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Abstroc■

Elucidating Essential Targets in Pharmacologically Relevant System Models

By

Abraham A. Anderson

Large-scale and complex biological system models can be used to simulate and

mimic normal and pathologic body function. Putative pharmacological agents can be

“screened” in silico for greatest effect by adjusting model parameters at postulated and

known drug target sites to match experimental data. Once the simulation is set in motion,

the effect can be monitored and the drug's effectiveness evaluated. This document

describes how these models can be used to find potentially optimal intervention sites via

quantitative and qualitative graph theoretic techniques. A major benefit of this method is

its computational objectivity in analyzing large and highly connected systems. It is also

much faster than a complete, classical sensitivity analysis of the model. Several systems

are analyzed for modular substructure and the elements of those systems are prioritized as

potential therapeutic targets. These are blood coagulation, human obesity, and bacterial

metabolism. Predictions are validated with information about known therapeutic targets,

essential genes and metabolites. For quantitative models, a sensitivity analysis is done to

further validate prioritizations.

As we emerge from the genomic era, during which whole genomes have been

completely sequenced, data mining is being used to elucidate interactions between genes

and proteins. The resulting relational models are expected to be quantitatively fleshed

out, and used to adequately predict biological phenomena. Biological and
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pharmacological system models are not new, but as a consequence of high throughput,

robotic data generation technologies, they are necessarily rapidly expanding in size and

getting more complex. A single researcher can no longer conceptualize even a fraction of

the dynamical interactions within such models; much less judge the full effect each

element may have on the system. Short of a tedious full-scale sensitivity analyses,

guesses about which element or set of elements is likely to have a desired, widespread

effect will be based on trial-and-error, and thus biased. The techniques employed

hearken from computer network planning and parallel processor load balancing, and

should return comprehensive and utterly objective results. These results may contain

conceptual and computational artifacts and so were qualitatively evaluated and iteratively

refined. Essentially, these techniques filter the system and present those elements that

serve to hold the system together, and/or prevent chaotic behavior. Such critical elements

are logical targets for evaluation as potential therapeutic intervention loci. Thus, models

once used to test hypotheses, can serve double-duty by generating hypotheses. This sort

of computer aided target location coupled with current methods for evaluation, are

expected to give investigators the added edge of objectivity married with speed.

Scientists and engineers require new techniques and tools for exploring, visualizing,

and understanding the limits and relative properties of large complex biological systems.

The approach described here may be such a technique.

Approved by: C. Anthony Hunt, Ph.D.
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Chapter 1: Motivating Factors

The ideas that prompted this investigation stem from graph partitioning techniques

used in workload distribution for parallel processing. With these techniques, the goal is

to divide work evenly among several processors while reducing interprocessor

communication. Several techniques are being utilized to partition these networks and

work is still ongoing. In general, graph partitioning is being used to solve optimization

problems in the design of very large-scale integrated circuits, storing and accessing

spatial databases on disks, transportation management, and data mining[2]. A direct

method of partitioning a graph uses the Laplacian of the adjacency matrix. It is known

that the Laplacian provides a minimization solution the total length of connections

between adjacent nodes. The solution induces clustering of connected nodes by

partitioning the underlying graph[3]. Seary and Richards present a survey of some early

attempts to understand network structure from the Standard spectral representation and

introduces the Laplacian spectrum as a method for directly obtaining useful results|[4].

They also introduce the Normal spectrum and show that it has similar properties with the

Laplacian. They present examples that suggest that the Normal spectrum is useful for

role-based and group-based network analyses. They state, “the signs and magnitudes of

eigenvalues indicate the type and importance of the partitioning induced by the

corresponding eigenvectors.” There are many tools available to partition graphs. The

METIS toolkit and function library will be used in this project[5]. METIS uses a fast,

multilevel, recursive, partitioning algorithm.

If biological system representations are similarly treated, elements could be clustered

into groups that have minimal intercluster communications and reactions. I hypothesize



that those elements that communicate between system groups uniquely effect proper

system functioning. If validly represented, these critical elements should be ideal

intervention sites within the system.

An interesting use of clustering and partitioning techniques has emerged in

quantitative anthropology. Doreian demonstrated complementary qualitative and

quantitative tools in delineating the structure of social networks[6, 7]. He used the ideas

of centrality and multidimensional scaling (MDS) of graph distances to describe graph

structure and delineate key network members. An adjacency matrix representing social

relationships was developed and used to generate another matrix of graph distances. This

distance matrix was the input to a MDS algorithm. The output produced was a Euclidean

projection in two dimensions. The approach resulted in a network partition from which

important qualitative statements could be made. In a systematic way they were able to

determine those nodes that integrate the graph. Additionally, nodes that provided the

least amount of integration had the smallest centrality scores.

Social Network Analysis (SNA) is the study of the interactions between multiple

actors for the purpose of discerning repeated patterns of interaction and the role of

Specific actors in the overall group. As SNA is a quantitative analysis method developed

in the field of social and behavioral sciences, actors are usually individuals, countries, or

Organizations. Thus interactions are interpersonal, international, or interorganizational.

For analyses on the level of an actor, several metrics have been developed to quantify an

actor's importance, prestige, or influence in the group. One set of metrics is collectively

described as centrality metrics. Over the years several researchers have contributed their

own quantification of the centrality concept. Degree centrality is the simplest definition



of centrality. It prioritizes actors according to the number of their direct interactions with

other actors in the network. Closeness cemnly quantifies how close an actor is to all

other actors in the network via tabulation of internode distances. Betweenness centrality

prioritizes actors higher if they lie between many other actors and on the shortest routes

between pairs of these actors. Information centrality generalizes the concept of

betweenness centrality by considering paths other than the shortest and scales their

contribution according to each path’s length. Some of these metrics have been converted

for analysis of groups as well as individual actors, thus quantifying the levels of influence

actor's have as a group on other groups or, when the group contains all actors, group

centrality can be used to evaluate the significance of an individual actor’s centrality.

There are other group level analyses in the field of SNA that aim to provide quantitative

measures for deciding which actors constitute a group. Such methods measure subgroup

cohesion via statistical methods, considerations of reachability within the group, and

matrix manipulations. Once cohesive subgroups are identified, researchers go on to

evaluate differences between members of groups and nonmembers, and overlap between

subgroups. Also, different networks can be compared by their individual organization

into subgroups.

System models in biology take on many forms. Some are explicitly mathematical

whereas others are purely relational with informative diagrams representing various

levels of abstraction. Knowledge maps and effector diagrams both use arcs and nodes to

qualitatively represent the interaction between system elements. These elements can be

single proteins or molecules and even abstract concepts. The Ecocyc database is a good

example of a knowledge map built on genomic and proteomic elements from studies of



E. coli■ 8]. The final product is a searchable database of reaction pathway data. This

framework has also been extended to overlay gene and protein expression data in an

intuitive manner. More quantitative models can be seen in the various Physiolabs made

by Entelos(9]. Each Physiolab models a human physiological system of special

therapeutic interest to the pharmaceutical community. The models represent a

homeostatic state upon which clinical trials can be simulated. The elements within the

model are both conceptual and explicit, as necessary or as supported by data. They are

related by simple linear and non-linear differential equations that represent diffusion,

conversion, and element interaction. The complexity and strength of these models has

evolved from the large number of interconnected elements. So far Physiolabs can only

be used to simulate different disease states and test hypotheses. Any sensitivity analysis

must be done manually, one element at a time.

There are an increasing number of such modeling efforts. It is not possible to review

them here. As an example, however, a smaller scale version of such system models is

under careful development by Levine et al. to model onset of capillary formation

initiating angiogenesis, and to relate that to cancer growth■ .10].

Chapter two introduces techniques for studying biological systems and discovering

potential therapeutic targets and/or biomarkers.

Chapter three begins with an overview of current uses of network representations in

biology. Several network based systems analysis techniques are presented. Aspects

common to each of these techniques and to other non-biological network analysis

techniques are highlighted.



Chapter four presents hypotheses concerning the topology of biological Systems and

how it may be used in the prediction of novel therapeutic targets.

Chapter five presents methods developed to test the hypotheses presented in chapter

three. In this chapter a heuristic incorporating these methods is described.

Chapter six, seven, and nine present applications of the methods to several

complicated biological systems. In each application individual methods are validated

against known therapeutic targets, in silico experimentation, and pathway annotations.

Chapter six presents the results of an application of the individual methods to a

qualitative model of blood coagulation and a quantitative model of human obesity.

During which, each method is evaluated and presented as part of a general heuristic for

modularity assessment and target prediction and prioritization.

Chapter seven presents the results of an application of the heuristic to an improved

version of the obesity model. A primary issue here is the effect of changes in a model on

the quality of the analysis results, and there are many additions and changes in the newer

model of obesity.

Chapter eight contains a description of the software tool kit developed to implement

the heuristic. The tool kit analyzes network topology and presents the results in a data

rich graphical fashion.

Chapter nine presents the results of an application of the heuristic to the type of

network model most accessible for researchers. The metabolism of E. coli is modeled

from a public database and data quality issues are dealt with; results are validated in light

of prior knowledge of essential genes and important metabolites.



Chapter ten summarizes the hypotheses that motivated the development of the

topological methods, the computational techniques used to implement each method, and

the results of various implementations. This chapter ends with suggestions for

improvement of the techniques and their place in therapeutic target discovery efforts.



Chapter 2: Background

Methods For Therapeutic Target Discovery

Defining Therapeutic Targets

Therapeutic targets encompass any biological molecular process(es) that

maximally influence(s) a specified physiological objective function, or that changes the

phenotype of the subject or patient. The process of target validation and selection

identifies those potential targets that have the most influence on the physiological process

to be modulated. Many targets of successful drugs are G-protein coupled receptors

(GPCRs). These are cell surface receptors, allowing cells to act based on environmental

signals. One reason for the abundance of GPCR targets might be that they are relatively

easy to access on cell surfaces. It is harder to design a drug to both access and then

interact with highly sequestered target molecules.

For drugs, developed to influence a target, to be commercially successful, the

biological problem that they potentially alleviate must be common or a chronic disease.

Otherwise, the validation of a target and development of drugs may not be worth the

investment. Also, the disease that the target is associated with should be well understood

and have known surrogate markers for disease progression. This helps the proper

identification of patients, leading to shorter clinical trials. Intervention at the target must

offer an advantage over current therapies. Such advantages may be increased efficacy,

Convenient dosing, or fewer side effects. Having a well understood target or homologue

to it, and inhibitors or agonists for comparison helps in the validation process. Many

Current drugs have similar targets and some targets are indicated for multiple diseases.



Initially, alternate indications make clinical trials more complicated, and federal approval

harder.

Target Discovery and Prioritization

Biochemical Means

Many therapeutic targets are actually found indirectly, by using anecdotal

knowledge from previous pharmacological studies. For example, in the multigenic

disorder obesity, many of the early drugs used to control obesity were already on market

as approved CNS drugs[11]. Prior to 1995 pharmaceutical R&D companies developed

drugs for targets of which 70% had a similar class of drug already on the market[12, 13].

There are many ways to discover the initial set of genes and proteins that are involved in

a disease state. Some of the most general approaches are based on differential display

observations. That is, the observation of a difference between two separate mRNA or

protein expression profiles may indicate molecules that cause the phenotype difference

between the two environments producing the expression profiles. Expression of mRNA

can be observed with electrophoresis techniques and more recently with higher

throughput silicon chip expression systems. Expression of proteins can also be measured

with 1D or 2D electrophoresis and protein-chips are becoming available. Another

approach to finding the initial set of phenotype-associated molecules is genetic linkage

evaluation, which identifies genetic markers or single nucleotide polymorphisms (SNPs)

that are statistically linked to a diseased population. Once such markers are found, the

Specific gene is identified by positional cloning; genes overlapping the marker are

Sequenced and checked for improved linkage. After doing so, one has a rough idea of



which genes are involved in the phenotype. Knock-out or knock-in experiments can be

undertaken and if the phenotype is a unigenic disorder, then one has the target. Since

most disorders a multigenic in nature, selecting targets for pharmaceutical intervention is

complicated.

A single protein may interact with many other molecules: proteins, DNA, RNA,

small molecules. In order to fully appreciate the complexity of a multigenic disorder or,

on a smaller scale, a signaling pathway, the system’s molecular interactions must be

mapped. Once mapped, a system's various routes of interaction can be analyzed for

critical sites of vulnerability, which may suggest a strategy for a new pharmaceutical

intervention. Later in this chapter I present several approaches to search networks for

targets. First, I discuss some old and new techniques for discovering/mapping

biomolecular interactions.

Table 2-1. Methods for mapping biomolecular interaction*.
DNA RNA Protein

DNA Southern Blot Northern Blot Complex Trap
Expression- Complex Trap Footprinting
Correlation? Footprinting Gel Shift

Gel Shift

RNA Northern Blot Complex Trap
Y2H2 Gel Shift

Protein Y2H
Immuno Trap
Western Blot

*This list is not a comprehensive experimental list and it should be noted that data
mining techniques are also used to extrapolate relations between molecules from
database text{14, 15].



Expression Correlation: Statistical correlation between the expression of genes by

transcription implies a undefined functional relationship between them■ 16]. Time-lagged

correlations of expression time series data can imply the causal nature of relationship■ 17].

Footprinting: A strand of DNA that is believed to have a region to which another

molecule binds is enzymatically digested. The products are analyzed electrophoretically.

The molecule of interest is allowed to bind to the DNA prior to digestion. Differences in

the electrophoretic pattern indicate the location of the binding site; the binding molecule

protects the oligo from digestion within its footprint[18].

Gel Shift: The electrophoretic mobility of an oligonucleotide changes when it changes

conformation or is bound to another molecule. This mobility change is indicated by a

shift in the normal distance traveled within the gel.

[Southern, Northern, Western]-Blot: Several target molecules are run on a gel, after

which a probe molecule is washed over the gel. Targets can be DNA, RNA, or protein.

For convenience the molecules are transferred to a sheet of nitrocellulose prior to

probing. Unbound probes are washed away and the bound probes are located by radio or

photo labels. For example, a Western blot experiment is done to detect specific proteins.

First proteins are separated by polyacrylamide-gel electrophoresis, then transferred to a

sheet of nitrocellulose and incubated with an antibody designed to bind a specific protein.

Unbound antibodies are removed, and any bound antibodies are detected by coupled

fluorescent dye. Probes can alternatively be labeled with a radioactive isotope or

detectable enzyme.

\mmuno Trap: There are many ways of using antibodies in assays for molecular

interaction. For example, an antibody, linked to a surface and also bound to molecule B,

10



has a solution of molecules washed over it. Any molecules in the solution that can bind

to B are pulled out of solution, or if B is an enzyme, a detectable reaction occurs

(ELISAI19]).

Y2H: Yeast-2-Hybridization indicates protein-protein interactions by transcriptional

rescue. A transcription activation factor is divided into its two main domains, a DNA

binding domain and a transcription activation domain. To see if proteins A and B bind

together, A is fused to the DNA-binding domain and B is fused to the activation domain.

If A and B do not bind there is no transcription of the marker gene■ 20).

Complex Trap: The complex between two or more molecules is trapped by the addition

of formaldehyde. Antibodies for a trapped protein are used to isolate it and anything

bound to it. A similar technique ChIP coupled with DNA microarrays has been proposed

for genome-wide detection of transcription factors(21].

The methods just described allow initial delineation of the complicated molecular

interactions involved in a disease system. Once the network of interactions is discovered,

the network can be analyzed for regions susceptible to attack. These critical regions may

explain aberrant phenotypes and/or suggest intervention points for future therapeutic

development.

Computational Means

Qualitative Approaches

Genetic Network Inference
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High-throughput DNA expression array data has been used to unravel functional

relationships between genes. Though they imply little about actual molecular

mechanisms, they may reveal genes critical for a biological process. Several

researchers have developed Bayesian networks to describe the causal

relationships behind gene expression, which is key for genetic manipulation[16,

22]. The Bayes networks do not contain cycles as a result of their definition, but

the description of biological cycles and feedback pathways is essential for

description or modeling of oscillation and metabolic control. A reformulation of

the Bayes network is the Dynamic Bayes Network[23]. This models feedback,

but without directed edges, and requires a lot of data to construct. In a different

approach called Correlation Metric Construction, Arkin et. al. use time-lagged

correlation of metabolite concentration time series to uncover the underlying

metabolic pathway[17]. The pathways discovered do contain cycles unlike

Bayesian methods, but this method may not scale well to systems with many

metabolite concentrations to measure. Even with the scaling issue it is a good

alternative to isolating and measuring detailed kinetics for large systems.

D’haeseleer gives a good review of genetic network inference methods including

Boolean network representations[24].

PetriNets

A simulation alternative to systems of differential equations, SANs, Stochastic

Activity Networks, or Petri Nets have recently been employed in data mining

efforts as a platform for functional predictions and interpretation of genomic

expression data. Since Petri Nets have been in use for quite a while in
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engineering endeavors, they have a mature suite of software for their management

and construction. Küffner et. al. have used Petri Nets to enumerate all valid

metabolic pathways and they suggest comparisons between cell types, disease

states, and whole organisms in a technique called DMD or Differential Metabolic

Display[25]. After compiling the metabolic pathway information from several

public databases, they reveal 500K paths of length less than 9 that accomplish the

conversion of glucose to pyruvate. The Petri Net representation of a system's

pathways can be used to identify gaps in pathways, interpret expression data, and

predict protein function. Once a system is represented by a PetriNet simulations

can be run to model the effects of changes to the system. Liebman and Mounts

performed a sensitivity analysis of the blood coagulation system and recreated

hemophilic states[26].

Scale-Free Networks

A network’s pattern of connections is very important for larger-scale effects

such as resistance to attack or random error and communication delay. Most

theoretical study of network properties assumes the probability of a connection

between two nodes follows a gaussian distribution. In reality, many networks

have a degree distribution that follows a power law, where degree is a count of a

node's immediate neighbors. This topological scaling property is common to

many metabolic networks, like organisms in the WIT database, and non

biological networks like the Internet[27]. These scale-free networks have only a

few highly connected nodes, and any 2 nodes can be connected by a short path,

regardless of the network’s size. The scale-free nature makes networks robust to
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random errors such as genetic errors, but they have decreased attack survivability,

which is good for drug design[1]. In Barbasi's study, network attack was the

informed deletion of nodes with many links to the rest of the network, but it is

unclear whether ranking therapeutic targets by nodal degree is an effective screen

for targets in a large and possibly incomplete network.

Modular Organization in Biology

The various biological control mechanisms that ensure signal fidelity,

homeostasis and signal amplification likely take on a modular system of

organization. A module in biology is a set of molecules that interact together to

perform a specific function[28, 29]. The transition from input to output only

depends on the molecules within the module. This isolation stems from chemical

specificity and physical sequestering, as within organelles. A module’s function

is to reliably perform a biological task and evolutionary pressures have certainly

optimized this. Higher-level functions can be built by incorporating and

connecting modules together. Phenotypes may change by altering interaction

between individual modules, while keeping a module’s core function robust. The

limited connectivity between modules, avoids widespread effects to evolutionary

changes. In other words, it’s easier to reconnect modules than high connectivity

proteins like histones, which do not change very often.

Fidelity and redundancy in all biological processes is required for an organism to

maintain successful reproduction and robustness to environmental changes. Drug

design based on targets within modules are frequently frustrated by the system’s

redundancy[29]. Restricting the target pool to links between modules would
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reduce the target validation space and focus on those elements that, by definition,

enable complicated phenotypes. To date there are no techniques aimed at finding

this sort of modular design in biological systems, but with the strong efforts in

functional proteomics|30, 31] and recasting and analysis of biological information

as networks[32], someone is bound to take up the task of module discovery and

exploitation.

Quantitative Approaches

Saturable kinetics is at the core of much pharmacokinetic and pharmacodynamic

modeling. Michaelis-Menten kinetics was developed to understand reaction rate changes

due to changes in substrate concentration, prior to substrate depletion and product

accumulation. Another inherent assumption is that the turnover rates are much smaller

than the enzyme-substrate dissociation rates. In cases where this last assumption does not

hold, Briggs-Haldane kinetics is used. Here the steady state assumption—that the

intermediate concentrations do not change much relative to the enzyme, substrate, and

product concentrations—is used to derive the rate/substrate relationship. The steady-state

assumptions that make these systems of equations easier to solve have also been part of

the reasoning about what makes a good target. A good therapeutic target might be a

molecule that has the most influence on the rate of a pathway. At steady state the overall

rate of a pathway is assumed to be no faster than the slowest step in the pathway[33].

This assumption led many in a search for the ‘rate-limiting-step’ as a possible therapeutic

target or in chemical manufacturing, a way to increase production. Unfortunately, after

much work in finding possible rate-limiting steps, improvement of the rate here did little

to improve the pathway's overall flux[34]. In pathways of unsaturated enzymes, flux
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depends nonlinearly on all kinetic parameters[35]. Also, at steady state, all reactions are

assumed to be at the same rate, so there is no slowest rate[33]. In order to better

understand and ultimately make predictions about system behavior, additional

complicated phenomena should be considered in modeling: multiple enzymes and

substrates, molecular trafficking and signaling, enzyme internalization and presentation,

adaptation, sorting and degradation. Many accurate models have been developed to

describe the complicated behavior of biological systems, such as transcription and

substrate cycling[36, 37]. It should be noted that an infinite number of accurate models

can be developed to describe the same system's behavior, but there is no guarantee that

accurate predictions can be made about real world changes to the system. The system’s

topology is sometimes much more important than the kinetic parameters in understanding

complicated phenomena(38].

There are various methods in developing mathematical models, but basically one

lists the system interactions and transfer-processes, obtain parameters for systems of

usually differential equations, iteratively solve the system and refine parameters.

Manually obtaining solutions is usually desired, but for slight increases in parameters of

complexity, only numerical solutions are possible. In linear systems where the function

to be integrated is a sum of constant coefficient linear equations, the solution is sum of

Solutions for the homogenous and particular equations. The homogeneous solution is

typically solved by the separation of variables technique or Eigen methods. The

Particular solution is solved by substitution. In nonlinear systems, where the integrating

function is a sum of nonlinear functions, Superposition of solutions does not apply and

solutions are obtained by substitution. As opposed to manual methods, numerical
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integration is most often done for complicated systems. A common iterative method is

Runge-Cutta, where each new value of the integrated function is a function of the current

value and a several slopes of the function within a specified step-size. For systems of

partial differential equations, the manual methods of solution involve the assumption the

function that partial derivative are being taken from is a product of several new

functions—one for each partial derivative. The transformed equation can now be solved

by separation of variables and independent solutions for each new function. Numerical

methods usually involve mesh representation of the function space and mesh

interpolation with boundary conditions. Each cell in the mesh is iteratively updated with

a new value of the function. A cell's new value is roughly the average of its neighbors’

current values plus a cell-specific function.

Metabolic Control Theory, MCT

The idea of “a single rate-limiting step that controls a pathway’ needed some

‘modification.” Instead of a rate-limiting step, in MCT, all molecules in the system

control pathway flux. The flux control coefficient, Eq 2-1, is defined as the

sensitivity of the pathway flux, J, to the rate of the reaction catalyzed by an enzyme,

E. It is therefore not an enzyme property, but depends on the metabolic state.

Changes to the system cause a redistribution of flux control. Elasticity, Eq 2-2, is

defined as the sensitivity of the rate of a reaction catalyzed by an enzyme to changes

Jydh - 6 ln Jºn 2: 6/4, ôE.g., (2- 1 )
xase 6 ln E.xase Jul. E.xase

xase Oln | °rase |
S ôln S (2-2)

17



** = ôln Jai
-

C'." .xase

P oln P rascºp (2-3)

Xc = (2-4)

in substrate concemain. The response coefficient is a generalized sensitivity

function, Eq 2–3. There are two main theorems in MCT, the summation and

connectivity theorem. Since all enzymes, i, share flux control, the sum of flux control

coefficients is unity, Eq 2-4. Due to the net balance of a metabolites control, the sum

of flux control coefficients for enzymes affected by the metabolite, S, and the

appropriate elasticity terms equal zero, Eq 2-5. The multi-site response of any

parameter, P, can be formulated in the same fashion, Eq 2–6, but the sum is not

constrained to zero.

n

XC'e' - 0 (2-5)
i-l

R} =XXC'e■ , (2-6)
i-l

To use MCT to describe control of a pathway, elasticity terms can be measured or

derived from rate equations. Flux-control coefficients are either measured or

algebraically solved for. When working with large systems it is useful to note that the

summation and connectivity theorems form a solvable system of equations, but the

measurement of a large amount of elasticities can be daunting. In general MCT is a

good basis for analyzing metabolic systems. Acerenza showed that large changes in

flux can be designed not by selecting the single enzyme with largest flux-control, but

a group of enzymes that share most of the flux-control and increasing their individual

fluxes together[39].
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Electrical Circuit Analogues

As parameter measurement is inhibitory for large and complicated systems, Sen

described an electrical analogue for MCT problems(40]. The main use of this

alternate representation is in determining the relative importance of enzymes and

simplification of pathway structure, which eases the burden of later parameter

measurement. In the electrical circuit analogue, current resistances are connected in

series or parallel with a voltage or current source. Enzymes are associated with

resistances, R - e, and flux-control coefficients are associated with currents,

determined by Ohm's Law (V=I*R). The current-analogue circuit is setup with all

resistances in parallel to a voltage source of unity. The alternate voltage-analogue

circuit is setup with conductances in series, and the relative flux control is equivalent

to a specific resistor’s voltage fraction/drop. These circuits provide a visual

framework for studying the regulatory behavior of metabolic pathways. Sen notes

that more than one current-analogue or voltage-analogue circuit can represent the

control structure of a given pathway.

Graph Theoretical Approach

Sen has also investigated the regulatory properties of metabolic pathways by using a

graph-theoretical approach[41]. Like the electric circuit analogues, this graph

theoretic method is used to study the relative importance of enzymes that control a

pathway's flux, and studying the cause and effect relationships among them. The

control structure of the pathway is represented by a weighted directed graph,

constructed without writing summation and connectivity theorems explicitly[42].

Elasticities are edge weights and control coefficients are formed as tree products—
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also called ‘path gains’. Control coefficients can be calculated symbolically or

numerically from the elasticities. The flux control coefficient for any enzyme is N/D.

D = Sum of the loop gain products for each 1-connection. A 1-connection is a sub

graph that includes all nodes plus edges that form a cycle involving any node. N =

Sum of path gains to a specific enzyme’s node. The gain of a path is the product of

edge weights along the path.

King & Altman Method

Circa 1956, King and Altman popularized another graph theoretical method that

used a directed graph for the analysis of steady-state enzyme kinetics[43]. A node

represents each enzyme state and the transition rate between each state becomes the

weight for a directed edge between their nodes. The fractional concentration of each

state is defined as the sum of all spanning tree's (a subgraph that touches all nodes

and without cycles) tree products that contain a particular enzyme state, all divided by

a denominator—which is the sum of numerators for each enzyme state. The

fractional concentrations can be inserted into any rate equations, providing an

alternative to direct solution of the rate equation.

Mason Graphs

Mason graphs are a special kind of signal flow graph. Signal flow graphs can be

used to graphically represent any system of equations and subsequently study

sensitivities or solve optimization problems. A Mason graph is a directed graph

where the nodes are system's variables, and the edges are weighted by the partial

derivative of the target with respect to the source node. Paths through the graph are

used to calculate transmittances, T, or transfer functions between distant nodes. Once
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a transfer function (or transmittance) is determined, its derivative can be taken with

respect to any system parameter. This is defined as the sensitivity, S, of the output to

that parameter. I have not been able to find any direct applications of this theory to

metabolic control or pathway analysis, but the graph methods defined by AK. Sen are

the closest match. Even so, there are many papers on Mason theory for engineering

optimization problems and several software packages to handle the graph

manipulations[44]. The significant difference in engineering systems and biological

ones is that an engineering system is usually planned and all parameters are known to

a high degree, parameters for biological systems are unknown—it’s the researcher’s

task to discover them. Biological parameters are not always known and the amount

of parameter measurement required for large systems makes the direct application of

engineering control methods difficult.

Stoichiometric Network Analysis

The steady-state internal metabolite stoichiometry matrix has been used in many

ways to analyze the pathway structure of metabolic networks. Simpson et al. describe

why enumeration of all independent pathways is important to the study of bioreaction

networks[38]. Firstly, it identifies the degrees of freedom in a network that uniquely

determine all pathway fluxes. Secondly, each reaction carries the flux corresponding

to one or more of the independent pathways. The relative importance of each

individual reaction can be assessed. Thirdly, if fluxes of reactions in a independent

pathway leading to a desired product are known, it is possible to devise a strategy to

amplify the flux to an arbitrary level. This point is based on work by Acerenza; see

[39]. Lastly, the independent pathways can be used to identify critical branch points
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where metabolic pathways converge or diverge. An independent pathway is defined

by Simpson as the smallest set of reactions connecting a single network output with

the necessary network inputs in a way that permits the levels of internal species to

reach a steady state■ 45]. The stoichiometric matrix is n x m where n is the number of

explicit steady state metabolites and m is the number of explicit reactions. Each

element of this matrix is the stoichiometric coefficient of metabolite n in reaction m.

Simpson describes the independent pathways as the Eigen vectors of the

stoichiometric matrix. Contemporary work done by Palsson uses the basis vectors of

the stoichiometric matrix to define “extreme pathways’ which are similar to

Simpson’s “independent pathways’ except they are linearly independent[46]. The set

of pathways are not linearly independent if the size of this set is greater than the

dimension of the null space. Therefore, Palsson subjectively chooses a subset to

arrive at the “extreme pathways'. Another technique to identify characteristic

pathways structure was developed by Schuster et al. and goes by the name

‘elementary flux modes.”[47] They are rationalized as the minimal set of enzymes for

the system that operates at steady state. As opposed to “extreme pathways'—a basis

for the flux space—they always form an objective and unique path set. They can be

used to define any flux, compare similar systems, and find non-redundant pathways.

Convex analysis is used to calculate these pathways, by restricting the flux vectors to

be positive in orientation and finding the vector that span this convex null space. In

general all the previously mentioned techniques can be used in a similar manner, but

‘elementary flux modes' best lends itself to automation and scaling to larger systems.

As for finding drug targets, Schuster et al. suggest that given a well-annotated
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genome, like M. tuberculosis, the metabolic routes remaining after a knockout can be

calculated and in this manner find vulnerable sites in the network. The techniques for

these and other pathway calculation are contained in a software package called

METATOOL[48].

Sensitivity Analysis

This is general concept that is used to determine model quality, accuracy, influential

factors, and study factor interaction. Sensitivity analysis is generally done for each

output variable. The model is executed for combinations of values sampled from an

input variable distribution. The number of calculations involved can be quite large,

so qualitative screening is done to reduce the number of test inputs prior to the actual

quantitative sensitivity analysis. If the model is small enough—this depends on your

computational apparatus and personal ability—the sensitivity to all parameters can be

checked. The synergistic effects of multiple parameter variation should also be

evaluated, but adds exponentially more calculations.

Sensitivity analysis can be used to gain insight into the operation of many systems

or, on a more basic level, study the effects of uncertainty in the variables of a closed

mathematical function. One of the more unique applications is in the construction of

a Bayesian belief network[49]. Instead of directly constructing large belief networks,

smaller ones can be constructed and improved. They are improved by finding critical

locations in the network and creating a new network by replacing it with additional

highly informed elements (additional elements that would be in a much larger

network). Sampei et al. at Chiba University in Japan developed a fully qualitative

method for sensitivity analysis|30]. Their method can be used on systems modeled in
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the rule based causal format. It is also used for performance evaluation of discrete

event dynamic systems.

The need for a quick, objective heuristic for finding therapeutic targets

As I pass the genomic era, during which whole genomes have been completely

sequenced, data mining is being used to postulate complicated interactions between genes

and proteins. The relational models that develop are expected to be quantitatively

fleshed-out and used to accurately predict or reproduce biological phenomena.

Biological and pharmacological system models are not new, but as a consequence of high

throughput, robotic data generation technologies, they are rapidly expanding in size and

complexity. A single researcher can no longer conceptualize even a fraction of the

dynamic interactions within such models, much less judge the full effect each element

may have on the system. Short of a tedious full-scale sensitivity analyses, guesses about

which element or set of elements is likely to have a desired, widespread effect will be

based on trial-and-error, and thus biased. Currently there are no “standard' methods for

reasoning about the characteristics of complicated networks in biology. The separate

methods of Schuster, Stephanopoulis, and Palsson are recent attempts to formalize the

representation of biological networks from a pathway-based perspective, but they do not

directly attempt to predict possible therapeutic targets. There are a few indications of

how to find possible therapeutic targets and they mostly involve the network topology.

Here are four examples.

After studying the blood coagulation pathway with Petri-Net models, Mounts and

Liebman (1997) suggest that, “critical-path and bottleneck analysis will allow predictions

of therapeutic intervention positions by focusing on the structure and connectivity of the
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pathway.” In the study of characteristic pathways in ATP metabolism, Stephanopoulis

(1999) concludes that, “When considering large sets of reactions, however, it becomes

nearly impossible to reach salient conclusions based upon kinetics and feedback, without

first considering the intrinsic structure of the reaction network.” In one of the initial

papers detailing the use of Correlation Metric Construction, for the reengineering of

metabolic networks, Arkin (1997) states that, “The correlation matrix also gives a rough

idea of how ‘central’ each species is to the dynamics of the network.” He goes on to say

that, “[This provides a way to] predict likely points of control.” These three researchers,

studying metabolic control, all reach the general conclusion that the potential for control

in a pathway is heavily influenced by the topology of the network as a whole. In a

different area of study, Bayesian network models of genetic influence, Friedman (2000)

relates the network topology to macro-scale phenotype with the observation that, “The

most striking feature of the high confidence order relations, is the existence of dominant

[or high degree] genes. ... these genes are potential causal sources of the cell cycle

process.” All of these observations are just that, observations. A strategy that both

evaluates large and highly connected biological networks and returns candidate critical

system elements is expected to be valued for many reasons: it should shed light of the

inherent biological organization in complicated metabolic networks or protein interaction

networks; a topological strategy computationally cheap enough to allow for objective

predictions of drug targets could serve as a hypothesis generation engine able to work in

tandem with an in silico or in vitro validation engine. Optimizing therapeutic target

selection and validation in this manner would eventually increase the quality of disease

intervention and, with the ability to consider the entire network topology, facilitate
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prediction of multi-drug therapies. Such a method could initially be general in nature and

applicable to the multitude of qualitative networks plus the small but growing number of

large and complicated quantitative simulation networks. The actual methodology should

be well informed by work in non-biological sciences such as computer science and

possibly social Science. In many areas of study graph partitioning and data clustering is a

recurring task and computational scientists have developed a multitude of tools to do

such work. A quantitative method used many times in social science research is Social

Network Analysis. This is the study of a social network from a topologically based

perspective with the aim of: shedding light on social network organization, and

developing methods to measure an actor's influence over others or prestige in the group.

These, and possibly other areas of study outside molecular biology, are expected to

provide clues in developing a method to predict therapeutic targets based on network

topology.

26



Chopter 3: Network-Based Applications & Andlyses which may

Provide Clues to Finding Potential Therapeutic targets

Sources of Relational Biological Data

Currently, the main use for online biological databases is as a primary data

retrieval tool, functioning much like a dictionary. However, a number of online databases

and their private sector counterparts[51-54) that store relational biological information

have been used for more complicated data mining efforts. For example, a systematic

statistical approach, based on structural and sequential databases, has been used to

accelerate the pace of discovering new protein folds(55]. Another example is the use of

archived scientific literature to extract intergenic relationships to aid gene expression

analysis|14). Yet, there remain large databases of relational biological data, like protein

protein or more general interactions (or reactions) between molecules, which have not

been used at a level beyond simple data retrieval. These databases could additionally be

used for predicting molecules with potential for significant system-wide metabolic

control. Specifically, databases like the PathCalling Yeast Interaction Database contain

significant relational data that represents an almost complete biological interaction

network[56, 57]. This protein interaction network's topology could be used far beyond its

current primary focus on single entity and local interaction queries if the database usage

were extended to analyze organizational structure and identify features that indicate the

system's control mechanisms. The data sources certainly exist and a broader use for them

merits consideration.
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Visualization, Analysis, Modeling

Some groups maintaining relational biological databases have realized the

inadequacies of standard data visualization methods, and they have also recognized the

benefits of network visualizations. The EcoCyc database developers, for example, have

created an appealing representation of molecular reaction pathways and integrated access

to the underlying relational data[58]. Visually ‘appealing’ presentations of data allow

viewers to absorb the information more efficiently and intuit higher-level relationships

implied by the data because the predominant way people interpret their environment

takes place by sight. By contrast, sound, touch, smell, and taste present more difficult

data mappings. Thus, the representation of biological information is increasingly being

done via network visualizations such as with protein interaction maps for the yeast and H.

pylori databases[59]. A few other groups are also developing automatic network layout

algorithms that intended to optimally convey a network’s topological structure in a

familiar biological or chemical visual syntax(60]. On a macro level, these representations

often provide enlightenment about the system's overall organization, but there is still

confusion when discerning micro level features. Given a network of molecular

interactions, one is still at a loss to select a single molecule (or group of molecules) as

key to the selection of therapeutic targets or to understand the system’s control structure.

Analyses of large biological networks are occasionally present in the scientific

literature. Barabasi et al., for example, analyze the vulnerability of biological networks

with certain unique degree distributions[1]. In a later article, they describe correlations

between known lethal yeast gene deletions and a gene’s degree[61]. While their work

' Degree is the count of a node's neighbors in a network.
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focuses on a single molecule, others are working to gain a clearer understanding through

pathway perspectives. Differential Metabolic Display (DMD) has been developed to take

advantage of the network management, layout, analysis, and simulation tools currently

used in stochastic modeling, specifically of Petri Nets[25]. DMD begins by storing

enzyme reaction information in a PetriNet format and uses custom algorithms to extract

all paths through the network between two metabolites. These paths can be compared

with gene expression data to assess if they exist at all or whether an organism is using

them. Additionally, it is possible to compare and contrast paths active in two different

organisms. Though this differential metabolic display can assess a differentially active

pathway or set of enzymes, it does not prioritize the results. And the results can be quite

11u111CTOUIS. Yet another pathway-based perspective is being worked on

contemporaneously by different groups[45-47]. The stoichiometric matrix of a reaction

network is used to specify a unique set of pathways that can be combined additively to

represent any metabolic state of the network. The results, however, require additional

experiments or simulations to discern therapeutic targets with significant metabolic

control. Again, as with DMD, a large network of relations is processed and a group of

pathways are presented, but there is no accompanying prioritization theory or guide to

Selecting a therapeutic target.

