Each tree is created based on a subset of sam-
ples that are used to predict the remaining samples.
Classification is determined by computing frequencies of
predictions for each group over the entire forest. To de-
termine the impact of each lipid, impurity-based feature
importance was computed (also known as the Gini im-
portance or Mean Decrease in Impurity). The import-
ance of a lipid is computed as the total reduction of the
criterion brought by that feature. Larger values suggest a
greater influence of that specific lipid. A panel of the 10
most important lipids was generated to determine their
sensitivity and specificity to predict NAFLD using re-
ceiver operative characteristic (ROC) curves.

Results
Study population
Table 1 reports some demographic and basic clinical
characteristics of the study sample. Nearly three fourths
were female (74%) with a mean age of 61 (SD ±10) years,
and a significantly higher proportion of female controls
than cases. NAFLD cases had higher levels of AST, ALT,
glucose, and TAGs compared to healthy controls.
NAFLD cases also had significantly greater rates of dia-
betes and metabolic syndrome. Although mean BMI was
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higher in the NAFLD group, a greater proportion of
controls were obese (41% vs. 35%). No differences were
observed in age, total cholesterol levels, or PNPLA3
genotype.

Alterations in serum TAGs, LPCs, and CEs among NAFLD
cases
An average of 576 individual lipid species were mea-
sured from a total of 729 individual lipids detected in
the serum of NAFLD cases and controls from 13 distinct
subclasses or classes within glycerophospholipid, glycer-
olipid, sphingolipid, cholesterol, and fatty acids classes
[62, 63]. One sample was excluded from analysis for
technical reasons. Analysis of subclass totals revealed a

significant increase in the total amounts of TAG (P =
0.0198), and significant decreases in total CE (P =
0.0167) and LPC (P = 0.0328) pools (Fig. 1).
For case and control groups (n = 98, n = 100), the me-

dian and 25–75% interquartile range (IQR) are presented
in box plots with whiskers representing 1.5x the IQR
bounded by the highest and lowest samples. Outliers
with greater than 3 standard deviations (SD) from the
mean were excluded from analysis.

Correlations between lipid species
Pearson correlations were performed between each pair
of lipid species (Additional file 1). As expected, within
the same subclass, there were strong positive correlations

Table 1 Demographic and clinical characteristics of NAFLD cases and healthy controls (n = 198)a

Total Cases
n = 98

Controls
n = 100

P-valueb

Sex

Females 74.8 63.3 86.0

Males 25.2 36.7 14.0 0.0002

Age, years

Mean (95% CI) 60.7 (59.3–62.2) 59.9 (57.8–62.0) 61.5 (59.5–63.6) 0.2768

37–54 25.3 27.6 23.0

55–69 49.0 48.0 50.0

70–78 24.8 24.5 27.0 0.7523

Biomeasures, mean (95% CI)

AST, IU/L 33.8 (31.2–36.4) 42.1 (37.7–46.4) 25.7 (23.8–27.5) < 0.0001

ALT, IU/L 38.0 (34.4–41.6) 49.8 (43.9–55.8) 26.5 (24.0–28.9) < 0.0001

Glucose, mg/dL 116.5 (110.2–122.8) 130.5 (119.0–142.0) 102.8 (98.8–106.7) < 0.0001

Triglycerides, mg/dL 173.4 (157.4–189.4) 197.7 (168.6–226.9) 149.5 (137.0–162.0) 0.0031

Cholesterol, mg/dL 196.5 (190.6–202.4) 192.4 (184.1–200.6) 200.5 (191.9–209.1) 0.1751

