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Abstract

Towards a next-generation measurement of the fine-structure constant

by

Zachary Pagel

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Holger Mueller, Chair

Atom interferometry is a powerful metrological tool that has been developed over the last
few decades. Large momentum transfer (LMT) methods manipulate atomic trajectories with
tens or hundreds of photon momenta in order to increase sensitivity. This thesis furthers
progress towards using LMT methods in next-generation atom interferometers. One main
result establishes symmetric Bloch oscillations as a new, viable technique for LMT. Theory
and numerics are used to show how the process is coherent and adiabatic, and experimentally
we demonstrate coherence in an interferometer with up to 240h̄k, where h̄k is the momentum
of a single photon of 852nm light. This was the second largest coherent momentum splitting
demonstrated at at the time of publication. The rest of the thesis focuses on design and
construction of a new atomic fountain to measure the fine structure constant α. Discrepancies
in recent measurements of α [67, 55] are currently limiting theory predictions for the electron
gyromagnetic ratio [25] - an improved measurement of α is therefore highly motivated and
would enable an improved test of the consistency of the Standard Model. Previously, our
group published a measurement of α at the 0.2 ppb level in 2018 [67]. We built a new
experiment with a goal of improving the measurement by a factor of 3-10. Much of the
thesis focuses on systematic effects related to spatial intensity inhomogeneities on the laser
beam, which are some of the hardest to characterize systematic effects looking forward.
A large clear aperture vacuum chamber accommodates larger waist laser beams without
clipping on chamber walls. In addition, a high-speed, user-friendly Monte Carlo simulation
package was made to predict experimental systematic shifts in the measured value of α due
to laser beam inhomogeneities.
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Chapter 1

Introduction

1.1 Overview of the thesis

There are pros and cons to working on a measurement with a several-decade history - on the
one hand, the path to doing good science is laid out for you very clearly, but on the other
hand, the problems you’re left to solve are nuanced and difficult. This thesis presents the
current state of Berkeley’s atom interferometry measurement of the fine-structure constant,
which is a continuation of Steve Chu’s experiment from Stanford. Once I found a lab
notebook high up in the corner of one of our labs in Berkeley from 1992 at Stanford. Reading
through the pages was comically similar to the day-to-day issues we still deal with in our
lab. The technologies haven’t really changed much since then, nor has our lab culture of
having a lot of hand-built circuits and analog knobs.

Since this thesis is building on decades of work from past students on our project, I refer
the reader to other theses (mainly Brian Estey’s [23] and Chenghui Yu’s [99]) for material
that they have already covered well. Some sections might require more context from Brian
and Chenghui’s theses in order to gain a complete understanding, but I do my best to make
the thesis read as a single coherent document.

A main multi-year push of this thesis was designing and installing a giant vacuum chamber
with a pressure at the 10−10 torr level. Another multi-year push was in writing a Monte Carlo
code package for simulations of beam-related systematic effects. We had Monte Carlo code
from the previous generation of the experiment, however the new code was written to be
faster and more user-friendly. The hope is that future students can build on this instead of
writing a new code package.

We’ve also worked out a method to use symmetric Bloch oscillations as a beamsplitter,
mirror, and recombiner for making coherent atom interferometers. I really enjoyed incorpo-
rating theory, simulation, and experiment all into one project to give a fairly clear picture of
the process in the first publication [65]. Moreover, we were able to demonstrate coherence
of the process in an atom interferometer with up to 240h̄k momentum splitting, which is
the momentum of 240 photons from the 852 nm laser beam. This was the second-largest
coherent momentum splitting achieved at the time of publication.

This thesis also presents an in-depth treatment of Bloch oscillations. The previous gener-
ation of the experiment assumed that the high degree of symmetry in our experiment meant

1



that systematic effects from Bloch oscillations could be assumed to be small [67]. I make
these arguments more rigorous by outlining a more detailed theory of Bloch oscillations and
the possible systematic effects. The high degree of symmetry in our simultaneous conjugate
Ramsey-Borde interferometers does cancel potential systematic shifts to a high degree of
accuracy. This should give a good starting point for treating Bloch oscillation systematic
effects more carefully in the future.

With that all laid out, the outline of my thesis is as follows. This chapter will provide an
introduction to atom interferometry, some basic atom interferometer geometries and what
they measure, an overview of the SCI interferometer we use to measure the recoil frequency
of Cesium, and lastly a summary of why we measure the recoil frequency of Cesium and how
our measurement contributes to the most precise test of the Standard Model.

Chapter 2 will provide a detailed overview of Bragg diffraction and Bloch oscillations,
deriving the Hamiltonians and discussing their different regimes. This includes a section
on the phase evolution of wavefunctions during Bloch oscillations. Chapter 3 discusses
the Symmetric Bloch oscillations paper [65]. Chapter 4 summarizes the experimental work
in designing and building the new apparatus in Campbell Hall, the current status of the
experiment, and some exciting new ideas for the near-future. Chapter 5 summarizes the
physics and the design of the Monte Carlo code used to study beam-related systematic
effects. It also discusses initial results in using the code to study the systematic effects from
intentionally bad laser beam profiles, and some initial experimental data towards matching
experimental results to the Monte Carlo. This Monte Carlo model will hopefully provide
the foundation for bounding systematic effects related to laser beam inhomogeneities in the
next measurement of α.

1.2 What is atom interferometry?

It turns out this is the answer to the Jeopardy prompt “Keeps you awake at night”. Atom
interferometry is also a powerful technology that uses cold atoms to make very sensitive mea-
surements. The heart of the technology is the particle-wave duality of matter - matterwaves
can be interfered with themselves after travelling along two distinct spatial trajectories.

There is a very nice parallel between optical and matter-wave interferometry as illustrated
in Fig. 1.1. Optical interferometers use physical mirrors and beam-splitters to split laser
light along two spatial trajectories and then recombine the light. The electric fields of
the recombined beams interfere constructively and destructively in the two output ports
depending on the optical path length of the two interferometer arms. Varying the optical
path length of one arm by half of a wavelength of light will cause the output ports to vary
from constructive to destructive interference. Optical interferometers are therefore good at
measuring nanometer scale length changes.

Matter-wave interferometers use optical pulses as beamsplitters and mirrors to send the
matter-waves along distinct spatial trajectories. Note that the role of light and matter have
been reversed here - beamsplitters and mirrors are now made of light instead of matter,
and matter travels along the different trajectories instead of light.1 Interference of the
matter-waves causes the atom number population in the two output ports to vary, similar

1Cool stuff
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Figure 1.1: Schematic of an a) optical interferometer with output optical powers P1 and P2,
and b) an atom interferometer with output atom numbers N1 and N2. In both diagrams,
black lines indicate matter and red lines indicate light. The role of light and matter are
inverted in the two cases.

to the optical power varying in the output ports of the optical interferometer. The analogue
between optical and atom interferometers is satisfying and simple for generating an initial
understanding of the physics. However, the details of what these instruments measure very
quickly diverges, and atom interferometers are much more complicated instruments.

The matterwave interference in an atom interferometer depends on the phase difference of
the matterwaves being interfered. Matterwaves are complex valued functions whose dynam-
ics are governed by the Schrodinger equation - this will be introduced explicitly in Chapter
2, but for now we can loosely say that the phase of the matterwave wavefunction depends
on the energy of the atomic states along the difference paths of the interfefometer. For ex-
ample, if one arm of the interferometer spends time higher up in the gravitational potential,
the resulting energy difference can be used to measure gravity very precisely. Similarly, the
kinetic energy can be different along the different trajectories if the atoms travel at different
velocities, so some atom interferometers are sensitive to the velocity kicks that at atom re-
ceives during the various laser pulses (or any external forces that also change the velocity of
the atom). The interferometers explored in this thesis are designed to very precisely measure
the recoil kinetic energy that an atom receives upon absorption or emission of one photon
from the beam-splitting laser.

1.2.1 Atomic beamsplitters

If you’re not familiar with atom interferometry, the idea that you can use a laser to split an
atom along multiple trajectories is a novel idea! The laser generates a quantum superposition
between two different momentum states of the atom, and these different momentum states
time-evolve in a way that they spatially separate. If you were to measure the position of
the atom, you would only find the atom along one trajectory or the other. But if you
don’t measure the atoms, the quantum state evolves along both trajectories simultaneously.
Because the relative phase of the matterwave wavefunctions is well-defined between the two
trajectories, we call the beamsplitters ‘coherent’.
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Figure 1.2: Numerical simulation of watterwaves ψ(x, t) undergoing a) Bragg diffraction and
b) Bloch oscillations - the probability density |ψ(x, t)|2 is plotted as a density plot. a) A
moving optical lattice is pulsed with a Gaussian temporal profile about a third of the way
through the time evolution. The sharp diagonal lines show the matterwave interacting with
the (moving) standing wave of light. The pulse results in a 50/50 beamsplitter, where half
of the wavefunction diffracts off of the optical standing wave. b) An optical lattice potential
at zero velocity is adiabatically turned on and the wavefunction localizes inside the optical
potential wells. Towards the middle of the plot, the lattice is accelerated. The matterwave
is able to mostly remain stuck in the optical potential wells, though some of the matterwave
tunnels through the potential barrier and leaks out.
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Figure 1.2 illustrates what happens to an atomic matterwave during Bragg diffraction
and Bloch oscillations. Fig. 1.2a) illustrates a matterwave being coherently split by a Bragg
diffraction pulses. Bragg diffraction is a common beamsplitter used in atom interferometers.
You may be familiar with Bragg diffraction from x-ray diffraction off of solid state crystal
structures - this is the same physics but with the roles of matter and light reversed. Here,
a matterwave diffracts off of a (moving) standing wave of light. If the optical pulse was
slightly longer duration, or slightly higher intensity, you could instead fully diffracted the
matterwave in a ‘π−pulse’.

Fig. 1.2b) illustrates a matterwave undergoing Bloch oscillations, which is another tech-
nique used in this thesis to manipulate atoms using light. The atom is adiabatically loaded
into an optical lattice in the first part of the image, and the matterwave can be seen localizing
in the potential wells of the optical lattice. Then, the lattice is accelerated and most of the
matterwave is able to remain in the accelerating lattice, although some of the matterwave
tunnels out (and continues traveling horizontally in the image). Figure 1.2 is meant to give
the reader a qualitative understanding of the processes - for detailed quantitative treatment,
see Chapter 2.

1.2.2 Atom interferometer phase

With this general understanding of what an atom interferometer is and how light is used
to manipulate the atomic trajectories, let’s look a little more carefully at what atom in-
terferometers actually measure. The interference between matterwaves is governed by the
phase difference between matterwaves traveling along different spatial trajectories. For more
detailed derivations of the phase measured in atom interferometers, see Brian Estey’s thesis
[23] - here I’ll give a summary of the main results.

The first main contribution to the phase measured by an atom interferometer is the
integrated energy shifts. The Schrodinger equation at it’s most basic level tells us that the
phase evolution of a wavefunction ψ(0) in an eigenstate at time t = 0 is proportional to the
energy E of the eigenstate:

ψ(t) = eiEt/h̄ψ(0) (1.1)

where h̄ is the reduced Plank’s constant. Since we’re not only interested in pure eigenstates of
the Hamiltonian, we need to make this a little more general. The path-integral formulation
of quantum mechanics does just that. You can find the derivation in Brian’s thesis [23]
which is based on Robert Littlejohn’s Physics 221AB Quantum Mechanics notes [50]. Phase
evolution ends up being governed by the integrated Lagrangian, instead of the integrated
Hamiltonian: ∫

dt ⟨ψf | eiH(t)t/h̄ |ψi⟩ |q(t)= eiS(q)/h̄ (1.2)

In words, this equation says that the path-integral of the Hamiltonian H(t) over the classical
phase-space path q leads to a phase evolution given by the classical action S(q) over the
classical path. ψi and ψf are the initial and final wavefunctions at the beginning/ending of
the trajectory being considered. The classical action S(q) is the time-integrated Lagrangian,
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S(q) =
∫
L(q)dt, and the Lagrangian is the kinetic energy minus the potential energy L =

K−V . If you have taken a classical mechanics physics course, you will be very familiar with
the classical Lagrangian and action integrals.

The next main source of phase in atom interferometers is laser phase. The electric field
of a plane-wave laser traveling in the +z with wave-vector k and frequency ω is given by
E = E0 exp(kz−ωt). Each time a photon from this laser is absorbed or emitted by an atom,
the atomic wavefunction is shifted in phase by ϕ = ±(kz − ωt) where the sign ± depends
on whether the atom is absorbing or emitting the photon respectively. Brian’s thesis has a
very good section outlining the derivation of laser phase [23]. For each photon of light that
the atom absorbs or emits, the complex-valued atomic wavefunction is multiplied by eiϕ.

Typical atom interferometer experiments use two-photon transitions with counter-propagating
beams. An atom absorbs a photon from one beam and receives a momentum kick in that
direction, then stimulated emits a photon into the other beam and receives a momentum
kick in the same direction as the first photon. For two-photon transitions, the laser phase
imparted to the atom is the difference in optical phase between the up-going and down-going
beams. In experiments like ours [67], we retro-reflect a laser beam onto itself using a mir-
ror. The laser phase difference then only depends on the path length between the atom and
the retro-reflecting mirror - any phase noise on the laser is common to the up-going and
down-going beams and cancels out. The laser phase from the two photons is

ϕlaser = (k1 − k2)z − δt (1.3)

where k1 and k2 are the wavevectors of the up-going and down-going laser beams, and δ is
the frequency difference between up-going and down-going laser beams. This assumes the
mirror is located at z = 0, though the total phase always ends up being independent of the
absolute position and only relative changes are measured. If you are driving an nth order
process such as nth order Bragg diffraction2, the laser phase received is n ∗ ϕlaser, as derived
in Eq. 2.21 in Brian’s thesis [23].

Another way to think about Eq. 1.3 is that counter-propagating laser beams form a
standing wave Etot = E0 cos((k1 + k2)z − δt). Eq. 1.3 describes the position of the atom
within this standing wave. Vibrations in the position of the retro-reflecting mirror cause the
standing wave to vibrate, which causes noise in the laser phase imparted on the atom. Many
atom interferometer avoid this noise source by making differential measurements between
two interferometers driven by the same laser beam and laser pulses. This way, laser phase
noise is common to both interferometers while differential phase shifts between the two
interferometer can still easily be measured.

Some recent experiments have started using single photon transitions in alkaline-earth
atoms such as Strontium because alkaline-earth atoms often have long-lived excited states.
In this case, the imparted laser phase from the single photon is sensitive to phase noise on the
laser itself, instead of just the path length between the atom and a retro-reflecting mirror.
This phase noise can come from phase noise in the laser itself, or from any optical path
variations in the entire optical path between the laser and the atoms including vibrating
optical fibers or mirrors as well as index of refraction shifts in the air from air currents.
Similar to two-photon transitions, differential measurements can still be made between two

2see Chapter 2 for more discussion of Bragg diffraction
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interferometers that are addressed by the same laser propagating in-vacuum since the phase
noise is common to both interferometers. There are plans to use this method to measure
the stretching of space between the interferometers due to gravitational waves3, and tens of
millions of dollars are being invested to develop proof-of-concept experiments.

The last contribution to an atom interferometer’s measured phase is separation phase
which comes from non-overlapping trajectories during the final interference pulse. See e.g.
[43] for a good derivation of separation phase, including Figure 2.1 this reference which is
very helpful for gaining an intuition of separation phase.

Explicitly, separation phase is given by:

ϕsep = p̄ ·∆x (1.4)

where p is the average momentum between the two output ports of the atom interferometer,
and ∆x is the relative displacement between the wavefunctions.

This covers the standard phases measured in atom interferometers - free evolution phase
and laser phase are the primary source of measured phase, and if trajectories don’t overlap
during final interference separation phase. If you’re interested in using atom interferometers
to measure physical quantities precisely, you’ll find that there are many different systematic
effects that also shift the phase measured by the atom interferometer. However, these ef-
fects are always captured by a careful analysis of free-evolution phase, laser phase and/or
separation phase.

For example, there are effects that locally shift the potential energy of the atom such
as magnetic field from nearby coils or gravitational potential from the mass of your optics
table - these will be accounted for in the action integral in equation 1.2. Gradients in these
potential energies result in forces that modify the wavefunction trajectories, which results
in different integrated kinetic energy and different laser phases. If the forces on the two
interferometer arms are not equal in magnitude, these forces can also lead to separation
phase from non-overlapping trajectories when the interferometer closes.

As another example, the laser beam k-vector isn’t exactly ω/c because we don’t have
perfect plane waves. Dust on optics, for example, causes intensity ripples in the beam and
leads to perturbations of the k-vector of the laser. This causes different momentum kicks
imparted to the atom, which in turn leads to different kinetic energy phases and different
laser phases. The dust also perturbs the phase-front of the laser beam, which directly affects
the laser phase imparted on the atom. If the k-vector kicks aren’t the same on the two
interferometer arms, the trajectories won’t overlap and once again you also get a separation
phase.

Much of the work in measuring the fine-structure constant, the main project of this thesis,
is in chasing down systematic effects like this and doing detailed phase accounting. Actual
effects from gradients in magnetic and gravitational potentials are analyzed in Chapter 4,
and effects from laser beam inhomogeneities are analyzed in Chapter 5.
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Figure 1.3: A number of common atom interferometer geometries. a) A Mach-Zehnder inter-
ferometer typically used to measure gravity, b) a dual Mach-Zehnder interferometer typically
used to measure the difference in gravity between the upper and lower interferometers, ie.
the gravity gradient. c) A Ramsey-Borde interferometer which measures a combination of
gravity and recoil kinetic energy phase. d) A simultaneous conjugate Ramsey-Borde (SCI) in-
terferometer measures the difference between two Ramsey-Borde interferometers, cancelling
the graviational phase and doubling the recoil kinetic energy phase.
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Table 1.1: Phase derivations for the four common interferometers shown in Fig. 1.3. These
are the first-order contributions to phase from free-evolution and laser phase - higher-order
contributions are omitted for clarity.

1.2.3 Different types of interferometers

It’s useful to practice going through the phase derivation of an entire interferometer to get a
handle on how these calculations work in practice. I’ll outline results for the free-evolution
and laser phase 4 for the various common interferometer geometries in Fig. 1.3. This figure
illustrates trajectories with arbitrary dimensionless units so the trajectories are not drawn
to scale, but a negative acceleration is included to represent gravity in our experiment. The
final interference pulse overlaps wavefunction amplitude from each interferometer trajectory
into each output port in order to generate interference, and this is represented by multiple
colored lines on the output ports.

Table 1.1 breaks down the phase contributions from free evolution and laser phase that
each of these interferometer geometries measures. For example, the Mach-Zehnder (MZ)
interferometer measures no free-evolution phase because the geometry is highly symmetric.
This is easiest to see from a frame of reference freely-falling with the atoms. In a freely-
falling frame, the trajectories are straight lines and each interferometer arm spends the same
amount of time in each momentum state. The integrated phase from kinetic energy therefore
cancels out upon the final interference. Since there is no gravitational potential energy in
the freely-falling frame of reference, the total free-evolution phase is zero. This total phase
is frame-independent - transforming back to the lab frame with trajectories shown in Fig.
1.3a) does not change the result. In total, the MZ interferometer is only really measuring
laser phase, and for this reason people commonly refer to atom interferometry as nothing
more than using a laser ruler to measure the position of your atoms. Similarly, the dual
Mach-Zehnder (DMZ) interferometer measures the difference between the upper and lower
MZs, and therefore measures the difference in gravity between the two regions as measured
by the laser phase.

Although the MZ and DMZ interferometers only measure laser phase, more compli-
cated interferometer geometries do measurable non-zero free-evolution phase. For example,
the Ramsey-Borde (RBI) and simultaneous conjugate Ramsey-Borde interferometers (SCI)
shown in Figs. 1.3c,d) both measure a non-zero free-evolution phase from kinetic energy.
The laser phase contribution is exactly twice that of the kinetic energy, with an opposite
sign. These types of cancellations or relationships between quantities are very common in
analyzing atom interferometer geometries, and have led to much confusion... [60, 95, 59, 94].

3see e.g. [19] and much of the literature that this paper spawned
4Separation phase is typically a higher-order effect - here we’re just trying to capture the first-order phase

equation for different interferometer geometries.
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Figure 1.4: a) Illustration of the SCI interferometer with Bloch oscillations that is used in
this thesis to measure the fine-structure constant α. The units are dimensionless and meant
for illustration purposes only. Bragg diffraction pulses are indicated with black dotted lines,
Bloch oscillations are indicated by the thick transparent blue line. b) Population in the
output ports is plotted parametrically with A and B from the upper interferometer on the
x-axis, and C and D from the lower interferometer on the y-axis. The different ellipses are
experimental data from and SCI with n = 3, N = 0 and T ≈ 1ms. The different ellipses are
taken at different heights in the chamber which is affecting ellipse contrast.

Note that the SCI is two RBIs inverted relative to one another - the inversion causes the
gravitational phase to flip sign and cancel, whereas the kinetic energy phases add construc-
tively. The gravitational phase is linearly proportional to k, whereas the kinetic energy is
proportional to k2 - the former therefore switches sign when k → −k, whereas the latter
remains the same.5

Another main takeaway from this analysis is that the RBI and SCI geometries both
measure the recoil frequency ωr = h̄k2/2MCs. The SCI geometry is designed to cancel the
gravitational phase so that all you measure is the kinetic energy phase. The following section
discusses the SCI geometry in-depth and how we use it to measure the recoil frequency of
Cesium.

1.3 Measuring the recoil frequency of Cesium

The focus of this thesis is in designing and building a new atom interferometer experiment
to measure the recoil frequency in Cesium. This experiment is the successor to the results
published by our group in 2018 [67]. Measuring the recoil frequency is the starting point for
measuring the fine-structure constant α.

The actual interferometer geometry used for measuring α is shown in Fig. 1.4a). Four
nth-order Bragg diffraction pulses (dotted black lines) are used to split and recombine atoms

5This line of thinking about which terms switch sign upon inversion is very useful when trying to un-
derstand how to cancel terms experimentally and isolate the terms you are interested in. For example,
averaging the gravity measurement from a MZ interferometer with momentum kicks up vs. down allows for
a measurement of gravity while cancelling systematic effects from magnetic field gradients and light shifts
[96].
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as in a standard SCI interferometer. For additional momentum transfer, N Bloch oscillations
are also used in the middle of the sequence (thick light blue line) to accelerate the upper
interferometer upwards by 2Nh̄k recoil momentum, and the lower interferometer downwards
by 2Nh̄k. Multiple frequencies of light are used for Bloch oscillations and for the final two
Bragg diffraction pulses so that we can interact with multiple velocity classes of atoms at the
same time. The frequency splitting ωm between two of these optical frequencies is referred
to as the ‘modulation frequency’.

Figure 1.4b) shows example experimental data from an SCI interferomer. Population in
the output ports is plotted parametrically in order to generate ellipses. Random vibrations
of the experiment cause phase shifts that are common mode to both the upper and lower
interferometers, causing data points to walk randomly about the ellipse. The differential
phase Φdiff between the interferometers causes the ellipse to rotate and is not affected by
the vibrations. Note that the maximum contrast for our SCI ellipse is 50% - there a ‘junk’
ports not shown in the interferometer diagram that don’t coherently interfere, and half of the
atomic population ends up in these junk ports. See Brian Estey’s thesis for a more detailed
discussion of ellipse data and ellipse fitting [23].

If one includes effects from the modulation frequency ωm when calculating laser phase,
and also includes the effects of Bloch oscillations, the total phase equation for the SCI
interferometer with Bloch oscillations can be written as

Φdiff = 16n(n+N)ωrT − 2nωmT (1.5)

where the recoil frequency is defined as ωr = h̄k2/(2m). Experimentally, we carefully tune
the modulation frequency ωm so that the second term in this equation nearly cancels the
first. We alternate data taking between Φdiff = ±π/2 so that the ellipses generated by the
data are open ellipses that can be easily fit. The differential phases extracted from the two
ellipses are used to determine the exact ωm needed to give exactly zero phase in Eq. 1.5.

In reality, the phase equation 1.5 is only approximate. For example, the SCI geometry
cancels phase from gravitational acceleration, but the SCI is still affected by gradients in
gravitational acceleration because the two interferometers slightly different gravitational ac-
celerations. Gravity gradient phase needs to be removed from the measurement in order to
get an accurate measurement of the recoil frequency ωr. Diffraction phase is another phase
contribution that needs to be corrected for before getting an accurate value of ωr. Diffraction
phase is a phase shift from Bragg diffraction that is sensitive to the velocity of the atom
relative to the optical lattice and the intensity of the Bragg laser pulse. Data is taken at
multiple values of T in order to fit the diffraction phase and remove it from the measurement.
See Chenghui’s thesis [99] for further discussion of both of these effects as well as a phase
derivation including higher-order corrections that I have ignored here.

1.4 From the recoil frequency to dark matter

So why do we spend so much time trying to measure the recoil frequency of Cesium?6 It
turns out that knowledge of the ratio of h̄ to the mass of some atom is the limiting quantity

6This is not meant to cause an existential crisis, it’s only a pedagogical question...
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in the known accuracy of the fine-structure constant.7 This is in turn the limiting quantity
in theorists’ prediction of the electron magnetic anomaly ge − 2. Experimentalists are also
measuring ge−2 at a similar level of accuracy, which means that our value of h̄/MCs allows for
a more precise experiment/theory comparison for ge − 2 [25, 38]. The theorists’ calculation
of ge − 2 involves all known particles in the Standard Model of physics. As a result, the
three-way comparison between our measurement of the fine-structure constant (as well as
the competing French measurement using hbar/MRb [56]), Gerald Gabrielse’s measurements
of ge − 2 [38, 25], and the theorist prediction of ge − 2 using our measurement of α [3], all
combine to make one of the most precise tests of the Standard Model, and the most precise
test of quantum electrodynamics (QED).

With recent improvements in both the ge − 2 experimental and theoretical predictions,
the discrepancy between the most recent measurements of α now limits the comparison by
nearly an order of magnitude [67, 56, 25], and the error bars in the theoretical value of ge−2
are mostly from error vars in the value of α. It is therefore good timing for us to publish a
new trustworthy value, since many people are waiting for a new measurement...

There is a very closely related experiment measuring the muon magnetic moment gµ − 2
and comparing the value to its theory prediction [17]. Although this measurement and theory
prediction are only around the 10−7 level in accuracy, the QCD terms for the muon experi-
ment are much much larger than in the electron ge − 2 experiment. The muon experiment
is not limited by knowledge in the fine-structure constants because the experimental and
theoretical error bars are only at the 10−7 level, so our improved measurement of α does not
directly contribute to this experiment, though the two experiments are very complementary
tests of the Standard Model.

There’s a very detailed summary of these comparisons in the CODATA papers (see e.g.
the most recent ‘2018’ paper published in 2021 [82]). I refer the reader there for a complete
treatment of the subject, but I’ll summarize some results below.

First, let’s look closer at the α side. The definition of the Rydberg energy R∞ is given
by:

hcR∞ =
1

2
α2mec

2 (1.6)

which can be rearranged to give an expression for α:

α =

(
2hR∞

mec

)1/2

(1.7)

Penning traps can be used for precision mass ratio measurements, so the ratio h/me can be
expanded into a product of mass ratios and the quantity h̄/MCs, since the latter is easier to
measure experimentally. Eq. 1.7 can therefore be re-written as

α =

(
2R∞

c

u

me

MCs

u

h

MCs

)1/2

(1.8)

7The fine-structure constant is famous for being nearly equal to 1/137. It is also one of the few dimen-
sionless fundamental constants, and for this reason it is inscribed on the ‘Golden record’ that was placed on
the two Voyager probes in order to (hopefully) communicate with aliens after the leaving the solar system.
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Table 1.2: A table of the current know accuracies of other constants (besides h/MCs) needed
to determine the value of the fine-structure constant. The rydberg constant, electron mass in
u, and speed of light are all taken from current CODATA recommended values [82]. Cesium
mass taken from [5].

where the quantity limiting the overall accuracy of α is the ratio h̄/MCs. A summary of the
current level of accuracy in each of these quantities is summarized in Table 1.2. Note that
the square root in Eq. 1.8 means that these errors are divided by two when translating to
errors in the value of α.

One thing to note is that if our experiment measured h̄/MCs much more accurately,
the quantity limiting the accuracy of α would soon be MCs/u! Klaus Blaum has promised
Holger to publish a new measurement of MCs/u before we are limited by its value, and
they’ve gotten very good at using their penning traps for these kinds of measurements - see
e.g. [39] for a recent result. Note that if Klaus Blaum waited to publish his results after
our new measurement was published, then he could steal our thunder and claim he is now
measuring the fine-structure constant and searching for dark matter! Then we would only
really be measuring the mass of Cesium very precisely, since h̄ is now a fixed quantity in the
new SI unit system [82].8

So that’s how our experiment relates to the overall value of the fine-structure constant.
Next, let’s look at the theory prediction for the anomalous magnetic moments, and see how
the value of α fits in.

A lepton magnetic dipole moment is related to its spin via

µl = gl
e

2ml

s (1.9)

where l indicates the lepton type, which can be electron, muon or tau. The gyromagnetic
ratio gl is very nearly two, but deviates slightly from 2 due to the interaction between the
lepton and a ‘virtual sea’ of Standard Model particles. The exact calculation of gl leads to:

|gl|= 2 (1 + al) (1.10)

where

al = al(QED) + al(QCD) + al(weak) (1.11)

8Of course the community would understand that our measurement required orders of magnitude more
dedicated work. Also, this would only be an issue if we improve our previous measurement [67] by an order
of magnitude.
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a) b)

Figure 1.5: The two most important Feynman diagrams relevant to our fine-structure con-
stant experiment. a) The fine-structure constant serves as the coupling constant between an
electron interacting with a photon. b) The first radiative correction in Eq. 1.12, which is
the first-order QED correction to gl − 2.

ie. the calculation is broken into terms from quantum electrodynamics (QED), quantum
chromodynamics (QCD), and the weak force separately. Further, the QED term can be
broken into

al(QED) =
∞∑
n=1

C
(2n)
l

(α
π

)n
(1.12)

where the C
(2n)
l coefficients are calculated from summing over all (2n)-order Feynman dia-

grams for the given Lepton. For reference, the C2
e diagram is shown in Fig. 1.5. You can see

how it is the first so-called ‘radiative’ correction to the basic interaction between and electron
and photon. The (2n) in C

(2n)
l refers to the fact that this ‘first-order’ correction actually

involves two new nodes in the Feynman diagram. For higher orders, there are many possible
diagrams with (2n) nodes. By the 10th order diagrams (n=5), there are already 6,354 Feyn-
man diagrams that need to be summed in the electron diagrams alone, not including the
muon or tau contributions to these terms. See the CODATA paper and references therein
for more details [82].

For both the electron and muon experiments, the vast majority of the magnetic anomaly
comes from the al(QED) term. The ge− 2/α/theory comparison is at the 10−10 level, which
means we are resolving Eq. 1.12 at the 10−10 level. The gµ−2 experiment/theory comparison
is only at the 10−7 level, and therefore the muon experiment is less sensitive to modifications
to QED beyond the Standard Model.

For QCD, on the other hand, the ae(QCD) term is only a 10−10 contribution to the
electron ge − 2 - these terms are therefore only being resolved at O(1) with our current
sensitivities. The aµ(CQD) term, however, is much larger - it is a 10−4 contribution to the
total shift. So while we are just starting to resolve the QCD effects in the ge−2 comparison,
the gµ − 2 experiment is resolving the QCD correction at the 0.1% level.

The ae(weak) term is a 10−11 contribution, and therefore is not yet resolveable in our
experiment but will soon be. The aµ(weak), term is a 10−6 correction, and is therefore
already reasolveable in the muon experiment at the O(10%) level.

In total, the electron and muon experiments are sensitive to different aspects of the
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Standard Model, and are therefore nicely complimentary in creating a very broad test of
the Standard Model. As difficult as it is experimentally for use to make an improved mea-
surement of α, we’re broadly testing the limits of the Standard Model by doing so. These
experiments are among the most promising searching for physics beyond the standard model -
physicists have been improving these measurements for decades and will continue to improve
them for decades to come.
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Chapter 2

Bragg diffraction and Bloch
oscillations - theory and numerics

2.1 Introduction

Bragg diffraction [9] and Bloch oscillations [7] were first discovered at the beginning of the
20th. Bragg was 22 and Bloch was 24 when they published these groundbreaking papers.1

Bragg diffraction and Bloch oscillations are quite similar solutions for how waves propa-
gate in a periodic potentials, though they were first discovered in very different physical
scenarios. Bragg diffraction was first identified in x-ray scattering off of a crystal, whereas
Bloch oscillations were identified in how electrons interacted inside a crystal. 100 years
later, Bragg diffraction and Bloch oscillations are used in our experiments in more of an
engineering sense than a scientific one - the physics is fairly well understood, and we need
to optimize the processes for the application of manipulating atomic trajectories in our SCI
interferometer.

Compared to the original discoveries in solid state physics, there are some interesting
things we can do only in our atomic physics experiments. For example, we can create two
superposed lattices moving at different (and easily controllable) velocities, whereas in solid
state there is no parallel to this. This is possible because we form optical lattices using
counter-propagating lasers such that the velocity of the standing wave is determined by the
frequency difference of the lasers. By superposing multiple frequencies of light, we can create
multiple superposed standing waves at different velocities. We use this trick to control two
interferometers as once, with a single laser pulse.

Another interesting case is when the velocities of the two superposed lattices become
degenerate, or similarly when they start degenerate and then are accelerated in opposite
directions. There is no analogue to this in solid state physics. This is explored in Chapter
3, where it turns out there is very interesting lattice physics that can be used in atom
interferometers.

In this chapter, I outline derivations of the Bragg diffraction and Bloch oscillation Hamil-
tonians. Some different regimes of Bragg diffraction and Bloch oscillations are studied in
order to gain an understanding of why our α experiment uses the regimes that it does. I’ll

1And what have you been doing with your life?
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also show some useful results/takeaways regarding systematic effects from Bloch oscillations
in our experiment - in particular, I outline a more rigorous justification of why systematic ef-
fects from Bloch oscillations in the previous generation experiment [67] were negligible. The
chapter ends with a section summarizing the dimensionless unit system used to numerically
integrate the Schrodinger equation, as well as a section on how to convert experimental laser
power to lattice depth in our Hamiltonians.

2.2 Optical lattice Hamiltonian

Both Bragg diffraction and Bloch oscillations are dynamics that arise from an atom in an
optical lattice. The term ‘optical lattice’ refers to the fact that two laser beams, far-detuned
from any energy transitions in the atom, are interfering such that they create a standing
wave of light. Atoms in our experiment see an energy shift depending on where they are in
the optical standing wave, so the potential energy landscape that the atom sees is periodic
- hence the term ‘optical lattice’.

For a good derivation of Bragg diffraction Hamiltonian, see Chenghui’s thesis [99], section
2.4. He walks through the rotating wave approximation, adiabatic elimination of the excited
state, and then using a discrete momentum state basis for numerical simulation. I’ll outline
some of the main results here, but see his thesis for further discussion.

Before making any assumptions, the Hilbert space of Cesium atoms in our experiment
(really of the lone electron in the outermost shell) is represented by |nLJFmF , p⃗⟩ where n
is the over-all energy level, L is the angular momentum quantum number, J is the total
electron angular momentum after accounting for fine-structure coupling, F is the electronic
angular momentum plus nuclear angular momentum, mF is the magnetic sublevel, and p⃗
represents the momentum of the atom.2

Fine-structure atomic notation is typically given by n2s+1LJ , with L = S, P,D, etc.. In
this notation, our 852 lasers in lab are near the Cesium ‘D2’ line (62S1/2 → 62P3/2). Our
lasers are typically far-detuned from the ‘D1’ line around 895 nm (62S1/2 → 62P1/2), so we
ignore effects from the D1 line.3 Transitions to other values of n or L are very very far-
detuned from our laser frequencies and can be ignored. So, we have fixed values of n, L, S,
and J for D2 transitions.

In order to do coherent physics, we can’t populate excited D2 states of Cesium which
only have lifetimes of 30 ns. Instead, we use two-photon transitions between ground states.
For Bragg diffraction or Raman transitions, we typically operate our interferometry lasers
on the order of ∆ ≈ 10 GHz detuned from the D2 line, whereas the linewidths of states in
the D2 line are around Γ ≈ 5.2 MHz [77]. Since ∆ ≫ Γ, populations in the excited states are
therefore very small and we can adiabatically eliminate the excited state. See Chenghui’s
thesis for more details about adiabatic elimination [99]. The only remaining possible (two-
photon) transitions are between different F and mF states within the ground state 62S1/2 -

2Note that the position and momentum cannot be known simultaneously due to the Heisenberg uncer-
tainty principle. We use p⃗ here because the momentum of the atom is more relevant for the following sections
than position, but we could have equivalently used x⃗ instead.

3The cavity interferometer experiment in our group needs to take the D1 line into account for their very
far-detuned lattice laser [98].

17



all other internal degrees of freedom are effectively fixed.
Atom interferometers with alkali atoms typically use Raman transitions or Bragg diffrac-

tion for beamsplitters. Raman transitions change hyperfine state from F = 3 → F = 4 or
vice versa. Bragg transitions remain in the same hyperfine state. The difference between
driving Raman transitions and Bragg diffraction comes down to 1) the frequency difference
between the two laser frequencies used for the two-photon transition, and 2) the polarization
of light. To drive Bragg diffraction, the frequency detuning of the lasers will be related to
doppler detunings of how fast the atoms are moving in our lab (1 m/s velocity is on the order
of 1 MHz frequency difference), and also on the Bragg resonance condition which requires
frequency shifts on the order of 10’s of kHz. Raman transitions require a frequency difference
near F = 3 to F = 4 ground state transition, which for Cesium is about 9.8 GHz.

Here, I will consider only Bragg transitions - for further discussion of Raman transitions,
as well as the polarization requirements for both Raman transitions and Bragg diffraction, see
Chenghui’s thesis [99]. For Bragg diffraction, we only need to consider transitions between
mF states within a single F state. These transitions are determined by selection rules
related to the polarization of light. We initialize our atoms in the mF = 0 state, and choose
polarizations of light that only drive two-photon mF = 0 → mF = 0 transitions. Effects of
leakage to other mF states would have to be derived from a more general Hamiltonian and
Hilbert space that include other internal states. Chenghui’s thesis outlines how to calculate
these leakage transitions [99].

All of the above means that there are no free internal degrees of freedom left in the
experimental situation that we set up - the internal state is exactly identical between the
initial and final states, and the only degrees of freedom for the atom that remain are the
position or momentum degrees of freedom. In a momentum basis, we are therefore solving
a Schrodinger equation of the form:

ih̄
∂

∂t
ψ(p, t) = Ĥψ(p, t) (2.1)

which describes time evolution of a wavefunction with only momentum degrees of freedom.
This equation with a position representation instead of momentum is used in intro quantum
courses to look at wavefunction solutions for particles in square well potentials, harmonic
oscillator potentials, etc. and is most physicists’ first introduction to the Schrodinger equa-
tion.

The Hamiltonian for an atom in this ‘optical lattice’ based on the two counter-propagating
laser beams in our experiment is given by:

H =
p̂2

2MCs

+ h̄Ωcos ((k1 + k2)x̂− δt) + h̄ωStark (2.2)

Here, Ω denotes the lattice depth and ωStark denotes the total energy shift from AC Stark
shift/light shift. The frequency difference between the two laser beams is given by δ = ω2−ω1.
The lasers in our experiment are very nearly counter-propagating, so k1 ≈ k2 to a very high
degree of accuracy.4

4I’m ignoring the sign of the k-vector here and only using the amplitude - in reality both k-vectors are
vector quantities with directions as well as magnitudes.
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In our experiments, we typically think of the Schrodinger equation as a one-dimensional
problem along the laser propagation axis, and the transverse degrees of freedom are treated
classically. Why is this assumption accurate? The system starts behaving quantum me-
chanically when there is spatial structure of the potential on a length scale comparable to
or smaller than the spatial extent of the atomic wavefunction. In our experiment, our atoms
have a velocity spread of around σv ≈ 0.05vr recoil velocities, where the recoil velocity
vr = h̄k/MCs of Cesium with 852 nm light is approximately 3.5mm/s. This corresponds to
a thermal deBroglie wavelength of around:

λdB =
h√

2πMCskBT
=

h√
2πM2

Csσ
2
v

≈ 6µm (2.3)

We must treat the on-axis dynamics quantum mechanically in our experiment because the
thermal deBroglie wavelength of our particles is much longer than the spatial period of the
optical lattice, λdB ≫ λ/2. In our experiment, the deBroglie wavelength of atoms along the
laser propagation axis is about 6µm, which is around a factor of 20 larger than the optical
lattice periodicity.

Transverse to the beam’s propagation, our atoms are much hotter with a velocity spread
of around 1.5 vr and a thermal deBroglie wavelength of around λdB,transverse ≈ 200 nm. The
length scale of changes in the optical potential transverse to the beam are much larger than
this - for example the transverse beam profile of a typical Gaussian beam in our experi-
ments changes on the order of several millimeters. Even for a laser beam with intensity
noise from dust or other optical imperfections, the length-scale of changes in the optical
potential must be greater than ≈ 50µm because any smaller length scale perturbations have
a very short Rayleigh range and won’t reach the atoms that are a meter or more from the
perturbing optic. Similarly, the transverse effects from beam misalignment are still orders of
magnitude too small to be treated quantum mechanically. If the counter-propagating beams
have a 1 mRad angle between them, the transverse periodicity of the tilted lattice is still
≈ 1000λ ≫ λth,transverse. We co-align the beams much better than this experimentally. In
total, transverse dynamics can safely be treated classically.

The k-vector is commonly written using 2k = (k1 + k2). Analysis is typically done in the
frame of reference co-moving with the atoms, in which k1+k2 would differ by 10−11 for recoil-
level momentum kicks, and most experiments aren’t actually making absolute measurements
at the 10−11 level. From here on I will write k1+k2 as 2k, but for an accurate phase derivation
of our interferometer these effects need to be taken into account.

Note also that when the two counter-propagating beams have equal intensity, the Stark
shift and lattice depths in Eq. 2.51 are identical ωStark = Ω. However when the counter-
propagating intensities are not equal Ω1 ̸= Ω2, the stark shift and the lattice depth start to
deviate.5

ωStark =
Ω2

1 + Ω2
2

4δ
(2.4)

and

Ω =
Ω1Ω2

2δ
. (2.5)

5Ωi here denotes the single-photon resonant Rabi frequencies for a single beam
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More progress can be made on the problem by using Bloch’s theorem, since our po-
tential is periodic in x with a period of λ = π/k, or equivalently as spatial frequency of
2k. Since x̂ and p̂ don’t commute, we can’t find a diagonal/commuting set of basis states.
However, plane-wave atomic states form a very natural basis for the problem, as you will
see. Atoms in this experiment are much colder than a recoil velocity along the laser axis, so
plane wave momentum eigenstates are a better choice of basis states than localized position
eigenstates. For an analysis using position eigenstates instead, see reference [87] for treat-
ment of ‘Wannier-Stark’ states. Wannier-Stark states are a better basis for e.g. the cavity
interferometer in our group, in which atoms are around one recoil velocity temperature and
have very deep lattice depths.

Bloch’s theorem states that the wavefunction can be decomposed into Fourier components
with multiples of 2k momenta:

ψ(x) =
∞∑
n=0

eikqxun,kq(x) (2.6)

where un,kq is a Bloch wave for the nth energy level eigenstate. h̄kq is the quasi-momentum,
which is essentially the momentum of the atomic state modulo h̄k. Quasi-momentum will
be discussed more in section 2.5.

This is a convenient basis for e.g. electrons in a crystal, especially when the periodic
potential is complex within a period and the Bloch wave basis can capture a lot of that
complexity. However, for our experiment with a sinusoidal potential, it ends up being much
more convenient to work in a simple Fourier basis:

ψ(x, t) = eikqx
∞∑

m=−∞

gm(t)e
2imkx (2.7)

where the time dependence is now explicitly shown. Eq. 2.7 describes a ladder of momentum
states each separated by 2k momentum, a very convenient basis because the laser can only
impart ±2k̄ of momentum, or integer multiples thereof. The beauty of this basis can be seen
when we plug this ansatz into the Schrodinger equation in Eq. 2.1. You get a system of
coupled equations - isolating the equation for a single state coefficient gm:

ih̄ġm(t) =
h̄2(kq + 2mk)2

2MCs

gm(t) + h̄ωStarkgm(t)

+
h̄Ω

2

(
e−iδtgm−1(t) + eiδtgm+1(t)

)
(2.8)

The Fourier basis states are a perfect choice for this problem because the optical potential
only couples neighboring momentum states.

Since the basis used in our Schrodinger equation is now a vector of discrete momentum
states, the Hamiltonian can be represented in matrix form as:
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H =



. . . . . . . . . ...

. . . α−2 β 0
...

. . . β∗ α−1 β 0
...

0 β∗ α0 β 0
... 0 β∗ α1 β

. . .

... 0 β∗ α2
. . .

... . . . . . . . . .