Benefiting from a Topological Perspective

Visualization and a Venue for Thought Experiments

Understanding large amounts of relational data is greatly enhanced by network

representations and visualizations. Currently, productive use of network-based interfaces

to data are seen in the KEGG|62] enzyme reaction database, the GeneNet■ 63] database,
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and the ProNet[51] protein interaction databases. Presenting relational data in a visual

manner is quite useful, but when coupled with a theory for discerning the important

characteristics of a system and an accompanying graphical analysis methodology, data

visualizations enables new understanding of a system.

The right data representation can facilitate useful thought experiments, which

allow one to infer a system’s responses to proposed interventions. After developing a

graph theoretical approach for Metabolic Control Analysis, Sen demonstrated a method

for conducting thought experiments using his network representations[42]. The

metabolic system was first represented as a graph (Figure 3-2), where nodes represented

enzymes and arcs linking nodes represented elasticity coefficients. One example of a

thought experiment followed this basic pattern: represent the lack of product inhibition by

nullifying an elasticity coefficient; graphically recalculate the flux control coefficients of

the system’s enzymes; finally, ascertain the significance of the shift in flux control. This

type of thought experimentation would be useful in working with large disease system

models where simulation time is prohibitive for flexible analysis. Some things are

required before using this kind of thought experimentation on large models of disease: an

appropriate network representation, and a metric for describing a molecule's potential for

system wide influence.

Quick Analysis Method for Quantitative Models

Currently, quantitative system models are used to provide information to assist in

the validation of a given drug target and drug mechanism. Pairing this strong validative

capability with an automated target prediction engine would allow for computer guided

target discovery. Definitely faster than human-guided target discovery, it comes with a
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few caveats. When a researcher goes through the process of computational target

validation, s/he discerns whether the model is properly representing reality and most

times the model is updated as a result. A fully automated hypothesis generation and

validation engine would not have the benefit of model updates during the target discovery

process, but should provide objectively selected drug targets in a shorter amount of time,

at a lower cost.

Most quantitative biological system models are nonlinear systems of differential

equations like Physiolab'■ " from Entelos(RM9] or stochastic systems like SANs or Petri

Nets(64]. When the system is based on continuously differentiable equations, sensitivity

analysis (SA) is normally used to find maximally influential parameters and improve a

model’s quality, and accuracy. SA is more often used when the system is small or

computation time is unlimited, as the model executed for combinations of values sampled

from an input distribution.

Decreasing the model’s simulation time would make SA an available option for

larger systems. If fast, qualitative SA (QSA) methods were developed concurrently, SA

would be an analysis option for many more quantitative and qualitative models of

molecular interaction. Far, Nakamichi, and Sampei presented QSA methods for

application to systems modeled in rule based causal format(50]. Their QSA method

involved following the propagation of a truth assignment through the discrete event

dynamic system. Each logical variable was perturbed either singly or as sets and having

two concurrent contradicting logical states identified other variables as sensitive to the

perturbed set. The technique was completely based upon a directed graph and graph

traversal heuristics.
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Topological Elements & System-Wide Influences

Given the potential benefits of using the as yet untapped topological information

in biological networks and system models to indicate potential therapeutic targets and the

desire to expand the use of SA to large quantitative models and qualitative models in

general, I will show that network topology can directly be used to highlight critical

system parameters. Network analysis techniques from engineering disciplines and social

network analysis can be used to highlight tight subsystems of molecular organization.

The molecules that link these subsystems together are expected to serve as prime

candidates for therapeutic target validation leading to later drug design. What follows are

five indications that the processes that link metabolic subsystems are critical to the

phenotype of their macrosystem. In technical terms, a network can be separated into

subsystems with a minimal number of links between them. When found by network

partitioning or network flow analysis, these links are called a ‘cut-set.” The mathematical

sensitivity for a specific disease indicator to network parameters is most likely maximal

for those parameters in the cut set.

Modularity

The various biological control mechanisms that ensure signal fidelity,

homeostasis and signal amplification likely have evolved to have a modular system of

organization. A module in biology is a set of molecules that interact together to perform

a specific function[28, 29]. The transition from input to output only depends on the

molecules within the module. This isolation stems from chemical specificity and

physical sequestering, as within organelles. A module’s function is to reliably perform a

unique biological task and evolutionary pressures have certainly optimized this.
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Incorporating and connecting modules can build higher-level functions. Phenotypes may

change by altering the connections between individual modules, while keeping a

module’s core function robust. The limited connectivity between modules, avoids

widespread effects to evolutionary changes. In other words, it’s easier to evolutionarily

reconnect modules than high connectivity proteins like histones, which do not change

very often. Fidelity and redundancy in all biological processes is required for an organism

to maintain successful reproduction and robustness to environmental changes. Drug

design based on targets within modules are frequently frustrated by the system’s

redundancy[28]. Restricting the target pool to links between modules would reduce the

target validation space and focus on those elements that, by definition, enable

complicated phenotypes.

Metabolic Control Theory

Analysis of metabolic control starts by defining sensitivities of a metabolic flux to

the concentration of different enzymes (control coefficient) and the sensitivity of

enzymes' catalytic rates to concentrations of metabolites (elasticity)[33]. Identifying

enzymes with large flux control coefficients has been very powerful in the design of large

metabolic responses with multi-site modulation[39]. The analysis of large systems with

feedback is harder due to difficulties in experimental measurement of the control

coefficients and elasticities. A. K. Sen presented a topological technique for metabolic

control analysis that evaluates all coefficients symbolically[41]. The technique allows

one to compare control coefficients for different enzymes. Effects of enzyme inhibition

and saturation can be evaluated by modifying the network of interactions. If the output of

a system is most sensitive to reactions that link different subsystems, then control
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Figure 3-2 Directed control graph. Numbered nodes are enzymes.

coefficient(s) for the enzyme(s) participating in these linking reactions should be greater

than for other enzymes in the system.

Sen’s topological approach can be used to show that this is the case for a simple system

where a module is characterized by a feedback loop and the reactions leading to the

production of the feedback metabolite, and two such modules are linked by having a

common metabolite. Under these circumstances the enzyme producing the common

metabolite has the highest flux control coefficient, and would be considered in a set of

potential drug targets for said system.

Figure 3-1 depicts a system with two separated control structures, a feedback

reaction and a feed-forward reaction. The circles are enzymes and the boxes are

metabolites. This system is first converted to a graph with edges weighted by elasticities,
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and a node for each enzyme plus a source node adjacent to enzyme 1. The e's on each

edge, in figure 3-2, represent the elasticity of the target node on the source node. The

flux control coefficient for any enzyme is N/D. D = Sum of the loop gain products for

each 1-connection. A 1-connection is a sub-graph that includes all nodes plus edges that

form a cycle involving any node—there are many 1-connections for this graph, one

example is a graph with all nodes and all self loops (an edge leaving and returning to the

same node). N = Sum of path gains to a specific enzyme’s node. The gain of a path is

the product of edge weights along the path. The flux control coefficient for enzyme 1 is

ležešeže: c’ – le■■ e■■ ee; eº
- - - - - - - -shown here: C = ********** “%. If there is no product inhibition for

enzymel at the beginning of the feedback loop, then c = 0 and there is no path to

enzyme 2 in the graph, therefore, enzyme 2's flux control is 0. In general, when there is

no product inhibition of the enzyme leading into a feedback loop, the flux control is only

shared by enzymes at the beginning and end of the loop|33]. A feedback system can be

considered as a separable subsystem in a metabolic network, and I have just seen that it is

likely that enzymes that link these subgroups share most of the metabolic flux control.

Given the definition of N, it is proportional to the number of paths from the

source node to an enzyme. An enzyme’s N and also C, the flux control coefficient, will

be higher if the enzyme lies on many paths from the source node. In social network

analysis, betweenness centrality is a direct measure of this property[65]. So partitioning

and betweenness scores can be used to find enzymes with the majority of flux control.

And these enzymes with high flux control have been shown to be ideal drug targets[66].
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Sensitivity Analysis with Signal Flow Graphs

A signal flow graph (SFG), or Mason graph is a graph that represents any system

of equations[44]. The nodes are system’s variables, and the edges are weighted by the

partial derivative of the target with respect to the source node. Paths through the graph

are used to calculate transmittances, T, or transfer functions between distant nodes. Once

a transfer function is determined, its derivative can be taken with respect to any system

parameter. This is defined as the sensitivity, S, of the output to that parameter. I

hypothesized that a biological system’s phenotype or output would be most sensitive to

parameters involved in spanning separable subsystems. By Mason's Rule, Tj,i =

{Contribution of input j to output i) / input i = Sum of [Pk*Dk/D] for all paths k from j

to i:; D = determinant of the system = 1 - Sum of cycle gains + Sum of [Sum of [(-

1)^k"Product of disjoint cycle gains taken k at a time]]; Pk = gain of kth direct path from

input to output; Dk = D – gains of cycles that touch Pk. For example, if we have a SFG

with three cycles: L1, L2, L3; and one path, P, from jto i, that touches L1; Tji= P(1-L2

L3+L2,L3)/(1-L1-L2-L3+L1L2+L1L3+L2L3-L1 L2L3). If our network has one input

and one output, then it is reasonable to say that parameters associated with many direct

paths would yield greater S than those on fewer direct paths. This is measured by

betweenness centrality. Also, parameters associated with cycles, but not the direct path,

would appear in D many times and S = [DN’-ND’]/ D^2, this would be smaller than

N'/D, the S for parameters only in direct paths. n’/D >'? [DN’-ND’]/D^2; {n’ =

dN/dp.on.cirect.path, N' = dN/dp.in.cycle} -> if, N'-31 & N’,D',N,D > 0 then, n°/N > -

D’■■ ); or, the output is more sensitive to parameters that occur in direct paths from input,

when compared to parameters in cycles and off the direct path.
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Scale-Free Networks

The distribution of node degree, (the number of neighbors), has a significant

effect on a network’s susceptibility to random and informed attack. To illustrate one can

compare biological and Internet networks. The latter have a power-law distribution, with

Exponential network: CO

Random or smart attack——- O C.O OO o

Scale-free network *—
cale-free network: O

Smart attack X^ O
Random attack O

Figure 3-3 Disintegration modes due to attack. Figure redrawn from Albert etal. [1]

random networks of exponential or gaussian distributions. If a network’s diameter,

(average length of a network’s shortest paths), and largest cluster size, (number of

connected nodes), are tracked while nodes are removed from the network randomly, it

has been shown that scale-free networks’ diameter remains very low, while exponential

networks exhibit a steady increase in diameter[1, 27]. The largest cluster size changes

very little for scale-free networks under random attack, but clusters rapidly fragment for

exponential networks. This all changes for informed attack, where nodes are removed in

order of descending degree. Scale-free networks have very low survivability to this kind

of attack, which is a good thing for drug design. Since important nodes in this study are

defined as those with high degree, then I can extend the concept of importance with

social network analysis measures of centrality. Degree is a measure of network centrality

and so is betweenness, the number of shortest paths across a network that a node lies on.

Betweenness is also an indicator of a net’s articulation points[65], which if removed, cut

a network into separate components.

37



Phenotype Phase Plane Analysis or Network Flow

The analytical method called Phenotype Phase Plane Analysis has been used to

show that yeast maximizes its growth rate via optimizing its metabolism[67]. It was done

by predicting growth rate due to substrate uptake rates and finding the optimal growth

rates with Linear Programming techniques. The optimal growth rates at specified

metabolite uptake rates were validated with an in vivo yeast system. While not suggested

when the method was presented, this model can directly predict the sensitivity of growth

rate to any enzyme’s catalysis rate by allowing an enzyme’s maximum rate to vary and

by taking the slope of the growth rate with respect to the enzyme rate. It follows that the

enzyme for which the growth rate is most sensitive can be found by allowing all rates to

vary sequentially and in combination. Additionally, the maximum network flux can also

be found by finding the min-cut and calculating its capacity—essentially, this is network

flow analysis or bottleneck analysis[68]. If the sensitivity of the growth rate to the

enzymes controlling the min-cut were zero, then changing the capacity of the min-cut

would not change the max growth rate. Since the min-cut’s capacity directly gives an

upper bound on the max growth rate, then it must have non-zero sensitivity and, since

growth rate is always optimized to this maximum capacity, then no other rate would have

a larger sensitivity. This min-cut is the set of edges with minimum flow capacity that,

when deleted, separates the input from the output. One accepted method of finding a

network’s min-cut is with graph partitioning techniques■ 69]. This again implies that

elements that link separable network subsystems are quite important for understanding

and controlling a system’s behavior.
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Analyzing Biological Network Topology

Each of the concepts above reinforces the important role of a system's topology to

system behavior. Topological analyses require steps that identify network modularity,

that select elements linking separate modules, and that develop a prioritization metric for

the selected elements. Identifying modules is similar to the task of partitioning networks.

Finding the best partitioning of a graph is an NP-complete problem, but there are many

algorithms that provide satisfactory partitions in short order. Since the graph-partitioning

problem in computer science is most often used to optimally share work among a number

of computer processors, the partitions are balanced. When the partitions are balanced

each partition contains roughly the same number of nodes. Such balancing may not be

desirable if the partitions are used to represent biological modules. Fortunately, not all

graph-partitioning methods produce balanced partitions. Spectral partitioning methods,

for example, produce natural, unbalanced partitions[70].

Graph clustering in general is another potential set of techniques for grouping

network elements and discovering natural orderings within networks. One of the many

clustering algorithms paired with an optimization function could reveal modular

organization without a balancing constraint. Several social network analyses (SNA) have

used clustering techniques to discover cohesive subgroups within social networks[71].

Cohesive subgroups in SNA represent subsets of nodes that have relatively strong or

frequent interactions among them, an idea comparable to modularity in biological

networks.

The prioritization metric used to specify potential therapeutic targets should be

one that complements the partitioning or clustering algorithm. If therapeutic targets are
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most effective when they act as gatekeepers for interactions / communications between a

system’s inputs and an output / disease biomarker, then there are several centrality

metrics used in SNA which seek to quantify this. Betweenness centrality is based on the

idea that interactions between two nonadjacent actors might depend in a special way

upon the actors who lie on paths between them, and more so for paths of shorter

length(72, 73]. This metric and other centrality metrics can be formulated for a single

node or a group of nodes in directed or undirected graphs. Another metric, information

centrality, extends the rationale of betweenness centrality to include longer paths in

addition to the shortest paths 74]. When a network can be organized into multiple

cohesive subgroups, either by partitioning or clustering, the nodes that lie between groups

may have high betweenness centrality. Betweenness centrality has been linked to the idea

22of “cut-points, " which are nodes that when deleted break the network into separate

components. Indeed, one method for finding cut-points is to delete nodes in order of their

betweenness centrality and count the number of components generated. This was done

for an AIDS network and not all nodes with high betweenness centrality served as cut

points[74]. It is likely that no single centrality measure or other single metric indicating a

potential drug target will be sufficient, and a combination of metrics will be more

useful—similarly for algorithms that reveal network organization.
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Chapter 4: Motivating Hypotheses

The aim of this research is to develop and engineer objective analysis techniques for

large and complicated biological systems, for the purpose of assisting in therapeutic

target discovery and prioritization. The techniques are applied to graph models of

biological systems of interest. In developing the techniques several concepts from graph

theory and social network analysis are used to test the following hypotheses.

1.) A modular system is most sensitive to the changes in elements integrating

modules together. For a biological system, modeled by a system of equations, a

subset of variables is generally chosen to represent the overall behavior of the

system. This subset of variables is sometimes called a biomarker subset. This

hypothesis implies that the sensitivity of the biomarkers to integrating variables is

greater than to nonintegrators. Thus, these integrators may be good therapeutic

targets or surrogate markers for the system's phenotype.

2.) In a system modeled as a graph, those elements integrating modules together have

higher betweenness centrality than other nodes. Given a set of integrating

elements, each node's betweenness centrality can be used as a relative rank. In

the case where a proper assignment of nodes into modules is difficult to obtain,

betweenness centrality can be used to prioritize nodes, with high-ranking nodes

being more likely to be an integrating node in the as yet unfound modular

organization.

3.) In a system modeled as a graph, high betweenness centrality is a property of

nodes that are more likely to be influential in the system. In general, a ranking of
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elements in a manner reflecting their likelihood to be effective therapeutic targets. - * ,

In order to test these hypotheses, graph modeling a biological system of interest must

be organized into modules and nodes must be prioritized. The modules in a graph are

approximated by optimal graph partitions, graph clusters, and the graph’s strongly

connected components. The nodes are prioritized according to node centralities. Both

betweenness and closeness centralities are evaluated. Also, knowledge of the graph’s

articulation points and bridges is evaluated for contribution to target discovery and

prioritization. The following chapter describes in greater detail the aforementioned

network analysis techniques. , - . s

**
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Chapter 5: Methods

Graph Models of Biological Systems

Data Management

In preparation for analyses all entities

within the system to be analyzed are

accounted for and given a label and an index

ID within a database. Each direct causal

relationship in the system is similarly

accounted for and stored within another table

containing three fields: the entity IDs

comprising the binary relation and an indexed

ID for said relation. With this accounting the

system is translated into a standard graph

form, with entities being the nodes of a graph

and the relations being the edges of said

graph.

Box 1. Finding SCCs Given G(V,E)
1. DFS(G); keep last seen time f(v)

for each node v.

2. get Gt =G transposed.
3. DFS(Gt), in DFS search each v in

order of decreasing f(v).
4. output each tree found in step 3 as a

new SCC.

Box 2. Finding Bridges Given G(V,E)
compute low(v) for each v.
for each v do:

for each child u of v do:
if low(u) = pre■ u) then:

(v,u) is a bridge.
---Computing low(v)----------------------

1. explore(v):
2. low(v) <- pre(v) # pre-time first

Seen V

3 for each e(v,w):
4 if w not visited yet:
5. explore(w)
6

7

:

low(v)é-min(low(v), low(w))
else: low(v) <-

min(low(v),pre(w))

Box 3. Finding Articulation Points
Given G(V,E)

compute low(v) for v c V.
for each v do:

if v is the root & has >1 child:
v is an articulation point.

else: for each child u of v do:
if low(u)xpre■ v):

v is an articulation point.

i
Connected Components & Strongly Connected Components

A component of a graph is a set of nodes that are connected to each other by an

undirected path. A strongly connected component (SCC) is a set of nodes that are

connected to each other by a directed path. Thus, a SCC fulfills the property of a module

that it has a stronger connection to internal vs. external elements. The pseudo-code used

■
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to find a graph’s SCCs is detailed in Box 1. It mainly consists of two depth-first-search

topological orderings of the graph’s nodes. During the second ordering stage the SCCs

are output[75].

Articulation Points & Bridges

Our operating hypothesis is that nodes incident with edges that connect different

modules are more likely to be essential to the system's phenotype. A stricter indicator of

importance is incidence with one of the graph’s bridges. A bridge is defined as an edge

that, if removed, results in an increase in the number of components. The pseudo-code

for finding a graph’s bridges is detailed in Box 2. A nodal equivalent to the bridge is an

articulation point, a node that, if removed, results in an increase in the number of

components. The pseudo-code for finding an articulation point is described in Box 3.

Spans are edges that connect different SCCs. They are identified by looking at each of

the graph’s edges and determining whether or not the two incident nodes have different

SCC assignments.

Centrality Measures

Closeness

The two centrality measures used in developing the target prioritization heuristic:

closeness and betweenness centralities[65]. Closeness centrality indicates the likelihood

that a node maximally influences many other nodes. It is calculated as the sum of graph

distances between the node in question and all other nodes. The graph distances are

computed with Dijkstra’s shortest path algorithm■ 75]. Because there may be more than



one ‘shortest” path between two nodes, Dijkstra’s algorithm was modified to handle

multiple ‘shortest” paths. Lower closeness scores indicate more central nodes.

Betweenness

Betweenness centrality indicates the potential for a node to regulate or influence

interactions between other nodes, and makes use of the modified shortest-paths

algorithm. After the shortest paths between all node pairs are found, for every node an

accounting is made of the number of shortest-paths in which it appears, scaled by the

inverse length of each path. Higher betweenness scores indicate more central nodes.

Graph Clustering

Graph clustering is used to place graph nodes into groups that are maximally

isolated from the rest of the graph, and are maximally connected internally. This is

achieved by a hierarchical clustering algorithm, where clusters are assessed as they grow.

If a cluster is found to have the properties previously stated, then its growth is halted and

no longer considered in the rest of the clustering process. The closest two clusters are

merged at each phase to form a new cluster. This process repeats until there is one

cluster. The distance between clusters is determined using three measures: minimal

internode distance, maximal internode distance, and average internode distance

Each newly formed cluster is assessed for its cohesiveness or modularity. There

are three choices for determining cohesivity: density ratio, and two versions of the

intracluster edge observation likelihood. The density ratio is ratio of the cluster density

and the overall graph density. Density is the observed number of edges divided by the

C
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maximum possible number of edges. A lower threshold of 7 is suggested for a suitably

cohesive cluster if the density ratio is used.

The other option for assessing cohesivity calculates the probability of observing at

-º-º: LY g(g-1)/2–L ).■ g(g-1)/2
k=q k)\gs(gs–1)/2-k) \gs(gs–1)/2 (5-1)

least the number of edges within a cluster, expression 5-1. In expression 5-1: L = number

of Total Edges, g = number of Total Nodes, gs = number of Cluster Nodes. The

threshold for this measure is at most 0.00025. This value is graph dependent. In order to

calculate this probability, the combinatorics had to be rewritten, hence the two versions.

Initially the division of factorials caused an overflow error. This division was

algebraically simplified and rewritten in a new combinatorial function, correcting the

overflow problem. The factorial F(a) is calculated with Sterling's formula for a > 10.

The error in Sterling's for a-10 is 0.8%. For a 3–10 the factorial is calculated by

recursive multiplication.

Graph Partitioning

Balanced Partitioning

A graph partitioning achieving a minimal cut is expected to have partitions that fit

the definition of a ‘module,’ because of the isolation provided to nodes in a partition by

the relatively few edges connecting the partition to the rest of the network. The

partitioning algorithm used here is METIS■ 2, 5]. METIS is a fast multilevel recursive

graph partitioner. It operates by first coarsening the graph, then making an initial
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partition, and finally uncoarsening the graph, while at each level refining the partition so

as to achieve a minimal number of edges cut by the partitioning. The precompiled

pmetis.exe code accepts as input a graph to be partitioned and the number of partitions

desired. It outputs a list of partition assignments for each node in a flatfile named after

the input graph. METIS and many other public graph partition tools were designed for

computer science researchers needing to not only partition work efficiently among

processors, but to attempt to balance the amount of work partitioned among processors.

For example, if a finite-element model is optimally divided in two sections having 400

nodes and 20 nodes, the processor working on the model section with 400 nodes will be

overworked compared to the processor with the smaller 20 node model. Even though, the

partitioning has minimized interprocessor communication, computing power is not

efficiently being used. This is why METIS includes an extra requirement that partitions

be as similar in size as possible.

Unbalanced Partitioning

As opposed to the balanced partition determined by METISTM, a spectral graph

partitioner was developed to generate natural or unbalanced partitions. The eigenspace

for a special adjacency matrix is calculated. There is a choice in the type of matrix used:

unsigned adjacency matrix, degree matrix, Laplacian matrix, and Disconnection matrix.

Currently the Disconnection matrix is used in calculating the eigenspace, but it is quite

similar to the Laplacian matrix, another good choice. Once the eigenspace is calculated

the 3 maximal (in general this means closest to 0) eigenvalues are selected along with

their respective eigenvectors. In order to bisect a graph, the eigenvector for the maximal

eigenvalue is selected and each node is associated with a scalar from this vector. The

47



nodes are then assigned to two groups according to the sign of their associated scalar. To

create an arbitrary number of partitions, this method uses recursive sectioning. Because

the three eigenvectors are used, eight sections can be created per iteration. A partitioning

scheduler was developed to decide whether 8, 4, 3, or 2 new partitions are needed at each

step in the process of attaining the desired number of partitions. Sometimes, there are

several sections and not all of them need to be partitioned. Some sections will partition

better than others. The quality of a partitioning is taken to be the number of edges cut—

smaller is better. The best section to partition is the one with the best maximal

eigenvalue. Briefly, the entire method is as follows: decide how many partition(s)

needed this round, sort sections in order of maximal eigenvalues, chose the best sections

to partition and partition, repeat till desired number of sections is achieved.

Finding an Optimal Partitioning

When using a graph partitioner to find modular structure, one must select the

number of partitions that it should produce. Since this number (k) is not known a priori,

successive partitions are generated for different values of k. When one observes a

significant negative deviation from the trend of edges cut vs. k, the value of k at the

deviation is believed to represent the best partitioning.

º
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Chapter 6: Predictions of Therapeutic Targets and Variable

Sensitivity via Prioritizations from Partitioning & Centrality

Andlyses

OVERVIEW

A topological approach is presented for the analysis of control and system

organization in quantitative and qualitative biological network models. In this approach,

the network model is represented by an unweighted graph. From a heuristic inspection of

the graph’s topology, modular organization is ascertained, and each graph element is

assessed for it’s potential significance in system wide influence or control. The benefits

of this approach are: increased understanding of biological system organization, objective

discovery and prioritization of potential therapeutic targets, qualitative sensitivity

analysis of very large system models, and applicability to a wide range of qualitative and

qualitative systems regardless of size. Results are obtained for a blood coagulation model

and a much larger model of human obesity.

INTRODUCTION

Available to any researcher is a vast array of biological data that is accessible

within the classic scientific literature and via the Internet—much of it being relational but

accessed and analyzed in a piecemeal manner■ 52, 54]. There are attempts to organize

this data into molecular or genetic networks to illustrate specific signaling pathways and

networks and, on a larger scale, genomic interactions[59, 76]. Once created, what is one

to do with the enormity of these complicated biological networks? A good initial use is
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the visualization of gene expression or metabolic pathway activity[8]. Another is the

construction of predictive models of biological systems. Lately there is much work

aimed at using in silico simulations of biology in order to validate pharmaceutical targets

for the control of disease and modulation of phenotype(9, 77]. These quantitative models

can be quite large and require some care in their implementation, but there are other large

models used to aid therapeutic target development. Qualitative models of genetic and

protein interaction are currently used in conjunction with high throughput screening to

discover potential therapeutic targets.[51, 78]. This kind of discovery is more difficult to

do with large, quantitative models of biology, because of the computational cost or

subjectiveness of the search. Networks can be visualized, but it is hard to determine

which aspects may be most significant simply by looking at them—methodologies for

useful graphical layout of biological networks is a currently being researched by a few

groups[60].

Methodologies are in use in fields of scientific endeavor not directly associated

with bioengineering, biotechnology, biocomputing, or bioinformatics that can provide

some guidance as to the kind of network analysis that might be needed to develop to

improve one’s understanding of a system’s organization well enough to identify likely

therapeutic targets. One set of analyses used in Social Network Analysis concentrates on

developing metrics for an individual’s importance in the network. Some of these metrics

are called centrality measures. These centrality measures have been reframed in the light

of metabolic control theory and the hypotheses of modular organization in biology in

order to provide new concepts and tools for biological network analysis|79].
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The following are analyses of a qualitative model of blood coagulation and a

separate quantitative model of obesity. Both models are assessed for modular

organization and integrating nodes identified and further prioritized. The prioritizations

are evaluated by comparison to known drug targets or biomarkers for these systems. The

prioritizations for the quantitative model’s variables are validated by comparison to the

results of calculating the sensitivity of obesity progression to changes in variables of

different prioritization. The blood coagulation model is taken from an effect diagram

used by Mounts and Liebman[26] to illustrate the steps involved in the coagulation

process. The much larger obesity model is abstracted from a quantitative system of

equations used to model the progression of obesity in virtual patients. This model was

developed by Entelos and distributed under the name Obesity Physiolab■ ?]. Its main use

is the evaluation of new therapies to treat obesity, but here I use it to predict new

therapeutic targets.

RESULTS

Blood Coagulation

The model of blood coagulation as analyzed by Mounts and Liebman was

analyzed for modularity using graph-partitioning techniques. The node list is shown in

Table 6-1. The optimal number of partitions was found to be six. The nodes were then

ranked by the fraction of their neighbors in another partition, averaged over all k

partitionings. The top ranking nodes [tf-f7a, Ca, fºa, föa-fba, fl0a, thrombin] were

located on the periphery of and within the central pathway and they either participate in

feedback [floa] or represent branch points [thrombin]. When considering the optimal
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partitioning of the graph into 6 parts, the preceding nodes were also ranked highly, but a

new node [f$a-fl0a] had the highest rank. This node is associated with the conversion of

prothrombin to thrombin. Once the most influential nodes were selected by their roles in

connecting partitions, betweenness and closeness centrality scores for all nodes were

calculated for both directed and undirected version of the model’s graph. The top

ranking betweenness and closeness scorers were some of the same nodes identified

previously by the simpler “fractional' measure, except for Factor VIII activated (fSa) which

had a significant closeness centrality score. Table 6-2 shows that those entities identified

as significant are directly associated with the major coagulation disorders, and they are

well documented in the disease literature. The blood coagulation graph is shown in

Figure 6-1 with nodes sized to indicate their undirected betweenness centrality score.
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Table 6-1. Entities of Blood Coagulation Table 6-2. Blood Coagulation Disorders
Model

-Disorder Cause Treatment

id | Name Abbreviation (predicted
1 | "vascular injury" targets in

red)
2 | "tissue factor" Tf Hemophilia A defect in Treated w/ rP8
3 | "factor 7" F7 FS

4 || "tf-f7" Hemophilia B defect in Treated w/
5 "tf-f7a" FQ plasma
6 | "Ca" Parahemophilia F5 Plasma
7 | "factor 9" F9 deficiency | Treatment

8 "factor 10" F10 Stuart-Prower factor F 1 () Replacement
9 || "hmwk" deficiency F10
10 || "prekallikrein" Hypoproconvertinemia | F7 Lethal
11 | "kallikrein" deficiency
12 | "factor 12" F12 Hypoprothrombinemia | Thrombin | Treat w/Vitamin
13 | "factor 12a" F 12a deficiency K or
14 | "factor 11" F 11 corticosteroids
15 | "factor 11a" F11 and high-dose Ig
17 | "factor 9a" F9a

18 | "factor 8a" F8a Table 6-3. Significant Relations || Bridges & Spans
19 | "factor 8" F8

20 | "platelet" Bridge
21 | "f$a-fºa" From-node (parent) To-node (child)22 | "factor 10a" F10a D

23 | "factor 5" F5 §– FIXa
24 | "factor 5a" F5a Thrombin Fibrin
25 | "f 5a-fl ()a" Fibrin CFibrin

26 || "prothrombin" FXIIIa CFibrin
27 | "thrombin" TF-FVIIa FIXa

28 || "fibrinogen" Spans
29 | "fibrin" FXIIa FXIa
30 | "factor 13" F13 Thrombin Fibrin
31 | "factor 13a" F13a Thrombin FXIIIa
32 | "crosslinked cFibrin

fibrin"

In a further effort to identify modular structure in the model and critical linking entities,

the graph’s strongly connected components (SCC), spans, bridges, and articulation

points were identified. The two main SCCs found were the intrinsic cycle, and thrombin

feedback into the common pathway. SCCs with only one node were ignored. Three

articulation points were found: t■ -fôa, fºa, and thrombin. The bridges and spans are listed
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Figure 6–1 Blood coagulation network shown with MDS layout. Larger
nodes have better betweenness centrality when calculated for the undirected
graph.

in Table 6–3. The SCC algorithm finds cycles within pathways. These cycles roughly

correspond with the partitioning results but preserve and highlight biological

organization. Species identified as articulation points have high centrality values, and are

likely to be critical species. The factors that correspond to the SCC spans and bridges, if

inhibited would destroy the coagulation pathway. They are found on the periphery of the

SCCs.

A summary metric was created that includes the various topological measures

used in this study to identify critical network entities (see the following Methods section).
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This summary metric was used to rank the nodes using weights from a directed graph

along with a separate ranking using weights from an undirected graph. The summary

metric, based on the directed graph, reinforced the importance of thrombin, tissue-factor,

Factor VII, and Factor VIII. Fibrin and Factor XI were newly selected targets. The

summary metric, based on the undirected graph, reinforced the same nodes, including

fibrin, but did not highlight Factor XI.

Obesity Physiolab" v1.1

The obesity model was translated into a graph where there was a node for each

variable in the model and a directed edge between each pair of nodes that had a direct

causal relationship in the model. No unique partitioning was found using the method of

consecutive partitioning. The search for SCCs revealed 109 SCCs. The majority of

SCCs contain a single node; one contained 3 nodes; another 2 nodes, and another with 57

nodes. 102 bridges, 61 spans, and 25 articulation points were found. The nodes in the

90" percentile of directed betweenness centrality scores, nodes that are incident to spans

or bridges, and the articulation points were selected for anecdotal validation as

therapeutic targets. When checked for coverage of the known obesity therapeutic targets,

60%, 80%, and 69% of the on-market, clinical, and pre-clinical targets were directly

matched. When the immediate neighbors of predicted targets were also considered, then

100% of known targets were matched.

The nodes with high betweenness centrality and the articulation points were used

to design and test in silico therapies for simulation by the Physiolab'M. These “trials”

simulated 6 months of therapy with a weight stabilized 90kg individual. The measured

Sensitivities of adipose fat mass and rate of fat change are shown to have a direct
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correlation, and fat mass sensitivity correlates well with % fat lost and %fat gained, but

rate sensitivity only correlates well with the rate sensitivity. With this observation in

mind, fat mass sensitivity was used to evaluate the predictive power of each topology

measure. Five targets resulted in weight loss of ~5% or greater. The maximum weight

loss was ~61%. All Five with demonstrated weight loss had sensitivity magnitudes of

~0.2 or greater. There were seven other targets with good sensitivities, but insignificant

weight loss

Undirected and directed closeness and betweenness centrality scores were

assessed for their ability to predict the measured sensitivity of adipose mass to

interventions on the various targets. Figure 6-6 shows that as betweenness centrality

score increases, the fraction of sensitivities greater than or equal to 0.2 increases. This is

the trend for both undirected (a) and directed (b) scores. Figure 6-7a shows the same

trend for closeness centrality, but the directed score (b) has a similar fraction of good

sensitivities (> 0.2) for the entire range of closeness scores. Notice that the likelihood of

getting a good sensitivity score increases for smaller values of undirected closeness

centrality. This result is expected given the definition of closeness centrality.

DISCUSSION

If a graph (representing a system of interacting entities) can be organized into

modules, said modules being groups of nodes that are better connected with each other

than to the rest of the graph, then those nodes that connect different modules together are

more central than other nodes. This centrality concept is demonstrated by the blood

coagulation results, where nodes shown to have many neighbors in other partitions are
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the most central, as measured by both betweenness centrality and closeness centrality.

Such a relationship may not always be the case, and is affected by the module-defining

Scheme and the individual graph’s characteristic topology. When one module-defining

approach fails, then centrality alone may be used to find nodes that may connect the as

yet unidentified modules, a situation that is made more likely when the centrality score

distribution has a long tail. It was also shown that the most central nodes were associated

with blood disorders and the less central nodes had fewer direct links to single gene

disorders.
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Figure 6-2 Observed Sensitivity (S) Fractions Figure 6-3 Observed Sensitivity (S) Fractions

Fraction of S > 0.2 Fraction of S > 0.2(a) (a)
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The range of normalized centrality scores was divided equally into 3 subranges, and the fraction of targets
in each range with an associated sensitivity (S) of 0.2 or greater was recorded. The ceiling of each
subrange is indicated on the axis of abcissas. UBC = normalized undirected betweenness centrality;
DBC’ = normalized directed betweenness centrality; UCC = normalized undirected closeness centrality;
DCC’= normalized directed closeness centrality.

As an example of the importance of the module-defining scheme, fibrin was not

selected initially as being especially critical to the coagulation system when just the graph

partitioner was used to locate modules. However, fibrin was selected when SCCs plus

their spans were used to define modularity along with bridge and articulation point
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information. The use of multiple methods for identifying modularity provides flexibility

and increases one's confidence in selecting system-critical entities.

Having multiple methods for finding modular organization increased our

confidence in the prediction of system-critical entities in the obesity model. Our initial

graph partitioning effort failed to find an optimal number of partitions, so that nodes

could not be directly assed for whether they linked different modules together. A broader

search using SCCs to represent modules identified those nodes that are incident with a

span, and are therefore connecting different “modules”. Furthermore, the identification

of the graph’s bridges and articulation points indicated topologically critical nodes. This

information was combined with a node's centrality scores to identify entities that were

most likely to be critical, and so would be good candidate therapeutic targets. Validation

of these potential targets by determining whether or not they had already been identified

as weight control targets was expected to reveal matches with known targets along with

several novel targets. Some known targets are not included in Obesity Physiolab'M v1.1

so they were not included in the validation. On average 70% of known therapeutic

targets were directly predicted as being topologically critical. When the predicted node's

neighbors were also counted, the match increased to 100%. There is a good reason for

including a node's neighbors in the prediction of significant nodes. Some of the nodes

identified as likely good targets cannot be directly adjusted. The node's neighbor must

be adjusted to affect the desired.
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Figure 6–4 OB v1.1: Effect diagram of obesity model v1.1 displaying portions of analysis results. MDS
= multidimensional scaling.

Having a critical topological location and better centrality score increases the

likelihood that the system will be sensitive to modulation of a particular node. If a node

has high betweenness centrality, it has the potential to influence the interaction between

many other nodes. If a node's closeness centrality is low then it is very close to other

nodes in the network, and is expected to have a better chance of affecting a greater

proportion of the system and therefore the system phenotype. As a potentially critical

gatekeeper of influence and information flow through (directed graph) or within

(undirected graph) a biological system, nodes with high betweenness (and for some

systems, closeness) are expected to have a higher potential to affect a biological systems

behavior or phenotype. To verify that presumption, nodes having various centralities
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were first identified. Each one was then used as a point for intervention in the obesity

model and the impact on a simple obesity biomarker was recorded. Betweenness

centrality, calculated either for directed or undirected graphs, is positively correlated with

the likelihood of a node being critical to the system's phenotype. Directed closeness

centrality is negatively correlated, yet undirected closeness is not.

It is important to note that this analysis used an unweighted graph. All

interactions between entities in the network are treated equally. Such equality certainly is

not the case in reality. That consideration is expected to have a great deal to do with the

accuracy of any predictions.

The algorithms used to identify a system’s modularity and to calculate centralities

can also incorporate valued relations—weighted edges. The incorporation of edge

Weights would change centrality scores and therefore different modules will be identified.