PNPLA3 Genotype

CC 14.1 14.1 14.0

CG 46.2 40.4 52.0

GG 39.7 45.5 34.0 0.2131

BMI, kg/m2

Mean (95% CI) 28.3 (27.6–29.0) 29.9 (28.9–31.0) 26.7 (25.9–27.6) < 0.0001

Normal 28.8 18.4 39.0

Overweight 33.3 46.9 20.0

Obese 37.9 34.7 41.0 < 0.0001

Diabetes

No 73.2 60.2 86.0

Yes 26.8 39.8 14.0 < 0.0001

Metabolic Syndrome

No 41.4 31.6 51.0

Yes 58.6 68.4 49.0 0.0057
a Results are presented as %, unless otherwise stated.
bP-value results of chi-square tests (categorical) and t-tests (continuous)
Abbreviations: NAFLD nonalcoholic fatty liver disease, CI confidence interval, AST aspartate aminotransferase, ALT alanine aminotransferase, BMI body mass index
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between lipid species across the subclasses, especially
among TAGs, DAGs, FFAs, HCERs, and SMs. Between
subclasses, many TAGs were strongly correlated positively
with DAGs as well as a handful of PCs and CEs. CEs
and CERs were also positively correlated with most LPCs,
PCs, and SMs, in addition to one another. Additionally,
PCs were positively correlated with LPCs and SMs. In the
negative direction, several CEs were strongly correlated
with DAGs, FFAs, and TAGs. DAGs and HCERs or SMs

also shared mostly negative correlations, as did HCERs
and LCERs with TAGs. Total concentration of TAGs
measured by mass spectrometry was positively correlated
with the standard bloodwork clinical measurement of
TAGs (Pearson correlation = 0.85). No significant differ-
ences were found in total PC, PE, lyso-PE, DAG, SM,
CER, LCER, HCER, DCER, and FFA (Additional file 1).
Despite changes in the total pool sizes of CE, LPC,

and TAG in the serum of NAFLD cases, a heat map

Fig. 1 Alterations in serum TAGs, LPCs, and CEs in NAFLD cases
P values indicated above compare cases and controls (two-tailed unpaired Student’s t test). * P value < 0.05. Abbreviations: CE cholesterol ester,
CER ceramide, DAG diacylglycerol, DCER dihydroceramide, FFA free fatty acid, HCER hexosylceramide, LCER lactosylceramide, LPC
lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC phosphatidylcholine, SM sphingomyelin, TAG triacylglycerol
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analysis of individual lipid species failed to reveal any
discernable pattern of enrichment or losses (Additional
files 2 and 3). Thus, it can be concluded that changes in
CE, LPC, and TAG pools result from a general change
across many individual lipids within these subclasses.

Enrichment of saturated TAGs in serum of NAFLD cases
The overall desaturation state of the TAG pool was also
examined by summing all TAG species according to the
total double bond number. For example, TAGs have
three acyl tails that contain variable numbers of double
bonds, and summation of these double bound numbers
can reveal general information regarding the desatur-
ation state of that lipid subclass. Individual TAG species
were binned according to bulk (total) double bond num-
ber within a given sample. The concentrations of species
with a given double bond number were summed and di-
vided by three to account for the sampling of each acyl
tail within the TAG species. Using this approach, we
found that TAGs from NAFLD cases were preferentially
enriched for acyl tails that were fully saturated or con-
tain few double bonds (Fig. 2). Interestingly, this prefer-
ential incorporation of saturated acyl tails was not
observed in other subclasses of lipids (e.g., PC or DAGs),
indicating a level of specificity for this shift in desatur-
ation state.
For double bond number 0–12, the case and control

groups were compared using box and whisker plots that
depict the median, 25–75% interquartile range (IQR)
and 1.5x the IQR bounded by the highest and lowest
samples. Outliers with greater than 3 standard deviations
from the mean were excluded from analysis (Fig. 2).