(2.9)

where

αm =
h̄2(kq + 2mk)2

2MCs

+ h̄ωStark (2.10)

and

β =
h̄Ω

2
eiδt (2.11)

This is understood to be the Hamiltonian matrix that acts on a state vector of discrete
Fourier states, where the index m denotes the momentum of the basis state pm = 2mh̄k.
Tridiagonal matrices are extremely nice for numerical simulation because linear equations
can be solved in O(3n) time, where n is the number of basis states used, instead of O(n2)
which would be the case for a general matrix equation.

Another brief aside - why can we treat our atoms as plane wave states, when experimen-
tally we know they have finite size/temperature? Suppose we have an atom with some finite
spatial extent. In order to write this state down mathematically using the formalism that we
just outlined, one would need to integrate over all momentum states, with each momentum
state having its own gk coefficient:

ψfinite(x) =

∫ ∞

k=−∞
gke

2ikxdk (2.12)

Because of Bloch’s theorem and the spatial periodicity of our potential, we know that we
can completely capture all dynamics within the momentum [−kq, kq). In our Fourier basis,
this equates to:

ψfinite(x) =

∫ kq

k=−kq

eikqx
∞∑

m=−∞

gm,kqe
2ikxdk (2.13)

which is equivalent to Eq. 2.7 but integrated over all quasimomentum kq. If we plug this
into Eq. 2.1, we will still end up with Eq. 2.8, one for each kq state. This occurs because
every operation is linear, and because the optical potential can only couple states separated
by integer multiples of 2h̄k momentum. Even calculating the wavefunction interference at
the end is linear, since these basis states of different kq are orthogonal.

In total, it is entirely equivalent to treat are atoms as an ensemble of randomly sampled
kq states according to the velocity spread of the atom ensemble, as it is to treat the atoms
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Figure 2.1: Diagram illustrating a 3rd order Bragg diffraction process in terms of energy
levels. We are far-detuned from any excited states, and the frequency difference between
the two beams 2δ satisfies the n = 3 Bragg resonance condition. Figure adopted from Brian
Estey’s thesis [23].

more generally as finite size and temperature quantum wavefunctions. Since the former is so
much easier, this is what is used for numerics and analytics. The above argument outlines
one of the core justifications for why the Monte Carlo in Chapter 5 works as it does.

2.3 Bragg diffraction Hamiltonian

For atoms initialized in a single momentum state, Bragg diffraction will cause Rabi flopping
between two momentum states separated by 2nh̄k momentum, where n is the Bragg diffrac-
tion order. Fig. 2.1 illustrates what’s happening to the atomic state during an n = 3 Bragg
diffraction process.

Bragg diffraction occurs when the velocity of an optical lattice relative to a matter wave
(very nearly) matches a Bragg resonance condition. Bragg resonance occurs when the ab-
sorption/emission of photon momenta conserves energy and momentum of the before and
after atomic state. In words, the energy difference of the photons absorbed must equal the
kinetic energy difference of the atom before and after the pulse, and similarly with the mo-
mentum of the photons and the atom. Since we know the photon momentum transferred is
2nh̄k, energy conservation becomes:

nh̄δ =
MCs(vi + 2nh̄k/MCs)

2

2
− MCsv

2
i

2
(2.14)

where vi is the initial velocity of the atom, and δ = ω2 − ω2 is the frequency difference
between the two lasers. Simplifying, we arrive at the Bragg resonance condition:

δ = 2kvi + 4nωr (2.15)
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where ωr = h̄k2/(2MCs) is the recoil frequency of cesium. Eq. 2.15 is very intuitive if you
relate it to the velocity of the lattices by dividing by 2k:

vlatt = vi + nvr (2.16)

Since the atom’s final velocity will be vi+2nvr, Eq. 2.16 says the lattice velocity should be ex-
actly halfway between the initial and final velocities for resonance. In other words, the atom
is diffracting/reflecting off of a ’grating’ formed by our optical lattice. This understanding
is extremely useful when working with Bragg diffraction experimentally or numerically.

For a more in-depth introduction to Bragg diffraction, see Chenghui’s thesis [99], or for
a lot of details see Holger’s old paper [57].

2.3.1 Single frequency Bragg diffraction

In our experiments, we adiabatically ramp the lattice depth on and off in a short amount
of time such that the integrated effect of the pulse is roughly a ‘π/2 pulse’ between the two
momentum states of interest. In order to arrive at the Bragg Hamiltonian starting from Eq.
2.8, the only changes we add are 1) there is a Gaussian temporal profile of our lattice depth,
and 2) the optical lattice has some velocity offset from the initial atomic state to satisfy the
Bragg resonance condition. The coupling term in the Hamiltonian therefore becomes:

h̄Ω

2
e−t2/2τ2

(
e−i2kvlatttgm−1(t) + ei2kvlatttgm+1(t)

)
(2.17)

where vlatt is the lattice velocity relative to the rest frame, and Ω is understood to be the
peak lattice depth, independent of time, since the time profile is explicitly written separately.
For nth order Bragg, the lattice velocity at resonance for an atom starting with zero velocity
is vlatt = nvr, as was shown in Eq. 2.16.

In the Monte Carlo simulations discussed later in this thesis, it is much more convenient
numerically to use a reference frame such that the initial velocity6 v0 with respect to the
initial momentum state is instead represented in the velocity of the optical lattice. We
move to a frame of reference such that the atom velocity exactly lines up with one of our
momentum ladder states, and instead the lattice moves at a slightly different velocity than
the resonance condition. In this case, we use vlatt = nvr − v0 and set kq = 0. The full
Schrodinger equation therefore reads:

ih̄ġm(t) =
h̄2(2mk)2

2MCs

gm(t)

+ h̄ωStarkgm(t) +
h̄Ω(t)

2

(
e−i2kvlatttgm−1(t) + ei2kvlatttgm+1(t)

)
(2.18)

or in dimensionless units for simulation,

6i.e. the velocity by which you are off-resonant from a Bragg transitions, which is typically ≪ vr
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iġm(t) = (2m)2gm(t) + ωStarkgm(t)

+
Ω̃(t)

2

(
e−i4ṽlatttgm−1(t) + ei4ṽlatttgm+1(t)

)
(2.19)

where Ω(t) = Ωe−t2/2τ2 . All variables in the dimensionless equation are assumed dimension-
less, and it is this dimensionless form that is used for simulation in the Monte Carlo code.
See Section 2.8 for details about how to derive dimensionless equations.

2.3.2 Multi-frequency Bragg diffraction

In our SCI interferometer for the alpha measurement, we use so-called ‘multi-frequency’
pulses for the third and fourth Bragg diffraction pulses. For details of the experimental
implementation, see Chapter 4. For our purposes here, we have one frequency of light trav-
eling in one direction, and two frequencies traveling in the opposite direction. Interference
between these beams forms two moving optical lattices superposed on one another, allowing
us to address two velocity classes of atoms at the same time.7

If we want to describe two lattices moving at velocities ±v, we can write the sum of two
cosine waves as:

cos (2kx− 2kvt) + cos (2kx+ 2kvt) = 2 cos (2kx) cos (2kvt) (2.20)

From this you can see that a beat note that forms between the two interfering lattices. Ex-
perimentally, it is more convenient to work in frequency instead of velocity - the ‘splitting
velocity’ between the two lattices is directly related to the all-important modulation fre-
quency ωm by ωm = 2kv. Note that the splitting velocity describes lattices moving at ±v,
so the velocity difference between the two lattices is 2v. The modulation frequency ωm is
all-important because it is the knob we turn experimentally to actually measure the recoil
frequency, as discussed in Chapter 1.

In terms of ωm, the Schrodinger equation for multi-frequency Bragg is given by:

ih̄ġm(t) =
h̄2(2mk)2

2MCs

gm(t) + h̄ωStarkgm(t)

+
h̄Ω(t)

2
cos (ωmt)

(
e−i2kvlatttgm−1(t) + ei2kvlatttgm+1(t)

)
(2.21)

or in dimensionless units for simulation,

iġm(t) = (2m)2gm(t) + ωStarkgm(t)

+
Ω̃(t)

2
cos (ωmt)

(
e−i4ṽlatttgm−1(t) + ei4ṽlatttgm+1(t)

)
(2.22)

7Actually, in the experiment we end up with many more (unwanted) lattices, but for now we will focus
on the two that are intentionally interacting with the atoms. See Section 4.6.3 for details.
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a) b)

Figure 2.2: Both panels show wavefunction amplitude evolution during an n = 3 Bragg
pi/2 pulse. Two regimes are shown: a) the ’quasi-Bragg’ regime that we use experimentally
τ = 2, µs, Ωbragg = 11.335E˙r, and b) the ’Bragg regime’ with τ = 5ms, Ωbragg = 1.63E˙r.
The legend indicates which color corresponds to which momentum basis state.

where again, recall Ω(t) = Ωe−t2/2τ2 . All variables in the dimensionless equation are assumed
dimensionless, and it is this dimensionless form that is used for simulation in the Monte Carlo
code. See Section 2.8 for how to derive dimensionless equations.

2.4 Different regimes of the Bragg Hamiltonian

The more slowly a Bragg diffraction process is driven, the more precisely momentum can
be transferred between two states without populating intermediate states. For momentum
processes driven in a characteristic time τ , the ’Bragg regime’ corresponds to τ ≫ n2/ωr.
An intuitive way to think about this is based on the level diagram in Fig. 2.1. We’re trying
to coherently transfer amplitude within a ’sea’ of neighboring momentum states. A pulse
with duration τ will have a width of 1/τ in frequency space - this Fourier width needs to be
small relative to the spacing between neighboring momentum states in order to selectively
drive higher-order processes without transferring population to any intermediate states. For
a mathematical treatment of what I’m referring to, see [57] and references therein.

Fig. 2.2b) illustrates numerical integration/ time evolution of wavefunction amplitudes
in the Bragg regime. We can see that intermediate momentum states are barely populated
during the integration. This simulation uses τ = 5ms which satisfies the condition for the
Bragg regime for n = 3: τ ≫ n2/ωr = 0.7ms.

The regime we use in our experiments is the ’quasi-Bragg’ regime. It turns out that
you can still get near-ideal momentum transfer between two states with pulse durations
τ ≲ n2/ωr. Fig. 2.2a) shows time-evolution of the momentum state amplitudes in the
’quasi-Bragg regime’. There is a very large population in intermediate states during the
Bragg pulse, but by the end of the pulse almost no amplitude remains in the intermediate
states leaving us with a highly efficient beamsplitter. Details of the quasi-Bragg regime are
discussed in [57] for the analytically curious reader. Personally, I find numerical integration
to provide a more direct intuition for what works well and what doesn’t.

On the other extreme, we have pulses with duration τ ≪ n2/ωr called the ’Raman-Nath’
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Figure 2.3: Numerical integration of Bragg diffraction in the Raman-Nath regime. Pulse
parameters are τ = 3µs, and Ωbragg = 15E˙r. The Bragg resonance condition is set to n = 3
but the k = 3 state is barely populated after the pulse.

regime. In this regime, you don’t have well-resolved energy levels because of the Fourier
smearing of the laser frequencies is broader than the separation between states. Fig. 2.3
illustrates numerical integration and wavefunction evolution in this regime. Even though the
optical lattice is resonant with an n = 3 Bragg resonance condition, we can see that we drive
almost no amplitude to the k = 3 momentum state. Instead, states neighboring the initial
k = 0 state are populated. Deep into this regime, the output state population distribution
is described by Bessel functions. Note that even though this is a messy process, it is still
coherent - people have used this regime for interferometry, even though it’s far from ideal
for state-of-the-art precision measurements [73].

2.5 Bloch oscillations Hamiltonian

Historically, Bloch oscillations were first explored with electrons in a crystal with an applied
uniform electric field. The electrons feel a constant force:

H =
p̂2

2m
+ Up(x)− Fx (2.23)

where Up is some periodic potential (for example the electric potential in a crystal), and F
is the applied force.

In atomic physics experiments, we can accelerate the optical lattice instead of applying
a force on the atoms. In the frame of reference of the atoms, there is a fictitious force that
gives us the same physics as described by the Hamiltonian in Eq. 2.23. It is convenient to
parameterize the sweep in terms of a frequency ramp rate r = dδ/dt, since that is how we
implement this acceleration experimentally. Note that to correctly keep track of the phase
of the optical lattice as we ramp frequencies, we need to integrate in time: δt is replaced by
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∫
δ(t)dt = rt2/2. Plugging this into Eq. 2.51, we get the Hamiltonian in the freely-falling

frame HFF :

HFF =
p̂2

2MCs

+ h̄Ωcos
(
2kx̂− rt2/2

)
+ h̄ωStark (2.24)

This form of the Hamiltonian ends up being good for numerical simulation of our experiment.
There are, however, other forms of this Hamiltonian that are useful analytically and

numerically. This Hamiltonian can be boosted to different frames of reference by using a
unitary transformation, which is the quantum equivalent of Galilean frame transformations
[48, 65]. This unitary operator takes the form:

Û = e
i
h̄
d(t)p̂e−

i
h̄
mv(t)x̂e

i
h̄
θ(t) (2.25)

where positions are transformed as x̂ → x̂ + d(t), and momenta as p̂ → p̂ + mv(t). The
θ(t) term transforms the overall energy of the Hamiltonian uniformly to all basis states, as
a function of time. In general, a variable or operator Ô should be transformed via:

Ô′ = UÔU † + ih̄
dU

dt
U † (2.26)

There are a couple of useful transformations of Eq. 2.24 that I’ll discuss here. First, we
can prove it is equivalent to Eq. 2.23.8 The Hamiltonian 2.24 can be transformed with the
general unitary operator 2.25 by setting d(t) = Ft2/(2m), v(t) = Ft/m, and θ = 2F 2t3/(3m).
This results in the following transformed Hamiltonian in the lattice frame Hlatt:

Hlatt =
p̂2

2MCs

+ h̄Ωcos (2kx̂) + h̄ωStark + Fx (2.27)

where +Fx potential energy indicates a force in the negative x direction (by convention
F > 0). This transformation effectively boosted the position and velocity to a frame of
reference co-moving with the accelerating lattice. The lattice accelerates in the +x direction,
so in the new frame of reference the atoms feel a fictitious force in the −x direction. The
θ(t) term corrects for the kinetic energy difference between the free-falling frame and the
accelerating frame, ensuring that the ground state energy stays near zero at all times.

Another useful unitary transformation puts the time dependence of the Hamiltonian into
the kinetic energy term, instead of the potential energy term. This is accomplished using the
unitary in Eq. 2.25 to transform the Hamiltonian HFF in Eq. 2.24 where d(t) = Ft2/(2m),
v(t) = 0, and θ(t) = −F 2t3/(6m) leading to the Hamiltonian H ′:

H ′ =
(p̂− Ft)2

2MCs

+ h̄Ωcos (2kx̂) + h̄ωStark (2.28)

In this case, we have boosted position to a co-moving frame with the lattice, but we did
not boost the velocity/momentum operator. The quasimomentum is typically identified as
−Ft = +h̄kq(t), such that we can see the quasimomentum decreases linearly in time due to
the negative fictitious force.

8I will leave the full derivation to the reader, but note that it is fairly annoying to keep track of commuting
variables.
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The Hamiltonian in Eq. 2.28 is useful because it allows us to readily plot the energy
band structure. In our discretized momentum basis, it is equivalent to:

H ′ =
l=∞∑
l=−∞

(2lh̄k + h̄kq(t))
2

2m
|l⟩⟨l| + h̄Ω

2
(|l⟩⟨l + 1|+ |l⟩⟨l − 1|) (2.29)

where |l⟩ is a momentum basis state with momentum p = 2lh̄k. This equation can easily
be written in matrix form similar to Eq. 5.40. The energy eigenstates as a function of kq
are shown in Fig. 2.4a) - the band structure9 is plotted over the range kq = (−3, 3) for
illustration purposes, though quasimomentum is really only defined modulo k, i.e. in the
first Brillouin zone only (indicated by dashed lines).

‘Bloch oscillations’ refers to a particle adiabatically remaining in the ground state of this
Hamiltonian while experiencing an external force. As shown in Eq. 2.28, an external force is
equivalent to a quasimomentum that is linearly ramping in time. One can imagine an atom
with an initial quasimomentum k0 = 0 in the ground state energy band. Eq. 2.28 describes
a negative force, so the state starts moving left along the ground state. As the atom crosses
the edge of the first Brillouin zone, the atomic state receives a 2h̄k momentum kick from
the lattice, shows up on the other side of the first Brillouin zone around kq = 1, and then
continues moving left.

Note that I use this ‘2h̄k momentum kick’ wording very loosely - the process of momentum
transfer is actually ‘smeared out’ in time. For shallow lattices such as the band structure
shown in Fig. 2.4c), the momentum transfer is localized to the region around the level
crossing where the free-space band-structure is distorted. For very deep lattices e.g. the
band structure shown in Fig. 2.4b), the level structure is so highly distorted that you can no
longer describe the dynamics as a discrete set of 2h̄k momentum kicks. Instead, the various
level crossings overlap one another and momentum is transferred more continuously in time.
In this limit, the Wannier-Stark ladder is a more natural description of the dynamics, where
atoms are trapped to a single lattice site [87, 28].

Some other things to note about interpreting band structure. First, the group velocity
of the wavefunction is defined as vg = dE/dk, so the slope of the band structure tells us
how fast the atom is physically moving while in the lattice. In contrast, phase velocity is
set by the quasimomentum, which can be seen directly in Eq. 2.7. For deep lattices, the
ground state band flattens out which indicates that the group velocity is tending towards
zero - atoms are becoming more localized in the deep potential wells at each lattice site.
On, the other hand, as the lattice depth goes to zero the velocity smoothly transitions to
the match the corresponding free-space velocity: kq = 1k quasimomentum corresponds to
v = 1vr free-space velocity when the lattice is adiabatically unloaded.10

9This is a one-dimensional band structure - in solid state physics, three dimensional band structures are
commonly plotted similar to this, by tracing a trajectory around the first (three-dimensional) Brillouin zone.
If you take a solid state physics class, you’ve likely encountered 2D or 3D band structures.

10Many references discourage thinking of ’quasimomentum’ as a real momentum, but quasimomentum
maps directly to free-space momentum when the lattice is adiabatically unloaded. For people studying
physics inside optical potentials that are always on, it might be poor form to think in this way, but since our
experiments always adiabatically ramps optical lattice potentials on and then off again, it is very convenient
to remember this connection.
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Figure 2.4: Band structure of the Hamiltonian in Eq. 2.28 as a function of the quasimo-
mentum kq. First two panels show band structure for a lattice depths a) Ω = 4Er and b)
Ω = 20Er. The dotted lines in a) indicate the edge of the first Brillouin zone. The labels
on the right of b) indicate which line corresponds to which energy level. As the lattice
depth gets very deep in b), the band structure approaches harmonic oscillator eigenstates
(flat bands with evenly spaced levels) - atoms are localized to the bottom of each lattice site
which locally looks harmonic. c) A zoomed-in plot to better illustrate lower energy levels
in the first Brillouin zone, for Ω = 2Er. d) A plot showing the band structure ’unfolded’ -
this highlights the relationship between band structure and the free-space energies, since the
unfolded bandstructure very closely follows the free-space kinetic energy parabola p2/2m.
Arrows indicate momentum transfer from Bloch oscillations in the second excited state.
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2.6 Bloch numerical simulation

Before getting too much further, let’s explicitly introduce the Schrodinger equation corre-
sponding to the Bloch Hamiltonian. The best Hamiltonian to use for numerical simulation
is Eq. 2.24 because it allows us to treat frequency ramps generally, including when there are
multiple moving lattices. Eq. 2.24 is therefore re-written with the following form:

HFF =
p̂2

2MCs

+
h̄Ω

2

(
ei(2kx̂−rt2/2−ϕ0) + e−i(2kx̂−rt2/2−ϕ0)

)
+ h̄ωStark (2.30)

where ϕ0 is a phase offset which is equivalent to a position offset ∆x = ϕ0/2k in the lattice
at time t = 0.11

Next, the ansatz from Eq. 2.7 is plugged into the Schrodinger equation to get the following
set of coupled equations, one for each value of m:

ih̄ġm(t) =
h̄2(kq + 2mk)2

2MCs

gm(t) + h̄ωStarkgm(t)

+
h̄Ω

2

(
e−i(rt2/2+ϕ0)gm−1(t) + ei(rt

2/2+ϕ0)gm+1(t)
)

(2.31)

or, in dimensionless units (see Section 2.8):

iġm = (2m+ k̃q)
2gm + ω̃Starkgm

+
Ω̃

2

(
e−i(rτ2/2+ϕ0)gm−1 + ei(rτ

2/2+ϕ0)gm+1

)
(2.32)

which is the form used for numerical simulation. See Section 2.8 for how to derive dimen-
sionless equations.

Two superposed Bloch lattices in a ‘multi-frequency’ pulse can be described by super-
posed optical lattices that are beating together, exactly analogous to the multi-frequency
Bragg diffraction Hamiltonian in Eq. 2.21:

cos
(
2kx̂− rt2/2− ϕ0

)
+ cos

(
2kx̂+ rt2/2− ϕ0

)
= 2 cos (2kx− ϕ0) cos

(
rt2/2

)
(2.33)

In the multi-frequency case, the Schrodinger equation then becomes

ih̄ġm(t) =
h̄2(kq + 2mk)2

2MCs

gm(t) + h̄ωStarkgm(t)

+
h̄Ω

2
cos
(
rt2/2

) (
e−iϕ0gm−1(t) + eiϕ0gm+1(t)

)
(2.34)

11This ϕ0 parameter is critical to understanding the symmetric Bloch oscillations results in Chapter 3.
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and the dimensionless form used for numerical simulation:

iġm = (2m+ k̃q)
2gm + ω̃Starkgm

+
Ω̃

2
cos
(
r̃τ 2/2

) (
e−i(rτ2/2+ϕ0)gm−1 + ei(rτ

2/2+ϕ0)gm+1

)
(2.35)

2.6.1 Landau-Zener Tunneling

Continuing the discussion from section 2.5, let’s look more closely at the avoided level cross-
ings seen in the band structure in Fig. 2.4. Avoided level crossings are ubiquitous in quantum
physics. We are approaching the 100-year anniversary of the Landau-Zener solutions to tun-
neling from an avoided level crossing [103].12 The canonical picture of an avoided level
crossing used to derive the Landau-Zener tunneling formula is two linearly sloped energy
levels that cross one another as a function of some parameter in the Hamiltonian. An exam-
ple of a typical avoided level crossing is between states n = 1 and n = 2 in Fig. 2.4c) near
kq = 0. For weak lattices13, tunneling through the level crossings is well-described by the
Landau-Zener formula, since locally around the level crossings the energy levels are nearly
linear. For deep lattices14, the formula breaks down because the ground state band structure
is so dramatically deformed. The level crossing no longer can be approximated by linearly
sloped band structure, and moreover the level-crossings start overlapping in time.

The Landau-Zener tunneling result mapped to Bloch oscillations describes leakage from
the ground state of the lattice per Bloch oscillation, as a function of the lattice depth and
acceleration rate. The survival probability of an atom in the ground state after a single
Bloch oscillation is given by:

Psurv = 1− e−2πΓ (2.36)

with Γ = Ω2/(8ka) for an acceleration a. Putting this in the same form as in reference [15]:

Psurv = 1− e−
Fc
F (2.37)

where the critical force Fc =
πkh̄2Ω2

8Er
=

πkV 2
0

32Er
when using their nomenclature for V0 = 2Ω.15

Putting Eq. 2.36 in dimensionless form:

Psurv = 1− e−
2πΩ2

4r (2.38)

where r is the dimensionless ramp rate as in Eq. 2.30.
Fig. 2.5 compares this theoretically predicted Landau-Zener equation to direct numer-

ical integration of the Schrodinger equation. We can see that for (dimenionless) ramp
rates greater than ≈ 3 the Landau-Zener equation starts to fail. Experimentally, we use

12The results were actually published in the same year by four separate people. I cited the paper that was
written in English.

13i.e. lattice depths Ω ≪ 8Er. See e.g. [15] for similar statements. Multiple factors of two combine to set
8Er as the relevant energy scale for shallow/deep lattices.

14Ω ⪆ 8Er
15We agree on factors of 2! Hallelujah this took a while to get correct.
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Figure 2.5: Figure comparing simulated Bloch oscillation efficiency (blue) compared to the
Laundau-Zener tunneling equation (orange).

rr = 8.58027ω2
r which corresponds to exactly 10g acceleration - experimentally we there-

fore operate in a regime where the Landau-Zener formula is not a good prediction of Bloch
oscillation efficiency.16

2.6.2 Role of excited states during Bloch oscillations

Typically Bloch oscillations are understood as an atom adiabatically following the ground
state of the optical lattice. However, it is also possible to populate and even adiabatically
follow the excited states. Fig. 2.4d) helps illustrate this concept. Suppose an atom has a
free-space momentum 2.5k, and then is adiabatically loaded into an optical lattice (at rest).
In Fig. 2.4, this state would lie in the middle of the right branch of the green curve - the atom
has been loaded into the second excited state. Now, suppose that we accelerate the lattice
in the negative direction (or equivalently apply a positive force to the atom) - the state will
increase in quasimomentum until reaching the avoided level crossing between the second and
third excited states (the red and green curves). If the acceleration is slow enough/ if the
lattice depth is large enough, the atom will adiabatically stay in the second excited state. It
will receive a −6h̄k momentum kick, indicated by the arrow, such that the state now lies on
the left branch of the green curve. It will continue increasing quasimomentum until reaching
the next avoided crossing, where it will receive a +4h̄k momentum kick, indicated by the
other arrow. This completes one ”Bloch oscillation” in an excited Bloch band. The total
momentum transfer is still always 2h̄k per Bloch period, but the dynamics of the atom will
look much different in the higher state compared to the ground state. Bloch oscillations in
excited states of the lattice have been proposed as a way to decrease experimental sensitivity
to different parameters in an atom interferometer [53]. Note also that a single one of these

16But it’s not too far off for our experiment and still gives a good rule-of-thumb for general scalings.
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a) b)

d)c)

Figure 2.6: Wavefunction evolution over time of a lattice load, 20 Bloch oscillations, and
then a lattice unload. All figures are projections of the same evolution with a lattice depth
of 10Er. a) Amplitudes on the basis states show momentum being transferred each Bloch
oscillation. The next figures show the projection squared (to get population) of this state
onto the b) ground state, c) first excited state, and d) second excited state of the lattice.

higher-order transitions is equivalent to adiabatic rapid passage (ARP) Bragg diffraction, as
explored in the reference [47].

So there’s some cool physics possible with higher-order Bloch bands, but why does this
matter when we keep atoms in the ground state during our experiment? Although we try to
adiabatically load atoms into the ground state by ramping up intensity over several hundred
microseconds, this process isn’t perfectly adiabatic. Moreover, any phase slips within the
DDS output that is generating the modulation frequency can cause discontinuous jumps in
the optical lattice. So even though our atom cloud initially has a velocity spread on-axis of
much less than one recoil velocity (well within the first Brillouin zone), non-adiabaticity still
can excite some population into the excited states.

Figs. 2.6 and 2.7 illustrate an example of what the Schrodinger equation dynamics can
look like for a lattice depth of 10Er and 20Er respectively. The plots show the wavefunction
population in the ground state and first few excited states as a function of time during the
simulation. Parameters used are identical to experimental parameters: the lattice is linearly
turned on/off in 200µs, which is about 2.5 in the plotted dimensionless units. N=20 Bloch
oscillations occur in about 20 dimensionless time units with an acceleration a = 10g. See
Section 2.8 for further discussion of the dimensionless unit system.

For 10Er lattice depth, we can see that there is some non-adiabatic loading which transfers
population to the second excited state. Then, as the lattice accelerates, population in all
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a)

d)c)

b)

Figure 2.7: The same information as Fig. 2.6, but with a lattice depth of 20Er, to illustrate
population becoming trapped in an excited state. See text for further discussion.

of the excited states quickly decays away to higher and higher excited states, not shown
here - it’s the equivalent of ’being left behind’ by the lattice as it accelerates away. This
effect can also be seen in the raw evolution of the basis states: the fast oscillations in the
amplitudes at early times come from population in the ground state and excited states
coherently interfering with one another.17 After the excited state populations have decayed
away/been left behind, the evolution appears much ’cleaner’ because this interference is no
longer happening.

Fig. 2.7 shows the same simulation but with a much deeper optical lattice. Now, more
population is transferred to the second excited state during lattice load during the lattice
load, and the lattice depth is deep enough that this population doesn’t tunnel away but
instead remains trapped in the second excited state. The interference effects are evident in
Fig. 2.7a) over all 20 Bloch oscillations.

Projecting the simulated state evolution from Eq. 2.32 onto the Bloch bands shown
in Fig. 2.4 is not very straightforward because the two are calculated in different frames
of reference. The simulation is done in a freely-falling frame where the lattice accelerates
away, whereas the Bloch bands are calculated in a frame co-moving with the lattice as it
accelerates. Therefore, after calculating the eigenstates of the Hamiltonian 2.28 for each
time step, the eigenstates then need an additional unitary transformation to boost them to

17The ground state and excited states are orthogonal basis states, so why would we see them beating
together? Because Fig. 2.6a) shows the free-space momentum states, not the projections onto the Bloch
eigenstates. Since we’re not in the correct basis, we see interfering amplitudes on the free-space basis states.
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a) b)

Figure 2.8: Numerical simulations of loading an optical lattice to find the optimal intensity
ramp profile in a) 100µs and b) 200µs. Exponential ramping appears to be the winner.

the frame-of-reference used in the simulations. Only then can you take the projection of the
simulated wavefunction onto the calculated eigenstates. There’s an example of this in the
Monte Carlo code.

Also, it is possible to minimize the non-adiabaticity of loading the lattice for a given
duration of ramp time. See e.g. [20] for similar discussion, though countless AMO experi-
ments have surely looked at this at some point. The old alpha experiment ramped on the
lattice intensity linearly in 100µs to a lattice depth of around 10Er. Figure 2.8a) shows
the projection into the lattice ground state for different ramping profiles with the old alpha
parameters. Figure 2.8b) shows same simulation but with 200µs ramp time, which is what
is currently being used in the new experiment. The population in the ground state at the
end of the intensity ramp (right side of the plot) is the takeaway from these plots, although
note that the oscillations are from non-adiabatic interfering amplitudes and complicate the
interpretation somewhat. Even so, it’s clear that an exponential ramping profile is optimal.
The old experiment was likely losing around 10% population during loading and also during
unloading the lattice. The linear, quadratic, and cubic waveforms are straightforward to
implement. The exponential waveform used for the simulation is exp(4(t − tload)/tload), so
that the lattice is ramped (fractionally) from e−4 up to 1 in the time tload.

There is one other source of non-adiabaticity in our experiment that leads to very similar
effects. Experimentally, the modulation frequency18 is ramped from an initial value to a
final value during the Bloch oscillation acceleration. During loading and unloading, this
frequency is constant/not ramped. If the direct digital sythesizer (DDS) controlling this
ramp has some phase slip in the output waveform between loading the lattice and beginning
the Bloch oscillation, there is a non-adiabatic jump in the beam frequency between the two
lattices19. Experimentally this phase jump clearly causes non-adiabatic losses. A different
DDS or better configuration of the current DDS would fix this issue in the long-term, but
for now the phase needs to be carefully adjusted when setting new Bloch parameters.

18The frequency that is controlling the velocity splitting between the two lattices
19The cos (ωmt) part of the coupling term in the Hamiltonian.
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2.6.3 Systematic effects from Bloch oscillation excited states

With this new understanding, are there potential systematic effects associated with the
higher Bloch bands? Fortunately, our experiment symmetrically accelerates both interfer-
ometers at the same time, so the main effects are common mode to both interferometers.
We would therefore only be sensitive to asymmetries between the two interferometers. Ex-
perimentally, we have seen some evidence of what might be population in excited states -
when we look at the time of flight traces, there appears to be an initial rapidly decaying
population in the first 10 Bloch oscillations, after which there is a much slower decay in
population. This is exactly the behavior to expect from an initial population an excited
state when the lattice starts ramping, similar to the dynamics shown in Fig. 2.6. Since we
know there is a phase jump on our DDS when beginning the lattice acceleration, it would
not at all be surprising if this is happening. The same non-adiabatic losses will also happen
when unloading the lattice, though the effect is harder to see because the population in the
excited states will stay near the target state instead of tunneling away. Though I don’t think
these shifts will ultimately lead to a systematic, there is more work that needs to be done
here bounding the effect for the final configuration in the alpha measurement.

2.7 Phase evolution during Bloch oscillations

Another important application of the above theory is to demonstrate an understanding of
a wavefunction’s phase evolution during Bloch oscillations. In a freely falling frame, a free-
space wavefunction’s evolution is simply governed by the kinetic energy of the atom. Inside an
optical lattice, however, we have now seen that the wavefunction dynamics are much more
complicated, so the phase evolution of the wavefunction could be simlilarly complicated.
Let’s simulate Bloch oscillations by numerically integrating Eq. 2.32 and work to explain
the entire phase evolution of the wavefunction.

The most natural way to analyze the problem is to project the atomic state onto the
ground state of the optical lattice, since we’re adiabatically following the ground state. This
projection is complex - the magnitude squared tells you the population in the ground state,
and the phase of the projection tells you the phase of the ground state wavefunction. Once
you do this, you find that the phase evolution of the wavefunction comes mostly from kinetic
energy and potential energy (as expected), as well as a small correction from non-adiabatic
effects.

Fig. 2.9 shows the numerical results of this projection as a function of time.20. Fig. 2.9
shows the full evolution of the wavefunction over five Bloch oscillations, which was found by
numerically integrating Eq. 2.32. a) Shows the wavefunction amplitudes in each basis state
for reference. b) Shows the phase of the simulated wavefunction projected onto the ground
state of the lattice, with no assumptions. c) shows the same projection but where the phase
shift from kinetic energy is removed.21 d) removes light shift energy in addition to the kinetic

20More details about how to obtain this projection were discussed in Section 2.6.2, it’s not straightforward
because the simulation frame of reference is different from the frame of reference used to calculate the band
structure

21Since kinetic energy is diagonal in the momentum basis, you do this by multiplying each momentum
state by the integrates kinetic energy phase for that state (with a minus sign so you remove it).
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a)

d)c)

b)

Figure 2.9: Example bookkeeping of the phase evolution during a simulation of Bloch oscilla-
tions. a) The wavefunction amplitudes for reference, b) the phase evolution including phase
from kinetic and light shift energies, c) phase evolution with kinetic energy phase removed,
d) phase evolution with light shift phase removed as well, leaving only the non-adiabatic
phases.
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energy. We can see that kinetic and potential energy explain most of the phase evolution.
The remaining phase is from non-adiabatic effects during lattice loading, acceleration, and
unloading. For a good reference on how to calculate these non-adiabatic phase shifts, see
section V in Tim Kovachy’s paper [48]. For the example shown in Fig. 2.9, I’ve found that
the first-order term in this paper doesn’t accurately replicate the phase seen numerically,
and this is likely because the deep lattice/fast ramp rate in our experiment requires one
to include more terms in the non-adiabatic calculation. If you are determined to get this
calculation correct and the Bloch band picture requires too many higher-order terms, you
might find more luck using a Wannier-Stark picture to analytically calculate phase shifts
[28].

2.7.1 Potential systematics from Bloch oscillations

So there’s more information than you ever wanted to know about Bloch oscillations. If you
read through this entire section, you’re probably burned out trying to get the experiment
to not fall apart and you really just want to know ”Zack, does it shift our measurement or
not?” As it turns out, the systematic shifts from Bloch oscillations very nearly cancel our
in our experiment - this is the reason that the previous α measurement didn’t have to do a
very detailed analysis of systematic effects from Bloch oscillations.

Within one of the interferometers in the SCI geometry, both arms are accelerated in the
same way by the same optical lattice/ same frequency components of our laser. Therefore,
any systematic effects shifting the phase on one arm of the interferometer will (very nearly)
phase shift the other arm as well. The systematic effects you need to worry about are from
very slight intensity differences between the arms of a single interferometer. For n = 5 Bragg
order and T = 100ms, the arms within a single interferometer are separated by 3.5mm so
we’re talking about changes in the laser propagation on a very short length scale.

Moreover, the differential measurement of the SCI between the upper and lower interfer-
ometers can cancel much of any systematic shift that remains. Refer to the SCI geometry
as illustrated in Fig. 1.3 in the first chapter. For example, suppose there was a gradient in
lattice depth vertically in the chamber due to e.g. the Rayleigh range of the beam. In this
case, the upper arm of each interferometer will see a higher/lower lattice depth compared
to the lower arms. Systematic effects from this type of gradient in a potential are cancelled
by the SCI geometry - they have the same symmetry as the gravitational acceleration or a
uniform B-field, which are uniform gradients in some type of potential energy.

The systematic effects that can remain from Bloch oscillations are due to the difference
in the light shift gradient between the upper an lower interferometer at the time of the
Bloch oscillations. The upper interferometer is only offset from the lower interferometer by
≈ 175µm at the time of Bloch oscillations due to the ≈ 5ms propagation time between the
second Bragg diffraction pulse and the start of Bloch oscillations. The only Bloch oscillation
phase shifts that could then remain are related to higher order gradients in the laser intensity
on the length scale of 175µm, which will be extremely small.

Let’s walk through an example of the old alpha experiment assuming a Gaussian beam
with waist 3.24mm beam waist.22 Section 2.7 just showed that almost all of the phase from

22Chenghui’s thesis says their beam waist was 2.29mm, but I’m almost positive he meant
√
2∗2.29mm as
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e)
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Figure 2.10: An estimate of phase shifts from the integrated light shift during Bloch oscil-
lations as a function of the height in the chamber where Bloch oscillations occur. a-c) show
an estimate of the Gaussian beam profile used in the old alpha experiment, d-f) shows the
same estimate but with a highly perturbed beam. a) and d) show the total light shift phase
on a single interferometer arm. b) and e) show the phase difference of the upper arm minus
the lower arm for a single interferometer. c) and f) show the total SCI phase shift from the
upper interferometer minus the lower interferometer. See text for more details.

Bloch oscillations (aside from kinetic energy) comes from light shift energy - we can calculate
typical systematic effects from gradients in the light shift energy of a beam.

Fig. 2.10a-c) shows the light shift for the configuration of the old alpha experiment to give
a rough estimate of the size of the systematic shift. These results are very insensitive to the
location of the beam focus because retro-reflection reverses the direction of divergence of the
beam. d-f) show the same configuration but with a dramatically perturbed beam. The beam
here is assumed to have a sinusoidal perturbation of ±5% of the total amplitude and a spatial
wavelength of the perturbation of q ≈ 300µm - it’s chosen as an example of a complicated
propagation pattern that has substantial intensity gradients along the propagation axis.

the 1/e2 radius. The corrected number reproduces a much more accurate Gouy shift as given in their error
table, and also 2.29mm 1/e2 radius would just be way too small for their 2mm 1σ atom cloud - if this were
the case, the 1σ point of the atom cloud distribution would see 50% laser intensity relative to the maximum
of the beam. Since Bragg diffraction is non-linearly sensitive to lattice depth, they would have had much
worse contrast experimentally than we see in their old data.
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For details about the propagation of this beam, see Chapter 5. The calculation assumes a
lattice depth of 20Er, a Bloch acceleration of 10g where g ≈ 9.8m/s is the gravitational
acceleration on earth’s surface, and N = 200 Bloch oscillations. The lattice depth and
number of Bloch oscillations are slightly exaggerated relative to the old experiment. These
parameters give roughly 1000 rad phase from light shift in total. Fig. 2.10c) shows that the
phase shift in the old experiment would have been extremely small and not a systematic
effect in the measurement.23 Fig. 2.10f) shows that even a highly perturbed beam might
lead to ≈ 10mrad shifts in a single location of the beam, but when averaged over the atomic
ensemble this effect will average to zero and not contribute to a systematic effect.

The conclusion from this section is that we don’t need to worry about systematic effects
inherent to the basic Schrodinger equation dynamics during Bloch oscillations, particularly
from the light shift. However, there are still systematic effects due to Bloch oscillations
- primarily from intensity inhomogeneities in the beam causing deviations δk in the local
k-vector of the laser beam. This leads to a change in the kinetic energy of the atom after
receiving h̄(k+δk) momentum kicks from the laser beam. Chapter 5 explores these systematic
effects related to the spatial intensity profile of the laser beam and deviations in the k-vector
of the laser.

2.8 Dimensionless units

This section outlines the dimensionless unit system used for deriving the dimensionless
Schrodinger equations presented in this chapter, and it is also the units system used for
all of the Monte Carlo code. The most useful dimensionless unit system for our Hamiltoni-
ans, also called ‘recoil units’, is one where h̄ = MCs = k = 1, k being the wavevector of the
laser and MCs being the mass of Cesium 133.

In the Monte Carlo discussed in Chapter 5, unit conversion is controlled automatically
by a library for adding and removing units so that you don’t need to think about numerical
prefactors when converting quantities. Once the library is set up correctly, it dramatically
reduces possible conversion errors as long as you’re using it correctly. If you’re spending
a lot of time with the Monte Carlo code, I would still recommend you understand how to
use these relationships in order to understand the unit engine in the code/ how to bring
simulated quantities back to experimental units correctly.

Table 2.8 summarizes many of the core relationships in this dimensionless unit system.
The left column defines a dimensionless variable, typically indicated with a tilde over the
normal variable. The middle column shows an equivalent dimensionless expression where
the standard variable with dimensions is multiplied by a conversion to remove units from
the expression. The final column again shows an equivalent expression but where I have set
h̄ = k = MCs = 1 from the previous column. This last column is useful when converting
equations with dimensions to equations without dimensions - the procedure for converting an
equation is to set h̄ = k =MCs = 1 throughout the equation, then substitute the equivalent
of any variables with dimensions. For example, if the acceleration a is in the equation,
substitute a = ã/4. When this is done for all variables in an equation in a consistent way,
you end up with a valid dimensionless equation with dimensionless variables.

23The error bars in their final measurement were on the order of 1 mrad, in units of total phase
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Dimensionless variable Dimensional equivalent Numerical equivalent

Position, velocity, and acceleration relationships

x̃ kx x

ṽ = dx̃
dτ

k
ωr
v 2v

ã = d2x̃
dτ2

k2

ω2
r
v 4a

λ̃ λk = 2π
k
∗ k 2π

Time, frequency and energy relationships

ω̃r ωr × MCs

h̄k2
= h̄k2

2MCs
× MCs

h̄k2
1
2

Ẽr = ω̃r Er × MCs

h̄2k2
= h̄2k2

2MCs
× MCs

h̄2k2
1
2

τ ωrt
t
2

ω̃ ω−1
r ω 2ω

r̃ = d(∆ω̃)
dτ

ω−2
r r 4r

F̃ F k
ω2
rMCs

4F

Ω̃ Ω
Er

2Ω

Table 2.1: A table of relationships between dimensionless and dimension-full variables in a
recoil unit system.
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I’ll also document some other useful relationships between some of these variables. An
optical lattice is described by the following cosine argument

cos(2kx−∆ωt) = cos(2x̃−∆ω̃τ) (2.39)

from which we can see the lattice velocity is given by

v =
∆ω

2k
(2.40)

or in dimensionless units,

ṽ =
∆ω̃

2
(2.41)

Converting units is very easy in an already dimensionless expression such as within a cosine
or exponential argument because the units already cancel out, so there are no extra factors
of 2. Also, note that the optical lattice has a spatial period of λ/2 ⇒ λ̃/2 = π.

The frequency ramp rate r is related to the force F and acceleration a that the atoms
see by

r =
d(∆ω)

dt
= 2k

dv

dt
= 2ka =

2kF

MCs

(2.42)

or equivalently

F =
rMCs

2k
(2.43)

or in dimensionless units,

F̃ =
r̃

2
(2.44)

A useful experimental quantity is the frequency ramp rate that corresponds to gravitation
acceleration of the optical lattice. This is relevant experimentally because this is how fast
we need to ramp our frequencies to compensate for gravity. 24.

r = 2ka = 2 (2π/(852nm))
(
9.8m/s2

)
= 1.45 ∗ 108s−2 (2.45)

This equation gives us the angular frequency ramp rate. Experimentally, we use units of
Hz to program our DDS frequency synthesizers. If you divide by 2π, you get 23 kHz/ms,
which you should have memorized if you are working on any Cesium atom interferometer
that experiences gravitational acceleration. The mobile gravimeter project in our group
measured this quantity at the 10−9 level [96]. In our experiment, we need to know this ramp
rate much better than the 10−5 level.25

24Experimentally, we actually ramp the drive of a double-passed AOM so the frequency ramp rate that
we generate is half this rate.

25We need errors in the optical lattice velocity relative to the freely falling atoms to be much less than a
recoil velocity during the interferometer time. The Bragg velocity bandwidth is on the order of 0.2vr, and
even smaller velocity shifts cause diffraction phases. One recoil velocity/recoil frequency in one second is
3.5kHz/s which is ≈ 10−5 shift on the 23kHz/ms ramp rate.
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The Bloch period26 is given by [45]:

Tb =
2πh̄

Fd
=

4h̄k2

rMCs

(2.46)

where d = λ/2 is the optical lattice period. In dimensionless units,

T̃b =
4

ωrr̃
=

8

r̃
(2.47)

A useful number to remember experimentally is that the Bloch period due to gravitational
acceleration in an 852 nm lattice is around 700µs. We ramp at 10g in our experiment so the
Bloch period is about 70µs.