The concept of edge weight will need to be a focus for future research. Choice of

Weights will be different depending on the source of information for each particular

*Presentation of a biological network. For example, a genetic network compiled from

microarray measured gene expression[16] or concurrence in the scientific literature[14]

may have edge weights based on the confidence associated with one gene influencing

*ther. A metabolic network could have edge weights representing a reaction’s

*ition time, but implementing this becomes complicated for nonlinear reactions with

"ultiple molecular species. With this in mind, the work presented here is a

*monstration of usefulness in representing biological systems by unweighted graphs and

analyzing their topology and node centralities.
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METHODS

Summary Selection Method

This score (s) is calculated as in Eq 6-1. A, B, C, and D are equal to one. 6 & 0 are

group betweenness centrality scores defined in Eq 6–2 for bridges and spans,

respectively—a group in this case is defined as the two nodes incident with the same

edge. C’(n) is the normalized betweenness centrality score, Eq 6–3, and g is the number

of nodes in graph. The node with the maximum centrality score in a group in denoted by

n”, and conversely n' has the smallest score. a equals one if it is an articulation point,

and zero otherwise. b equals one if it is adjacent to a span, and zero otherwise. c equals

one if it is adjacent to a bridge, and zero otherwise. d equals C’(n). I define significant

scoring nodes to be those with scores greater than two standard deviations away from the

mean of the largest mode in the distribution of scores. This score was calculated twice,

once with all centrality scores based on a directed graph, and another time using scores

based on an undirected graph.

s = Aa + Bbo + CC/3+ Da (6-1)

o, B = C(n”)—C'(n’) (6–2)

2C(n)C'(n) = — 6-3"Twº (6–3)

Validation

Anecdotal: Blood

Each molecular entity in the blood coagulation model was used to search the OMIM

database for appearances in record titles and record text. OMIM is a database of human

62



diseases, syndromes, and the genes associated with them■ &0]. It is assumed that if an

entity has many such appearances or “hits,’ it is more significant to proper function of the

blood coagulation pathway. The heuristic’s target predictions are validated by

comparison to the results from OMIM. Also predictions were checked for direct

association with known blood diseases in the coagulation disorder literature.

Anecdotal; Obesity

The targets for those weight control drugs that are documented in public literature were

compiled and classified as to their stage within the drug development process. Those

targets that could be modeled by the obesity model were selected and joined with a list of

associated entities from the model. The heuristic’s predictions were compared to this list

of modeled targets. The heuristic was expected to predict many of the documented

obesity targets and to identify some novel targets. A known target is considered covered

if the heuristic predicts one of the modeled entities associated with it. The fraction of

known targets directly covered was determined. Another coverage fraction was

calculated by considering matches with a predicted target and its immediate neighbors in

the graph. The neighbors of a predicted target were considered for the reasons already

preSented.

In silico Validation for Obesity

The Obesity v1.1 Physiolab'■ M from Entelos(R) was used to perform simulations of

interventions inspired by the target predictions provided by the heuristic. Several other

*mulations were done for model entities that were predicted not to be good targets. The

*in aspects of the virtual patient’s profile were an obese 90kg individual with voluntary
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eating for a simulated study-duration of 6 months. Parametric experiments were done for

a range of parameter values around the ‘normal' value given by Entelos(R). The variables

recorded for later analysis were maximal, minimal, and actual body weight, adipocyte fat

mass, muscle mass, other tissue mass, and rate of fat change. From these variables were

calculated: percent fat lost and gained due to parameter changes, sensitivity of fat mass

and sensitivity of rate of fat change to parameter changes, Eq 6–4.

S = b” Aa Óln(a)
* a “Ab Óln(b) (6-4)

The accepted criteria for success in a weight control therapy are: moderate, sustained

weight loss as fat mass of about 5% (FDA[81]) to 10% (CPMP(82]) vs. placebo; a rate of

weight loss greater than 0.5 lb per week; and improvement in comorbidities that often

accompany obesity. In these validation trials, loss of fat mass and sensitivity of fat mass

were used to indicate relative success.
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Chapter 7: Effect of Increasing a Model's Quality & Size on

Torget Prioritizations

OVERVIEW

Knowledge of a system’s organization aids in the search for therapeutic targets

that maximally affect the system. The topology of a system can be used to reveal the

extent to which it is organized into modular subsystems and used to prioritize its elements

according to their potential to be good therapeutic targets. The following section

describes tests of the hypothesis that both elements which link different subsystems and

network centrality metrics indicate elements to which the system is sensitive. This

testing was done with an in silico model for validating obesity drugs and their targets.

This model is a subsequent version of the obesity model analyzed previously, and it

models obesity in much greater detail. Predictions were tested by their coverage of

known and currently investigated therapeutic targets for obesity. Betweenness and

closeness centrality measures are found to be predictive of biomarker-sensitive variables

(targets) and that the predictions have a high coverage of known drug targets for obesity.

The increased size of the model and the addition of new graph elements does not

significantly affect the quality of target prioritizations. This work is an example of how a

good strategy for therapeutic target prioritization can be developed with an analysis of

*Ystem topology, focusing on subsystem organization and centrality.
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INTRODUCTION

The available quantity of small models of various biological mechanisms directly

and indirectly related to obesity, may be sufficient to assemble a larger model of the

entire biology of obesity. Entelos(8) (Menlo Park, CA) believe that there is sufficient data

to design an accurate top-down model of obesity. There are a few other validated models

of biology that attempt to reconstruct the entire system in order to allow in silico

experimentation [83, 84]. This paper will focus on the model system from Entelos(R)

called the Obesity Physiolab'■ M v3.0, hereafter referred to as OPL. It has proven to be

accurate enough for some of the major and minor pharmaceutical companies to license it

for internal research.

The OPL is a large, complicated system of equations modeling the processes that

influence obesity. One of its uses is the validation of therapies to affect weight loss.

Another important use is as a knowledge base of the biological processes involved in

Weight control, as recorded in the public literature. Users believe that it is sufficiently

accurate as an in silico platform for the initial validation of potential drug targets and

other therapeutic interventions. It is under continuous improvement, but its very size and

°omplexity makes it difficult for a researcher to objectively suggest new potential targets.

Sensitivity analysis of the model could provide an objective analysis of the whole system,

"ot just those parts that are most familiar to a user. A one-to-one analysis with all model

Parameters and indicators of obesity would require a prohibitive amount of time. On an

IBM Intellistation M-Pro, with 733Mhz dual Pentium processors and 512 MB RAM, a

"one-year” in silico trial with data taken at minute intervals is complete in approximately

44 hours (Technical Observation 2001). With better technology the duration will be
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shorter. Because obesity is generally a multifactor disease, a many-to-many sensitivity

analysis would be more appropriate. Such an analysis would take exponentially longer

than the one-to-one procedure. A qualitative analysis that is not constrained by the time

to simulate has the potential to allow a global and objective analysis of the system for

potential points of therapeutic intervention.

Any model’s underlying topology of variable interactions can, theoretically, be

used to identify potential therapeutic targets, and can be used to aid evaluation of

multiple target interventions. As mentioned, the topological approach of Sen compares

Control coefficients of metabolic pathways without measuring elasticity coefficients [41,

42]. Far et al. developed a qualitative sensitivity analysis methodology for systems

modeled in the rule based causal format [50]. The methodology allows one to quickly

determine which parameters cause instability in output variables. Both methodologies

allow one to identify those elements of the system that have the greatest effect on system

Performance. Unfortunately each approach is quite specific to model formalisms.

More generally applicable studies have been done to reveal a biological system’s

Organization and points of control. A few groups have studied the scale free

characteristic of several biological networks. Jeong et al. found that a few network

elements with an unusually high number of neighboring elements are key to the

"bustness of these networks to uninformed attack [1]. The number of neighboring

°lements of a node is termed degree in graph theory. Jeong et al. show that for an E. coli

Pºtein interaction network, a protein's degree is predictive of gene-knock-out lethality

[*]. Prioritization of potential drug targets by their degree may not be very useful for

disease models. The approach may return “unsuitable” targets. Some high degree
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elements will be nonspecific to a disease being studied. Interventions on these targets

may cause unwanted side effects if perturbed.

Lauffenburger hypothesizes that biological systems are an organization of

modular subunits [29]. A module is envisioned to be a set of elements with many

interactions among themselves and few interactions with the rest of the system. This

modular organization is hypothesized to account for some of the robustness to error,

damage or attack seen in biological systems [28]. If biological systems are organized as

networks of individually error-robust modules, then the interactions that link modules are

at risk of being missed by any degree-prioritization. Yet these same interactions may be

among the better candidate targets. Fell et al. have conducted a study of metabolic

network organization in E. coli. They used a different measure to prioritize network

elements [85]. The metric used is called closeness centrality in Social Network Analysis

(GS]. It is described in the Experimental Protocol section, and measures the distance of

each network element from all others. Lower closeness scores indicate more central

objects or modules. Elements closest to all others are ranked higher than more distant

elements. This metric, like one based on degree, indicates elements important to many

other elements but not those with potential for regulation of interaction between modules.

The above approach identifies modular organization within the model and then

Prioritizes the identified model objects according to their potential to act as gatekeepers

of interactions between other model objects. Graph partitioning algorithms and graph

clustering algorithms are used to identify modular organization within the OPL model.

Betweenness centrality is described in the experimental protocol section. It is used to
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help prioritize elements according to their potential for maximally influencing the

model’s behavior.

NMinimal inter-group interaction, or modularity, is a property sought by graph

partitioning algorithms. The goal is to divide a graph into k subgroups with a minimal

number of links between them. If modular structure cannot be found directly, then I use

an alternative graph theoretical concept of a SCC (strongly connected component). It can

be used to represent the connectedness of a module. If for all nodes x and w in a

Component (a connected set of nodes), there exists a directed path from x to w and from w

to x that component is said to be strongly connected. Articulation points and bridges are

also identified. They are potentially important, because their deletion from the network

results in the creation of two or more separated components of the network [86]. Such a

deletion would be expected to dramatically change the phenotype of the larger system.

Such change is exactly what is desired of a good therapeutic target.

Betweenness centrality is used as a measure of the probability that a network

element is controlling significant information flow between other elements. Information

is assumed to flow along the shortest route between two elements, and more centrally

located elements are expected to occur in a great deal of these shortest routes through the

network [65]. It is important to note that there can be multiple shortest routes between

"o nodes. Betweenness centrality is a count of an element's occurrence in the shortest

Paths between each pair of other elements, scaled by the length of each path. In

subsequent sections ‘d. subscript for betweenness indicates that the paths are from a

directed graph; ‘u' would indicate an undirected graph.
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Objects with the potential to maximally influence the major indicators of disease

progression are selected from the prioritized model objects and then checked against a

summary of known obesity drug targets. Subsequently, the sensitivity of disease

biomarkers to an intervention on each predicted target is calculated. The resulting data

provicies an indication of the sensitivity of the OPL model for each predicted target. The

data also provides a means for comparing how well each metric performed in finding

good targets.

RES & VLTS

I have a heuristic for general network analysis to determine the extent of modular

Organization and to identify key integrative network elements. With large, complicated

networks no single approach can be expected to work, so the heuristic uses multiple

Somplementary approaches in tandem for determining system organization and to

Prioritize elements. Predictions of critical elements were validated by a comparison with

known drug targets for obesity and those hypothesized targets at various levels of

°mmercial investigation. The predicted target's prioritization is hypothesized to

indicate the likelihood of OPL obesity biomarkers to be very sensitive to the target. The

*get prioritization was validated with in silico clinical trials done with the OPL v3.0.

Modularity of model: The model was partitioned with the METISC) multilevel graph

P*titioning software package [5]. The optimal number, k, of partitions was sought by

obtaining partitionings for k between 1 and 21, and looking for a significant deviation

from the trend of edge-cut vs. k. If two nodes are incident to an edge and each node is in

* different partition, then that edge is cut. The edge-cut for a k-partition is a sum of edges
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Figure 7-1. Fraction of nodes in each SCC. Figure 7-2. Finding an optimal number of
Inset shows SCCs 96 to 160. partitions with METIS.

that were cut. Figure 7-1 shows that no optimal value for k was found with this

methodology. Next the SCCs of the graph were found (Figure 7-2). A total of 208 SCCs

YVere found: 192 with a single node each, 9 with two nodes each, two with six nodes each,

two with five nodes each, one with 601 nodes, one with 65 nodes, and one with 4 nodes.

The great majority of the graph is contained in a single well-connected SCC.

Key model elements: Two different methods were used to prioritize the model’s

Variables in order of their likelihood of being a good drug target. The first method, called

the standard method, prioritizes variables by their betweennessd centrality and whether or

*t the variable is an articulation point in the graph representation of the model. The

articulation points of the graph along with those variables having a betweennessd score

*ger than the mean plus one standard deviation were selected as the best targets. So

doing yielded 203 potential therapeutic targets. The second method, called the metric

based method, is given by Eq 7-1. It is a mathematical function that relates model

*nsitivity to a target's various centrality scores and the indicators from graph theory.

71



The variables with a predicted sensitivity above a single standard deviation threshold

were selected as the best targets. This yielded 71 potential therapeutic targets.

Sm", =0.32+[AP, (-0.1)
+[bgcsdl, (-0.51)+[sgcsdl,(–086) (7-1)
+[UCC],(–030)+[UBC], *(120)

Equation 7-1. Calculation of Sm”, the predicted average-fat-mass sensitivity to changes in i. AP = [0;

variable I is not an articulation point, 1; otherwise], bgcsd = group directed-betweenness centrality* score

for a bridge incident to variable i, sgcsd = group directed-betweenness centrality” score for a span incident

to variable i, UCC’ = normalized undirected closeness centrality, UBC’ = normalized betweenness

centrality. *[65].

Coverage of known targets for obesity: A database of known targets for obesity was

Compiled (57 targets) and those targets that are represented by variables in the OPL -

selected to validate the predicted targets (26 targets). The coverage of this modeled
-

subset of known obesity targets was determined firstly, by whether they are predicted by

the heuristic and secondly, by whether one of their neighbors in the graph is predicted.

The targets selected by the standard method uniformly covered almost all of the known

and currently investigated targets for controlling obesity, Figure 7-3a. The targets

Selected by the metric-based method covered many of the on-market targets and fewer of

the targets undergoing early stage clinical validation, Figure 7-3b.
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Figure 7-3. Fraction of known obesity drug targets predicted exactly and including graph neighbors of
preciicted targets, using the Standard method (a) and the Metric-based method (b).

Metrics that reveal likelihood of high biomarker sensitivity: A fraction of the targets

highlighted by both methods were selected randomly for in silico validation. Parametric

experiments were done with the OPL for each of these potential therapeutic targets. The

indicators for disease progression used to validate each target were: maximum 9% of

body-weight lost and gained for each experiment, the sensitivity of average-fat-mass to

Sº?: Periment parameters (Sm), and the sensitivity of rate-of-stored-triglyceride-change to

*Periment parameters (Sr).

*esults from standard method: Sm positively correlates with the magnitudes of %

Weight gain and 9% weight loss, having R* values of 0.630 and 0.628 respectively; Sr

Pºsitively correlates with the magnitudes of 9% weight gain and 9% weight loss, having R?

Values of 0.129 and 0.182 respectively; Sm = 0.162 is the lower threshold for 9% weight

loss soº, and greater according to the linear equation fitting Sm to % weight loss, Eq 7–2;

* fraction of sm greater than or equal to 0.162 increases for larger values of
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betweennessd centrality, Figure 7-4a; the

tracticn of Sm greater than or equal to

0.162 increases for smaller values of

closernessu centrality, Figure 7-4b.

Results from metric-based method: Sm

positively correlates with the magnitudes

of 93 weight gain and % weight loss,

having R* values of 0.457 and 0.431

respectively; Sr positively correlates with

the magnitudes of 9% weight gain and %

weight loss, having R* values of 0.138 and

O-O39 respectively; Sm = 0.22 is the lower

threshold for 9% weight loss 5% and

&reater according to the linear equation

fitting Sm to % weight loss, Eq 7-3; the

fraction of Sm greater than or equal to 0.22

Fraction of Smat or above threshold for 5%weight loss.
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Figure 7-4. Increasing likelihood of observing a
significant sensitivity (Sm) with a.) increasing
betweenness and b.) decreasing closeness
centrality, and c.) increasing modeled-metric.

increases for larger values of the calculated metric, Figure 7-4c. Table 7-1 summarizes

Physiolabrm parametric experiments for both target sets.
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9% Weight loss = 0.294 Sm +0.003 (7-2)

Squation 7-2. Model of 9% weight loss relation to Sm from Standard Method's experiments.

% Weight loss = 0.202 Sm + 0.006 (7-3)

Equation 7-3. Model of 9% weight loss relation to Sm from Metric-based Method's experiments.

% Weight loss = 0.1493Sr +0.0086 (7-4)

Equation 7-4. Model of 9% weight loss relation to Sr from Standard Method’s experiments.

% Weight loss = 0.055Sr +0.0096 (7-5)

Equation 7-5. Model of 9% weight loss relation to Sr from Metric-based Method's experiments.
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Table 7-1. Parametric experiments' results sorted by decreasing fraction of weight lost (||loss|) vs placebo.
Experiments with significant (>5%) weight loss colored grey. Other experiments with significant (>5%)
weight gain (||gain■ ) or significant (>threshold for each prediction method: 0.162 & 0.22) average-fat-mass
sensitivity (Sm) colored grey.

Experiment results for Standard
method's predictions.

Experiment results for Metric-based-method's
predictions.

Name || ||lossº Tigain■ ºf Ismº Name
21.04% 0.45

-

-
18.14% 0.93 2 * 7.30% 0.
21.04% 0.52 3 º 0.00% 0.03
19.51% 0.27 4 10.94% 8.06% 0.05
2.31% 0.17 5 10.63%. 10.29% 0.21

26.41% 0.54 6, 62.6%. 6.69% 0.03
7.30% 0.31 7 4.46% (3.84% 0.11
0.00% 0.03 8 3.77%. 1.67% 0.03

0.00% 0.03 9 3.58% 3.46% ºf
1.45% 0.07 10 1.82% 0.09% 0.04

10.29% 0.21 11 1.67% 0.43% 0.03
4.43% 0.10 12 1.57%. 22.89% 0.13

21.38% 0.10 13 1.43%. 2.85% 0.07
21.58% 0.26 14 1.25%. 1.87% 0.04
13.43% 0.47 15 0.90% 4.35% 0.08
6.69% 0.03 16 0.74% 7.21% 0.04

5.20% 0.00% 0.09 17 0.67%. 1.20% 0.04
5.48%. 6.62% 0.07 18 0.61%. 2.93% 0.01

19 sº 16.72% 0.30 19 0.61% 0.01% 0.01
20 4.85%. 18.94% 0.13 20 0.56% 0.00% 0.00
21 4.84% 8.35% 0.07 21 0.56% 0.01% 0.00
22 4.82%. 124 0.12 22 0.56% 0.04% 0.00
23 4.46%. 13: 0.11 23 0.52% 8.44% 0.04
24, 3.83%, 4.47% 0.08 24 0.42% 0.23% 0.01
25 3.39% 4.95%. 63d 25 0.35% 0.50% 0.00
26 3.39% 0.00% 0.08 26 0.30% 0.33% 0.03

27 3.36% . A. º 27 0.30% 0.55% 0.01
28 1.57%. 22.89. 41 28 0.29% 2.01% 0.01
29 1.43% 2.85% 0.07 29 0.25% 0.92% 0.01

30 1.34%. 1.67% 0.02 30 0.18% 0.24% 0.00
31 1.10% 6.28% 0.04 31 0.09% 0.74% 0.01
32 1.05% 5.56% 0.05 32 0.09% 0.01% 0.00
33 1.04% 1.06% 0.04 33 0.06% 0.02% 0.00
34 1.04% 1.06% 0.04 34 0.01% 0.01
35 1.00% 0.58% 0.02 35 0.01% 0.05% 0.00
36 0.91% 0.46% 0.03 36 0.00% 0.02% 0.00
37 0.74%: 7.21% 0.04 37 0.00% 0.02% 0.00
38 0.72% 0.34% 0.02 38 0.00% 1.21% 0.04
39 0.64% 0.52% 0.01 39 0.00% 0.01

40 0.61% 2.93% 0.01
41 0.61% 0.01% 0.01
42 0.56% 0.00% 0.00
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44 0.50%, 4.88%
45 0.40% 0.02%
46 0.36% 0.18%
47 0.25% 0.92%

48 0.16% 0.70%
49 0.16%; 8.87%
50 0.16% 0.75%
51 0.15% 0.34%
52 0.13% 0.81%
53 0.11% 0.13%
54 0.10% 0.46%
55 0.06% 0.04%
56 0.06% 0.67%

57 0.05% 0.16%
58 0.04%. 8.04%
59 0.03% 0.01%
60 0.02% 0.66%
61 0.01% 0.02%
62 0.01% 0.02%
63 0.01% 0.01%

64 0.01% 0.01%
65 0.01%. 4.88%
66 0.01% 0.06%

67 0.00% 0.03%
68 0.00%. 13.35%
69 0.00%. 44.56%
70 0.00% 13.47%

DISCUSSION

I have studied the topological organization of an obesity model and prioritized

model elements as potential drug targets. Experiments have been formulated to test the

predictive value of each of the heuristic’s internal metrics.

therapeutic targets, I show how many are already known and in clinical trials.

process began by determining whether or not the model could be organized into a

modular structure. No best number of partitions was found. The density of relationships

between model variables may mean that there is no modular structure to be found. The

0.56% 0.01% 0.00
0.02
0.00
0.00
0.01
0.02
0.07
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.00
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01

0.01

For the set of predicted
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result that the majority of the model’s variables are contained in a single SCC seems to

indicate the difficulty in finding a modular structure.

Alternatively, there might be some modularity, but the METIS partitioner is not

the best tool to find it. METIS has a partition-balancing algorithm that strives to make

the number of nodes in each partition equal. This is desired for partitioning work for

parallel computing, but there is no reason to believe biological modules are balanced. An

unbalanced partitioning algorithm, like recursive spectral partitioning, might have more

success in finding modular structure, as it finds the partitioning with the minimum

number of cut edges regardless of the size of the resulting partitions.

The next step in the heuristic is prioritizing nodes according to information from

the topological organization phase and node centrality calculations. As stated earlier

there are two techniques being compared: a standard and metric-based method. The

metric-based method results in a smaller number of predicted and validated targets

compared with the standard method. The targets predicted by each method were first

validated by assessing their coverage of drug targets associated with pre-clinical, clinical,

and on-market weight control drugs. It is important to note that a fraction of the known

obesity targets could not be directly modeled by the OPL and were not included when

assessing the predictions. The coverage determined by exact matches was approximately

55% for all target pools using the standard method. When the coverage rule was relaxed

to include neighbors of predicted target, the coverage was complete for all known,

modelable drug targets. The reason for including a predicted target's neighbors in the

network when assessing a match to known drug targets was that, when it came time to

actually implement an intervention in the OPL for a specific predicted target, the
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neighbors were more often than not adjusted as well. This was due to the inconsistent

mutability of certain parameters across all OPL variables.

The coverage results for predictions from the metric based methods show the

same improvement when neighbors are considered, but the coverage seems to improve

for target populations toward the end of the development pipeline. Two possible reasons

for this bias are: the OPL incorporates more information about on-market and better

known targets and their associated pathways, and/or the bias is expected because the aim

of the drug development process is to enrich the pool of target candidates as they move

towards FDA approval.

The aim of each method is to predict targets to which the model is highly

Sensitive. High sensitivity is assumed to be a property of quality targets. Both sensitivity

prediction methods have been shown to cover a majority of the known targets for obesity.

The OPL can be used directly to assess how well the methods predict the actual

Sensitivity values. For the standard method, mainly betweennessd and closenessu were

used to prioritize targets for experimental validation. Figures 7-4a and 7-4b show that

better centrality values are predictive of good sensitivities—good sensitivities are those

above the 5% weight loss threshold. Nineteen target interventions showed weight loss of

approximately 5% and higher. There are four more interventions with high Sm values but

no significant in silico weight loss. The latter may indicate target interventions deserving

of further investigation and a broader exploration of parametric space, because the weight

loss trend (indicated by Sm) is significant. The metric calculated in the metric-based

method is also shown to be predictive of targets with good sensitivity values, Figure 7-4c.
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There are six interventions with significant in silico weight loss, and one other with a

promising Sm value.

Whether to use the metric based method or not may be moot, because its

predictive model requires a training set of sensitivity values. To get such a set one must

perform several in silico parametric experiments. If the standard method is used to

prioritize the model’s variables prior to a random selection of variables to test, then it is

quite likely that many good targets will be found during the process. It is questionable

whether researchers will be willing to proceed to the construction of a model, such as the

one used in the metric-based method, or simply further validate the good targets found by

the standard method.

The approach used here demonstrates that a system's topology has considerable

value even in the absence of quantitative information. In general, a mathematical

model’s variable interdependencies are represented by a graph, and this graph is

organized into subsystems with a minimal amount of interaction between them. This

minimal set is an initial choice for critical interactions to the system's overall behavior.

An independent but complementary ranking of variables by their centrality is used to

prioritize this linking set and every other model variable. Analyses of this type yield

useful insights (have high value) and are faster than more robust quantitative analyses.

Usually robust methods, such as classical sensitivity analyses, require a screening phase

to focus the analysis on a smaller, manageable set of variables. This screening process is

typically subjective. However topological methods, such as those presented here, can

provide objective screens for later detailed analyses, including classical sensitivity

analysis. Future computational advances may allow similar analysis using graphs that

*
*
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include quantitative and kinetic information, or even direct sensitivity calculations with

acceptable temporal costs. For now the main use for the approaches described here will

be to extract further information from qualitative systems. Such systems are plentiful,

whereas large fully parameterized quantitative models are more rare.

Much can be learned about a system by analysis of its topology, but experimental

validation of apparent insights is an essential next step. Methods such as these are not the

last step in target selection. However they should be one of the first steps in prioritization

of system elements for further detailed validation, including in silico validation. More

work is required to address integration of available kinetic information into graph

analysis methodologies, and to better understand the benefits to comparative studies

between different systems.

SYSTEMS & METHODS

Graph mapping: The OPL version 3, from Entelos(R) is visually transcribed into a

Microsoft(R) Access" database for preprocessing. Each variable's name and type is

recorded and given a new integer node id. Each arc representing a relationship between

variables is recorded as a unique integer edge id. For arcs that are modified by another

variable, the arc is represented by a node id and a new edge is recorded for each variable

modifying that arc. This process results in a list of directed edges comprising an unique

edge id, a node id from the node incident to the beginning of the directed edge, and

another node id from the node incident to the end of the directed edge; a list of nodes

Comprising an unique node id, a unique node label, the node's type: function node or

State node, and the node's origin (obesity model or new). It is important to note that there

are many variables in the OPL that are not immediately visible to a user. These were not
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included in the transcribed graph. This exclusion underscores the point that there are

multiple options for transcribing a quantitative model to a graph representation.

Select active edges: Each node in the graph represented a variable in the model that has

an active and inactive state during the simulation. This state of a variable in the

simulation is recorded with each node representing it. All active nodes are written to a

comma-delimited flat file with the node's id and name. Each edge incident to 2 active

nodes are considered active and written to a comma-delimited flat file with the node ids

incident to the beginning and end of the directed edge, and the edge’s id.

OPL experiments: The patient profile used for all experiments is an equilibrated 100kg

individual with light activity. For each target to be evaluated a parametric experiment is

executed. Parametric experiments are a batch of experiments, each having the

parameter(s) of interest set to a range of values according to a linear or log interpolation

between the initial and final values for the parameter(s). The experiments simulated the

patient’s physiology over a one-year interval, and data is sampled at 1440-second

intervals. Saved experimental data is used to calculate the maximum fraction of weight

loss and gained compared to the weight of a control patient after a one-year interval.

Sensitivity of various biomarkers to the intervention is calculated as the ratio of the

difference in the natural logarithm of the biomarker's value and the difference in the

natural logarithm of the changing parameter's value.
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Chapter 8: Software Tools Developed For Topological Andlyses

OVERVIEW

Knowledge of a system’s organization aids in the search for therapeutic targets

that maximally affects the system. The topology of a system can be used to reveal the

extent to which it is organized in modular subsystems and used to prioritize its elements

according to their potential to be good therapeutic targets. This software developed

identifies modularity of a system by implementing various graph partitioning and

clustering algorithms. It also assesses the criticality of system elements with additional

centrality calculations. The application is written in Python/Tkinter and displays analyses

results in a multifunctional graphical user interface.

INTRODUCTION

To facilitate the topological analyses, an application has been developed in

Python"M. The aim of the analyses is the identification of modularity. This knowledge is

expected to uniquely aid the understanding of complicated biological systems and the

prediction and prioritization of therapeutic targets. To better understand results, a

network visualization facility was added to the initial application embodiment. This

graphical interface was written in Tkinter"M and provides an additional interface to the

network analysis application. This application has been applied to several network

models of biological interaction: molecular interactions involved in blood coagulation,

metabolic and signaling interactions involved in obesity, and metabolic interactions

conducted by Esherichia coli. The methodology involved in these analyses is inspired by

prior graph theoretical and social network analytical research.
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PROGRAM DESCRIPTION

Input to this application is a network model represented in a graph format. The

application can accept input from a command line or via its graphical user interface

(GUI). Once an input file is specified, its graph can be viewed in the GUI and/or a

battery of graph analyses can be conducted. The graph layout method is not finalized,

but currently a multidimensional scaling (MDS) approach and a mass-spring-system

relaxation approach are available in the GUI. Briefly, the network analyses are of two

related types: modularity assessments and critical-node prioritization-metric calculations.

Results are then viewable by projection onto the currently displayed graph. Individual

results can be viewed alone or overlaid and the graph layout can be manipulated in the

GUI. Elements can be removed from the system and reanalysis initiated for deeper

investigation. All results are persistent on disk as readable files.

Graph Layout

The graph is initially displayed with nodes positioned randomly. Two layout

options are available: MDS or mass-spring based. The MDS algorithm calculates the

eigenvectors and eigenvalues for the graph’s distance matrix, and then selects the two

eigenvectors associated with the two largest eigenvalues as principal axes. The mass

Spring algorithm treats each node as equal masses with a negative attraction force

between them; graph edges are treated as springs with equal relaxation lengths. During

the relaxation process the system's kinetic parameters—spring relaxation length, mass

repulsion, spring constant—can be updated manually. The resulting balance of mass

repulsion and spring contraction usually results in a visually pleasing layout.
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Additional graph visualization and modification tools include: a magnification

lens, node selection, node label toggling, a node activation-toggling menu, and an

analysis results table.

Analyses

Several analyses are available from the GUI, or command line. Their results are

automatically stored in individual files and sent to the GUI for visualization as reflected

in node size and color, and edge color. In order of batch execution they are as follows:

identifying connected components, strongly connected components, articulation points,

bridges and spans; calculation of betweenness and closeness centrality values for each

node; and hierarchical node clustering. Currently, there are two additional analyses that

are completed but not visualized. Partitioning the graph into k parts for a range of user

selected k's is done by an extension to METISTM. Similarly, spectral graph partitioning is

conducted with custom designed Python"M code. After each type of partitioning, nodes

on the edge of each partition are identified.

Performance

Table 8-1. Time taken to perform all analyses for several systems, and metadata for each system.

Graph Diameter {D(U)+}_| Geodesics Nodes Time (sec):
Blood 7 (9) 124 (1402) 28 (31) 0.05 (0.25)
Ob 1 21 (12) 110331 (407520) 289 (381) ×

Ob3 32 (15) 993681 (5092384) 837 (902) || 937 (2043)
E.coli 19 (*) 44.17426 (5258.3606) || 1121 (1502) || 2143 (*)
tThe values without parentheses are those from the analysis of a directed graph and those
in parentheses are for the undirected graph.
#The time posted is that taken to complete all analysis calculations except graph
partitioning and clustering.
*The batch analysis job failed when computer memory demands increased, requiring
individual reapplication of each subanalysis. This prevents proper timing of the batch
iob.
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Chapter 9: Test Case on Public Data: E. coli Metabolism

OVERVIEW

For computational disease models, a prioritization of potential therapeutic targets

would support clinical and computational target validation processes in pharmaceutical

R&D, especially where validation resources are limited. In order to discover key

molecules and modular organization in biological pathways, several graph theoretical

concepts are applied to a model of Escherichia coli metabolism. The metabolic network

of E. coli was chosen because it represents a large complicated system, modeling well

studied biology. This type of network consists of only enzymatic reactions, but its large

size may be typical of the type of models that can be reconstructed from publicly

available data. Also, as E. coli is a widely used biological model system, there is more

information with which to validate the techniques described previously. Graph

partitioning and strongly connected component identification are used to discover

modular substructure in this metabolic network. The identified strongly connected

components represent cyclic subpathways common to multiple well-studied metabolic

pathways. Articulation points and centrality metrics are used to predict and prioritize

critical molecules. Betweenness and closeness centrality are shown to be reliable metrics

for prioritizing key metabolites and essential enzymes, betweenness being the most

reliable. One question that consistently arises is, “How do errors in the network structure

affect the quality of these topological methods?” For this system, missing information is

shown to negatively affect the prioritizations for essential enzymes, but not for key

metabolites.
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INTRODUCTION

An organism’s metabolic reaction network may have thousands of metabolites

and enzymes. The complexity of interactions and dependencies between known

molecules, combined with several potentially unknown molecules, frustrates rational

methods for predicting the effects of perturbing the system by means of molecular

intervention. It is quite difficult to accurately predict the molecules within a system

which, when modulated, will cause the most significant change in system behavior. This

report describes methods for objectively obtaining information about a system’s

modularity and critical interactions. Information about critical elements and interactions

can be gathered from quantitative models with methods such as sensitivity analysis, but

the time required to do the analysis may be impractical when models are large. Also,

topological knowledge of the system’s organization is not provided by normal application

of sensitivity analysis (SA).

The majority of signaling and metabolic pathway information is semi-qualitative,

roughly illustrating intermolecular relationships[58]. The size of the networks and their

qualitative nature puts them outside the reach of robust SA. Hence there is utility in

having a generalized qualitative SA methodology that requires only a network’s

topological information to indicate critical targets. Such information, when readily

obtained, would aid decision making about which targets to avoid and which to focus on.

Although the majority of network information is qualitative, research is underway

in quantitative whole-system modeling[64, 77, 87, 88]. SA would be ideal for finding

and prioritizing targets. However, consider a system with 1000 variables with 5 states

each and 50 marker variables. An analysis assessing the effects of each variable on each
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marker would require 250,000 simulations. Assuming a simulation requires 4 hours to

complete, this sensitivity analysis would require more than a century. Still, such an

analysis may be insufficient if there are important synergistic effects between variables.

A pseudo-SA would be ideal for filtering a quantitative model to identify those features

that are likely to be most critical, prior to quantitative-SA. In fact, pre-SA filtering is

done in practice but in a subjective manner reflecting individual bias.

For a system modeled as a flow network, finding its bottlenecks can approximate

SA. Network bottlenecks can be found by graph partitioning methods(68, 69]. An

optimal partitioning of a graph’s nodes into separate groups is assumed to be one that

results in the fewest number of edges spanning different partitions, or minimally

weighted edges. This set of spanning edges is called the cutset, and information flow

through a network is limited by the cutset with the smallest capacity. Given the critical,

integrative positioning of the cutset, many pathways between nodes in the network will

include or cross the cutset. A measure of this property is betweenness centrality, which is

used in Social Network Analysis■ 65]. Betweenness centrality can be used to prioritize

nodes incident to a cutset. When an optimal partitioning is not found, modularity within

the system can be approximated by the connected and strongly connected components of

the network. A network’s articulation points, bridges, and nodes that have high

betweenness centrality scores will identify graph elements that are more likely to be in

the minimal capacity cutset. In a metabolic network, where enzymes and metabolites are

modeled as nodes connected by edges linking substrates to enzymes and enzymes to

products, an ideal cutset and the nodes that have high centrality scores may represent key

metabolites and essential enzymes.
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Modules in biology have been described as groups of interacting elements,

isolated physically or chemically, which perform a specific function[29]. Yi et al

provides a model of bacterial chemotaxis that may classify as a fitting example of

modularity[37]. This complete and parametrically robust system comprises seven

proteins exhibiting integral feedback control. The system's input is the concentration of a

stimulatory ligand, and the output is the level of phosphorylation for a certain protein that

affects cell chemotaxis. The functions that modules provide can be integrated to achieve

complicated and adaptable phenotypes. Consequently, identification of modules is

expected to be useful for therapeutic target discovery.

In the following sections I describe analyses of a graph model of Escherichia coli

metabolism. Modular substructure and key molecules are highlighted. Four centrality

metrics were validated according to their prioritization of metabolites representing the

common biosynthetic source of all cell materials, and discrimination between essential

and nonessential enzymes. The effect on each metric's prioritization of removing

common metabolites from the graph is also illustrated.

RESULTS
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The reactions catalyzed in E. coli metabolism were translated into a graph for

topological analysis. The number of enzymes was 575. The number of metabolites was

879; 345 inputs, 353 outputs, and 181 recycled. The number of recycled metabolites is a

count of metabolites listed in the ENZYME database that are both substrates and

products in a single reaction or in multiple reactions. It is important to note that several

reactions in the database are conditionally reversible, but not recorded as such. For our

analyses that use directed edges (SCC, and directed centrality metrics), the reaction

coordinate is assumed to be as recorded in the database and is not treated as being

reversible, an important point when interpreting these analyses. Additionally, several

metabolites have inconsistent capitalization from reaction to reaction, but this situation

was accounted for when parsing the database.

A flow diagram illustrating all phases of the analysis is shown in Figure 9-6,

found in the following Methods section.

The system of metabolic reactions is modeled as a graph with 1454 nodes and

- Degree distribution: E.coli metabolic network
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Figure 9-1. Scale free degree distribution, with fitted power functions.
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2361 edges. The degree distribution (Figure

9-1) is scale free as previously reported—

degree being the number of edges incident to a

node, or the number of neighboring nodes.

The number of components in the initial graph

is 17, and 16 describe single enzyme

reactions. While most are simple reactions:

component 1 [reduced glutaredoxin, arsenate,

oxidized glutaredoxin, EC 1.97.1.5, arsenite]

is an arsenical pump adapter which provides

resistance to arsenate toxins; component 2

[EC 2.1.1.63, protein-l-cysteine, DNA

(without 6-o-methylguanine), protein s

methyl-l-cysteine, DNA (containing 6-o-

methylguanine)] represents repair of alkylated

DNA which provides resistance to alkylating

agents in E. coli.