Overall lipid subclass concentrations between NAFLD
cases and controls
Analysis of covariance (ANCOVA) was used to compare
the overall lipid subclass concentrations between the
NAFLD cases and healthy controls, adjusting for appro-
priate covariates such as age, sex, BMI, diabetes, meta-
bolic syndrome status, and PNPLA3 genotype. An
individual lipid species was required to be present in at
least 33% of either case or control samples for inclusion
in these additional studies. This inclusion criteria
resulted in two lipid subclasses (DCER and PE) being ex-
cluded from further analysis. Similar to the aforemen-
tioned results, CE levels were observed to be
significantly lower in NAFLD cases in all six models
(Table 2; P < 0.05). LPCs and SMs were also lower in
serum from NAFLD cases in two of the models (P <
0.05), after additionally adjusting for age, sex, and
PNPLA3 genotype. Other lipid subclasses were variably
enriched or decreased but failed to show statistical sig-
nificance when adjusted for specific confounders. Of
note, we found that TAGs were increased in NAFLD

cases (Fig. 1), however, this increase was not significant
after adjusting for confounders (Table 2).

TAG double bond number concentrations in NAFLD cases
and healthy controls
The relative saturation or desaturation state of the acyl
tails in the serum TAG pools between the NAFLD cases
and healthy controls was also compared. Increases for
saturated or single double bond TAGs were observed in
nearly all models tested. (Table 3). Thus, measuring the
fully saturated TAG pool size may provide additional in-
formation that could be of value regarding clinical status
of NAFLD patients.

Difference in individual lipid species between NAFLD
cases and controls
Figure 3 presents a Manhattan plot of the individual
lipid species that were observed to be different in
NAFLD cases and controls. After adjusting for age, sex,
diabetes, metabolic syndrome status, and PNPLA3 geno-
type, a total of 94 lipids were significantly different be-
tween cases and controls (P < 0.05, lipids presented
above black bar). Of these lipids, 37 were decreased in
NAFLD cases and 57 were increased. After further cor-
rection for false discovery rate (FDR), 22 lipids remained
significant, including 13 TAGs, of which nine were lower
in NAFLD cases compared to controls (P < 0.05, lipids
presented above red bar). All remaining non-TAG lipids
were also decreased in cases compared to controls.
Negative log10 of P-values are plotted. Lipid species

that were significantly different between cases and con-
trols after adjusting for age, sex, diabetes, metabolic syn-
drome status, and PNPLA3 genotype are presented
above the black line (P < 0.05). Lipid species that
remained significant after False Discovery Rate (FDR)
correction are presented above the red line (P < 0.05)
(Fig. 3).

Random forest analysis to identify key individual lipid
species
A random forest analysis was performed using individual
lipid amounts detected in cases and controls. Important
individual lipid species consisted of LPCs, TAGs, PCs,
and CEs, and a single DAG, with LPC 17:0 ranking as
the most important (Fig. 4). Several of the lipid species
were in agreement with the results presented in Fig. 3,
including CE (20:0), LPC (17:0), PC (17.0/18.2), and
TAG (55:5-FA18:1).
Inspection of lipid species identified in the random

forest analysis revealed an enrichment for complex lipids
containing odd chain saturated acyl tails, suggesting that
these specific lipids may provide additional information
for identifying NAFLD cases. However, after conducting
an area under the receiver operating characteristic curve
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Table 2 Comparison of overall lipid subclass concentrations between NAFLD cases and healthy controls*