Note that in the above unitless system, t = ωrτ = τ/2, or in words, one unit of dimen-
sionless time is an inverse recoil frequency. I could have alternatively defined t = 2ωrτ = τ .
Either way, you’ll end up with factors of two in your equations no matter what you choose.
I chose to define things this way so that we can think of dimensionless time as x number of
recoil times, or dimensionless frequency as x number or recoil frequencies, or dimensionless
energy/ lattice depth as x number of recoil energies. The alternate definition would have
made converting equations easier, but interpreting the variables harder. I think this way
we have to carefully derive equations, but then after this is done correctly we will make far
fewer factor-of-2 mistakes converting between experimental and dimensionless quantities.

2.9 Laser power to lattice depth

For lack of a better place to put this section, it’s going here. Have you ever wondered
what ’Ω’ actually is, and how it relates to the optical power you’re sending at the atoms in
lab? Here’s a conversion for our experiment that was checked experimentally. Note that all
frequencies here are assumed angular frequencies.

The light shift27 here will be called the optical dipole potential Udip. The lattice depth
Ω, relevant once you have a retroreflected beam, is given by (in terms of single photon Rabi
frequency Ω0 and detuning δ):

Ω =
Ω2

0

2δ
=

Γ2

4δ

I

Isat
(2.48)

where the second equality follows from Eq. 49 in Steck D Line Data [77]:

I

Isat
= 2

(
Ω

∆

)2

(2.49)

After much looking into this equation, it turns out that we need to amend this slightly for
our experimental situation on the α experiment - the above applies to beams far-detuned
compared to the splitting between the D1 and D2 lines. When we’re around 10 GHz from

26The time needed for an atom to traverse the first Brillouin zone and transfer 2h̄k recoil momentum.
This will be explained in detail in subsequent sections

27Formerly known as AC Stark shift, but Stark was a Nazi so I try to use the term light shift instead. The
two terms are interchangeable as far as the physics in this thesis is concerned
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the D2 line but ≈ 15THz from the D1 line, the D1 line contribution can be ignored and the
contribution from the D2 line is only 2/3 what you would expect from the above equations
due to the relative line strengths. See Eq. 19 in [36] for a quantitative treatment of this.
Ignoring the D1 line, the lattice depth becomes:

Ω =
Ω2

0

2δ
=

Γ2

6δ

I

Isat
(2.50)

This definition of lattice depth/Rabi frequency Ω corresponds to a Hamiltonian:

H =
p̂2

2MCs

+ h̄Ωcos (2kx−∆ωt) + h̄ωStark (2.51)

In my opinion, saturation intensity is a messy parameter to use in calculations for our exper-
iment. Generally, it depends on laser detuning as shown in Eq. 2.49, however in references
the resonant saturation intensity is always quoted [77]. It also depends on polarization, but
that is not immediately obvious from Eq. 2.49. It is a useful quantity for order-of-magnitude
lab estimates, and was probably very useful for thermal vapor spectroscopy back in the day,
but it’s a bit outdated for our coherent operations.

Another way of approaching this calculation in addition to Eq. 2.48 above, follows
reference [36]: the light shift for a single traveling wave beam is given by (see Eq. 19 in [36]):

U0 =
πc2

ω3

Γ

∆
I(r) (2.52)

Note here that this assumes that we are very very far detuned from the D1 line so we only
need to use the term from the D2 line.

If you have two counter propagating beams, you get the above light shift from each beam,
and then two two beams interfere such that the shift oscillates between zero and twice the
two light shifts, i.e. the total amplitude of the lattice depth is four times the traveling wave
light shift (for equal intensities in each beam - otherwise it will differ from four). Since we
define the lattice depth as the amplitude on a cosine wave, then was have Ωlattice = 2Ωtraveling.
When defined this way, the intensity in Eq. 24 refers to the intensity in one of the beams,
not the total intensity.

This agrees with the text near equation 42 in [36]. Also, this numerically agrees with
the above Eq. 2.50 if you use Isat = 1.1mW/cm2, which is the saturation intensity for σ±

polarized light, as we use in our experiment. This agrees with the text below Eq. 52 in [77],
that the saturation intensity is typically quoted as the smallest value saturation intensity
which corresponds to circularly polarized light.

Now we can write an equation for the total optical power in a Gaussian beam giving a
certain lattice depth. A Gaussian beam has a peak intensity of twice the power over the
mode area πw2

0, such that the intensity distribution is given by

I(r⃗) =
2P

πw2
0

e
−2

|r⃗|2

w2
0 (2.53)

Putting these together, we can relate the total power to the lattice depth:28

28Note that when written this way, the power P is the power in a single frequency component. A single
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U0 =
2πc2

ω3

Γ

∆

2P

πw2
0

e
−2

|r⃗|2

w2
0 (2.54)

or, solving for the optical power,

P = U0
ω3

2c2
∆

Γ

w2
0

2
e
2
|r⃗|2

w2
0 (2.55)

If the powers in each beam are not equal, then this relation is slightly modified. The lattice
depth to intensity equation becomes

U0 =
2πc2

ω3

Γ

∆

√
I1(r)I2(r) (2.56)

since it is actually the electric field interference that is creating the lattice depth. Let’s
introduce a power ratio β such that I2 = βI1. Then the power needed in beam 1 is

P1 =
U0√
β

ω3

2c2
∆

Γ

w2
0

2
e
2
|r⃗|2

w2
0 (2.57)

and P2 = βP1. We relate this to the dimensionless lattice depth using the relation U0 = Ũ0Er.
This equation was verified with experimental data from December 14th and 15th, 2022.

At the chamber we needed 15.6 mW and 6.0 mW in our two beams used to drive a 3rd order
Bragg diffraction π/2 pulse. Pulse width was 20 µs, beam waist (1/e2 instensity radius) was
7.75mm. Simulation predicted we needed a lattice depth of 11.3Er for these conditions. I’ll
outline the calculation here just to avoid any confusion in the future. Here, P1 is the smaller
of the two powers (6.0mW):

P1 =
11.3Er√

2.6

2π351THz

2(3 ∗ 108m/s)2
2π ∗ 1.81GHz

2π ∗ 5.22MHz

(7.75mm)2

2
∗ 1 (2.58)

where Er = h̄ ∗ 2π ∗ 2066Hz. This gives P1 = 5.96mW, so we have a 1% error. This
calculation is definitely not accurate to this level of accuracy - we knew the beam waist to
5% accuracy, and the experimental Rabi flopping likely over-drove the on-axis atoms, which
is what we calculate here. In any case, the above is likely accurate at the 5-10% level which
should at least be free of 2 or π errors.29

frequency component could be retro-reflected to create a lattice with this lattice depth, or two frequency
components each with power P could co-propagate and then be retro-reflected each other. For the latter,
this equation describes the lattice depth of one of the moving lattices formed by e.g. the up-going ω1 beam
interfering with the down-going ω2 beam.

29not to say that there couldn’t be errors that are cancelling out...
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Chapter 3

Symmetric Bloch oscillations of
matter waves

3.1 Pre-introduction

The work in this chapter was published as [65]. When I first joined the fine-structure constant
project, I was working on fixing their Bloch oscillation simulations and I was peppering
Richard Parker a non-stop barrage of questions. One of the questions was - what happens
when you bring the two lattices during multi-frequency Bloch oscillations to zero velocity
difference? If you start the lattices at the same velocity and then accelerate the lattices away
from one another, could you create a beamsplitter? According to our PI Holger Mueller,
some Stanford folk were discussing the possibility of this process back in the day but they
decided that it wasn’t possible for the process to be adiabatic. I had just worked out how
to simulate normal Bloch oscillations correctly and testing this question was a very simple
extension of the existing simulation. It worked! Weicheng Zhong, an old labmate, helped
me run the old-α experiment in order to realize experimental symmetric Bloch oscillations.
In the background of this experimental push, I was working on the theory to show why it’s
coherent, and found some beautiful symmetrical physics.

Experimentally, we demonstrated a coherent momentum splitting within an interferom-
eter of up to 240h̄k -the second highest to date at the time of publication. This was no
small achievement. That said, I do want to be frank with the reader about some pitfalls in
using symmetric Bloch oscillations for metrology. I realized late in the publication process
that symmetric Bloch oscillations play very poorly with finite velocity width atom clouds
(in the axial direction). If an atom is moving slightly upwards, it is much more likely to
be swept up by the upward-moving lattice instead of being coherently split in two. This
symmetry breaking means that you can’t just ramp slower to get a more adiabatic/coherent
process - actually you need to ramp quickly in order to address most of the atoms in your
finite-temperature atom cloud. Some of the plots in the paper show efficient beam-splitters
that efficiently split the population, but didn’t split the individual atomic wavefunctions
coherently.

Another nasty effect is that the mechanics of how the reflection / recombination pulses
work rely on a coherent interference between the even- and odd-parity ground states. The
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relative phase of these states depends on the lattice depth. As a result, lattice depth fluc-
tuations can directly cause errors in the reflection/recombination pulses. Since the atoms
acquire a lot of light shift phase in the lattice, these errors scale very poorly with lattice
depth shot-to-shot noise. This didn’t seem to be an issue in the old-alpha experiment - a)
they had a highly optimized pulse-shaper servo that was used for the actual measurement
of alpha, and b) we used very fast ramp rate parameters which would have minimized the
phase from lattice depth noise.

It’s good to keep these in mind while reading this chapter. In any case, the math behind
the process is still extremely satisfying - it’s not every day that you get to find the energy
band structure of a new Hamiltonian using a beautiful symmetry of the problem.

3.2 Abstract

Cold atoms in an optical lattice provide an ideal platform for studying Bloch oscillations.
Here, we extend Bloch oscillations to two superposed optical lattices that are accelerated
away from one another, and for the first time show that these symmetric Bloch oscillations
can split, reflect and recombine matter waves coherently. Using the momentum parity-
symmetry of the Hamiltonian, we map out the energy band structure of the process and
show that superpositions of momentum states are created by adiabatically following the
ground state of the Hamiltonian. The relative phase and velocity of the two lattices com-
pletely determines the trajectories of different branches of the matter wave. Experimentally,
we demonstrate symmetric Bloch oscillations using cold Cesium atoms where we form in-
terferometers with up to 240h̄k momentum splitting, one of the largest coherent momentum
splittings achieved to date. This work has applications in macroscopic tests of quantum
mechanics, measurements of fundamental constants, and searches for new physics.

3.3 Introduction

Bloch oscillations and the Wannier–Stark ladder of matter waves in a periodic potential were
first studied in the context of electrons in crystals in the presence of a homogenous electric
field [7, 87]. Their counterintuitive nature—that a constant electric field should lead to an
ac current—triggered a debate about their existence [72, 102] and led to the formulation
of criteria for their observability [62]. Bloch oscillations were first experimentally observed
in semiconductor superlattices [26, 88], and have since been studied in a wide variety of
physical systems ranging from Bloch oscillations of light [101, 21] to cold atoms [18, 92].
Bloch oscillations are particularly useful in matter wave interferometers, which have found
widespread applications in precision measurements of fundamental constants [67, 8, 74, 30],
tests of the weak equivalence principle [107, 75] and dark energy theories [37, 41], as well as
precision gravimetry [106, 96] and gradiometry [4].

Matter wave interferometers use optical lattices to coherently transfer momentum, allow-
ing one to split a matter wave between different spatial trajectories, then later recombine
them and create interference. The measured phase can be increased by using larger momen-
tum splitting between the trajectories [67, 8]; Bloch oscillations enable such a process [18, 11]
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and have recently shown to coherently transfer the momentum of more than 104 photons to
the atoms [98]. With two superposed lattices that are independently accelerated, it might
even be possible to realize large-momentum-transfer beam splitters for matter waves, by
performing Bloch oscillations of two different velocity classes of atoms simultaneously [52].
However, this process has never been demonstrated. Near velocity degeneracy of the two ac-
celerated lattices, it was expected that non-adiabatic effects would prevent coherent ground
state dynamics. Instead, Bloch oscillations have only been used to accelerate atoms after an
initial momentum splitting was already made with Bragg diffraction [61, 67], resulting in up
to 408h̄k momentum splittings [1, 32], where k is the wavevector of the laser.

Here, we show that Bloch oscillations of atoms in two symmetrically accelerated lattices
can remain adiabatic and coherent even as the two lattices pass through velocity degeneracy.
Theoretically, we show that it is possible to split, reflect, and recombine atoms simply by
allowing them to adiabatically follow the ground state of the Hamiltonian while accelerating
the two lattices. The dynamics result in symmetric Bloch oscillations where the matter
wave is in a coherent superposition of interacting with each of the two lattices, and the
relative phase and velocity of the two lattices completely determines the trajectories of
different branches of the matter wave. Experimentally, we demonstrate symmetric Bloch
oscillations and realize 240 h̄k coherent momentum splitting of a superposition state as well
as interferometry with nearly fully-guided matter waves.

Using only accelerated lattices for momentum transfer is desirable for a number of rea-
sons. In comparison with resonant processes such as Bragg diffraction, 1) the dynamics
are adiabatic, and can therefore be much more efficient per h̄k momentum transfer, 2) the
processes require less laser power, 3) the velocity class of atoms addressed can be larger, re-
laxing temperature requirements on atom clouds, and 4) the optical lattices prevent thermal
expansion of the atom cloud, further relaxing temperature requirements. As a result, sym-
metric Bloch oscillations can find applications in next-generation precision measurements
of fundamental constants, searches for gravitational waves, and searches for new physics
[100, 75, 31, 35, 41].

Section 3.4 presents a theoretical treatment of the Hamiltonian and the resulting dynam-
ics. The Hamiltonian is symmetric under momentum inversion, allowing one to simultane-
ously diagonalize the Hamiltonian in momentum parity and energy. For the beamsplitter
process described above, we show that an atom adiabatically follows the even-parity ground
state of the Hamiltonian. The momentum-parity basis is then used to study effects such as
non-adiabatic losses, dynamics while ramping the lattices through velocity degeneracy, and
effects from different experimental imperfections.

In section 3.5, we describe how we implement symmetric Bloch oscillations experimen-
tally. We use the relative phase between the two lattices to control the populations in the
two lattices after ramping through velocity degeneracy; in effect, this creates a fully tunable
matter-wave switch each time the lattices cross through velocity degeneracy. We demonstrate
the first interferometers created only using accelerated lattices, including a Mach–Zehnder
(MZ) interferometer with a momentum splitting of up to 240h̄k. Prior to this work, the
largest momentum transfer from a single beamsplitter operation was 24h̄k [58]. In order
to confirm that symmetric Bloch oscillations are first-order phase coherent, we implement
a differential measurement between two simultaneous MZ interferometers and see a stable
phase between the interferometer outputs.
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Figure 3.1: a) Density plot of |ψ(x, t)| from numerical simulation of a symmetric beamsplitter
with a lattice depth U0 = 1.3Er and ramp rate r = 0.2ω2

r . Timing sequence is indicated on
the left. The initial wavefunction is a Heisenberg-limited Gaussian wavepacket with velocity
spread 0.05 vr, corresponding to our experimental temperature. Frequencies are ramped for
one Bloch period, corresponding to a 4h̄k splitting between arms. b) Experimental time of
flight fluorescence trace showing an efficient 60h̄k beamsplitter with a ramp rate r = 0.26ω2

r ,
and a lattice depth of around 1.5 Er.
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3.4 Theory

When two superposed optical lattices are far apart in velocity, it is well known that atoms
can undergo efficient Bloch oscillations in either of the lattices [61, 67, 1, 32]. Near velocity
degeneracy, however, it was previously expected that near-resonant effects from the second
lattice would cause too large of a perturbation to the standard Bloch oscillation dynamics to
permit an efficient beamsplitter. We first derive a unitary transformation that isolates the
relevant dynamics (Sec. 3.4.1), and then show that the effects of the perturbation terms can
remain small within the rotating wave approximation under certain conditions (Sec. 3.4.2).
Throughout the analysis, it is useful to stress the parallels between Bloch oscillations in a
single lattice (SLBO) and Bloch oscillations in two lattices which we call dual-lattice Bloch
oscillations (DLBO). The simplified DLBO Hamiltonian is nearly identical to the SLBO
Hamiltonian, differing only in being invariant under momentum inversion. As a result, the
eigenstates of DLBO are symmetric and anti-symmetric in momentum space.

We then study non-adiabatic loss mechanisms, which include standard Landau–Zener
tunneling due to avoided level crossings as well as higher-order transitions which are possible
due to perturbation terms dropped in the rotating wave approximation (Sec. 3.4.3). These
conditions are combined to place limits on the permissible lattice accelerations and lattice
depths, and in total they allow for the DLBO to approach 100% efficiency in the limit of
slowly accelerated lattices (Sec. 3.4.4). The dynamics are also discussed for lattices that
are ramped through velocity degeneracy, showing that an offset laser phase can be used
to coherently control the output population in the two lattices (Sec. 3.4.5). Lastly, we
discuss some important experimental requirements in order to realize these methods in the
laboratory (Sec. 3.4.6), and supporting material is left for Sec. 3.7.

3.4.1 Hamiltonian and unitary transformation

SLBO are most easily studied using a coordinate system that is comoving with the acceler-
ating lattice [14, 45, 68], and a unitary transformation can be used to boost the Hamiltonian
between the atom’s inertial frame and the accelerating lattice frame [48, 68]. For DLBO, it is
not possible to transform to a coordinate system that is simultaneously comoving with both
lattices. Instead, using a basis of momentum states it is possible to independently transform
each momentum state so that positive (negative) momentum states are boosted to a coor-
dinate system comoving with the positively (negatively) accelerating lattice. This unitary
transformation is shown to capture the core coherent dynamics of DLBO. The analysis that
follows is relevant for zero temperature atoms comoving with the initially degenerate lat-
tices: a similar analysis can be explored for atoms with a small initial velocity, and the band
structure of the Hamiltonian can still be studied. One finds that any initial velocity breaks
the parity symmetry discussed in the following sections and leads to asymmetric dynamics.
A full analysis is beyond the scope of this paper.

We begin with a Hamiltonian containing the AC Stark shift of two superposed optical
lattices that are far detuned from single-photon transitions (see Fig. 3.2). Experimentally,
the lattices are realized with one upward-propagating laser frequency ω1, and two downward-
propagating frequencies ω2 ± ωm(t). We work in the frame of reference where ω1 = ω2 = ω,
and denote ω± = ω ± ωm(t). The relative speed of the two lattices is given by ωm(t)/k,
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Figure 3.2: a) Counter-propagating lasers form two superposed optical lattices. The fre-
quency differences are ω+−ω = ω−ω− = ωm. b) Energy-momentum level diagram showing
relevant atomic states. The lasers drive two-photon transitions between neighboring mo-
mentum states such that the atom remains in the same internal ground state. The detuning
from the excited states ∆ (many GHz) is much larger than the separation between adjacent
ground states (few kHz). As the modulation frequency ωm is swept away from zero, the
lasers sweep past a succession of two-photon transitions between adjacent ground states.
Off-resonant transitions driven by the extra oscillating terms in the Hamiltonian (Eq. 3.4)
are omitted for clarity.
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where k is the wave number of the laser defined as k = ω/c. Two-photon transitions leave
atoms in the same internal state but different external momentum states. After adiabatic
elimination of the excited state, the Hamiltonian for an atom in these two optical lattices
can be written as:

HBBS(t) =
p̂2

2m
+
U0

2

(
cos

[
2k+x̂+

∫ t

0

ωm (t′) dt′ + ϕ1

]
+ cos

[
2k−x̂−

∫ t

0

ωm (t′) dt′ + ϕ2

])
=

p̂2

2m
+ U0 cos [2kx̂] cos

[∫ t

0

ωm (t′) dt′ + ϕ0

]
. (3.1)

Constant terms are dropped in the second form, which will be used for analytics and
simulation. The wave numbers k+ = ω+/c and k− = ω−/c are nearly identical to k, so we
approximate k+ ≈ k− ≈ k in the second form as well. For Cs atoms separated by n = 1000
photon momenta, k+, k−, and k differ by less than one part in 108. The phases ϕ0, ϕ1,
and ϕ2 are offsets between counter-propagating lasers at time t = 0. The lattice depth
U0 = h̄Ω2

R/(2∆) is the AC Stark shift for a single, far-detuned lattice [14], where ∆ is the
detuning from the excited state and ΩR is the on-resonance Rabi frequency between the
ground and excited states. The integral

∫ t

0
ωm (t′) dt′ keeps track of the phase evolution of

the lattice for time dependent frequencies. Specializing to linear frequency ramps with rate
r, the modulation frequency can be written as ωm(t) = rt so that the lattices are velocity
degenerate at time t = 0 and

∫ t

0
ωm (t′) dt′ = rt2/2. This ramp rate corresponds to an

acceleration a = r/2k.
We now write the Hamiltonian in a momentum-state basis |l⟩, where l is an integer that

labels the basis states such that the state |l⟩ has 2lh̄k momentum. Plane-wave basis states
are a good approximation to initial atomic states when the velocity spread is much smaller
than the recoil velocity vr = h̄k/m. Projected into this basis, the Hamiltonian is:

H =
∞∑

l=−∞

(
(2lh̄k)2

2m
|l⟩⟨l|

+ U0 cos

(
rt2

2
+ ϕ0

)
(|l⟩⟨l + 1|+ |l⟩⟨l − 1|)

)
(3.2)

The unitary transformation used to boost the different momentum states in this Hamil-
tonian is given by:

U =
∞∑

l=−∞

ei
d(t)|p̂|

h̄ ei
θ(t)
h̄ |l⟩⟨l| (3.3)

where d(t) ≡ at2/2+ϕ0/k and θ(t) ≡ ma2t3/6. The first term corresponds to the position
translation operator, and the absolute value sign ensures that positive momentum states are
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translated with the positive-moving lattice while negative momentum states are translated
with the negative-moving lattice. The d(t) term in Eq. (3.3) also absorbs the offset phase ϕ0

into the definition of the basis states. The θ(t) in Eq. (3.3) corresponds to a global energy
shift to each state such that the energy of the ground states comoving with either of the
lattices stays near zero at all times [48]. See Section 3.7.1 for the analogous treatment of the
SLBO Hamiltonian.

The transformed Hamiltonian H ′ = UHU † + ih̄dU
dt
U † is:

H ′ =
∑
l ̸=0

[
(2|l|h̄k − Ft)2

2m
|l⟩⟨l|

+
U0

2

(
1 + eisl(rt

2+2ϕ0)
)
|l⟩⟨l + 1|

+
U0

2

(
1 + e−isl(rt

2+2ϕ0)
)
|l⟩⟨l − 1|

]

+
(Ft)2

2m
|0⟩⟨0|+ U0

2

(
1 + e−i(rt2+2ϕ0)

)
(|0⟩⟨1|+ |0⟩⟨−1|) (3.4)

where sl ≡ l/|l| is the sign of the momentum state, and the force F = rm/2k is adapted
from the standard treatment of SLBO [14].

The nearest-neighbor coupling terms proportional to |l⟩⟨l ± 1| include both a stationary
term and an oscillating term. In a two-level system, oscillating coupling terms of this type can
be dropped under a rotating wave approximation (RWA) provided the terms time-average
to zero on the relevant timescale of the dynamics. Here, the couplings between neighboring
momentum states can be treated with an analogous RWA to arrive at the reduced DLBO
Hamiltonian:

HDLBO =
l=∞∑
l=−∞

(2|l|h̄k − Ft)2

2m
|l⟩⟨l|

+
U0

2
(|l⟩⟨l + 1|+ |l⟩⟨l − 1|) (3.5)

The validity of this RWA is discussed in Sect. 3.4.2, where we derive bounds on the ramp
rate for which the Hamiltonian in Eq. (3.5) is valid.

The DLBO Hamiltonian in Eq. (3.5) and the SLBO Hamiltonian derived in Section 3.7.1
are nearly identical; the only difference is the absolute value |l| in the kinetic energy term
for HDLBO, which makes HDLBO symmetric under momentum inversion. This symmetry
is already apparent in the original Hamiltonian (3.1), which commutes with a momentum
inversion operator. Using a basis of momentum eigenstates that are also eigenstates of
momentum-parity, the even- and odd-parity states are decoupled.

Figure 3.3 (a,b) shows the energy band structure over time of the Hamiltonian (3.5)
for even- and odd-parity states, respectively, where the two lattices are ramped away from
velocity degeneracy beginning at time t = 0. The energy bands are calculated by finding
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Figure 3.3: Energy band structures of the reduced Hamiltonian (3.5) as a function of the
lattice velocity, using a lattice depth U0 = 1Er. The lattice velocity is defined as vL = rt,
such that the two lattices at time t have velocities ±vL. a) Even-parity and b) Odd-parity
energy eigenvalues starting from velocity degeneracy. c) Combined band structure as lattices
are ramped through velocity degeneracy.
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eigenvalues of a truncated version of the Hamiltonian in Eq. (3.5) as a function of time. Note
that in plotting the energy bands in Fig. 3.3c, for negative times we use the substitution
d(t) → −d(t) in Eq. (3.3) in order to use the coordinate frame comoving with the lattices
driving amplitude towards zero momentum instead of driving amplitude away from zero
momentum.

A beamsplitter can be understood as an atom adiabatically following the even-parity
ground state of the Hamiltonian (3.5), and higher efficiency beamsplitters can be achieved
by making the process more adiabatic. At every time t = (a + 1/2)TB for integers a ≥ 0,
where the Bloch period TB = 8ωr/r and the recoil frequency ωr = h̄k2/(2m), there is a level
crossing such that the even-parity state receives an additional 4h̄k momentum splitting; the
positive momentum component of the even state acquires an additional +2h̄k momentum
and the negative momentum component acquires an additional −2h̄k momentum. This is
the momentum-symmetric analogue of SLBO in the ground Bloch band, where atoms receive
2h̄k momentum at the edge of the first Brillouin zone at each avoided level crossing between
the ground band and first excited band.

3.4.2 Limits on ramp rate from the rotating wave approximation

A RWA can be used to drop the oscillating coupling terms in Eq. (3.4) provided that the
time-average of the oscillating term eirt

2
is ≪ 1 on the relevant timescale of the dynamics,

namely the duration of first level crossing between the ground even band and the first excited
even band. This crossing occurs at time t = TB/2, and the time interval during which the
level crossing happens is given by ∆t = 2

√
2U0/(h̄r). A simplified form of the resulting

inequality gives an upper limit on the ramp rate for which the RWA is valid:

r ≪ 4U0(2
√
2Er − U0)/h̄

2 (3.6)

where we define the recoil energy Er = h̄ωr. The RWA is therefore valid in the limit as
r → 0. See Section 3.7.3 for a full derivation of this condition.

The validity of the RWA can be further studied with numerical simulation. By solving for
the evolution of |ψ(t)⟩ from the Hamiltonian in Eq. (3.4), the full state evolution is captured
without using the RWA. We numerically integrate the Schrödinger equation with the Hamil-
tonian Eq. (3.2). The initial condition is a free particle (plane-wave) momentum state which
is adiabatically loaded into the lattice; the modulation frequency is then ramped to its final
value, and finally the lattice is adiabatically unloaded. This state evolution can then be com-
pared with the eigenstates of the Hamiltonian in Eq. (3.5) after the RWA. Fig. 3.4a) shows
the probability amplitude in the ground state of Eq. (3.5) during the frequency ramping,
defined as P0(t) = |⟨+gs(t)|ψ(t)⟩|2. The state |+gs(t)⟩ denotes the even-parity ground state
of Hamiltonian (3.5) as a function of time. Fig. 3.4a) shows that the true state evolution is
nearly identical to that of the ground state of the Hamiltonian in Eq. (3.5), which generally
holds true when Eq. (3.6) is satisfied.

To stress the parallel between SLBO and DLBO, we also plot the probability amplitude
in the ground state for SLBO using eigenstates calculated from the Hamiltonian in Eq. (3.10)
in Section 3.7.1. In both SLBO and DLBO, the states pass avoided level crossings at times
t = (a+1/2)TB for integer a, where there is mixing with the second band as well as Landau–
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Zener tunneling losses, which are discussed in Sec. 3.4.3. The dual-lattice simulation doesn’t
project perfectly onto the ground eigenstate around time t = 0 due to the perturbation terms
dropped in the RWA.

3.4.3 Limits on ramp rate from Landau–Zener tunneling and higher-
order transitions

Non-adiabatic Landau–Zener losses arise from the level crossings in Fig. 3.3 between the
first and second even-parity energy bands. For SLBO with weak lattices and slow ramp
rates, the survival probability per Bloch oscillation is given by PLZ = 1 − e−2πΓ1 where
Γ1 = U2

0/(4h̄
2r) is the Landau–Zener parameter [63, 83]. For ramp rates r < ω2

r , this
formula also describes losses from all level crossings of the DLBO Hamiltonian, Eq. (3.5),
except for the two level-crossings at t = ±TB/2. These two crossings between even-parity
eigenstates have an energy gap that is increased by a factor of

√
2, as derived in Section 3.7.2.

The Landau–Zener parameter Γ2 for these two crossings is therefore given by Γ2 = U2
0/2h̄

2r.
All subsequent crossings in DLBO have the same energy gap as SLBO and are described
by the same tunneling parameter Γ1. The dual-lattice beamsplitter is therefore more robust
to Landau–Zener losses at the first level crossing than SLBO at a fixed lattice depth U0, as
shown in Fig. 3.4a).

Fig. 3.4b) shows the simulated efficiency of a single Bloch oscillation at a constant
Landau–Zener parameter for both the SLBO and DLBO Hamiltonians in Eq. (3.2) and (3.7)
respectively. The efficiency is defined as the total population in the desired final momentum
states relative to the initial population. In order to have the same expected Landau–Zener
losses for both simulations, the SLBO lattice depth is increased by a factor of

√
2 for each

ramp rate compared to the DLBO simulation such that Γ1 = Γ2 = 0.3. There is asymptotic
agreement with the Landau–Zener formula for ramp rates r ≪ ω2

r for both single-lattice and
dual-lattice level crossings, as well as additional oscillatory behavior of the DLBO efficiency
compared to the SLBO efficiency owing to the oscillatory terms dropped in the RWA.

The rotating terms being dropped in the RWA can also contribute to higher-order pro-
cesses that couple amplitude from the ground band to higher energy bands, and are further
discussed in Section 3.7.4. The dominant loss channel is a third-order transition that couples
the first and second energy levels around time t = TB/6. These higher-order losses place a
lower limit on the ramp rate for a fixed lattice depth, below which losses from the ground
band begin to be appreciable.

3.4.4 Comparison of limits on the ramp rate

The RWA condition in Eq. (3.6) and Landau–Zener tunneling losses both place an upper
limit on the ramp rate. For Landau–Zener losses, efficient dynamics require r ≪ (π/2)U2

0 h̄
2;

when U0 ≲
√
2Er, the RWA condition in Eq. (3.15) is automatically satisfied if the lattice

depth is large enough to sufficiently suppress Landau–Zener tunneling. The RWA that leads
to the Hamiltonian (3.5) is therefore asymptotically correct in the limit r → 0 provided that
h̄
√
r ≪ U0 ≲

√
2Er. On the other hand, when U0 ≳

√
2Er, both the RWA condition and

the standard Landau–Zener criterion begin to fail because the time windows for successive
transitions begin to overlap non-negligibly.
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Figure 3.4: Comparison of single-lattice and dual-lattice Bloch oscillations. a) Probability
amplitude in the ground state over three Bloch periods. A lattice depth of U0 = 0.5Er and
ramp rate r = 0.02ω2

r are used for both simulations. The lattice depth is intentionally chosen
to be low in order to illustrate loss mechanisms for SLBO in comparison with DLBO. See text
for discussion. b) Simulation of efficiencies after one level crossing. For each ramp rate, the
lattice depth is chosen to keep the Landau–Zener (LZ) parameters constant at Γ1 = Γ2 = 0.3
such that the expected losses from the LZ formula are constant. The atom begins in the
ground state at time t = 0 with ωm(t = 0) = 0 and ϕ0 = 0.
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Figure 3.5: Numerical simulation of beamsplitter losses showing the dependence on the two
most important parameters in the Hamiltonian: frequency ramp rate and lattice depth.
Darker color corresponds to lower losses, or higher efficiency. The simulation includes adia-
batic loading of lattice, frequency ramping for four Bloch periods, and adiabatic unload, such
that the final momentum splitting is 16h̄k. Efficiency is defined as the probability amplitude
on the desired momentum states after unloading the lattice. See text for discussion of loss
mechanisms.

58



Higher-order losses place a lower limit on the ramp rate, and for r ≤ ω2
r , this limit

and the upper limits on the ramp rate from Landau–Zener losses and the RWA condition
can all easily be satisfied. Because of the non-linear scaling of these different limits on the
ramp rate, the maximum possible efficiency of the processes quickly approaches 1 as r → 0;
for r = 0.5ω2

r , the maximum efficiency of the initial 4h̄k momentum splitting in a Bloch
beamsplitter is already > 99%.

Fig. 3.5 illustrates beamsplitter losses as a function of the ramp rate r and the lattice
depth U0. Losses towards the top-left of the plot correspond to Landau–Zener tunneling
losses, and losses towards the bottom-right correspond to higher-order transitions. Moving
towards higher lattice depths and ramp rates, the maximum efficiency of the beamsplitter
decreases because of the competing loss mechanisms.

The two loss channels result in non-zero wavefunction amplitude in momentum states
different from the target states, and these additional momentum states could contribute to
parasitic interferometers. This analysis is beyond the scope of the paper, however we note
that there exist methods to reduce the effects of parasitic interferometers [78].

3.4.5 Crossing through velocity degeneracy

In addition to a beamsplitter, one can also ramp the two lattices through velocity degeneracy
to create atom mirrors and combiners. This process has previously been attempted experi-
mentally [2], but the dynamics were seen to be inefficient and uncontrolled because the ramp
rate, lattice depth, and relative phase between lattices were not optimized. The intuition
for the dynamics through a level crossing are described below, and for a more mathematical
treatment see Section 3.7.5.

Consider two optical lattices with velocities that are initially far apart. One arm of an
interferometer that is initially comoving with one of the two lattices can be understood as
a superposition of an even-parity and an odd-parity ground state. Relative phase shifts
between the even and odd states causes amplitudes to add constructively or destructively
for positive or negative momentum states, which means that a controlled relative phase shift
between the even- and odd-parity states can be used to control the momentum distribution
of the atomic state after crossing through velocity degeneracy.

Figure 3.3c shows the band structure as the lattices are ramped through velocity degen-
eracy at time t = 0. Far from velocity degeneracy, the even and odd ground state energy
bands overlap and have the same level crossing structure. Near time t = 0, however, these
energy bands deviate because, by definition, an odd-parity state in momentum space cannot
have amplitude on the zero-momentum basis state |0⟩. As a result, when crossing through
velocity degeneracy the odd-parity ground state has no level crossing coupling momentum
into or out of the zero momentum state, so the even parity ground state passes through two
additional level crossings at times t = ±TB/2 compared to the odd parity ground state.

Through the coherent interactions with photons from each of the lattices, the relative
phase ϕ0 of the two optical lattices is ultimately added to amplitude in the even-parity state,
but not the odd-parity state. As a result, the offset phase ϕ0 can coherently control the
population in the two lattices after a degeneracy crossing. This allows one to create reflection
or recombination pulses in an interferometer, and together with the beamsplitter process
described previously, this comprises a full set of atom-optics tools for atom interferometry
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(see Fig. 3.6 for experimental implementation).

3.4.6 Experimental considerations

The dynamics of symmetric Bloch oscillations are sensitive to the initial velocity distribution
of an atom. Efficient beamsplitter dynamics are observed for atoms with velocity spreads
of more than σv = 0.5vr, where σv is the standard deviation in velocity of a Heisenberg-
limited Gaussian wavepacket. However, this spatial separation does not necessarily result in
a superposition state in momentum space. For matter wave sources where different velocity
classes are uncorrelated, only amplitude within a certain momentum window ∆p results in
a superposition state, and amplitude to the left (right) of this window in momentum space
will preferentially follow the right-moving (left-moving) lattice [52]. Intuitively, this can
be understood by considering the dynamics in the Brillouin zone. When an atom begins
at zero velocity, symmetric Bloch oscillations apply a force in both directions, and the
quasimomentum can be thought of as being ramped in both directions simultaneously such
that the state reaches both edges of the Brillouin zone at the same time, splitting the atom
symmetrically in a superposition state. If the atom has some initial velocity, however, it
will reach one edge of the Brillouin zone before the other, and as a result amplitude will
preferentially be driven by this first transition.

Numerical integration of the Hamiltonian (3.1) can be used to solve for evolution of a
wavefunction ψ(x, t) with arbitrary initial conditions (see Fig. 3.1) using the Crank–Nicolson
method to discretize the Schrödinger Equation [86, 29]. These simulations confirm that faster
ramp rates result in higher fidelity superposition states in momentum states, which in turn
results in higher contrast interferometers.

Diffraction phases are fundamental to any asymmetric Bragg diffraction beamsplitter
[10, 24], and must be accounted for in precision measurements [67]. For symmetric Bloch
oscillations, if the center of the initial atomic velocity distribution is non-zero, the initial
state has some projection onto the odd-parity eigenstates which leads to asymmmetry and
diffraction phases. The symmetry of the Bloch beamsplitter (see Fig. 3.1) ensures that there
is no diffraction phase that is fundamental to the technique. An initial velocity of the atoms,
however, breaks the symmetry and creates a diffraction phase between interferometer arms.
The numerical study discussed in Section 3.7.6 shows that there are “magic” lattice depths
where the diffraction phase vanishes. For realistic experimental control over the stability
of the lattice depth, the diffraction phase can be limited to ±10mRad, independent of the
momentum splitting. Increasing the momentum splitting will therefore fractionally suppress
the diffraction phase, and diffraction phases can also be measured directly by varying the
time between pulses in an interferometer. Note also that an ensemble of atoms with different
center velocities will result in phase spreading in an interferometer.

The analytic results derived for Landau–Zener tunneling and the rotating wave approx-
imation only apply to slow ramp rates that satisfy the condition in Eq. (3.6). Experimen-
tally, we use larger ramp rates of up to r = 10ω2

r and lattice depths around 8Er in order
to maximize interferometer contrast, which is a region of parameter space that breaks the
assumptions used to derive this inequality. Although the analytical efficiency predictions
break down in this regime, we still observe reasonably efficient dynamics both numerically
and experimentally. In fact, the velocity bandwidth of the beamsplitter is larger at faster
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ramp rates which results in higher contrast interferometers. See Fig. 3.5 for an illustration
of a beamsplitter for different values of lattice depth and ramp rate. Notably, even in regions
of parameter space outside where the RWA is valid, one can still achieve relatively low loss
beampslitters.

3.5 Experiment

Our experimental apparatus has been described previously in [67]. A magneto-optical trap
of Cesium atoms is launched vertically in an atomic fountain. The cloud is further cooled to
a few hundred nK using polarization gradient cooling and Raman sideband cooling. Three
successive Raman transitions prepare the atom in the internal state |F = 3,mF = 0⟩ with a
vertical velocity spread around 0.05 recoil velocities vr.

The frequencies ω1 and ω2 in the Hamiltonian (3.1) are ramped in the lab to compensate
for Doppler shifts from gravitational acceleration of the atoms such that in the atom’s inertial
frame, ω1 = ω2 = ω. The optical lattice is detuned by +80 GHz (blue) from the Cs D2
line, and is formed from a roughly Gaussian beam with 1/e waist of about 3 mm that is
retroreflected. The frequency components ω1 and ω2± are cross-polarized and a quarter
waveplate is placed in front of the retroreflecting mirror such that the desired lattices are
formed upon retroreflection. The laser intensity is actively stabilized by feeding back to the
drive power of an acousto-optic-modulator (AOM) [23].

The modulation frequency ωm(t) from the Hamiltonian in Eq. 3.1 determines the velocity
splitting between the two lattices. It is generated experimentally by mixing the output of an
AD9959 digital frequency synthesizer with a 10-MHz clock and low-pass filtering the output,
after which ωm(t) is mixed into the drive frequency for an AOM to generate frequency
sidebands that are written onto the laser. The offset phase ϕ0 is a tuneable parameter on
the digital frequency synthesizer.

3.5.1 Atom optics with symmetric Bloch oscillations

To create a beamsplitter, atoms are adiabatically loaded into two velocity-degenerate lattices
that initially add constructively to form a single lattice, which corresponds to ωm = 0 and
ϕ0 = 0 at time t = 0 in Eq. (3.1). The modulation frequency is then ramped linearly at
a rate r such that ωm = rt and the two lattices accelerate away from one another. The
resulting momentum distribution is then measured using time-of-flight detection, as shown
in Fig. 3.1b. For a ±2n-photon beamsplitter, the final atomic state after the beamsplitter is
mostly in the |±n⟩ states, with a small number of atoms left in the |0⟩ state.

In addition to an initial beamsplitter, a full interferometer sequence requires reflection
pulses to reverse momentum of the interferometer arms and a recombination pulse to interfere
the two arms together. We find that varying the offset phase ϕ0 between the two lattices from
0 to π controls the population in the two lattices after the degeneracy crossing, varying from
reflection to transmission with a beamsplitter/recombination behavior at an intermediate
ϕ0. This phase also dictates the interference (“beat”) between the two optical lattices at the
time of the modulation frequency zero crossing, as shown in Fig. 3.6b. The optimal phase
offsets ϕ0 are found which maximize population in the desired output channels, as shown in
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Figure 3.6: Experimental realization of a Bloch beamsplitter (yellow), reflection (red), trans-
mission (blue), and recombination (green) as lattices are ramped through velocity degeneracy.
a) Space-time trajectories. b) Intensity profiles of the ω2±ωm(t) interferometry beams, which
are measured by imaging the laser beams on a photodiode just before entering the vacuum
chamber. The profiles show beats between the two frequencies, which is the temporal part
of the potential in the Hamiltonian (3.1). Time t = 0 indicates when ωm = 0. Different
phase offsets ϕ0 result in different beat profiles on the beam. c) Fluorescence traces of atoms
from time-of-flight imaging showing the resulting distribution after various operations.
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Figure 3.7: Experimental realization of a Mach–Zehnder interferometer. a) Interferometer
geometry, laser intensity profile, and profile of the modulation frequency ωm vs. time. The
time interval T is defined based on ωm-zero crossings. A time offset can be used to open
the interferometer to eliminate interference, while δT = 0 leads to maximum contrast. b)
Sample fluorescence trace of a T = 8.5ms, 60h̄k MZ interferometer. c,d) Histogram of
population fractions for 60h̄k and 240h̄k momentum splittings, respectively, in T = 8.5ms
interferometers. Population fraction is defined as (A − B)/(A + B) where A and B are
populations in the two output ports. e) Contrast versus momentum splitting for closed and
open interferometers. For all data points, ωm is ramped at a rate of r/(2π) = 249 MHz/s.
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Fig. 3.6. Note that the optimal phase offset ϕ0 is dependent on both the ramp rate and the
lattice depth U0; the beat profiles shown in Fig. 3.6b are specific to the lattice depth and
ramp rate used experimentally, and will need to be optimized anew if either parameter is
changed. This is due to the fact that the dynamical phase ϕd in Eq. (3.18) is a function of
both the ramp rate and the lattice depth. For the parameters used in our experiment, the
simulated efficiencies are similar to those realized experimentally, but experimentally we see
more atoms lost to the zero momentum state.

3.5.2 Mach–Zehnder interferometer

Combining these techniques, we implement a MZ interferometer, see Fig. 3.7. The sequence
starts with a Bloch beamsplitter that is ramped to some final momentum splitting ni. After
this, a reflection sequence is performed and the phase ϕ0 in the Hamiltonian Eq. (3.1) is
arranged as shown in Fig. 3.6b. The two halves of the wavefunction are then interfered using
a recombination sequence and the outputs are separated to some final momentum state nf .

To optimize the contrast of the detected interferences, we need to separate signal atoms
from background atoms that arise from loading and unloading the lattices. Using nf > ni

separates “signal” atoms from those backgrounds in time-of-flight imaging, see Fig. 3.7b.
A ramp rate for ωm of r = 2π ∗249 MHz/s = 9.3ω2

r and a lattice depth of around 8 recoil
energies (for each lattice individually) are used, as these parameters resulted in the largest
interferometer contrast. The phases ϕ0 for the two degeneracy crossings were also optimized
experimentally to maximize contrast. In between different interferometer operations, we
switch the direction of the modulation frequency ramp by switching RF frequency sources
for the modulation frequency ωm(t), and we adiabatically unload the lattice during this time
to avoid losses from the ground state.

We observe up to 40% contrast in a T = 8.5 ms, 20h̄k interferometer where atoms
are guided in the lattices during 16.7 ms of the 17 ms interferometer duration (Fig. 3.7e).
Because of vibrational noise in the experiment, it was not possible to observe a stable fringe,
so contrast was determined by measuring the fluctuations in the output populations on a
histogram. Without changing the laser intensity profile, momentum transfer is increased
by changing the profile of ωm as shown in Fig. 3.7a, and contrast is observed up to 240h̄k
momentum splitting.