The main component is analyzed for

modularity and node centrality. This analysis

is referred to as the global analysis in tables

Table 9-1. Articulation points from the global
graph with their centralities: Directed
Betweenness Centrality (DBC), Undirected
Betweenness Centrality (UBC), Directed
Closeness Centrality (DCC), and Undirected
Closeness Centrality (UCC). The sort is based
on decreasing DBC, where larger values are
preferred. 30 are shown here, but the full listing
is provided in Table A-8 (see Appendix A).

Name UBC | DBC | UCC || DCC

h(2)o 926560|329597.61 195| 207716

diphosphate 252937|187832|61973| 207882

phosphate 233849|152231|61873| 207544

atp 463531|115640|61509| 209664
nadh 62298| 63737|62715, 208138

COa 114334|| 54026|62321| 208866

madph 51049| 40018162911 208458

nad(+) 116976|| 36014 |62139| 208960

pyruvate 61301 || 32317|62387| 208674

|-glutamate 51236|| 30437|62307| 209038

nad(p)h 22005] 18938|63759| 209388

alpha-d-glucose 1- 6528] 17054|63755] 209308
phosphate
d-ribose 5-phosphate | 11430| 12942163195| 209020
o(2) 26133| 7.105 |63473] 21 1192
|-serine 6126. 521.0|62865. 209456

3.5.1.18 12745| 4063|62554) 208601

glutathione 18642| 4000 |62883| 209192

udp-glucose 16573| 3812|63317| 211082
2.3.1.1 3884 || 3481 |63440| 209699

4.2.1.46 7408] 3076|62572| 21 1971

10- 5493| 2944 |63927] 209438
formyltetrahydrofolate
|-homocysteine 4548| 2877|63663| 209478
3.2.1.31 8383| 27.39|62576. 208601

3.1.3.27 18500| 2667|62324 208605

2.7.1.16 16716 1800 |62880 206567

3.1.1.61 14481 || 1795|62540| 206614

imp 470|| 1347|63035| 210698
d-ribulose 5- 2824 || 1123|63747| 2084.79
phosphate
|-ribulose 5- 5576 901 |64271 206468
phosphate
2.7.1.21 3210 899 |62882| 208562

and figures. For each centrality prioritization, the best scores are those above a threshold

calculated for each metric. The threshold for closeness centrality is 1.5 standard

deviations less than the mean and 5 standard deviations greater than the mean for
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betweenness centrality. The best scoring molecules for each metric are listed in Table A

5 (see Appendix A). The molecules that are the graph’s articulation points are shown in

Table 9-1 along with their centrality scores.

The graph’s strongly connected components (SCCs) have been found. After

adjusting for SCCs that contain single nodes, there are 2 SCCs; one containing 2 nodes

[EC 5.4.2.1 & 2 3-diphosphoglycerate] and another containing 528 nodes. The

metabolites known to be important for E. coli metabolism are shown in Table 9–2. Those

with centrality scores that exceeded the significance threshold are indicated. The relevant

scores for those identified are detailed in Table 9-3.

The quality of the prioritization given by each centrality metric was measured

with data on essential genes from the PEC database. The database contained 4411 gene /

phenotype pairs. The phenotypes were labeled as essential, nonessential, and unknown.

The Escherichia coli K-12 MG1655 complete genome from GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/index.html) was parsed for gene names and EC

numbers. So doing resulted in 748 gene, EC records. These two lists were joined by

gene name yielding 748 records of gene, EC number, and phenotype. 575 of these

enzymes matched genes in the model of E. coli metabolism. Of the original 748 enzyme

phenotypes, 85 were essential, 631 were nonessential, and the rest were unknown. At

least 11.4% of E. coli enzymes were found to be essential for its growth.
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Table 9-2. Sixteen key metabolites for E. coli
metabolism. A + indicates that the
cooresponding meatabolite had a significant
score from one or more prioritization metrics; a -
indicates otherwise. An EC number indicates
that the specific metabolite's score was not
deemed significant, but the score of an enzyme
linked to it was. Results are shown for analysis
of the global and filtered graph.

Table 9-3. The key metabolites that had
significant indicators from the global and filtered
analysis are shown below with the significant
scores for each metric. Each metric’s
significance threshold is indicated above the
metric's name. Nodes that are articulation point
s (APs) are indicated. UCC, UBC, & DBC are
defined in Table 9-1.

Metabolites global filtered
Glutamate

Pyruvate
CoA

2-oxoglutarate
Glutamine

Aspartate
Acetyl CoA
Phosphoribosyl PP

-

Tetrahydrofolate
- -

Succinate 6.2.1.5 +

3-phosphoglycerate
- -

Serine + +

Oxoisovalerate■ oxobutanoate) -
-

Anthranilate
-

4.1.3.27

Chorismate
-

4.1.3.27
\ ^* !--- ^ c 4 cc

The quality of the prioritization given

by each centrality metric was evaluated by

how well they discriminated between essential

+(yes) or
Global detail –(no) -1.5stdev +5Stdev +5Stoev

Name | AP UCC UBC DBC

|-glutamate + 62307 51236.23 30437.63

Pyruvate + 62387 61301.99 32317.05

CoA + 62321 114334.1 54026.96

Acetyl-CoA 32577.53, 18599.11

2-oxoglutarate 12354.89

|-glutamine 16938.82

6.3.1.1 19110.76

6.2.1.5 62356 20146.84 12481.01

|-serine +

+(yes) or
Filtered detail -(no) -1.5Stolev +5Stdev +5Stolev

Name AP Ucc UBC | DBC|
|-glutamate + 3107.98179.49 11833.04

Pyruvate + 3103 85650.74 10129.41

CoA + 3089 92856.25 17900.24

Acetyl-CoA + 3351 27600.73 9059.963

2-oxoglutarate + 3742.298

|-glutamine + 21317.14 4013.411

|-aspartate + 23718.10

Succinate 86O7.594

|-serine + 21803.15

4.1.3.27 + 3307 34683.58

2 & 1 sº 71°38 7.R4

and nonessential genes. To measure the difference between scores of essential and

nonessential genes, the discrete cumulative distribution function for each phenotype was

plotted (Figure 9-2) over the range of each metric's scores. These functions were

generated by plotting the fraction of genes, with a specific phenotype, having scores

better than score of for all observed o in the range of scores. The difference between the

essential gene and the nonessential gene distribution functions was also plotted. The

Kolmogorov-Smirnov (K-S) test(89, 90] was used to assess the significance of the

difference between the two distributions. The direction of shift between the distributions
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Figure 9–2. Distributions of centralities for essential and nonessential enzymes. The abscissas are oriented
so that better centrality values are leftward. ‘cumu elet’, ‘cumu n|nt’, and ‘d’ represent the cumulative
fraction of essential and nonessential enzymes and the difference between the two distributions. * -

was measured by subtracting the median score
- - - - - - - - - -Table 9–4. Distribution Statistics for Essential

- - - - - - -
and Nonessential Enzymes. Values in - ". . * *

of the nonessential gene distribution from the parentheses are for the filtered graph others are
for the global graph. D = maximum difference

median score of the essential gene between essential and nonessential enzyme "-

distributions. Q = probability of observing a
-

difference greater than D. Ne = effective
number of observations for the calculation of Q.
S = shift of essential gene score distribution

9-4 along with a measure of confidence, the away from the nonessential gene score
-

distribution. UCC, UBC, DCC & DBC are
probability of observing a difference greater defined in Table 9-1.

distribution, and the results are listed in Table

than the measured value, for each distribution Ne
metric ID Q S

ucc 0.22 (0.07) 0.01 (0.98) -6.47 (+4.64) E7.7 (38
ubc 0.29 (0.26) 0.00 (0.00) +7.83 (-7.18)

-
dcc 0.07 (0.43) 0.93 (0.00)+6.25 (-12.01)

The high degree of some common due oz. (0.44) 0.01 (0.00) +5.75 (-1.10)

difference.

metabolites may skew centrality scores of other metabolites because of their higher

likelihood to be on shortest paths through the graph. These shortest paths are used in

calculating each metric. For this reason the common metabolites were removed and the
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graph was reanalyzed with the expectation of revealing other key metabolites. The

common metabolites removed are: NAD", NADH, NADP", NADPH, NAD(P) ",

NAD(P)H, H2O, CO2, O2, H2O2, Phosphate, AMP, Diphosphate, ATP, ADP, NH3,

oxidized Thioredoxin, reduced Thioredoxin, NH4OH, DNA (containing 6-O-

Methylguanine), DNA (without 6-O-Methylguanine), {Phosphate}(n), {Phosphate}(n-1),

{Phosphate}(n+1), {Polyphosphate}(n), {Polyphosphate}(n-1), RNA 3'-terminal

phosphate, and RNA terminal- 2',3'-cyclic-phosphate. Pruning common metabolites and

pendant nodes yields a graph having 799 nodes, 887 edges, and 23 components. Most

components are small, i.e. two enzymes linked by a single metabolite. Three are larger

and more complicated, the largest containing 604 nodes.

The largest component, containing 604 nodes and 806 edges, was subjected to the

same battery of analyses as the global graph. These results are referenced to as the

filtered results in tables and figures. The molecules with the best scores for each

centrality metric are listed in Table A-6 (see Appendix A). The molecules that are the

filtered graph’s articulation points are listed in Table A-7 (see Appendix A) along with

their centrality scores. The graph’s strongly connected components have been found.

Ignoring SCCs that contain single nodes, there are 6 SCCs containing: 2, 4, 4, 6, 33, and

85 nodes each.

- - -
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The graph was partitioned into k
k-partitions

250

subgraphs (k = 2-40) in order to identify any

optimal partitioning. The partitioning

algorithm used was based on ideal recursive 2 : s , oº, is is 2022, 2s as so sº a sess o
- - k

octasection. An optimal value of k was —e-edge cut [s] –a–edge cuuk Is – edge cut [m]

-
Figure 9-3. Finding an optimal partitioning. [s]

expected to have an associated edgecut denotes data from the spectral partitioner. [m]
denotes data from the METIS partitioner.

significantly lower than what would be

anticipated. As evident in Figure 9-3, no single representative partitioning was indicated

by observation of the trend of edge-cut vs. k. The balanced partitioner METISTM was

also used to search for an optimal partitioning (http://www

users.cs.umn.edu/~karypis/metis). This too failed to find a single optimal partitioning.

Figure 9-3 shows the trend for both methods. The failure of these methods to find clearly

defined modular organization implies that the metabolic pathways of E. coli are highly

interconnected. This suggests that a definition of modularity other than simple isolation

may be required. Partitioning 24 (k24) generated by the spectral partitioner was selected

to exemplify the types of subgraphs generated, because it had the fewest edges cut

compared to the METISTM partitioning for the same value of k.

K24 yields subgraphs of various sizes, from 1 to 99. Subgraph 23 in Figure 9-4 is

a single component that contains subpathways common to three well-studied metabolic

pathways: arginine and proline metabolism; glycolysis / gluconeogenesis; and glycine,

serine, and threonine metabolism. Other subgraphs, such as subgraph 5 in Figure 9-5

contain multiple components. One component contains a subpathway common to the

urea cycle along with alanine and aspartate metabolism; another component contains a
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subpathway common to fructose & mannose metabolism, pyruvate metabolism, and

glycerolipid metabolism. A final component contains a subpathway common to both

galactose metabolism, and starch and sucrose metabolism.
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Figure 9–4. Subgraph 23 from k = 24, containing reactions shared by arginine and proline metabolism;
glycolysis / gluconeogenesis; and glycine, serine, and threonine metabolism. Larger nodes have higher
directed betweenness centrality. Arrows indicate articulation points.
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To address the effect of missing information on prioritization quality, the

difference and direction-of-shift between essential and nonessential gene centrality scores

were tabulated for both the global system and the filtered system. As mentioned

previously, the missing information is the presence of common metabolites and other

high degree nodes. Table 9-4 lists the values for both global and filtered systems. The

difference in undirected closeness centrality (UCC) between essential and nonessential

enzymes was diminished and the prioritization direction was reversed after filtering. The

corresponding differences in the three other metrics were also influenced. Undirected

betweenness centrality (UBC) was generally unchanged, but direction was reversed.

Directed closeness centrality (DCC) was improved and direction was reversed to reflect

the correct direction. Directed betweenness centrality (DBC) was increased but direction

was reversed. All metrics except DCC are negatively affected by removal of high degree

nodes from the graph.

DISCUSSION

Presented is a family of methods to explore modular substructure and critical

molecules in a metabolic network, utilizing solely topological information. This

generalized approach seeks to explore how far one can proceed in predicting and

prioritizing sensitive aspects of a molecular system in the absence of kinetic or

probabilistic information, which may be unavailable or unreliable. The methodology

provides a potentially powerful approach for prioritization and discovery of candidate

intervention targets. The overall usefulness of the methodology is subordinate to the

quality and reliability of information on the intermolecular influences within the

molecular system. The usefulness of individual applications is expected to be variable.
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Figure 9-5. Partition 5 from k = 24. Larger nodes have higher directed betweenness centrality.
onmponents represent subpathways common to 2 or more pathways. A) urea cycle and alanine and

aSpartate metabolism. B) fructose and mannose metabolism, pyruvate metabolism, and glycerolipid
metabolism. C) galactose metabolism, and starch and sucrose metabolism.

The methodology provides a quick and inexpensive screen having some risk of failure. It

also offers the potential for immediate success when analyzing systems that might be

unapproachable objectively.

In order to determine the extent to which each metric correctly prioritizes critical

"nolecules, I measured the difference in distributions of essential and nonessential genes.

An ideal prioritization should discriminate between the essential and nonessential

Snzymes by producing two non-overlapping distributions of metric values. The
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distribution for each group was represented with discrete cumulative distribution

functions. The difference between distributions was measured by median shift and

application of the K-S test. Most metrics show significant differences between essential

and nonessential enzymes, and correctly prioritize essential enzymes over nonessential

ones. The metric providing the best discrimination is undirected betweenness centrality.

It has the largest measure of D and S, with the sign of S indicating the proper direction in

prioritization (from Table 9-4). Smaller values for closeness are assumed to indicate

critical nodes and a negative S value indicates that, in general, essential enzymes have

Smaller values than nonessential enzymes. Larger values for betweenness are assumed to

indicate critical nodes, and a positive S value indicates that essential enzymes have larger

values than nonessential enzymes. The directed closeness centrality metric does not

discriminate well between these two phenotypes. DCC is a measure of the distance from

a node to all other nodes reachable by directed paths, or how far downstream a molecule

is in a molecular pathway.

Articulation points seem not to be indicative of essential enzymes, as the fraction

of essential enzymes that are articulation points is similar to the fraction of essential

enzymes in the non-articulation point population. This may be due, in part, to the fact

that for a given reaction there may be several enzymes that can catalyze it. Most

articulation points are metabolites common to pathways highly prioritized by centrality

metrics.

Prioritization metrics based on centrality discriminate between essential and

nonessential enzymes, consistent with initial assumptions about the topological

Characteristics of critical molecules. All metrics are sensitive to missing information
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when prioritizing enzymes. Such sensitivity may imply that, in this context, enzymes are

only as important as their metabolites. When important metabolites are missing from a

system, the related enzymes are less significant. Looking at the reduction in undirected

betweenness centrality values for essential enzymes, it is clear that in the global case,

essential enzymes are very central to the system, and that after removal of common

metabolites they occupy more peripheral positions.

The quality of a prioritization for essential metabolites was examined by

comparing it with known key metabolites for E. coli. I considered a list of 16 key

metabolites, which represent the common biosynthetic source for all cell materials. Most

of the 16 were identified by one or more centrality metrics. For closeness and

betweenness metrics, the threshold for selection was a score less than 1.5 standard

deviations below the mean and greater than 5 standard devision. above the mean,

respectively. Analysis of the global system resulted in nine matches to the list of sixteen.

Aspartate and succinate were not selected directly, but associated enzymes were.

Analysis of the system after filtering out common metabolites resulted in twelve matches

to the list of 16, including aspartate and succinate. Aspartate was an articulation point in

the filtered system and succinate’s directed betweenness centrality score was above

threshold.

Most of those selected as potentially critical molecules have qualifying directed

betweenness centrality values and/or were articulation points. However, none had

Qualifying directed closeness centrality values. In the paper by Wagner and Fell, the

metabolic network was used to generate two separate networks: one with only

metabolites and another with only enzymes[85]. The metric used to predict critical
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molecules was similar to undirected closeness centrality, and results were reported only

for the network containing metabolites. They had success using closeness centrality, but

here, in a realistic, inclusive network model, closeness was not the most reliable

predictor. Betweenness centrality and articulation points were most reliable, especially

after filtering out the common metabolites.

The development of betweenness centrality and articulation points as predictors

for critical areas in a system of interactions assumes that biological molecular systems are

comprised in part of assemblages of interacting modules. In this context, each module

represents a highly interconnected subsystem that is somewhat isolated from the rest of

the system. Elements (whether known or unknown) linking a modular substructure to the

rest of the system are essential to information flow or mass transfer throughout the

system. Links between modules and the rest of the system can be thought of as an ideal

cutset if the system were to be partitioned. Nodes incident to the edges of this cutset

should have relatively large betweenness centrality scores. To find these nodes,

articulation points and modules are located, with the latter being approximated by

optimal graph partitioning, connected components, and strongly connected components.

In this analysis no optimal graph partitioning was found to identify an ideal cutset

as defined above. Instead, articulation points and nodes with high betweenness centrality

Values approximated nodes incident to this, as yet unidentified, ideal cutset.

In validating the predictions for critical molecules, many of the metabolites

already known to be critical for E. coli were identified and both betweenness and

closeness centrality metrics were shown to discriminate between essential and

nonessential enzymes. The removal of common metabolites from the system did not
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affect the quality of critical metabolite prioritization, but did severely affect the

prioritization for essential enzymes.

As no optimal partitioning was found, the system's strongly connected

components were identified and compared to known metabolic pathways. Some SCCs

contained entire pathways, while others represented undocumented cycles common to

multiple pathways. Such cycles may represent certain chemistry that has been repeatedly

co-opted during evolution in the development of new mechanisms. Alternatively, they

may represent the random accretion of cross talk between established but constantly

evolving metabolic pathways.

The topological analyses presented here were effective in quickly determining

metabolically important molecules and interactions. When applied to other systems, an

objectively determined prioritization may be useful in generating new hypotheses. It may

also aid in identification and validation of potential therapeutic intervention targets by

Suggesting molecules and interactions on which to focus for maximum effect, or to avoid

in order to prevent unwanted toxicity. Alternatively, the prioritization could be used to

Select a subset of variables for thorough computational sensitivity analysis.

METHODS

A model of E. coli metabolism was constructed by obtaining all the enzymatic

reactions in the ENZYME database that had a corresponding gene in E. coli

(http://www.expasy.ch/enzyme■ ). These reactions were translated into a graph by

representing each substrate, product, and enzyme as graph nodes. For each reaction,

edges were created, linking substrate nodes to enzyme nodes and linking enzyme nodes
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to product nodes. The modularity of the E. coli metabolic network and the prioritization

of molecules were assessed separately.

Modularity was assessed by first finding the graph’s components. The largest

component was analyzed for an optimal partitioning. Additionally, this component’s

SCCs were identified. The partitions and SCCs both approximate modularity.

N

* Partitioning
- -

Somparative
* Clustering Modularity Modeling & Topology
- SCC Assessment > Hypothesis

Generation

./
N

•AP

-
Prioritization

• Centrality | t Target Discovery
& Validation

Targets L' J

Figure 9-6. The steps involved in identifying critical objects and modularity in a network (graph) using said
network's topology. Raw data on biological interaction or dependence is modeled by a graph or network.
Next a variety of techniques are applied on the search for modular substructures. If found, the objects
involved in linking separate modules are selected and prioritized according to several measures of
criticality in a network. Above, AP stands for articulation point, and SCC stands for strongly connected
component. In case modules are not found satisfactorily, all objects in the network are prioritized, and the

ighest priority nodes are hypothesized to be critical for information or mass flow the system being
deled. To the right: steps are labeled; the potential applicability of each phase's results are indicated;

nd the entire process labeled as Comparative Topology, as different systems can be objectively compared
y their modularity and critical objects.
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Partitions and SCCs are semi-isolated subgraphs—partitions via their minimal cutset

property and SCCs by the absence of cycles between SCCs. The partitioning algorithm

utilizes ideal recursive spectral octasection on the undirected graph, while the SCCs are

defined for the directed graph, which is implied by the reaction description.

The number of network parts that optimally represent the system’s modular

substructure is unknown, a priori. The optimal number of partitions, k, is sought by

partitioning the graph for several values of k and then plotting the number of edges

spanning partitions (edgecut) vs. k. The ideal k is taken to be the one for which the

edgecut is significantly less than the expected edgecut. The spectral partitioning

algorithm uses three maximal eigenvectors of the adjacency matrix to partition a graph

into at most eight parts at a time. If additional partitions are required, the algorithm

chooses among the network parts for the next one to partition, which is usually the part

with the maximal eigenvalue. This process is repeated until the required number of

partitions is found. A spectral bisection algorithm is described in (Chan, Schlag et al.

1993)[70].

Common metabolites, such as water and ATP, connect many subsystems within

the graph. These and other common metabolites were removed from the graph to make it

easier to identify substructures. Once removed, the largest remaining component was

reanalyzed. The pendant nodes (nodes with a single neighbor) were also removed to

reduce the computational burden. Each component had its nodes prioritized with four

different centrality metrics. Betweenness and closeness centrality scores were calculated

for each node using directed and undirected edges. These metrics were labeled: Directed
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Betweenness Centrality (DBC), Undirected Betweenness Centrality (UBC), Directed

Closeness Centrality (DCC), and Undirected Closeness Centrality (UCC).

The module assignments and molecule prioritizations were validated using data

from the PEC database (http://www.shigen.nig.ac.jp/ecoli/pec/), indicating essential E.

coli genes; pathway annotations from the KEGG database

(http://www.genome.ad.jp/kegg■ ); and literature references to key metabolites[85]. The

PEC database compiles information from research reports and deletion mutant studies in

order to classify E. coli genes as essential for growth, non-essential, or unknown. The

KEGG database contains information on regulatory and metabolic pathways for several

P(D > observed ) = (9-1)
o(JN. 0.12 + 0.11, JW p)
o(a)=2X (–1)-'e-º/* (9-2)

j=l

__NiN2 (9-3)
* N1 + N2

organisms. Information on key metabolites has been summarized for E. coli in the

above-cited report. The prioritization of these key metabolites by each method was

noted. The discrete cumulative distribution of essential enzymes was plotted for the

measured range of each centrality metric. The distribution of nonessential enzymes was

also plotted and the significance of the difference from that of the essential enzymes was

tested. The significance of the difference between distributions was measured with the

Kolmogorov-Smirnov (K-S) test. The K-S test measures the maximum value of the

absolute difference, D, between two cumulative distribution functions, SN1 and SN2. The

significance of D was assessed by using Eq 9-1 to calculate the probability of D being

greater than observed. In addition, the degree to which the quality of the prioritization is
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affected by missing information was assessed by comparing the differences between

prioritization before and after common metabolite removal. In Eq 9-3, Ne is the effective

number of data points and N1, N2 are the number of data points for SN1, SN2.
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Chapter 10: Conclusion

It is safe to say that when a person analyzes any system, they draw from their personal store

of knowledge to evaluate elements in that system. Current models used for in silico drug

screening are very large and complicated, partly due to the vast and growing amounts of

biological and pharmacological information. Many simulation engines for in silico

experimentation represent significant achievements and provide valuable contributions to

investigators. They allow several therapeutic target intervention strategies to be computationally

validated. Unfortunately, the complexity that allows such high quality models confounds

attempts to use them for predicting new targets. A single person is unlikely to have intimate

current knowledge of an entire system, and if set to the task of evaluating the model’s various

elements, an investigator would naturally start where s/he is most comfortable. This could

unintentionally lead to a biased evaluation and to overlooking a system object that is a potential

“diamond in the rough.” Even allowing for such bias, considerable personal-objectivity and time

is required for this task. In fact, a recent survey of on-market drugs of various indications stated

that approximately seventy percent had similar targets. These targets were not found using the

current technologies of in silico experimentation and bioinformatics resources, but these methods

are likely to continue this trend. In silico tools are currently used only to further validate targets

predicted by traditional methods. One reason for the small target pool is the reformulation of

drugs to treat several indications. For example, Metformin"M has an indication for diabetes

mellitus and obesity. An additional reason is the difficulty in navigating the complicated

interdependencies of objects in many biological networks, the very same dependencies that result

in robust and adaptive biological operation.

A strategy that evaluates large and highly connected biological networks and identifies

potentially critical system elements is expected to be valued for many reasons; namely, the

increases in research and development efficiency and the discovery of novel therapeutic targets.
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As more genes are sequenced and Microarray experimentation increases, the number of targets

begins to overwhelm in vitro validation capabilities. The number of targets evaluated per year

per company is expected to rise from 40 to 200. Until in silico and in vitro validation methods

are scaled up to match the number of target candidates, there is a need for additional target

screening and prioritization methodologies.

The methods chosen to objectively investigate complicated models of biological systems

were developed to test three hypotheses. H1.) If a model is partitioned into maximally isolated

parts, the links between parts are critical to the system's operation. For example, if the model

represented flow through a metabolic pathway and was best partitioned into two submodels, the

capacity for mass transfer of the links would limit the flow of mass from the source to the sink.

Reducing the capacity of the links would reduce the system's overall flow; as such these links

would be ideal targets for the inhibition of a particular metabolic pathway. Given this hypothesis,

methods were developed to partition a model into submodels. Along these lines, several

researchers have hypothesized about the existence of biological modules that allow robust

biological functions. The modules they describe are isolated chemically and/or physically from

other biological processes. This isolation is also a property of the partitions needed to test H1;

therefore, the same methods developed to test H1 can be used to identify natural modular

structure. In addition to graph partitioning as a method for identifying linking nodes, articulation

points and bridges were identified as they serve unique integrative roles in a graph. If these

methods do find suitable partitions or modules, the number of links between them could be many.

A target prioritization metric is needed for this potentially long list of targets. H2.) Given a graph

consisting of nodes and edges, representing objects and their interactions, and a graph partitioning

with maximally isolated partitions, the nodes with links to other partitions have high betweenness

centrality. As betweenness centrality was shown to be a property of linking nodes, it was chosen

as a metric to prioritize them. H3.) High betweenness centrality is a property of nodes that are

- *-
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critical to a system's operation. To test H2 and H3, a method was developed to calculate

betweenness centrality and other centrality metrics for any node in a graph.

The methods developed to identify modularity and prioritize targets were validated by

application to several models of biology. The first system was a model of blood coagulation.

This model was presented as an effect diagram, indicating molecules involved in blood

coagulation and their influences on each other. First, the optimal partitioning was found.

Second, the molecules with links to other partitions were identified by ranking them by the

fraction of neighboring nodes in the same partition. The molecules with the smallest fraction

should be ideal targets according to H1. Several methods were used to optimally partition the

blood coagulation system. A freely available balanced partitioner, METIS; a custom coded

spectral partitioner; and strongly connected component algorithm. The targets identified by each

were similar. These targets were validated by comparison to known causes of blood coagulation

disorders. Partitioning identified all the molecules associated with the five primary blood

coagulation disorders. Third, H2 was tested by calculating the betweenness and closeness

centrality scores for each object in the network, and then checking if high centrality is a property

of the previously identified linking nodes. The highest ranking objects, according to centrality,

were found to have a high fraction of links to other partitions. This result indicates that centrality

is a suitable prioritization metric for linking nodes, which are critical for a system's operation.

H3 required a quantitative model for which sensitivity analysis results could be compared to

the prioritization metrics under development. The model chosen was the Obesity Physiolab".

It is quite a large quantitative modeling system used by pharmaceutical companies to research

obesity therapies and suggest biomarkers and patient populations for clinical trials. The

procedures for finding an optimal partitioning resulted in no suitable partitioning of the system.

Normally, the partitioning would be used to help identify linking nodes, which would then be

prioritized by their centrality. Instead, all nodes had their centralities calculated. Those with

significant centralities were selected as potential therapeutic targets for controlling obesity. A

-* *
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tabulation of weight control drugs and their molecular targets was compiled. Eighty percent of

the known targets are included in the list of predicted targets. If the neighbors of the predicted

targets were also considered, one hundred percent of the known drug targets are matched. To test

H3, first two biomarkers were chosen to indicate weight loss: fat mass and rate of stored

triglyceride change. Second, the sensitivity of the biomarkers to therapies designed for several

variables was calculated by simulating virtual clinical trials. By comparing centrality metrics of

the variables to the calculated sensitivities, it was observed that the likelihood of a variable

having a significant sensitivity increased with the value of the variable’s centrality. The

availability of a modified version of the obesity model also allowed the consistency of the

prioritization methods to be tested.

This new version of the obesity model had many more equations and variables, leading to a

much larger graph to analyze for modularity and critical targets. Regardless of the changes to the

model, the great majority of the known obesity drug targets have significant centrality scores and

increasing centrality is again shown to indicate the increased likelihood of observing significant

biomarker sensitivity. Modularity assessments of the obesity models indicate a system organized

in a noncompartmentalized fashion. Thus, nodes that have high centrality, that are articulation

points, or that are incident to a bridge, were used to approximate linking nodes.

After showing that linking nodes are good therapeutic targets, that high centrality is a

property of linking nodes, and that better centrality of an object implies better system sensitivity

to the object; the techniques for modularity assessment and target prioritization were applied to

another “real world” model of biology. A model of E. coli metabolism was created from a

database of enzyme catalyzed reactions. Reaction coordinates were not always as indicated in the

database, so analyses were done with and without respect to the indicated reaction coordinate.

Inconsistent capitalization of metabolites was another issue that was dealt with in creating the

graph model from the database of reactions. After prioritization of nodes according to centrality,

a majority of the metabolites that serve as a source for most biosynthetic materials are found to
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have significant centralities. For enzymes, those essential to the growth of E. coli have better

centrality scores than nonessential enzymes. Unfortunately, there is much overlap in the

centrality distributions of these two enzyme groups, even though there is high confidence in the

difference between the two distributions. A reprioritization of metabolites and enzymes after

common metabolites, such as H20, ATP, NH2, etc, were removed from the graph resulted in an

improved prioritization for metabolites, but the enzyme prioritization was negatively affected.

This may be due to differences in degree distribution between these two classes of molecules and

the fact that they are analyzed together in the same mixed mode graph.

An assessment of the system resulted in no clear partitioning into modules, but there were

interesting observations of the makeup of the partitions and SCCs. The partitions and SCCs

—contained reactions that have been assigned to multiple well-studied pathways. This overlap

represents potential cross talk and common processes among different biosynthetic pathways.

The degree of overlap suggests that efforts to model particular pathways and predict therapeutic

targets should be informed by steps attributed to other “pathways.”

The steps developed for the analysis of large and complicated systems can be divided into

two phases, modularity assessment and target prioritization. Suitable methods for modularity

assessment would assign a system’s objects into groups that have few connections with other

groups and many connections among objects in the same group. In short, each group

approximates the concept of a module due to its isolation from the rest of the system. The

methods chosen were graph partitioning, graph clustering, and SCC identification. As the

number of partitions that best describes a system is unknown a priori, several numbers are chosen

and the one which results in a number of edges cut by the partitioning is lower than expected by

observing the trend in edge-cut vs. number of partitions. This method resulted in a division of the

blood coagulation pathway into the intrinsic pathway, extrinsic pathway, common pathway, and

an additional segment. For other, more complicated, systems, no single number of partitions was

especially appropriate. This indicates that these systems are indeed amodular, or that graph
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partitioning methods that primarily minimize edge-cut are insufficient. Some partitions of E. coli

metabolism contained single well-connected components, but others contained multiple

components. Ideally, a partition should contain a single component, as the partition should

contain a group of objects that interact with each other and not multiple unassociating groups.

Approximating modules by the SCCs of a graph generally results in larger, single-component,

groupings with lower edge density containing feedback loops and other cyclic pathways. SCCs

are only defined for a graph with directional relations. So, systems like protein interaction

networks cannot be analyzed in this manner, and uncertainty in the directionality of a relation

affects what SCCs are found.

The target prioritization phase ranks nodes according to four metrics: directed and

undirected betweenness centrality, and directed and undirected closeness centrality. Roughly,

betweenness centrality is a measure of how often a node lies on a direct path of influence or

communication between other nodes; closeness centrality is a measure of how close a node is to

other nodes in the system. These measures require the calculation of the shortest paths between

all node pairs. Said paths can be different lengths for the directed and undirected version of the

same graph. In general, prioritizations based on directed betweenness centrality correctly

highlighted known drug targets and best discriminated between essential and nonessential genes.

Undirected closeness centrality and undirected betweenness centrality also provided useful

prioritizations. Directed closeness centrality in general provided unsatisfactory prioritizations of

known therapeutic targets and biomarker-sensitive variables. Although the stated hypotheses

focused on betweenness centrality—which did prove to be a very useful target prioritization

metric—undirected closeness centrality also provided useful prioritizations, and should also be

considered in future analyses. Consideration of closeness in addition to betweenness results in

minor additional computation, as both algorithms have common steps.

In coding the heuristic to implement the modularity assessment and node prioritization

methods, new algorithms were created. These algorithms have general utility, even though they
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were developed for this specialized purpose. The centrality calculations required a shortest path

algorithm, and the algorithm by Djikstra was chosen. This algorithm only retains a single

shortest path, but for some node pairs there are multiple paths with the same length that is shorter

than all other paths between the two nodes. Djikstra's algorithm was adapted to retain multiple

shortest paths. Though a public graph partitioner was used to assess modularity a novel spectral

partitioner was created and a new graph-clustering algorithm was developed. Spectral methods to

partition graphs are well known and generally take the form of recursive bisection algorithms.

The new algorithm recursively partitions a graph into at most eight sections at a time instead of

two. A partitioning scheduler is also part of the new algorithm. This scheduler decides how

many new groups need to be created at each step and selects which existing partition to divide.

The eigenvalues of each group indicate the quality of partitions generated from that group. The

clustering algorithm is hierarchical and agglomerative; it utilizes a combination function,

expressed as several factorial functions, which initially caused to memory errors. A new

algorithm was written to overcome these memory errors. It expands the factorials, simplifies, and

evaluates the new expression. Each of these algorithms was written in the Python"M computer

programming language. In fact, the entire heuristic was written in this language, which does not

provide the fastest running code, but does result in easy to code and understand software, an ideal

feature for rapid prototype development. A graphical user interface was created to automate

analyses and display the results graphically. A user has two options for the visual layout of the

graph: a static one, and a dynamic one. The ability to remove objects from a system and rerun the

battery of analyses provides a venue for observing changes in the centrality distribution and

modularity due to changes in the system.

Following this line of investigation of complicated biological systems, the next logical steps

are those that increase the accessibility of the heuristic and further validate the underlying

concepts. Increasing technical accessibility of the heuristic can be done in several ways. A

graph-managing database that allows subgraphs to be extracted from a larger graph via logical
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queries and allows easy storage of analyses results would simplify the analysis process.

Currently, if a graph consists of multiple components, a new input file has to be created with a

single componen for analysis. Automatic processing and analysis of these components would be

useful. A function that enables the transfer of data in the Systems Biology Markup Language

(SBML), and possibly integration with the Systems Biology Workbench (SBW) would facilitate

the sharing of system models and analyses tools[91, 92]. To further validate the concepts

developed here a few areas can be investigated: the topological characteristics of known limiting

enzymes, the effect of edge and node weightings from kinetic or stochastic parameters, and the

sensitivity of prioritization metrics to error in the system's representation.