Lipid
class

Folda P-value

Model 1b Model 2c Model 3d Model 4e Model 5f Model 6g

CE 0.941 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

CER 1.503 0.19 0.11 0.12 0.47 0.35 0.08

DAG 1.174 0.26 0.23 0.95 0.43 0.35 0.94

FFA 1.013 0.26 0.24 0.63 0.43 0.38 0.62

HCER 1.168 0.64 0.66 0.95 0.86 0.88 0.94

LCER 0.739 0.97 0.97 0.95 0.86 0.88 0.12

LPC 0.960 0.01 0.03 0.09 0.06 0.14 0.94

LPE 0.972 0.94 0.97 0.84 0.98 0.88 0.94

PC 0.990 0.97 0.97 0.95 0.86 0.88 0.20

SM 0.975 0.03 0.03 0.18 0.06 0.10 0.94

TAG 1.372 0.19 0.20 0.95 0.24 0.26 0.81

* Results presented are corrected for False Discovery Rate
a Quotient of sum of all log-transformed lipid values in cases divided by sum of all log-transformed lipid values in controls
b Adjusted for age and sex
c Adjusted for age, sex, and PNPLA3 genotype
d Adjusted for age, sex, diabetes, and metabolic syndrome status
e Adjusted for age, sex, and BMI category
f Adjusted for age, sex, BMI category, and PNPLA3 genotype
g Adjusted for age, sex, diabetes, metabolic syndrome status, and PNPLA3 genotype
Abbreviations: NAFLD nonalcoholic fatty liver disease, CE cholesterol ester, CER ceramide, DAG diacylglycerol, FFA free fatty acid, HCER hexosylceramide, LCER
lactosylceramide, LPC lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC phosphatidylcholine, SM sphingomyelin, TAG triacylglycerol

Fig. 2 Enrichment of saturated TAGs in serum of NAFLD cases
*P < 0.05, **P < 0.01; ***P < 0.001; (two-tailed unpaired Student’s t test). Abbreviations: NAFLD nonalcoholic fatty liver disease, TAG triacylglycerols
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(AUROC) analysis the of top 20 lipids as determined by
random forest analysis, adjusting for age, sex, diabetes,
metabolic syndrome, and PNPLA3 genotype, no single
lipid was able to predict NAFLD status better than 71%
(Additional file 4).
Of the top 20 lipids identified in the random forest

analysis, the following were significantly lower in
NAFLD cases than controls: LPC(17:0), LPC(15:0),
LPC(18:1), CE(24:0), CE(17:0), CE(22:2), PC(17:0/18:1),
CE(22:1), PC(17:0/18:2), TAG55:5-FA18:1, CE(20:0),
CE(15:0). While these lipid species were significantly
higher in cases than controls: TAG54:6-FA22:6, TAG54:
4-FA22:4, TAG48:0-FA16:0, TAG55:2-FA18:2, TAG52:
4-FA20:4, TAG50:2-FA18:2, TAG50:0-FA16:0, DAG(16:
0/16:0) (Additional file 5).

AUROC analysis of the top 10 lipids to differentiate cases
from controls
An AUROC analysis was conducted to determine if a
combination of the 10 most important lipids can predict
case versus control status accurately, compared to other
models (Fig. 5). Model 1, which only included age and
sex, was able to predict case/control status 65% of the
time (95% CI = 56–74%). A model that included age, sex,
BMI, and PNPLA3 genotype was able to estimate case/
control status 75% of the time (95% CI = 67.8–82.9%).
Model 6, which included age, sex, PNPLA3 genotype,
diabetes and metabolic syndrome was able to estimate
case/control status 72% of the time (95% CI = 64–80%).
A model that only included the top 10 lipids predicted

case/control status accurately 79% of the time (95% CI =
72–86%), which is higher than the aforementioned
models. Adding other covariates, including age, sex,
PNPLA3 genotype, diabetes, and metabolic syndrome to
the panel of lipids further improved prediction to be-
tween 81% (95% CI = 75–88%) and 83% (95% CI = 77–
89%) (Fig. 5). All three models that included the top 10
lipids plus other covariates were significantly more ac-
curate at predicting case/control status than Model 6
(P < 0.05). Together, these data suggest that the circulat-
ing lipidome of Mexicans with NAFLD can have distinct
features, which may be used to better discriminate
disease.

