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ABSTRACT OF THE DISSERTATION

Mobility Agent and Network Modeling for Decision Support in Transportation Systems

by

Qinhua Jiang

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2024

Professor Jiaqi Ma, Chair

Transportation systems are complex systems encompassing interacting components such

as infrastructure, vehicles, and travelers. The collective interconnection between these

components makes decision-making processes within the system extremely challenging. While

modeling the interaction between these components is crucial for effective transportation

planning and traffic management, conventional transportation system models often struggle

with limitations in adaptability, transferability, and accurate prediction.

This research starts with introducing a comprehensive agent-based modeling framework

to evaluate the impact of new mobility options such as advanced vehicular technologies,

evolving mobility patterns, and emerging vehicle usage behaviors, on transportation systems.

The models developed within this framework provide a synthetic environment to evaluate

the future impact on large-scale transportation systems from both demand and supply

perspectives across various use cases, bridging existing gaps in adapting transportation

systems to upcoming mobility innovations.

Aiming to address the limitations of existing agent-based transportation system modeling,

especially the time-consuming and resource-intensive approaches in current human mobility

pattern modeling, I present a state-of-the-art Artificial Intelligence (AI)- driven human

mobility pattern synthesis model framework. This model employs a novel generative deep-

learning approach for human mobility modeling and synthesis, using ubiquitous and open-

ii



source data. Additionally, the model can be fine-tuned with local data, enabling transferable

and accurate representations of mobility patterns across different regions.

The final segment of the research emphasizes the deployment of mobility AI network

modeling in the real-world environment, especially the predictability for non-recurrent traffic

conditions under complicated external environments. I present two deep-learning approaches

for traffic state prediction in non-recurrent road conditions across large-scale networks and

varying prediction time scales. The proposed traffic prediction models demonstrate superior

performance, as validated by real-world data.

In essence, this thesis provides significant contributions to the domain of transportation

system modeling by improving adaptability, transferability, and predictability in response to

evolving mobility challenges. The developed tools and algorithms pave the way for the broader,

real-world implementation of intelligent agent and network modeling in transportation system

research.
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Chapter 1

Introduction

1.1 Motivation

Transportation systems are intricate networks comprising various interconnected components:

road infrastructure (e.g., roads, lanes, intersections, and traffic lights), vehicles (e.g., cars,

buses, and trucks), and most importantly, humans (e.g., drivers, passengers, traffic controllers)

with their highly sophisticated and unpredictable behavior [41]. Additionally, numerous

external factors such as weather conditions, new mobility trends, social events, and traffic

operations can significantly influence travel behavior and traffic patterns [205]. The interaction

of these elements creates a large-scale, integrated, and complex system.

Transportation system models offer a structured representation of real-world transportation

systems. Fundamentally, an integrated transportation system model that meets diverse

planning needs includes both agent modeling that generates human travel activities and

network modeling that assigns trips to the respective networks, generating traffic condition

estimations accordingly [175]. These models are indispensable tools for evaluating the impacts

of various factors and predicting the performance of transportation systems, which is crucial

for effective decision-making for transportation system planning and management.

Over the past few decades, numerous advanced statistical and simulation models have
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been developed to enhance the decision-making process in transportation system planning

and traffic management [106]. These include activity-based modeling for travel demand

generation, dynamic traffic assignments for network traffic modeling, and the integration

of advanced travel demand and network simulation models, highlighting an increasing need

for greater precision, dynamism, and granularity. However, the inherent complexity of

transportation systems means that many components and their interactions cannot be fully

captured by conventional model-driven demand generation or agent-based network simulations.

Several challenges have emerged across the planning, deployment, and operation phases of

transportation system modeling, such as:

• Scenario Adaptability: Current demand generation and network simulation models,

whether trip-based or activity-based approaches, focus solely on existing mobility and

network scenarios. They struggle to adapt to changing contexts, such as assessing

impacts and predicting demand for scenarios involving new mobility options, evolving

behavior patterns, or novel vehicle usage practices.

• Regional Transferability: Existing travel demand generation models heavily depend

on expert knowledge and are implemented using hard-coded rules and heuristics. This

makes their development extremely laborious, time-consuming, and resource-intensive.

Moreover, these well-calibrated models are highly customized to the socio-demographics

and network characteristics of a particular area, making it challenging to transfer them

to regions with different socio-demographic and geospatial characteristics.