Increasing the availability and utility of topological methods to study complicated biological

networks gains importance as the size and complexity of biological models grow. The current

trends in data integration and network representations of biology, and the increasing interest in

systems biology herald the wider application of network-based analyses. Currently, many groups

are working toward the generation of networks that model biological systems, and while these

efforts are essential there are few efforts to develop methods that describe the organizational

structure of a network and identify critical network features that may also be important

biologically. The methods and heuristic developed here may fill this need by identifying

modularity in biological systems and identifying objects in these systems which are critical to

system performance. Importantly, these methods require, as input data, only a listing of the

objects in the system and the relationships between them, but not the stochastic and kinetic

characteristics of these objects and relationships. The simplicity of the data required makes the

methods applicable to a wide variety of system models where detailed data might be unavailable

or of low quality. While these methods correctly identify known & novel therapeutic targets,

essential metabolites, disease biomarkers, and other critical objects in biological systems, they do

not predict exact quantitative features of objects (e.g. flux control coefficients). The ranking

generated is useful in hypothesis generation and prioritization of validation experiments to get at
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these quantitative features, but the techniques developed here are best used in conjunction with

established investigative techniques that can either predict or measure the exact level to which a

potential target affects a system.
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APPENDIX A: TCibleS

Table A-5. The best scoring molecules for each metric when applied to the global graph of E. coli
metabolism. The criteria for significant a closeness score is less than 1.5 standard deviations below the
mean; and for betweenness, greater than 5 standard deviations above the mean. The betweenness centrality
metrics are Directed Betweenness Centrality (DBC), and Undirected Betweenness Centrality (UBC). The
closeness centrality metrics are Directed Closeness Centrality (DCC), and Undirected Closeness Centrality
(UCC).

| name | DBC | name | UBC | name | UCC | name | DCC
h(2)o 329597.57 h(2)o 926560.21 h(2)o 61195.5.1.3.4 206370

diphosphate 187832.89 atp 463531.85 atp 615092.1.1.80 206405

Phosphate 152231.1 diphosphate 252937.18 6.3.5.1 615702.4.2.1 206442

2.4.2.17 115916.03 phosphate 233849.67 6.3.5.5 616202.7.7.8 206442

Atp 115640.03 co(2) 180008.722.5.1.6 61626 2.4.2.4 206442

|-ribulose 5
2.4.2.14 68923.041 adp 151428.152.5.1.17 61672 phosphate 206468

protein -
Nadh 63737.172nad(+) 116976.36 2.7.9.2 61718 glutamate 206513

Coa 54026.964 coa 114334.136.3.5.2 617182.7.2.3 206563

1.6.6.9 48978.955 nadp(+) 77143.998 6.3.5.3 61750 2.7.4.9 206567

nh(3) 48202.119 nadh 62298.221 2.7.9.3 61784.2.7.1.16 206567

s-adenosyl-l-
Nadph 40018.254 methionine 61519.275 3.6.3.3 617962.7.1.17 206567

nad(+) 36014.329 pyruvate 61301.993.3.6.3.16 617962.1.2.9 206594

4.1.1.31 35719.8146.3.5.1 55150,653.3.6.3.2 61796 3.5.4.19 206610

Pyruvate 32317,047 amp 54:150.309 3.6.3.5 61796 3.1.5.1 206614

4.1.2.15 30539.266 -glutamate 51236.229 3.6.3.4 61796 3.6.1.41 206614

4.1.2.16 30539.266 nh(3) 51094.799 3.6.3.14 61796 3.1.4,16 206614

|-glutamate 30437.633 nadph 51049.506 3.6.3.12 61796 3.2.1.22 206614

nadp(+) 30039.785.3.2.2.9 49335.901 phosphate 61873.3.1.1.61 206614

S-adenosyl-l-
co(2) 29844.154 homocysteine 46152.602 adp 61903.3.1.1.5 206614

6.3.5.1 24518.267.2.7.1.23 42552.395.3.6.1.1 61960 3.1.1.32 206614

6.3.1.1 19110.7654.1.1.50 40928,698 diphosphate 61973.3.1.1.45 206614

nad(p)h 18938.4926.3.5.5 36968.21 co(2) 620453.5.1.11 206614

4.2.1.52 18795.2412.5.1.6 35007.294 2.4.2.14 620983.5.2.5 206614

acetyl-Coa 18599.108 1.8.1.2 3290.9.376.4.1.1.31 62134 3.5.2.6 206614

4.2.1.70 17639,911 acetyl-coa 32577.535 nad(+) 621392.7.1.19 207286
alpha-d-glucose
1-phosphate 17054.914 1.4.1.4 28639.9083.5.4.25 62.1582.7.8.20 207401

|-glutamine 16938.821 6.3.5.2 28098.306 3.6.1.23 62168 phosphate 207544

6.3.1.2 16119,848 1.6.6.4 27851,673.3.1.7.2 621743. 1.4.14 207587

h(2)o(2) 15848.8146.3.3.3 27731.6593.6.1.31 621743.5.4.10 207591

4.4.1.16 15010.1372.5.1.17 27263.225 3.6.1.41 62180 3.5.2.3 207609

reduced acceptor 14665.1372.7.9.2 27257.469 amp 62279

ony",
- **
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1.4.1.4

2.3.1.8

1.2.1.16

d-ribose 5
phosphate
6.3.4.2

6.2.1.5

1.6.6.4

2-oxoglutarate
3.5.4.2

|-alanine

adenine

2.4.2.22

1.6.6.8

6.3.3.3

acetate

6.2.1.1

1.5.3.1

1.1.1.1.6

6.3.5.2

5-phospho-alpha
d-ribose 1
diphosphate
2.4.1.7

1.6.1.2

1.6.1.1

3.2.2.9

1.6.99.3

nad(p)(+)
1.6.4.5

3.5.1.1
d-fructose 6
phosphate

14578.233 1.2.1.16

14473.344 o■ 2)
13673.6226.3.5.3

12942.3871.1.1.22

1290.9.198 nad(p)(+)

12481,008 nad(p)h
12477,233.3.6.3.16

12354.8853.6.3.5

12243.556 3.6.3.4

12019.521.3.6.3.3

11603.581 3.6.3.14

11183.284.3.6.3.12

10744.875 3.6.3.2

10602.256 6.2.1.5

10530.654

10399.924

10187.299

10040.144

10037.869

9997.4471

9931.5849

9828.3354

9828.3354

9467.0887

93.15.6614

9248.8166

91.92.139

9072.9784

8857.1424

26893.984 1.2.2.2

26133.7076.3.3.3

24737,354 3.1.3.11

23610.1296.3.4.14

22005.178 -glutamate
22005. 1781.4.1.4

20506.59 4.2.99.2

20506.59 4.1.2.15

20506.59 4.1.2.16

20506.59 coa

20506.593.1.3.27

20506.59 3.2.2.4

20506.593.6.1.13

20146.84.3.1.3.10

3.1.3.15

3.1.3.48

3.6.1.7

3.1.3.1

3.1.3.2

2.9.1.1

3.1.3.16

3.1.3.26

3.1.3.18

3.6.1.11

3.6.1.40

3.1.3.12

3.1.3.5

3.1.3.3

1.5.1.12

3.5.3.19

3.5.1.5

nh(3)
6.2.1.5

6.3.1.2

6.3.4.2

1.1.1.22

2.7.2.2

4.2.1.51

4.1.1.48

pyruvate
4.2.1.1

62290

62298

62300

62306

62307

62310

62314

62316

62320

62321

62324

62326

62326

62326

62328

62328

62328

62328

62328

62330

62332

62332

62332

62332

62332

62332

62332

62332

62334

62340

62348

62355

62356

62368

62374

62380

62380

62.382

62386

62387

62388

dº

>
^.
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2. '
Table A-6. The best scoring molecules for each metric when applied to the filtered graph of E. coli *3º
metabolism. The criteria for significant a closeness score is less than 1.5 standard deviations below the o,
mean; and for betweenness, greater than 5 standard deviations above the mean. The betweenness centrality | T
metrics are Directed Betweenness Centrality (DBC), and Undirected Betweenness Centrality (UBC). The *..
closeness centrality metrics are Directed Closeness Centrality (DCC), and Undirected Closeness Centrality 2 (~
(UCC).

| Name DBC name UBC | name UCC | name DCC |
Coa 17900.238|-glutamate 98.179.487 Coa 30895.1.3.1 472068

d-ribulose 5
|-glutamate 1 1833.04.1 COa 92856.245 pyruvate 3103 phosphate 473051

reduced
acceptor 10405.129 pyruvate 85650.739|-glutamate 31071.1.2.3 473072

5-phospho
alpha-d-ribose

4.4.1.16 10281.1291-diphosphate 48354,627 2.3.1.1 3225.5.3.1.9 473075

ferrocytochro
Pyruvate 10129.4052.3.1.1 43001.599 4.1.3.27 3307 me C 473085 -

6.2.1.5 9730.60762.4.2.14 40889.652 acetyl-coa 3351 1.1.1.1.5 4.73098 -

d-fructose 6- ferricytochrom
succinyl-coa 9606.6076 phosphate 39323.6672.3.1.54 3361 e C 473111 * ~ *

acetyl-coa 9059.96294.1.3.27 34683.582 oxaloacetate 3419 2.4.1.15 474043
-

º, L
- - - a

*

d- alpha_alpha-
-

- «
glyceraldehyd trehalose 6- * -

Succinate 8607.5936e 3-phosphate 30951,634 2.6.1.1 3451 phosphate 474055 º **C.
d-glucose 6- .*

|-alanine 8606.9.1092.6.1.16 29061.2354.1.3.7 3485 phosphate 474059 º
sº

2.3.1.46 8378.2688 acetyl-coa 27600.734.1.2.21 3487 d-glucose 47.4065 -> »” A.

Acceptor 8104.848 oxaloacetate 26934,213 4.1.2.14 3487.3.2.1.93 474067 () º-- A

sn-glycerol 3
4.2.99.9 8095.7273 phosphate 25913.25 4.1.3.31 35052.7.1.2 474075 *>
o-succinyl-l- phosphoenolp º,
homoserine 7958.0606 yruvate 24743.324 uracil 476035 7.

s-adenosyl-l-
1.3.99.1 7707.4662 methionine 24675.791 glutathione 477042 --

2.6.1.66 7138.75442.3.1.54 24001.527 spermidine 477047 ºil)
2.3.1.47 7128.9109|-aspartate 23718.102 (s)-lactate 477053 Y
2.6.1.16 5693.073 2.4.2.9 234.19.118 5.3.1.6 478029 ~

~
- {

d-fructose 6

phosphate 5562.96692.3.1.47 23144.908 2.7.6.1 478029 W.
-

1.7.99.5 4515.3298 glycine 22222,014 2.4.1.44 478040 *— º,
º, Ll

2.3.1.1 4292.909 2.2.1.1 22207.435 1.2.1.22 478041 º
º

fº,Ti º
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5_10- º,
methylenetetr •o
ahydrofolate 4254,4405 |-serine 21803. 152

|-glutamine 4013.4108 -glutamine 21317.137

glycerone
2-oxoglutarate 3742.2985 phosphate 21184.829

d-ribose 5
phosphate 20172.047

3.1.4.46 19924

2.1.1.10 19630.69

2.3.1.15 19594.014

acceptor 19359.528

reduced
acceptor 19359.528

Table A-7. Articulation points for the filtered graph, listed with their centrality scores. The sort is based on
decreasing UBC, where larger values are preferred.

UCC UBC DCC DBC name -

3107|98179487456|407304|11833,040888|-glutamate - a -

3089|92856.245297 24.1212|17900.238296 |Coa ---

3103|85650.738565|241398|10129.405197|pyruvate
3225|43001.5985.03|241438 4292.909036|2.3.1.1 - *

3519 |40889.652409|407383| 1290.35269|2.4.2.14 -
3845|39323.6666.23 407470 5562.9669|d-fructose 6-phosphate - .

3307|34683,581704|407525] 1881.774426|4.1.3.27

3351|27600.729885|241500 9059.962916|acetyl-coa
3419|26934.213408|241526|| 1346.767216|Oxaloacetate * -

4623|24675.791095|489000 0|s-adenosyl-l-methionine
- -

38.93|23718.102207407750 1028.577778||-aspartate
3521 |23144,907834 24 1862| 7128,910864|2.3.1.47 º
3903|22222.014386|482022 608.5|glycine º
3725|21803.152001 |243730, 1680.032468||-Serine -

A.
3515, 21317.13746|407454|4013.410848]|-glutamine º,

4169|21 184.828673|238933 253|glycerone phosphate - -

4315||19630.689984 |240334|| 1088.363636 2.1.1.10

4485| 18056.67644|239364 1260 [2.6.1.62 º,
3949|17816.116781 242082 1997.|-homocysteine º
3937|17403.342881 243126|| 473.780195|1.1.99.5 .
4027|17085,529071 |241112 1500|8-amino-7-Oxononanoate

3673||16899.147.225|241662| 2735.520531|acetate

3587|16278.378599|242832| 2447,496.104 |4.4.1.8

5825 16119.661234|486004 469.25|alpha-d-glucose 1-phosphate Y
3711||15753.845642|24.1620| 8606.910864||-alanine º'
4737|13126.085656|226604 798|s-adenosyl-l-homocysteine s
4055||11186.532205|243364 4254,440476|5_10-methylenetetrahydrofolate

3911| 9960.269914|407450 3742.298482|2-oxoglutarate -V, /
5435| 9661.616567|473051 16|d-ribulose 5-phosphate ~

4703 || 9526.83O385|222142 271 ladenine L
3673| 9086.217171|242202 1589|2.3.1.39 - 2
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nameUCC UBC DCC DBC

3675|| 7532.875037|407517| 1168.10607|6.3.5.2

48.93| 7353.34307|225871 534 3.2.2.9

4863| 7263.435393 |485010 426||-threonine

6415 71.64 |485008 16|2.7.7.24

6025 71.64 |486006 6|1.1.1.44

8537 71.64 |489000 0|d-mannonate

3673| 6802.590933|473072 2038||1.1.2.3

5575|| 6221.414187|480025 18|putrescine
3625| 6181,379918|407525] 282.200885 2.6.1.11

5667| 6101.4634.17|483015 1030.25|udp-glucose
7007 5980 |484013 15|dtop-glucose
9129 5980,488001 1|4.2.1.8

5077 5980|2386.17 1012|7_8-diaminononanoate
4303 5980|240870 250|5.1.1.1

4459| 5643.003923 |481030 8|6.3.2.3

5671 4792|237871 762|6.3.3.3

5117 4792|489000 0|2-phospho-d-glycerate
7601 4792|483019 12|4.2.1.46

4803 4583.17.1575|398760 180|gdp
4781 40479652012.40610 252|2.6.1.13

3697 3767.68497|485010 256|3.3.2.1
4239| 3714.030186 243134 || 749.980.195 | 1.4.99.1

5713 3604|487002 3|5.4.2.1

8197 3600|482026 7|dtdp-4-dehydro-6-deoxy-d-glucose
6267 3600|237126 510 |dethiobiotin

6171 3600|479035 10|2.5.1.16

5441 3600|487003 4||-histidinol

5289 || 3509,841775|397840 92.2.7.7.22

3911 3196.058029|239691 251 glyoxylate
4683| 2912.824492.237020 254 |6.3.2.9

4483| 2857.267436|406833 83|4.1.1.11

4747| 2775.938149|242384 496 a 2-oxo acid

3693| 2552.752592|407533 137.10607|6.3.5.3

4277| 2404.181818|243134|| 255.980195|1.1.99.1

4267 2404 |489000 0|3.5.1.18

6039 2404 |486006 3|1.1.1.23

6865 2404 236382 256|2.8.1.6

4501 2404 |481030 8|1.4.4.2

3653| 2368.230817|241458] 1553.186334|4.1.3.2

4301 2138.428994|240870 604 |6.3.2.8

6423 1798|485008 4|2.7.7.27

4777|| 1714.251953|244284| 1584,366342|10-formyltetrahydrofolate
4243| 1529.138073|406600 315|gmp
4595| 1379.9597.04 |240121 356|udp-n-acetylmuramoyl-l-alanine
8545 1204 |489000 0|(s)-dihydroorotate
4737| 649.237926|405684 235 2.7.4.8

4599 || 354.965105|488001 1||1.1.1.3

*
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Table A-8. Articulation points from the global graph with their centralities. The sort is based on decreasing
DBC, where larger values are preferred.

UCC UBC | DCC DBC Name

61195926560| 207716|329597|h(2)o
61973|252937| 207882|187832|diphosphate
61873|233849| 207544|152231|phosphate
61509|463531| 209664|115640|atp
62715| 62298 208138|| 63737|nadh

62321||114334|| 208866 54026 Coa

62911 || 51049| 208458||40018|nadph
62139|116976) 208960|| 36014|nad(+)
62387| 61301 208674, 32317|pyruvate
62307| 51236| 209038|| 30437|-glutamate
63759| 22005| 209388| 18938|nad(p)h
63755 6528, 209308|| 17054||alpha-d-glucose 1

phosphate
63195] 11430, 209020, 12942|d-ribose 5-phosphate
63473] 26133| 211192] 7105|o(2)
62865. 6126. 209456|| 521.0||-Serine

62554|| 12745| 208601 || 4063|3.5.1.18

62883| 18642| 209192] 4000|glutathione
63317| 16573| 211082| 3812|udp-glucose
63440. 3884 || 209699 || 3481 2.3.1.1

62572| 7408 21 1971 3076|4.2.1.46

63927| 54.93| 209438| 2944|10-formyltetrahydrofolate
63663| 4548| 209478] 2877||-homocysteine
62576, 8383| 208601| 27.39|3.2.1.31

| 62324, 18500I 203605. 2667|3|1327
| 62880 16716. 206567| 1800.2.7.1.16
| 62540. 14481| 206614| 1795|3.1.1.61
| 63035 470 210698| 1347|imp

63747. 2824. 208479 1123d-ribulose 5-phosphate
64271 5576| 206468 901 ||-ribulose 5-phosphate
62882| 3210 208562 899|2.7.1.21

63833| 6439| 206513 898|protein -glutamate
63965. 2298 || 208498 897|d-glucuronate
63711 11136| 208502 897|phosphatidylglycerol
63945. 5576. 208498 897||-2_6-

diaminoheptanedioate
63959| 2582| 21 1868 897|dtdp-4-dehydro-6-deoxy

d-glucose
63695|| 4157| 212542 761|5_10

methylenetetrahydrofolate
64031 74 || 209596 274|n-acetyl-l-glutamate
64065. 13214|1097.005 53|udp-n-acetyl-d-

glucosamine
64637 5787|1 100000 0|isopentenyl diphosphate

1451 003 0 1 100000 0|4-deoxy-l-threo-5-
hexosulose uronate

1449007 0|1 100000 0|[protein)-l-cysteine
1451003 0|1100000 0|3-cis-dodecenoyl-coa
1451003 0|1 100000 0||alpha-d-glucose
1449007 0|1 100000 0|(5-l-glutamyl)-peptide
1451003 0|1 100000 0|cvclobutadioVrimidine (in

*
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cy |

|Ucc IUBC TDCc IDBC Name | 2. '
T

dna) | *.
1451003 0|1100000 0|5-carboxymethyl-2- o,

hydroxymuconate -

*S*
~

- Sº
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UCC UBC DCC DBC Name

dna)
1451003 O|1 100000 0|5-carboxymethyl-2-

hydroxymuconate

º * º

131



sº

c
APPENDIX B: Website References º
http://dip.doe-mbi.ucla.edu/, DIP Database: Database of Interacting Proteins -] o

http://www.expasy.ch/enzyme■ , ENZYME: Enzyme nomenclature database º
http://www.ncbi.nlm.nih.gov/Genbank/index.html, GenBank Portal

*

http://www.shigen.nig.ac.jp/ecoli/pec■ , Profiling of E. coli Chromosome (PEC) database —º sº

http://www-users.cs.umn.edu/~karypis/metis/, METIS family of Multilevel Partitioning Programs

http://www.genome.ad.jp/kegg■ , KEGG: Kyoto encyclopedia of genes and genomes
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APPENDIX C: User MCInUCI

Introduction

Abraham Anderson
abeand(a)Socrates.berkeley.edu

This tool set was created to analyze the topology of networks indicating critical
points within the network and highlighting cohesive subsystems. It was first applied to
biological networks, where the aim was to indicate and prioritize potential drug targets
for validation. There are several analyses available in this tool set plus a graphical user
interface (GUI) that graphically displays the analyses’ results. The GUI allows
interaction with the displayed system and the functionality to modify the system for
reanalysis. With this tool set it’s easy to find articulation points, bridges, strongly
connected components, determine modularity, and calculate centrality scores.

Look to the developer's manual for details on selected functions. The developer's
manual points out adjustable parameters to customize your analysis, and also areas for
improvement.

This work was done with the Hunt Lab at the University of California at San Francisco as part of the Ph.D. *

dissertation of Abraham A. Anderson, a student in the joint Bioengineering Graduate Group of U.C.S.F. & - * Q-"

U.C. Berkeley. All rights reserved. C. Abraham Anderson, 2002. This work was partly supported by grant . •. L
# LSI-10041 from the California Life Science Informatics Technology Program, and by grant # r25- - . *
gms6847 from the NIH National Institute of General Medical Sciences. *

**, *)
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Requirements

X-files

Step one.py Step two.py Ac2met.py
Ac2bnt.py cc.py SCC.py
get_centrality.py get centralityU.py x_SUMMARY.py
peval.py ccluster.py ks part3.py
Grapher v09.py

Python" files
Python2.0 [http://www.python.org]
Numeric Python package [http://sourceforge.net/projects/numpy]
TCL Plug-in version 2.0 [http://www.python.org/topics/Tkinter/download.html]

METISTM files

METIS version 4.0 (compiled) [http://www
users.cs.umn.edu/~karypis/metis/metis/download.html]

Setting up the system for initial use.
Install the Python"M files and ensure that its directory is in the system path. - ?

Create a directory “metis-4.0-compiled” and place the METISTM files inside. Create a *…
new directory for the X-files and place them inside. This will be the working directory -, *

for all analyses. I suggest creating a new directory for each analysis and move the º º
analyses output files there when they are created. This will avoid confusion when

-

running multiple analyses. s
»”

Setting up your input files for analysis. sº
The inputs to the tool set are an edge file and a name file. These two files contain dº

the structure of and the labeling for the system, which is abstracted to a graph for
topological analysis. A graph is a set of nodes and edges (linking nodes.) The edge file £2.

lists all the graph’s edges (DO NOT name this file edges.txt or dedges.txt). Each line in °o
this file describes an edge with two node ids and an edge id, all separated by a comma. º
The name file lists all the graphs nodes. Each line describes a node with a node id and a
node name separated by a comma—a pair of double quotation marks encloses the node ■ º
name. How you generate these inputs is up to you, but I generally use a database tool to
organize the system’s nodes and edges. A query was written to assemble the output data Y .
and said query's results were saved to the two appropriately formatted file. Once you º
have these input files, the analyses may proceed. º

-y

cº
º, L

T "º.
º
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Console Functions

Automated Analysis Tool
This tool automatically runs several analyses and organizes the results into a

single file. Each analysis also prints out their respective results and files for use in other
functions. To run the tool from your system's console type: python step one. py.
One may also double-click the tool’s icon if you are using a windowing operating system.
Initially, the user is requested to provide the name of the node or name file and the name
of the edge file. After some computation, the user is asked to decide whether or not to
partition the graph. If the graph is to be partitioned, the user will be asked for the
smallest and largest number of partitions to partition the graph into. The graph will be
partitioned for values within this input range.

There are several data files produced by the automated analysis tool. They are
described as follows.

• Graph. metis is the graph reformatted for input to METISTM.
• co. tzt associates a node id with a connected component of the graph. Each

connected component represents a set of nodes that a connected to each other by
undirected paths.

• Sco. txt associates a node id with a strongly connected component of the graph.
Each strongly connected component (SCC) represents a set of nodes connected to
each other by directed paths. This file also contains additional information about
the graph. This data, in order of appearance, consists of the graph’s articulation
points, bridges, SCC assignments, SCC spanning edges (spans). Node ids, and
not node labels are used in this file.

• D_centrality. txt and U_centrality. txt are files that contain
centrality calculations for the directed and undirected versions of the graph. If the
system is not conceptualized as a directed graph, ignore all directed graph
calculations. Each file contains the number of graph diameters. A diameter is a
shortest path between two nodes. The number of nodes, and node ids associated
with their betweenness and closeness centralities.

• Summary. txt is a summary of the preceding files. The fields are: node ID,
CC, SCC, Art {1: node is an articulation point, 0: otherwise.}, Bridge {-1: node is
incident to a bridge's tail, 1: ... bridge's head}, Span {-1: node is incident to a
span’s tail, 1: ... span’s head}, UCC (undirected closeness centrality), UBC
(undirected betweenness centrality), DCC (directed closeness centrality), DBC
(directed betweenness centrality), bgcs. d (bridge group centrality score
for directed betweenness), sgcs. d (span group centrality score
for directed betweenness), bgcs. u (bridge group centrality score
for undirected betweenness), and sgcs. u (span group centrality
score for undirected betweenness) .

• The METISTM output is saved for each partitioning, and the file is named
graph. metis. part. #. The partition assignments are also summarized and
saved in x_partitions. txt. partition_eval. tzt contains a column
for each partitioning in the range specified earlier, a column for node degree, and
a column for the node's id. In the partition-specific columns is a listing of the
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fraction of a node's neighbors in the same partition as the node. The last row of
the file contains the number of nodes separated by the partitioning. In other
words, twice the number of edges cut by the partitioning.

Individual Tools

Each of the tools automated by the step one. py and step two. py can be run
individually, but they are somewhat interdependent so they should be run in the order
specified in the automation programs. Here are some excerpts from the automation code
(each function appears after the word ‘import'):
Step One:

• #copy them (input files) to xnodes. tzt and xedges. tzt
• print "Converting from Access to Metis > graph. metis,

node_map. tzt, edges. txt, dedges. txt."
import ac2met
print "Converting from Access to BioNet > graph. html."
import ac2bnt
print "Looking for connected components > CC. txt."
import co
print "Looking for strongly connected components, articulation
points, and bridges. - SCC. txt."
import sco
print "Calculating Centralities > D_centrality. txt,
U_centrality. txt."

• import get_centrality
• import get_centralityU
• import x_SUMMARY
The graph can be partitioned with METISTM after running ac2met. py. This is
accomplished by running step two. py.

There are other tools not included in the automation. They should be run after the
automated tools are run once. These include a spectral graph partitioner
(ks_part3.py) and a graph-clustering tool (ccluster. py). Both tools seek to
identify modularity in the system. ks_part3.py reads the xedges.txt file (a copy
of your edges file) and asks the user to input the range of partitionings required. The
results are summarized into x_partitions.txt and partition eval.txt as before with the
automated METISTM partitioner. These should be renamed to distinguish them from
those files produced by the automated partitioning tool. ccluster. py requires
no user input. It produces an output file called CClust. txt. This file lists node ids
and their cluster assignments. If the cluster assignment = -1, then this node could not
be assigned to a cluster. The clustering tool is designed to find the optimal number of
clusters, so there is only one cluster assignment, and no user input.

If you are running the automated analysis tool and it crashes due to memory error
your work can still be resumed at the crash point. Usually a memory error occurs
when the number of nodes passes 1400 and the number of edges passes 2300. The
error usually happens between subprograms, so you can start up where it left off by
figuring out which tools have not been run yet and manually running them. For
example, if the last files that was produced was U_centrality.txt, then
x_SUMMARY.py has not been run. Type python x_SUMMARY.py at the command
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Examples

Finding articulation points and assessing modularity in a system
The first step is to prepare your abstraction of the system in graph form.

Assuming your system is a protein interaction network, start by compiling a list of graph
nodes. Assume each protein is a unique node. The node list should contain each
protein's name and a unique id. Next, compile a list of graph edges. An edge will
represent a mutual interaction between two proteins. In the edge list, record the ids of the
two proteins interacting and a unique id for each interaction. In this example the
interactions are mutual and represented by undirected edges, so the order of the node ids
is not important. For a directed edge, place the id of the node incident to the tail of the
edge first.

Run the step one.py program and input the file names of the node and edge files
when asked. Decline the request to perform the partitioning. Running step one.py will
produce many results but the file that contains the list of articulation points is scc.txt.
Alternatively, this information is summarized in the summary.txt file, where a ‘l’
designates articulation points. The articulation points are important because if they are
removed, the system will break up into separated subsystems.

To determine the modularity of the system, run the ks part3.py program. I will
assume that the system has between 6 and 12 separable modules. When asked input 2 as
the minimum number and 12 as the maximum number of partitions. After the program
runs, look to the partition eval.txt file for results. The optimal partitioning is assumed to
be the partitioning with a significantly lower number of edges cut than other partitionings
when considering the trend in edge-cut as number of partitions grow. To do this, first
calculate the edge-cut for each partition by dividing the last number in each column by 2.
Next plot the edge-cuts for all the partitionings, and look for a significant negative
deviation from the trend. When the optimal number of partitions is determined look to
the x_partitions.txt file. The node id assignments to partitions for the n"partitioning in
the range of calculated partitions are in the n" column of this file. The node is the same
partition can be grouped for other analysis. These partitions are intended to represent
modules because of their relative isolation from the system.
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GUI Interface

Even though the various analyses can be done independently of the GUI and
interpretation of results done in a spreadsheet program or database, the GUI was designed
to tie everything together and provide an additional view of the cold, hard numbers.
Some things are picked up on faster with a visual display versus a numerical one. For
instance, looking at the displayed graph one can immediately see errors in the graph, such
as missing edges or nodes. Other things such as completely isolated sub graphs can also
be seen and one can get an indication of how modular the system is prior to quantitative
modularity assessment. Finally, the presentation of analyses results in a concise manner
and facilitating analysis refinement are the main motivations in designing this GUI.

Displaying a graph
• Open the GUI by running grapher_vo9. py.
• Choose File > Open.
• In the Open File window, type the full file names with extensions for the node and

edge files.
• Click the Open button.

If the files you typed cannot be found in the running directory, error messages appear in
the system console window and the Open File window does not close. Once the graph is
opened properly, it is displayed with random positioning of the nodes, and all node labels
( ) are turned on.

Moving a node:
• Left-click over the node and drag to reposition.

Magnifying a region:
• Choose Scene > Fisheye.
• Hold down the right-cursor button, and drag the cursor to make the lens appear.
• Right-drag it over the graph to distort the region.
The nodes will move away from each other as if a fisheye lens was magnifying the
region, but the node sizes will remain constant, and edge positions will not be
updated.
• To turn the lens off, choose Scene > Fisheye.

Choosing a layout for the graph
There are three main types of graph layout available: Kinetic, undirected
Multidimensional Scaling, and directed Multidimensional Scaling. After each you may
wish to resize the main window and center the graph in the window.

Centering the graph:
• Choose Scene > Center

Layout based on Multidimensional Scaling of the undirected graph:
• Choose Scene > MDS layoutu
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The console window will show the status of the operation.
The MDS layouts cannot be used until the analysis tool has been run. The MDS tool uses
a distance matrix calculated during the analysis.

Layout based on Multidimensional Scaling of the directed graph:
• Choose Scene > MDS layout■ )
See undirected MDS info.

Layout based on Kinetics:
• Choose Scene > Relax

The nodes will dynamically adjust their positions relative to each other. Nodes
have a universal repulsive force between themselves and an attractive force along the
direction of the edge. When these forces equilibrate, the layout is assumed optimal.
While the system is being relaxed the background is green. During relaxation the nodes
can still be selected and moved with the cursor.

Adjusting Kinetic layout via its parameters:
• Choose Scene > Kinetics.

• In the Kinetics... window, adjust the parameter you wish.
• Click Update button.
Increasing [node] Repulsion and Nat■ ural] length [of the edge] will spread out the
layout. Increasing the Spring const value will contract the layout. The number in
square brackets beside the field label is the current state of the field's parameter in the
relaxation process.

Selecting Nodes
Nodes may be selected in three ways: by dragging a box around them with the cursor,
selecting then from a list, or by adjusting the activated/deactivated lists.

Region selection [Box]:
• Choose Select P Box.

• Left click in the window and drag the cursor so that the selected region covers the
node(s) you want to select.

List selection:
• Choose Select P List.

A List Select window appears, listing the names of all nodes and their status (1; label is visible, 0;
otherwise).

• In the List Select window, choose the nodes you want to select with the cursor.
• Click Select.

Activating or deactivating a node:
This window is used to indicate which nodes are to be included in a new graph that will
be saved or reanalyzed.

• Choose Select - Activate?
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• In the Activation / Deactivation window, select the node(s) you wish to
reassign.
Click the appropriate direction {<; activate, >; deactivate} button.

• When you are finished, click the Set button.

Labels

To remove all labels:
• Choose Select P Label P Hide all.

To show all labels:
• Choose Select P Label P. Show all.

To show just the selected labels:
• Choose Select P Label P. Show Selected.

To remove only the selected labels:
• Choose Select P Label P Hide Selected.

Analysis Tools
Once a graph is displayed, the analyses can begin. All the analyses are run at once. In
fact the process is almost identical to Step one.py (see, above, Console Functions >
Automated Analysis Tool). Partitioning is offered as an option but results are not
displayed in the GUI. Clustering can be initiated from the GUI, and the results are
displayed by coloring nodes according to their cluster assignment.

To run automated analysis tools:
• Choose Analysis - Run all.
The progress is indicated in the system console, and when it is complete all results are
available for visualization.

• In the Load Data window, confirm the node and edge files' names and click the
Open button.

Once this is complete the node's sizes are automatically adjusted to indicate the
directed betweenness centrality.

To cluster a graph:
• Choose Analysis P Cluster

Displaying analysis results

Node Properties
To view articulation Points:

• Select Scene > DataViz > Show Articulation Points

Articulation points are colored red and all other nodes gray.

To view directed Betweenness centrality:

141



• Select Scene > Data Viz > D Betweenness
Bigger nodes have higher betweenness scores, which means they are more central in the
network. This type of centrality indicates the potential of a node to act as a key
gatekeeper for interaction between different parts of the network.
This score is qualified by the word ‘directed’. This means that only directed paths were
used in its calculation. If your graph is undirected, please ignore this data.

To view undirected Betweenness centrality:
• Select Scene > Data Viz > U Betweenness

This score ignores the directionality of the graph’s edges. See directed Betweenness
centrality section above for more general information.

To view directed Closeness centrality:
• Select Scene > DataViz > D Closeness
Bigger nodes have smaller closeness centrality scores, which means they are more
central to the network. This type of centrality indicates the potential of a node to
influence other nodes.

To view undirected Closeness centrality:
• Select Scene > Data Viz > D Closeness

This score ignores the directionality of the graph’s edges. See directed Closeness
centrality section above for more general information.

To reset node sizes to a uniform size:
• Select Scene > DataViz > None

Group Properties (Modularity assessment)
To show the graph’s Bridges and Spans:

• Select Scene > Data Viz > Show Bridges | Spans.
Bridges will be colored pink, spans colored , and if an edge is both it will be
colored orange. A span is an edge linking two SCCs.

To show the graph’s Connected Components:
• Select Scene > Data Viz > Show Components.

To show the graph’s Strongly Connected Components:
• Select Scene > DataViz > Show Strongly Connected Components.
This is only relevant if you have a directed graph.
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Examples

Which nodes are critical and if they are disabled are there novel critical
nodes or does the system break apart?

First, create your input files. Second, open grapher_v09.py. Display your graph
by choosing File > Open and type in the input files' names. Click Open. Next, start the
analysis by choosing Analysis - Run all. Monitor the analyses progress in the console
window, and when you are asked to run the partitioner, enter No. When this is complete
and the Load Data window appears, confirm the proper file names and click Open.

The graph is a jumble, so perform a layout operation by choosing Scene > MDS
layoutu. Monitor this function’s progress in the console. When its finished the graph is
automatically adjusted for better viewing. There are probably too many node labels on
the screen. To get rid of them choose Select ~ Label P Hide all.

Let’s assume you want to investigate the betweenness centrality prioritization for
the undirected version of your graph. To display this data select Scene > DataViz > U
Betweenness. The critical nodes, according to this metric, are the bigger ones. Turn on
the label for the biggest by choosing Select P Box. Left click in the window and drag the
cursor so that the selected region covers the biggest node. Now you have selected a node,
now to turn its label on choose Select ~ Label P. Show selected. To more thoroughly
analyze the results, look in the running directory for the summary.txt file. It contains all
the results. See the console functions instruction above.

Display the graph’s strongly connected components by selecting Scene > DataViz
> Show Strongly Connected Components and notice how many there are with a
significant amount of nodes. You may want to rearrange the node positions by left
clicking on them and dragging the cursor.

This node might be very critical in your system, and a good way to destabilize it.
Let’s perform an experiment to see what happens to the graph and the centrality scores
when it’s deleted from the system. First choose Select ~ Activate? In the Activation /
Deactivation window, select the node(s) you wish to deactivate. Click the P button.
When you are finished, click the Set button. Now the graph must be saved prior to
reanalysis. Choose File > Save. Now the graph without the node you deactivated along
with it’s incident edges is saved in the running directory as the original name appended to
a version number. If you node file was nodes.txt, the saved graph will be named
nodes_<<a number greater than 10->.txt (example: nodes_12.txt).

Display the saved graph by opening it with File > Open. Run the full analysis,
except for partitioning. Use the undirected MDS layout, and display the undirected
betweenness centrality values. Visually check to see how the scores change. Display the
strongly connected components and notice how many significant ones are left.
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Appendix D: Developer Monudl
The document that follows describes the design and implementation of a few selected
functions. Not all are described here, but the code is laced with comments from the
programmer. These comments provide an insight into what each operation does. The
plentiful in-line commentary precludes the description of every function and operation in
the following text. I suggest one start by reading the Python"M code in order of logical
execution. Use this document for supplementary design insight, and suggested areas of
improvement.

Contact: Abraham Anderson abeandú)socrates.berkeley.edu

This work was done with the Hunt Lab at the University of California at San Francisco
as part of the Ph.D. dissertation of Abraham A. Anderson, a student in the joint
Bioengineering Graduate Group of U.C.S.F. & U.C. Berkeley. All rights reserved. (C)
Abraham Anderson, 2002. This work was partly supported by grant # LSI-10041 from
the California Life Science Informatics Technology Program, and by grant # r25
gmió847 from the NIH National Institute of General Medical Sciences.
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Codebase

Most of the code is written in Python"M. This language was selected because of its ease
of-use and portability across different operating systems. It does have the detraction of
being relatively slow compared to other programming languages. This may be due to the
fact that it is an interpreted language (based on C++). As it is an offshoot of C++, it
should be easy to extend and embed in a combination with C++ programs. This will
come in handy when functions are rewritten in C++ for speed.
The GUI was also written in Python"M and TkTM. TkTM has been very easy to develop a
GUI in and is compatible with the Python"M code. Tk"M is also platform neutral. At this
point there is no compelling reason to rewrite the GUI in another language. If pushed, I
would suggest a Java"M applet GUI, but Tk"M applets is increasing in use (plug-in
required, so, extra install burden for user.)

Analysis Tools

CC.py
This tool identifies all components of a graph. The graph is read from the node_map.txt
file. This dictionary [and others] is created by ac2met.py. It is unpickled and a reverse
dictionary is created which maps new(internal) node ids to old(external) ids. The
dictionary mapping a node to its neighbors is unpickled from edges.txt. To assign nodes
to connected components a list of nodes is generated from the node dictionary, a DFS is
initiated for a node and as a node is seen it is removed from the list and given the
component id of the root node. When no more nodes are reachable by the DFS
algorithm, and the list is not empty, this process is repeated after incrementing the current
component id.

SCC.py
This tool identifies edges as bridges and/or spans, identifies nodes as articulation points,
and assigns nodes to strongly connected components. The pseudo-code for these tasks is
shown below in three segments. Each operation has some steps in common with the
others, so they are interleaved in the actual coding. The spans are calculated at the end
by checking if each edge’s incident nodes are in different SCCs.
Box 1. Finding SCCs Given G(V,E)

1. DFS(G); keep last seen time f(v) for each node v.
2. get Gt =G transposed.
3. DFS(Gt), in DFS search each v in order of decreasing f(v).
4. output each tree found in step 3 as a new SCC.

Box 2. Finding Bridges Given G(V,E)
compute low(v) for each v.1

2. for each v do:
3. for each child u of v do:
4 if low(u) = pre(u) then:
5. (v,u) is a bridge.

---Computing low(v)----------------------
1. explore(v):
2. low(v) <- pre(v) # pre-time first seen v
3. for each e(v,w):
4. if w not visited yet:

146



5. explore(w)
6. low(v)<-min(low(v), low(w))
7. else: low(v) <- min(low(v),pre(w))

Box 3. Finding Articulation Points
Given G(V,E)

1. compute low(v) for v c V.
2. for each v do:
3 if v is the root & has >1 child:
4. v is an articulation point.
5. else: for each child u of v do:

6 if low(u)xpre■ v):
v is an articulation point.

Centrality Calculations
Closeness and Betweenness centrality are calculated simultaneously. Both metrics rely
on the calculation of the graph’s diameters or shortest paths between node pairs.
Dijkstra’s shortest-path algorithm is modified to handle situations where there is more
than one shortest path between two nodes. As each diameter is found, a count in
incremented for each node in the diameter. This count is used to calculate the
betweenness score for each node after all diameters are found. The process previously
described, results in a matrix of minimal internode distances. This distance matrix was
used to calculate the closeness centrality score. The distance matrix is pickled for later
use by other tools.