Discussion
This study identified differences in the composition of
specific lipid species and subclasses in a sample of
NAFLD cases and healthy controls from Mexico, where
75.2% of the population over age 20 is overweight
(39.1%) or obese (36.1%) [64], and the prevalence of
NAFLD among adults age 20 years or older is estimated
to be over 50% [65]. Thus, this is a high-risk, yet under-
studied population. Another objective was to investigate
whether any lipid species or a combination of specific
lipids could be used to distinguish NAFLD cases from
controls. To accomplish these goals, the clinical data
and serum biospecimens from Mexican adults who are
participating in a longitudinal study were examined. The
findings of this study contribute to the lack of published
research that has examined the association between

Table 3 Comparison of TAG double bond number concentrations in NAFLD cases and healthy controls

# of
double
bonds

P-value

Model 1a Model 2b Model 3c Model 4d Model 5e Model 6f

0 < 0.1 < 0.01 0.06 < 0.01 < 0.01 0.04

1 < 0.1 < 0.01 0.15 < 0.01 < 0.01 0.12

2 0.05 0.06 0.69 0.06 0.07 0.71

3 0.20 0.28 0.86 0.16 0.24 0.71

4 0.32 0.48 0.83 0.19 0.32 0.62

5 0.26 0.39 0.94 0.12 0.21 0.83

6 0.14 0.21 0.63 0.05 0.09 0.81

7 0.08 0.13 0.42 0.03 0.05 0.55

8 0.10 0.14 0.38 0.04 0.07 0.50

9 0.26 0.36 0.71 0.15 0.22 0.85

10 0.10 0.16 0.37 0.05 0.10 0.53

11 0.45 0.55 0.37 0.49 0.61 0.45

12 0.97 0.90 0.83 0.70 0.83 0.77
a Adjusted for age and sex
b Adjusted for age, sex, and PNPLA3 genotype
c Adjusted for age, sex, diabetes, and metabolic syndrome status
d Adjusted for age, sex, and BMI category
e Adjusted for age, sex, PNPLA3 genotype and BMI category
f Adjusted for age, sex, diabetes, metabolic syndrome status, and PNPLA3 genotype Abbreviations: NAFLD nonalcoholic fatty liver disease, TAG triacylglycerol
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serum lipids and NAFLD in Latino adults. For example,
lipidomics analyses were conducted on plasma from
Mexican American participants in the San Antonio Fam-
ily Heart Study to investigate links with cardiovascular
disease [65] and hypertension [66], but they did not
examine the association between NAFLD and specific
lipids. Another study examined 39 obese, Latino adoles-
cents aged 11–17 years, of which 30 were determined to
have NAFLD using magnetic resonance spectroscopy.
Pathway analysis revealed that several lipid metabolism
and amino acid pathways were dysregulated in the
NAFLD cases. These include tyrosine metabolism, which
was the most affected, as well as fatty acid activation,
and branched-chain amino acid (BCAA) degradation
[67]. However, there are no other published studies that

have explored serum lipid signatures that are specific to
NAFLD cases in adult Latino populations.
The analysis of neutral lipids conducted as part of this

study indicates that the amounts of TAGs in NAFLD
samples was higher than in controls, while the LPC pool
was observed to be lower on average in the NAFLD
serum samples. The pool size of CE was also lower in
NAFLD cases compared to controls, after adjusting for
covariates such as age, sex, BMI, diabetes, metabolic syn-
drome status, and PNPLA3 genotype. The LPC and SM
pools were also decreased even after adjusting for age,
sex and PNPLA3 genotype, however, after additionally
adjusting for BMI, diabetes and metabolic syndrome,
this significance was lost. TAG amounts were no longer
significant when adjusting for any of the covariates,

Fig. 3 Manhattan plot of difference in individual lipid species between NAFLD cases and controls
Select individual lipids of interest are labelled. Lipid classes are color coded as indicated. Abbreviations: CE cholesterol ester, CER ceramide, DAG
diacylglycerol, FFA free fatty acid, HCER hexosylceramide, LCER lactosylceramide, LPC lysophosphatidylcholine, LPE lysophosphatidylethanolamine,
PC phosphatidylcholine, SM sphingomyelin, TAG triacylglycerol
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indicating that other factors, rather than NAFLD, are
driving the observed changes in the size of the TAG
pool.
The results of the individual lipid analyses are consist-