3.5.3 Gradiometer

Observing contrast in an interferometer does not show that the interferometer is phase-stable.
In order to show phase-stability and first-order coherence [76], we also perform a differential
measurement between two MZ interferometers in a gradiometer configuration, see Fig. 3.8.
In this configuration, phase noise from vibrations is common to both MZ interferometers, so
the differential measurement can reveal a stable relative phase. The two MZ interferometers
are separated vertically by roughly 11 cm by using a 500h̄k Bloch beamsplitter with a ramp
rate of r = 2π ∗ 249 MHz/s = 1.9ω2

r . Within each MZ, a momentum splitting of 20h̄k,
an interferometer time Ti = 10ms, and a ramp rate of r = 2π ∗ 249 MHz/s = 9.3ω2

r are
used. The slower ramp rate for the first beamsplitter minimizes background atoms in the
time-of-flight traces, and the faster ramp rate during the interferometer maximizes contrast.
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Figure 3.8: a) Schematic of a dual-lattice gradiometer. A and B are populations in output
ports of one MZ, and C and D are populations in output ports of the second MZ. b)
Parametric plot of data taken using ns = 125 and Ts = 150 ms for ∆z ≈ 11 cm vertical
splitting between the two MZ interferometers. Within the interferometers, ni = 5 and
T = 10ms, and nf = 10 to resolve the outputs. The dark line is an ellipse fit to the δT =
20µs data.
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Phase-stability is observed between the interferometers by plotting the relative populations
parametrically (see Fig. 3.8b).

If there is no differential phase acquired between the interferometers, one sees perfect
correlation in the outputs, and common-mode vibration noise causes data to fall at different
points on this line. Instead, we see that the outputs are anti-correlated, owing to a ±π/2
phase shift imprinted on the upper and lower MZ interferometers, respectively, during the
opening pulse of the interferometer. Similar phases are well known in higher-order Bragg
transitions, and come directly from Schrodinger equation dynamics [23]. Note that this
phase is not permitted from symmetry arguments: the opening of the upper and lower inter-
ferometers around time Ts are asymmetric, since upper (lower) arm has positive (negative)
velocity prior to the splitting.

Differential phase shifts between the two MZs results in an elliptical distribution in the
parametric plot. We find that a timing delay δT of the final recombination, as defined in
Fig. 3.8a), introduces a controlled phase difference into the interferometer that scales linearly
with the timing delay, ∆ϕ = (40 rad/ms)δt. Differences in gravity between the two MZs also
creates a differential phase shift which is proportional to the gravity gradient. However,
this phase is around 5 mrad for the parameters used experimentally and is too small to be
observed. The phase coherence between the two MZs demonstrates that the technique is
first-order coherent and phase-stable, and can therefore be used for measurements in atom
interferometry. We achieve as large as 50% contrast in the differential measurement, which is
similar to the largest contrast we ever observed with Bragg diffraction in the same instrument.
The contrast is higher than the contrast in the Mach–Zehnder interferometers in Fig. 3.7
because the lattice in the gradiometer configuration is turned off when the lattices are not
being accelerated. The timing delay causes loss of contrast because of not fully closing the
interferometer.

3.6 Conclusions and Outlook

We have developed new techniques for coherently controlling superpositions of momentum
states by generalizing Bloch oscillations to two independently accelerated optical lattices.
First, the Hamiltonian was treated analytically, and it was shown that the dynamics can
produce efficient and coherent atom optics elements, even when the lattices pass through
velocity degeneracy. For slow ramp rates, the process is adiabatic and atoms can adiabatically
follow the even-parity ground state of Hamiltonian (3.5). When ramping lattices through
velocity degeneracy, the populations in the two lattices can be controlled by changing the
relative phase of the two optical lattices, allowing for all atom-optics elements required to
form an interferometer. Using only accelerated lattices, we create LMT interferometers with
high contrast, and we showed that the resulting dynamics were first-order coherent using a
differential measurement.

Compared to existing atom optics techniques [13, 61, 32], DLBO offer a number of advan-
tages. Applications with constraints on laser power and free-fall distance, such as space-based
interferometry [22, 49] or portable gravimeters [96], can use these techniques to maximize
momentum transfer and thus sensitivity. Being based on adiabatic processes, these methods
are robust to fluctuations in experimental parameters like lattice depth or laser frequency
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[14]. Symmetric Bloch oscillations are more robust to small laser intensity variations than
Bragg diffraction beam splitters, and can eliminate systematic phase shifts known as diffrac-
tion phases [24, 66, 42]. Moreover, large momentum transfer can be obtained with modest
laser power, whereas in multi-photon Bragg diffraction the required laser intensity scales pro-
portional to n2 or even n4, if scattering losses are to be kept constant [57]. In contrast, the
laser power required for DLBO is independent of the momentum splitting, relaxing the laser
power requirements in an experiment. Compared to combinations of Bragg diffraction and
Bloch oscillations [61, 1], DLBO requires less laser power and can achieve higher efficiencies.
For example, two sequential 4h̄k double-Bragg beamsplitters used in reference [32] use a peak
lattice depth of 3− 4Er and achieve a total efficiency around 90%, and higher-order double
Bragg pulses require considerably more laser power. In contrast, the 60h̄k beamsplitter in
Fig. 3.1b uses a lattice depth of 1.5Er while achieving an efficiency greater than 90%.

A generalization of these dual-lattice techniques shows promise for new measurements
of the fine-structure constant α. A set of realistic experimental parameters are outlined in
Section 3.7.8, where we show that 108 radians of phase are attainable. This paves the way for
a measurement of alpha at the 10−11 level, an order of magnitude improvement on existing
measurements. Another generalization of the Bloch beamsplitter uses a multi-photon, 4nh̄k
transition to open the interferometer where n > 1. Our numerical simulations show that
this multi-photon process also leads to an efficient beamsplitter for appropriate ramp rates
and lattice depths, see Section 3.7.4 for further discussion.
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3.7 Supporting material

3.7.1 Unitary transformation for single-lattice Bloch Hamiltonian

In an inertial frame initially co-moving with the atoms, the SLBO Hamiltonian can be
written as:

H =
∞∑

l=−∞

(
(2lh̄k)2

2m
|l⟩⟨l|

+ U0e
i
(

rt2

2
+ϕ0

)
(|l⟩⟨l + 1|+ |l⟩⟨l − 1|)

)
(3.7)

The Hamiltonian, Eq. (3.10), is derived by transforming this Hamiltonian, Eq. (3.7), into a
rotating frame that puts the time dependence of the rotating terms into the diagonal. This
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is achieved with the following unitary:

U =
∞∑

l=−∞

ei
d(t)p̂
h̄ ei

θ(t)
h̄ |l⟩⟨l| (3.8)

=
∞∑

l=−∞

e
il
(

rt2

2
+ϕ0

)
ei

ma2t3

6h̄ |l⟩⟨l| (3.9)

with d(t) ≡ at2/2+ϕ0/k and θ(t) ≡ ma2t3/6. This same transformation is used in reference
[16], and it is almost identical to the transformation used in Eq. (3.3), except there is
no longer a absolute value sign on the momentum operator. Acting on the Hamiltonian,
Eq. (3.7), with the unitary transformation in Eq. (3.8) results in HSLBO:

HSLBO =
∞∑

l=−∞

(2lh̄k − Ft)2

2m
|l⟩⟨l|

+
U0

2
(|l⟩⟨l + 1|+ |l⟩⟨l − 1|) (3.10)

The Ft term that appears in the kinetic energy is related to the quasimomentum kq through
the relation h̄kq = Ft.

3.7.2 Symmetrized Hamiltonian

The Hamiltonian in Eq. (3.5) can be explicitly symmetrized by applying a rotation to the
basis states. This is achieved by rotating to new basis states that are symmetric and antisym-
metric combinations of the free-space momentum basis states, namely we will have (unnor-
malized) even parity basis states |+l⟩ = |l⟩+|−l⟩ and odd parity states |−l⟩ = |l⟩−|−l⟩. The
zero momentum state remains unchanged under this rotation, as it is already an even-parity
state. The following rotation matrix achieves this transformation:

R = |0⟩⟨0|+
∑
l>0

1√
2
(|l⟩⟨l|+ |−l⟩⟨−l|)

+
1√
2
(|l⟩⟨−l| − |−l⟩⟨l|) (3.11)

The Hamiltonian (3.5) can then be rotated to the symmetric Hamiltonian Hsym =
RHDLBOR

T to arrive at the following:
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Hsym =
(Ft)2

2m
|0⟩⟨0|

+
∑
l>1

(
(2|l|h̄k − Ft)2

2m
(|+l⟩⟨+l|+ |−l⟩⟨−l|)

+
U0

2

(
|+l⟩( ⟨+l+1|+ ⟨+l−1| ) + |−l⟩( ⟨−l+1|+ ⟨−l−1| )

))
+
U0

2
(|+1⟩⟨+2|+ |−1⟩⟨−2|) +

U0√
2
(|0⟩⟨+1|+ |+1⟩⟨0|) (3.12)

In this rotated basis, there is no coupling between |0⟩ and |−1⟩, so we can explicitly see why
the odd-parity states have no level crossing at times t = ±TB/2 in Fig. 3.3c). Moreover,
the coupling between |0⟩ and |+1⟩ is

√
2 larger than any of the other couplings, resulting in

suppressed Landau–Zener tunneling from the level-crossings of the even-parity ground state
at times t = ±TB/2 in Fig. 3.3c).

3.7.3 Rotating wave approximation condition

To make the rotating wave approximation (RWA) in Eq. (3.4), we average the oscillating term
eirt

2
over the duration of the transition between momentum states. This term is oscillating

most slowly around the first level crossing between the first and second even bands at time
t = TB/2. In the limit of small lattice depths U0 ≪ 4Er, the energy gap Eg(t) near this level
crossing is given by

Eg(t) =

√
h̄2r2(t− TB/2)2 + 2U2

0 , (3.13)

such that the center of the level crossing occurs at time t = TB/2, and the duration of the
level crossing is ∆t = 2

√
2U0/h̄r.

Taking the time average of the rotating term eirt
2
over the duration of the level crossing

gives the following:

⟨eirt2⟩ ≈ − ih̄
2r

4U0

eiα
U0 cos β − 2

√
2iEr sin β

8E2
r − U2

0

(3.14)

where we define α = 2(8E2
r +U

2
0 )/(h̄

2r) and β = 8
√
2ErU0/(h̄

2r), and we have assumed that
r ≪ 2(2

√
2Er − U0)

2/h̄2. The rotating term can be dropped so long as this average is small
compared to 1, i.e., when

|⟨eirt2⟩|< h̄2r

4U0(2
√
2Er − U0)

≪ 1 (3.15)

or equivalently, r ≪ 4U0(2
√
2Er−U0)/h̄

2. We note that varying the time window of integra-
tion in Eq. (3.14) changes the numerical factors in Eq. (3.15), but not the limiting behavior
as r → 0.
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Figure 3.9: Simulations of one Bloch period of a Bloch beamsplitter illustrating losses from
the ground band due to higher-order transitions. The states used for determining the prob-
ability amplitude are even-parity eigenstates of Hamiltonian (3.5). A slow ramp rate is used
so that the various transitions are resolved from one another. a) The first losses to occur
are due to a third-order transition coupling the ground state and first excited state. b) A
much larger lattice depth shows a number of different higher-order transitions. Before time
t = TB/2 there are four separate higher-order resonances between the ground state and first
excited state that transfer population between the levels. Around time t = 0.6TB there is a
transition between the ground state and the second excited state.
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3.7.4 Higher-order loss mechanisms

When the lattice depth is too large, the oscillating terms dropped in the rotating wave
approximation from the Hamiltonian in Eq. (3.4) can contribute to higher-order parasitic
transitions. The dominant loss mechanism at ramp rates r ≪ ω2

r is a third-order (six-
photon) process coupling the states |0⟩ and |+1⟩ around time t = TB/6, where |+l⟩ refers
to the symmetrized basis states derived in Section 3.7.2. There are two possible energy and
momentum conserving pathways for the transition to occur; |0⟩ → |+1⟩ → |0⟩ → |+1⟩ and
|0⟩ → |+1⟩ → |+2⟩ → |+1⟩. For lattice depths much less than the spacing between energy
levels, U0/2 ≪ 4Er, the effective coupling between these states scales like (U0/2)

3/(4Er)
2,

which is the same scaling as the Rabi frequency in higher-order Bragg diffraction [57, 99].
During a Bloch beamsplitter, the laser frequencies are swept across this parasitic reso-

nance, as seen in Fig. 3.9a, which can be thought of as a parasitic level-crossing between |0⟩
and |+1⟩; for an efficient Bloch beamsplitter, amplitude should remain in |0⟩ by tunneling
through this level-crossing diabatically. To first order, the adiabatic population transfer to
the state |+1⟩ during this level crossing is given by PLZ = 1−e−2πΓ ≈ 2πΓ when the Landau–
Zener parameter Γ is close to zero. For U0 ≪ 8Er and r ≪ ω2

r , we therefore expect losses
from the Bloch beamsplitter Ploss = 2πΓ3 ∝ (ω2

r/r) (U0/8Er)
6 where Γ3 ∝ (ω2

r/r) (U0/8Er)
6.

This scaling of the higher-order losses in the limit of r → 0 agrees with our numerical
simulations.

In addition to the third-order process discussed above, there are an infinite number of
these higher-order processes that conserve energy and momentum, but the transition rates
are highly suppressed at lower lattice depths. Fig. 3.9b show the result of a simulation with
an increased lattice depth, to a regime in which many of these higher-order transitions can
couple amplitude to higher-excited states. The parameters chosen for this simulation happen
to drive five of these higher-order transitions within the first Bloch period. A ramp rate
r ≪ ω2

r is chosen for the simulation so that the transitions are well-resolved. In contrast,
Fig. 3.4a) illustrates negligible higher-order losses because all higher-order transitions are
highly suppressed at lower lattice depths.

3.7.5 Crossing through velocity degeneracy

The dynamics while crossing through velocity degeneracy are determined by studying the
eigenstates of the DLBO Hamiltonian, Eq. (3.5). An initial momentum state |n⟩, where
n > 0, can be decomposed as

|n⟩ = 1√
2
(|+n⟩+ |−n⟩) (3.16)

where are the symmetric and antisymmetric combinations of the free-space momentum basis
states |±n⟩ as derived in Section 3.7.2. Similarly, |−n⟩ can be decomposed as

|−n⟩ = 1√
2
(|+n⟩ − |−n⟩) (3.17)

Without loss of generality, we restrict our attention to one arm of an interferometer with
momentum |n⟩. Then when one of the two lattices is initially comoving with the state |n⟩,
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this state will be loaded into the ground state of the DLBO Hamiltonian in Eq. (3.5) as a
superposition of odd-parity and even-parity ground states according to Eq. (3.16).

Crucially, relative phase shifts between the even- and odd-parity eigenstates cause ampli-
tude to add constructively or destructively for the positive momentum or negative momen-
tum states; for example, if the state |−n⟩ acquires a π phase shift relative to the state |+n⟩,
then the state |n⟩ in Eq. (3.16) will transform the the state |−n⟩ in Eq. (3.17). There are
two sources of relative phase shifts between the even- and odd-parity states as the lattices
are swept through velocity degeneracy. First, since these states are energy eigenstates of
the Hamiltonian, there is a dynamical phase difference ϕd between the two states given by
ϕd = (1/h̄)

∫
dt′(E−(t

′)−E+(t
′)), where E± denotes the energy of the even- and odd-parity

ground states over time, as shown in Fig. 3.3c. Since the even- and odd- parity states have
different level structure near the degeneracy crossing, this gives a non-trivial phase shift. In
addition, there are two additional level crossings for the even state near velocity degeneracy
compared to the odd-parity state, as discussed in Sec. 3.7.2. These level crossings correspond
to transferring photons to and from the laser field, so the phase of the laser field is imparted
to the atomic state during these crossings.

Laser phase is a well known source of phase in atom interferometers, and is the primary
phase contribution for certain interferometer configurations such as Mach–Zehnder inter-
ferometers [69]. In a single optical lattice, laser phase arises when the position of the laser
standing wave shifts position with respect to the atom, resulting in a phase shift ∆ϕ = 2k∆x.
In the case of two optical lattices, there is an additional degree of freedom, namely the rel-
ative position of the two lattices. This changes the offset phase ϕ0 in Eq. (3.1), and it is
reasonable to expect this phase term to play a coherent role in the dynamics.

There are two ways to understand the laser phase effects, mathematically and physically.
Mathematically, one can see that the even-parity state is shifted relative to the odd-parity
state from the definition of the unitary transformation in Eq. (3.3). As mentioned previously,
the sign on d(t) in Eq. (3.3) is changed at time t = 0, which changes the phase offset on every
basis state except for the zero momentum state |0⟩. Just before time t = 0, the odd-parity
ground state is approximately given by |−gs⟩ = (e−iϕ0 |1⟩ − e−iϕ0 |−1⟩)/

√
2 = e−iϕ0 |−1⟩,

whereas after time t = 0 the state becomes |−gs⟩ = (eiϕ0 |1⟩−eiϕ0 |−1⟩)/
√
2 = eiϕ0 |−1⟩. The

odd state is therefore phase shifted by 2ϕ0. Since the state |0⟩ is unchanged, the even- and
odd-parity states see a relative phase shift of 2ϕ0. Physically, the nature of the degeneracy
crossing is a result of constructive or destructive interference between amplitudes. Since
there are two additional level crossings of the even state compared to the odd state, the
even state receives a laser phase shift ϕl = 2ϕ0. At time t = TB, after the two additional
crossings, both the even- and odd-parity states are mostly superpositions of the states |±l⟩,
but the extra phase shift of the even state results in coherent interference and changes the
resulting output state. This phase shift can also be observed in our numerical simulations,
where the even-parity state is phase shifted by ϕ0 at each of the two level crossings near
velocity degeneracy. Up to a global phase, the new state after the degeneracy crossing can
be written as:

|ψf⟩ =
1√
2
(ei(ϕd+ϕl) |+n⟩+ |−n⟩) (3.18)

By controlling the phase shifts ϕd and ϕl in an experiment, one has control over the output
nature of the degeneracy crossing. For example, arranging for ϕd + ϕl = 2mπ for some
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Figure 3.10: Numerical simulation of diffraction phase from a Bloch beamsplitter as a func-
tion of velocity with respect to the initial optical lattice. Simulation includes adiabatically
loading the lattice, frequency ramping at a rate r = 1.0ω2

r for four Bloch periods, then
adiabatic unloading of the lattice. See text for further discussion.

integer m ensures that the state after the crossing will be identical to the state before the
crossing, which corresponds to transmission through the crossing. For ϕd + ϕl = (2m+ 1)π
for some integer m, the output state becomes − |+n⟩ + |−n⟩ = |−n⟩, which has opposite
momentum compared to the input state |n⟩ and corresponds to a reflection. Intermediate
values of the phase can be used to split amplitude between the two momentum states |±n⟩.
In practice, it is easiest to change ϕ0, and therefore ϕl, since this phase is directly controllable
experimentally. Our simulations show that ϕd also depends on ϕ0 at the moment that the
lattices are velocity degenerate, but this dependence does not prevent one from continuously
transforming between different output behaviours by changing only ϕ0.

The phase ϕd is dependent on the lattice depth, and therefore the lattice depth needs to be
well controlled in order to see coherent dynamics after the zero-crossing. In the limit U0 = 0,
the dynamical phase ϕd is given by ϕd = 16ω2

r/r, such that ϕd ≫ 2π when r ≪ ω2
r . When

U0 > 0, this phase term is also a function of the lattice depth; as a result, fluctuations in U0

lead to fluctuations in ϕd. Similarly, variable U0 across a finite laser beam leads to a variable
ϕd across an atom cloud. Both of these effects result in unreliable zero-crossing behaviour
at slow ramp rates, and both effects likely explain why we see the largest interferometer
contrast for fast ramp rates around r = 10ω2

r .

3.7.6 Diffraction phase

Here, we consider the diffraction phase acquired from a beamsplitter, which is the phase
difference between the positive and negative momentum components of the resulting wave-
function. If the atomic state initially has some free-space velocity with respect to the lattice,
the momentum-parity symmetry of the problem is broken and the resulting dynamics will
be asymmetric, leading to a diffraction phase.

Figures 3.10 and 3.11 show numerical simulations of the diffraction phase for a 16h̄k
Bloch beamsplitter. Almost all of the diffraction phase from the beamsplitter comes from
the first 8h̄k momentum splitting near velocity degeneracy; further increasing the momentum
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Figure 3.11: Numerical simulation of diffraction phase from a Bloch beamsplitter as a func-
tion of lattice depth for two different ramp rates, using an initial velocity with respect to
the lattice of 0.001vr. Points are from simulation, lines are an interpolation between points
to guide the eye. The zero crossings in the diffraction phase allow for one to operate an
interferometer at a “magic” lattice depth to suppress sensitivity to diffraction phase. See
text for further discussion.

transfer beyond this does not further increase the dynamical phase ϕd. The diffraction phase
for a beamsplitter scales like the square root of the initial velocity, but the prefactor in front
of this scaling can be controlled by varying the lattice depth and the details of loading or
unloading the lattice. The simulations in Figures 3.10 and 3.11 use a linear intensity ramp
for loading an unloading over a time tload = 6πω−1

r .
Figure 3.11 shows the diffraction phase as a function of the lattice depth, and oscillations

in the diffraction phase allow one to operate at a “magic” lattice depth with suppressed
sensitivity to diffraction phases from missing the center velocity of the atom cloud. For
precision measurement, such magic lattice depths could be used to significantly reduce the
diffraction phases caused by fluctuations in experimental parameters. For example, a ramp
rate of r = 4ω2

r and a lattice depth around U0 = 5.9Er gives 80% efficient beamsplitters with
minimized diffraction phase sensitivity (see Figures 3.5 and 3.11). We can reasonably operate
within 0.001vr of the center velocity of the atom cloud, and by intensity stabilizing the lattice
to 1% fluctuations, the diffraction phase can be limited to ±10 mRad. This diffraction phase
can then be measured directly by varying the duration of the interferometer, as done in
reference [67].

3.7.7 Higher-order generalization of the dual-lattice methods

The transitions driven in DLBO are two-photon processes that transfer 2h̄k momentum. By
sweeping past multiple of these transitions in successions, LMT can be easily achieved. In
contrast, higher-order transitions are also possible that transfer 2nh̄k momentum in a single,
multi-photon process.

It is instructive to first understand single-lattice higher-order processes before under-
standing the dual-lattice analogues. SLBO can be though of as adiabatically sweeping past
a successions of 2h̄k Bragg transitions [68]. The higher-order, multi-photon analogue has
been implemented experimentally in reference [47]. The laser is adiabatically swept across
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a 2nh̄k Bragg resonance, which adiabatically drives a 2n-photon process. Though not dis-
cussed directly in [47], this process can be interpreted using a Bloch band picture where
atoms have an initial quasimomentum outside of the first Brillouin zone such that they are
loaded into higher Bloch bands. As the lattice is accelerated, the state sweeps past a level
crossing between higher Bloch bands, and successful momentum transfer requires the state
to adiabatically traverse the crossing and stay in the same Bloch band.

DLBO can be thought of as adiabatically sweeping past a succession of “double Bragg”
transitions [34]. A first-order double Bragg transition symmetrically drives ±2h̄k Bragg
resonances such that the two arms are split by 4h̄k momentum. One can also symmetrically
drive two higher-order Bragg resonances that transfer ±2nh̄k momentum to obtain a 4nh̄k
beamsplitter, as are implemented in references [1, 32].

It is also possible to adiabatically sweep past a higher-order double Bragg transition. In
terms of the modulation frequency ωm in Eq. (3.1), these resonances occur at ωm = (2m+1)ωr

for integers m. A 4nh̄k adiabatic dual-lattice beamsplitter can be achieved by sweeping past
one of these resonances adiabatically. An experimental sequence would consist of the follow-
ing: 1) atoms are adiabatically loaded into a lattice with a modulation frequency slightly
below the desired resonance, 2) the modulation frequency is swept across the resonance, and
3) the atoms are adiabatically unloaded from the lattice. It is important that the modu-
lation frequency does not become close to other resonances during this sequence. Unlike a
Bloch beamsplitter, continued ramping of ωm after a high-order beamsplitter process will
not transfer more momentum, but rather alternate between increasing and decreasing the
momentum splitting between arms. The average momentum transfer per Bloch period will
still be 4h̄k, as in the ground band.

Our simulations of this process show that it can be more efficient than a Bloch beam-
splitter at a given ramp rate. However, there are two major downsides to these higher-order
dual-lattice techniques. First, much more laser power is required to drive the transition; the
power required to drive an nth-order Bragg transition scales sharply with the order n, namely
as n2 to maintain the same Rabi frequency, and n4 to also maintain the same single-photon
scattering rate [57]. Second, continued ramping of the lattices does not continue to increase
momentum splitting in any advantageous way compared to using the ground band. As a
result, the first-order dual-lattice methods discussed in the main text are easier to use if
the goal is to achieve very large momentum splitting without the need for significantly more
laser power.

3.7.8 Application to recoil measurements

A generalization of DLBO shows promise for atom recoil measurements, and therefore in
measurements of the fine-structure constant α [67]. This section is included as an example
of the potential applictaions of DLBO, however we note that before such a measurement,
many new systematic effects would likely need to be studied.

By removing the assumption that ω1 = ω2 and are independent of time in the Hamiltonian
in Eq. (3.1), asymmetric lattice guided geometries can be created [48]. Additional light
frequencies can also be added to the laser in order to address more than two velocity classes
of atoms at the same time. Figure 3.12 shows an example interferometer configuration that
would be sensitive to an atom recoil phase. The phase in the interferometer can be calculated
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Figure 3.12: Interferometer geometry sensitive to an atomic recoil phase. The asymmetry
between the two upper (lower) trajectories leads to a kinetic recoil phase acquired by the
upper (lower) interferometer. The simultaneous conjugate interferometer configuration is
used for a differential measurement that cancels gravitational phase to fist order, and adds
the recoil phases in the upper and lower interferometers. Addressing the four velocity classes
of light requires one left-moving frequency and four right-moving frequencies, similar to Fig.
3.2a).

by integrating the energy of the atoms over the various trajectories [99]. Assuming that the
time to accelerate atoms is much less than the time between beamsplitter or reflection pulses,
the phase of the interferometer is given by

ϕ = 16ωrn
2
sT (3.19)

where ωr is the recoil frequency of the matter wave, ns is defined in Fig. 3.12, and T is
the time between beamsplitter and reflection pulse in the upper (or lower) interferometer.

The following outlines a set of realistic experimental parameters that could lead to 108

radians of recoil phase, an order of magnitude improvement in sensitivity over the leading
recoil measurement [67]. Based on the results discussed in Section 3.5, atoms in our apparatus
can interact with up to 1000 photons inside an interferometer where contrast can still be
observed. Choosing ni = 100, ns = 80 and nf = 100 (defined in Fig. 3.12) requires atoms to
interact with 840 photons before closing the interferometers. For the calculation, we use a
time of 80 ms between opening the interferometers and slowing the arms back to having the
same velocity, the same timing used in reference [67]. Using a frequency ramp rate of r = 250
MHz/s, Cesium atoms can be accelerated from |2nih̄k⟩ to |2(ns + ni)h̄k⟩ in roughly 6 ms,
which is much less than the time between different pulses. This ramp rate was shown to
give good interferometer contrast in the main text for atoms with a vertical velocity spread
of 0.05vr.

76



Chapter 4

Experimental Overview

4.1 Introduction

This chapter begins by describing the design decisions made when designing the next-
generation α experiment. This is followed by details about the vacuum design as a reference
so that future experiments hopefully don’t need to go through all of this process again. As
a whole, the new experiment is very similar to the previous generation’s - the main changes
we made were in designing a vacuum chamber to minimize distortions to the laser intensity
profile and to design a very large clear aperture in the vacuum chamber. Chenghui Yu and
Brian estey’s theses [23, 99] already cover of many of the details of the experimental system,
and since there are already good references I won’t describe the entire system here. Brian’s
thesis [23] has a more in-depth overview of the apparatus, and Chenghui’s thesis [99] has
more details about all of the systematic effects as understood at the time of their 2018 pub-
lication [67]. In addition to the new large-aperture vacuum system, some new aspects of the
experiment covered in this thesis include a compact 2D MOT (Section 4.5.2), a 3D MOT
with larger magnetic coils and a new control system. Last I’ll discuss some interesting new
ideas that either aren’t quite publication worthy or haven’t been implemented yet.

4.2 Motivation and design decisions

The previous generation of this experiment published their results in 2018 [67] with an error
bar of 0.2 ppb in α. Of critical importance to this section is their error table: see Fig. 4.1
for the error table from the 2018 measurement. In order to build an experiment with 10x
improved accuracy, we need to make sure the new design addresses every item in the error
table including statistical sensitivity and systematic uncertainties. A 10x better measurement
requires 10x smaller statistical error bars and 10x improvements on the largest systematic
uncertainties. Looking forward, many of the terms in the error table can be addressed
with more careful characterization in the future, and don’t need to govern the design of the
chamber. Systematic effects critical to the new experiment’s design are discussed below.
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Table 4.1: The error table from the 2018 alpha measurement [67].
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4.2.1 Beam related effects

The largest error bar of any item in the error table was the ’Thermal Motion of Atoms’.
See Chenghui Yu’s thesis, section 5.5 for a summary of this analysis [99]. ’Thermal Motion
of Atoms’ is a lumped term that included uncertainties in initial conditions of the atom
ensemble positions and temperatures as well as errors in the Bragg pulse intensities. The
value published in the error table came straight from Monte Carlo estimates.

The dominant effect being captured is diffraction phase, which is a phase shift from
Bragg diffraction due to the lattice depth and velocity of an atom relative to the lattice.
Experimentally, we take data at multiple values of interrogation time T in order to extract
the diffraction phase and remove it from the measurement - see Brian Estey’s thesis, Fig.
5.8 [23]. This method assumes the diffraction phase is not a function of T, however various
effects in our experiment can give the diffraction phase a slight T dependence. The diffraction
phase removal method will therefore not work properly and will introduce a systematic shift.
The ’Thermal Motion of Atoms’ term in the error bar bounds this effect and its dependence
on the various parameters mentioned above.

A main takeaway is that this effect is entirely the result of a finite-sized atom cloud
with finite temperature inside of a finite-sized laser beam, such that the atoms across the
ensemble are seeing different optical intensities and therefore different diffraction phases.
The ensemble average across the atom cloud becomes a function of the size and position of
the atomic cloud within the beam.

To lower this effect in the future generation of the experiment, the size of the laser beam
relative to the size of the atom cloud needs to be increased. Making the atom cloud smaller
would reduce signal size, and making the cloud denser could make the atom-atom interactions
become a troublesome systematic effect. The best course of action is then to make the laser
beam larger. In terms of the beam waist w0, the thermal motion of atoms term will scale as
1/w2

0 or even 1/w4
0, since the beam intensity locally gets flat near the center of a Gaussian

beam.
Increasing the waist w0 of the laser beam will also lower other terms in the error table.

’Gouy Phase’ (the largest correction to the measurement) decreases at 1/w2
0, and Beam

Alignment decreases as 1/w0 because the condition for back-fiber coupling becomes more
sensitive.

Speckle phase shift is also related to the beam intensity profile, but it describes effects
from small-scale intensity inhomogeneities on the beam profile instead of the overall Gaussian
beam profile. The speckle phase shift can be addressed by increasing the clear aperture of
the experiment to prevent an clipping of the beam, and by having very clean optics/ clean-up
optics before the beam enters the chamber so that the beam profile is very nearly Gaussian.

To address all of these issues, the new vacuum system was designed with an 8” clear
aperture, compared to the old experiment’s 2” clear aperture. This allows for a 2x larger
waist laser beam while still having a 2x larger ratio of the beam waist to the chamber
clear aperture.1 We are also investigating using a pinhole filter to mode-clean the laser
beam before sending into the chamber, though in a first implementation we found that the

1I’m not sure it’s documented anywhere other than word of mouth. In the old experiment it was believed
that reflections of small amounts of light off of the vacuum chamber walls was creating interference patterns
on the laser beam inside the chamber.
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returning beam reflects off of the pinhole and causes large stray reflections back towards
the chamber. Figuring out how to use a pinhole filter before the chamber is a potentially
useful addition to the experiment moving forward, although it would likely introduce new
systematic effects.

4.2.2 In-vacuum optics and beam delivery

Another important design decision was whether or not to use a single fiber and retro-reflection
mirror for generation of the optical lattice, or whether to try using two separate fibers for the
upgoing- and downgoing-beams respectively, with no retroreflection mirror. With a single
fiber, the analysis of beam-related systematic effects is simpler because you only have a
single laser beam propagating and back-fiber coupling ensures good beam alignment. For
two beams, the benefit is that you don’t have a bunch of parasitic lattices formed inside the
chamber due to the retroreflection of three optical frequencies against three other optical
frequencies. These extra lattices can interfere with Bragg diffraction and Bloch oscillations
when the atoms near the lattice at zero velocity in the lab-frame, or moving lattices formed
by additional unwanted interferences. See Section 4.6.3 for further discussion. We chose
to use a single beam that is retro-reflected in order to maximize the beam quality and the
ability to analyze beam-related systematics.

Having decided on retroreflected beam, we next needed to decide whether or not to
include λ/4 waveplates near the retro-reflection mirror and before the the beam enters the
chamber. With these λ/4 waveplates, the up-going and down-going Bragg frequencies need
to be orthogonally polarized before going to the chamber such that the circular polarizations
inside the chamber can drive Bragg diffraction. This means you can combine frequencies
on a PBS without losing optical power. On the other hand, these waveplate can cause
additional etaloning and beam distortions - beam distortions caused inside the chamber are
especially hard to characterize because we can’t image the beam until it leaves the chamber.
Without the quarter waveplates, the beams must have the same linear polarization entering
the chamber. This means they need to be combined on a non-polarizing beamsplitter and
half of the laser power is sacrificed. See Chenghui’s thesis Section 3.4 for a good discussion
of the relevant Clebsch-Gordon coefficients involved in driving Bragg/Bloch and Raman
transitions [99]. In the end, we stuck to the philosophy of maximizing beam quality, so we
left out the quarter waveplates. Not to mention the fact that I don’t think it would be
possible to procure an 8” zero-order quarter waveplate with the optical quality specs we
would need.

There are two main consequences of omitting quarter waveplates. First, as mentioned
above, half of the optical power needs to be sacrificed when combining beams on a non-
polarizing beamsplitter Second, having all Bragg frequencies the same linear polarization
creates extra parasitic moving lattices compared to the old experiment, where orthogonal
polarizations ensured that there were only a few parasitic lattices that were formed. This
effect is discussed in detail in Section 4.6.3.
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Figure 4.1: The estimated phase shift for an atom interferometer occurring near a ring mass
approximately the shape and weight of our vacuum flanges. See text for further discussion.

4.2.3 Acceleration Gradient

The Acceleration Gradient term is not an easy one to deal with looking forward to 10x
improvement - it was already a 10x larger correction than the final uncertainty in the previous
measurement, so the next-generation measurement is looking at a 100x larger correction than
the total error bars on the α measurement. The gravity gradient phase contribution scales
with T 3 [99], so we could decrease the interrogation time T to dramatically lower the effect,
but then we take a hit in sensitivity of the experiment.

When you start looking at the gravity gradient at the 1% level, you find that it is no
longer constant across the interferometry region. Fig. 4.1 shows a theoretical estimate of
the effect in α from a ring mass around the chamber, as a function of the initial height of
the interferometer inside the chamber. I use an analytical expression for the gravitational
potential from a ring mass and numerically integrate the potential energy over the inter-
ferometer trajectories to get the phase shift plotted here. A 50 kg ring mass with a radius
of 35 cm is used to model the effect from the upper and lower ends of the actual support
structure around the chamber. Fig. 4.1a) shows the effect in a normal SCI interferometer,
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and b) shows the effect in the OSCI ’BC’ port.2 I tried to keep this in mind while designing
the experiment, but in the end we had to (safely) mount the chamber inside an optics table
that had a 1m hole in it, so there was necessarily going to be support structure mass near
the chamber. I probably should have made the support structure with thinner walls or with
aluminum, but this would have decreased the stiffness of the structure and then hurt the
vibration isolation effectiveness.

In the future of the experiment, the gravity gradient characterization will likely require
measuring the gravity gradient as a function of height in the chamber, which will be difficult
to do with high sensitivity. The sensitivity of a typical dual-Mach Zehnder measurement
comes from long interrogation times T , however this means atoms will travel over a large
region of space and average over the small-scale changes that you want to measure.

4.2.4 Statistical sensitivity

In order to get better statistical sensitivity, we need to either 1) get more total phase in the
interferometer, or 2) improve our singal-to-noise ration (SNR) so that we average down to a
smaller phase uncertainty. In the end, we will likely need to use some of each strategy.

The old experiment was limited to n = 5 Bragg order based on laser power, and N = 125
Bloch oscillations based on loss of atoms from single photon scattering. The interrogation
time T was limited to 80ms because of loss of contrast at long times, as well as limiting the
size of the gravity gradient term in the error budget. In this experiment, we have taken a
factor of 2 hit in laser power due to not having a quarter waveplate in-vacuum, meaning it
will be difficult to get n = 4 Bragg order. We have already seen that our contrast decay
in T is better than the old experiment, so we can likely get away with more total phase.
Since increasing T would dramatically increase the gravity gradient systematic, we will likely
want to focus on increasing the Bloch order. N = 200 Bloch oscillations will hopefully be
reasonable to achieve. In total, n = 4 and N = 200, and T = 80ms would be a 30% increase
in total phase relative to the old experiment. A higher power laser in the future might enable
n = 5 or n = 6 Bragg orders, which would give another boost in total phase. See Section
4.6.3 for further discussion about the limits to the number of Bloch oscillations.

Statistical uncertainty can also be improved by improving the SNR of the experiment.
This can be accomplished by a) decreasing the shot-to-shot ellipse noise, such as phase
noise, contrast noise, offset noise, etc., or b) improving the ellipse contrast so that ellipse
fitting and shot-noise errors are both reduced. If SNR is limited by noise in the detection
readout electronics or by atom number shot-noise, there could be easy gains in SNR. For
example, we know the old experiment had a large baseline on their detection signal from stray
detection light bouncing around the chamber, and we eliminated that in this design. The
old experiment believed their ellipse noise was dominated by polarization noise in the final
optical fiber to the chamber, so improving the polarization alignment/stability in this fiber
could also lead to a reduction in ellipse noise. More time needs to be spent understanding

2See reference [105] for details about the ’OSCI’ geometry and how it cancels a constant gravity gradient.
In summary, one creates two overlapping SCI interferometers such one output from each of the interferometers
is used to create ellipses. The vertical spacing between the SCI interferometers is chosen such that the a
constant gravity gradient cancels from the ellipse data, leaving only higher-order gravity gradients
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what is limiting the SNR of the experiment, but there are likely some easy-ish wins here
moving forward.

Without a dramatic increase in optical power for the interferometer beam, most of the
improvements in statistical sensitivity in this experiment will likely need to come from im-
proving the SNR of the experiment, or from increased integration time T .

4.3 The rest of the vacuum chamber design

Having decided on an enormous clear aperture to an already tall atomic fountain, the next
step was to flush out the rest of the vacuum design. There were still many other design
aspects that need to be sorted out before having a functional atomic fountain. Figures 4.2
and 4.3 show the outside and inside of the vacuum chamber CAD model, respectively. Many
of the features discussed in this chapter can be seen in these figures.

4.3.1 Magnetic shielding

An atomic fountain for measuring α requires a uniform bias field in the interferometer region
as well as shielding from external fields. This is accomplished using a solenoid inside of a
multi-layer magnetic shield - this section concerns the design of the solenoid and the magnetic
shield to avoid systematic effects in the α measurement.

The bias field is used to ensure atoms can adiabatically remain in the mF = 0 magnetic
sublevel after state preparation is complete. Non-adiabatic losses to other mF states can
cause loss of contrast in the experiment, or even worse could cause systematic phase shifts
in the measured ellipse if the other mF states create parasitic interferometers. The bias field
also needs to be uniform over the interferometry region because atoms acquire a second-
order Zeeman shift from the bias magnetic field [99]. Effects from uniform Zeeman shifts
cancel out in the SCI geometry, but gradients in the magnetic field act asymmetrically on the
interferometer arms and cause systematic phase shifts. For similar reasons, the experiment
also requires magnetic shielding to ensure the stray magnetic fields from the environment
don’t shift our measurement, especially stray fields that are changing in time.

The first large design decision was to decide whether to put the magnetic shield and
solenoid inside or outside of vacuum. If we had put the shield outside, we likely would
have needed a 12” diameter vacuum chamber after including the clear aperture plus in-
vacuum baffles (to-be discussed soon). Such a chamber would have 16” diameter flanges, so
the solenoid would have needed to be around 17” diameter, and the magnetic shield inner
diameter around 18”. By comparison, the magnetic shield currently installed inside the
vacuum chamber has an inner diameter of 12”. When the diameter of a magnetic shield
is increased, fringing effects from external fields penetrate deeper into the shielded region.
This decreases the shielding factor and also allows magnetic field gradients to impinge on
the interferometry region.

More quantitatively, the magnetic field decays exponentially near the ends of a cylindrical
magnetic shield at a length scale proportional to the radius of the shield [51]. The field
generally peaks at the entrance to the shield at a value larger than the background field,
since magnetic field lines are being sucked to that region. The field then decays roughly
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collection viewport
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region ~2.5m long
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through entire chamber
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16” diameter main tube
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Figure 4.2: An overview of the entire vacuum chamber, not including the support structure.
The lower chamber is used for trapping atoms in a 3D MOT, where they are launched
vertically using a molasses launch. Interferometry is performed in the interferometry region.
On the way down atoms pass through a light sheet in the detection chamber where flouresence
is detected. The retro-reflection mirror is mounted to bellows in the top chamber so that
closed loop piezo micrometers can control the angle of the mirror.
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Figure 4.3: CAD model cross-section of the vacuum system highlighting some features rel-
evant to this section. 1) Bottom viewport attached to the MOT chamber where the inter-
ferometry beam enters. The viewport is angled at 3-4 degrees to prevent etaloning inside
the chamber. 2) Black copper-oxide tubes in the detection chamber to prevent stray light
from reaching the detection photodiode. 3) The main interfeormetry region - black copper
oxide baffles inside of an aluminum tube with the solenoid wrapped around it, inside of
a three-layer magnetic shield. 4) The support structure (yellow) that can sit on Minus-K
vibration isolation stages (black). The structure is attached to the chamber by six hexapod
struts (light blue). 5) The gold retro-reflection mirror with black copper oxide ring around
it. The mirror is attached to a bellows so that the angle can be controlled by closed-loop
piezo micrometers outside of vacuum.
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Figure 4.4: Effect of Bloch oscillation order on the shifts in alpha from magnetic field fringing
at the ends of the solenoid/magnetic shield. Larger Bloch orders leads to a smaller relative
shift in alpha from Zeeman energy, since the total phase is getting larger but the Zeeman
shift stays similar. However, the atoms are also accelerated towards the edge of the solenoids
which causes the region without fringing effects to narrow.

according to e−kLz/R inside the tube, where R is the radius of the tube and kL 2.405 is a
constant derived from theory. For small aspect ratio magnetic shields like ours, the shielding
factor is determined by when the exponential decay in field from each end of the tube meet.
A larger aspect ratio tube would therefore have decreased the shielding factor on-axis.

Similarly, increasing the diameter of the solenoid also increases fringing effects on the bias
field and limits the usable interferometry region. We need a solenoid inside of the magnetic
shield for creating a bias field, so fringing effects from the solenoid can also cause magnetic
field gradients that penetrate into the interferometry region.

The inner shield layer in our current experimental shield is 92” in length. In order to
get the external fields shielded to 1 mGauss or better, for a shield radius of 6” you would
end up with a usable interferometry region of 1.5m. This length would limit you to around
N = 300 Bloch oscillations and T = 150ms, as a rough estimate. If you moved the magnetic
shield outside of vacuum and had a shield radius of 9”, you would limit the usable region
to 1.1m. This would limit the total phase ultimately achievable in the experiment, since
the space needed for interferometry scales with the interrogation time T and the number of
Bloch oscillations N .

The above outlines the rough line of thinking that went into the design. Fig. 4.4 shows
a quantitative treatment of the estimated shift in α as a function of initial height of the
interferometer in the chamber for the field from just the bias solenoid. Even in a solenoid
with strong fringing effects and N = 800 Bloch oscillations, there is plenty of vertical space
in which interferometry can be performed. This differs from the previous estimate of 1.5m
total usable interferometry region because even though the ends of the tube have strong
fringing effects, the atoms spend the majority of the interferometer time in the well-shielded
regions so these fringing effects end up being smaller contribution.

The conclusion from Fig. 4.4 is that the shielded interferometer region is likely longer
than we will ever need in this generation of the experiment. The benefit of this is that the
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interferometer can be operated well-inside the shielded region to be sure we never have to
worry about fringing effects (assuming you can launch the atoms high enough...). Note that
this systematic analysis does not included non-adiabatic losses to other mF states due to
magnetic field gradients - these would be an additional consideration that could further limit
the usable interferometry region.

In total, by having a magnetic shield and bias solenoid outside of the chamber, we would
have reduced the usable interferometer region. This seemed like an unacceptable limit to
future experiments when we didn’t know what the future experiments would look like. So, we
put the magnetic shield and solenoid inside vacuum, as was done in the previous generation
experiment. The vacuum chamber diameter was bumped out to 16” and all of the sudden
the vacuum chamber needed to be enormous. Everything needed to be supersized, viewports
are far from the atoms, we need 200A, 16” diameter MOT coils, etc.