METISTM Interface

Look to the METISTM manual for thorough details on its use. A library of METISTM
functions is available for importing into C++ code. It can potentially be embedded in
Python"M. Also available, are several precompiled tools. It is one of these precompiled
tools (pmetis.exe) that is used to partition input graphs. A command is formulated in
memory by step two.py and a system call is issued to run the command.

Spectral Graph Partitioning
As opposed to the balanced partition determined by METISTM, a spectral graph
partitioner was developed to generate natural or unbalanced partitions. This process
starts by unpickling the edge-mapping dictionary. The eigenspace for a special adjacency
matrix is calculated. The programmer has a choice in the type of matrix used: unsigned
adjacency matrix, degree matrix, Laplacian matrix, and Disconnection matrix. Currently
the Disconnection matrix is used in calculating the eigenspace, but it is quite similar to
the Laplacian matrix, another good choice. Once the eigenspace is calculated the 3
maximal (in general this means closest to 0) eigenvalues are selected along with their
respective eigenvectors. In order to bisect a graph, the eigenvector for the maximal
eigenvalue is selected and each node is associated with a scalar from this vector. The
nodes are then assigned to two groups according to the sign of their associated scalar. To
create an arbitrary number of partitions, this method uses recursive sectioning. Since the
three eigenvectors are used, eight sections can be created per iteration. A partitioning
scheduler was developed to decide whether 8, 4, 3, or 2 new partitions are needed at each
step in the process of attaining the desired number of partitions. Sometimes, there are

147



several sections and not all of them need to be partitioned. Some sections will partition
better than others. The quality of a partitioning is taken to be the number of edges cut—
smaller is better. The best section to partition is the one with the best maximal
eigenvalue. Briefly, the entire method is as follows: decide how many partition(s)
needed this round, sort sections in order of maximal eigenvalues, chose the best sections
to partition and partition, repeat till desired number of sections is achieved.

Graph Clustering
This tool aims to group graph nodes into clusters that are maximally isolated from the
rest of the graph, and are maximally connected to each other. This is achieved by a
hierarchical clustering algorithm, where clusters are assessed as they grow. If a cluster is
found to have the properties previously stated, then its growth is halted and no longer
considered in the rest of the clustering process. The programmer has implementation
options in the clustering function, and the cluster assessment function.
The closest two clusters are merged at each phase to form a new cluster. This process
repeats until there is one cluster. Closeness can be determined in three ways, each of
which is implemented as options in the tool. The three choices are minimal internode
distance, maximal internode distance, and average internode distance. Minimal internode
distance is the default choice. Regardless of closeness choice, this step is the slowest in
the clustering program. It should be optimized, by blocking or rewritten in C++ and
embedded into the Python"M code.
Each newly formed cluster is assessed for its cohesiveness or modularity. There are three
choices for determining cohesivity: density ratio, and two versions of the intracluster
edge observation likelihood. The density ratio is ratio of the cluster density and the
overall graph density. A lower threshold of 7 is suggested for a suitably cohesive cluster
if the density ratio is used. The other option for assessing cohesivity calculates the
probability of observing at least the number of edges within a cluster. L = # Total Edges,
g=# Total Nodes, gs=#Cluster Nodes

~gº L g(g - 1)/2–L
-

g(g – 1)/2
k=q k)\gs(gs–1)/2-k) \gs(gs–1)/2

The threshold for this measure is at most 0.00025. This value seems to be graph
dependent. In order to calculate this probability, the combinatorics had to be rewritten,
hence the two versions. Initially the division of factorials caused an overflow error. This
division was algebraically simplified and rewritten in a new combinatorial function,
fixing the overflow problem. The factorial F(a) is calculated with Sterling’s formula for
a > 10. The error in Sterling's for a-10 is 0.8%. For a <=10 the factorial is calculated by
recursive multiplication.
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The GUI

The graphical user interface (GUI) will accept an edge file and node file as inputs in
order to display the graph and node labels. Initially, the graph’s nodes are randomly
positioned. The Kinetic layout, which will be described later, is the only automated
layout option available prior to graph analysis. This is because the other layout option,
Multidimensional Scaling (MDS) uses data structures pickled during the automated graph
analysis.
The clustering algorithm described previously is written into the GUI, but it does not yet
have its own parameter console from which a user may choose clustering options. The
clustering currently proceeds with the default parameters and colors the nodes according
to cluster assignment.

Layout

MDS

This layout uses the eigenspace of the graph’s distance matrix (unpickled from
[U,D]_dist.txt, a file created during the centrality calculations) to assign 2D Cartesian
coordinates to the nodes. Two sets of coordinates are calculated and stored the first time
an MDS layout is requested. This is to avoid unnecessary computation in the event of
multiple layout toggling.
The algorithm begins by unpickling the directed and undirected distance matrices. These
unpickled matrices use the original node ids. Sometimes the range of node ids is not
complete; there can be skipped integer ids. To deal with this contingency a new range of
complete, ungapped, ids is created for the nodes. This id range is used to create the new
2D distance matrices. The eigenspace is calculated and the three largest eigenvalues are
found. Two of the three are selected to define 2 coordinate axes. Their eigenvectors are
used to assign coordinates to the nodes. For example, let a be a node and d be its
distance vector (the distances to all other nodes from a). Let e be an eigenvector
representing the x-axis. a’s x-coordinate is the dot product, ed. Once this is done the
coordinates are scaled to fill a 600x600 pixel space. In future a console could be made to
allow a user to select eigenvalues for the principal axes from a sorted list. Currently
eigenvalues 2 and 3 are used, because once upon a time eigenvalue 1 caused an extremely
unpleasant coordinate distribution.

Kinetic

This layout models the graph as a mass and spring system. The nodes are modeled as
masses with inter-node repulsion, and the edges are modeled as springs with spring
constant and natural length. First the contribution of the node repulsion is calculated
from the distance between nodes and a scaling factor. This contribution is stored in a
temporary array. Then the effect of the spring's deformation from its natural length and
the spring constant is calculated and combined with the temporary array values to
generate the new coordinates. Calculating the internode effects is the most expensive
step. Compartmentalizing the simulation space to reduce the number of neighbor
calculations, or rewriting the current algorithm in a C++ extension could improve it.
After several iterations, the node coordinates reach an equilibrium at which the
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simulation can be stopped. This equilibrium state is expected to reduce edge overlap,
bring together neighboring nodes, and reduce node crowding.

Data Visualization

After analysis is completed, the analysis results are imported and available for display.
Values are stored in global arrays, and all grouping values are consolidated into two
global data structures, groups & sgroups. In order to keep track of which graph is
associated with the analysis results, a file is kept with the name of said graph. The file is
found in the current working directory and is called xstatus.txt. The UserManual
provides detailed explanation of the various data views.
Aside from the graphical visualization of data, there are rudimentary tabular
visualizations. The table classes can be reused for advanced tabular displays. Class
UniDistbox demonstrates how to quickly display a list with multiple coordinated fields.
Class TableDialog demonstrates how to display multiple columns and rows of
coordinated data. This class uses a label grid instead of internal listing capabilities, thus
its slowness to display. Class DoubleListBox demonstrates how to shuffle data between
two separate lists and perform an action based on the final ordering.
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Appendix E: Computer Executoble Code
© 2002 The Regents of the University of California

: : : ac2bnt. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

file = open ("c:/my documents/bin/xedges. txt", "r')
file1 = open ("c:/my documents/bin/xnodes. txt", "r')
import string
name = {} #this holds the title of each node
for line in file1 .. readlines () :

line = line. rstrip ()
id = line. split (', ') [0]
na = line. split (', ') [1] [1: -1]
na = string. replace (na, ' ', ' ' )

(
(

na = string. replace (na, '-', '+')
na = string. replace (na, '■ ', ' \\')
name [id] = na

file 1. close ()

edge = []
for line in file. readlines () :

edge. append (line. rstrip () )
file. close ()
nedges = len (edge)
directed = {} #this dictionary preserves the directed edges
i=0
for e in edge:

d = e. split (', ')

a = d [0]
b = d [1]
if a in directed. keys () :

prior = directed [a]
prior. append (b)
directed [a] = prior

else:
directed [a] = [b]

nnodes = len (name)
print "#d nodes & #d edges" # (nnodes, nedges)

nodes = []
for e in directed. keys () :

nodes. append (e)
nodes. sort ()

outstring = ""
end - it in

for e in nodes :
for t in directed [e] :
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outstring = string. join ( [outstring, name [e] + '-
' +name [t] + ', ' ) , ' ' )

outstring = string. join ( [outstring, end] , '')
outstring = outstring [0: -1]

file2 = open ("c:/my documents/bin/graph. html", 'w')
#print outstring
head = "&HTML-2 HEAD-CTITLE-Template graph viewer from
BioNet.</TITLE-\n-META content=\"text/html; charset=unicodeV" http
equiva Content-Type-\n-META content=\"MSHTML 5. OO . 2614. 3500 \"
name=GENERATOR: </HEAD-\nz BODY >\nz table><tr; td width=400
valign=\"top) " -\n-pre-\nz/pre--APPLET code=Graph. class height=600
width=800 archive=\"hsql. jar.\">\n < PARAM NAME=\"centerV"
VALUE=\"\" >\n < PARAM NAME=\"edges \" VALUE=\" #s V">" # outstring
file2 . write (head)
file2 . write ("\n alt=\"Your browser understands the &ltAPPLET&gt
tag but isn't running the \n applet, for some reason. \" Your
browser is completely ignoring the \n &ltAPPLET&gt tag
</APPLET-\nzhr-ºb-Holding down \'Shift\' while selecting a node fixes
it to the screen. Control makes the selected node
invisible. </b><hrs 3:/td: «td valign=\"top)" width=400s - font size=-2-
\n-br>\n.</fonts </td: « /tr; &/table></BODY ></HTML-")
file 2. close ()

; : : ac2met. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

file = open ("c: /my documents/bin/xedges. txt", "r')
file2 = open ("c:/my documents/bin/graph. metis", 'w')
file3 = open ("c: /my documents/bin/node_map. txt", 'w')
file4 = open ("c:/my documents/bin/edges. txt", 'w')
file5 = open ("c:/my documents/bin/dedges. txt", 'w')
import pickle

edge = []
for line in file. readlines () :

edge. append (line. rstrip ().)
file. close ()
nedges = 0
direct {} #this one maps both parents and children (undirected
edges)
directed = {} #this dictionary preserves the directed edges
nmap = {}
i=0
for e in edge:

d = e. split (', ')

if d [0] in nmap. keys () :
a = nmap [d [0] ]

else:
i + = 1

nmap [d [0] ] = i
a = i

if d [1] in nmap. keys () :
b = nmap [d [1] ]
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else:
i += 1

nmap [d [1] ] = i
b = i

if a in direct. keys () :
if b not in direct [a] and b | = a + #no repeats and no loops

prior = direct [a]
prior. append (b)
nedges 4 =1
prior. sort ()
direct [a] = prior
directed [a] = prior

elif b | = a .
direct [a] = [b]
directed [a] = [b]
nedges +=1

pickle. dump (directed, file 5)
file 5. close ()
#del directed, file 5
nnodes = len (nmap)
pickle. dump (nmap, file3)
file 3. close ()
#del nmap, file 3

# this step makes the edges undirected
for bb in direct. keys () :

for co in direct [bb] :
if co in direct. keys () and co = bb :

if bb not in direct [cc] :
prior2 = direct [cc]
prior2. append (bb)
nedges +=1
prior2. sort ()
direct [cc] = prior2

elif co l = bb :
direct [cc] = [bb]
nedges +=1

print nedges, nedges/2
print "$d nodes & #d edges" # (nnodes, nedges/2)
outstring = "%d #d\n" # (nnodes, nedges/2)
file2 . write (outstring)

import string
nodes = []
for e in direct. keys () :

#nodes. append (string. atoi (e))
#now nodes are integers: "a, b = i."
nodes. append (e)

nodes. sort ()
import fpformat
for e in nodes:
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#print string. join (direct [fpformat. fix (e, 0) ) )
#outstring = "%s Vn" # string. join (direct [fpformat. fix (e, 0)))

outstring = ""
end = u \n"
for t in direct [e] :

gg = fpformat. fix (t, 0)
outstring = string. join ( [outstring, gol)

outstring = string. join ( [outstring, end] )
#print outstring
file2 . write (outstring)

file. close ()
file 2. close ()

#print nmap
pickle. dump (direct, file4)
file4. close ()

: : : CC . py: : :

#Author: Abraham Anderson
#9 2002 The Regents of the University of California

# Finds Connected Components.
import pickle
import string
import fpformat

#dictionary ■ old] =>new e

file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file 3)

nmap2={} #new > old
for y in nmap. keys ():

nmap2 [nmap [y] ] = y
file 3. close ()

#dictionary [from] =>to
file4 = open ("c:/my documents/bin/edges. txt", "r")
direct = pickle. load (file4)
file4. close ()

SOurce = 1

nodes = nmap2. keys ()
T= [] + nodes
C = 0

cc = {}

def seek (a,c) :
cc [a] =c
T. remove (a)
if a in direct. keys () :

for d in direct [a] :
if d in T:

seek (d, c)
return
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while len (T) >0 :
source = T [-1]
seek (source, c)
C+=1

print "Components: ", c
#put in nice list
ccomps = []
for a in range (0, c) :

temp = []
for b in co. keys () :

if co [b] == a .
temp. append (nmap2 [b] )

ccomps. append (temp)
#print ccomps
import fpformat
output = ""
for a in range (0, c):

text =

' ['+fpformat. fix (a, 0) + '] '+' : " +fpformat. fix (len (ccomps [a] ), 0) +", "
output = string. join ( [output, text] )

print "Lengths: ", output

ofile = open ("c:/my documents/bin/CC. txt", "w")
for a in co. keys () :

ofile. write ("%s V tº d\n" # (nmap2 [a] , co [a] ))
ofile. close ()
print co

:::ccluster. py: : :

#Author: Abraham Anderson
#° 2002 The Regents of the University of California

#CCluster. py

#read in undir distance matrix (U_dist. txt),
import pickle
file2 = open ("c:/my documents/bin/U_dist. txt", "r')
udist = pickle. load (file2)
file 2. close ()
# . . . directed (dedges. txt) and undirected (edges. txt) graphs
#dictionary [from] =>to

file4 = open ("c:/my documents/bin/dedges. txt", "r')
child = pickle. load (file4)
file4. close ()
#dictionary [from] =>to

file4 = open ("c: /my documents/bin/edges. txt", "r')
neighbor = pickle. load (file4)
file4. close ()
#dictionary ■ old] =>new

file3 = open ("c: /my documents/bin/node_map. tzt", "r')
nmap = pickle. load (file3)
nmap2={} #new > old
for y in nmap. keys () :

nmap2 [nmap [y] ] = y
file 3. close ()
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def Fact (a) :
import math
if a ==

return (1)
if a 10: #error for Stirling at 10 is 0.8%

C = 1
while a > 0:

C = C* a

a = a – 1

return (c)
an SWer =

round (math. pow ( (2*2. 71828.1825/(a+1)), 0.5) *1/math. exp (a+1)*pow (a+1.0, a 4-1
. 0))

def

def

return (answer)
Comb (a, b) :
c = Fact (a) / Fact (b) / Fact (a-b)
c_str = "#f" # c
if c_str == " -1. #IND00 :

C = 0 . 9999999999
return (c)
sComb (a, b) :
mx = max (b, (a-b))
mn = min (b, (a-b))
num = 1.0000000 #recursive mult
for i in range (mx+1, a +1) :

num * = i
c = num/Fact (mn)
#print a, b, c
c_str = "$f" # c
if c_str == ' – 1 . H INDO O" :

C = 0 . 9999999999

return (c)

0 # total number of edges in dir graph
i in child. keys () :
L = L + len (child [i] )
len (neighbor. keys ()) #number of nodes in undir graph

Cohesiveness (A) :
#this doesn't work because of the overflow errors
#pass in dictionary for directed and undirected graph with A
global neighbor, child, L, g
#A = list of nodes like, [a, b, c, d.]
q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys () :
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A
pf = 0
for k in range (q, min (L, 1+gs” (gs - 1)/2)) :

pf = pf + Comb (L, k) * Comb (g” (g-1)/2–L, gs” (gs - 1)/2-k)/Comb (g” (g-
1)/2, gs” (gs - 1)/2)

#print pf, Comb (L, k)
return (pf)
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def Cohesiveness 2 (A) :
#ratio of cluster density to graph density
#density = 2L/g (g-1)
global L, g

density1 = 2.0°L/g/ (g-1)

q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys () :
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A

density2 = 2.0° q/gs/ (gs - 1)

return (density2/density1)

def Cohesiveness 3 (A) :
#b4 this didn't work because of the overflow errors
#but now I am trying to simplify the factorial math involved in

calculating loºk
#pass in dictionary for directed and undirected graph with A
global neighbor, child, L, g
#A = list of nodes like, [a, b, c, d.]
q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys ():
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A
pf = 0
for k in range (q, min (1+L, 1+gs” (gs - 1)/2)):

pf = pf + scomb (L, k) * scomb (g” (g-1)/2–L, gs” (gs - 1)/2-
k) /sComb (g” (g-1)/2, gs” (gs-1)/2)

return (pf)

def MinDist (A, a) : #0 : min, 1: max, 2: avg
global udist
avgc = [-1, -1, 500000000]
maxc = [-1, -1, 500000000]
min = [-1, -1, 500000000]
for i in A:

for j in A:
avg = 0
max = [
if j 1 =

in j :l
d = udist [k-1] [l]
if d > max [2] :

max = [A. index (i) , A. index (j), d)
if d & min [2] :

min = [A. index (i), A. index (j), d)

157



avg + = d
if max [2] : maxc[2] :

maxC = max

avg = avg/len (i)/len (j)
if avg & avgc [2] :

avgc = [A. index (i), A. index (j), avg.)
if a == 0:

return (min [0] , min [1])
if a == 1 :

return (maxc [0] , maxc [1])
if a ==

return (avgc [0] , avgc [1] )

#main
R = []
ta = []
for i in neighbor. keys () :

ta. append ( [i] )
R. append (ta)
ta = []

S = []
t = 0

while len (R [t] ) > 1:
t + = 1

Co = []
[i,j] = MinDist (R [t-1], 0)

Ca = R [t-1] [i] + R [t-1] [j]
T = [] + R [t-1]
T. remove (R [t -1] [i] )
T. remove (R [t-1] [j])
C = Cohesiveness 3 (CQ)
print C
if (C <= 0.00025) & (len (Cd) > 1) : #with cohesiveness2 use

thresshold of 7; w/3 use?
S. append (Cd)
R. append (T)

else:

T. append (Cd)
R. append (T)

#print R [-1] , S
file = open ("c: /my documents/bin/cClust. tzt", 'w')
file. write ("ID, cluster ( – 1: r; n : s ) \n")
for O in R [-1] :

for p in o :
file. write (nmap2 [p] +", -1\n")

q = 0
for O in S :

for p in o :
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outstring = ", + d \n" # q
file. write (nmap2 [p] +outstring)

q+=1
file. close ()
print ". . . done. \n"

:::get_centrality. py: : :

#Author: Abraham Anderson
#° 2002 The Regents of the University of California

# this program gets ths centralities for a directed graph 1
# and pickles a distance matrix

import pickle
import string
import fpformat

#dictionary ■ old] =>new
file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file3)

nmap2={} #new > old
for y in nmap. keys () :

nmap2 [nmap [y] ] = y
file 3. close ()

#dictionary [from] =>to
file4 = open ("c:/my documents/bin/dedges. txt", "r')
direct = pickle. load (file4)
file4. close ()

#pre-init
Vt = direct. keys ()
V = []
T = []
for a in Vt :

V. append (a)
V. sort ()
N = len (V)
INF = 1000 # should be infinity

#calc min path for dest
def seek (a, b, p={}, path = []):

path = [nmap2 [a] ] +path
if a ==

return [path]
if not p. has key (a):

return [ ]
paths = []
for c in p[a] :

#if c not in path:
newpaths = seek (c., b, p, path)
for newpath in newpaths:

if newpath not in paths:
paths. append (newpath)
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return paths

def mDijk () :
#Dijkstra's algorithm (modified to handle multiple equal length

paths)
#init
Distances = []
Dfreq = {}
Cnes = {}
for vert in nmap. keys () :

Dfreq [vert] = 0
Cnes [vert] = 0

diameters = 0

for source in V:
T= []
T=T+V #if node not in T then its marked
d = {}
for i in V:

d [i] = INF
d [source] = 0
d [0] = INF

p = {}
j = 0

#main
while len (T) = 0:

min = 0
for a in T:

if d [a] & d [min] :
min = a

if min == 0:
break

T. remove (min)
for a in direct [min] :

if a in T:
if d [a] == d [min] + 1 :

tp = p [a]
p [a] = tp + [min]

elif d [a] → d [min] + 1 :
d [a] = d [min] +1
p [a] = [min]

#count each node's appearances in graph diameters
for dd in p. keys () :

s = seek (dd, source, p)
for pth in s :

diameters+=1

pth = pth [1:-1]
for o in pth:

if not Dfreq. has key (o) :
Dfreq [o] = 1./len (s)

else:

Dfreq [o] +=1 . /len (s)
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#calculate closeness centrality: sum of distances to other
nodes

del d [0]
Distances. append (d)
for dd in d. keys () :

Cnes [nmap2 [dd] ] +=d [dd]
return diameters, Dfreq, Cnes, Distances

#end of mDijk ()

ofile = open ("c: /my documents/bin/D_centrality. txt", "w")
import time
start = time. time ()
# for x in range (0, 50) :
r = mDijk ()
print time. time () – start, 's'
print "\ndiameters\n", r [0]
ofile. write ("\ndiameters \n?, d\n" + r [O] )
print "N\n", N, "\nvertex betweenness Closeness"
ofile. write ("N\n%d\nvertex betweenness Closeness \n" & N)
for dkey in r [1] . keys () :

#print dkey , r [1] [dkey] , r [2] [dkey]
ofile. write ("%s $f $f \n" # (dkey , r [1] [dkey], r [2] [dkey]))

ofile. close ()
#saving dist library
#print r [3]
dfile = open ("c: /my documents/bin/D_dist. txt", "w")
pickle. dump (r [3], dfile)
dfile. close ()

#diameter calc
diam_dist = []
for a in r [3] :

b = diam_dist + a values ()
diam_dist = b

diam_dist. sort ()
if 1000 in diam dist:

c = diam_dist. index (1000)
else:

C = 0

print "Graph diameter is %d/%d\n" # (diam dist [c-1], diam_dist [-1].)

:::get_centralityU. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

#this program calculates centrality on the undirected graph 1

import pickle
import string
import fpformat

#dictionary ■ old] =>new
file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file3)

nmap2={} #new > old
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for y in nmap. keys () :
nmap2 [nmap [y] ] = y

file 3. close ()

#dictionary [from] =>to
file4 = open ("c:/my documents/bin/edges. txt", "r' )
direct = pickle. load (file4)
file4. close ()

#pre-init
Vt = direct. keys ()
V = []
T = []
for a in Vt :

V. append (a)
V. sort ()
N = len (V)
INF = 1000 # should be infinity

#calc min path for dest
def seek (a, b, p={}, path = []):

path = [nmap2 [a] ] +path
if a == b :

return [path]
if not p. has key (a):

return [ ]
paths = []
for c in p [a] :

#if c not in path:
newpaths = seek (c., b, p, path)
for newpath in newpaths:

if newpath not in paths:
paths. append (newpath)

return paths

def mDijk () :
#Dijkstra's algorithm (modified to handle multiple equal length

paths)
#init
Distances = []
Dfreq = {}
Cnes = {}
for vert in nmap. keys () :

Dfreq [vert] = 0
Cnes [vert] = 0

diameters = 0

for source in V:
T= []
T=T+V #if node not in T then its marked
d = {}
for i in V:

d [i] = INF
d [source] = 0
d [0] = INF
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{}p
j = 0

#main
while len (T) | = 0:

min = 0
for a in T:

if d [a] & d [min] :
min = a

if min ==
break

T. remove (min)
for a in direct [min] :

if a in T:
if d [a] == d [min] + 1 :

tp = p [a]
p [a] = tp + [min]

elif d [a] - d [min] + 1 :
d [a] = d [min] + 1
p [a] = [min]

#count each node's appearances in graph diameters
for dd in p. keys () :

s = seek (dd, source, p)
for pth in s :

diameters+=1

pth = pth [1: -1]
for o in pth:

if not Dfreq. has key (o) :
Dfreq [o] = 1./len (s)

else:

Dfreq [o] +=1./len (s)

#calculate closeness centrality: sum of distances to other
nodes

del d [0]
Distances. append (d)
for dd in d. keys () :

Cnes [nmap2 [dd] ] +=d [dd]
return diameters, Dfreq, Cnes, Distances

#end of mDijk ()

ofile = open ("c:/my documents/bin/U_centrality. txt", "w")
import time
start = time. time ()
# for x in range (0, 50) :
r = mDijk ()
print time. time () -start, 's'
print "\ndiameters\n", r [0]
ofile. write ("\ndiameters \n:#d \n" & r [0] )
print "N\n", N, "\nvertex betweenness Closeness"
ofile. write ("N\nº d\nvertex betweenness Closeness \n" & N)
for dkey in r [1] . keys () :

#print dkey , r [1] [dkey] , r [2] [dkey]
ofile. write ("%s $f $f \n" # (dkey , r [1] [dkey] , r [2] [dkey] ))

ofile. close ()
#saving dist library
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#print r [3]
dfile = open ("c:/my documents/bin/U_dist. txt", "w")
pickle. dump (r [3], dfile)
dfile. close ()

#diameter calc
diam_dist = []
for a in r [3] :

b = diam_dist + a values ()
diam_dist = b

diam dist. sort ()
if 1000 in diam_dist:

c = diam_dist. index (1000)
else:

C = 0

print "Graph diameter is %d/%d\n" # (diam_dist [c-1] , diam_dist [-1].)

:::grapher_v09. py: : :

#Author: Abraham Anderson
#9 2002 The Regents of the University of California

from Tkinter import +
from math import +

class UniDistbox: #with customizable info fields. . .
def init_ (self, parent):

top = self. top = Toplevel (parent)
top. title ("List Select")

#action buttons
frame3 = Frame (top)
ba = Button (frame3, text="Select.", command=self. action)
ba. pack (side=RIGHT)
frame 3. pack (side=BOTTOM, fill=X, expand=0)

#list box
frame = Frame (top)
frame2 = Frame (top)
lname = Label (frame, text="Node")
lname. pack (anchor=NW)

scrollbar = Scrollbar (frame2, orient=VERTICAL)

self .. listbox = Listbox (frame, selectmode=EXTENDED,
exportselection=0, yscrollcommand=scrollbar. set)

scrollbar. config (command=self. listbox. yview)
#scrollbar. pack (side=RIGHT, fill =Y)
self. listbox. pack (side=LEFT, fill=BOTH, expand=1)

frame. pack (side=LEFT, fill-BOTH, expand=1)

#field1
lname = Label (frame2, text="Label")
lname. pack (anchor=NW)

164



#scrollbar = Scrollbar (frame2, orient=VERTICAL)

self. listbox2 = Listbox (frame2, width=1, selectmode=NONE,
exportselection=0, yscrollcommand=scrollbar. set)

def

#scrollbar. config (command=self. listbox2 . y View)
scrollbar. pack (side=RIGHT, fill=Y)
self. listbox2 . pack (side=LEFT, fill=BOTH, expand=1)

frame2.pack (side=LEFT, fill=BOTH, expand=1)

#populate list
global name, text_ids
templist = name. keys ()
templist. sort ()
for a in templist:

self .. listbox. insert (END, name [a] )
if a in text_ids. keys ():

self. listbox2 . insert (END, '1')
else:

self. listbox2 . insert (END, '0')

self. result = None

action (self) :
items = self. listbox. Curselection ()
try:

items = map (int, items) #integer index
except Value Error: pass
#print items
items2 = []
for a in items:

items2. append (self. listbox. get (a)) #strings
#print items2

#place new labels
global node_ids, text_ids, name
for i in name. keys () :

if name [i] in items 2:
if i in text_ids. keys ():

canvas. delete (text_ids [i]) # toggling labels
continue

else:

pass
r = canvas. coords (node_ids [i] )
r1 = r [0] + (r [2] -r [0])/2
r2 = r [1] + (r. [3] -r [1] ) / 2
text =

canvas. create_text (r1+10, r2+10, text=name [i], fill="yellow", anchor=NW)
text_ids [i] =text

self. top. destroy ()

#end class

class DoubleListbox:
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def init_ (self, parent):
top = self. top = Toplevel (parent)
top. title ("Activation / Deactivation")

#action buttons
frame3 = Frame (top)
la = Label (frame 3, text="action items here. ")
la. pack ()
bset = Button (frame3, text="Set", command=self. set_action)
bset. pack () # look into inactivating button while no changes

have been made

frame 3. pack (side=BOTTOM, fill=X, expand=0)

#list box
frame = Frame (top)
lname = Label (frame, text="Active Node")
lname. pack (anchor=NW)

scrollbar = Scrollbar (frame, orient=VERTICAL)

self. listbox = Listbox (frame, selectmode=EXTENDED,
exportselection=0, yscrollcommand=scrollbar. set)

scrollbar. config (command=self. listbox. yview)
scrollbar. pack (side=RIGHT, fill=Y)
self. listbox. pack (side=LEFT, fill=BOTH, expand=1)

frame. pack (side=LEFT, fill=BOTH, expand=1)

#action buttons
frame1 = Frame (top)
boff = Button (framel, text=">", command=self. off action)
bon = Button (framel, text=".<", command=self. on action)
boff. pack (anchor=CENTER)
bon. pack (anchor=CENTER)
frame1.pack (side=LEFT, expand=1)

#second list
frame2 = Frame (top)
lname = Label (frame2, text=". In Active Node")
lname. pack (anchor=NW)

scrollbar = Scrollbar (frame2, orient=VERTICAL)

self. listbox2 = Listbox (frame2, selectmode=EXTENDED,
export selection=0, yscrollcommand=scrollbar. set)

scrollbar. config (command=self. listbox2 . yuiew)
scrollbar. pack (side=RIGHT, fill=Y)
self. listbox2 . pack (side=LEFT, fill=BOTH, expand=1)

frame2.pack (side=LEFT, fill=BOTH, expand=1)

#self. listbox. insert (END, "a list entry")
# for a in range (0, 200) :
# for item in ["one", "two", "three", "four") :
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def

# self. listbox. insert (END, item)
#populate lists based on active list
global active
for a in active. keys ():

if active [a] ==
self. listbox. insert (END, a.)

else:
self. listbox2 . insert (END, a.)

#sorting both lists
list1 = self. listbox. get (0, END)
list2 = self. listbox2 . get (0, END)
list11 = []
for a in list1:

list11. append (a)
list22 = []
for a in list2:

list22. append (a)
list11. sort ()
list22. sort ()
self. listbox. delete (0, END)
self. listbox2 . delete (0, END)
for a in list11:

self. listbox. insert (END, a.)
for a in list22:

self. listbox2 . insert (END, a.)

self. result = None

off action (self):
items = self. listbox. curselection ()
try:

items = map (int, items) #integer index
except Value Error: pass
#print items
items2= []
for a in items:

items2. append (self. listbox. get (a)) #strings
#print items2
for a in items 2:

self. listbox2 . insert (END, a.)
i = 0
for a in items :

self. listbox. delete (a - i)
i+=1

#sorting both lists
list1 = self. listbox. get (0, END)
list2 = self. listbox2 . get (0, END)
list11 = []
for a in list1:

list11. append (a)
list22 = []
for a in list2:

list22. append (a)
list11. sort ()
list22. sort ()
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def

def

self .. listbox. delete (0, END)
self. listbox2 . delete (0, END)
for a in list11:

self. listbox. insert (END, a.)
for a in list22 :

self. listbox2 . insert (END, a.)

on_action (self):
items = self. listbox2 . Curselection ()
try:

items = map (int, items)
except Value Error: pass
#print items
items2 = []
for a in items:

items2. append (self. listbox2 . get (a))
#print items2
for a in items 2:

self. listbox. insert (END, a.)
i=0
for a in items:

self. listbox2 . delete (a - i)
i4 =1

#sorting both lists
list1 = self. listbox. get (0, END)
list2 = self. listbox2 . get (0, END)
list11 = []
for a in list1:

list11. append (a)
list22 = []
for a in list2:

list22. append (a)
list11. sort ()
list22. sort ()
self. listbox. delete (0, END)
self. listbox2 . delete (0, END)
for a in list11:

self. listbox. insert (END, a.)
for a in list22 :

self. listbox2 . insert (END, a.)

set_action (self):
global active
list = self. listbox. get (0, END)
list1 = []
for a in list:

list1 .. append (a)
list = self. listbox2 . get (0, END)
list2 = []
for a in list:

list2 . append (a)

for a in list1:
active [a] = 1

for a in list2:
active [a] = 0
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#end class

class OpenFileDialog:
def init_ (self, parent):

top = self. top = Toplevel (parent)
top. title ("Open File. . . ")

Label (top, text="Input filename"). grid (row-0)
Label (top, text="Nodes") . grid (row–1, column=0)
Label (top, text="Edges") . grid (row–2, column=0)
self. e = Entry (top)
self. e. grid (row–1, column=1)
self. f = Entry (top)
self. f. grid (row–2, column=1)

b = Button (top, text="Open", command=self. report)
b. grid (row–2, column=2, padz=3)

self. result = None

def report (self) :
global datafile
datafile = (self. e. get (), self. f. get () )
self. top. destroy ()

class GetNames Edges (OpenFileDialog):
def checkStatus (self) : # checks if the current file has been

analysed yet
import string
global done_comp
In - it in

e - it it

try:
donef = open ('c:/my documents/bin/xstatus. txt '', 'r')
line = donef. readline ()
line. rstrip ()
[n, e) = string. split (line, '; ' )
donef. close ()
global datafile
if n in datafile:

if e in datafile:

#prior analysis complete
check = 1

done comp = 1
pass

else: check = 0
else: check = 0

except:
check = 0

return (check)

def initActiveLib (self) :
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def

def

def

def

global active, name
for a in name. keys () :

active [name [a] ] = 1

importSCC (self) :
global groups
#read in SCC grouping
file4 = open ('c:/my documents/bin/SCC. txt '', 'r')
import string
while string. count (file4. readline (), 'SCC') = 1 :

pass
while 1:

line = file4. readline ()
if string. count (line, 'Spann') = 1 :

pass
else:

break

line = line. rstrip ()
[id, sc] = string. split (line, ' ' )
groups [id] = [sc, 'Haaaaaa' ]

file4. close ()

importAP (self) :
global groups
#read in SCC grouping
file4 = open ('c:/my documents/bin/SCC. txt '', 'r')
import string
while string. count (file4. readline (), 'artic') = 1 :

pass
while 1:

line = file4. readline ()
if string. count (line, 'bridge') = 1 :

pass
else:

break

line = line. rstrip ()
[id] = string. split (line, ' \t')
groups [id] = [groups [id] [0], 'red' ]

file4. close ()

importCC (self) :
global groups
#read in CC grouping
file4 = open ('c:/my documents/bin/CC. txt '', 'r')
import string
lines = file4. readlines ()
for line in lines:

line = line. rstrip ()
[id, cc] = string. split (line, ' \t')
if id in groups. keys () :

groups [id] = [groups [id] [0], groups [id] [1], cc)
else:

groups [id]
file4. close ()

[-1, '+5.45454", cc]

importSigEdg (self):
global sgroups, bgroups, edges, edge_ids
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def

#read in Bridge grouping
file4 = open ('c:/my documents/bin/SCC. txt '', 'r')
import string
while string. count (file4. readline (), 'bridge') l = 1 :

pass
while 1:

line = file4. readline ()
if string. count (line, 'SCC') = 1 :

pass
else:

break

line = line. rstrip ()
[fr, to] = string. split (line, ' – ' )
#find edge id that goes with this edge
i = edges [fr] . index (to)
bgroups. append (edge_ids [fr] [i] )

#read in Span grouping
while string. count (file4. readline (), 'Spann') = 1 :

pass
for line in file4. readlines () :

line = line. rstrip ()
[fr, to] = string. split (line, ' ' )
#find edge id that goes with this edge
i = edges [fr] . index (to)
sgroups. append (edge_ids [fr] [i] )

file4. close ()

importC (self) :
global centrality, u_centrality
#read in centralities
file3 = open ('c:/my documents/bin/D_centrality. txt');
import string
while string. count (file3. readline (), 'Vertex') = 1 :

pass
for line in file 3. readlines () :

line = line. rstrip ()
[id, btw, clo] = string. split (line, ' ' )
centrality [id] = [btw, clo]
if string. atof (btw) > centrality [' max' ] [0] :

centrality [' max' ] [0] = string. atof (btw)
if string. atof (clo) > centrality [' max' ] [1] :

centrality [' max' ] [1] = string. atof (clo)
file 3. close ()

file3 = open ('c:/my documents/bin/U_centrality. txt');
while string. count (file3. readline (), 'Vertex') = 1 :

pass
for line in file 3. readlines () :

line = line. rstrip ()
[id, btw, clo] = string. split (line, ' ' )
u_centrality [id] = [btw, clo)
if string. atof (btw) > u_centrality [' max' ] [0] :

u_centrality [' max' ] [0] = string. atof (btw)
if string. atof (clo) > u_centrality [' max' ] [1] :

u_centrality [' max') [1] = string. atof (clo)
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def

def

def

file 3. close ()

import F (self) :
global datafile, name
name={}
#read in nodes and ids
file1 = open ("c:/my documents/bin/"+datafile [0], 'r')
import string
for line in file 1. readlines () :

line = line. rstrip ()
id = line. split (', ') [0]
na = line. split (', ') [1] [1: -1]
na = string. replace (na, ' ', ' ' )
na = string. replace (na, '-', '+')
na = string. replace (na, ' / ', " \\')
name [id] = na

file 1. close ()

importG (self) :
global datafile, edges
edges={}
file = open ("c:/my documents/bin/"+datafile [1], 'r')
edge = []
for line in file. readlines () :

edge. append (line. rstrip () )
file. close ()
nedges = len (edge)
directed = {} #this dictionary preserves the directed edges
i = 0

for e in edge:
d = e. split (', ')

a = d [0]
b = d [1]
if a in directed. keys () :

prior = directed [a]
prior. append (b)
directed [a] = prior

else:
directed [a] = [b]

edges=directed

report (self):
canvas_clear all ()
global datafile
datafile = (self. e. get (), self. f. get () )
self. import F ()
self. importG ()
s = self. checkStatus ()
if s == 1: #analysis has been done for loaded graph

self. importC ()
self. import SCC ()
self. importAP ()
self. importCC ()

elif s == 0: #analysis has not been done for loaded graph
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pass
draw ()
if s == 1 :

self. importSigEdg ()
self. initActivelib ()
self. top. destroy ()

class Load Data (GetNames Edges):
def

def

_init_ (self, parent):
top = self. top = Toplevel (parent)
top. title ("Load Data")