ent with those of other studies [25, 42–44, 46, 47, 66,
67], as well as for specific lipids, such as CEs (15:0), (17:
0), (18:1), (20:1), (20:2), (22:4) [66] and (22:6) [43], and
LPCs (18:1) and (18:2) [42]. Controlling for variables
other than age and sex led to a drop in the number of
significant lipid metabolites, particularly TAGs, espe-
cially after adjusting for diabetes and metabolic syn-
drome status. This is expected due to the overlapping
nature of metabolic diseases with triglyceride levels [68].
Another study that examined the liver lipidome in liver
biopsies found that an increase in liver fat and NASH
was associated with CER-enriched liver lipidome in pa-
tients with “Metabolic NAFLD”, compared to those with
“PNPLA3 NAFLD [69].” However, the results of this
study did not uncover a strong association between CER
and NAFLD. The findings from the random forest ana-
lysis indicate that LPC(17:0) is one of the most import-
ant determinants or predictor lipids to differentiate
NAFLD cases and healthy controls. This is in contrast to
recent findings that have shown a negative association

between circulating odd chain fatty acids, in particular
C15:0 and C17:0, with metabolic disease risks [70, 71].
PCs, and LPCs, by extension, were also negatively associ-
ated with NAFLD in a study of obese patients undergo-
ing bariatric surgery in the Netherlands [66]. Several
CEs, TAGs, and PCs were also commonly in the top 20.
Current clinical lipid panels are limited in their scope,

usually measuring total cholesterol, triglycerides and
lipoprotein amounts in the blood of individuals. To date,
these limited lipid metabolic parameters have not
yielded clinically actionable information regarding
NAFLD diagnosis, prognosis and disease management.
The results of this pilot study suggest that developing a
clinical test that measures a broader panel of lipid sub-
class pool sizes could be useful in the diagnosis and po-
tential management of NAFLD. Monitoring the amounts
of these lipid subclasses could also provide insights as to
whether an individual will progress to more severe forms
of liver disease such as NASH and cirrhosis.
Of note, the AUROC analysis indicates that no single

lipid predicted case/control status better than 71% ac-
curacy after adjusting for age, sex, PNPLA3 genotype,
diabetes and metabolic syndrome. Including the top 10
lipids improved accuracy to almost 80%, which is better

Fig. 4 Most important lipids as determined by random forest analysis
Gini importance values for indicated lipids are plotted. Although this process can produce slightly different results each time due to the random
nature, LPC(17:0), LPC(15:0), and LPC(18:1) were identified as the top three lipids in all random forest analyses. Abbreviations: LPC
lysohphosphatidylcholine, TAG triacylglycerol, CE cholesterol ester, PC phosphatidylcholine, DAG diacylglycerol
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than a model with age, sex, BMI and PNPLA3 genotype
(75%). When combined, and after adjusting for age, sex,
BMI, and PNPLA3 genotype, the top 10 lipids we identi-
fied predicted case/control status better than an AUROC
of 0.83, and was significantly better than just the top 10
lipids alone (p < 0.05). These findings suggest that a
panel of individual lipids may be a viable option as a
clinical indicator of NAFLD. However, the additional co-
variates included in the panel were not determined using
model selection techniques and these preliminary results
need to be validated in a large sample of NAFLD cases
and controls.

Although the results of this study indicate that TAG
amounts were not specifically associated with NAFLD
after adjusting for covariates, measuring the desaturation
state of TAGs provided useful information. By applying
an algorithm that determines the utilization of saturated,
monounsaturated and polyunsaturated acyl tails in the
TAG pool, the NAFLD cases in this cohort were ob-
served to have an enrichment for TAGs that were highly
saturated (i.e. containing little or no polyunsaturated
acyl tails). It has been shown that saturated FFAs are as-
sociated with a greater lipotoxicity in NAFLD when
compared to monounsaturated FFAs [72, 73]. Another