Also, note that there are ways to minimize fringing effects, if it ever becomes an issue.
Even if you have a poor shielding factor on-axis, you can use coils near the entrance to
both ends of the shielding tube to smooth out the field at the ends of the tube [93]. In this
reference, they use the trim coils to null the external field, but I’m sure a similar idea will
work in our system to smooth the transition between background Earth’s field and the bias
field inside the magnetic shield.

Note also that magnetic-field systematic effects are relatively easy to characterize because
the phase shifts scale with B2. If you typically operate with a 300 mGauss background field,
you can bump the background field up to 1 Gauss to make the effects 11 times larger, for
example. The old experiment went up to 3 Gauss to make the effects 100 times larger. This
allows you to quickly bound and/or measure and systematic shifts.

The mumetal magnetic shield installed in the experiment was designed by Magnetic
Shield Corporation (I highly recommend this company, they did a great job). The shield is
three-layers diameters 14”, 13”, and 12”, and lengths 104”, 98”, and 92” respectively. This
leaves the layers offset by 3” on each end, for each shield, to improve the shielding factor.
The shield layers are spaced by permanently welded mumetal, and assembly of the shield
required aligning holes in the three layers at the location of the spacers so that 1/4-20 bolts
can hold everything together. There are small endcaps used on the middle and outer layers
of the shield to help with the shielding factor. I realized later in the design stages that the
endcaps would have cause a large region of trapped air with how the final assembly came
together, so I had holes laser cut into the larger endcaps to allow for outgassing. In total,
Magnetic Shield Corporation estimated a shielding factor of 1000 for the assembly.

It’s possible to use atoms to measure the magnetic field inside the chamber, the easiest
way being tracking the frequency of magnetically sensitive microwave transitions. We haven’t
yet characterized the field homogeneity in the interferometry reason. One worry in the design
process was whether the magnetic field from the 3D MOT coils would saturate the mumetal
in the magnetic shield. If this does end up being a problem, we wrapped the magnetic shield
in a couple winds of magnet wire so that the shield could be degaussed someday. These
wires are connected to the electrical feedthrough at the top of the chamber. WARNING -
the degaussing wire is shorted to the chamber somewhere, but only in one spot. You should
be OK degaussing as long as you use a floating ground power supply. But don’t just plug a
variac into the chamber and go nuts, you could really hurt yourself.
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Figure 4.5: The ’rotisserie’ that was built to wind the solenoid on a 10ft aluminum tube.
The tube was mounted on each end to bearings, and the right side was attached to a drive
belt and a car window motor. The UHV kapton wire was mounted to a track that could
slide along as the coild was wound. Imaged here was our test winding before winding the
real-deal solenoid, so we didn’t need to maintain UHV cleanliness.

4.3.2 Solenoid winding

Typically, bias solenoids like ours are wound wire-to-wire so that the winding is guaranteed
to be uniform. Since we had to hand-wind a 10ft long, 11” diameter solenoid, we would
have needed over 2km over UHV-clean kapton-coated wire for this which was unacceptable
expensive. Additionally, a wire-to-wire winding of this scale would have the potential to
create very large regions of trapped air that could have looked like virtual leaks and spoiled
our vacuum pressure.

We therefore decided to wind a solenoid with a spacing between turns of 1cm. We then
used UHV safe epoxy (EPO-TEK 353 ND) to fix the wires in place, since the position of the
winding turns wasn’t fixed otherwise. The aluminum tube was sourced from Kurt Lesker
(version one they sent us was out of spec in its diameter tolerance, version two was still out
of spec but I milled down the copper baffles to make up for it). A delrin winding spacer
was manufactured to guide the wires and ensure a uniform spacing as we wound the wires.
Delrin was chosen because it is a relatively low outgassing plastic, in case the procedure was
leaving plastic contamination, but soft enough to not scrape off kapton coating from the
wire.

Fig. 4.5 shows the ’rotisserie’ as we called it - the tube was fixed to bearings on each
end, and on one of the ends we rigged a car window motor to a drive belt so that we could
get a very geared-down rotation. We practiced the procedure on the first out-of-spec tube
from Kurt Lesker, then did the final run on the second tube that was still out of spec but
good enough. After winding, we epoxied each turn of the wire in four spots, for a total of
around 1000 epoxy spots. We then epoxied some guard rails over the wires to help protect
the winding during the installation step of lowering this assembly into the magnetic shield,
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since the magnetic shield had screws sticking towards the coil turns. This procedure ended
up working very well.

Figure 4.6 shows some estimates of the effects of an imperfect coil winding procedure. To
model imperfections, I calculated the resulting magnetic field if each turn had some Gaussian
distributed error with a standard deviation of e.g. 500µm or equivalently 5% error in spacing
each turn. Based on the tolerances of our winding guide and observations while winding, I
think the average error was likely much smaller than this, and that the only source of error
we would need to worry about would be from having accidentally bumped wires during the
installation procedure.

I’ll make a note here for future generations of the experiment. Instead of putting the
magnetic shield and solenoid in-vacuum, it would way easier to leave them outside of vacuum,
but then make the tube much longer in order to maintain a good aspect ratio of the shield
and solenoid. Atoms would need to be launched higher into the tube to avoid any fringing
effects.3 The current design already pushed the limits of what we could fit inside of the 5m
tall pit room. If you find a very tall lab space in the future, this could be an option for a
more scalable design, e.g. see [93] for what you can do with a huge room, a lot of money
and a lot of grad students.

4.3.3 In-vacuum baffles for stray light

Another cool feature of the new vacuum chamber is the in-vacuum baffles - let me first
motivate them. Essentially everything gets better in an atom interferometer when you make
the laser beam waist larger, assuming the same lattice depth. The atoms will see a more
uniform intensity, with smaller gradients of the light shift etc. This is why it was so surprising
that the old experiment saw a less contrast decay in their experiment when they added an
apodizing filter that roughly cut the beam waist in half. The leading hypothesis for why this
improved the contrast is that the apodizing filter was cutting the beam intensity outside of a
beam waist ±w0. There is actually more optical power than one would expect on the wings
of a laser beam from an optical fiber because roughly 1% of the beam’s optical power lives
outside of the step-index of the fiber (see Chengui’s thesis Section 4.2 [99]). They expected
that this power was reflecting off of vacuum chamber walls, then re-interfering with the main
beam to cause intensity ripples and loss of contrast. Recall that interference effects between
beams scales with the electric field amplitude, not the intensity, so O(0.01%) optical power
can still give you O(1%) interference ripples on the main laser beam.

This scattering issue was directly addressed by adding in-vacuum baffles to capture any
stray light, in addition to the already much larger clear aperture. The baffles are designed
so that any stray light coming from the bottom viewport that will hit a baffle before having
the opportunity to re-interfere with the main laser beam. After much research on how to
make a quality black surface that’s UHV safe for relatively cheap, we chose to follow a neat
paper and oxidize copper ourselved in order to make a 98% absorptive black coating [64]. A
common alternative that is a great option for small parts/big budgets is to use Magic Black

3We likely can’t launch too much faster with a molasses launch as is currently used in the experiment,
but Section 4.6 discusses what is needed for a lattice launch of the atoms. A lattice launch is much more
scalable to higher launch speeds.
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Figure 4.6: Simulations of the effects of imperfect solenoid winding on the measured value
of alpha. In each plot, I use a model for our solenoid (one winding per centimeter), and ran-
domly vary the location of each winding. The default unless otherwise stated is 5% standard
error, which is 500µm. The x-axis is sweeping the starting location of the interferometer, so
that the total interferometer integrates over a different region of the B-field. a) The effect
scales roughly linearly with the average position error of the winding. b) The effect scales
quadratically with the B-field since it’s a second-order Zeeman shift proportional to the B-
field squared. c) The OSCI interferometer geometry [105] only cancels out systematics from
uniform gradients in the magnetic field, but effects from coil winding imperfections are far
from uniform over the interferometer region.
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Figure 4.7: Images of the copper oxide procedure and final parts. Upper left shows the final
assembly of the baffles structure. The right image shows this assembly being slid into the
solenoid tube. The lower left shows the struts of the baffle structure mid-oxidation - the
light colored ones were just added to the solution and hadn’t yet formed an oxide layer.

coating by Acktar. It has even better absorption and is UHV safe, but the price scales with
surface area and was therefore not a reasonable solution for us.

We followed the exact procedure outlined in [64], except we had to use much stronger
concentrations of the Citranox (10%) and much stronger concentrations of the blackening
solutions (20%) in order to get consistently good results. The Citranox step is very important
to remove all oxidized copper from the surface, and the parts must be immediately placed
in the blackening solution after rinsing off with water from a squirt bottle. We tried using
sandpaper to roughen the surface, but the resulting oxide coatings looked terrible and very
inhomogenous. In the end, we sand-blasted all copper parts in the physics machine shop,
which gave reliable uniform finishes when sand-blasted well.

You can see some pictures of the process and resulting parts in Fig. 4.7. The lower left
image shows double-boiling of the oxidizing solution in a larger water bath. A stir rod helped
unsure uniform temperature. The image shows the struts, part of the baffles, in the early
stages of oxidation just after putting the parts into the solution. The struts that are still
copper colored were put in the solution last, and the blackest ones were put in first. The
upper left image shows the final assembly of the baffles. The right image shows the baffles as
they were being lowered into the solenoid tube with our home-built crane visible up above.

In addition to baffles, we also added oxidized copper tubes in the detection region to
prevent stray light from reaching the detection photodiode. The old experiment had a
voltage baseline in the detection photodiode on the order of 0.5V from the detection light
scattering and reaching the detection photodiode.4 This was most likely from non AR-coated

4If you looked inside of their detection chamber with an IR viewer during the experimental sequence, it
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Figure 4.8: An image taken looking up into the chamber from the bottom viewport. The
tubes used to block stray light in the detection region are visible, as well as the beam shutter
which is moved off to one side. The baffles make the main tube look black, and the gold
mirror at the top of the chamber reflects the camera flash. You can also see the bottom
end-cap on the magnetic shield, which maintains the 8” clear aperture, and the degaussing
wires on the left and right side of the magnetic shield which are UHV-kapton-taped in place.

windows causing extra reflections, or from dust on the viewports causing diffusive scatter.
In an effort to reduce detection noise, I added these tubes and designed them to be as

effective as possible without affecting the clear aperture of the interferometer beam or optical
access of the detection optics. An image of these tubes in the final assembly is shown in
Fig 4.8, which is taken looking up from the bottom viewport. You can see a seam from the
rolled copper sheet that was used to make to the tubes, as well as some imperfections on
the oxide surface. The inner surface of the tube had a good oxide layer so I said this was
’good enough’, since it was difficult to uniformly oxidize parts this large. There is also a ring
of black oxide mounted around the gold retroreflection mirror at the top of the chamber in
order to avoid any stray reflections off of the mirror mount.

We did UHV tests of oxidized copper samples and saw no outgassing at all from our test
chamber. Before doing the UHV tests, the test chamber was hydrogen baked at 300-350C
to get extremely low outgassing in the test chamber walls. The turbo pump we were using
for the UHV tests was extremely bad5, so we were only able to get to 10−9 torr after a
day or two of water baking in the test chamber, but it still gave a very clear indication of

lit up like a light-bulb.
5I estimated less than 1 L/s pumping speed
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any outgassing that was much larger than the baseline hydrogen outgassing from the test
chamber walls. Also, before beginning with the copper oxide project I discussed outgassing
issues with researchers at NIST in Boulder, and the same procedure had been used to make
copper oxide parts in experiments with vacuum pressure into the 10−12 Torr range so I didn’t
anticipate any outgassing issues.

In retrospect, the copper oxidizing project ended up taking quite a bit of time to get the
procedures ironed out, but it worked and was a neat home-made addition to the experiment.

4.3.4 Hexapod, support structure and vibration isolation

Another neat upgrade of this generation of the experiment is that the chamber is mounted
to a hexapod - this allows a bold experimentalist (or a PI after having a few beers) to move
the orientation of the chamber relative to gravity. Since all optics are mounted directly to
the chamber, this alignment procedure decouples the gravity alignment from the rest of the
optical alignments. The hexapod is the brainchild of Joseph Silber, a mechanical engineer at
LBL who pitched this in his first 30 minute meeting with us about the α project in Holger’s
office. The hexapod struts themselves were Joe’s design from another project DESI6 where
they were used to mount their enormous ≈ 1m lenses. The only change we made to the
strut design was changing the threads to ACME threads and making the motion differential
between the two threads for much finer alignment control.

We only used the hexapod struts for gravity alignment a few times before my graduation,
since a lot of the time we had a car-jack supporting an extension to the interferometry
breadboard, and moving the hexapod would push the breadboard against the carjack and
add stresses to the bottom viewport.7 In the future, I expect the hexapod will be very useful
for fine alignment of the launch during data taking, but you’ll need to work out a readout
scheme that is more sensitive to the alignment since we never found a great procedure during
my time.

Joe Silber also helped with the design of the support structure for the chamber. The
support structure was designed to allow the entire experiment to be vibration isolated. For
our measurement of α, ambient vibrations don’t affect the experiment other than giving a
random phase that walks data points around the ellipse - see Brian’s thesis [23] for details
about this. However, the initial idea for this new experiment was that we might potentially
want to make a juggling interferometer as a search for oscillating forces from dark matter
candidates. A single juggling interferometer would need vibration isolation so that the
juggling interferometer phase isn’t washed out. Although I think this particular search for
dark matter isn’t very compelling or sensitive, having an experiment with the versatility of
being able to measure gravity and gravity-related phases without a differential measurement
opens a lot of possible doors in the future.

Joe and I designed the support structure to be 1) extremely rigid, so that we could
vibration isolate the chamber at the 0.5Hz level and keep all mechanical modes much much
higher than this, and 2) very safe, since I didn’t trust myself to design something safe enough
to hold large weight of the chamber. To ensure rigidity, Joe made a finite element analysis

6Dark Energy Spectroscopic Instrument
7We actually did do this before realizing what a bad idea it was, but didn’t see the vacuum pressure

move...
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(FEA) simulation of the support structure with a simplified chamber mass, and found the
vibrational eigenmodes of the chamber - see Fig. 4.9.

The structure is designed to sit on top of four CM-1 vibration isolation stages from Minus
K Technology. We used a Minus K stage in the portable gravimeter project in Holger’s group
[96] and the stages have as good of performance as you can hope for from a simple passive
commercial system. The CM-1 stages can have a resonance frequency of 0.5 Hz or even
lower. Stiffening the support structure and pushing all mechanical modes well above 0.5 Hz
ensures minimal coupling between modes so that the vibration isolation can be as effective
as possible.

In the future, if anyone decides to try floating the chamber on these stages and wants
to optimize vibration isolation performance, you’re going to need to eliminate any lower
frequency mechanical modes on the chamber. Primarily these will be from cables - cables
can 1) couple to the minus k resonance, and 2) bring vibrations from outside the chamber
to the chamber. All cables should be strapped to the table (ideally multiple times) with
sorbathane in order to prevent vibrations from reaching the chamber. Then on the chamber
side, cables will need to be fixed tightly to the chamber for the entire routing of the cable,
eliminating any low-frequency motional modes of the cables. This would probably work
well for optical fibers and BNCs, but the cooling lines for the MOT coils will be much hard
to isolate - I’m not sure how you would be able to vibration isolate this, if you could at
all, since the hoses are rigid and the water carries vibrations. When I realized I had been
very overambitious in my chamber design, I quickly gave up on my prospects of floating the
chamber and making any sort of gravity-sensitive measurement during my time as a graduate
student. As a result, there was no effort put into vibration isolating cables. But if you end up
trying it, good luck! For best performance, close the door to the pit room and block the air
flow from the AC vent. The portable gravimeter experiment from our lab found that stray
air currents were limiting the ultimate sensitivity of the gravity measurements [96]. You’ll
also somehow have to deal with the fact the switching on and off the MOT coils creates
audible vibrations that would absolutely destroy any vibration-sensitive measurement...

4.3.5 In-vacuum shutter for beam imaging

Wouldn’t it be nice to stick a CCD camera inside the vacuum chamber and take images of
the laser beam? Well of course that’s not possible in a UHV chamber. Instead I worked out a
scheme to have a ceramic disk shutter that can be lowered in front of the beam. The shutter
can be seen in Fig. 4.8 in the ’un-shuttered’ position. The idea is that the shutter can be
lowered in front of the beam, and the laser beam can be imaged by its diffusive scatter off
of the shutter from underneath the chamber. We tested a few options for white UHV-safe
materials and a CNC’d macor disk ended up giving the most uniform surface finish/ best
image for a laser beam profile. From our images, we could see something like 50µm grain
sizes on the surface, so I wouldn’t trust this method at that length scale, but for larger-
scale effects on the beam you might find this to be quite useful. To decouple macor surface
roughness from actual beam noise, you can hopefully just move the disc around and take
images on different parts of the macor disk. The rotation stage has a magnetic feedthrough
that will slip if there is too much torque, so I had to take care to minimize the torque on the
stage. Be very careful if you ever move this stage around because you can bang
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a) b)

Figure 4.9: FEA simulation of vibration modes of our vacuum system and support structure.
a) An illustration of the displacement in the lowest vibrational mode at 15 Hz. The motion
is related to bending of the arms of the support structure allowing the vacuum chamber to
swing sideways. b) A list of the first 10 vibration modes. Although the first mode is primarily
horizontal motion, the second mode (not shown) is primarily vertical motion, which will be
most relevant if trying to vibration isolation the system.

the shutter against the detection copper oxide tubes, and probably you’ll create
dust in the chamber. There is a small set screw that you release to allow the rotation
stage to freely move.

Note that another possible way of imaging the beam in-vacuum is by using the atoms
themselves - this idea is discussed in detail in Section 4.6.2.

4.3.6 Designing for UHV

Our vacuum pressure needed to be low enough to ensure a ¿1 s vacuum lifetime - this would
ensure that our MOT size isn’t limited by vacuum pressure, and that background gas col-
lisions isn’t limiting the contrast of the interferometer. For some numbers here, the cavity
interferometer in our group has recently measured the atom lifetime in their optical lattice
as a function of vacuum pressure, see Fig. 7.6 in Vicky Xu’s thesis [97]. In our current exper-
iment, we can already see that MOT size goes down when the temperature of our 2D MOT
region goes up, which indicates that our MOT loading is still limited by vacuum pressure,
even though the pressure is around 1× 10−10 torr.

In the end, we aimed for a vacuum pressure around 1 × 10−10 torr. There were many
things that had to be considered in order to get this large of a vacuum system down to this
low of vacuum. For most AMO experiments, there is typically some amount of room for error
in a UHV system because it is relatively easy to break vacuum, replace parts, and pump
down again. For this chamber, we needed it installed by a professional rigging team and it
took $70k and most of a week, not to mention all of the planning that went into the assembly
steps. There were so many parts in-vacuum that vacuum pressure issues likely would have
been extremely hard to isolate. Failure to get vacuum would have required a week for the
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riggers to disassemble (another $70k), an unknown but potentially very large amount of time
to find the issue, another week to re-assemble (and another $70k), then another month to
set up the bake and bake the chamber. We therefore spent a lot of time making sure we got
it right the first time.

How does one get this much hardware into vacuum without extra out-gassing? The first
step is to choose UHV-safe materials for everything going in-vacuum. I have described some
of this in the sections above, but in general I did a UHV test in our UHV test chamber for
any material or procedure that I was unsure about. Beyond material choices, I was mostly
worried about trapped gas. We had roughly 100 screws inside of the vacuum chamber, and it
would only take one screw with a slow leak to wreck our pressure. You can get vented screws
from e.g. McMaster-Carr, but I was still paranoid about trapped air in the threads. In the
end I ordered some thread-cut screws which had a milled cut along the entire thread. This
allows each thread to individually outgas quickly. We also used split washers for a similar
reason. Evidently this plan worked because we got good vacuum pressure.

Another consideration was how to properly UHV clean parts. For small parts we used
a standard sonication procedure adapted from Dan Stamper-Kurn’s group - 15 minutes of
sonication in soapy water (Simple Green and DI water), 15 minutes in acetone, then 15
minutes in methanol. For the 3x magnetic shield layers and the aluminum tube that we
wrapped the solenoid around, we needed a procedure for cleaning the tubes without using
sonication because the parts were 10 feet long. The strategy that we used was to 1) try to
get the large parts delivered to us as cleanly as possible to begin with, then 2) clean the parts
by hand with acetone and then ethanol. Kurt Lesker manufactured the aluminum tube that
we wound the solenoid around, and shipped it UHV clean. I don’t know exactly how Lesker
did the UHV cleaning of the aluminum tube on their end. For the magnetic shield layers, I
had them only handle the shield with latex gloves after annealing at very high temperature
(at 1100C or something similar). This ensured the shield was relatively clean when we got
it, since any oils or contaminants would have been burned away during annealing. They
then shipped the shield layers disassembled so that we could clean them individually before
re-assembling.

For all of these large tubes, we used clean-room wipes to hand-scrub every surface with
acetone and then ethanol. For the insides of the tube, we used a clean-room mop to reach the
center in order to minimize dust or oil contaminants. Ethanol was used instead of methanol
because we had to be in a room with these fumes for days.8 The cleaning was done in a
second floor Birge lab.9 The parts were supported by 8020 struts covered in UHV foil. We
tested the cleaning procedure on smaller parts in the UHV test chamber and didn’t see any
outgassing - and it ended up working in the end. The only thing I would have changed
is that the cleanroom wipes we used very slightly dissolved in acetone, which was leaving
streaks on the parts. Even if we did leave plastic residue on the parts, I guess the layer was
so thin that it baked out very quickly in the final bake of the chamber, as it didn’t end up
being an issue.

Regarding how to design a pumping scheme for the chamber, AMO experiments have

8Whoops, we had to buy 5 gallons of 100% pure ethanol...
9I spent a week cleaning the room many times to get rid of as much dust as possible, then we left a

window open and got ashes from wildfires all over the room so I had to clean the room all over again. I’m
sure some of these ashed made their way into the actual vacuum chamber...
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Figure 4.10: If your reaction to this is ‘No way Zack, this vacuum chamber could ruin me’,
then you have the correct reaction. Also, I have heard that the rapid change in air pressure
from sudden loss in vacuum pressure can cause hearing loss if you’re too close, so in addition
to emotional damage you could also potentially get physically hurt.

historically used large ion pumps, but in recent years non-evaporable getter (NEG) pumps
have gotten very popular. NEG pumps are made from a specially engineered ceramic that
functions like a fancy piece of charcoal, absorbing background gas until the ceramic satu-
rates. Ion pumps are more effective with heavier atomic species, but very low pressure UHV
experiments are typically limited by hydrogen outgassing from the stainless steel chamber
walls. NEG pumps are most effective with lower mass atoms, and therefore have a very
large hydrogen pumping speed. A combination of a large NEG pump and a smaller ion
pump works very well to keep hydrogen pressure down while still pumping out the smaller
fraction of heavier atoms. Titanium sublimation pumps are also an excellent option for
pumping hydrogen if you can afford a large surface area for depositing titanium and if you
aren’t too worried about titanium contaminating other parts of your chamber. I opted to
used all three of these types of pumps to give us the best chance of getting good vacuum.

Two large ion pumps were installed on the chamber to make sure we had good pumping
for heavier atomic species (e.g. Cesium). In the end, we’re only using the 75 L/s ion pump,
we never turned on the 55 L/s one because I never got a controller for it. Don’t turn on the
55 L/s one now unless you have a turbo attached after breaking vacuum, since there will be
a ton of outgassing initially and it could saturate some of the other pumps.

Our main hydrogen pumping was designed to come from titanium sublimation pumps
(TSP) deposited onto chamber walls, and from Capacitorr NEG pumps. In reality, I think
almost all of the pumping currently in the experiment is currently from the TSPs: when I
activated the NEG pump after already activating the TSPs, there was essentially no change
in pressure in the chamber. The surface area numbers in Table 4.11 are a lower bound of
the surface area of titanium that would be coated. To activate the TSPs, I ran the current
through the filaments up to 50A or even higher, even though the manual said never to exceed
47A. This was based on watching the RGA reading in real-time, and I kept increasing the
current until I could see the pressure start dropping after each deposition. Since I exceeded
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the manual current limits by so much, it’s very likely that I deposited a ton of titanium
and that’s why we have such good vacuum pressure. I only activated filament 3 on both
TSPs - you should use these filaments until they run out, since activating a new filament
will initially cause a ton of outgassing which could saturate the other TSP region/ the NEG
pumps.

The Capacitorr HV 200 was included in case we needed larger volume, higher vacuum
pumping while activating the various pumps. In the end, we didn’t really use it at all because
it only raised the chamber pressure. The pump needs to be heated in operation which causes
extra outgassing, hence why it’s only an HV pump and not UHV. It ended up being sufficient
to do all of the activation of pumps while the turbo pump was still connected, then I think
I fired the TSPs once more after closing the gate valve to the turbo. As I mentioned, the
Capacitorr D2000 didn’t seem to lower the pressure at all after I activated it (multiple times).
I’m not sure exactly why that’s the case, but just letting you know in case you’re baking
down again. I don’t think this should be interpreted that Capacitorr pumps aren’t effective,
but rather that our TSP pumping was both extremely effective.

Vacuum conductance also needs to be considered when designing a chamber like this. I
calculated the conductance of the constrictions before every pump to ensure the conductance
was larger than the pumping rate of the pump, otherwise the pump would be choked and
not operate effectively. Note that estimated conductance from the center of the shielded
region to the pumps is on the order of several hundred L/s. Since our pumping rate is much
higher than this, it’s possible that the vacuum pressure inside the shielded region is much
worse than the readings on the ion gauges. This couldn’t really be avoided though, since
there’s no way we would have made the chamber any larger diameter. In any case we now
have a much larger vacuum conductance in the interferometry region than the old alpha
experiment did, so it’s still a large improvement in vacuum conductance compared to the
previous generation.

Table 4.11 shows an estimate of the final vacuum pressure we might achieve with this
chamber design. I never found good literature values for outgassing of mu-metal, but
MuMetal manufacturers do say that the outgassing is similar to stainless steel. Looking
at outgassing numbers for different materials, it was clear that the large majority of our
outgassing would be from hydrogen from the enormous surface areas of the stainless steel
chamber walls and the magnetic shield layers. This is typical for well-designed UHV cham-
bers that haven’t done a hydrogen bake of the chamber walls. Even if some of the smaller
parts in vacuum had 100x larger outgassing rates per unit surface area, the surface area of
stainless steel and mumetal was so large as to remain the dominant outgassing source. So,
assuming that we used UHV safe materials for all components in-vacuum, didn’t have any
virtual leaks, UHV cleaned everything adequately, and that we did a long water bake around
150-170C, Table 4.11 should be a reasonable estimate of what’s dominating the background
pressure inside the chamber. I made this estimate during design phase, and it ended up being
almost exactly the final pressure that we achieved. The pressure after baking was initially
6× 10−11 Torr, and it has now drifted up to 1.7× 10−10 Torr. The estimated pressure value
was also consistent with a naive scaling between the old experiment and ours. The ion gauge
sensitivity to hydrogen is only 0.5 though, so the actual pressure in the chamber is likely 2x
higher than this reading assuming the pressure is dominated by hydrogen.

Regarding Cesium background pressure, the old experiment used a differential pumping
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Function Total time (s) Total time (%)

Ellipse.ellipse_pt 50.7 100.0%

atom.load_all_E_fields 12.6 24.9%

atom.split_all_atom_data 1.5 3.0%

atom.get_SCI_point 2.6 5.1%

analysis.get_dk_vec 7.1 14.0%

analysis.get_laser_phase 1.1 2.2%

analysis.get_lattice_depth 0.7 1.4%

precompute.get_bragg_final_wf 7.8 15.4%

precompute.get_bloch_final_wf 1.2 2.4%

timeev.add_kinetic_energy_phase_atom 4.2 8.3%

timeev.update_position_and_velocity 4.4 8.7%

np.angle 2.7 5.3%

np.linalg.norm 1.6 3.2%

np.ones 1.5 3.0%

np.outer 1.6 3.2%

Outgassing (Torr * L/s)

Chamber walls 1.20E-07

Magnetic shield 2.44E-07

Total 3.64E-07

Hydrogen pumping speed (L/s)

Ion pump 55 L/s 20

Ion pump 75 L/s 20

TSP 1205

Capacitorr HV 200 200

Capacitorr D 2000 2000

Total 3450

Estimated pressure (Torr) 1.06E-10

Figure 4.11: An estimate of the final vacuum pressure achievable with our experiment. The
surface area of chamber walls and the magnetic shield were assumed to out-gas at the same
rate of 3 × 10−12Ls−1cm−2, which was a value for non-hydrogen-baked stainless steel from
literature. See e.g. [12] but you will find similar numbers in other sources as well. The
hydrogen pumping speed is listed for the various pumps installed on the experiment. This
pressure estimate met our design goal for pressure, and also ended up matching the actual
pressure achieved in the experiment.

tube between the 2D MOT chamber and the main vacuum chamber which cut the 10−6Torr
ambient background pressure of Cesium by a factor of 1000 (see Brian’s thesis [23]). Since
we’re aiming for a vacuum pressure of 10−10Torr, this seemed insufficient. I therefore used
the same design10 as the old experiment but then added two apertures after the differential
pumping tube to further limit the conductance between the 2D MOT chamber and the main
chamber. These were 1/4” holes in OFHC copper pieces, which were attached to a copper
vacuum feed-through. This could optionally be operated as a cold-finger in the future, since
cold surfaces act as a pump for alkali atoms.11 I never calculated exactly how much the
additional apertures would limit conductance by, but it’s likely more than a factor of 10.
The 1/4” diameter holes were made to be large enough that the solid angle of atoms leaving
the differential pumping tube would still pass through both holes and our 2D MOT atom
flux would be unaffected. The solid angle is easily calculated from the thermal velocities
of atoms 300K temperature on-axis and Doppler-temperature off-axis, giving about 1 mrad
angle.

There are three ion gauges in various parts of the experiment, in case some break or in
case you want to know the pressure in different regions of the chamber. The ion gauges need
to be degassed every once in a while if you want an accurate measurement, since they are
hot filaments that attract crap inside the chamber. During initial activation of the pumps

10Actually I took the old 2D MOT off of their chamber and put it on the new chamber
11I had tolerancing issues in the final assembly of this cold-finger, and in a rush I ended up adding a

stainless steel washer between the cold-finger and the copper assembly with the differential pumping holes.
As a result, the thermal conductance of the cold finger will be much worse than you would hope for...
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where you’re getting huge vacuum spikes, this was important.
One of the most useful pieces of vacuum equipment is the residual gas analyzer (RGA)

from SRS - for a complicated chamber like this, I can’t imagine pumping down without it.
We used it for

• Helium leak testing to find our cracked viewport

• Watching water pressure drop during water bake

• Seeing pumping speed of hydrogen relative to other species

• Seeing the virtual air leak when closing the big gate valve - you can see it’s ambient
air from ratio of N2 to O2

• Seeing organic compounds baking off during the bake

• Having convenient software for logging and plotting long-term pressure

• Obsessively checking the pressures during bakeout

• Trying to see Cesium after breaking the Cesium ampule

• Measuring out-gassing rates of each atomic species individually by turning off pumps
and measuring the rate of rise in pressures

Since we used the RGA for probably 2 months of integrated time, the filament is starting
to burn out. I already had to replace the filament once during our UHV test chamber runs,
and it appears it needs to be replaced again very soon. We haven’t operated the RGA since
noticing this in the hopes that you might be able to get a little more information from it
when it dies, and maybe you only need a little more information during the final alpha run...
The RGA is on a gate valve, but if you remove it to replace the filament you’ll need to add
in a vacuum-T in order to add a pumping port to pump the RGA arm back down. This
will cause some interference issues where the RGA is mounted, and will further limit the
conductance between the RGA and the main chamber. I don’t know the best way to go
about this but I’m sure you’ll figure something out.

We baked the chamber around 170C for several weeks. On either side of this, we slowly
ramped the temperature up/down over the course of several days to ensure there were no
thermal shocks, particularly to viewports. There were around 20 variacs hooked up to
silicone heating strips, and around 35 thermocouples in different locations. This allowed us
to carefully control the temperature across the entire chamber. We wrapped the chamber
with many layers of UHV foil to help minimize temperature gradients. We began the bake
with a large fan inside the pit room to bring in cold air, but it was blowing in a way that
created a temperature gradient across one of the viewports in the detection region. The
viewport cracked, causing sudden loss in vacuum pressure and the turbo pump shut off.
After replacing the viewport, we baked without the fan and the room got warm but not
unreasonably hot, so all was good. The RGA was on during the bake-out process so we
could monitor the contaminant gasses dropping. Once the initial contaminants had neared
a steady-state, we baked for an extra week or two, then slowly cooled down.
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After baking, I activated each pump and gauge one-by-one. Activating a pump or gauge
causes a bunch of crap to suddenly leave the surface, and this pressure spike can saturate
other pumps. You therefore need to go in a circle and keep doing this to each pump/gauge
until the pressure stabilizes - you want to see the pressure dropping well below what the
turbo pump was doing before you started. The turbo pump had 500 L/s or so pumping
speed, so seeing the pressure drop from other pumps will indicate that the pumping speed
inside the chamber is closer to a couple thousand L/s. You can then close the gate valve to
the turbo pump to see how the pressure behaves without the turbo pump - you should see
the pressure drop even further because the turbo pump can only hold about 1000:1 ratio of
hydrogen pressure between the output and input ports. After sealing the gate valve for good,
I added an extra valve behind the gate valve and pumped this down as well, then sealed
this valve. This ensures that failure of the gate valve wouldn’t cause an immediate change
to atmospheric pressure. Also, note that when we closed the large gate valve it initially
looked like a virtual leak for a day or two, but this eventually went away and is apparently
a common issue with closing large gate valves.

4.3.7 Summary of design decisions

The following is a summary of pro’s (+) and con’s (-) of some of the major design decisions
discussed in the proceeding section.

• Magnetic shield and solenoid inside vacuum

+ Higher aspect ratio tubes → less B-field fringing effects, longer interferometry
region

- Vacuum chamber diameter effectively doubles

- Need to UHV clean enormous parts

• MOT and detection chambers very large diameter

+ Made vacuum design simpler and interferometry region longer

- Makes beam alignment much more difficult, especially for 3D MOT

- Light collection is less efficient

- Making these chambers smaller should have been more seriously considered during
design phase

• Retroreflection mirror instead of two independent fiber ports

+ Simpler and smaller magnitude beam-related systematics

+ Easier alignment

- More single photon scattering

- Parasitic lattices limit total phase achievable

• Omitting quarter waveplate from vacuum
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+ Better beam quality in-vacuum

- Lose 50% of optical power from combining beams on non-polarizing beamsplitter

- Even more parasitic lattices - see Section 4.6.3

• Mount chamber on hexapod struts

+ Allows for much easier gravity alignment

- Slightly more work to mount all optics directly to chamber

- Added lots of mass near interferometry region -¿ high order gravity gradients

• Add a permanent RGA, and use TSPs for with large surface areas for deposition

++ No cons, these were super helpful for a large vacuum chamber

- Just don’t deposit titanium on viewports, especially the main interferometry
one(s)

4.4 Installing chamber and getting vacuum

Another down-side to building an enormous chamber is that you can’t move the parts by
hand. The individual chambers weighed up to 300 lbs, and the magnetic shield + solenoid
+ baffles + central vacuum tube assembly weighed around 500 lbs. We talked to a couple
moving companies, but the only company that would consider a project like this was Sheedy
Drayage12. I won’t bore you with all the details, but needless to say it was very difficult
to get this chamber installed. You can find the assembly steps created by Sheedy in the
projects’ Google Drive folder. I put one page of the assembly in Fig. 4.13 for an example of
what was happening. I’ll just give some highlights of the installation procedure here.

First, in order to save money, we decided to do some of the assembly steps ourselves -
in particular the assembly of the magnetic shield layers, the solenoid tube, and the copper
baffles. A horizontal assembly would have created extra dust from parts scraping together
and would have likely damaged the solenoid winding, so we needed to work out a procedure
to do a vertical assembly. Since the parts were around 10 feet long, we needed around 20
vertical feet in order to accomplish this. Like any reasonable AMO grad student would do
in this situation, I found a single 1/4” hole in an I-beam on the bridge between Birge Hall
and Physics North and I built a ’crane’ that fixed onto this single hole. We came in on a
Sunday since of course Anthony the building manager would have absolutely lost his mind
if he ever found out we did this. See Fig. 4.12 for an image of some of the excitement.

Some other highlights from the installing include the assembly procedure I had to work
out with Sheedy engineers to get the chamber installed (Fig. 4.13) and some images of the
sweaty construction workers touching our precious UHV chamber (Fig. 4.14).

12This is the company responsible for lowering the BART tunnel into the bay. Yeah, the one that’s several
miles long and several hundred feet underwater.
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Figure 4.12: In case you ever doubted the strength of a single 1/4-20 bolt... The crane is
attached to the I-beam with a single extreme strength 1/4-20 bolt from McMaster-Carr,
though a thorlabs 1/4-20 bolt should have still had a large factor of safety.
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Figure 4.13: Page 4/6 in the vacuum chamber assembly steps from Sheedy. 18) the optics
table is lifted up from the side of the room and 19) moved in place over the pit. 20) The
table legs are re-installed. 21) The support structure is lowered around the main vacuum
tube assembly. 22) The main vacuum tube is lifted up to install the detection chamber
under the main tube. This is where I ran into a tolerance issue - the magnetic shield rests
on pads inside the detection chamber, but the tolerancing of the braces mounted inside the
vacuum chamber was screwed up by Kurt Lesker. I had to remove some washers from my
assembly, then use all of the strength in my fingers to move the magnetic shield assembly
over a few mm. Then finally everything slid together... 23) The top chamber is brought in
and prepared to be mounted.

Figure 4.14: Images of the Sheedy workers during installation.
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4.5 The rest of the atomic fountain

While building up the new system, we decided early on to try to replicate the old experimental
details as exactly as possible in the new chamber - this would give us a baseline starting
point to compare the new experiment’s performance to the old one. From there, we could
start changing things one by one to avoid changing too many things at the same time. Many
of these sections directly compare parameters in the new experiment to numbers in the old
experiment - this has allowed us to directly understand what we should expect in the new
apparatus compared to the old apparatus.

By the time I’m graduating, we’re still working to get the same sensitivity as the old
experiment. As a result, there isn’t too much different between the two systems. I’ll highlight
some large upgrades/changes that had to be made, but unless otherwise stated you should
see the experimental details given in Brian and Chenghui’s theses [23, 99].

4.5.1 Control system

One large upgrade to the experiment was getting a new control system. The old experiment
used NI cards and LabView. It would have been very poor design to build on top of an
already messy and not very scalable control system, so we decided to start from scratch. We
purchased an Artiq control system which is FPGA controlled at its core, but all coding is
done in python. We wanted the precision timing offered by the FPGA clocking along with all
open-source code to enable thorough debugging. The downside of Artiq is that it was very
new when we purchased our system - we were actually the first neutral atom experiment to
use Artiq to control our experiment.

We originally tried to design a scalable, organized code structure based on ’blocks’ that
were assembled into a higher-level experimental sequence. For example, the MOT block
would initialize all MOT-related channels, set MOT-related frequencies, and generally house
any MOT-related functions. Then there would be other blocks for RSC, launch, interferom-
etry, etc. We ended up running into issues with multiple blocks trying to initial the same
channels. We also learned that in order to harness the precision-timing of the FPGA, you
need to explicitly schedule events in absolute machine time units. This specifies the exact
clock cycle in the FPGA when events will happen. Since many events are entangled during
the core of the interferometer sequence, most of the code ends up living in a single file. The
current state of the code is some messy mixture of the two of these ideas since the code
moved in a direction different from the original design. Probably it should be overhauled,
but the overhaul would break everything and require a lot of time to clean-up.

Another nice thing about this control system over the previous is that we wrote drivers
for many of the external boxes in the experiment such as function generators, pulse timing
generators, power supplies, piezo actuators, etc. These drivers are wrapped into artiq in
a way that interacting with the external hardware ends up looking identical to interacting
with internal artiq hardware.
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a) b)

Figure 4.15: a) an image of the actual 2D MOT design installed on the experiment, including
the 2D MOT coils wound around the enclosure. b) A stripped down CAD model showing
the fiber collimator, mirrors and beamsplitters used to form the 2D MOT beams.

4.5.2 Compact 2D MOT design

Another change we had to make from the old experiment was the geometry of the 2D-
MOT optics. The old experiment used large 6” lenses to expand the cylindrical 2D-MOT
beams to fill the entire 2D-MOT glass cell. This required a lot of free-space optics for the
telescopes. In the new experiment, the 2D MOT needed to be close to the wall of the pit,
so we couldn’t afford this large space. We ended up designing a very compact setup that
used non-polarizing beamsplitter to split and redirect two incident circular beams in order
to generate three different 2D-MOT regions in the cell with four counter-propagating beams
each. The down-side of this design is that it has very few degrees of freedom to adjust beam
alignments.

Fig. 4.15 shows the final design used on the experiment. The beam sizes, optical power,
optical detuning (-7.5 MHz), and magnetic field strengths were all designed to be roughly
the same as the old experiment. The fiber collimaters from Shäfter + Kirchoff are 200mm
focal length which gives roughly 31mm 1/e2 diameter beams. We typically have 250 mW of
light after each fiber, which then splits six ways to roughly 40 mW per beam passing through
the 2D MOT region. The beam is split three ways at each face of the 2D MOT cell using
2” non-polarizing beamsplitters. First a 30/70 (reflection/transmission) cube reflects 30%
of the light, followed by a 50/50 cube which reflects 50% of the remaining light, followed by
a mirror which reflects all of the remaining light. This gives roughly equal power in each of
the three beams.

The magnetic coils were wound with approximately 120 turns with a coil separation of 7”
and a coil minor diameter of 7”. Each coil is independently driven at around 5A current, but
they slightly differ based on the currents that maximize atom number in the 3D MOT. The
discrepancy is likely compensating for poor optical alignment that we can’t correct because
of lack of degrees of freedom in the 2D MOT optics. According to the magnetic field gradient
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equation in Section 3.3.1 in Brian’s thesis (not numbered) [23], our new coil geometry would
give a magnetic field gradient along the central axis of 0.75 G/cm compared to their quoted
10 G/cm. However, using their geometry and currents, I calculate their gradient was only
1.5 G/cm using Brian’s equation for field gradient. 13 Based on the scaling in eometry and
currents, the new design at 5A only has a 2x lower magnetic field gradient than the old
experiment. I originally intended to run more current in these coils, but the coils begin to
get very hot and we’ve found that this local heating affects the 3D MOT atom number.
Likely the vapor pressure is getting so high in the 2D MOT cell that the cooled atoms can’t
make it out of the 2D MOT region without extra collisions. To directly address this issue in
the future, one would need to wind more turns or use a much larger diameter magnet wire
- however, the size constraints inside the pit make it very difficult to fit larger coils around
the 2D MOT assembly.

4.5.3 3D MOT

The 3D MOT was also designed with very similar physical parameters as the old experiment.
The MOT beams are 1.6 cm waist beams with -15.5 MHz detuning from the F = 4 → F = 5′

transition. We use around 40 mW/beam at the chamber compared to the old experiment’s 25
mW/beam, because increasing the optical power continued giving us a larger atom number.
We don’t go any higher than 40 mW/beam because the tapered amplifier generating the 3D
MOT light would begin having a shorter lifetime if we ran it at higher currents.

The MOT coils are 36 cm diameter and separated by 50 cm. Each coil is made from 35
turns of square copper tube with 8/,mm outer width and 6mm inner width using 35 turns.
With this geometry, 200A gives 7.5 G/cm magnetic field gradient at the 3D MOT region,
which is about 15% less than the magnetic field gradient in the previous experiment. The
wire is hooked up to water cooling from a large heat-exchange chiller so that we can run the
water in the laminar flow regime. Andrew Neely led the design and construction of this so I
won’t say too much more about this. Note a couple things though:

• We had a lot of issues with leaks near the connection from hose to copper wire - if you
see water in the pit, stop and fix the leak.

• We had issues with the coils shorting to the aluminum holders, since the Kapton coating
on the wire was poorly done and has gaps in it. If you move the coils around a lot you
could introduce a new short.

• It’s very important to have an interlock on the chiller water flow - if the water flow
stops and the MOT coils are left on, the MOT coils could overheat until e.g. the
Kapton coating between wires starts burning. The coils were extremely annoying to
wind and were done by hand in the machine shop, and the connections from wire to
hose were also braised on by hand - you don’t want to have to do this again. We have
an interlock set up on the water flow, and as a backup I installed temperature sensors
on the MOT coils that will sound an alarm if they start to overheat.

13Suspiciously close to a factor of 2π error.
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• The MOT coil current switching circuit was designed for a very fast (roughly 1 ms)
switching time. We still need to wait 50-100ms experimentally for the magnetic fields
to settle before we can do very good PGC cooling. Probably the eddy currents in the
chamber walls are limiting our switching time.