Label (top, text="Input filename") . grid (row-0)
Label (top, text="Nodes") . grid (row–1, column=0)
Label (top, text="Edges") . grid (row–2, column=0)
global datafile
self. e = Entry (top)
self. e. insert (0, datafile [0] )
self. e. grid (row–1, column=1)
self. f = Entry (top)
self. f. insert (0, datafile [1])
self. f. grid (row–2, column=1)

b = Button (top, text="Open", command=self. report)
b. grid (row–2, column=2, padx=3)

self. result = None

report (self) :
self. importC ()
self. importSCC ()
self. importAP ()
self. importCC ()
self. import SigEdg ()
self. top. destroy ()

class GetNames (OpenFileDialog):
def

def

import F (self) :
global datafile, name
#read in nodes and ids
file1 = open ("c:/my documents/bin/"+datafile [0], 'r')
import string
for line in file 1. readlines () :

line = line. rstrip ()
id = line. split (', ') [0]
na = line. split (', ') [1] [1: -1]
na = string. replace (na, ' ', ' ' )
na = string. replace (na, '-', '+')
na = string. replace (na, ' / ', " \\')
name [id] = na

file 1. close ()
# redraw table list

report (self) :
global datafile
datafile = (self. e. get (), self. f. get () )
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self. import F ()
self. top. destroy ()

class KinDialog:
def init_ (self, parent):

global k, h, l
top = self. top = Toplevel (parent)
top. title ("Kinetics. . . ")

import fpformat
k2 = k+0
h2 h4-0
l2 = l- 0

Label (top,
text="Repulsion ("+fpformat. fix (k2, 5) + "l") . grid (row-0, column=0)

Label (top, text="Spring
const ["+fpformat. fix (h2, 5) + "J") . grid (row–1, column=0)

Label (top, text="Nat
length ["+fpformat. fix (l2, 5) + "J") . grid (row-2, column=0)

self. e = Entry (top)
self. e. insert (0, fpformat. fix (k2, 5))
self. e. grid (row-0, column=1)
self. f = Entry (top)
self. f. insert (0, fpformat. fix (h2, 5))
self. f. grid (row–1, column=1)
self . g = Entry (top)
self. g. insert (0, fpformat. fix (12,5))
self. g. grid (row-2, column=1)
Button (top,

text="Update", command=self. action) . grid (row–3, column=1)

def action (self) :
global h, k , l
import string
h=string. atof (self. f. get () )
k=string. atof (self. e. get ()) +0.00001
l=string. atof (self. g. get () )
self. top. destroy ()

class Table Dialog:
def init_ (self, parent):

global name, centrality, u_centrality
top = self. top = Toplevel (parent)
top. title ("Table Dialog. . . ")

menu.1 = Menu (top)
#menu.1. add_command (label="+ Node (s)", command=open f2)
#menul. add_command (label="- Node (s)")

top. config (menu=menul)

frame = Frame (top)

Label (frame, text="Name",
relief=GROOVE, width=20). grid (row-0, column=0, sticky=SW)
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Label (frame, text="ID",
relief=GROOVE) . grid (row-0, column=1, sticky=SW)

Label (frame, text="D_Btwnes",
relief=GROOVE) . grid (row-0, column=2, sticky=SW)

Label (frame, text="D_Clsnes",
relief=GROOVE) . grid (row-0, column=3, sticky=SW)

Label (frame, text="U_Btwnes",
relief=GROOVE) . grid (row-0, column=4, sticky=SW)

Label (frame, text="U_Clsnes",
)relief=GROOVE) . grid (row–0, column=5, sticky=SW)

i = 0

items = name. keys ()
for item in items:

i4 = 1

Label (frame, text=name [item] , width=40 , relief =RIDGE,
anchor=W) . grid (row-i, column=0)

Label (frame, text= item, anchor=W) . grid (row-i, column=1)
Label (frame, text=centrality [item] [0],

anchor=W) . grid (row-i, column=2)
Label (frame, text=centrality [item] [1],

anchor=W) . grid (row-i, column=3)
Label (frame, text=u_centrality [item] [0],

anchor=W) . grid (row-i, column=4)
Label (frame, text=u_centrality [item] [1],

anchor=W) . grid (row-i, column=5)

frame. pack (anchor=NW)

def addnode (self) :
global datafile, name
openf2 ()

#main program
#globals
datafile = ("None", "None")
tagla 0
gotNode = 0
snode = None

selected = [[] , [] ]
active = {}
node_ids = {}
text_ids = {}
edge_ids = {}
edges = {}
nmap = {}
name = {} #this holds the title of each node
centrality = { 'max' : [0, 0] } #this holds the centralities: d-btw, d
scloseness

u_centrality = { 'max' : [0, 0] } #this holds the centralities: u-btw, u
closeness

max_r_size = 20 #this is the maximum size for a node's visual diameter
min_r size = 2 #this is the minimum size for a node's visual diameter
k = 10 #node repulsion
h = 0.5 # spring constant
l = 40 #natural length
d = l # fake viscosity
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rel 0 # should it be relaxing?
coords d = [] #coordinates from Multidimentional Scaling on a directed
graph
coords u
undirecte

done MDS
done comp
done clust
lens O

lens_off
temp_coords {}
groups {} #contains all the node groupings [node_id: sco, ap, cc)
cgroups = {} #contains cluster assignments
[node_id: hdluster, partitions (later) J
bgroups [] #contains edge ids that are bridges
sgroups [] #contains edge ids that are spans

] #coordinates from Multidimentional Scaling on an
raphº [

G
O

O

O

1

def kinetics () :
KinDialog (root)

def freport () :
global datafile, node_ids
print "Filename ", datafile
#print node_ids

def openDoubleList Dialog () :
d DoubleListbox (root)

def

def

def

def

def

heig

def

openUniDistDialog () :
Ul UniDistbox (root)

openTable ():
t=TableDialog (root)

open f () :
#need system halt here
#old & basic : d OpenFileDialog (root)
GetNames Edges (root)

openf2 () :
#need system halt here
dd GetNames (root)

fitwin (event) :
global tagl
if tagl == 0:

tagl event. num
if event. num & tagl:

canvas. Config (width=root. winfo pixels (root. winfo width ()),
ht=root. winfo pixels (root. winfo height ()))

release1 (event) :
global gotNode,
if gotNode ==

gotNode

snode

O
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snode = None

place Edges ()

def selectNode (event) :
global gotNode, node_ids, snode, text_ids
xO = canvas. Canvasiz (event. x)
yo = canvas. canvasy (event. y)

if gotNode ==
try:

i = canvas. find_closest (xo, yo) [0]
for a in node_ids. keys ():

if i == node_ids [a] :
snode = a

gotNode = 1
break

except:
pass

if gotNode:
loc = canvas. coords (node_ids (snode])
r = (loc [2] – loc [0] ) / 2
canvas. coords (node_ids [snode], xo - r, yo - r, xo + r, yo + r.)
try:

canvas. coords (text_ids (snode] , xo + 5, yo + 5)
except:

pass
#place Edges ()

elif gotNode == 1:
r = (canvas. coords (node_ids [snode]) [2] –

canvas. coords (node_ids [snode]) [0])/2
canvas. coords (node_ids [snode] , xo - r, yo - r, xo + r, yo + r.)
try:

canvas. coords (text_ids (snode], xo + 10, yo + 10)
except:

pass
#place Edges ()

def selectNode 2 (event) :

r)

global gotNode, node_ids, snode, text_ids
xo = canvas. canvasz (event. x)
yo = canvas. canvasy (event. y)

if gotNode ==
for i in node_ids. keys ():

loc = canvas. coords (node_ids [i] )
x = (loc [2]+loc [0]) /2
y = (loc [3] +loc [1]) /2
if hypot ( (x-xo), (y-yo)) < 5:

gotNode = 1
snode = i
r = (loc [2] – loc [O] ) / 2
canvas. coords (node_ids [snode], xo - r, yo - r, xo + r, yo +

try:
canvas. coords (text_ids [snode], xo + 5, yo + 5)

except :
pass
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elif

Carl Va S - C

def plac
glob
temp
#cal
for

xO

yo
dx

dy

#edg
for

place Edges ()
gotNode == 1 :

r = (canvas. coords (node_ids [snode]) [2] -
oords (node_ids [snode]) [0])/2
canvas. coords (node_ids (snode], xo - r, yo - r, xo + r, yo + r.)
try:

canvas. coords (text_ids [snode], xo + 10, yo + 10)
except:

pass
place Edges ()

eNodes () :
al node_ids, edge_ids, edges, k, h, l, d

= {}
c new positions and store in temp array
i in node_ids. keys ():

= 0

= 0

= 0

= 0

loc = canvas. coords (node_ids [i] )
x = (loc [2] +loc [0])/2
y = (loc [3] +loc [1]) /2
#node repulsion
for j in node_ids. keys ():

if j i = i :
loc2 = canvas. coords (node_ids [j])
x2 = (loc2 [2] +loc2 [0])/2
y2 = (loc2 [3] +loc2 [1]) /2
dxx = (x-x2) +0.000001
dx += k” dxx/pow (abs (dxx), 3)
dyy = (y-y2) +0.000001
dy += k” dyy/pow (abs (dyy), 3)

# sum of forces
#xo = x+min (k” dx/pow (abs (dx), 3), 300)
#yo = y+min (k” dy/pow (abs (dy), 3), 300)
if abs (dx) < 40 :

xo = x + dx
else:

xo = x + 40 * dx/abs (dx)
if abs (dy) < 40:

yo = y + dy
else:

yo = y + 40*dy/abs (dy)
temp [i] = [xo, yo, (loc [2] -loc [0] ) /2]

e repulsion
j in edges. keys () :
for yy in edges [j] :

dly = 0
dlx = 0

loc = canvas. coords (node_ids [j])
x1 = (loc [2]+loc [0])/2
y1 = (loc [3] +loc [1]) /2
loc2 = canvas. coords (node_ids [yy])
x2 = (loc2 [2]+loc2 [0])/2

-
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y2 (loc2 [3] +loc2 [1]) /2
dl = h” (l-hypot ( (x1-x2), (y1-y2)))
dl = d.l * d / (d 4 abs (dl)) #fake viscosity adjustment
angle = atan2 ( (y2-yl), (x2-x1))
dlx += dl” cos (angle)
dly += dl” sin (angle)
temp [j] [0] – = d.lx/2
temp [j] [1] – = d.ly/2
temp [yy] [0] += dlx/2
temp [yy] [1] += d.ly/2

#update new positions from temp array
for i in node_ids. keys ():

canvas. coords (node_ids [i], temp [i] [0] - temp [i] [2] , temp [i] [1] -
temp [i] [2] , temp [i] [0] + temp [i] [2] , temp [i] [1] + temp [i] [2])

try:
canvas. coords (text_ids [i], temp [i] [0] + 10, temp [i] [1] + 10)

except:
pass

place Edges () :def

def

def

global edges, node_ids, edge_ids
for i in edge_ids. keys ():

kk = 0

for jj in edge_ids [i] :
yy = edges [i] [kk]
loc = canvas. coords (node_ids [i] )
x = (loc [2]+loc [0])/2
y = (loc [3] +loc [1]) /2
loc2 = canvas. coords (node_ids [yy])
x2 = (loc2 [2]+loc2 [0])/2
y2 = (loc2 [3] +loc2 [1]) /2
canvas. Coords (jj, x, y, x2, y2)
kk +=1

relax () :
global rel, done MDS
done MDS = 0
it = 0
if rel:

rel = 0

canvas. config (background="black")
else:

rel = 1

canvas. config (background= "green")

while rel: #it < 2:
it + = 1

placeNodes ()
#adjust edges to new node locations
place Edges ()
canvas. update ()

center () :
global node_ids
#get window center
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wx = root. winfo pixels (root. winfo width ()) / 2
wy = root. winfo pixels (root. winfo height ()) / 2
wz=canvas . canvasz (w:x)
wy=canvas. canvasy (wy)
#get node center
nX = 0

ny = 0
num = 0

for i in node_ids. keys ():
num + = 1

loc = canvas. coords (node_ids [i])
nx + = (loc [2] +loc [0] ) /2
ny += (loc [3] +loc [1]) /2

nx = nx/num
ny = ny/num
#pan canvas to s. t. node ctr eq. win ctr (w:x-nx)
for n in canvas. find_all ():

canvas. move (n, wx-nx, wy-ny)

def draw () :
global name, edges, node_ids, edge_ids, text_ids, max_r_size,

min_r size, centrality
# refresh for new data
node_ids = {
edge_ids = {
text_ids = {
import string
for i in name. keys ():

r = 100 * random. random ()
r2 = 100 *random. random ()
try:

r3 =

max_r_size” string. atof (centrality [i] [0])/centrality [' max' ] [0]
if r3 < min_r size:

r3 = min_r size
r3 = r3/2
node = canvas. create_oval (70+r-r3, 70+r2–

r3, 70+r-r3, 70+r2+r 3, outline="white")
except:

node = canvas. create_oval (70+r-5, 70+r2–5, 70+r-5, 70+r2+5,
outline="white")

text =

canvas. create_text (70+r-10, 70+r2+10, text=name [i], fill="yellow",
anchor=NW)

node_ids [i] =node
text_ids [i] = text

for i in edges. keys ():
for yy in edges [i] :

loc = canvas. coords (node_ids [i])
x = (loc [2] +loc [0] ) / 2
y = (loc [3] +loc [1]) /2
loc2 = canvas. coords (node_ids [yy])
x2 = (loc2 [2] + loc2 [0] ) / 2
y2 = (loc2 [3] +loc2 [1]) /2

edge =
canvas. Create_line (x, y, x2, y2, fill="#444444", arrow-LAST)

s

º

º

s
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def

def

def

def

canvas . lower (edge)
if i in edge_ids. keys ():

prior = edge_ids [i]
prior. append (edge)
edge_ids [i] = prior

else:

edge_ids [i] = [edge]

dviz normal ():
global node_ids
import string
for i in node_ids. keys () :

loc = canvas. coords (node_ids [i])
x = (loc [2] +loc [0])/2
y = (loc [3] +loc [1]) /2
r = 5

canvas. Coords (node_ids [i], x - r, y - r, x + r, y + r.)

dviz_ap () :
global node_ids, groups
colors = {}
for i in node_ids. keys ():

try:
canvas. itemconfigure (node_ids [i], outline=groups [i] [1].)

except:
pass

dviz_edges ():
global bgroups, sgroups
for i in bgroups:

try:
canvas. itemconfigure (i, fill= | #ff 0.099 '')

except:
pass

for i in sgroups:
if i in bgroups:

try:
canvas. itemconfigure (i, fill=' orange')

except:
pass

else:

try:
canvas. itemconfigure (i, fill = 'yellow')

except:
pass

dviz co () :
global node_ids, groups
import string
colors = {}
for i in node_ids. keys ():

#as a new group id is read, assign a new random color and store
in the colors dictionary

try:
if groups [i] [2] in colors. keys () :

pass
else:
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tk_rgb = "##02x} 02x%02x" # (255* random. random (),
255* random. random (), 255* random. random () )

colors [groups [i] [2] ] = tº rgb
canvas. itemconfigure (node_ids [i],

outline=colors [groups [i] [2] ])
except:

pass

def dviz_sco ():
global node_ids, groups
import string
colors = {}
for i in node_ids. keys ():

#as a new group id is read, assign a new random color and store
in the colors dictionary

try:
if groups [i] [0] in colors. keys () :

pass
else:

tk_rgb = "##02x%02x302x" # (255* random. random (),
255* random. random (), 255* random. random () )

colors [groups [i] [0] ] = tº rgb
canvas. itemconfigure (node_ids [i],

outline=colors [groups [i] [0] ])
except:

pass

def dviz d_bet ():
global centrality, max_r_size, min_r size, node_ids
import string
for i in node_ids. keys ():

loc = canvas. coords (node_ids [i] )
x = (loc [2]+loc [0])/2
y = (loc [3] +loc [1]) /2
r3 =

max_r_size” string. atof (centrality [i] [0]) /centrality [' max' ] [0]
if r3 < min_r size:

r3 = min_r size
r3 = r3/2
canvas. coords (node_ids [i], x - r3, y - r3, x + r3, y + r3)

def dviz_d_clo ():
global centrality, max_r_size, min_r size, node_ids
import string
for i in node_ids. keys ():

loc = canvas. coords (node_ids [i] )
x = (loc [2] +loc [0])/2
y (loc [3] +loc [1]) /2
r3 = max_r_size” (1–

(string. atof (centrality [i] [1]) / centrality [' max' ] [1]))
if r3 < min_r size:

r3 = min_r size
r3 = r3/2
canvas. coords (node_ids [i], x - r3, y - r3, x + rj , y + r3)

def dviz u_bet ():
global u_centrality, max_r_size, min_r size, node_ids
import string
for i in node_ids. keys ():
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loc = canvas. coords (node_ids [i] )
x = (loc [2] +loc [0]) /2
y = (loc [3] +loc [1]) /2
r3 =

max_r_size” string. atof (u_centrality [i] [0])/u_centrality [' max' ] [0]
if r3 < min_r size:

r3 = min_r size
r3 = r3/2
canvas. coords (node_ids [i], x - r3, y - r3, x + r3, y + r3)

def dviz u_clo ():
global u_centrality, max_r_size, min_r size, node_ids
import string
for i in node_ids. keys ():

loc = canvas. coords (node_ids [i] )
x = (loc [2]+loc [0])/2
y = (loc [3] +loc [1]) /2
r3 = max_r_size” (1–

(string. atof (u_centrality [i] [1])/u_centrality [' max' ] [1]))
if r3 & min_r size:

r3 = min_r size
r3 = r3/2
canvas. coords (node_ids [i], x - r3, y - r3, x + rj , y + r3)

2

def Scale (width, coords) :
global node_ids
maxx = 0
minx = 50000000

maxy = 0
miny = 50000000
new_coords = []
for a in coords:

if a [0] => maxx:
maxx = a [0]

if a [0] : minx:
minx = a [0]

if a [1] → maxy:
maxy = a [1]

if a [1] & miny:
miny = a [1]

x = maxx-minx

y = maxy-miny

for a in coords:

new_coords. append ( [a [0] *width/x, a [1] *width/y])
global nmap
for i in node_ids. keys ():

b = nmap [i] - 1
if b > len (new_coords) -1 :

print b
pass

else:

xO = new_coords [b] [0]
if xo & 0:

xo = abs (xo) * ( – 1.0)
else:

xo = abs (xo)
yo = new_coords [b] [1]

:
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if yo ~ 0:
yo = abs (yo) * (-1.0)

else:

yo = abs (yo)
r = (canvas. coords (node_ids [i]) [2] –

canvas. coords (node_ids [i]) [0])/2

def

canvas. coords (node_ids [i], xo - r, yo - r, xo + r, yo + r.)
try:

canvas. coords (text_ids [i], xo + 10, yo + 10)
except:

pass

place Edges ()
center ()

MDS () :
#Multi dimentional scaling tool
from Matrix import “
from Linear Algebra import *
#read in D & U distance matrix
import pickle
print "reading in filez"
file1 = open ("c:/my documents/bin/D_dist. txt", "r')
ddist = pickle. load (file1)
file2 = open ("c:/my documents/bin/U_dist. txt", "r')
udist = pickle. load (file2)
file 1. close ()
file 2. close ()
print "done read in"
#directed graph
DM = []
a = daist [0] . keys ()
a . sort ()
s = a [-1]
for b in range (0, s) :

DM. append ( [ ] )
diff = 0

for b in range (0, s) :
if b + 1 in a .

for c in range (0, s) :
if c + 1 in a .

DM [b] . append (ddist [b-diff] [c-1])
else:

DM [b] . append (2000)
else:

diff +=1

for c in range (0, s) :
if b == C :

DM [b] . append (0)
else:

DM [b] . append (2000)
DM = Matrix (DM)
print "made DM."
#undirected graph
UM = []

S.

2

2

s
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a = udist [0] . keys ()
a . sort ()
s = a [-1]
for b in range (0, s) :

UM. append ([] )
diff = 0

for b in range (0, s) :
if b + 1 in a .

for c in range (0, s) :
if c + 1 in a .

UM [b] . append (udist [b-diff] [c-1])
else:

UM [b] . append (2000)
else:

diff +=1

for c in range (0, s) :
if b == c :

UM [b] ... append (0)
else:

UM [b] . append (2000)
UM = Matrix (UM)
print "made UM"

#get D & U MDS coordinates
#get eigen system

es_d = eigenvectors (DM)
es_u = eigenvectors (UM)

#Choose 2 largest eigenvalues
#directed graph
first = 3
second = 4
third = 5

temp = []
for a in range (0, len (es_d [0])):

if abs (es_d [0] [a] ) > abs (es_d [0] [third] ) :
if abs (es_d [0] [a] ) > abs (es_d [0] [second] ):

if abs (es_d [0] [a] ) > abs (es_d [0] [first]) :
first = a

else:
second = a

else:
third = a

pc1_d = es_d [1] [first]
pc2_d = es_d [1] [second]
pc3_d = es_d [1] [third]

#Get coords from projection of each node's distance vector onto
each principal axis

coords d = []
for a in range (0, len (DM) ) :

if a 4-1 in daist [0] . keys () :
try:

x = (pc1_d"DM [a]). real
y = (pc2_d"DM [a]). real

except:
x = pol_d"DM [a]
y = po2_d"DM [a]
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coords d. append ( [x, y] )
print "got d coords"
#undirected graph
first = 3
second = 4
third = 5

temp = []
for a in range (0, len (es_u [0])) :

if abs (es_u [0] [a] ) > abs (es_u [0] [third] ) : # this line
previously had es_d instead of es_u (this may have caused as out of
range error)

if abs (es_u [0] [a] ) > abs (es_u [0] [second] ) :
if abs (es_u [0] [a] ) > abs (es_u [0] [first]) :

first = a
else:

second = a
else:

third = a

pcl_u = es_u [1] [first]
pc2_u = es_u [1] [second]
pc3 u = es_u [1] [third]

#Get coords from projection of each node's distance vector ontoproj
each principal axis

def

coords u = []
for a in range (0, len (UM)) :

if a 4-1 in udist [0] . keys () :
try:

X (pc1_u^UM [a] ). real
y = (pc2_u^UM [a] ). real

except:
x = pol_u^UM [a]
y = po2_u^UM [a]

coords u. append ( [x,y])
print "got u coords"
#quick read in of node id mapping for use in scaling function
#dictionary ■ old] =>new
import pickle
file3 = open ("c:/my documents/bin/node_map. tzt", "r')
global nmap
nmap = pickle. load (file 3)
file 3. close ()
#done mapping read in.
return coords d, coords u
#end MDS

layout_u ():
global coords d, coords u, done_MDS, done comp
#if done MDS
if done_comp ==

return

if len (coords d) > 0:
#do layout
Scale (600, coords_u)
done MDS = 1

else:

coords d, coords u = MDS ()

1 :

O :
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#do layout
Scale (600, coords u)
done MDS = 1

def layout_d ():
global coords d, coords_u, done MDS, done comp
#if done MDS = 1
if done comp == 0:

return

if len (coords d) > 0:
#do layout
Scale (600, coords d)
done MDS = 1

else:

coords d, coords u = MDS ()
#do layout
Scale (600, coords d)
done MDS = 1

def canvas_clear all ():
global text_ids, node_ids, edge_ids
for a in text_ids. keys ():

canvas. delete (text_ids [a] )
del text_ids [a]

for a in node_ids. keys ():
canvas. delete (node_ids [a])
del node_ids [a]

for a in edge_ids. keys ():
canvas. delete (edge_ids [a] )
del edge_ids [a]

for j in canvas. find_all ():
canvas. delete (j)

def label_clear all ():
global text_ids
for a in text_ids. keys ():

canvas. delete (text_ids [a] )
del text_ids [a]

def label_show_all ():
global node_ids, text_ids, name
for i in name. keys ():

r = canvas. coords (node_ids [i] )
r1 = r [0] + (r [2] -r [O] ) / 2
r2 = r [1] + (r [3] -r [1]) /2
text =

canvas. create_text (r1+10, r2+10, text=name [i], fill="yellow", anchor=NW)
text_ids [i] =text

def label_show () :
global node_ids, text_ids, name, selected
for i in name. keys () :

if node_ids [i] in selected [1] :
r = canvas. coords (node_ids [i])
r1 = r [0] + (r [2] – r [0] ) / 2
r2 = r [1] + (r [3] -r [1]) /2
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try: # to avoid duplicate labels
canvas. delete (text_ids [i])

except:
pass

text =

canvas. create_text (r1+10, r2+10, text=name [i], fill- "yellow", anchor=NW)
text_ids [i] = text

def label_hide ():
global node_ids, text_ids, name, selected
for i in name. keys () :

if node_ids [i] in selected [1] :
r = canvas. coords (node_ids [i] )
r1 r [0] + (r [2] -r [O] ) /2
r2 r [1] + (r [3] -r [1]) /2
try: # to avoid duplicate labels

canvas. delete (text_ids [i] )
del text_ids [i]

except:
pass

def selectNode box (event):
global gotNode, selected
xo = canvas. canvasz (event. x)
yo = canvas. canvasy (event. y)
if gotNode == 0:

selected [0] . append (xo)
selected [0] . append (yo)
gotNode = 1
item =

canvas. Create_rectangle (xo, yo, xo-1, yo-1, outline="blue", fill="blue", stip
ple="gray12")

selected [0] . append (item)
elif gotNode == 1 :

canvas. coords (selected [0] [2] , selected [0] [0], selected [0] [1], xo, yo)

def release2b (event) :
global gotNode, selected
xo = canvas. canvasz (event. x)
yo = canvas. canvasy (event. y)

#get new point and add all nodes inside box to selected list.
if gotNode == 1:

gotNode = 0
canvas. bind ("~ B1-Motions", selectNode)
canvas. bind ("~. ButtonRelease-1-", release1)
canvas. delete (selected [0] [2] )
selected [1] =

canvas. find overlapping (selected [0] [0], selected [0] [1], xo, yo)
#later parsed for nodeids to act on (i.e. add label)
selected [0] = []

def select_box () :
canvas. bind ("<B1-Motions", selectNode box)
canvas. bind ("~ ButtonRelease-1-", release2b)
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def draw lens (event):
global lens, lens_off, selected, name, node_ids, text_ids,

temp_coords
xo = canvas. canvasz (event. x)
yo = canvas. canvasy (event. y)
R = 100. 0 #lens (sphere) radius
H = 25. 0 #depth of sphere center beneath plane (originally 50.0)
if lens off :

lens = canvas. create_oval (xo-R, yo-R, xo-R, yo-R, outline="blue")
lens_off = 0

else:

canvas. coords (lens, xo-R, yo-R, xo-R, yo-R)
#select nodes inside lens
selected [1] = canvas. find enclosed (xo-R, yo-R, xo-R, yo-R)
#distort them
for i in name. keys ():

if node_ids [i] in selected [1] :
if i in temp_coords. keys ():

r = temp_coords [i]
else:

r = canvas. coords (node_ids [i])
temp_coords [i] = r #save old coordinates

ox = r [0] + (r [2] -r [0])/2
oy = r [3] + (r [1] -r [3]) /2
ax = 0.0001 - (xo-ox)
ay = 0.00014-oy-yo
if hypot (ax, ay) > R.: #make sure node is within lens

continue

r = temp_coords [i]
C = min (R, sqrt (pow (ax, 2) +pow (ay, 2) +pow (H, 2)))
d = R – C

e = d” hypot (ax, ay) / (c40.0001)
p = e-hypot (ax, ay)
theta = atan (abs (ay/ax))
px = p + cos (theta) *ax/abs (ax) + xo
py p” sin (theta) *ay/abs (ay) + yo

#px and py are new coordinates for node
rr = (canvas. coords (node_ids [i]) [2] –

canvas. coords (node_ids [i] ) [0])/2
canvas. coords (node_ids [i], px - rr, py - rr, px + rr, py +

rr)
try:

canvas. coords (text_ids [i], px + 10, py + 10)
except:

pass

def kill_lens ():
global lens, lens off, temp_coords
canvas . unbind ("~ B3 -Motion-")
canvas. delete (lens)
lens off = 1
temp_coords = {}
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def

def

fisheye lens ():
global lens off
if lens off :

canvas. bind ("<B3-Motions", draw lens)
else:

kill_lens ()

runall () :
global datafile, done comp
import os
cmd = "python c : \\mydocu-1\\bin\\step one. py #s $s" *

(datafile [0] , datafile [1] )

def

os. system (cmd)
done comp = 1
#load results
Load Data (root)

ccluster () :
#later put in console for different clustering options.
global cqroups, done comp, done clust
if done comp== 0:

print "Analysis must be done prior to clustering. \n Please
select 'Run all. ' \n"

return

if done clust-=0:
done clust-1
#CCluster. py

#read in undir distance matrix (U_dist. txt),
import pickle
file2 = open ("c:/my documents/bin/U_dist. txt", "r')
udist = pickle. load (file2)
file 2. close ()
# . . . directed (dedges. txt) and undirected (edges. tzt) graphs
#dictionary [from] =>to

file4 = open ("c:/my documents/bin/dedges. txt", "r')
child = pickle. load (file4)
file4. close ()
#dictionary [from] =>to

file4 = open ("c:/my documents/bin/edges. txt", "r')
neighbor = pickle. load (file4)
file4. close ()
#dictionary [old] =>new

file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file3)
nmap2={} #new > old
for y in nmap. keys () :

nmap2 [nmap [y] ] = y
file 3. close ()

global Fact
def Fact (a) :

import math
if a ==

return (1)
if a * 10: #error for Stirling at 10 is 0.8%
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C = 1

while a > 0:
C = C* a
a = a – 1

return (c)
anSwer =

round (math. pow ( (2*2. 71828.1825/ (a+1)), 0.5) *1/math. exp (a+1)*pow (a+1.0, a 4-1
. 0))

return (answer)

global Comb
def Comb (a, b) :

c = Fact (a) / Fact (b) / Fact (a-b)
c_str = "#f" # c
if c_str == " -1. #IND00 :

C = 0 . 9999999999

return (C)

global scomb
def sComb (a, b) :

mx = max (b, (a-b))
mn = min (b, (a-b))
num = 1.0000000 #recursive mult
for i in range (mx+1, a+1) :

num * = i
c = num/Fact (mn)
#print a, b, c
c_str = "#f" # c
if c_str == ! — 1. # INDO O' :

C = 0 . 9999999999

return (c)

0 # total number of edges in dir graph
i in child. keys () :
L = L + len (child [i] )
len (neighbor. keys ()) #number of nodes in undir graph

Cohesiveness (A, neighbor, child, L, g) :
# this doesn't work because of the overflow errors
#pass in dictionary for directed and undirected graph with

#global neighbor, child, L, g
#A = list of nodes like, [a, b, c, d.]
q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys () :
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A
pf = 0
for k in range (q, min (L, 1+gs” (gs - 1)/2)) :

pf = pf + Comb (L, k) * Comb (g” (g-1)/2-L, gs” (gs-1)/2 -
k)/Comb (g” (g-1)/2, gs” (gs-1)/2)

#print pf, Comb (L, k)
return (pf)
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def

def

Cohesiveness 2 (A, L, g) :
#ratio of cluster density to graph density
# density = 2L/g (g-1)
#global L, g

density1 = 2.0" L/g/ (g-1)

q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys () :
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A

density2 = 2.0° q/gs/ (gs–1)

return (density2/density1)

involved in

A

k) /sComb (gº

def
#

Cohesiveness 3 (A, neighbor, child, L, g) :
#b4 this didn't work because of the overflow errors
#but now I am trying to simplify the factorial math
calculating loºk
#pass in dictionary for directed and undirected graph with

#global neighbor, child, L, g
#A = list of nodes like, [a, b, c, d.]
q = 0 #number of edges within dir cluster A
for i in A:

if i in child. keys () :
for j in child [i] :

if j in A:
q = q + 1

gs = len (A) #number of nodes within undir cluster A
pf = 0
for k in range (q, min (L, 1+gs” (gs - 1)/2)) :

pf = pf + scomb (L, k) * scomb (g” (g-1)/2–L, gs” (gs - 1)/2 -
(g-1)/2, gs” (gs-1)/2)

#print pf, scomb (L, k)
return (pf)

MinDist (A, a , udist) : #0 : min, 1 : max, 2 : avg
global udist

avgc = [-1, -1, 500000000]
maxC [-1, -1, 500000000]
min = [-1, -1, 500000000]
for i in A:

for j in A:
avg = 0
max = [-1, -1, 0]
if j := i :

for k in i:

for l in j:
d = udist [k-1] [l]
if d > max [2] :

max = [A. index (i), A. index (j), d)
if d & min [2] :
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min = [A. index (i), A. index (j), d)
avg += d

if max [2] : maxc [2] :
maxC = max

avg = avg/len (i)/len (j)
if avg & avgc [2] :

avgc = [A. index (i), A. index (j), avg.)
if a == 0:

return (min [0] , min [1] )
if a ==

return (maxc [0] , maxc [1] )
if a ==

return (avgc [0], avgc [1])

#main
R = []
ta = []
for i in neighbor. keys ():

ta. append ( [i] )
R. append (ta)
ta = []

S []
t = 0

while len (R [t] ) > 1:
t + = 1

Ca = []
[i,j] = MinDist (R [t-1] , 0, udist)

Ca = R [t-1] [i] + R [t-1] [j]
T = [] + R [t-1]
T. remove (R [t-1] [i] )
T. remove (R [t-1] [j])
C = Cohesiveness 3 (CQ, neighbor, child, L, g)
if (C <= 0.025) & (len (Cd) > 1) : #with cohesiveness2 use

thresshold of 7; w/3 use?
S. append (Cd)
R. append (T)

else:

T. append (Cd)
R. append (T)

#print R [-1], S
file = open ("c: /my documents/bin/cClust. txt", 'w')
file . write ("ID, cluster ( – 1: r, n : s ) \n")
for O in R [-1] :

for p in o.
file. write (nmap2 [p] +", -1\n")
id = nmap2 [p]
if id in cqroups. keys () :

cgroups [id] = [cGroups [id] [0] ]
else:
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cgroups [id] = [-1]

q = 0
for o in S :

for p in o :
outstring = ", $d Vn" # q
file. write (nmap2 [p] +outstring)
id = nmap2 [p]
if id in cgroups. keys () :

cgroups [id] = [cqroups [id] [0] ]
else:

cgroups [id] = [q]
q+=1

file. close ()
print ". . . done, clustering. \n"

#display the clusters by node color.
global node_ids
import string
colors = {}
for i in node_ids. keys ():

#as a new group id is read, assign a new random color and store
in the colors dictionary

try:
if coroups [i] [0] in colors. keys () :

pass
else:

tk_rgb = "##02x} 02x%02x" # (255* random. random (),
255* random. random (), 255* random. random () )

colors [cqroups [i] [0] ] = tº rob
canvas. itemconfigure (node_ids [i] ,

outline=colors [cqroups [i] [0] ])
except:

pass

def export_graph () :
global edge_ids, name, edges, active, datafile
import string

if 1 in active. values () :
#check for a flag ( '#) in the name, if its there look for its

id and get its increment
#create a new file with the flag and new id.
# Important . . . Add funtion to check for prexisting output file

with the same name

if '': ' in datafile [0] :
[rootnamel, timp) = string. split (datafile [0], ' ' )
[idl, suf 1] = string. split (tmp, " . ")

else:

[rootnamel, suf 1] = string. split (datafile [0] , " . ")
id1 = '10.'

id2 = "%d" # (string. atoi (idl) +1)
newname1 = rootname1+" "+id2+". "+suf 1
#print newnamel
nameout = open ("c:/my documents/bin/"+newnamel, 'w')
if '': ' in datafile [1] :
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[rootnamel, timp) = string. split (datafile [1], ' ' )
[idl, suf 1] = string. split (tmp, '.')

else:

[rootnamel, suf 1] = string. split (datafile [1], '...')
id1 = '10'

id2 = "#d" # (string. atoi (id1) +1)
newname2 = rootname1+" "+id2+". "+suf 1
#print newname2
edgeout = open ("c:/my documents/bin/"+newname2, 'w')
pass

else:
return

for a in name. keys () :
if active [name [a] ] ==

#print "#s, \"$s \"\n" # (a, name [a] )
nameout. write (a+", \""+name [a] + "\"\n")

for a in edges. keys ():
if active [name [a] ] ==

for b in edges [a] :
if active [name [b] ] == 1 :

i = edges [a] ... index (b)
#print "%s, #s, #dVn" # (a, b, edge_ids [a] [i])
outstring = "%s, *s, *d Vn" # (a, b, edge_ids [a] [i])
edgeout . write (outstring)

nameout. close (
edgeout. close (

)
)

root = Tk ()

menubar = Menu (root)
filemenu = Menu (menubar, tearoff = 0)
filemenu. add_command (label="Open", command=open f)
filemenu. add_command (label="Save (saves active graph).",
command=export_graph)
filemenu. add_command (label="Info", command=freport)
filemenu. add_command (label="Table", command=openTable)
filemenu. add_separator ()
filemenu. add_command (label="Exit", command=|root. quit)

analysis menu = Menu (menubar, tearoff = 0)
analysis menu. add_command (label="Run all", command=runall)
analysismenu. add_command (label="Cluster", command=ccluster)
analysismenu. add_command (label="centrality")
analysismenu. add_command (label="topology")

scenemenu = Menu (menubar, tearoff = 0)
dvizmenu = Menu (scenemenu, tearoff = 0)
labelmenu = Menu (scenemenu, tearoff = 0)
scenemenu. add_cascade (label="DataViz", menu=dvizmenu)
scenemenu. add_separator ()
scenemenu. add_command (label="Relax", command=relax)
scenemenu. add command (label="Center", command=center)
scenemenu. add_command (label="Kinetics", command=kinetics)
scenemenu. add_separator ()
scenemenu. add_command (label="MDS layout U", command=layout_u)
scenemenu. add_command (label="MDS layout D", command=layout_d)

195



scenemenu. add_separator ()
scenemenu. add_command (label="Fisheye", command=fisheye lens)

selectmenu
selectmenu
selectmenu.
selectmenu.
selectmenu

labelmenu.
labelmenu.
labelmenu.
labelmenu.