Fig. 5 Receiver Operator Characteristic (ROC) curves of the top 10 lipids and other models
Sensitivity (ability of panel to correctly identify NAFLD cases) and 1-specificity (ability of test to correctly identify healthy controls) are plotted.
Area under the ROC curve (AUROC) is the predictive power of the panel to differentiate cases from controls. Perfect prediction would result in an
AUROC of 1.0; random chance corresponds with an AUROC of 0.50. The top ten lipid species alone, as determined from the random forest
analysis, are better predictors of NAFLD than models that include age, sex, BMI, PNPLA3 genotype, diabetes, and/or metabolic syndrome (MetS).
Abbreviations: AUROC area under the ROC curve, BMI body mass index MetS metabolic syndrome, NAFLD nonalcoholic fatty liver disease,
ROC Receiver Operator Characteristic
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study conducted among HCC patients found that the
more serious the disease, the higher the saturated TAG
concentration in affected tissues [74]. They also found that
TAGs with more than 2 double bonds in particular were
down-regulated in HCC [74]. Thus, it may be of value to
specifically monitor the desaturation state of the TAG
pool to facilitate diagnosis and progression of NAFLD.

Strengths and limitations
This is the first lipidomics study among Latino adults
with NAFLD, an understudied, high-risk group. The
findings of this study confirm the results of previous
studies in other populations [25, 42–44, 46, 47, 66] and
provide novel results that could inform the clinical man-
agement of NAFLD patients. However, due to limita-
tions in sample size, these findings will need to be
replicated in larger cohorts and future investigations.
This study has some limitations. First, the Health
Worker Cohort Study (HWCS) participants are mostly
women (75%) who have a higher education level and
overall better health than the general population of
Mexico. The HWCS participants are primarily middle-
income, which represents an estimated 34% of the popu-
lation. Although the sample is not generalizable to the
Mexican population, the internal validity of the study is
unlikely to be compromised. Second, the study was con-
ducted with Mexicans and does not include other Latino
groups. Therefore, these results might not be representa-
tive of other Latino groups due to the heterogeneity of
health status among Latinos. Third, certain analyses (e.g.
sex-, menopause, or PNPLA3 status-stratified analyses)
could not be performed due to sample size limitations,
which affected power. Fourth, although histology is con-
sidered the “gold standard” to diagnose and stage
NAFLD, the NAFLD cases included in this analysis were
clinically confirmed using elevated liver enzyme tests
and ultrasound of the liver, after excluding alcohol
abuse. As a result, these findings should be interpreted
with caution since ultrasonography is unreliable at de-
tecting smaller amounts of fat in the liver [3], and can-
not detect inflammation or fibrosis, which can indicate
more advanced NAFLD. There might also be misclassifi-
cation bias if some participants reported that they were
not drinkers when in fact they were. Additionally, we
were unable to assess whether participants had NASH
and therefore, could not identify lipids which may be
unique to NASH patients, to differentiate from both
normal controls as well as NAFL. In several studies,
some lipid concentrations were only significantly differ-
ent between NASH and healthy controls or NASH vs
NAFL, while others found that the concentration differ-
ence between NAFL vs NASH was opposite of that for
NAFL vs controls [25, 42, 43, 73, 75]. Future analyses
could include per unit-concentration differences in odds

of NAFLD, testing both linear and non-linear relation-
ships between lipid species and NAFLD (e.g. quadratic,
cubic, etc.). Finally, although homogenization of tissue
results in dilution and averaging of molecules, and
serum lipids do not exclusively reflect liver lipids [76–
79].
Other areas of future research should examine why

highly saturated TAGs are enriched in Latino NAFLD
patients. A study that investigated if a sub-set of TAGs
were associated with hepatic steatosis found that TAGs
containing saturated and mono-saturated FFAs with 16–
18 carbons were related to a greater intake of carbohy-
drates and saturated fat [80]. Another study examined
how dietary macronutrient composition influences intra-
hepatic triglyceride content and found that an increase
in carbohydrate consumption increases hepatic de novo
lipogenesis, while saturated fat induced the greatest in-
crease in intrahepatic triglyceride content [81]. Future
studies should also explore the association between the
PNPLA3-I148M variant and lipid composition among
Latino patients with NAFLD. Studies with non-Latino
populations have found that the PNPLA3-I148M variant
increases hepatic retention of polyunsaturated fatty acids
[82] and polyunsaturated triglycerides in human adipose
tissue [83]. Since Latinos have the highest prevalence of
the PNPLA3-I148M variant [34–36] and the highest
rates of NAFLD in the U.S. [6–10], there should be more
research studies that focus on this high-risk, understud-
ied population.