Because the chamber in the new experiment is so large, the alignment of the MOT was
very difficult and it took us a couple of months to finally achieve a 3D MOT. A successful
MOT requires all six MOT beams to intersect in the middle of the chamber, overlapped
with the MOT coil B-field zero and the 2D MOT atomic beam. Before you get the first
MOT, you don’t have a readout in the chamber yet so there’s no way to ensure any of this
alignment - it ended up being mostly guess and check until we saw an initial signal. A very
helpful debugging step was to first look for a MOT in the old mini-G chamber which used a
pyramid mirror, since getting a MOT only requires a single beam and is very insensitive to
alignment. We ended up identifying a couple frequency issues by doing this. I mention the
alignment issue with the large chamber because we’re still not sure that everything is aligned
very well. I’ve walked the 3D MOT beams a fair amount around relative to one another, but
there many degrees of freedom so it’s not very clear whether you’ve reached an optimim. If
you’re really struggling with atom number in the future, some walking of the alignment of
the 2D MOT and 3D MOT beams, and maybe even the position/relative current in the 3D
MOT coils, could still give a notable increase in atom number.

4.5.4 Raman Sideband Cooling

The old experiment implemented Raman sideband cooling (RSC) in the detection chamber
while the atoms had already traveled a foot or so since the MOT and molasses launch.
In the new experiment, we implemented RSC only an inch or so above the MOT region.
This has a few benefits, the main one being that the molasses launch alignment is mostly
decoupled from the atomic fountain alignment. The atoms don’t have time to travel very
fair transversely from a crooked molasses launch. Then, because RSC cools the atoms to the
rest frame of the 3D RSC lattice, it effectively relaunches the atoms independently of the
molasses launch. The atomic fountain alignment can now primarily be done with only the
RSC beam pointings, instead of also needing to walk the angle of the 3D MOT beams to
change the molasses launch angle. The close positioning to the MOT region also means the
atomic cloud can’t expand much before being RSC cooled, so it keeps the atom cloud more
dense during the rest of the atomic fountain.14

Another difference with the old experiment is the polarizations of light used during RSC.
Since there is no quarter waveplate near the retro-reflection mirror, RSC needed to be set
up with a different polarization scheme compared to the old experiment. Thankfully, this
polarization scheme had already been worked in the original Steven Chu implementation
back in the day [85, 44].15 So, we just replicated the original scheme and it worked in the
end.

14It’s possible that this was a benefit in the old experiment. RSC only cools atoms aligned with the center
of the RSC beam, so this could have meant that the hottest atoms were lost before interferometry began.

15If you want to spend a day or two spinning your wheels trying to understand all the little details of how
RSC works in neutral atoms, see Andrew Kerman’s thesis [44]. Or, you can take my word that the details
in the thesis don’t really help any understanding beyond what was in the orginal PRL [85].
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Last, I’ll note that I think the best long-term design for the atomic fountain will be using
a lattice launch. This will be discussed in-depth in Section 4.6.4. With a lattice launch, RSC
can be done exactly in the MOT region. A slight molasses launch (a couple hundred mm/s)
will break the velocity degeneracy of RSC and of the lattice launch, then the lattice launch
can be performed after RSC. This alignment scheme (mostly) eliminates the RSC lattice
alignment and molasses launch alignment from the actual atomic fountain alignment. RSC
could also be done over a longer duration with lower pump powers, so it might be able to
get closer to the recoil temperature limit. This would help with transverse velocity spread
as well as atom number after velocity selection.

4.5.5 Detection

The detection scheme is overall very similar to the old experiment. We use a light sheet
resonant with the F = 4 → F = 5′ transition, with some repump light mixed in to bring any
leakage F = 3 atoms back to the F = 4 state. The main difference in the new experiment is
that the large diameter of the new vacuum chamber meant we needed a much larger viewport
to achieve similar solid angle for flouresence detection - see Fig. 4.2 for details. A 200mm
diameter viewport (10”CF, 8” aperture) is installed on either side of the detection chamber
so that light can be collected from both viewports. Each viewport is 300mm from the central
axis of the chamber.

Currently, our main data taking comes from one of the viewports where light is re-imaged
onto the same exactly photodiode and amplifier circuit as in the old experiment - it was taken
off of the old apparatus and installed on the new one. Two 200mm diameter, 300mm focal
length condenser lenses from Edmund optics are used for light collection. Based on the
exact positions of the lenses we’ve estimated a magnification of the atom cloud of 0.8 at the
detection photodiode. This lens geometry captures about 2.6% of the emitted flouresence
compared to the old experiment’s 6.2%.16

Photodiode array

On the other side of the chamber, we’ve installed a photodiode array that is a collaboration
with Azriel Goldschmidt at Lawrence Berkeley National Lab. Madeline Bernstein has led
this collaboration from our side, so I’ll only give a brief overview. The same imaging optics
(200mm diameter, 300mm focal length lenses) are used to re-image the atomic flouresence
onto the photodiode array. Each photodiode is 6mm vertically by 600µm horizontally, and
16 total photodiodes are connected to readout electronics.

Fig. 4.16b) shows an image of the photodiode array mounted to the PCB with readout
electronics. Fig. 4.16a) shows some preliminary ellipse data taken with the photodiode array,
illustrating loss of contrast in the interferometer towards the edges of the atom cloud. This
is expected from the atoms seeing lower laser intensity near the edges of the interferometry
laser beam.

The photodiode array already helps with alignment of the atomic fountain since we can
directly see which way the atom cloud moves. We hope that in the future the array can be

16This is an estimate of the old experiment collection efficiency based on the geometry described in Brian’s
thesis [23]
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Figure 4.16: a) Ellipse data taken with the photodiode array, as a function of the horizontal
position of the photodiodes. b) Image of the photodiode array mounted to a PCB containing
the readout amplification circuit.

used to characterize systematic effects across the atom cloud, and potentially it is a new way
to confirm our Monte Carlo understanding of spatially dependent phase shifts.

We’ve found that we can’t operate both the photodiode array and the single photodiode
at the same time, because flouresence reflects off of each photodiode face and makes its way
to the other photodiode. It’s mostly an issue with light reflecting off of the single photodiode
and then smearing out the signal on the photodiode array. Maybe there’s a way to fix this
easily in the future by angling the chips, but for now it’s preventing both from being used
at the same time.

4.5.6 Interferometry

The optics and electronics chain for generation of the interferometry beams is nearly identical
to the old experiment. See Fig. 4.3 in Brian’s thesis for an illustration of the optics layout
for interferometer frequency generation [23]. We use the same layout with the exception of
the polarizing beamsplitter the combined beams in the old experiment has been replaced by
a non-polarizing beamsplitter when combining the two optics paths ω1 and ω2±. As a result,
half of our optical power is lost to the other port of the combining beamsplitter. The light
is sent to the chamber through a 15m optical fiber, after which the exact same fiber port
from the old α experiment is used to expand the beam to a 6.2mm 1/e2 waist. We are not
using the apodizing filter used for data taking in the 2018 α result [67] because the large
clear aperture in the new chamber fixes the issue of power in the wings of the beam.

So far in the new experiment, we’ve gotten up to 7 Mrad of phase using a Bragg order
n = 3, Bloch order N = 100, and interrogation time T = 100ms. This is very close to the old
experiment’s maximum total phase of 10 Mrad (n = 5, N = 125, T = 80ms). Importantly,
we’ve seen very good contrast still at these parameters - upwards of 20% contrast still at
7 Mrad phase. This is an indication that the larger clear-aperture in the new experiment
has helped improve issues related to reflections off of the vacuum chamber walls, but more
rigorous study of the contrast decay with T needs to be done to confirm this. Initial results
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for Allan deviations show that we can average down to a few times 10−10 error in α after 24
hours of data taking. This is likely worse than the old experiment by a factor of a few, but we
don’t have good Allan deviation numbers from the old experiment for a direct comparison.

Our old MSquared TiSaph laser was dying ever since moving it to Campbell hall, and
MSquared seems to be on the brink of going out of business... We bought a Sirah Matisse
TiSaph laser that can output upwards of 6.5W at 852 nm. It has a cavity included in the
setup for short-term locking, but for long-term drifts we are still using the old experiment’s
strategy of phase locking to spectroscopy. This upgrade gave us an extra 30% optical power
relative to the old setup.

Accounting for the factor of 2 loss in laser power from the old experiment due to not
having a quarter waveplate in-vacuum, we’ll likely never be able to drive n = 5 Bragg
diffraction with a large enough detuning to also Bloch oscillations. We have some headroom
now to go up to n = 4 Bragg though, and this will likely be implemented soon. For Bloch
oscillations, we’re limited by the parasitic lattice issues discussed in Section 4.6.3 below. If
the launch velocity is increased, we may be able to increase to N = 125 or N = 150, but
likely we won’t be able to push too much above this. T can’t be pushed out much further
because the gravity gradient phase scales as T 3 and the gravity gradient systematic effect
was already a large correction to the value of α in the old experiment at T = 80ms [67]. As
a result, the total phase achievable in the experiment will likely be very similar to the old
experiment unless we get a significantly more powerful laser for interferometry. In order to
make a better measurement of α, the best path forward is likely in decreasing shot-to-shot
ellipse noise. Progress is already underway on this front - we’re working on cooling the
detection photodiode to decrease detection shot noise from photodiode dark currents, which
we estimate is likely the limiting factor in the total detection noise.

4.6 New ideas

For lack of a better place to put these, I want to document some new experimental ideas
that are in the works and not-quite-paper-worthy, at least not yet.

4.6.1 Systematic effect from velocity selection light shifts

While working on developing the Monte Carlo, I realized a potentially nasty systematic effect
from light shift during Raman transitions. I haven’t found any literature on this effect, but
it would be very surprising if no one in our field has realized this since Raman transitions
have been used in this way for 30 years...

In summary, the differential light shift during Raman transitions changes the atomic
velocity class selected. Since the finite size laser beam intensity changes over the finite size
of the atom cloud, the selected velocity class becomes a function of position of the atom
within the laser beam. This leads to correlations between on-axis velocity and the position
of the atom within the transverse plane of the laser. Since both the position and on-axis
velocity of the atom affect diffraction phase from Bragg diffraction, this systematic has the
potential to lead to phase shifts in an atom interferometer.
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Figure 4.17: Diagram of relevant energy shifts in a typical ’lambda’ Raman transition. The
F = 3 and F = 4 ground states are energy shifted by their respective light shifts, leading to
a two-photon detuning δ that is dependent on the local laser intensity.

Figure 4.17 illustrates a typical energy level diagram for a Raman transition with two
counter-propagation lasers Ω1 and Ω2. The two ground states are energy shifted by the
respective light shifts of the two beam and respective detunings from the excited state. The
excited state detuning ∆ is assumed much larger than the hyper-fine state splitting so that
the excited state manifold can be represented as a single state. The velocity resonance
condition for the velocity-selective Raman transition is given by [54]:

2kv = δ − 8ωr −∆+
Ω2

2

4∆
− Ω2

1

4∆
(4.1)

Ω1 and Ω2 vary with the local laser intensity, so the selected velocity depends on the
location of the atom within the laser beam.

The actual experimental situation that we have is more complicated than what is shown
in Fig. 4.17. Experimentally, we combine one beam with frequency ω1, with another that
went through an EOM and has frequencies ω2 + i ∗ δEOM where the EOM drive frequency
δEOM is very nearly the Cesium ground state hyperfine splitting of ≈ 9.2 GHz. The optical
power in each of the ω2 frequency components varies as a Bessel function |Ji(β)|2, where
β is a dimensionless value related to the EOM RF drive power. All of these frequency
components are retro-reflected in the chamber, so both the up-going and down-going passes
of the beam interact with the atoms. An accurate calculation of the light shift and two-
photon Rabi frequency therefore requires a careful summation of the contributions of all
frequency components.

Figure 4.18 calculates the two-photon Rabi frequency, AC Stark shift, and single photon
scattering for a range of detunings and EOM driving strengths. The calculation is based on
parameters similar to those used in our experiment: 20 mW of light in the EOM beam, 2 mW
of light in the non-EOM beam, a 6.2mm beam waist, and unless otherwise stated an EOM
drive strength of β = 1.8 which rougly maximized the optical power in the ±1 sidebands.
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Figure 4.18: Numerical estimates of the AC Stark shift, effective two-photon Rabi frequency,
and single photon scattering rate during Raman transitions. a,b) Rates for these processes
for two different detuning ranges, a) zoomed in near a resonance with the excited state
manifold and b) over a larger 20 GHz range. c) The AC Stark shift and d) the effective
two-photon Rabi frequency as a function of detuning for a range of different EOM driving
strengths β.
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The frequency reference ∆ = 0 corresponds to the F = 4 → F ′ = 5 transition. When one
of the frequency components in the calculation nears single-photon resonance, the AC Stark
shift, single-photon scattering rate and two-photon Rabi frequencies all diverge. In-between
resonances, the summation of different processes leads to various zero-crossing for the AC
Stark shift and the two-photon Rabi frequency. The portable gravimeter experiment in our
group used this effect to find a detuning between the F = 4 → F ′ = 4 and F = 4 → F ′ = 5
where the AC Stark shift goes to zero, the scattering rate is relatively small, and the two-
photon Rabi frequency is large [96]. This corresponds to roughly 9100 MHz detuning in Fig.
4.18a), though the ratio of powers between the two beams was much closer to one in the
mini-g experiment so the graph does not represent their actual experimental setup.

Magic wavelength for Raman transitions

The systematic effect explored in this section relates to the differential AC Stark shift during
a Raman transition. Figure 4.18c) shows that there are zero-crossings of the AC Stark shift
where this effect would vanish. These so-called ”magic wavelengths” are a function of the
EOM drive strength β as well as the balance of optical powers between the EOM and non-
EOM beams. Experimentally, we have been able to find magic wavelengths for a given set
of parameters by varying the frequency of our TiSaph laser, equivalent to varying the x-axis
on these plots. In the future, you will want the flexibility to choose any detuning. Fig 4.18c)
and d) show that you can likely set a zero-crossing of the AC Stark shift at a given frequency
by varying the EOM drive strength and/or the balance between optical powers, all while
maintaining a non-zero two-photon Rabi frequency.

4.6.2 In-vacuum beam imaging

Since we can’t put a camera into the vacuum chamber to image our laser beam, is there a
way we can use our atoms to take a sensitive picture of the beam intensity? I was thinking
about this during COVID-19 lockdown because I had nothing better to do. It turns out
there is a very sensitive way to do this by turning the laser intensity information into phase
information on the atoms using the AC Stark shift.

Using a Ramsey sequence of two microwave π/2-pulses separated by a time T , one can
turn the atomic phase information back into populaton information.17 If atoms are initialized
in the F = 4 ground state, then the π/2 pulse will put the atom in a superposition of F = 4
and F = 3 ground states. If a single (detuned) frequency of light is incident on the atoms
in the middle of the Ramsey sequence, the two ground states will see a differential AC stark
shift and will phase-evolve at different rates depending on the local laser intensity. After the
second microwave pulse, phase information on the wavefunctions will be turned into varying
populations in the F = 4 versus F = 3 ground states. If the differential AC Stark shift
resulted in many π radians of phase, then the population pattern across a Gaussian beam
would resemble a circular fringe pattern.

Figure 4.19 shows a numerical calculation of the expected phase from differential AC
Stark shift and the expected number of single photon scatters, as a function of the detuning

17You might be familiar with a Ramsey sequence as the sequence used in Cesium atomic fountain clocks
which define the world time standard.
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Figure 4.19: a) The total differential light shift phase and b) the number of single photon
scatters as a function of laser detuning for a single frequency of light. Parameters used are
50 mW retro-reflected light over 0.5ms duration on a 6.2mm waist beam.

of the incident laser. ∆ = 0 corresponds to resonance with the F = 4 → F ′ = 5 transition.
Around ∆ = 4.5GHz, the F = 3 and F = 4 ground states see roughly equal and opposite
laser detunings. In this region it’s possible to accumulate thousands of radians of differential
phase in a very short amount of time, with the probability of a single photon scattering event
much less than one.

Figure 4.20 shows the expected population distribution for the same set of parameters.
Across a σ = 1.5mm atom cloud, the population distribution shows a very fine structure with
population variation wavelengths less than 100µm. Figure 4.20b) illustrates the dramatic
sensitivity of this method in detecting very small intensity ripples in the beam - 0.2% intensity
ripples are extremely clear in the population distribution.

There are a couple of challenges in using this method. First, one needs to ensure that
the atom ensemble thermal velocity doesn’t wash out the population distribution before it is
imaged. After Raman sideband cooling, atoms have an average thermal velocity of around
5.5 mm/s in the axial direction, which is what we are interested in. In 5 ms, the atoms
therefore travel on average 27.5µm, which gives the length scale below which fringes begin
to wash out. If the above scheme including imaging time can be accomplished in less than
5 ms, then thermal velocity won’t be a limiting factor.

If the sequence is performed directly after PGC, the thermal velocity will be several
times higher than after Raman sideband cooling, so either the imaging needs to be done
more quickly, or the length scale of fringes that can be imaged will suffer. Moreover, the
magnetic sublevel distribution of atoms will be spread roughly uniformly over all magnetic
sublevels. If there is an applied magnetic field, the sublevels will split, and the microwave
π/2 pulse will only perform a Ramsey sequence on one of the magnetic sublevels. If there is
no magnetic field, all sublevels will contribute to the Ramsey sequence. Different magnetic
sublevels will acquire different phases from small magnetic field gradients, which could mask
the effects from the beam that are trying to be measured.

Last, it is difficult to get a fast, high-quality image of the atom cloud along the axis that
the beam interacts with the atoms. After the Ramsey sequence is complete, one will need
to perform either flouresence imaging or absorption imaging on the atom cloud distribution.
Absorption imaging likely won’t work well because the 100µm length scale of the fringes will
have a short Rayleigh range once imprinted on the laser beam, and may wash out before
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Figure 4.20: Expected population distribution in the e.g. F = 4 state for a a) Gaussian
beam profile and b) Gaussian beam profile with an additional 0.2% intensity ripple with
wavelength ≈ 300µm. In reality the fringes should remain at 100% contrast over all of
space, but the flouresence will drop outside of the atom cloud. Here I represent this by
weighting the contrast by the atom cloud population. Thermal motion and detection effects
are not accounted for in this plot.

reaching the camera. Flouresence imaging will be difficult because the camera will have to
be at least ≈ 1 meter away from the atom cloud and therefore the solid angle of flouresence
detected will be very small.

I’ll leave the exact details to the next generation of students who actually implement
this, but care will need to be taken to ensure:

• Maximal detected photon count per pixel on the camera by using large diameter col-
lection optics.

• Large depth of field so that signal from the top and bottom of the cloud doesn’t start
washing out the pattern. This will require a small aperture in the collection optics

• The camera alignment to the cloud needs to be very nearly on the same axis as the
beam, so that the vertical columns of population remain aligned to the camera. This
may require a 50/50 cube under the chamber so that the camera can be exactly on-axis

• All imaging needs to be done within several milliseconds to ensure thermal motion of
atoms doesn’t wash out image, as discussed already

• The 100 mW Stark-shifting beam probably shouldn’t hit the camera directly in order
to protect the CCD chip

• Probably you want to image the up-going and down-going beams separately using this
method - to do this, the retro-reflection of the beam will need to be slightly misaligned
so only one pass hits the atom cloud and the other pass doesn’t cause any Stark-shift
phase.
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Figure 4.21: Illustration of the frequency pairs in the experiment during multi-frequency
pulses, and our gold retro-reflecting mirror. We want atoms to only interact with the lattices
formed by the upgoing ω1 beam and the downgoing ω± beams. All other lattices are parasitic
- they cause unwanted perturbations to the Bragg diffraction or Bloch oscillation dynamics.
See text for further discussion.

Even with all of these considerations, the numbers seem to indicate that we could still
do a fairly good job at imaging part-per-thousand defects in the beam intensity. Jack Roth
is currently working with Azriel Goldschmidt at Lawrence Berkeley National Lab on making
an optimized setup for this imaging scheme.

4.6.3 Systematic effect from parasitic lattices

As discussed in the beginning of the chapter, the decision to omit a quarter waveplate from
inside the vacuum chamber changes the polarizations used to drive Bragg diffraction/Bloch
oscillations. All frequencies of light must have the same polarization of light, which means
that any pair of frequencies will form an optical lattice that can interact with the atoms. In
the old experiment, the orthogonal polarizations ensured that there were only a few parasitic
lattices that were formed.18

This section will outline qualitatively how these parasitic lattices might impact the exper-
iment, but further investigation will be needed in the future to make this more quantitative.
See Fig. 4.21 for an illustration of the effect. Bloch oscillations and the second two Bragg
diffraction pulses require three optical frequencies sent into the chamber, as opposed to the
two frequencies required for Bragg diffraction or Bloch oscillations of one atomic velocity. I
will commonly refer to these three-frequency pulses as ’multi-frequency’ pulses from here on.
The two lattices formed by the up-going ω1 frequency and the down-going ω2± frequencies
interact with the lower and upper interferometers, respectively. These pairs are indicated
by the solid lines connecting frequencies in Fig. 4.21. All dashed lines represent real lattices
formed in the experiment that move at various velocities - they are not the lattices we in-
tend to use for physics, so we call them parasitic. In the old experiment, the only parasitic
lattices with non-zero matrix elements were the down-going ω1 frequency interfering with

18See Chenghui’s thesis Chapter 2 for a good discussion of the polarizations in the old experiment and
which combinations of polarizations lead to non-zero matrix elements.
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Figure 4.22: ]
a-c) Illustrations of various moving lattices during the experimental sequence. Green and
blue lines roughly represent the atomic trajectories accelerating under gravity, ignoring the
(small) Bragg diffraction velocity splittings. Vertical dotted lines show the time of Bragg

pulses. During Bloch oscillations, the atom velocities are accelerated away from one
another - the solid red lines show the parasitic lattices that begin to cross paths with the
desired lattices in b) and c). d-f) Experimental traces of the respective scenarios shown in
a-c), where the parasitic lattices begin trapping population and perturbing dynamics.

Figure thanks to Yair Segev.
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Figure 4.23: Limits to the total phase achievable in the experiment as a function of the
number of Bloch oscillations and the interrogation time T, due to the parasitic lattices
illustrated in Fig. 4.22. The colored gradient lines indicate contours of constant total
phase (in Mrad), with cross-haired numbers indicating what phase each contour represents.
The solid black line shows the limit when parasitic lattices start interfering with the Bloch
oscillation pulse. Above this line, the Bloch oscillation dynamics will be highly perturbed.
The red line shows when the fourth Bragg pulse occurs at the apex of the trajectories - it is
not a limit to the total phase, but we need to stay clear of this line since standing waves in
the lab frame will disrupt the Bragg diffraction dynamics.

the up-going ω2± frequencies, since these were the only other combination of beams that
had opposite polarizations. These would have been moving downards in the chamber, and
therefore would have stayed far off-resonant from the atoms while they were still upwards in
their trajectories. In the new experiment, all dashed lines now interact with the atoms, so
additional care must be taken to ensure that parasitic lattices don’t perturb the dynamics.

Fig. 4.22 shows how these parasitic lattices interact with the atoms during the experi-
mental sequence. If the pulse separation time T of the interferometer is short enough, the
problem parasitic lattices formed by the interference of the up-going ω2+ and down-going ω2−
beams is far-detuned19 and does not grossly interfere with the Bloch oscillation dynamics.
However, for longer T’s, the velocity of the parasitic lattices crosses the velocity of Bloch
lattice(s) and severely perturbs the dynamics. Experimentally, we see total loss of contrast
when this interference occurs and significant population loss from the original ground state

19I say ’far-detuned’ in a velocity sense. This still translates to far-detuned in a frequency sense when
working with the Schrodinger equation, were the frequency difference between optical frequencies is much
greater than a recoil frequency.
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Bloch lattice.
Note also that the v = 0 lattice is a (strong) standing wave in the lab frame - this lattice

will also highly perturb dynamics for any processes occurring near zero velocity. Moreover,
this standing wave lattice is the sum of the three lattices formed by the three frequencies in
Fig. 4.21 interfering with themselves. The three superposed lattices have different spatial
frequencies, which will cause a standing-wave structure in their interference. The frequency
differences are on the order of tens of kHz to a few MHz, so the wavelength of the spatial
structure will be hundreds of meters. Since the lattices have the same zero electric field
boundary condition at the gold mirror, the interference pattern should add constructively
near the gold mirror, so the spatial structure of this lattice shouldn’t play a role in the
systematic effects. I just wanted to make a note of this in case it’s ever relevant.

Last, recall that in the old experiment, crossed polarizations ensured that these lab-
frame standing wave lattices had zero matrix element to drive Bragg diffraction or Bloch
oscillations, and therefore did not interact with the atoms.20

One way to get around this issue would be to break Bloch oscillations into multiple steps
- you could unload the lattice when the parasitic lattice gets close to the atomic velocity,
let the parasitic lattice pass by the atomic velocity (from gravitational acceleration), then
continue Bloch oscillation accelerations. This would make the experimental sequence much
more complicated, and it might risk adding new systematic effects to the already complicated
system. If you’re not willing to break Bloch oscillations into multiple pulses, the constraints
on T and N from the parasitic lattices will limit the total phase achievable in the experiment.
Fig. 4.23 shows the limit to total phase in the new experiment due to this parasitic lattice
issue. For reference, the old experiment used a maximum of 10Mrad phase in data taking
for the measurement of α. The easiest way to increase total phase in the future will be to
launch atoms faster so that the parasitic lattices are further detuned.

These parasitic lattices can also cause T-dependent diffraction phases, similar to those
discussed in Section 4.2.1 but from a very different origin. Note that these effects are not
new to our project, but this is an added source of these effects [66, 24]. Off-resonant lattices
distort the typical Bragg diffraction dynamics, leading to phase shifts on the wavefunction.
Symmetries in the SCI interferometer geometry ensure that the 1st and 4th pulse diffraction
phases are cancelled or nearly cancelled.21 The diffraction phase from the third pulse ends up
being the dominant contribution to the SCI interferometer since the multi-frequency pulses
have a second perturbing lattice that leads to diffraction phase shifts. The old experiment
found that by fixing the location of the second and third Bragg pulses in the atoms’ time
of flight, the diffraction phase drifts were substantially minimized. This is likely because
the parasitic lattices that did affect the old experiment, discussed above, would have had
a strong T-dependence since the velocity of the atoms in the lab frame dictates how off-
resonant the parasitic lattices are. I suspect this is why they found fixing the location/time
of the second and third Bragg pulses to make such a difference. In this generation of the
experiment, similar shifts from parasitic lattices will likely be even worse - we might still be
able to use the same trick of fixing the time/location of the second and third Bragg pulses

20They still stayed away from zero velocity in the old experiment, likely because impure polarizations
would have allowed for a weak interaction with the atoms that still interfered with dynamics.

21See Brian’s thesis for a good discussion [23], as well as the paper form of this section of his thesis [66].
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to eliminate or at least strongly suppress the effects.
Looking towards a next-generation experiment, I would recommend using two fibers

instead of a retro-reflection mirror and one fiber. Using two fibers like this would save
2x in laser power and eliminate all parasitic lattices. This gives a lot more flexibility in
interferometer geometries and total phase. It would also reduce single photon scattering by
a factor of 2 which would further allow for more total phase, since you’ll have more signal after
many Bloch oscillations. If you go down this route, then you should also incorporate a well-
designed system for characterizing the beam-beam alignment and the in-vacuum intensity
profile of each laser beam, so that the systematic effects from two beams aren’t unreasonably
difficult to characterize. For the current generation of the experiment, we first want to get
a handle on the single beam systematics before making the beam-related systematics more
complex, so I don’t think it was a huge mistake in our design decisions. We just didn’t
realize the extra limits on total phase that we would run into.

4.6.4 Lattice launch

The last-generation α experiment spent a great deal of time re-aligning the atomic fountain.
Their setup required co-alignment of the molasses launch, RSC lattice, and interferometry
beams all to align with gravity. Too many degrees of freedom and very strict alignment
criteria made this very difficult to do. There was no alignment procedure that converged, so
they had to guess and check.

In the new experiment, we have already reduced part of this issue by moving RSC to
be much closer to the MOT region, thereby reducing the sensitivity to the molasses launch
alignment. If alignment continues being an issue in the future, a lattice launch should fix
the issue.22 By launching atoms with the same beam that is used for interferometry, the
launch is automatically co-aligned with the interferometer beam. RSC can be done in the
MOT region before launching with a very small molasses launch, which will further reduce
the launch sensitivity to molasses launch and RSC alignment.

For an example of another experiment that uses a lattice launch, see Mark Kasevich’s
10m fountain in e.g. this thesis [79]. They use slightly off-axis beams that interfere at the
location of the MOT in a way that gives a vertical launch - this must be a terrible setup to
have to align... For our system, it will be much more effective if we can launch atoms using
the same beam as the interferometer beam, so that we automatically have co-aligned launch
and interferometry laser. This will have to come at the cost of optical power, since we don’t
have a good way to combine beams before the last fiber without losing optical power.

The laser power requirements aren’t too bad for this system. Figure 4.24 shows a numer-
ically calculated survival fraction of the atomic ensemble after such a lattice launch, which
integrates over the finite size of the atom cloud and laser beam.23 In order to launch to 6 m/s

22At the cost of added complexity and probably a lower launched atom number...
23If these plots look familiar, it’s because my code is based on Matt Jaffe’s code that he used for plots

in his thesis. My code can be found in the git repo alpha random/atom laser interactions/Finite size LZ
tunneling and scattering.nb. Also, note that there are many many places to have factor of two errors in this
calculation. I’ve spent a ton of time searching for factors of two in this script, so don’t start making changes
unless you’re 100% certain you’re correct or have experimental data to back it up.
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a)

b)

Figure 4.24: a) Landau-Zener survival probability for 940 Bloch oscillations with the given
lattice depths, as a function of the position of the atom relative to the center of the beam.
For saturated Bloch oscillations, tunneling creates a sharp cutoff for surviving atoms. b) The
survival probability of a lattice launch with and without single photon scattering included
for a detuning of 2π ∗ 100 GHz and an acceleration rate of 10g.
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with an acceleration rate of 10g, you need around 940 Bloch oscillations.24 Other parameters
used in the simulation are a beam waist of 6.2 mm, atom cloud waist of 1.5mm, and a blue
detuning of 2π ∗ 100 GHz. The optimal lattice depth is around 8.5Er, which corresponds to
about 250 mW of light in each frequency component. For someone trying to design a lattice
launch laser system, this is a lot of power but nothing crazy. The important feature is that
you need a very large detuning. The laser will be interacting with the atom cloud for 60 ms
for these parameters, or even longer if you need to ramp more slowly.

24Recall that the atoms actually experience a force of 11g because gravity adds to our lab-frame accelera-
tion.
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Chapter 5

Monte Carlo overview

5.1 Introduction

Most quantities measured by atom interferometers require very precise knowledge of the k-
vector of the laser. As discussed in Chapter 1, our experiment measures the recoil frequency
of Cesium ωr = h̄k2/(2m), so turning our measurement of ωr into a measurement of h̄/m
requires knowledge of k2. For ideal plane waves laser beams, the k-vector is given by k = ω/c,
where ω is the optical frequency and c is the speed of light. If we had a plane wave laser
beam and measured its frequency ω using an optical frequency comb, then we would know
k to very high precision.

However, finite sized laser beams cause the magnitude of the k-vector to deviate from
ω/c, and even the direction of the k-vector rotates away from the axis of propagation. The
well-know ‘Gouy shift’ captures deviations in the k-vector from a Gaussian laser beam[27].
This result has recently been generalized to a local calculation of δk based on the local
amplitude curvature and phase gradient of the electric field of the laser [6], which allows for
a general treatment of momentum transfer from distorted non-Gaussian laser beams. This
will be discussed quantitatively in Section 5.3.2

While many models have been used to capture various aspects of beam-related effects
in atom interferometers, no single model has been used to demonstrate a complete under-
standing of the resulting effects[89, 91, 33, 67, 6]. The goal of this Monte Carlo package is
to capture all of the relevant physics that might shift our measurement of α.

Beam-related systematics are likely to be the most difficult to characterize in our entire
experiment moving forward, so having a model of beam-related systematic effects that we
trust will be crucially important the a next-generation measurement of α. To this end, it’s
also crucial that we verify the model experimentally. Part of the aim of this project is demon-
strate an understanding of beam-related effects by intentionally adding large distortions to
the laser beam in order to match our model with experimental results - larger distortions on
the beam should make it easier for us to measure the effects.

By treating the physics in our Monte Carlo as generally as possible, we have identified a
couple new sources of phase error that needs to be considered in the treatment of inhomoge-
nous laser beams in atom interferometers. First, deviations δk in the k-vector of the laser
can cause the interferometer arms to not overlap exactly at the closing of the interferometer.
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Figure 5.1: Plotted here is the δk/k Gouy shift near the focus of a w0 = 3.25mm 1/e2 radius
beam, roughly what the old α experiment used.

We have found that the resulting separation phase needs to be taken into account in order to
accurately capture the resulting phase shifts. We have also found that off-axis components
of the k-vector must be accounted for in accurately modeling contrast loss, another affect
that has not yet been included in systematics studies. In total, this model presented in this
chapter will hopefully serve as the foundation for beam-related systematics analysis in our
next published measurement of the fine-structure constant.

5.2 Motivation

Given the desire for such a model, why does the α experiment need a Monte Carlo simulation
to execute it, as opposed to analytic estimates? Some systematic effects in our experiment
can be calculated analytically and are insensitive to the finite size/ temperature of our
atom cloud and the finite size of our laser beam. For example, the gravity and magnetic
field gradients change over length scales much larger than the atom cloud. These types of
systematic effects can be treated analytically by calculating a correction to the measurement.

Other systematic effects, however, are highly dependent on the size and temperature of
the atom cloud, and the size of the laser beam. The Gouy shift is the primary example -
it varies O(100%) as you go from the center of Gaussian laser beam to one waist off-axis.
The 2018 α publication [67] corrected their measurement at −2.6± 0.03 ppb, meaning they
claimed knowledge of this effect at the 1% level. Fig. 5.1 shows (very roughly) what the
Gouy shift looked like in their experiment.1 For an atom cloud with a 1σ waist of 1.5mm,
the Gouy shift varies by 10′s of percent across the extent of the atom cloud. Moreover, the
atom cloud is expanding during the time of flight and between the different interferometer
pulses, so the ensemble-averaged effect is changing pulse-to-pulse.

1Their laser beam was slightly flatter in the center than a typical Gaussian beam, so their Gouy shift
would have been slightly lower than what’s plotted in the center region of the beam. Also, since α ends up
being proportional to the k, the average δk/k can be directly interpreted as the correction made to the value
of α.
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One could imagine calculating an expectation value for the Gouy shift analytically by us-
ing a Gaussian integral between your atom cloud distribution and the Gaussian laser beam.
However, the varying laser intensity also couples to the survival probability of an atom
through the interferometer, which leaves correlations between the Gouy shift and the contri-
bution to the final interferometer contrast. Let’s say you also take this into account in your
expectation value, and can still get closed-form integral for a single Bragg pulse. In reality,
there are four Bragg pulses and one Bloch pulse, and the atoms are moving around thermally
between each of the pulses. Somehow, maybe you could still get an analytic solution written
down when accounting for all of these effects. The kicker is that our experimental laser beam
is not an ideal Gaussian beam, and it turns out that the non-ideal nature of the beam can
have significant effects on the ensemble-averaged Gouy shift. All of these effects together,
and many more that I don’t mention here, make the problem far too complicated to treat
analytically - we need to study these systematic effects with a Monte Carlo simulation.

The previous generation alpha experiment had two Monte Carlo packages that were used
in their final publication [67]. One was initially made in Matlab by Brian Estey, and then
Richard Parker continued developing it after Brian left. The other package was made in
Python/C by Chenghui Yu from scratch in the final years of his thesis. The old codes
worked as needed for publication of a measurement of α [67], however there are a number of
improvements that can be made moving forward.

The new code:

• has much more documentation so that new users can build off of the existing code
instead of writing a new code package

• treats Bloch oscillations generally through the Schrodinger equation, instead of assum-
ing all phase shifts from Bloch oscillations cancel

• includes loss of contrast effects from transverse momentum kicks due to light shifts and
angled k-vectors, giving a more accurate model of contrast loss

• runs much much faster by using a look-up table for Schrodinger equation evolution,
instead of integrating the Schrodinger equation directly for each atom in the Monte
Carlo

• calculates local lattice depth and light shifts from a general 3D model of the laser
propagation, instead of using only a few CCD images

.
To follow up more on the last two points, one concerning aspect of the previous Monte

Carlo work was that an image filter was used to smooth experimental CCD images of the
laser beams, since it’s very difficult to take accurate images of a laser beam with a CCD
due to dust on optics and etaloning within the camera or within the CCD chip itself. They
varied the pixel width of the image filter to match experimental contrast to predicted Monte
Carlo contrast - if their Monte Carlo model for contrast loss was incorrect, this would could
cause issues in estimating the Gouy shift δk from small scale intensity inhomogeneities. The
current Monte Carlo model aims to develop a more complete model of contrast loss so that
potential issues like this won’t arise in the future. Moreover, we are working to obtain
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accurate CCD images of the beam so that we don’t need to use an image filter to remove
imaging artifacts on the beam profile. A recent result from the MAGIS-100 collaboration
might be very useful in obtaining defect-free images of the beam [40], where they take a
series of images on different parts of the CCD and with different angles of the CCD, then
use principle component analysis (PCA) to identify the actual modal profile of the beam.

This chapter gives a high-level overview of the physics built into the Monte Carlo model,
followed by an overview of the code package that simulates this physics. I then discuss some
initial results using the Monte Carlo model to study systematic effects from laser beams
with significant intensity profile distortions. The work to compare this model to experiment
is ongoing, so we don’t yet have experimental results at the time of publishing this thesis.
Stay tuned for more results in the near future.

5.2.1 Monte Carlo Design Philosophy

Before diving into the weeds, I’d like take this opportunity to strongly encourage future
students on this project to put effort into building a shared Monte Carlo code instead of
re-writing a code package from scratch, as has been done for the last ten years or so.2

There is a strong culture in atomic physics of doing everything yourself, and I’m sure any
of you reading this would be interested in writing your own Monte Carlo. Of course, doing
everything yourself is how you learn and understand things the best. However, the scope of
the α project is just too large for any one student to do all of it - if you scrap my code, it’ll
take you at least a year of work to catch up, likely more. Instead, you should spend a month
learning how to use the code, then start building on it and improving it, and using the code
for studying interesting physics. If you can start a culture of everyone building on the same
code, you’ll have a much more powerful Monte Carlo and a much more efficient team.

In addition, we’ve learned over the last ten years that beam-related systematic effects
are some of the nastiest and hardest to characterize effects in our experiment. The Monte
Carlo analysis will only get more complicated as the experiment develops, so having a shared
complex code package will become increasingly important in the future.

5.3 Monte Carlo physics

Let’s first look at the physics that the Monte Carlo model contains. At it’s core, the code
simulates a single atom going through an SCI interferometer. The atomic wavefunction
is evolved through Bragg diffraction and Bloch oscillations by numerically integrating the
Schrodinger equation, which solves for the amplitude and phase of atoms along each of the
interferometer trajectories. These Schrodinger equations were derived in Chapter 2. A model
of propagation of the laser beam electric field, including retro-reflection, is used to calculate
the local lattice depth, light shift, laser phase, etc. At the end of the interferometer, over-
lapping wavefunction trajectories are interfered and phase information on the wavefunction
is converted to population information in the output ports. These populations are used
to parametrically plot the output on an ellipse, mimicking our experimental data analysis

2I can’t resist a good opportunity to preach some unsolicited advice...
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pipeline. The ellipse is fit to extract the differential phase between two interferometers as
well as the interferometer contrast.

Most of the physics used in the code is wrapped in boolean parameters so that the user
can easily turn on/off different physical effects, for example turning on/off gravity, simulating
zero temperature on-axis atoms (no random initial conditions), or turning on/off the Gouy
shift. However, the main application of the code is to simulate as closely as possible our
exact experimental conditions. For these simulations, the atoms are moving upwards at
around 3 m/s near the interferometry region of the chamber when interferometry begins,
with an on-axis velocity spread of around 0.05 vr

3 and an off-axis velocity spread of around
1.5 vr. The 1σ radius of the atom cloud is about 1.5mm and the laser beam waist is around
6mm. Accurate distances for retroreflection of the beam are taken into account. There are
many more parameters included in the model but I won’t list them all here. The point is
that the code is written in a way that allows the user to easily switch from highly simplified
situations that isolate individual physical effects to using the full generality of the physics in
the model to predict real experimental outcomes. The former is very useful for debugging
or for gaining intuition for different parameters, but the latter is where the true predictive
power of the Monte Carlo code lies.

5.3.1 Laser Electric Field Models

To begin, many physical effects in the Monte Carlo model require knowledge of the electric
field propagation of the laser beam, not just the intensity propagation. For example, the laser
phase imparted to the atom depends on the phase of the electric field. As another example,
deviations in the local k-vector depend on the gradient of the phase of the electric field. To
keep the model as general as possible, the code is currently built on analytic functional forms
of the propagation structure of the laser beam electric field E(x, y, z).

There are three important models I’ll outline here: 1) a standard Gaussian laser beam,
2) a Gaussian beam with a small 1D sinusoidal or square wave amplitude modulation, and
3) a model for a Gaussian beam that passes dust on optics. Some data is shown in Section
5.9 that experimentally verifies propagation of the square wave model, which is one of the
more involved models used in simulations.

Gaussian beam

The evolution of a Gaussian laser is very well known (see e.g. [80]), so I will simply state
the electric field evolution here as a reference:

E(x, y, z) = E0
w0

w(z)
exp

(
−(x2 + y2)

w(z)2

)
exp

(
−i
(
kz + k

x2 + y2

2R(z)
− ψ(z)

))
. (5.1)

In this expression, E0 is the peak electric field amplitude at the center of the beam focus
E(0, 0, 0). w(z) = w0

√
1 + (z/zR)2 is the beam waist as a function of propagation distance z,

where the Rayleigh range zR = πw2
0n/λ with an index of refraction n and optical wavelength

3vr = 3.5mm/s is the Cesium recoil frequency for 852 nm light
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λ.4 1/R(z) = z/(z2 + z2R) captures the radius of curvature R(z) of the phase fronts as the
beam expands, and it is commonly written as an inverse like this to avoid infinities at R(0).
ψ(z) = arctan (z/zR) is the Gouy phase, which captures a shortening of the laser k-vector
near the beam focus [27].

A Gaussian beam is used by default in the Monte Carlo code since it is a typical first
approximation to an experimental laser beam profile. One thing to note is that for 6mm
beams used in our experiment, the Rayleigh range is around 130m. This is much longer
than the ≈ 10m of propagation that the laser undergoes inside the chamber, so the laser
beam is very nearly collimated over the entire extent of the experiment.

Sinusoidal modulation

Next, we derive the propagation of a model for a sinusoidally modulated Gaussian beam so
that we can study the resulting systematic effects as a function of the spatial frequency of the
modulation. The initial beam is assumed to have a small sinusoidal amplitude modulation
on top of an overall Gaussian amplitude profile. For a modulation along one transverse
axis, it is sufficient to solve the Helmholtz propagation only along that transverse axis. The
orthogonal transverse axis will undergo standard Gaussian evolution.

The amplitude for the laser electric field at z = 0 is assumed to be:

u(x, 0) = u0e
−x2/w2

0 [1 + (Aq + iϕq) sin(qx)] (5.2)

where waist w0 is the 1/e
2 intensity radius of the beam, Aq is the initial amplitude modulation

and ϕq is the initial phase modulation, and q is the spatial frequency of the modulation.
To solve for the propagation of the beam including in the near-field, we can use the

Fresnel diffraction integral:

u(x, z) =
1

iλ

∫
u(x, 0)

expikr

r

z

r
dx′. (5.3)

which is valid as long as the beam has propagated much more than a beam waist, in our
case 6mm. Provided this is true, it’s a very good approximation for the true propagation of
the beam after solving the full Helmholtz. equation. Applying this to our initial conditions
in Eq. 5.2, we arrive at

u(x, z) = u0
eikz

iλz

[
I(0) +

1

2i
(Aq + iϕq)(I(q)− I(−q))

]
, (5.4)

where

I(q) =

√
2π√

2
w2

0
− ik

z

exp

(
−w2

0(kx− qz)2

k2w4
0 + 4z2

)

× exp

(
i(4kx2z − kq2w4

0z + 2k2qw4
0x

2k2w4
0 + 8z2

)
. (5.5)

4We use n = 1 because the experiment operates in vacuum, and λ = 852 nm
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The expression for I(q)− I(−q) is given by

I(q)− I(−q) =
√
2π√

2
w2

0
− ik

z

exp
−w2

0(k
2x2 + q2z2)

k2w4
0 + 4z2

exp
4ikx2z − ikq2w4

0z

2k2w4
0 + 8z2

×
(
exp

2iqxk2w4
0

2k2w4
0 + 8z2

exp
2kqxzw2

0

k2w4
0 + 4z2

− exp
−2iqxk2w4

0

2k2w4
0 + 8z2

exp
−2kqxzw2

0

k2w4
0 + 4z2

)
. (5.6)

The above expression can be simplified assuming we’re looking at distances much less than
a Rayleigh range z ≪ zR = kw2

0/2, and assuming qx ≪ kz (which is easily true in our
experiment except for locations very close to z = 0). One arrives at

I(q)− I(−q) = 2i
√
2π√

2
w2

0
− ik

z

exp
−w2

0(k
2x2 + q2z2)

k2w4
0 + 4z2

exp
4ikx2z − ikq2w4

0z

2k2w4
0 + 8z2

sin

(
2qxk2w4

0

2k2w4
0 + 8z2

)
(5.7)

Or, written relative to the overall Gaussian profile of the beam:

|I(q)− I(−q)|
|I(0)|

= exp

(
−iq2w2

0

4

z

zR

)
exp

(
−q2w2

0

4

z2

z2R

)
sin (qx) . (5.8)

We now have a nice expression for u(x, z):

u(x, z) = u0e
−x2/w2

0(1 + δ) (5.9)

where

δ = exp

(
−iq2w2

0

4

z

zR

)
exp

(
−q2w2

0

4

z2

z2R

)
sin (qx) (5.10)

and zR = πw2
0/λ is the Rayleigh range of the overall Gaussian beam. The first exponential

term in Eq. 5.10 is a phase term that causes the modulation to oscillate from amplitude
modulation to phase modulation and back, over a characteristic length scale 4zR/(q

2w2
0).