= Menu (menubar, tearoff = 0)
. add_cascade (label="Label", menu=labelmenu)
add_command (label="Box", command=select_box)
add_command (label="Activate?", command=openDoubleListDialog)

. add_command (label="List", command=openUniListDialog)

add_command
add_command
add_command
add_command

label="Hide
label="Show
label="Show
label="Hide

all", command=label_clear_all)
all", command=label_show_all)
selected", command=label_show)
selected", command=label_hide)

dvizmenu. add_command
dvizmenu. add_command

label="None", command=dviz_normal)
label="D Betweenness", command=dviz_d_bet)

dvizmenu. add_command (label="D Closeness", command=dviz_d_clo)
dvizmenu. add_command (label="U Betweenness", command=dviz_u bet)
dvizmenu. add_command (label="U Closeness", command=dviz_u_clo)
dvizmenu. add_separator ()
dvizmenu. add_command (label="Strongly Connected Components",
command=dviz_sco)
dvizmenu. add_command (label="Show Components", command=dviz co)
dvizmenu. add_command (label="Show Articulation Points", command=dviz_ap)
dvizmenu. add_command (label="Show Bridges | Spans", command=dviz_edges)

menubar. add_cascade (label="File", menu=filemenu)
menubar. add_cascade (label="Analysis", menu=analysismenu)
menubar. add_cascade (label="Scene", menu=scenemenu)
menubar. add_cascade (label="Select", menu=selectmenu)
# display the menu
root. config (menu=menubar)

yscrollbar = Scrollbar (root)
yscrollbar. pack (side=RIGHT, fill-Y)
xscrollbar = Scrollbar (root, orient=HORIZONTAL)
xscrollbar. pack (side=BOTTOM, fill=X)

canvas – Canvas (root, background="black", width=500, height=500,
yscrollcommand=yscrollbar. set, xscrollcommand=xscrollbar. set)
canvas. bind ("<Configures", fitwin)
canvas. bind ("&B1-Motion >", selectNode)
canvas. bind ("~. ButtonRelease-1-", release1)
canvas. pack (side=LEFT, anchor=NW)

yscrollbar. config (command=canvas. y View)
xscrollbar. config (command=canvas. xview)

import random
draw ()

root. geometry ("200x300+0+0")
root. mainloop ()

: : : ks_part 3. py: : :

y

196



#Author: Abraham Anderson
#9 2002 The Regents of the University of California

#begin init
import string
import pickle

#dictionary [old] =>new
file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file3)
nodes_r = nmap

nmap2={}
for y in nmap. keys ():

nmap2 [nmap [y] ] = y

nodes = nmap2
file 3. close ()

file1 open ("c: /my documents/bin/xedges. txt", "r')
lines = file1 .. readlines ()
for a in lines:

b = a . strip ()
c = lines. index (a)
lines. remove (a)
lines. insert (c,b)

from Matrix import “
from Linear/Algebra import *

l = max(nodes_r. values ())
A = []
for a in range (0, 1) :

t = []
for b in range (0, l) :

t. append (0)
A. append (t)

for a in lines:

[i,j,k) = string. split (a, ', ')
i = nodes_r [i]
j = nodes_r [j]
i – = 1

j – = 1
A [i] [j] = 1
A [j] [i] = 1

Deg = {}
for a in A:

Deg [A. index (a)] = a . count (1)

D = []
for a in range (0, 1) :
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t = []
for b in range (0, l) :

t. append (0)
D. append (t)

for a in Deg. keys () :
D [a] [a] = Deg [a]

e = len (lines)
LL= []
for a in lines:

[i, j, k) = string. split (a, ', ')
i = nodes_r [i]
j = nodes_r [j]
i – = 1

j- = 1
t = []
for b in range (0, 1) :

t. append (0)
t [i] = –1
t [j] = 1
LL. append (t)

LL = Matrix (LL)
from Numeric import transpose
LLi = transpose (LL)

A = Matrix (A) #unsigned adjacency matrix
D = Matrix (D) #degree matrix
L = A-D #Laplacian [1] ... use - 1 as max_ev
B = D-A #Disconnection matrix — » Standard spectrum [2] . use 1 as
max ev

LLj = LLi+LL #Laplacian from [2]. This equals B but is presented as
'different?'

M = B #spectrum of choice
maximal_ev = 1 #index for sorted ev list
#end init

#selecting the cluster that gives a minimal cut
def Best V (T, h) :

l = []
for a in T:

l. append (len (a [2] ))
#v1 l. append (a [0] [h])

#v1 return (T [l. index (min (l) )) )
return (T [l. index (max (l)) )) # the biggest cluster

#add new cluster (s) w/ calculated eigen space to another cluster list
def Update.T(t) :

global M, T
for a in t:

l = len (a [2] )
if l & = 3 :

T. append (a)
continue
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mm = [] #temporary matrix
for c in range (0, l) :

m = []
for b in range (0, 1) :

m. append (0)
mm. append (m)

for c in a [2] :
for b in a [2] :

mm [a [2] . index (c)] [a [2] : index (b)] = M [c-1] [b-1]
mm=Matrix (mm)

from Linear Algebra import “
es = eigenvectors (mm)
evs = []
for aa in es [0] :

evs. append (aa)
evs. sort ()
v = []
for aa in es [0] :

v. append (aa)
#set of 3 'maximal' eigenvalues
meval =

[es [0] [v. index (evs [maximal_ev]) ), es [0] [v. index (evs [maximal_ev-1]) ), es [0
] [v. index (evs [maximal_ev-12] ) l J

#set of 3 'maximal' eigenvectors
mevec = []
mevec. append (es [1] [v. index (evs [maximal_ev] ) ))
mevec. append (es [1] [v. index (evs [maximal_ev-1]) ))
mevec. append (es [1] [v. index (evs [maximal_ev-2]).])

v = meval #list of 3 smallest e_values
e = mevec # list of 3 associated e_vectors
T. append ( [v, e, a [2] ])

#core partitioner
def Bisect (t, k) :

lt []
rt []
ev [[], [] , [] ]
ev2 = [[], [] , [] ]
for a in t[2] :

if t [1] [k] [t [2] . index (a)] : 0:
lt. append (a)
ev [0] . append (t [1] [0] [t [2] : index (a)] )
ev [1] . append (t [1] [1] [t [2] . index (a)] )
ev [2] . append (t [1] [2] [t [2] . index (a)] )

else :

ev2 [0] . append (t [1] [0] [t [2] : index (a)] )
ev2 [1] . append (t [1] [1] [t [2] : index (a)] )
ev2 [2] , append (t [1] [2] [t [2] : index (a)] )
rt. append (a)

lt [t [0] , ev, lt]
rt [t [0] , ev.2, rt]
return ( [lt, rt] )
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#Partitioning scheduler
def Divide (k, i) :

global T
for a in range (0, i) :

t = Best V (T, O)
if k==2 :

s = Bisect (t, 0)
T. remove (t)
Update.T(s)

if k==3 :
s = Bisect (t, 0)
T. remove (t)
t = Best V (s , 1)
s. remove (t)
Update.T (s)
s = Bisect (t, 1)
Update.T(s)

if k==4:
s = Bisect (t, 0)
T. remove (t)
t = Best V (s , 1)
s. remove (t)
ss = Bisect (t, 1)
for h in ss :

s. append (h)
t = Best V (s , 1)
s. remove (t)
ss = Bisect (t, 2)
for h in ss :

s. append (h)
Update.T (s)

if k==8:
s = Bisect (t, 0)
T. remove (t)
for b in s :

ss = Bisect (b., 1)
for c in ss:

s'ss = Bisect (c, 2)
Update.T (sss)

return (T)

#Main function
def KPart (k, T) :

#k = number of partitons
#N = list of all nodes
#T = list of partitions (as sublists)
i = k/8
if i ==

pass
else:

T = Divide (8, i)
i = (k-len (T) +1)/4
if i ==

pass
e LS e :
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T = Divide (4, i)
i = (k-len (T) + 1)/3
if i ==

pass
else:

T = Divide (3, i.)
i = (k-len (T) + 1)/2
if i == 0:

return (T)
else:

T = Divide (2, i.)
return (T)

#main
print "Spectral partitioning of X into k peices. Vn"
print "Smallest number of partitions: "
while 1:

c = raw input ("\t")
break

print "Largest number of partitions: "
while 1:

p = raw input ("\t")
break

pgroups = {} # list of partition assignments like [1, 2, 1, 5, ..., k]

for a in range (string. atoi (c), string. atoi (p) +1) :
#repeat this . . .
print "Begin p$d . . ." § a
T= []
Update.T ([[[], [], nodes. keys () ) ))
T = KPart (a, T)

p = 0
for g in T:

#print g [2]
for u in g [2] :

if u in pgroups. keys () :
set = pgroups [u]
set. append (p)
pgroups [u] = set

else :

pgroups [u] = [p]
p += 1

print "Finish p$d." § a
#stop repeated section.

print "Assembling x_partitions. txt . . . "
mydir = "c: \\mydocu-1\\bin\\"
outfile = open (string. join ( [mydir, 'x_partitions. txt 'J', ''), 'w')
idz = pgroups. keys ()
idz1 = []
for a in idz :

idz1. append (a)
idz 1. sort ()
for a in idz 1:

idz2 = a
outline = ""
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for z in pgroups [idz2] :
ZZ = " # d" # Z

outline = string. join ( [outline, zz) , " \t')
outline = string. join ( [outline, "\n"), '')
outline = outline [1 : ]
outfile. write (outline)

outfile. close ()
print "Done with partitioner."
print "Looking for nodes on the edge of the partitions, and writing to
partition_eval. txt. \n"
import peval
print "Results are ready for analysis."

::: peval. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

import pickle
import string

#dictionary [new] =>old
file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file 3)

nmap2={}
for y in nmap. keys ():

nmap2 [nmap [y] ] = y

file 3. close ()
#dictionary [from E →to
file4 = open ("c:/my documents/bin/edges. txt", "r')
direct = pickle. load (file4)

file4. close ()

file = open ("c:/my documents/bin/x_partitions. txt", "r')
a=string. split (string. strip (file. readline ()), "\t")
b = len (a)
i=1
d = []
d. append (a)
for a in file. readlines () :

i4 = 1
aa-string. split (string. strip (a) , "\t")
d. append (aa)

result = []
for e in range (0, len (d) + 1) :

result. append ([])
for g in range (0, b) :

part = {}
frac = {}
tout = 0

for e in range (0, len (d)) :
part [e-1] = d [e] [g]

# for each node count edges in and edges out of partition
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for e in range (0, len (d)):
iin = out = 0
for f in direct [e-1] :

if string. atoi (part [e-1]) == string. atoi (part [f] ) :
iin +=1

else:
Out + = 1

frac [e-1] = 100 * iin/ (iin-out 4-0. 0)
result [e] . append (frac [e-1])
tout + = Out

#return sum of nodes out for this partiotioning
result [e-1] . append (tout)

#return the undirected degree for each node
for e in range (0, len (d)) :

result [e] . append (len (direct [e-1]))
#return mapping to old id
for e in range (0, len (d) ) :

if e-1 in nmap2. keys () :
result [e] . append (nmap2 [e-1] )

file. close ()
import fpformat
file2 = open ("c: /my documents/bin/partition_eval. txt", "w")
end = '' \n"
outstring = ""
for t in result:

for u in t:

gg = fpformat. fix (u, 2)
outstring = string. join ( [outstring, gol)

outstring = string. join ( [outstring, end])
#print outstring
file2. write (outstring)
file 2. close ()

#return nodes ranked by percent nodes out

: : S.C.C. py: :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

# Finds Strongly Connected Components. And Articulation points. And
bridges.
import pickle
import string
import fpformat

#dictionary ■ old] =>new
file3 = open ("c:/my documents/bin/node_map. txt", "r')
nmap = pickle. load (file3)

nmap2={} #new > old
for y in nmap. keys () :

nmap2 [nmap [y] ] = y
file 3. close ()
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#dictionary [from] =>to
file4 = open ("c: /my documents/bin/dedges. txt", "r')
direct = pickle. load (file4)
file4. close ()

SOurce = 1

#direct= {1 : [2], 2 : [3,4], 3 : [1], 4: [5], 5 : [6], 6: [7], 7: [5] }
#nmap2={1: 1, 2:2, 3 : 3, 4:4, 5:5, 6: 6, 7: 7)

#Topo sort
#init
Vt = direct. keys ()
#Vt = nmap2. keys ()
V = []
for a in Vt :

V. append (a)
V. sort ()
N = len (V)
T= [] +V #if node not in T then its marked
d = {} #distance or time first seen
INF = 1000 # should be infinity
for i in V:

d [i] = INF
d [source] = 0
d [0] = INF

{} #time last seen
{}
{}

{} #highwater mark for finding articulation point.

d =

p =: = 0

OW =

# topo sort w/ dfs
def seek (a, t) :

d [a] =t
low [a] =t
T. remove (a)
for c in direct [a] or C not in V:

if C in T:
t-H = 1

t = seek (c., t)
if low [c] ==d [a] : #get art v. 2

if a == source:
if len (direct [a] ) > 1: Art. append (nmap2 [a] )

else:

Art. append (nmap2 [a] )
else: #

low [a] =min (low [a] , low [c] )
else:

if c in d. keys () :
low [a] =min (low [a] , d [C] )

if c not in V: # this is to deal with nodes that don't have
children

t-H = 1

d [c] =t
low [c] =t
t-H = 1
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p [a] =t
t-H = 1

p [a] =t
return t

def rseek (a, t, sc) :
scc [a] = sc
dd [a] =t
T. remove (a)
if a in direct2 . keys () :

for C in direct2 [a] :
if C in T:

t-H = 1

t = rseek (c., t, sc)
t-H = 1

pp [a] =t
return t

T2 = [] +T
T3 = [] +T
Art = []

# topo sort phase
while (len (T) l =0) :

for n in T:
t = 1 + seek (n, t)

#get the articulation points.
# for v in T2:

if d [v] ==
if len (direct [v] ) > 1:

# root check
Art. append (nmap2 [v] )

else:
for u in direct [v] :

if low [u] S = d [v] :
Art. append (nmap2 [v] )

ofile = open ("c:/my documents/bin/SCC. txt", "w")
#print "\narticulation point (s): ", Art #not so good, but OK.
ofile. write ("\narticulation point (s) : \n")
for u ln Art :

ofile. write ("%s \n" # u)

#get bridges.
Bridge = []
while (len (T3) l =0) :

for v in T3:
T3 ... remove (v)
for u in direct [v] :

if low [u] ==d [u] and low [u] =low [v] :
Bridge. append ( (nmap2 [v] , nmap2 [u] ) )

#print "\nbridge (s) : " , Bridge
ofile. write ("bridge (s) : \n")
for u in Bridge:

ofile. write ("%s – #s Vn" # (u [0] , u [1]))

#get inverse graph
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direct2 = {}
for a in V:

for b in direct [a] :
if b in direct2 . keys () :

temp = direct2 [b]
temp. append (a)
direct2 [b] = temp

else:
direct2 [b] = [a]

#order nodes by decreasing p-time and topo- sort. At end update comp;#
#get 2 sets: isolated and connected

SC = 0

SCC {}
iso []
con = []
for x in p. keys () :

if x not in direct2 . keys () :
#give each isolated node its own sci;
iso. append (x)
scc [x]=sc
SC+ = 1

else :

con. append (x)

T=con- [] #use nodes with 'reverse' edges
T. sort (lambda x, y : p [y] –p [x])

#get SCCs with rseek
t = 0

while (len (T) l =0) :
# for n in T:

t = 0

t = 1 + rseek (T [0] , t , sc)
SC+= 1

#put in nice list
sccomps = []
for a in range (0, sc) :

temp = []
for b in sco . keys () :

if scC [b] == a .
temp. append (nmap2 [b])

sccomps. append (temp)
#print "\nSCC (s): ", scoomps
of ile. write ("SCC (s) : \n")
for u in sco . keys () :

ofile. write ("%s $d \n" # (nmap2 [u] , sco [u] ))

ofile. write ("Spanning edges: \n")
for b in sco. keys () :

#print nmap2 [b] , sco [b]
#identify spanning edges:
for d in direct [b] :

if d not in sco . keys ():
pass
#print nmap2 [b] , " -> ", nmap2 [d]

elif sco [b] = scC [d] and len (scoomps [sc.c. [b] ] ) > 1:
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##print nmap2 [b] , " -> ", nmap2 [d]
ofile. write ("%s #s \n" # (nmap2 [b], nmap2 [d] ))

ofile. close ()

; : : step One. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

import sys
sys.path. insert (0, 'c: \\my documents\\bin')
line = sys. argv
import time
import os

badcmd =
if len (l

badc

1

ine) <
md = 1

- 1

else :

try:

exCe

Ilame line [1]
edge = line [2]
badcmd = 0

if os. access ('c: /my documents/bin/' +name, 1) == 0:
print "Node file not found, retry: "
badcmd = 1

if os. access ('c:/my documents/bin/' +edge, 1) == 0:
print "Edge file not found, retry: "
badcmd = 1

pt :
pass

if badcmd:

print "Name of file with node list?: "
whil e 1 :

name = raw input ('\t')
if name == "":

name = "blankspace"
if os. access ('c:/my documents/bin/' +name, 1) == 0:

print "Not found, retry: "
else:

break

print "Name of file with edge list?: "
whil

#copy th
import s

e 1 :

edge = raw input ('\t')
if edge == "":

edge = "blankspace"
if os. access ('c:/my documents/bin/' +edge, 1) == 0:

print "Not found, retry: "
else:

break

em to xnodes. txt and xedges. txt
hutil
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shutil. copy ('c:/my documents/bin/' +name, 'c:/my
documents/bin/xnodes. txt ')
shutil. copy ('c:/my documents/bin/' +edge, 'c:/my
documents/bin/xedges. txt')

# this was placed after the SCC code, but since it makes file for input
into the CC code I removed it here. AA 8.6. 01

print "Converting from Access to Metis - graph. metis, node_map. tzt,
edges. txt, dedges. txt."

#need to choose single component for this step. But METIS can handle
separted components in a graph
start = time. time ()
import ac2met
print time. time () -start, 's'

print "Converting from Access to BioNet > graph. html."
start = time. time ()
import ac2bnt
print time. time () -start, 's'

print "Looking for connected components - CC. txt."
start = time. time ()
import co
print time. time () – start, 's'

print "Looking for strongly connected components, articulation points,
and bridges. - SCC. txt."
start = time. time ()
import sco
print time. time () - start, 's'

print "Calculating Centralities > D_centrality. txt, U_centrality. txt."
#These have their own timers
import get_centrality
import get_centralityU

print "Summaraizing topology and centrality results > summary. txt."
start = time. time ()
import x_SUMMARY
print time. time () – start, 's '

print "Run Partitoner (Y/N) :"
while 1:

c = raw input ("\t")
if == 'Y' or c == 'y':

import step two
break

el if c == 'N' or c == " n " :

print "OK."
break

else:

print "Type Y or N. "

status file = open ("c:/my documents/bin/xstatus. txt", 'w')
status file. write (name+ '; '+edge)
status file. close ()
print "Done w/ Analysis"
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: : : step two. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

#analyse partition files:
#run met is
import os
import string
import fpformat
def run/METIS () :

print "Partitioning graph. metis into n peices. Vn"
print "Smallest number of partitions: "
while 1:

c = raw input ("\t")
break

print "Largest number of partitions: "
while 1:

p = raw input ("\t")
break

com = "c : \\progra-1\\metis-4. 0-compiled V\pmetis. exe
c: \\mydocu-1\\bin\\graph. metis"

for a in range (string. atoi (C), string. atoi (p) +1) :
command = string. join ( [com, fpformat. fix (a, 0) ) )
os. system (command)

runmETIS ()

#assemble partitions into one file: x_partitons. txt
def assemble P () :

#read all met is files into list
print "Assembling all partition results to one file :

x_partitions. txt \n"
mydir = "c: \\mydocu-1\\bin\\"
files = os. listdir (mydir)
junkf = []
for a in files :

if string. count (a, "graph. metis. part") == 0:
junkf. append (a)

for a in junkf:
files. remove (a)

dict = {}
for a in files:

b = string. split (a, " . ")
dict [string. atoi (b [3]) ) = a

ks = dict. keys ()
ks. sort ()
files = []
for a in ks:

files. append (dict [a] )
print files #
rfiles = []
for a in files :

rfiles. append (open (string. join ( [mydir, a] , ''), 'r'.) )
placehold = open (string. join ( [mydir, files [1] ] , ' ' ), 'r')
outfile = open (string. join ( [mydir, 'x_partitions. txt 'J', ''), 'w')
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# for each file read a line and print to output file with tab delim
while placehold. readline () :

outline = ""
for a in rfiles:

b = a . readline ()
b = string. replace (b, " \012', ' \t')
outline = string. join ( [outline, b], '')

outline = string. join ( [outline, "\n"], '')
outfile. write (outline)

placehold. close ()
outfile. close ()
for a in r■ iles :

a. close ()

assemble P ()

import sys
sys.path. insert (0, 'c: \\my documents\\bin')

print "Looking for nodes on the edge of the partitions, and writing to
partition eval. txt. \n"
import peval

; : : x_SUMMARY. py: : :

#Author: Abraham Anderson
#* 2002 The Regents of the University of California

import string
# this prog was originally just for obesity results. . .
#dir = 'c:/my documents/bin/obesity_res/raw/'
# . . but now its for generic results.
dir = 'c: /my documents/bin/'

#cc file
#scC file
#Centrality file (s)
# table summary: id., cc [#, -1], sco [#, -1], articulation pt [1/0], bridge
[0, -1, 1], span [0, -1, 1], Ucloseness [#, -1], Ubetweenness, Dclose, Dbet . . .
#8-2-01 added group centrality scores for significant edges
#8-8-01 added undirected group centrality scores
table = {} #dictionary [id: vector] ; vector = above data
file = open (dirt 'CC. txt '', 'r'.)
for line in file. readlines () :

line = line. rstrip ()
[id, co.) = string. split (line, ' \t')
try:

table [id] [0] = CC
except :

table [id] - [' – 1 '', ' – 1 '', 'O', 'O', 'O', ' - 1 '', ' – 1 '', '-1', ' -
1 " , " O', 'O', 'O', 'O' ]

table [id] [0] = Co
file. close ()

file = open (dirt 'SCC. txt', 'r')
while string. count (file. readline (), 'articulation') = 1 :
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pass
while 1:

line = file. readline ()
if string. count (line, 'bridge') = 1 :

pass
else:

break

line = line. rstrip ()
[id] = string. split (line, ' \t')
try:

table [id] [2] = '1'
except:

table [id] - [' – 1 '', ' - 1 '', 'O', 'O', 'O', ' - 1
1 , 'O', 'O', 'O', 'O' ]

table [id] [2] = '1'

bridges = []
while 1:

line = file. readline ()
if string. count (line, 'SCC') = 1:

pass
else:

break

line = line. rstrip ()
[fr, to] = string. split (line, ' – ' )
bridges. append ( [fr, to] )
try:

table [fr] [3]
except :

1 – 1

table [fr] - [' – 1 '', ' – 1 '', 'O', 'O', 'O', ' - 1 '', '-1', ' - 1 ', " -
1 : , 'O', 'O', 'O', 'O' ]

table [fr] [3]
try:

table [to] [3]
except:

- - l

- 1

table [to] = [' – 1 ' , " - 1 '', 'O', 'O', 'O', '-1', '-1', ' – 1 ', " -
1 , ! O' , " O' , " O' , " O' ]

table [to] [3] = '1'

while 1:
line = file. readline ()
if string. count (line, 'Spann') = 1 :

pass
else:

break

line = line. rstrip ()
[id, sc] = string. split (line, ' ' )
try:

table [id] [1] = sc
except:

table [id] - [' – 1 '', ' - 1 '', 'O', 'O', 'O', '-1', '-1', '-1', ' -
1 , ! O' , " O' , " O' , " O' ]

table [id] [1] = sc

spans = []
for line in file. readlines () :

line = line. rstrip ()
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[fr, to] = string. split (line, '
spans. append ( [fr, to] )
try:

table [fr] [4] = ' – 1
except:

table [fr] = [' – 1 '', ' – 1 '', 'O'
1 : , 'O', 'O', 'O', 'O' ]

table [fr] [4]
try:

table [to] [4]
except :

table [to] = [' – 1 '', ' – 1 '', '0'
1', 'O', 'O', 'O', 'O' ]

table [to] [4]

- - 1

- l

- 1

file. close ()

file = open (dirt 'U_centrality. txt'
while string. count (file. readline ()

pass
for line in file. readlines () :

line = line. rstrip ()
[id, b, c] = string. split (line, '
try:

table [id] [5]
table [id] [6]

except:
table [id] = [' – 1 '', '-1', '0'

1 : , 'O', 'O', 'O', 'O' ]
table [id] [5]
table [id] [6]

file. close ()

-

s

. s

file = open (dirt 'D_centrality. txt'
while string. count (file. readline ()

pass
for line in file. readlines () :

line = line. rstrip ()
[id, b, c] = string. split (line, '
try:

table [id] [7]
table [id] [8]

except:
table [id] = [' – 1 '', ' – 1 '', '0'

1 " , " O', 'O', 'O', 'O' ]
table [id] [7]
table [id] [8]

file. close ()

. s

-

s

)

, ºr ' )
, 'Vertex') l = 1 :

, r")
, 'Vertex') = 1 :

#remove false entries:
g = 0 #number of nodes
for id in table. keys ():

if table [id] [5] == "-1" :
if table [id] [6] == "-1" :

if table [id] [7] == "-1" :
if table [id] [8] - -

del table [id]
' – 1 " :
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continue

g = len (table . keys () )

for id in table. keys () :
neighbors = []
for e in bridges:

if id == e [0] :
if e [1] in table. keys () :

neighbors. append (e [1])
if id == e [1] :

if e [0] in table. keys () :
neighbors. append (e [0] )

if len (neighbors) == 0:
pass

else:

#calc group centrality
gc = 0
m = 0

mn = ' '

neighbors. append (id)
for n in neighbors: # find max centrality score

if m > float (table [n] [8] ) :
pass

else:

mn = In

m = float (table [n] [8] )
for n in neighbors:

gc = gc + (float (table [mn] [8]) - float (table [n] [8])) / ( (g-
1) * (g-2)/2)

table [id] [9] = '$f' # (gc/ (len (neighbors) -1))
#calc group undirected centrality
gc = 0
m = 0

mn = i i

neighbors. append (id)
for n in neighbors: # find max centrality score

if m > float (table [n] [6]) :
pass

else:
mn = n

m = float (table [n] [6])
for n in neighbors:

gc = gc + (float (table [mn] [6]) - float (table [n] [6])) / ( (g-
1) * (g-2)/2)

table [id] [11] = $f # (gc/ (len (neighbors) -1))
neighbors = []
for e in spans:

if id == e [0] :
if e [1] in table. keys () :

neighbors. append (e [1] )
if id == e [1] :

if e [0] in table. keys () :
neighbors. append (e [0] )

if len (neighbors) == 0:
pass

else :

# calc group centrality
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gc = 0
m = 0
mn = ' '

neighbors. append (id)
for n in neighbors: # find max centrality score

if m > float (table [n] [8] ) :
pass

else:
mn = n

m = float (table [n] [8] )
for n in neighbors:

gc = go + (float (table [mn] [8] ) – float (table [n] [8])) / ( (g-
1) * (g-2)/2)

table [id] [10] = '$f # (gc/ (len (neighbors) -1))
# calc group undirected centrality
gc = 0
m = 0
mn = i i

neighbors. append (id)
for n in neighbors: # find max centrality score

if m > float (table [n] [6]) :
pass

else:
mn = n

m = float (table [n] [6])
for n in neighbors:

gc = go + (float (table [mn] [6]) - float (table [n] [6])) / ( (g-
1) * (g-2)/2)

table [id] [12] = '$f # (gc/ (len (neighbors) -1))

file = open (dirt 'summary. txt '', 'w')
file. write ('ID, CC, SCC, Art, Bridge, Span, UCC, UBC, DCC, DBC, bgcs. d, sgcs. d, bgc
s. u, sgcs. u\n")
for id in table. keys ():

file. write (id--', '+ table [id] [0] + ', '+ table [id] [1] + ', '+ table [id] [2] + ', '+ta
ble [id] [3] + ', '+ table [id] [4] + ', '+ table [id] [5] + ', '+ table [id] [6] + ', '+ table
[id] [7] + ', '+ table [id] [8] + ', '+ table [id] [9] + ', '+ table ■ id] [10] + ', '+ table [i

d] [11] + ', '+ table [id] [12] + ' \n")
#print id, table [id]

file. close ()

s

214



O 9 *—-- or o' L-J 2 § – C. °o

!C * [] sº AC3v & G |T º […] sº º/C c. [...] sº ºvugin º. L. J.- . cº %, - º --
- º, º *72. Sº º, sº ºv, sº

T - - ** ºn*/º º, sº C■ . "º º ºut■ º %.S771/14 JC9 SS º
-

sº * 4///7.1/10, C9 § 4.
-

sº *.
lºº º º z cº

RARY sº º O/2– Csº º, LIBRARY sº tºº. 0/2- sºs [...]&

_º Qe so •o S ^o […] so
sº * (IC *2. […] cºgn”. –- is º■ C º' - ºvusNsº ºp ºº, º S

> -
42 * - 42 º'

2. & ºncºco º cºlº/lº gº. Sººncº 3 cºlº**, * * sº º, * *
-

cº ~º, tº º º, O/7 sº tº "º tºº. O■ )
J*O ~ 3° [...] %. […] 29 o, [...] & º,

78; G |T %. Lºlº - /C %, s A 8vº. 3 IT º, º - /C %2. […]
-7 ~ -

1, C■ .c).7//777/7cíºº, sº "as gº ”, sº
* ///710 °o S C■ .

- * ~~ 4. S 0.] Puu■ º
-Sº Sº a d///771/1■ t, CO sº %. ~sº º º cº º sº &

)/ le º tºº." BRARY sº | | | %. O/ A-2 º [...] º, L! Bº L.
C

s v.6. » * o O o
* + º C & */ [...] *T A 8vº; G IT º, Fºls -: /C º, º º AQ3 ºf 3 IT º, º ~. /C

sº %, sº
-

ºut ■ º ºfº, cºpiº. º º º1. C■ .ºff. inci■ co s % cºpi■ t. º sº, C º/7. ://
º

-

Sº º & ** º º
—r- º,2. O/ le sº […] %. L■ B RA R_Y s L. º, O) le *sº [...] º, L! B RA ■- 'o. sº º & Q- sº •o

-

c. [...] sº, *... […] § c. [...] sº * LC/C %, s' ºvugin º-'gº º(C º- 'º vugin º
% º 72 º 12 º' °4. º

- . % ºf ºut■ º 5 °2's C■ . ~~~~ º ºut■ º 2.S.

ºncºco sº,
*

O/2_ º *. ■ ?!!/777/7c, CO sº *.
-

O■ ) sº *.º, e +. *. &RAR Y sº fº $ º, LIBRARY & º 4–2 lº
{AR º L. J º, º- º, Y LC °o. gº [T]

- » Qe ** sº

sº a■ (C & Cº. sº Aºvºgri º Lºl sº * (IC º & ºvusº &
--> 2 S. º º ºt. S

S- º 42 sº ºr * * * * 4. Nº -
º, S. º º$º. C■ º ancisco º cºol■ :*/º º, C■ .ºffin cºco sº, **/

* †. sº %.
-

S º: º º-- º, L. BRARY sº º, 0/2_ sº %. L. BRARY_s º, O/).ºn Hºlº ■ º ■ º. [...] e º 'º fº~, C.vº an º'º - C -- sº ºvug■ , *.* - C ---,
º/? %, sº *s ºn ”, sº º, sº!’ ■ (■ /?' ( – 2 * -- º - //? w ■ º 2. - - - - - - - * >

/ º sº Sºme1■ . 0 sº
-

º/”º sº º Sw Hºcºco is a
)/ º º do º *. /2- º do

-
sº l4–2 NS ”. LIBRARY Sº º NS %, LIBRARY Sº I* […]” * [I] … … […]”. sº | ||& ~. 9 Qe O sº

ºn ”. Lºlº *T/C * Tº sººn %. L. sº * (IC~
**- º ºº

! - Sº %, sº º, sº %, sº
º, S f f ■ 2.<

- Z, S y !. *//// - ººn º/*º Sº, cºncº º, º/wº º Sººn
- - -

tº 'º

º
■ º J/2 sº-º. LièRARY sº-º. Ole sº tºº

-- 'o. […] º [T] * sº [...] 'o. […] º […] *■ º ºf lºgº.º. º º■ lºvº
º, sº * Sº * * º * s

* -- ~~~ *Z, -->
ºut■ º º C■ .

------. * > 0) */º 2.S.777/10/■ co sº º,
-

sº %, 47/77/7c, ■ co sº º sº
|

-
!RARY sº

—r-
º, O/ le º [+º, L! BRARY sº tºº. O) le º *

- - º C •o > ~ - C

º ~/C * Tº sº. Cºlsº ~/C • I & ºvº cº º → -
º ~

- - - - - - - - - * Sº ºn.
17/?, 7. //{ 1■ t U. Nº. 2 -- *-* --

O -º, sº 72 -
z 2. -->

*o. - - - - - - --> º *. ^ -
-

Sº º/? ººncºco º, º/wº ºf
&- º º º- - - Jº **. ~)7-)



L–J º
wº- Oc 9 *— o & -º-, O. sº •o cº

o | o -A o *

/ "… s' ■ ºvº gº º, [...] sº ~. º […] s' ºvº gº º, L J's -
O sº º sº / º sº ºº º -7 -7 >

-*
º, sº */º ºf C■ º. 42. LN */º 42, sº

- -- *: 1 / / ///// 2 S - .* !/?? "( - 2.S.ºncºco sº, cºpiº■ /º ºf cytº■ ºmetºo gº º■ º v- l/&
sº * *-tº sº. On , º, Ole sº-º

sº sº LC ”, For
Not to be taken ”, º [...] º, L!

º […] & Oc º&

o

| 6’ from the room. […] C■ . oº C; o & *S (2. 7. N.ºt /C foe, sº A ºvºi g ■ ºsº
ºncº º (2 UEG,

º ºncisco Nº. 2, 'lºcoº sº º,! -

jº, Leº.

*z*.a.^o
º
*-

**

&& 4
1

º O72 sºCº NYJ C º

o, sº Ce 7078929.
º

& ^c º
-º ºg º III■ ■ ill º' ic ºf a

■ º .* ". cºnciº sº º Oh, AJ .*. C■ º anci■ co s
£w º %, L1B RARY gº º72 s %, Li BRARY sº & º* * tº tºº. ºn ■ ºlº ºf Lºlº,

& ºvº gº °,LO s * (IC & & ºv’■ gº º L J's ~/C *Sº

Sº º % sº º, s º %. sº
is ºpi■ t. º * .

z * Nº Cºy'■ 21/?? º 2.* C■ . - **** cº& S. %, ■ ?/1/7 inci■ co sº %.
*

sº *. ■ !!/7.1/■ ci.■ .N

jº 9/2_ st- ”, Li BRARY * Lº º, J/2 . sº-º, LIBRARY sºS

C

º S- -

º º
& ºp * – 2 Lie RARY sº

A.

º º, , V/ 4– Sº F-- º KA sº
o:

Q- v. & O O º, &O C * S O O
o o -f * o o *

* […] <. -1 & [] & ~ c | º ~, •r [] *
%, -> AQ#vº 9 | º, ssº / '%, º AQ#vº 9 IT %, sº cº

4. % Sº-> º º,4 º' 42
-S

a º ■ % Sºcºnciº, º º º sº C■ º
S- º

Q. * *Sº Yº s' 74. Sº Yº

are sº-º. 0/1 sº-º. 1 *-*. O■ lº sº. º. ii.
ARY & [...] º, º […] º, | BRARY sº L. J %, º [...] º, L!J _º º, & •o 29 %, & •osº º 'º Dis * Fºlsº º º■ ºls sººn”º (C %. º AQ■ vº■ 9 ITI º, ■ /C %. º A. R■ vº 9 IT º74. º
Nº C■ . ------. *s owoutº■ º 2 Sº

*
*s ºpiniº/?roº, º/7 ºncºco sº, 2- - - - Sº S 42 º/rºncgo º, º/wº

3. º S 43, sº *. º
&- -

-jº, L■ Bºs L. °. O/ le ºgº Diº, LIBRARY º L. º, O)le sº
O 2- ** O C as >

M 91") °, tº -/C * I Cs Mºvº. G17 %. Lºlº -/C º […] …” Aºp

/ º ”, sº C■ . as ºpiniº/?wo 4 º'* * * - * - -: *- *. - - * - * * , - a -

*/ **, ºn. ºw sa, Sº * *, cºnciº sº ºv,

ºN.

42 Sº

72– sº %. Li B RARY .* º ()) J 3. & %. L. BRA º º
º [...] *o

-

sº
-

L. º, cº […] 2.*o RA R_Y S —r- zº

~
* Lºlº º 'º Clsº

•o - L. º.* º - º + L. J
* -gº ºvºi gin º Sº /C ”, sº ºvº gº º, is º (C %.

- º **
º

* SSº 'a sº N º

S Cºl/?? / / /*Sº %2.s C■ . , ºs ºn A■ º sº %. C■ .
, --%,

*
sº *. 4///7.1/■ ci■ co * *

* º sº %. º/rºnClºu~.

A

e º o C ** o 2 º O ºl ”, O/2– sº °, L! B RARY s L. º £- / sº […] °, Li B RARY º
º > Vo & * sº •o —r- &
º, […] sº

-
º L. J & C; […] < . º, | || &C zºº ºvugin º' -/C * s' sºvº gº º-- c.º, sº º,

- -

-*
*z, *s º º, sº ºn tº

*... s -y

--~~~~ +: dºl 21/?? /// Sº os C■ .
- - - - - - ----

* > 0 \ºl/11 º °.S. V.,,,º/lcºco sº,
º

A■ sº cºncºco sº,
*

sº, º
**

N º

AR_Y sº tº º, O/ le sº [...] %, Ll B RARY sº L. º, O/ 2– tº %o º ~ * -- > Ce cº 9. _x O *-- sº ºc º Cls sºariº. Hºls ºc ºTº sº,O ** & 72 sº * -S
**

C■ .
* *S º * / / / % -S * - *

%. Sº cº//?! º1//, /777, 0.0 ºut■ º
-

Sººn I, CO
- - - - - - --y ºr .”, ! i■ /16, ■ co º °, sº *.

-

&
-

17/1(19. sº º*. * * -