• Traffic Predictability: Although current transportation network models can sim-

ulate daily traffic variations with high spatial and temporal granularity for large

roadway networks, they are often unable to capture the traffic patterns of low-frequency,

non-recurrent events, such as evacuation-induced traffic or construction-caused lo-

cal congestions. These limitations constrain current traffic models from supporting
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decision-making and providing efficient management strategies during special roadway

scenarios.

To address these challenges, advanced models and computational techniques are needed

to better understand travel behavior and traffic flow and tackle the challenges of prediction,

monitoring, management, and planning in transportation systems.

1.2 Objective and System Framework

This dissertation aims to address challenges in existing transportation system modeling by

leveraging mobility agent and network modeling to develop a digital twin of the physical

transportation system. This digital twin aims to accurately model the behavior of all system

components, including agents (i.e., travelers and vehicles) and roadway networks. The pro-

posed framework begins by extracting multi-source data from the physical transportation

system, encompassing foundational, processed, and synthetic data. This curated data reposi-

tory is fundamental for learning the inherent correlation between different transportation

components and is used to construct a digital representation of the physical transportation

system. The output of the transportation system digital twin will support decision-making in

regional transportation planning policies and traffic management strategies. The implemen-

tation of these strategies will, in turn, impact the physical transportation system, iteratively

influencing the construction and evolution of the digital twin in a feedback loop.

The core of this transportation system digital twin is its digital representation of the

transportation system. The fundamental concept involves modeling agents and networks, as

well as their interactions within the transportation system. This collaborative effort forms

a digital simulacra of individual travelers and roadway infrastructure, enabling the digital

representation of a dynamic and constantly evolving transportation system.

The construction of the digital representation of the transportation system includes three

main components, as presented in Fig 1.1: agent-based transportation system modeling,
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AI mobility agent modeling, and AI mobility network modeling. This dissertation first

introduces agent-based transportation system modeling to enhance the adaptability of existing

transportation system modeling approaches. This allows for accurate modeling from both

demand and supply perspectives, considering the interactions between individual travelers

and the network. Subsequently, AI techniques are integrated into the digital transportation

system to develop next-generation AI agent modeling and AI network modeling, addressing

transferability and predictability challenges encountered in current transportation system

models. Specifically, the key components of the transportation system digital twin are

presented as follows:

Figure 1.1: System framework of the intelligent agent and network modeling for transportation
systems
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1.2.1 Part I: Agent-Based Transportation System Modeling

Chapter 2 [99, 117], Chapter 3 [161], and Chapter 4 [122] form Part I of this dissertation.

Part I lays the foundation for constructing a digital simulacra of a transportation system. It

produces a digital twin of the transportation system by integrating agent behavior modeling

and transportation network modeling. The agent behavior modeling adopts an activity-based

travel demand modeling approach to simulate the individual decision-making processes during

daily travel. This encompasses travel choices at various scales, from long-term decisions

like home and work locations, to medium-term choices like daily activity frequencies, and

short-term choices like travel mode selection for each trip. Furthermore, by incorporating

additional data such as stated preference survey data, people’s travel preference on novel

scenarios such as new mobility or new vehicle usage practice can be well captured in a digital

simulacra of travel demand generation. The network modeling creates a digital replica of

the roadway network in the simulation environment, representing the infrastructure serving

agents’ travel. It utilizes agent-based traffic simulation techniques to generate a detailed

digital replica of people’s travel trajectories within the network. The network is also flexible

to adjust for any infrastructure or accessibility upgrade in response to the era of future

mobility options. The agent and network modeling serve collaboratively to create a digital

representation of the transportation system with high spatial and temporal resolution, forming

realistic travel demand and traffic flow patterns on the transportation network.