Note that this exactly matches the Talbot length for Talbot patterns on laser beams [90].
The second exponential term captures exponential decay of the modulation amplitude with
a characteristic length scale 4zR/(qw0), similar to a Rayleigh range for the effect.

This model also can be used to describe a square wave modulation on the beam as well.
A square wave with spatial frequency q is a Fourier series summation over components of
the sinusoidal terms (odd-multiples of q) in Eq. 5.10:

δsquare =
∑

n=1,3,5..

4

nπ
δ(nq) (5.11)

where δ(nq) is to be interpreted as δ from Eq. 5.10 where q replaced by nq. In this case the
overall beam profile is given by

u(x, z) = u0e
−x2/w2

0(1 + δsquare) (5.12)
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Figure 5.2: (blue) The intensity profile of light 2m after passing through a 100µm diameter
aperture. (orange) A Gaussian approximation to the Airy pattern that has equal area under
the curve.

Both the sinusoidal model and the square wave model have two important features. First,
because of the first exponential term in Eq. 5.10, higher spatial frequency modulations
change rapidly between amplitude modulation and phase modulation along the propagation
axis. This leads to important physical effects in atom interferometers due to large gradients
along the propagation axis. Secondly, the second exponential term in Eq. 5.10 causes very
high frequency spatial noise to decay away before reach atoms in the interfeormeter. This
smoothing of the beam helps limit effects from the highest spatial frequency components,
which also have the highest curvature and gradients and hence the largest potential for
systematic effects. Experiments with larger propagation distances between the last optic and
the atom sample will have a lower cutoff spatial frequency above which spatial perturbations
on the beam will be filtered out before reaching the atoms.

Dust on optics

Another useful model solves for the propagation of a beam after passing dust particles that
diffusely scatter incident light. The dust effectively creates a circular ’hole’ in the beam.
Propagation of this hole can equivalently be thought of as the electric field of the overall
Gaussian laser beam minus the electric field of a plane wave passing through a circular
aperture.

Diffraction of light through a circular aperture is well-known to give Airy rings on a
beam in the near-field. In the far-field limit, the intensity distribution of a plane wave
passing through a circular aperture is given by [84]

I(r) = I0

[
2J1(β)

β

]2
(5.13)

where J1(β) is the Bessel function of the first kind, and β = πdr/(λz) where d is the diameter
of the dust particle/aperture, r is the distance away from the axis of the beam, and z is the
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a) c)b)

Figure 5.3: Simulated propagation of a 6.2mm waist beam with roughly 20 dust particles,
all 50µm diameter, in the region (−w0, w0). The beam model is shown at a) at the plane of
the dust, b) 0.4m from the dust, and c) 1.6 m from the dust. For anyone that has imaged
a large laser beam with a CCD camera, this will look eerily familiar.

propagation distance. In our experiment the beam propagates over 2m before reaching the
atoms. As a Rayleigh range, 2m corresponds to a dust size of 730µm - this means that dust
particles of size d≪ 730µm can be treated as ‘far-field’.

In the far-field, the beam profile is very well approximated by a Gaussian beam. Fig. 5.2
shows in blue the intensity distribution of light 2m after passing through a 100µm diameter
aperture. The pattern is very nearly Gaussian in the far-field - a Gaussian waist of

w0 = 0.9
λz

d
(5.14)

fits the curve very closely fits the Airy pattern and also contains the same total power
integrated across the beam [104].

The dominant effect on the beam intensity profile comes from interference between the
Gaussian field from the main laser beam interfering with (minus) the electric field emanating
from the location of the dust, which is well approximated by a Gaussian with a waist given
by Eq. 5.14. The different wavefront curvatures between the two Gaussians interfere to
create a ring structures on the propagation.

The Monte Carlo models dust by subtracting the Gaussian electric field of the above dust
model from the main Gaussian beam. The amplitude on the dust electric field contribution
is proportional to the amplitude of the initial Gaussian beam at the location of the dust, and
the electric field of the dust originates at the location of the dust particle. The model allows
the user to enter an array of dust locations, where all dust particles are assumed the same
diameter (though this assumption could easily be changed), and the total field sums over
the contribution from all pieces of dust. An example of a beam propagation with randomly
placed dust is shown in Fig. 5.3.

5.3.2 Physical effects from laser beam intensity inhomogeneities

Equipped with models for how laser beams propagate, how do these beams affect atoms in
the interferometer? Three primary ways are included in the mode1: 1) the local lattice depth
changes, which changes the Schrodinger equation dynamics, 2) momentum is transferred to
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the atoms which changes the resulting trajectories, and 3) these both result in phase changes
on the wavefunctions which are measured at the end of the interferometer.

Effects from changes in lattice depth

The most direct effect of inhomogenous beam intensity is a spatially varying lattice depth.
For resonant processes such as Raman transitions, Bragg diffraction, or single photon tran-
sitions, differences in laser intensity will directly affect the Rabi frequency of the process.
This leads to amplitude and phase shifts on the diffracted wavefunctions - for example dur-
ing Bragg diffraction, these phase shifts are commonly referred to as ‘diffraction phase’ as
discussed in Chapter 2. Higher-order processes are more sensitive to deviations in intensity
- for example, nth order Bragg diffraction is typically n-times more sensitive to intensity
variations than two-photon Raman transitions or first-order Bragg diffraction.

For adiabatic processes such as Bloch oscillations, changes in laser intensity affect the
probability of tunneling from the lattice, as also cause phase shifts on the surviving wave-
functions. Chapter 2 showed that in the weak-lattice limit5, Landau-Zener tunneling from
the lattice can be described by a probability of survival per Bloch oscillation of [65]:

Psurv = 1− e−
2πΩ2

4r (5.15)

where Ω is the lattice depth, and r is the frequency ramp rate used experimentally to
acceleration the lattice. This equation was also presented in Eq. 2.38. The fractional change
in survival probability per fractional change in lattice depth is given by

Ω

Psurv

dPsurv

dΩ
=
πΩ2

r

e−2πΩ2/(4r)

1− e−2πΩ2/(4r)
(5.16)

This quantity saturates at a maximum value of two as the lattice depth U0 → 0. On the
other extreme, the quantity quickly goes to zero in the limit U0 ≫

√
r. The correlation

between lattice depth and survival probability is therefore stronger at lower lattice depths,
and is suppressed at higher lattice depths. Two recent measurements of the fine structure
constants used this scaling to bound systematic effects from spatial intensity inhomogeneities
[67, 55].

Note that the lattice depth is proportional to the product of the single-photon Rabi
frequencies from the up-going and down-going beams. In experiments with retro-reflected
beams such as ours, the lattice depth at a given location depends on the laser beam profile
at two different propagation distances. For experiments using two independent fiber ports
for the up-going and down-going beams, the propagation of beams from each fiber port will
need to be independently studied and the lattice depth will depend on both beam profiles.

Momentum transferred to atom

Next, we consider the momentum imparted on the atoms while interacting with the laser,
There are two main effects - first from the direct momentum transfer from photon absorption

5Ω ≪ 8Er
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and emission, and second from gradients in the AC stark shift from the laser beam which
leads to dipole forces on the atom.

When photons are directly exchanged with the atom, the atom receives a momentum
∆p⃗ = h̄k⃗ for each photon transferred. This occurs during velocity-sensitive Raman transi-
tions, Bragg diffraction, Bloch oscillations, and resonant single-photon transitions in atoms
with long-lived excited states. The k-vector of the laser beam is defined locally as the gra-
dient of the phase of the electric field, k⃗ = ∇⃗ϕ.

A general expression for the local variation of the k-vector along the propagation axis δk
can be derived according to Helmholtz propagation of the beam [6]:

δk = −1

2

∣∣∣∣∣
∣∣∣∣∣∇⃗⊥ϕ

k

∣∣∣∣∣
∣∣∣∣∣
2

+
1

2k2
∆u

u
(5.17)

where u is the local amplitude of the electric field, ϕ is the local phase of the electric field,
and ∇⃗⊥ϕ denotes the transverse phase gradient. The first term describes a rotation of the
k-vector away from the propagation axis, which causes the projection of the k-vector onto
the propagation axis to get smaller. The second term is the source of the well-know Gouy
phase shift on-axis of a Gaussian laser beam - the k-vector is shorter even at the center of the
beam. Compressing electric field amplitude into a smaller transverse region requires a spread
in transverse momentum, and conservation of momentum therefore requires a shortening of
the k-vector. There is a very nice paper describing this intuition behind the Gouy shift [27].

AC Stark shifts are another important effect in the interaction between atoms and the
interferometry laser beam. The AC Stark shift changes the internal energy by an amount

UStark = h̄
∑
i

Ω2
i

4δi
(5.18)

where Ωi and δi are the single photon Rabi-frequency and detuning from the excited state,
respectively, for the ith beam. Each frequency of light contributes its own AC Stark shift.

When atoms are interacting with a standing wave of light, the wavefunction tends to the
low-energy region of the lattice, so the average light shift may differ from the above equation,
which assumes a uniform light shift spatially. This is why the α project has historically used
blue-detuned laser beams - the atoms are trapped at the low-intensity region of the standing
wave, which minimizes single photon scattering and light shift effects. This can be quantified
using the dimensionless Lamb-Dicke factor η = (4Ω/Er)

1/4, where the reduction in single
photon scattering is given by η2 [70]. I have assumed that the same scaling is true for the
light shift, since both are proportional to the light intensity. The code currently takes this
into account for Bloch oscillations but not Bragg diffraction, since most of the light shift in
the interferometer as a whole is coming from Bloch oscillations. Note that this only applies
to optical lattices interacting with the atom - other off-resonant optical lattices will still
contribute the full light shift.

Gradients in the AC Stark shift lead to forces on the atoms, identical to the forces in
optical dipole traps. This force is given by:

FStark = ∇⃗UStark (5.19)
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For a general interaction with a laser, the atom’s momentum is therefore changed by an
amount

∆p⃗ =

∫
FStarkdt+ h̄

∑
i

k⃗i (5.20)

where the Stark force is integrated over the duration of the pulse, and each photon’s k-vector
is added to the atom’s momentum.

Effect on interferometer phase

The previous section outlines how the laser beam can impart momentum to atoms, which
then modifies the atoms’ trajectories. There are three ways that the atomic trajectories then
lead to differential phase shifts in the interferometer.

First, atoms acquire phase from kinetic energy and gravitational energy based on their
position and velocities. This results in a free evolution phase (to first order):

ϕfree =

∫
Ldt =

∫
dt

(
p2

2m
−mgx

)
(5.21)

where L is the classical Lagrangian, x and p are the position and momentum of the atom at
time t, m is the mass of the atom, and g is the local gravitational acceleration. When atoms
receive a modified k-vector kick δk, their resulting positions and momenta are modified,
leading to different kinetic and potential energy phases and a different free-evolution phase
shift in the interferometer.

Next, each time an atom absorbs or emits photons from the laser beam, the local phase
of the laser beam is imprinted onto the wavefunction. For Raman transitions or Bragg
diffraction, which are two photon transitions, the phase shift received at time t is given by
(to first order):

ϕlaser = n(k1z(t)− ω1t)− n(−k2x(t)− ω2t) (5.22)

where k1, ω1 are the values of the k-vector and frequency of the first photon, and k2, ω2 are
the values of the k-vector and frequency of the second photon. For Raman transitions, n = 1,
and for higher-order Bragg diffraction, n will be greater than 1. This was also discussed in
Chapter 1.

Eq. 5.22 is an appropriate treatment of a plane wave, however when laser wavefronts are
not plane waves the laser phase more generally is given by the local phase argument of the
electric field:

ϕlaser = n(ϕ1(x, y, z)− ω1t)− n(−ϕ2(x, y, z)− ω2t) (5.23)

where ϕi(z) = arg(Ei(x, y, z)).
In regards to modified atomic trajectories from modulated laser beams, there are two

ways in which laser phase contributes to the final interferometer phase. First, when atoms
receive a modulated momentum kick k + δk, the atomic trajectories are slightly different
and the atoms therefore sample the laser phase at different points in space. To first order
this change in laser phase can be captured by Eq. 5.22. Second, the modulation of the
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laser beam itself causes a modulation in the phase-front of the laser that deviates from Eq.
5.22. Directly taking the argument of the laser electric field as in Eq. 5.23 at the location of
the unperturbed atomic trajectories captures this second effect. Both effects are important
in accurately modeling the resulting phase shifts in the interferometer. The Monte Carlo
treats this all generally, where the momentum kicks are vector quantities that affect the
vector velocities of the atomic trajectories, and the laser electric field is sampled at the exact
location of the atoms at the time of each pulse.

The last source of phase shifts come from the separation phase at the closing of an
interferometer. Separation phase is a well-known effect that appears when an interferometer’s
trajectories do not perfectly close at the time of the final beamsplitter pulse, and is given
by6 [43]:

ϕsep = p̄ ·∆x (5.24)

where p̄ is the average momentum between the two output ports being considered, and ∆x
is the relative displacement between the two interferometer arms at the time of the final
closing pulse in the interferometer. Note that there is a strange sign convention in defining
separation phase this way. ∆x = xl−xu is the position of the center of the lower wavepacket
minus the upper wavepacket, which is opposite to how we typically define differences in atom
interferometry calculations [43].

While separation phase has been considered in many contexts, it has not been considered
in relation to the local k-vector variations from intensity inhomogeneities in a laser beam.
For a smooth Gaussian laser beam profile with a Rayleigh range much longer than the
length scale of the experiment, the k-vector deviations given by Eq. 5.17 are very nearly
identical between different interferometer pulses, so the interferometer closes nearly exactly.
However, when there is spatial intensity noise on a laser beam, the k-vector changes along the
propagation occur on a much shorter length scale as described by Eq. 5.10. Atoms receive
different δk momentum kicks from different laser pulses, which leads to the interferometer
not closing and a resulting separation phase.

Taken togather, the dominant phase shift in the interferometer comes from a correlation
between the δk momentum kicks an atom receives and the probability that that atom con-
tributes to the final contrast in the interferometer. This δk kick affects free evolution phase,
laser phase and separation phase - all three need to be considered to accurately capture the
effect.

For any small-scale modulation on a Gaussian laser beam, the average δk from the mod-
ulation across the laser beam is the zero - the effects are oscillatory about δk from the
large-scale Gaussian curvature. This averaging doesn’t occur perfectly across the atom cloud
because the contribution of each atom to the total contrast of the interferometer also de-
pends on the intensity of the beam at each pulse. As noted in [6], Bloch oscillations cause
preferential tunneling in lower intensity regions of the beam, leaving a correlation between
the surviving atoms and the δk received from the modulated beam during Bloch oscilla-
tions. Similarly, the local Rabi frequency and diffraction phases [24] of resonant processes
are affected by the intensity modulation, leaving a correlation between the contribution to
total contrast and the δk received. Last, non-overlapping trajectories, which cause loss of

6Eq. 1.4 is identical but it is reproduced here for continuity
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contrast, and the related separation phases, similarly contribute to the correlation between
measured contrast the δk received. The overall effect on the interferometer’s differential
phase is therefore a result of correlations between a number of different processes.

5.3.3 From wavefunction amplitude to ellipses

The above describes how to get complex wavefunction amplitudes and classical wavefunction
positions for all of the various interferometer trajectories at the end of the interferometer.
How do you then turn this information into a point on an ellipse?

First, when wavefunctions that are being interfered that don’t overlap exactly, there is
a resulting separation phase and loss of contrast. The separation phase has already been
mentioned in e.g. Eq. 5.24, and this equation is used directly in the Monte Carlo code to
add separation phase to the atomic wavefunctions.

The length scale relevant for loss of contrast is the Heisenburg limited position spread
associated with a given velocity spread. However, one might be concerned about the fact
that we don’t necessarily have Heisenburg-limited atomic wavefunctions in our experiment,
like I was a few years ago. Similarly, even if you started with a Heisenburg-limited atomic
wavepacket, time evolution of the wavepacket causes the wavefunction to expand. The follow-
ing argument proves that any amount of time t later, no matter how large the wavefunction
extent becomes, the overlap integral between two identical wavefunctions will still only be
non-zero over a length scale of the Heisenburg limited position spread of the wavefunction.

Let’s derive this explicitly starting with a normalized Gaussian wavepacket at time t = 0:

ψ(x, t = 0) =

(
1

πσx

)1/4

exp

(
−(x− x0)

2

2σ2
x

)
(5.25)

where σx is the 1σ position width of the atomic population distribution, which it is related
to the 1σ momentum width σp by the Heisenburg uncertainty principle σx = h̄/(2σp). The
free particle time evolution of the Gaussian wavefunction in Eq. 5.25 is analytically solvable:

ψ(x, t) =

(
1

πσx

)1/4(
1 +

ih̄t

mσ2
x

)1/2

exp

 −(x− x0)
2

2σ2
x

(
1 + ih̄t

mσ2
x

)
 (5.26)

The quantity we’re interested in is the overlap integral between two wavefunctions that are
displaced by an amount ∆x. We obtain:

⟨ψ1(x+∆x, t)|ψ2(x, t)⟩ = exp

(
−∆x2

4σ2
x

)
(5.27)

which is found to be independent of time. The above convention assumes ψ1 and ψ2 are
parts of the same atomic wavefunction so that they interfere. The purpose of this exercise
is to show that the overlap integral between two atomic wavefunctions depends only on the
initial Heisenburg limited position spread of the atom. Even if the atomic wavepacket grows
in size during free evolution, the length scale relevant for the overlap integral remains the
same.
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An equivalent but simpler way to see this is to show that the overlap integral at time
t = 0 doesn’t change for later t’s.

⟨ψ1(x+∆x, 0)|ψ2(x, 0)⟩ = ⟨ψ1(x+∆x, 0)|U †(t)U(t) |ψ2(x, 0)⟩
= ⟨ψ1(x+∆x, t)|ψ2(x, t)⟩ . (5.28)

This uses a resolution of the identity as the unitary time evolution operators U(t) to show in
operator form what was shown in Eq. 5.27.7 One can make this general to three-dimensions
- you find the same expression for each dimension independently, where each axis can have
its own position/velocity spread. This general expression is used in the Monte Carlo code to
treat the transverse overlap separately from the on-axis overlap, since the on-axis tempera-
ture is much lower due to velocity selection pulses.

For a given interferometer with wavefunctions ψu1 and ψu2 interfering in the upper output
port, and ψl1 and ψl2 interfering in the lower output port,

For the upper interferometer, the Monte Carlo code calculates the populations in the
upper and lower output ports to be

Pui = a
∣∣ψui1 + ei(ϕdiff+ϕc+ϕsep)ψui2

∣∣2 + (1− a)
(
|ψui1|2 + |ψui2|2

)
(5.29)

where

a = exp

(
−∆x2

4σ2
x

)
(5.30)

is the overlap integral between the two wavefunctions, as derived in Eq. 5.27. Pul1, for
example, denotes the population in the upper interferometer, lower output port, from the first
wavefunction being interfered. ϕdiff is a user-controlled differential phase that can be used
to open the ellipse. ϕc is the common mode phase to both upper and lower interferometers,
and is a random number between 0 and 2π in the simulation to mimic strong vibration noise.
ϕsep is the separation phase.

The population in the lower interferometer output ports is determined by the same equa-
tions but without adding the phase shift ϕdiff to the second wavefuction. As expected,
the common mode phase is common to both the upper and lower interferometers, but the
differential phase differs.

Eq. 5.29 in words says that the fraction of the wavefunctions that is coherently interfer-
ing is used to calculate the interference contribution to the population in the output port.
The non-overlapping fraction of the wavefunctions don’t interfere, but only contribute their
individual populations to the output ports. For example, if the wavefunction trajectories
didn’t overlap at all, there would be no coherent interference term and the population in
each output port would be roughly the same, assuming the Bragg diffraction π/2 pulses
were splitting the population near 50%. Similarly, if the wavefunctions overlap perfectly,
you can get 100% contrast in the interference between output ports because the second term
vanishes.

The simulation also optionally includes the population from waste ports, which are illus-
trated in Fig. 5.4. The population in the waste ports is added incoherently to the output

7I asked Holger about this years ago, and apparently he asked his undergrad quantum mechanics class
this exact question on a homework assignment. A few students provided the above answer with unitary
operators - that’s where I got this nice solution from.
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ports, which typically limits the maximum contrast to around 50% (see Brian’s thesis Section
5.1).

The actual point (x, y) on the ellipse is calculated via:

x =
Plu − Pll

Plu + Pll

(5.31)

and

y =
Puu − Pul

Puu + Pul

(5.32)

where e.g. Pul indicates the population in the upper interferometer of the SCI, lower output
port.

One important thing to note here is that a single atom is creating a point on an ellipse.
This is in contrast to our experimental reality where an atom is projected into one of the
output ports in an interferometer - we can’t just split atoms apart. The Monte Carlo
doesn’t include atom number shot noise because we have direct access to the wavefunction
information and can therefore bypass this extra noise source. As far as I know, this only
makes the statistical averaging of the Monte Carlo code better without affecting any of the
results.

The Monte Carlo code also (optionally) averages many atoms to create a single ellipse
point. This 1) reduces the shot-to-shot noise on an ellipse for very noisy beam profiles, but
more importantly 2) it mimics the experimental scenario we have where a single shot of the
experiment averages thousands of atoms to create a single point on the ellipse.

To average many atoms into a single ellipse point, we perform a weighted average of the
individual ellipse points, where the weighting is done by the total population in the upper
and lower interferometers. The averaged ellipse point (xtot, ytot) becomes

xtot =
1

Ptot,l

Natoms∑
i=1

(Pi,ll + Pi,lu)xi (5.33)

where Pi,ll is the ith atom’s population is the lower interferometer, lower port, and Ptot,l =∑
Pi,ll+Pi,lu is the total population of all of the atoms in the lower interferometer ports. An

analogous equation is used for the y-axis using the upper interferometer populations. This
weighted average is set up to mimic what happens experimentally with our data. For exam-
ple, some atoms tunnel more during Bloch oscillations compared to other atoms depending
on the local lattice depth that each atom sees. The atoms that tunnel more won’t contribute
as much to the total measured interferometer signal.

Note that this doesn’t include effects of the probability of detecting an atom based on
the experimental detection system - in the future, you may want to add this in to simulation
e.g. the effects of a pinhole filter in front of the detection photodiode.

5.4 Overview of the Monte Carlo code

Section 5.3 above describes all of the physics that is wrapped into the Monte Carlo model.
This section describes how the actual code is organized to incorporate all of this physics
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while still being very fast and user-friendly. The code is located in the Mueller group GitHub
organization with the repository name ‘alpha monte carlo’. The repository is private to the
Mueller group, but for anyone outside of our gropu that is interested in the code please
contact someone in our lab and we can arrange some code sharing.

For a very spatially noisy beam, it can require upwards of a billion atoms to integrate a
single ellipse’s statistics down to 1 mRad level error bars, since there is so much phase noise
atom-to-atom. To make a useful plot, one needs to sweep some parameter(s) and simulate
many ellipses, potentially on the order of tens of billions of atoms. The code needs to be
fast enough that this can be done in a reasonable amount of time, say a day or less, so that
a user can iterate on the code to properly study a problem.

In addition, the code must be functional and user-friendly enough that the user doesn’t
waste a bunch of time coding/ copy pasting, and so that the code is easily understandable
and passed down to future users. It must be documented well enough that a new user can
successfully learn how to use it significantly faster than it would take them to write the
package from scratch.

The Monte Carlo is doing fairly well on the speed front, with some possible speed-ups
discussed in section 5.6.1 that would require a large overhaul of the code. Compared to the
previous Monte Carlo packages, the largest speed-up improvements in this code are from
using pre-computed integration tables and from purchasing a simulation computer that can
run 128 processes in parallel.

The old Monte Carlo used for the α data analysis never fully included Bloch oscillations
because it was computationally too expensive. Richard’s code never actually had a func-
tioning Bloch simulation, it just put the wavefunction amplitude in a different momentum
state (with no phase shifts or loss of amplitude), then continued simulating the final two
Bragg pulses.8 Chenghui had a working simulation of Bloch oscillations but the integration
was too slow to use in the ppb-level systematics analysis. Instead he used a look-up table of
the surviving wavefunction population after Bloch oscillations, but this didn’t include phase
shifts from the Schrodinger equation integration. The Bloch simulations in this new Monte
Carlo are similarly slow to Chenghui’s, since they are both written with similar integration
algorithms in python compiled down to C. However, by pre-computing the results of Bloch
integration in the new code package, the Monte Carlo itself can run much much faster after
the precompute tables have been generated.

In terms of functionality, the structure of the Monte Carlo code is designed to give the
higher-end user the most amount of control possible with the fewest lines of code. A good
example of this is the Sweep and Sweep2D classes – a user could create a two-dimensional
sweep over parameters with billions of atoms, and plot and save the outputs, all with only
10 or so lines of code. The params dictionary is also central to the code: a single dictionary
of all simulation parameters is passed all around the code, allowing the user to easily change
any parameter in the simulation (at the time of writing there are over 100 parameters).
Parameters almost never need to be explicitly passed between objects or methods which
makes for much cleaner coding. I was initially worried that passing around a large dictionary
like this would cause memory or speed issues, but operations related to the params dictionary

8The code was primarily used to study diffraction phase effects the Bragg pulses, so for this application
it was acceptable to omit Bloch oscillation dynamics.
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Figure 5.4: Ordering of the wavefunctions as kept track of within an atom object during an
SCI interferometer. The lower trajectory is always first in order. Dashed vertical lines indi-
cate Bragg diffraction pulses, solid vertical lines indicate Bloch oscillations. All wavefunction
trajectories are kept track of, including ‘junk’ ports that do not participate in coherent in-
terference. Multiple numbers in the final step indicate overlapping wavefunctions - these are
the wavefunctions that are manually interfered at the end of the sequence. The time step
simple indicates where in the sequence the ordering corresponds to.

are very far from being the bottleneck in the code so this was a non-issue.
The class structure breaks the code into intuitive buckets, although there are some grey

areas between classes where I had to put some code in weird spots – if you dive deep enough
into the code you’ll find examples of this. For the most part though, the code divides up
very nicely between classes.

As for a coding language, I wanted to use Julia as the core language because it is naturally
so fast. In the end we decided to use Python because there was only a factor of ≈ 2 difference
in the integration speed, and Python is much more documented and higher-level developed.
Similarly, we made some basic integration code in C which was essentially the same speed as
Julia, so we didn’t actually need to code directly in C. Matlab was also an option for coding
languages since it’s inherently very fast, but when given the choice it’s much better to stick
to an open-sourced language.

5.4.1 Introduction to classes

Broadly, the Monte Carlo is designed with the following logic from lowest-level to highest-
level:

Atom objects are used to capture all dynamics of a single atom throughout the interfer-
ometer. They are the heart of the Monte Carlo code. An atom object contains the values of
the wavefunction along different branches of the interferometer, as well as the corresponding
position, velocity, and local laser electric field information along the different branches. Fig.
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5.4 gives a visual representation of what the ordering of wavefunctions looks like in an SCI
interferometer.

Time Evolution objects operate on Atom objects. They take in an atom object, time
evolve the different trajectories through the Schrodinger equation and other classically-
treated updates, and spit out a new wavefunction object (or two new wavefunction objects,
in the case of Bragg diffraction). We have a general TimeEv class, and then Bragg, Bloch,
and FreeEvolution child classes for our SCI interferometer. If you ever want to simulate more
general interferometers in the future, you can likely just make a new TimeEv child class, or
even build off of the existing classes.

The next higher-level class in the code is the Ellipse class, with the closely related El-
lipsePoint class. An EllipsePoint is a collection of atoms simulated with the same initial
conditions, then averaged together in a contrast-weighted average. This mimics one exper-
imental ‘shot’ in our experiment. The Ellipse object simulates a number of EllipsePoints,
and then these EllipsePoints are fit to an ellipse in order to extract fit parameters such as
differential phase and contrast.

The real power of the Monte Carlo, however, is in being able to sweep parameters and
see how the differential phase and contrast are affected. The Sweep class creates a very
easy interface to generate a 1D or 2D sweep over parameters, simulate an Ellipse for each
parameter, and then plot the results and save data to an HDF5 file. The Sweep class has
proved extremely useful in studying beam-related systematics, and will continue to be very
useful in studying the relevance of all parameters in the Monte Carlo.

There are some other useful classes that will be described in the subsequent sections.
The Beam class returns the local electric field of the laser beam, and the related analysis
functions calculate a number of effects locally from the electric field: δk and the 3D k-
vector, laser phase, lattice depth, light shifts, and dipole forces. One of the most useful
functions in the code is the params() function - it generates a params dictionary of all
parameters in the simulation, each of which can be over-ridden by the user. There is also
an engine for converting quantities between dimension-ful and dimension-less units. This is
implementation of the dimesionless unit system described in Chapter 2.

5.4.2 Atom Class

With that background, let’s look a little more in depth at each of the classes.
’Atom’ objects track the relevant information of the atomic state along each branch of

the interferometer by storing information as (pre-allocated) attributes of the object. The
most important attribute is the wavefunction values themselves, but other information such
as the local position and velocity of the atom along that trajectory are also stored. In
addition, I also try to store any information that requires a larger 2D array. For example,
the code stores the value of the laser electric field at 14 different locations - the location of
the atom and a point in each of the 6 directions from that point, as well as the same for the
retro-reflected beam. These are all needed to take derivatives of the lattice depth, light shift
and laser phase. These 14 electric field values are stored separately for each branch of the
interferometer (up to 16 trajectories), so I pre-allocate a 16x14 array.

Data is overwritten as the atom is evolved in order to conserve memory allocations.
Previously, I used to have a “Wavefunction” class, which stored the state of a single branch
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of the interferometer, then this object would be split and copied to new objects during
time evolution. It turned out copying the Wavefunction object was very slow, so I re-wrote
the code to instead store all information directly on the Atom object and update data by
overwriting pre-allocated arrays. It was very convenient to store all sorts of information on
the Wavefunction objects, but the current use of atom objects makes the code much simpler
and streamlined.

Direct integration of the atomic wavefunction through the Schrodinger equation requires
knowledge of the wavefunction over the entire discrete momentum basis. This was discussed
in detail in Chapter 2. In contrast, the standard Monte Carlo mode of operation only
stores the value of the wavefunction on the momentum state of the interferometer branch
being tracked. All other wavefunction values are dropped, since they don’t directly interfere
when closing the SCI interferometer. This functionality is controlled by the Atom ‘type’
attribute. An ‘SCI’ type will drop the neighboring momentum states, as discussed above,
and is the default for full SCI simulations/ ellipse plotting. An Atom with ‘integration’
type will store the full wavefunction information, which is typically only used for debugging
integration or one-off scripts looking at physics within a single Bragg/Bloch pulse. Note that
Wavefunction amplitude on neighboring momentum states causes parasitic interferometers
[66], so this systematic effect is being ignored currently. In the future, the Monte Carlo code
will need to be generalized to include parasitic interferometers, but this should only require
small modifications to the Atom class and TimeEv classes.

Each operation in an interferometer (Bragg diffraction and Bloch oscillations) propagates
each wavefunction based on the local electric field of the laser at the respective interferometer
branch. The atom’s stored wavefunction values are then overwritten. For Bragg diffraction,
the two output states are stored so that each branch of the wavefunction is effectively ‘split’
in two on each pulse, which are then propagated forward independently. It’s necessary to
track wavefunction values separately along each interferometer arm in order to use local laser
electric field information during each pulse, and also to only interfere spatially overlapping
trajectories at the end of the interferometer.

5.4.3 TimeEvolution Classes

At their core, the TimeEv classes propagate atoms through the Schrodinger equation. For
the FreeEvolve class, this is very simple - free-space momentum states are diagonal in the
kinetic energy operator, so the wavefunctions just get a phase shift proportional to the kinetic
energy of each state. For Bragg diffraction and Bloch oscillations, the Schrodinger equation
needs to be numerically integrated. If using precomputed tables, the results of numerical
integration are looked up from a look-up table instead of integrating each time. Precompute
tables are discussed in more detail in their own section below. If not using precomputed
tables, the Schrodinger equation is numerically integrated.

The numerical integration is implemented with Numba in order to get extremely fast
C-level performance. The numerical integration is just a giant for-loop with linear algebra
inside, and Numba is designed for exactly this application. The integration is performed
with a Crank-Nicolson (CN) algorithm that gives an unconditionally stable conservation of
probability. There are many types of algorithms to choose from for numerical integration,
but very few conserve probability - the CN method is therefore very popular for Schrodinger
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equation simulations [86].
Numerically integrating the Schrodinger equation requires iteratively solving for the wave-

function at the next discrete time-step. The Schrodinger equation reads:

ih̄
∂ψ

∂t
= Ĥψ(t) (5.34)

When taking a small discrete time-step such that the Hamiltonian Ĥ is assumed independent
of time, the problem reduces to solving:

ψ(t+ dt) = e−iĤdt/h̄ψ(t) (5.35)

where the exponential operator is a unitary operator. Since the Hamiltonian contains po-
sition and momentum operators, it’s not straightforward to compute the matrix exponen-
tial. Moreover, if you Taylor-expand this operator, you end up with something non-unitary.
1− iĤdt has a norm slightly more than 1, so probability diverges when integrating.

If you instead apply the operator symmetrically (following the derivation in reference
[86]):

eiĤdt/(2h̄)ψ(t+ dt) = e−iĤdt/(2h̄)ψ(t) (5.36)

then you can Taylor expand each side and arrive at a unitary integration algorithm, the CN
algorithm: (

1 +
iĤdt

2h̄

)
ψ(t+ dt) =

(
1− iĤdt

2h̄

)
ψ(t) (5.37)

This conserves probability because each side of the equation multiplies the wavefunction by
a quantity with the same norm.

Typically, the down-side to the CN algorithm is that in order to solve for ψ(t + dt),
one needs to invert the matrix on the left-hand side of the equation. Fortunately for us,
our matrices are tri-diagonal and tri-diagonal matrix inversion can be done in O(3N) time
instead of O(N2) time for a general NxN matrix. The Monte Carlo code uses the Thomas
algorithm which is the fastest way to solve this problem numerically [81].

The Hamiltonian for atoms in an optical lattice was shown in matrix form in Chapter 2.
Building from there, we can re-write Eq. 5.37 above as:

U1ψ(t+ dt) = U2ψ(t) (5.38)

The matrices U1 and U2 in dimensionless units are given by:
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U1 =



. . . . . . . . . ...

. . . α−2 β 0
...

. . . β∗ α−1 β 0
...

0 β∗ α0 β 0
... 0 β∗ α1 β

. . .

... 0 β∗ α2
. . .

... . . . . . . . . .


(5.39)

and

U2 =



. . . . . . . . . ...

. . . γ−2 λ 0
...

. . . λ∗ γ−1 λ 0
...

0 λ∗ γ0 λ 0
... 0 λ∗ γ1 λ

. . .

... 0 λ∗ γ2
. . .

... . . . . . . . . .


(5.40)

with αm and γm defined as

αm = 1 +
i(2m)2dt

2
(5.41)

γm = 1− i(2m)2dt

2
(5.42)

and β and λ defined as

β =
idtV

2
(5.43)

γ = −idtV
2

(5.44)

where V is the off-diagonal coupling matrix element in the Hamiltonian. m is the index of
the basis state with momentum p = 2mh̄k.

The CN algorithm implemented in the code solves this linear algebra problem with the
Thomas algorithm iteratively at each time step. The coupling off-diagonal terms are updated
at each timestep based on a numba function in the TimeEv class that defines the pulse
shape based on the local electric fields from the beam model. Since off-diagonal elements
(e.g. β and γ above) are constant across the matrix, only scalar arguments are passed
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around. The solution of the matrix equation U1ψ(t+dt) = U2ψ(t) is reduced to one forward
and one backward for loop iterating through the ψ vectors - the algorithms for matrix
multiplication (one for loop) and the Thomas algorithm (two for loops) are combined to
reduce the total algorithm to two for loops. The αm and λm vectors are only defined once
since they don’t chance each time-step. The algorithm is about as stream-lined as possible
using numba/python - to further improve integration speed, you would probably need to
move to a different coding language.

The above summarizes the numerical methods used for integration of the Schrodinger
equation. However, the TimeEv classes do more than just Schrodinger equation integration,
and actually these extra functionalities are some of the major physics improvements over
the old code. The user can turn on/off many different physical effects by changing boolean
values in the ‘prms’ dictionary:

• Including/removing kinetic energy phase from time evolution

• Including/removing integrated light shift phase from the optical potential

• Gouy shift modified (3-D) k-vector from local amplitude curvature/ phase gradient of
the laser electric field

• Momentum kicks from forces from light shift gradients

• Separation phase when closing the interferometer, from imperfect trajectories

• Phase from the modulation frequency, essentially cancels the total interferometer phase
like what we do experimentally

• Include interferometer waste ports so that max possible contrast is 50%

In total, these boolean options give the user a ton of control over which physics you’re
including the in the simulations versus intentionally ignoring. I’ve found this to be extremely
useful, even essential, in helping disentangle which physical processes cause which effects in
the ellipse phase and contrast.

5.4.4 Ellipse and EllipsePoint Classes

Moving upwards in the code, the Ellipse class is in charge of generating Ellipses. I was
running into dramatic memory issues when running millions of atoms, so for memory reasons
I split some of this work into the EllipsePoint class. This helps to minimize the data being
stored from each Atom when generating an ellipse.

As noted in Section 5.3.2 above, each atom gives us a data point for an ellipse without
shot-noise - this is opposed to what would happen experimentally, where a single atom must
project into one of the two output ports. For conditions with lots of atom-to-atom noise,
however, you still need to average over many atoms to create a single point on the ellipse,
otherwise the ellipse data will be too noisy to fit. This is also coincidentally9 the same as
what we do experimentally with O(10,000) atoms per experimental shot.

9not a coincidence

146



The code generates some number of EllipsePoints, each of which describe a single point
on the ellipse as the ensemble-average of O(10000) atoms. Each EllipsePoint is assigned a
random common mode phase to mimic random vibration noise in our experiment. Once all
EllipsePoints are simulated, the final ellipse data is least-squares fit10 to an ellipse equation.
The differential phase and interferometer contrast are extracted from the fit, among other
parameters, as well as the error bars on these quantities. Typically we are most interested
in the differential phase of the ellipse, but contrast information is also important to match
with experiment. Other outputs like diffraction phase or analytical Gouy shift can also be
studied. The raw data and fitted ellipse can be optionally plotted with booleans in the
params dictionary.

5.4.5 Sweep and Sweep2D Classes

Moving another level up in the code, the Sweep and Sweep2D classes allow the user to sweep
one or two parameters in the prms dictionary and plot the resulting differential phases and
contrasts as a function of the swept variable. This is a super powerful class that can very
easy control a lot of machinery. Output data is stored to HDF5 files. For 2D sweeps, the data
is loaded to the HDF5 file after each 1D sweep is completed, so you can check on the output
data without waiting for the entire sim to complete. Note that once you’re working with
large simulations at this level, you want to think carefully about how to correctly parallelize
the code for optimal performance. See Section 5.5 for further discussion.

5.4.6 Precompute Class

One major upgrade of this Monte Carlo versus old alpha’s Monte Carlo is that the results
of the Schrodinger equation integration are precomputed and stored in one HDF5 file. The
user can create a large set of precompute tables once, and then forever be able to interpolate
over the precompute table to lookup integration results. This enables a massive speedup
of the simulations, especially for very large Bloch oscillation orders where convergence of a
single integration could take days.

The Precompute class is responsible for everything related to the precompute tables. It
generates the precompute data and saves to HDF5 files in an organized way (part of the
beauty of using HDF5 files). The class also loads data from the precompute files, generates
interpolation functions over this data, and uses the interpolation functions to generate the
output wavefunction values. The Bragg and Bloch time evolution objects will look up results
from a precomputed interpolation function if params[‘precompute’] == True.

I have used symmetries of the Hamiltonian to reduce the precompute tables to the min-
imum number of tables needed. With these symmetries, we reduce the necessary number of
precompute tables by a factor of 2. I’ve used the following identities for Bragg diffraction:

• ⟨n|UBr,SF,v0 |0⟩ = ⟨0|UBr,SF,−v0 |n⟩
10Stephanie Bie, and undergraduate working on our project for a year or two, wrote a package for Bayesian

ellipse fitting. She also laid the initial groundwork for integrating the Bayesian ellipse fitting into the Monte
Carlo code, on her own branches of the Github project. There’s some low-hanging fruit here for anyone that
wants to work on speeding up Stephanie’s code and fully integrating it into the Monte Carlo code.
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• ⟨−N − n|UBr,MF,v0 |−N⟩ = ⟨N + 2n|UBr,MF,−v0 |N + n⟩

• ⟨−N |UBr,MF,v0 |−N − n⟩ = ⟨N + n|UBr,MF,−v0 |N + 2n⟩

and the following for Bloch oscillations:

• ⟨−N |UBl,MF,v0 |0⟩ = ⟨N + n|UBr,MF,−v0 |n⟩

where Ux,y,z indicates the unitary time-evolution operator for an entire pulse of type x, with
y indicating single- or multi-frequency pulse, and a velocity offset from the lattice of z. The
initial state is on the right and target state on the left, as in standard bra-ket notation. The
Precompute class automatically uses these symmetries when looking up integration results.

The file organization in the precompute machinery is hard-coded but in a relatively neat
way. One quirk of the code that’s actually turned out to be somewhat useful is that the sim-
ulation computer will save the newly generated precompute tables inside the scripts folder
instead of immediately overwriting the already existing precompute table in the precom-
pute data
folder. The precompute tables are backed up by git, so in principle this doesn’t matter but
it’s still nice to have a chance to review the file before it overrides the existing functional one.
The worst possible scenario would be accidentally overwriting a not-backed-up precompute
table that took a month to run...

The main parameters that define the tables are the Bragg and Bloch order, however, the
tables also depend on the Bragg pulse width (sigma of the pulse and the number of sigmas
used in integration), the Bloch ramp duration and the Bloch ramp rate. If any of these
parameters change, you need to rerun your integration tables which can take weeks.

Also, note that the tables are generated over a range of lattice depths and on-axis veloc-
ities with respect to the lattice, so there are fixed boundaries to the interpolation. If your
lattice depth or on-axis velocity lies outside of these bounds, then the interpolation functions
will extrapolate to get the final wavefunction amplitude and phase, and this extrapolation
is most likely not accurate.

In Fig. 5.5, I show what some of the data stored in these tables looks like for single-
frequency Bragg diffraction of order n = 5. The population plot shows the magnitude
squared of the amplitude in the target state, and the phase plot shows the unwrapped phase
difference between the initial and final states - this second plot is the definition of what
we mean by ‘diffraction phase’ as discussed in Chapter 2. The y-axis is the range of lattice
depths used in computing the precompute table, where the π/2 pulse intensity corresponds to
Ωπ/2 = 29.7Er. The x-axis is the initial (z) velocity offset from the lattice during integration.
For a scale reference, the old alpha experiment used a one-sigma velocity width of 0.05 recoil
velocities and fifth order Bragg diffraction, so you can see that their finite velocity width
would have been enough to start causing small reductions in Rabi-flopping efficiency. Their
atom cloud transverse width was comparable to the beam waist, and since the diffracted
population is very sensitive (see e.g. [57]) to lattice depth, the finite cloud size would have
been a more dramatic limiting factor in the Rabi-flopping efficiency than the on-axis velocity
spread.

One main takeaway from Fig. 5.5 is that there is a singularity in the phase of the
final wavefunction at zero velocity and the π-pulse intensity. This can occur because the

148



Figure 5.5: (left) Wavefunction population in the target state and (right) wavefunction phase
difference (in rad) between the target and initial states. Note that the unwrapped phase
difference has a singularity where the population in the target state reaches a maximum,
due to the population in the initial state going to zero. Each pixel is one precomputed data
point in the tables.
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population in the initial state goes to zero at this point, however I’m not sure why it does
occur. This is potentially the reason why old alpha didn’t use precompute tables in their
Monte Carlo simulations, because interpolating around the singularity and branch cut could
lead to incorrect results. The reason I have moved forward using these look-up tables anyways
is because this singularity occurs around the π-pulse intensity, whereas we use π/2-pulses
in our experiment and during simulations. For n = 5, the intensity would have to be 20%
too large in order to have any issues in the precompute look-up, and for lower Bragg orders
the intensity would have to be even larger still. Even for the exaggerated beam distortions
I’m looking at in this thesis, ±10% distortions are pretty much the worst case scenario I
consider, so even with random initial conditions atoms would never be taking values from
these problem areas. Even so, anyone using these precompute tables should know about
this issue in case you try to use the code for new situations that break this assumption. For
example, if you want to simulate systematic effects in a dual Mach-Zehnder gravity gradient
measurement, you will need to simulate pi-pulses, which will definitely result in interpolation
errors.