Conclusion
This study examined lipidomics, genetic, and clinical
data to investigate the association between specific lipids
and risk of NAFLD in a sample of adults from Mexico.
Significant differences were identified in the prevalence
of certain lipids and lipid features between the NAFLD
cases and the healthy controls. A panel of 10 lipids was
generated that, in tandem with other covariates, distin-
guished NAFLD cases from controls with an AUROC of
83%. These findings suggest that a targeted panel of
specific lipids and other covariates could be used to detect
NAFLD, and provide clinically relevant information re-
garding progression and response to treatments. Currently,
there are no FDA-approved medications to treat NAFLD
or NASH, but several drugs are expected to become avail-
able in the next few years. Thus, it is becoming increasingly
relevant to identify non-invasive ways to diagnose NAFLD
patients, so they can be targeted for treatment. Although
additional studies are needed to validate these findings in
Latinos and other populations, the results of this study
point to a better understanding of how lipid dysregulation
may contribute to the increased liver disease susceptibility
observed among Mexicans. This study also contributes to
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the identification of potential lipid biomarkers that may
help to improve the detection and treatment of NAFLD.
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Additional file 1. Pearson’s linear correlation coefficients between all
lipid species. Values reported are correlation coefficients, which lie in the
range [− 1,1]. Perfect positive correlation corresponds to a value of 1, as
seen by the diagonal red line where each lipid is correlated with itself. A
perfect negative correlation corresponds to a value of − 1. No correlation
corresponds to a value of 0. NA values are replaced with 0. Abbreviations:
CE cholesterol ester, CER ceramide, DAG diacyglycerol, FFA free fatty acid,
HCER hexosylceramide, LCER lactosylceramide, LPC lysophosphatidylcholine,
LPE lysophosphatidylethanolamine, PC phosphatidylcholine,
SM sphingomyelin, TAG triacylglycerol.

Additional file 2. Heat map of all lipids measured in serum from
nonalcoholic fatty liver disease (NAFLD) cases and controls. Rows are
centered; unit variance scaling is applied to rows, displayed as colors
ranging from red to blue as shown in the key (Color range: − 3.2 to 3.2).
Missing values shown in white.

Additional file 3 Heat Map of all (a) CE, (b) LPC and (c) TAG lipids
measured in serum from NAFLD cases and controls. Rows are centered;
unit variance scaling is applied to rows, displayed as colors ranging from
red to blue as shown in the key. Color ranges are as follows: CE: − 2.58 to
2.58, LPC: − 3.29 to 3.29, TAG: − 1.58 to 1.58. Missing values shown in
white. Abbreviations: CE cholesterol ester, LPC lysohphosphatidylcholine,
NAFLD nonalcoholic fatty liver disease, TAG triacylglycerol.

Additional file 4. AUROC of top 20 lipids as determined by random
forest analysis.

Additional file 5. Difference in top 20 lipids between NAFLD cases and
controls. The median and 25–75% interquartile range (IQR) are presented
in box plots with whiskers representing 1.5x the IQR bounded by the
highest and lowest samples. P values indicated above comparisons of
case and control (two-tailed unpaired Student’s t test). * P < 0.05, **P <
0.01; ***P < 0.001 Abbreviations: CE cholesterol ester, CER ceramide, DAG
diacylglycerol, DCER dihydroceramide, FFA free fatty acid, HCER
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