Importantly, this integrated modeling structure of mobility agents and networks enhances

the capability of existing models to address new mobility scenarios, such as connected and

autonomous vehicles (CAVs), new vehicle usage patterns like electric vehicles (EVs), and

emerging travel behaviors like teleworking or remote services. This approach allows existing

transportation system models to make offline adaptations to new mobility challenges with

minimal model redevelopment effort, generating decision support for long-term planning

strategies of the transportation system.
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1.2.2 Part II: Mobility AI Agent Modeling

Chapter 5 [147] constitutes Part II of this research. In Part II, we further enhance the

capability of agent modeling based on the structure developed in Part I. We adopt generative

AI concepts to model agents and their interaction with the network in the transportation

system. This AI agent modeling marks a substantial advancement in simulating human

mobility behavior within our digital twin and can function as the next generation of travel

demand models. To generate travel demand, AI agents first learn the activity patterns

associated with various identities, such as work, school, or leisure. They then develop travel

chains based on learned preferences, including preferred activity types, frequencies, trip routes,

and transportation modes, which adjust based on past experiences and new circumstances.

These learned travel choices by the AI agents will, in turn, be reflected in the regional daily

travel demand generation, consequently forming the digital replica of mobility patterns in

the mobility network.

The transferability of a pre-trained AI agent model highlights the most significant en-

hancement as opposed to conventional travel demand models. The AI agent modeling allows

for seamless behavior adaptation across different regions and cultures, making it versatile for

various transportation systems. This transferability is achieved through fine-tuning techniques.

This allows for training the base model initially on a large, diverse dataset and then adapting

it to specific regions or cultures by training on smaller, localized datasets. This approach

enables the model to retain general mobility patterns while learning region-specific behaviors,

facilitating efficient deployment across different urban environments with minimal additional

training.

1.2.3 Part III: Mobility AI Network Modeling

Chapter 6 [119] and Chapter 7 [121] form Part III of this dissertation. Part III enhances

the capability of AI agent and network modeling under special conditions by introducing AI
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traffic modeling. This serves as a supplement to AI agent and network modeling in extreme

scenarios where agent data is completely missing, or special demand or supply side conditions

arise, such as emergency evacuations or temporary road construction-induced traffic patterns.

AI traffic modeling can predict traffic conditions by considering multiple factors, such as

weather and special events, to accurately forecast future traffic states. The traffic state

estimation capabilities provide both long-term and real-time traffic forecast insights into

mobility system conditions, including areas with limited data due to signal loss, device

malfunction, or low sensor coverage. This prediction goes beyond traffic congestion and can

further provide in-advance estimation for congestion, travel time, and incident likelihood

of the target roadway network. The AI network model also aims to understand underlying

causes and potential chain effects, allowing for interaction with dynamic demand modeling.

Additionally, the evolution capability of AI traffic modeling enables adaptation to long-term

changes in urban roadway, policy, and human behavior, effectively evolving with the region

they represent. Consequently, the AI network can adjust its model over time to accommodate

significant changes, such as new infrastructure developments, shifts in population density, or

evolving transportation policies.

1.2.4 Interaction Between Mobility Agents and Network

The mobility system digital twin developed in this dissertation allows for a bidirectional

analysis of how individual travelers (i.e., agents) affect transportation network performance

and how variations in the network interactively impact agents’ decisions. By integrating

intelligent mobility agent modeling with intelligent network modeling, a digital representation

of a real-world mobility system is established, forming an interactive digital ecosystem. This

integration facilitates sophisticated simulations where individual agent behaviors both affect

and are affected by network conditions. For instance, the aggregate behavior of agents

forms the network’s spatial-temporal pattern and evolution, while the network’s traffic state
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interactively influences agents’ travel behavior in terms of route choices, mode selection,

and anticipated travel times. This reversible interaction enables the digital twin to capture

complex scenarios, such as temporary demand surges, emergent traffic patterns, the impact

of policy changes, and the collective effects of local disturbances across the entire mobility

system. Additionally, this integration of intelligent agents and networks allows for flexible

scenario experiments. By setting up simulated changes to either agent behaviors or network

conditions, we can generate system-wide outcomes for specific scenarios, providing valuable

insights for transportation system planning and traffic management strategies.