5.4.7 Beam class

The Beam class is responsible for everything related to the electric field E(x, y, z) structure
of the laser beam, including the electric field and local laser phase, lattice depth, light shift,
and derivatives of these quantities. As the code is written now, everything is based off of
the local electric field of the laser beam. This assumes knowledge of the phase of the electric
field everywhere, however in lab we only have knowledge of the intensity of the beam where
we take CCD images. Some remarks about this:

First, and most importantly, you can easy change the structure of this class in the future
since it is all disentangled from the rest of the code. For example, you could change it to
load from CCD images of the experimental beam. This would look quite different than how
the code currently operates, but mostly you would only need to change functions in the
libs/models/beam.py and libs/models/analysis.py files (and then update the function calls
in the rest of the code as needed).

Second, writing the code in terms of the electric field was useful for the experiment
where we intentionally modulate the laser beam to compare Monte Carlo to experiment. We
strongly modulated the beam in a controlled way such that we effectively knew the phase
front of the electric field, even without measuring it directly.

Third, it’s a more direct physical way to derive other quantities, making the coding
much more physical and natural. It also allows one to study effects much more carefully. For
example, the Gouy shift causes the k-vector of the laser to change. This causes a local phase
shift on the electric field of the laser, since the wavelength is locally different, which leads
to a different laser phase imparted on the atom. The deviation in the k-vector also changes
the recoil velocity of the atom, leading to a different accumulated kinetic energy phase after
propagation. Laser phase must be included in the laser beam model in order to accurately
calculate these effects. A simple model of only the intensity of the laser would prevent you
from implementing some of these physical effects, or would effectively force them to be zero
thereby ignoring potentially important systematic effects.

Fourth, one of my goals/ our goals with this code is to bound systematics from the laser
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phase front well enough that we don’t need to directly measure it in lab, but instead can
just bound its effects by looking only at the intensity propagation of the beam with CCD
images. I hope a future student is able to use this Monte Carlo package to demonstrate that
laser phase doesn’t need to be measured experimentally, since this would make the beam
characterization much more complicated.

As the code currently operates, calling the local electric field of the laser beam is the most
time consuming part of the code, especially for more complicated beams. This is discussed
in more detail in Section 5.6.

5.5 Typical Monte Carlo Workflows and Intended Use

First, you should begin with already precomputed precompute tables for the simulations
you intend to run. Next, assuming you have your precompute tables, you typically work on
some file in the ‘scripts’ folder. The most important scripts used for studying the system
or doing science required revolve around Sweep or Sweep2D objects, however there are
plenty of other scripts as well for things like testing Bragg diffraction or Bloch oscillations
numerical integration, testing that Gouy shifts in simulation match the analytical estimate,
testing convergence of the precompute tables, etc. I highly recommend you learn familiarize
yourself with these test scripts when first exploring the code - it will be by far the fastest
way to start seeing how things work.

One of the most useful scripts for general debugging or playing with the code is scripts\general tests\test ellipse.py
- it generates and plots one ellipse. You can use this script to get fast feedback on how
any changes you’re making to the code affects the ellipses. You can also change any pa-
rameter and see its’ effects on the ellipse. For initially building an intuition of how the
parameters affect the entire code, this script will be your best friend. Also, you can use
cProfile.run(‘ell.run SCI ellipse()’) instead of ell.run SCI ellipse() to profile the speed of the
code. It will print out an extensive summary of which function calls are taking how much
time, so you can see where the bottle-necks are. If you want an accurate estimate of timing
for larger runs, make sure the simulation itself is at least tens of seconds since the initial
compiling of the code and loading imported modules takes O(5-10s).

If you’re running a major simulation that requires lots of statical integration, or if you’re
computing new precompute tables, you’ll want to run these files on the remote simulation
computer. The sim computer can multi-thread 128 processes in parallel, which is extremely
useful for off-loading huge simulations (the sim computer also has an almost 2x faster clock
than my laptop). I use CyberDuck to transfer files between my laptop and the sim computer,
WireGuard to VPN into the lab internet network, and then I ssh into the simulation computer
once on the same network. Slurm is used for submitting and managing all simulations run on
the sim computer. From the command line, you navigate to the correct folder then type e.g.
‘sbatch submit slurm example.sh’ which runs a shell script that actually calls the python
code, after allocating cores and memory. Huge thanks to Jack Roth for setting this all up
and teaching me how to use it. If you have any questions about how it works, you’ll have to
ask Jack as I’m fairly clueless here.

The code is set-up to be able to parallelize simulations in several different ways. At the
highest level, if prms[‘sweep parallel’] == True, then each ellipse in your Sweep or Sweep2D

151



will be sent to different cores. For example, if you are doing a 1D sweep with 20 sweep
points (which simulates 20 ellipses, each with different parameters), it will assign each of the
20 ellipses to 20 different cores. Note that we have a 128 core simulation computer and we
would only be using 20 cores, so this is not an optimal use of computing resources. Note that
if prms[‘sweep parallel’] == True, then prms[‘ellipse parallel’] is set to False automatically
to avoid clashes in the code with over-parallelization.

To circumvent the issue of not optimally using all cores, you can also parallelize over each
point on each ellipse instead of over the ellipses themselves. To do this, set prms[‘sweep parallel’]
== False and prms[‘ellipse parallel’] == True. This way, you can use 128 points on your
ellipses (or integer multiples of 128) in order to optimally use all cores on the sim computer.
The code will go through each ellipse linearly, and paralellize over the ellipse points within
each ellipse. This is the recommended way to fully utilize the sim computer cores. This
would not be effective if you only had a few atoms per ellipse point, since it’s O(seconds)
expensive to set up the parallelization each time. But when we have typical runs of thou-
sands of atoms per ellipse point, where each ellipse point takes minutes or hours to run, this
set-up time doesn’t matter.

The last way that the code is parallelized is when precomputing the precompute tables.
The code linearly goes through the combinations of n bragg and N bloch, then within this
will parallelize over the table of Omegas and velocities. Note this is parallelization over a
2D table which uses starmap() instead of pmap(), but other than that essentially works the
same. Typical precompute tables have O(200) points, so we’re doing OK on making optimal
use of the sim computer’s 128 cores, but not entirely optimal. Maybe in the future it would
be worth parallelizing the entire precompute run to make more optimal use of the 128 cores,
but for now it’s functional and less than a factor of 2 from optimal.

When running on your personal computer, make sure to set prms[‘n cores’] to 8 or what-
ever your computer has (or less than 8 if you don’t want to clog up your whole computer).
When on the sim computer, set to 128 (or 64 or 32 if you want to run 2 or 4 sims in
parallel, etc.). Make sure to also assign the number of cores and RAM per core on the
submit xxx.sh slurm file, otherwise you might not get access to the number of cores that you
put in prms[‘n cores’].

Some comments about file paths - the default file paths are different on my laptop versus
on the sim computer. On my laptop, it typically defaults to the overall ‘alpha monte carlo\’
folder. For example, when it saves HDF5 files or images to the results folder, they go to
‘alpha monte carlo\results\’ ... When on the sim computer, if you run a script in
‘alpha monte carlo\scripts\example\’ ..., it will save results to
‘alpha monte carlo\scripts\example\results\’ ... This is has proven to be quite convenient,
since it keeps the sim computer runs separate from the local runs, and since then you only
need to synchronize one folder between the sim computer and your local computer. It also
stores new precompute tables in ‘alpha monte carlo\scripts\precompute\temp’... instead of
overwriting the existing precompute table. This could probably be changed relatively easily
in the future if you want to, but as long as you know how it behaves it should be fine. The
only exception would be if e.g. different people’s computers do different things, then it’s
probably worth standardizing it.
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5.6 Current Monte Carlo Speed

The state of the code as I’m graduating is pretty close to as fast as you could make it in python
using the Atom class structure I’ve laid out. An example profiling of the ‘test ellipse.py’
script is broken down in Table 5.1 where the most time consuming functions are tabulated.
For this simulation, all of the ’physics’ is turned on except for light shift phase and light
shift transverse momentum kicks, because these are cancelled experimentally when we use
light shift compensation. The most time-consuming call is ‘atom.get E fields’ at 25%, which
is the function where a grid of local E-fields is stored to the Atom object so that the light
shift, lattice depth, laser phase, and dk vec can all later be calculated. This simulation was
run with a ’Gaussian’ beam type, which is the simplest beam type. More complicated beam
profiles very quickly become the bottleneck in the code as it is currently written and are the
primary area that needs to be sped-up moving forward.

The second-most time-consuming functions are the
‘precompute get bragg final wf’ and ‘precompute get bloch final wf’, which is where the
wavefunction values are determined from the (pre-loaded) interpolation functions over the
precompute data. Currently, the code loops over wavefunctions and loads the final wave-
function vlaues from the correct precompute table, so this function is NOT vectorized. One
possible speed-up in the future would be to vectorize this code so that many wavefunction
values can be loaded at the same time, however this would likely require substantial changes
to the underlying datastructures of how the code is built.

Next, the ‘analysis.get dk vec’ function is quite time-consuming because it requires tak-
ing the local laplacian and therefore involves a lot of numpy operations. The ‘analy-
sis.get light shift derivative’ function is not shown here but required even more time/numpy
operations, since it is taking a derivative of the already complicated ‘analysis.get light shift’
function.

I put some example numpy operations in this table for reference - this simulation code is
already extremely fast if ‘np.angle’ is 5% of the total simulation time. Note that the numpy
times are already included in some of the above function calls, so this table is not meant to
sum to 100%.

On the simulation computer with 128 threads in parallel, I can run about 8 ∗ 108 atoms
per day with these parameters and a more realistically complicated ‘dusty’ beam with 10
pieces of dust. The statistics of how an ellipses averages down phase noise depend on the
beam structure and the contrast of the ellipse. For a dusty beam (10 pieces of dust around
75µm diameter within the region (−w0, w0)), 24 hours of running averages down to about 0.7
mRad error bar on a single ellipse. In this example, the total phase of the SCI interferometer
was around 7∗107 rad, so the sensitivity to alpha is roughly 0.5∗10−11 in 24 hours of Monte
Carlo integration. The final alpha measurement will probably aim for an error bar around
this level, and experimentally we will aim to have this level of integration in 24 hours, so
this very roughly means the current Monte Carlo can keep up with real-time analysis of the
experiment. Obviously we would want the code as fast as possible, but this isn’t a terrible
place to be for final data analysis. However, the speed gets more frustrating when you’re
trying to use the code for studying a new process or gaining intuition for which parameters
are important. For example, if you want to sweep e.g. launch velocity of the atoms to see the
sensitivity to alpha at the 10−10 level, each point in your sweep can take 24 hours, depending
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Function Total time (s) Total time (%)

Ellipse.ellipse_pt 50.7 100.0%

atom.load_all_E_fields 12.6 24.9%

atom.split_all_atom_data 1.5 3.0%

atom.get_SCI_point 2.6 5.1%

analysis.get_dk_vec 7.1 14.0%

analysis.get_laser_phase 1.1 2.2%

analysis.get_lattice_depth 0.7 1.4%

precompute.get_bragg_final_wf 7.8 15.4%

precompute.get_bloch_final_wf 1.2 2.4%

timeev.add_kinetic_energy_phase_atom 4.2 8.3%

timeev.update_position_and_velocity 4.4 8.7%

np.angle 2.7 5.3%

np.linalg.norm 1.6 3.2%

np.ones 1.5 3.0%

np.outer 1.6 3.2%

Table 5.1: Ellipse timing for 16 ellipse points, 1000 atoms per point, on a single core of my
laptop. Data is shown for a ’Gaussian’ beam, which is the fastest to run in the simulation.
More complicated beams make the atom.load E fields() call longer such that it quickly dom-
inates the total simulation time. See text for more details.
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on how noisy the beam is. Waiting a week for each plot makes iteration extremely difficult.

5.6.1 Potential Monte Carlo Speed-ups

With the exception of some needed improvements in how slow it is to call the local electric
field, you’re going to struggle to get a factor of 2 improvement in the speed of the code.
Instead of chasing after factor of 2 improvements in the future, you would be much better off
learning how to run code on a computing cluster where you could get 1000 cores to use, or
purchasing a larger simulation computer to sit in the corner of lab. Our current computer can
run 128 processes in parallel, and there a rumors that next-next-generation AMD processors
might be able to run 512 processes in parallel.

As for the code itself, since we’re not too far from limited by the speed of calling the actual
interpolation function over the precompute tables, there’s not too much more we can do with
the current structure of the code. The biggest win would be speeding up the ‘get E field’
function call. For example, in the ‘dust spot E field’ beam model, the code is vectorized over
(x, y, z) positions in the ‘atom.load all E fields’ function call (up to 200 positions max), but
then the code does a for loop to sum over the contributions of each piece of dust. This could
be improved by vectorizing the entire function call, including the sum over each piece of dust
(do instead with np.sum along the desired axis). However, I don’t know how much this will
help in practice because in order to vectorize over many variables, each variable would have
to become a multi-dimensional object, and allocating/ updating this much memory would be
very time-consuming. Maybe a better way to do this is to create a three-dimensional look-up
table for the value of the electric field so that the code only needs to call an interpolation
function. There is a good chance that calling the interpolation function is quite a bit faster
than summing terms in the analytic function. On the other hand, making an interpolation
over such a large region of space on a complicated beam propagation structure will likely
run into memory issues, so I’m not sure this is a viable solution moving forward.

If you really need an order of magnitude improvement, I don’t think you can do this
with the code written as-is. Your best bet would be to redo the core of the code to use e.g.
‘AtomCloud’ objects instead of ‘Atom’ objects, so that instead of vectorizing code within an
Atom (over 16 wavefunctions/positions/velocities), you could vectorize the code over the
entire atom cloud (thousands of atoms or more). This way, instead of for-loops over each
atom in the ellipse, you just run through the time evolution code once, evolve all atoms at
the same time, and then process the results. Since most of the code is numpy operation
limited, this should definitely speed up the code, but I don’t know by how much. The down-
side of this change would be that the code is much less general and intuitive. For someone
who knows the code well, in a few weeks you could probably implement this enough to get
a sense of how much speed-up you would see.

A terrible option that I don’t recommend would be to re-write the entire package using
numba ‘jit(nopython=True, cache=True)’ decorators on every function. Numba has terrible
support for classes, so you probably wouldn’t be able to keep using class structures, but
instead would need to transition to just function calls. The convenience of class structure
organization would be hard to give up. You would also need to give up the ‘prms’ dictionary,
although possibly you could replace it with some sort of fixed list or data structure within
numba. These changes would require re-writing pretty much all of the TimeEv, Atom, and
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a) b)

Figure 5.6: a) the amplitude and b) the phase error during integration of the Schrodinger
equation, as a function of the integration time step ’dt’.

Beam classes, and much of the Ellipse class. It’s hard to say whether this would be useful
or not. It would give you a speedup, but at the cost of the code being much less readable,
and much more difficult to use/code new things.

All that said, you’re probably better off making the ‘atom.load all E fields’ call as fast a
possible, getting access to a large computing cluster, then focusing on getting the experiment
working...

5.7 Monte Carlo convergence

There’s a few areas where we have to think about how well the Monte Carlo is converging:
integration of the Schrödinger equation, interpolation over our finite precompute table, and
statistical convergence when running simulations.

5.7.1 Integration convergence

First, integration of the Schrodinger equation requires a finite time step in our discrete
Crank-Nicolson integration scheme. The errors in a Crank-Nicolson scheme are know to
scale as dt2 [71], so typically a 10x smaller time step should give you a 100x smaller error.

Figure 5.6 shows an example convergence plot I used for determining integration conver-
gence. The integration time step dt is swept, and the error of each simulated wavefunction
amplitude and phase (in the target state) is plotted relative to the smallest time step in the
sweep. We can see amplitude and phase both converge as dt2 once the errors start falling
below O(1).

Since we are ultimately interested in 1 mRad errors in the Monte Carlo, I use a criteria
for integration convergence of 0.1mrad relative errors. The most important thing here is
that the errors between the precompute tables are less than 1mrad relative to one another,
and this convergence criteria should safely avoid any 1mrad relative errors.

When setting up the precompute tables, I would run a convergence plot like this for each
Bragg and Bloch order, since higher order processes need smaller timesteps for convergence.
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One major issue I’ve been running into is that very high Bloch orders (N=100 or more)
require exceedingly small time steps for convergence, particularly for multi-frequency pulses.
Multi-frequency pulses have the cos (ωmt) term on the coupling terms in the Hamiltonian, and
therefore convergence doesn’t even start until your time step is much less than 1/ωm ∼ 10−3
for N=100. However, these simulations are also very long in time (ttot ∼ 100ω−1

r . Therefore
we typically don’t start convergence until we have well over 106 time steps. To get good
convergence, I’m finding we need O(1010) time steps, for which a single integration can take
days.

A general takeaway is that the dt needed for convergence of multi-frequency Bloch pulses
scales roughly like 1/N3, so going from N = 5− to N = 100 is extremely expensive. In
any case, I’ve still found convergence for N=50 on the order of a few days. It’s possible
we can overcome some of these convergence issues with a higher-order integration method
beyond the Crank-Nicolson method that converges as e.g. dt4. We would still need time
steps smaller than the modulation frequency before we see convergence, but if we can save
a decade or two in time steps it could save lots of time, even if the integration method itself
is more expensive per step.

5.7.2 Precompute table convergence

The next area we need to study convergence is in the precompute tables. To generate the
precompute tables, wavefunctions are simulated over a 2D array of initial (on-axis) velocity
and lattice depth (see Fig. 5.5). The grid spacing on this 2D space must be chosen such that
interpolation between grid sites still gives an accurate wavefunction to better than 0.1mrad
anywhere on the grid, the same convergence criteria as in the integration. When setting up
the initial grid spacing for the table in this project, I was surprised that a rather coarse grid
spacing can still give 0.1mrad errors anywhere on the grid. The grid spacing will need to
be tested more rigorously in the future though, since there are many tables that should all
individually be checked for errors.

5.7.3 Statistical convergence

For beam profiles with lots of intensity noise, the statistical convergence of the Monte Carlo
can be very poor. Since the Monte Carlo doesn’t include atom number shot noise, I believe
the poor convergence is coming from lots of phase noise atom-to-atom. Many of the plot
show that the beam distortions cause large losses in contrast, and if this contrast loss was
from phase noise atom-to-atom it would indicate O(2π) phase noise or more.

More work needs to be done here to set up a rigorous system for confirming statistical
convergence. Initial results to this end are not showing convergence as I would expect, which
might be an indication that outliers in the data are preventing successful convergence for
very large atom numbers. Possibly this is related to the finite boundaries of the precompute
tables such that extrapolation beyond the boundaries is leading to outliers in the data.

For generating the plots in the section below, I was able to qualitatively see that the plots
converge after running the plots with different atom numbers. In the very near future, I plan
to adopt the code to store the errors on the ellipse fit, which should give a good measure of
statistical convergence on the ellipse data. I could also implement something like an Allan
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deviation by simulating millions of atoms, then grouping them in different ways and plotting
the relative error.

5.8 Monte Carlo Results

We have very recent experimental data where we have not seen shifts that were predicted by
the Monte Carlo code, so as a disclaimer, the results in this section are likely quantitatively
incorrect. We’re just beginning to match experiment to Monte Carlo, so I expect there will be
quite a bit of debugging before the two agree. Also, we need a better method for confirming
statistic convergence of the plots. That said, it’s still very instructive to qualitatively look at
what the Monte Carlo model is predicting in order to get some intuition for which physical
effects matter and which don’t, and to get an order of magnitude estimate of the size of
these effects.

Unless otherwise stated, the Monte Carlo simulations below use the same initial condi-
tions that are used experimentally. Some important parameters are listed here. n = 5 Bragg
diffraction is used, and N = 50 Bloch oscillations accelerate the atoms at an acceleration
a = 10g, where g is the acceleration due to gravity. Atoms are moving upwards at 3.3m/s at
the time of the first Bragg pulse. The thermal velocity spread is 0.05vr vertically, and 1.5vr
transversely, where vr = 3.5mm/s is the recoil velocity of Cs. The atom cloud is assumed
spherical with a 1σ width of 1.5mm. The laser beam has a 1/e2 radius of w0 = 6.2mm. The
focal plane of the beam is 2.3m before the atom location during for the first pulse, and the
retroreflection mirror is 4.7m after the focal plane.

One important result from the Monte Carlo mode is that transverse components of the
local k-vector of the laser are an important mode of loss of contrast from spatial intensity
noise. As far as the authors are aware, these effects also have not been included in Monte
Carlo simulations of atom interferometers. Fig. 5.7 shows the contrast of the interferometer
as a function of the spatial frequency of the square wave modulation from Eq. 5.11. The
three curves show the effect of different modes of loss of contrast, showing that transverse
components of the k-vector are an important factor in capturing the contrast loss seen in
atom interferometers.

When all modes of loss of contrast are included, we see severe loss of contrast for most
spatial frequencies. When light shift momentum kicks are omitted, there is a large revival
in contrast, especially for higher-frequency modulations. This is the case experimentally
when light shift compensation is used. Notably, the effects of imperfect k-vector momentum
transfer still do cause substantial loss of contrast. The final curve omits any transverse kicks
from the simulation. The remaining effects on contrast seen in the plot are from non-ideal
Rabi frequencies during Bragg diffraction. These results are consistent with the experimental
observation that light shift compensation can revive some but not all loss of contrast [66, 46].

Next, we show some important scalings in Fig. 5.8, in particular the differential phase
shift dependence on the distance from the source of intensity noise and the atoms, as well
as the lattice depth during Bloch oscillations. Fig. 5.8a) shows that interferometers become
much less sensitive to higher frequency spatial noise the further they are from the source of
intensity modulation on the beam. This is a result of the exponential decay with propagation
distance from Eq. 5.10. Additionally, the peak differential phase shift is roughly proportional
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Figure 5.7: Contrast loss as a function of the spatial frequency of the modulation. When
transverse momentum kicks from light shifts gradients and transverse k-vector components
are included, there is broad loss of contrast. When light shift gradients are omitted (or
cancelled experimentally), there is still broad loss of contrast from transverse k-vector kicks,
especially at lower spatial frequencies. When all transverse kicks are omitted, we see the
effect from lattice depth variations on Rabi frequencies during beamsplitters. The apparent
’noise’ on this plot is actually from structure in the propagation of the beam.

a) b)

Figure 5.8: a) Differential phase shift in units of ppb in α as a function of the spatial
modulation frequency. Different curves represent different propagation distances z from the
dust to the first pulse of the interfeormeter. b) Same axes, but the different curves respresent
different lattice depths during Bloch oscillations, in units of the recoil energy Er = h̄2k2/2m.
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Figure 5.9: Effects of dust size on a) the differential phase and b) the contrast of an SCI
interferometer. The legend in b) applies to both figures. See text for more discussion and
for parameters used.

to ∝ 1/z2, where z is the distance between the source of the intensity noise and the first
pulse of the atom interferometer.

Fig. 5.8b) shows that lower lattice depths during Bloch oscillations lead to larger phase
shifts in the interferometer. This is a result of atoms preferentially tunneling from lower
intensity regions of the noisy beam, leaving a correlation between the surviving atoms and
the location in the beam. This correlation is stronger when Bloch oscillations are further
from saturation, ie. when the overall lattice depth is lower. For reference, a Bloch lattice
depth of Ωb = 9.4Er corresponds to roughly 50% survival rate. For a detailed analysis of
this effect, see [6]. Note that this figure was generated with a sine wave modulation without
the term that oscillates amplitude modulation to phase modulation and back. The purpose
of the figure was to gain a qualitative understanding of the different scalings with a simpler
beam model.

In addition to the phase shift scaling with the Bloch lattice depth, there is an additional
structure that is unchanged for all Bloch powers. These effects are from Bragg diffraction -
they are a result of correlations between the Bragg diffraction efficiency and the δk momen-
tum kick received. These effects warrant a more careful analysis before a next-generation
measurement of the fine-structure constant is published. The old experiment used the scal-
ing with Bloch power to experimentally bound the potential effects from these δk variations,
but this method would not have captured the remaining correlations from Bragg diffraction.

The model for dust on optics presented in section 5.3.1 is used to study the differential
phase shifts and contrast loss caused by a random scattering of dust on an optic before the
vacuum chamber. In Fig. 5.9, a density of 20 dust particles are randomly distributed over
the region (−w0, w0) in both the x- and y-dimensions. For our beam waist of 6.2mm, this
corresponds to roughly one piece of dust per (2.8mm)2. An SCI interferometer is simulated
with a Bragg order n = 5 and a Bloch oscillations order N = 50, using the same initial
conditions as are used experimentally, and light shift compensation is assumed. With the
dust locations fixed, the size of the dust particles is varied and the interferometer differential
phase and contrast are plotted in Fig 5.9a) and 5.9b) respectively. Each line on the plots cor-
responds to a different initial distance z between the dusty optic and the first interferometer
pulse.
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a) b)

Figure 5.10: Propagation of a square wave intensity modulated laser beam showing strong
Talbot patterning. a) Experimental data with images taken every 10cm - the images are
vertically integrated to average over noise from other optical distortions e.g. from dust on
optics. b) The corresponding theoretical prediction from Eqs. 5.11 and 5.9. The only fit
parameters from the model are the absorption and phase shift as the beam goes through the
titanium thin film.

This result demonstrates that a moderately dusty optic can easily cause ppb-level phase
shifts in a SCI interferometer, and large pieces of dust can cause 10ppb effects or larger.
Allowing a laser beam to propagate for several meters in vacuum can suppress the effects
somewhat, however the effects clearly remain. The apparent ’noise’ in Fig. 5.9a) is a result
of the highly structured propagation of the beam’s electric field. When the dust size is
swept, the entire propagation of the beam is changed because each dust particle’s effects
now have a different Rayleigh range. The five discrete times when the laser interacts with
the atoms during the interferometer then sample a seemingly random set of local effects,
causing seemingly random resulting phase shifts.

5.9 Initial experimental results

The first step in verifying our model is verifying our calculations of how a complicated laser
beam propagates. We’ve been collaborating with Sam Peana, a researcher at Purdue, who
is fabricating masks of thin titanium patterns deposited onto an anti-reflective coated glass
slide. Deposition thicknesses around 2 nm give an absorption around 10%, which gives us
a somewhat strong modulation on the beam but not so strong as to break our assumption
that the modulation is small relative to the overall Gaussian amplitude. The first ≈ 0.5 nm
of the titanium oxidizes from exposure to air, which tends to phase shift the laser beam but
not absorb it.

This model was verified experimentally, see Fig. 5.10. A pattern of titanium was de-
posited onto an AR-coated glass wafer in a periodic pattern creating a square wave amplitude
modulation on the beam. The titanium reflects some of the electric field and also phase shifts
the transmitted field. The mask shown in Fig. 5.10 very closely matches the model in Eq.
5.12 with Aq = 0.034, ϕq = 0.72, the only two fitted parameters. The spatial period of the
modulation q = 2π/(600um) was fixed by the mask fabrication.

After the above mask was used to confirm the propagation model of the beam, Sam Peana
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fabricated a series of masks with various noise spatial wavelengths q = (300µm, 400µm,
600µm, and 800µm). This second set of masks had approximately twice the modulation
depth Aq and a similar phase modulation ϕq, which is consistent with the fact that the phase
modulation came from the outer oxide layer, independent of the overall titanium thickness.
Based on initial Monte Carlo estimates, this mask series seemed to cover a range of spatial
frequencies where we could expect to see experimental phase shifts and loss of contrast with
this strong modulation depth.

Additionally, Sam fabricated masks with psuedo-dust. A random series of dust positions
with 100 particles/in2 was fabricated on a 2”x2” glass slide, where circles of titanium fully
absorbed incident light. This density of dust particles is roughly one dust particle per 6mm2,
or equivalently around 6 dust particles per beam waist squared when using a 6mm beam
waist. Some areas of the mask have higher dust density than others, so depending on the
desired density one can move the beam to a different region of the mask to change the
effect. The dust particle sizes were uniform on each mask, and four different masks were
fabricated with dust diameters 40µm, 80µm, 120µm, 160µm. At 160µm diameter dust, the
Monte Carlo model predicted dramatic loss in contrast of the interferometer, and possibly
an associated phase shift around the 1 ppb level.

Experimentally, we have used these masks to try to measure loss of contrast and dif-
ferential phase shifts in the interferometer. So far, the experimental results indicate that
the Monte Carlo is overestimating effects - where the Monte Carlo predicts we should see
contrast loss and phase shifts, we don’t yet see any effects.

The first main data set was a several day campaign with and without a mask in front of
the main laser beam. During data taking, we were blind to the comparison with/without the
mask so that we could verify the data was self-consistent over many days before checking to
see if we had seen a phase shift. The data was consistent with no phase shift at the roughly
1 ppb level, while the Monte Carlo predicted a larger shift. The mask used was the same
mask that was fit to the model in Fig. 5.10.

The second data set was a much quicker test - we put many masks in front of the beam so
that the beam was very highly modulated, then we looked to see if there was any measurable
contrast loss in the interferometer. This data set used some of the new set of masks from
Sam Peana that had double the modulation depth, in addition to the 160µm diameter dust
mask. The experimental result was that there was no measurable contrast loss. For both
sets of data, parameters used were n = 3 Bragg diffraction, N = 100 Bloch oscillations, and
T = 100ms interrogation time.

The fact that the second test saw no measurable contrast loss indicates that the contrast
loss model is incorrect. The predicted phase shifts are closely related to the predicted loss of
contrast, since the dominant phase shifts come from a correlation between k-vector kicks an
atom receives and the probability that the atom contributes to the overall contrast. However,
there are far too many parameters in the model to draw conclusions from a only a couple
data points.

I think the most likely scenario is that there are factor of 2 or π errors in the code
that have resulting in overestimating the effects we should see experimentally. The physics
included in the Monte Carlo is based on first-principles so should be very accurate. One
way in which the Monte Carlo model differs from how experimental data is taken is that
the Monte Carlo model only runs simulations at a single interrogation time T and looks for
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relative shifts as some parameter is swept. Experimentally, we take data at several different
T ′s in order to extract the diffraction phase, since the diffraction phase experimentally is
seen to change over time. This discrepancy would likely change the Monte Carlo estimate
somewhat, but I don’t think it would eliminate the effect we’re looking for.

Another possibility is that there is some physics omitted from the model that ends up be-
ing relevant experimentally. For example, the Monte Carlo doesn’t include effects from single
photon scattering, even though we see strong scattering effects experimentally. It’s possible
that including scattering effects in the model would somewhat change the predictions, but
again I don’t think this effect dramatically affect the predicted experimental shifts.

In total, much more work still needs to be done to match the Monte Carlo results to
experiment. The model is very complicated, so even with careful coding and lots of double-
checking, there are surely still errors in the code. Once we are reliably comparing experiment
to the model, we can see if there is are any other physical effects that need to be added to
the model in order to reproduce experimental data. More to come!

5.10 Future Monte Carlo Work

While I tried to include as many effects as possible in the code, there are still some physical
effects that are left out. There are also ways you could try to speed the code up in the future,
if you end up needing better statistics.

5.10.1 Monte Carlo Assumptions

First, parasitic interferometers are not included in the simulations. I saved the entire wave-
function array in the precompute tables, so the wavefunction information is still contained
in the precompute tables, just that the code does not make use of it. In order to include
this in the future, you’ll have to a) store additional data on the atom object for amplitudes
following parasitic paths, and b) modify the TimeEv operators to also capture the evolution
of the parasitic states. This probably won’t be too hard to do, just make a good plan for
the modifications before starting. It’ll be a good learning exercise for how the meat of the
code works.

Next, single-photon scattering is not included in the simulation. It wouldn’t be too hard
to track a probability of scattering at each pulse based on the local laser intensity, but the
hard part is in determining whether this atom is then seen by our detection photodiode.
When an atom single-photon scatters, it absorbs a photon from either the up-going or down-
going beam and receives a single recoil velocity kick along the axis of the beam. Then it emits
a photon in a random direction when it decays from the excited state, giving another recoil
velocity kick in a random direction. The time-of-flight after the pulses is typically around
0.5 - 1 second, so for a recoil velocity of 3.5mm/s the atom moves around 2-3mm away
from center of the initial atom cloud. The experiment uses a 3̃mm x 3mm photodiode and a
one-to-one light collect scheme11, so to first order we’re only capturing a 3̃mm x 3mm region
of the center of the cloud. To make matters more complicated, the probability of detection
isn’t a discrete function, it’s a complicated transfer function where you can still detect an

11actually the magnification is 0.8
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atom far from the center of the cloud, just with a decreased probability. In principle, you
could try coding all of this up, but in practice I imagine it’s going to be hard to get the
model agreeing with the experiment. Not impossible, but hard.

Note that we’ve never looked into systematic effects from single-photon scattering in our
experiment, we’ve just assumed that they’re zero. If the population in the different peaks
is roughly 50/50 during the interferometer, the scattered atoms will create a uniform back-
ground in each time-of-flight experimental peak. Adding a constant background like this will
reduce contrast but not rotate the ellipse. However, our Bragg pulses are far from perfect
due to finite size of the atom cloud with respect to the finite laser beam, so the popopu-
lation are not 50/50 during the interferometer. This will cause an asymmetric scattering
background across the various time-of-flight peaks. It’s possible that this asymmetric back-
ground gives a systematic phase shift when performing ellipse fitting - the effect should be
further investigated.

I’m also going to document here a number of small assumptions that I think are negli-
gible but still good to document. I’ll first make a list then follow up with a more detailed
explanation.

1. Light shift gradients on-axis are ignored

2. The problem is only treated quantum-mechanically in 1D

3. The k-vector is assumed constant across the wavefunction when solving the Schrodinger
equation

4. All atoms are assumed to be in the same F internal state the whole time

5. Similarly the atoms are assumed to be in the mF = 0 magnetic sublevel

6. The gravity gradient systematic is omitted

7. The classical propagation during Bragg/Bloch pulses is approximate, not exact

8. I assume uncorrelated initial conditions

9. Some small assumptions go into the Precompute tables.

1) In taking the light shift gradients for the light shift forces, I don’t account for the
gradient along the axis of the beam because it will be many orders of magnitude smaller
than the transverse effects. I don’t see numerically how this would matter, but maybe I’m
over-looking something.

2) I only treat the problem quantum-mechanically in 1D, along the beam propagation
axis. This is because the optical potential changes on a shorter length-scale than the thermal
deBroglie wavelength along that axis: λlight ≪ λdBz ∼ 5µm. Any transverse changes in
the potential are on a much larger length scale - any optical distortion with wavelength
less than 50µm or so is washed out by the time it reaches the atoms, and the transverse
thermal deBroglie wavelength is very small: λdBtransverse ∼ 100nm. Therefore any transverse
potential gradients are essentially linear over the extext of the atom’s wavefunction and can
be treated classically.
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3) Similarly, I assume the laser k-vector is constant when solving the Schrodinger equa-
tion, since we discretize momentum in integer multiples of k. In reality, it has spatial depen-
dence (e.g. local Gouy shift), but on length scales much longer than the thermal debrogle
wavelength of the atom. You’d have to integrate the wavefunction in real-space to simulate
these effects, and I don’t have a good intuition for what to expect, but the effect should be
very small. Maybe it would effectively look like ’heating’ of the wavefunction, since you’re
diffracting with a spread in k-vectors.

4) I assume that the initial atom cloud is entirely in the same F state/ sees the same
lattice beam detuning. If you don’t have good state prep, these other atoms could in principle
still go through the interferometer. Since it’s an incoherent mixture and the probability of
forming a coherent interference from the wrong state will likely be very small, this should
have a small effect.

5) Similarly, I assume that atoms remain in the same mF = 0 state. Imperfect state
prep or B-field gradients could lead to atoms in other mF states. These atoms could still
form interferometers, but the magnetic field phase would be very large and likely have a
large spread (> 2pi) across the atom cloud, meaning the contribution would look like an
incoherent loss of contrast. If somehow there were enough atoms in a different mF state that
had a well-defined phase shift, it’s possible these atoms could cause a systmatic phase shift
when fitting ellipses.

6) I don’t include gravity gradient systematic, since you can calculate this very well
analytically (or even numerically if you map out gravity gradient as a function of height).
This effect should be independent of random initial conditions of the atom cloud since it
varies on a much larger length scale, so you don’t need Monte Carlo to characterize it.

7) The way I treat classical propagation of velocity and position of the atom within a
Bragg or Bloch pulse is approximate, and not exact. That is, the momentum kicks are
modeled discretely during the center of the pulse. For Bragg pulses, I classically propagate
to the center of the pulse (in time), then do the Schrodinger equation evolution, transverse
momentum kicks, laser phase, etc. based on this location, then finish classically propagating
the second half of the pulse. For Bloch, I propagate to the center of the parabolic trajectory
(in time), otherwise everything else is treated the same as Bragg. Bragg pulses are very short
in time (tens of µs) compared to typical T’s (tens or 100 ms), so for Bragg this shouldn’t
matter. Bloch pulses can several ms though, so there might be large physical effects. Even
if we’re off on the total Mrad phase, we’ll still capture the beam-related systematics to
O(1%) or better, which is probably as good as we’ll ever be able to compare to experiment
anyways. Also, this way of modeling assumes the lattice depth is constant for the entirety
of the e.g. Bloch oscillation pulse, whereas in reality the atom is traveling during the pulse
and sampling different parts of the beam. The atoms during Bloch oscillations might travel
O(5mm) during a Bloch pulse - the beam propagation is so minimal over 5mm that I assume
that using the center location for the local lattice depth is sufficient to first-order. It’s still
worth noting that this modeling assumption is baked into the model.

8) I don’t propagate the atom cloud before starting the interferometer. Experimentally,
the cloud propagates for hundreds of ms, which allows the position and velocity of the atoms
to become more correlated. Moreover, our Raman sideband cooling is likely most effective
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in the center of the cloud and less effective away from the center.12 This might actually have
measurable effects on e.g. average Gouy shift of the ensemble, and should also be studied
in future work. You can use prms[’T evolve before start’] for generating some correlation
between position and velocity from thermal expansion before the start of the interferometer.

9) There’s a couple assumptions I make in using the precompute tables that I expect to
have minimal impact on results. First, if you plot the phase of the final Bragg wavefunction
unwrapped over the precompute table. See further discussion the Precompute section above.

12Minimally the temperature is position dependent. The cavity interferometer experiment in our group
found that the hotter atoms in the outside of the Raman sideband cooling beams were limiting the contrast
of their lattice hold interferometer.
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Chapter 6

Conclusions and next steps

6.1 Conclusions

The most important conclusion drawn from Chapter 2 is that systematic effects from the
Schrodinger equation evolution of Bloch oscillations cancels out in our experiment to a very
high degree of accuracy. The reason is that the differential effects between the upper and
lower interferometers cancels gradients in the optical potential to first order, such that only
higher order gradients remain. This, combined with the fact that the interferometers are
very nearly overlapped at the time of Bloch oscillations in an SCI interferometer, ensures
that systematic effects from the Bloch dynamics are not likely to be an issue moving forward.

This does not mean that there aren’t any effects from Bloch oscillations, only that the
effects directly from the Schrodinger equation are small. There are still large effects from
deviations in the local k-vector of the laser since most of the momentum transfer in the SCI
interferometer happens during Bloch oscillations.

Some conclusions from Chapter 3 are as follows. First, symmetric Bloch oscillations
were proven to be an efficient way of generating extremely large momentum splittings in an
atom interferometer. Second, the finite-temperature of an atom along the beam propagation
axis breaks the momentum symmetry of the problem. This limits how efficiently you can
drive symmetric Bloch oscillations for a given cloud temperature. Third, the reflection and
recombination pulses are very sensitive to lattice depth fluctations because they rely on
coherent interference between different basis states of the wavefunction. This will likely
lead to systematic effects. For all of these reasons, the technique might warrant further
investigation.

Chapter 4 outlined the design and construction of the new vacuum system. Hopefully
the notes about UHV design of a very large vacuum system will be useful to others in the
future. One conclusion from this chapter was that extra parasitic lattices will likely limit
the total phase achievable in this version of the experiment, and may introduce systematic
effects.

Although Chapter 5 presents on-going work, there are some useful conclusions buried
inside. First, it was possible to make a number of large improvements compared to the old
Monte Carlo packages. These include dramatic speed-ups by using precomputed integration
tables, the creating of a much more general simulation that includes Bloch oscillations and
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new loss-of-contrast mechanisms, and that careful design of the structure of the Monte Carlo
code will hopefully allow the code to be a foundation for future work on the subject. Initial
experimental results also indicate that the Monte Carlo has been overestimating the size of
potential systematic effects. Although this makes our current project of comparing Monte
Carlo to experiment more difficult, it is promising for the future of the α experiment since
distorted beams might be less of an issue than we thought.

6.2 Next steps

In the immediate future, we plan to continue working on comparing the Monte Carlo model
to experimental data. This will be a continuation of the initial results from Chapter 5.
Getting Monte Carlo to match the experimental data will likely take some time to get right,
both on the experimental side and the Monte Carlo side.

The experiment is roughly within a factor of 2 in sensitivity compared to the old exper-
iment, and my labmates are currently working to quantify this more precisely. Any easy
improvements in the sensitivity of the experiment are worthwhile, because a factor of two
improvement in sensitivity would mean 4x less data taking for a given error bar.

On the Monte Carlo side, more work needs to be done testing the sensitivity of simulation
results to different parameters so we can see which parameters might need to be very carefully
calibrated. In order to further debug possible factor of 2 errors in the code, the most useful
next steps will be simple comparisons between the Monte Carlo and the experiment, and
as many comparisons as possible that isolate different aspects of the code. More work also
needs to be put into studying convergence of the simulations more carefully - the different
types of convergence were outlined in Section 5.7.

Beyond the near-term goal of building a Monte Carlo model to match experimental data
for severely distorted beams, we will need to start looking forward to an actual measurement
of the fine-structure constant. There are two things that need to come together - statistical
sensitivity, and systematic uncertainty. Very likely we’ll focus initial efforts on optimizing the
statstical sensitivity as much as possible in the existing system. After this is accomplished,
we can start measuring or bounding various systematic effects and building up an error
table. The gravity gradient item in the error table will be particularly difficult to measure
accurately. It will likely require measurements of the gravity gradient as a function of height
in the chamber, as was explored briefly in Fig. 4.1. Systematic effects related to intensity
inhomogeneities of the laser beam will of course be another very important item in the error
budget. Initial results from experimental measurements of severely distorted beams indicate
that the effects are likely much smaller than we expected from the Monte Carlo model. This
might mean that the effects are in the worst-possible scenario - large enough that they need
to be measured, but small enough that it takes lots of integration time to be able to resolve
the effects. Or, it could mean the effects are small enough that it might be relatively easy
to bound the effects based on measurements of the laser beam intensity profile.

Additional steps along the path to measuring α might include any of the ‘new ideas’
presented in Section 4.6. I’m excited data from an optimized setup to measure the laser beam
profile in-vacuum using Ramsey interferometry. I’m also nervous about results related to
extra parasitic lattices in the chamber - this systematic will need to be explored quantitatively
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in the future in order to gauge how big of an issue it might be.
In the very long-term, when people are thinking about designing a new experiment, I’m

sure issues with the current design will inform future work. I would consider using two
independent laser beams from the top and bottom so that 1) you don’t lose a factor of two
in laser power by combining beams on a 50/50 beamsplitter, 2) you don’t have extra single
photon scattering from retro-reflection, 3) you eliminate all of the parasitic interferometer
issues in the current design, and 4) you might be able to find other ways to improve the
overall efficiency of the laser frequency generation scheme. These are a lot of wins that will
enable much more total phase accumulation in the interferometer. The cost of this will be
that the difficulty of bounding systematic effects related to the spatial profile of the beams
is now twice as difficult due to having two beams, and additional systematic effects related
to the beam-beam alignment now need to be taken into effect.

I would also take the time to make the MOT and RSC regions of the vacuum chamber
with much smaller diameters than in the current design, while still maintaining the clear
aperture of the experimment. The large lever-arm the 3D MOT beams, the large travel
path for the 2D MOT atomic beam, and the large distance between the 3D MOT coils all
make co-alignment of the MOT very difficult. I think it’s likely this is reducing our atom
number by quite a bit, and as a result we’re close to atom number shot noise when the old
experiment wasn’t. Similarly but not as critical is the large lever arm on the RSC beams,
which makes alignment a bit more touchy. In order to make these chambers smaller, you’ll
need some sort of reducing flange between the interferometry region and the lower chamber,
but if you have a tall enough room to work with this shouldn’t be an issue.

One might also consider switching to e.g. Rubium instead of Cesium, since 1560nm fiber
lasers can be doubled to get lots of power at 780nm. It’s notable that using Rubidium and
two independent laser beams would make our experiment much more similar to our French
competitors [56]...

Strontium atom interfeormetry is still too new to have a good understanding of how
useful it might be, but possibly this is a new direction in the future. It would be such a
large change to the experiment that I don’t think it’ll ever happen in the Mueller group,
but maybe it’s worthy of a research proposal for a new faculty member trying to hop on the
Strontium train.
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