1.2.5 Interaction Between the Digital Representation and the Phys-

ical Transportation System

The digital representation of the transportation system, built on intelligent agent and network

modeling, offers numerous applications across various sectors in transportation planning and

management. Specifically, this dissertation emphasizes the model development and analysis

of transportation system digital twins for use cases such as:

• CAV impact evaluation on travel demand and transportation system performance,

• Assessment of telework and teleservices on human mobility patterns,

• EV charging demand projection in electrified transportation systems,

• Human mobility pattern synthesis and evaluation,

• Traffic flow prediction during hurricane evacuations, and

• Traffic impact prediction during work zone activities

Different modules in the digital twin collaboratively provide both offline and online decision

support for the physical transportation system. On one hand, agent-based transportation
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system modeling within the digital twin framework develops robust statistical models based

on archived data to predict and analyze human travel patterns and traffic dynamics in the

target region. This offers valuable insights for urban planners and policymakers to evaluate

the impact of future infrastructural changes, policy implementations, and technological

advancements. It supports decision-making processes aimed at enhancing transportation

efficiency, reducing emissions, and improving overall urban mobility in densely populated

areas. On the other hand, mobility AI agent and network modeling, utilizing pre-trained

models and fine-tuning techniques, opens the possibility to harness not only historical data

but also more recent mobility data in modeling agent travel behavior and network conditions.

This allows for short-term or even real-time responses to roadway conditions or travel patterns,

such as temporary demand changes due to special events or emergent land closures caused by

incidents or construction. This enables accurate and timely predictions for travel and traffic

patterns, significantly supporting decision-making for immediate responses to behavioral and

infrastructural variations.

1.3 Contributions

This dissertation enhances decision-making in transportation systems by leveraging intelli-

gent mobility agent and network modeling to create a digital representation of the physical

transportation system. This representation enables interaction between the physical trans-

portation system and the digital twin, providing both online and offline decision support

under sophisticated human mobility and network dynamics. The key contributions of this

dissertation are summarized as follows:

• Development of a digital twin framework for intelligent decision support in

transportation systems. This dissertation develops a data-centric transportation

system digital twin framework to support both online and offline decision-making. By

incorporating massive multi-context data from the physical transportation system,
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along with mobility AI agent and network modeling, the limitations of existing models

in terms of adaptability, transferability, and predictability are significantly enhanced.

• Creation of an agent-based transportation system modeling approach to

enhance model adaptability. Part I of the dissertation develops a series of model

integration frameworks that facilitate the incorporation of agent-based modeling with

additional multi-source data from both demand and supply perspectives. Compared

with conventional agent-based modeling approaches, the proposed models are tailored

to adapt existing travel demand and network simulation models to new mobility options,

emerging travel behaviors, and novel vehicle usage patterns.

• Design of a mobility AI agent modeling architecture to facilitate model

transferability. Part II of the dissertation explores the potential of a fully data-

driven AI agent modeling approach for synthesizing human mobility patterns, aiming to

automate the resource-intensive and laborious process associated with traditional travel

demand and network simulation models. The model is the first of its kind, evaluated in

an agent-based traffic assignment environment, and it demonstrates significant fidelity

and efficiency compared to conventional travel demand and traffic assignment models.

• Development of a mobility AI network modeling approach to promote traffic

state predictability. Part III of the dissertation focuses on the development and

deployment of AI network traffic prediction models to handle non-recurrent roadway and

traffic scenarios. The models involve the incorporation of multi-context data and novel

machine-learning structures, facilitating accurate spatial-temporal traffic predictions

during special scenarios and enhancing the predictability of network traffic models for

both regional transportation planning and real-time traffic management.
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Chapter 2

Evaluating the impact of connected and

automated vehicles on transportation

system performance

Connected and automated vehicle (CAV) technologies are likely to have significant impacts

on people’s travel behaviors and the performance of transportation systems. This study

investigates the impacts of CAVs from various aspects, including vehicle miles traveled

(VMT), emissions, and transportation equity in Southern California. A comprehensive model

is developed by incorporating the supply-side improvement of CAVs, a modified activity-based

demand model supported by survey data, and a multi-class highway assignment model.

The simulation results showed that VMT and emissions would increase by 10%, and CAVs

could worsen travel equity across income groups. To reduce the negative impacts caused

by CAVs, we proposed and evaluated a series of travel demand management policies. The

results indicated that all policies help to reduce the VMT and emission growth, while their

performances in enhancing travel equity vary across metrics including accessibility, travel

frequency, and travel distance.
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2.1 Introduction

Connected and automated vehicle (CAV) technologies are one of the most rapidly developing

automobile technologies [276]. CAV technologies are the integration of connected vehicle (CV)

and automated vehicle (AV) technologies. CVs can enable communications between vehicles,

mobile devices, and infrastructure, thus providing potential benefits for both the drivers and

transportation systems [130]. Vehicles that can be defined as AVs must have automated

control of at least some of a safety-critical control function (e.g., steering or braking) [199].

Although both CV and AV technologies have gained rapid growth along their independent

paths, they should be bonded more strongly to contribute to the mobility and safety of the

transportation system [240]. There will be significant implications on different aspects of

transportation, which cover a range from the single vehicle level [134] to the transportation

system level [169]. As widely known, there are numerous benefits of CAVs, including enhanced

driver/passenger safety [134], increased roadway capacity [4], reduced congestion [169], and

potential reduction in emissions [149]. CAVs can eliminate the possibility of human error,

which causes 94% of accidents [188]. In addition, with the help of in-vehicle equipment and

connection with infrastructure, the drivers’ perception-reaction time becomes shorter, and

the lateral and longitudinal distance between vehicles can be significantly reduced. Finally,

applications of CAVs such as platooning can decrease congestion and thereby improve fuel

economy. CAV technology also disproportionately benefits younger, older, and disabled

people by enhancing their accessibility to transportation options currently out of reach [58].

Since still at an early stage, the rapid development of CAV technologies has caused

many problems from not only the vehicle operation side but also the integration into the

existing transportation system. From the vehicle level, some of these challenges include

system failure, interactions with conventional vehicles, and inappropriate operation errors to

unexpected circumstances [73]. From the perspective of social economics, the high cost of

the early stage CAVs compared with conventional vehicles may become a downside effect on
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individuals’ travel equity [17]. Ultimately, it’s significant to investigate to what extent CAVs

impact transportation systems in the context of induced travel demand and enhanced network

capacity. For instance, will the increased demand offset the benefits brought by CAVs? How

well can the increased roadway capacity help alleviate the strain on the network with CAV

deployment? It is necessary to further strengthen the potential benefits of CAVs and eliminate

concerns that might become a drag on the future development of this technology so that

CAVs can be widely accepted in the future.

This study adopted an activity-based approach to evaluate the comprehensive impacts of

CAV technology on the transportation system in Southern California. Considering the scope

of this study, we divided the whole study into two consecutive papers: Part one and Part

two. Part one [99] explored the changes in travel behavior and predicted travel demand that

fundamentally incorporates CAV-related changes and addressed the following problems:

• Collected Southern California residents’ willingness to use CAVs for daily travel, includ-

ing both the personally owned CAVs (PAV) and shared CAVs (SAV).

• Captured the long-term to short-term changes in CAV users’ travel behaviors.

• Incorporated people’s CAV-related behavior changes in a state-of-the-art activity-based

modeling (ABM) framework and predicted the new travel demand and trip patterns.

This chapter is the continued study of Part one and concentrates on incorporating the

enhancement on the supply side by infrastructure-enabled automation and evaluating the

impacts of CAV technology and policies on the transportation system and the associated

equity concerns. The contributions of the study are:

• This study captures actual behavior preferences using stated preference survey data

and models these changes through advanced activity choice models, rather than relying

on assumed behavior patterns for travelers under CAV scenarios. Our model accounts
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for a full spectrum of daily activity decisions and simulates these behaviors within a

large transportation network to assess system-wide impacts.

• This study enhances existing ABM modeling approaches on CAVs by incorporating the

CAV road capacity enhancement to the SCAG traffic assignment model and integrating

the assignment model with the CAV-incorporated ABM through a multi-loop equilibrium

assignment process. CAV impacts on transportation system in Southern California,

including VMT, emissions, and transportation equity are evaluated.

• This research designs a set of demand management strategies and policies based on

SCAG’s travel demand management (TDM) strategy toolbox, aiming at resolving the

issues caused by CAVs, and then assesses the effectiveness of reducing excessive VMT

and emissions and resolving equity concerns.

• This study proposes planning level policy recommendations for future system planning

and management in the era of CAV. Provided guidance on strategies that are yet to be

implemented in the real world or have difficulty in quantifying the performance but

still contribute to eliminating the negative impacts caused by CAV adoption.

The rest of this chapter is organized as follows: We introduce studies that analyze the

impact of CAVs on road capacity, system-level metrics such as VMT and emissions, and

equity in Section 2.2. Section 2.3 briefly reviews the CAV-ABM of Southern California

in the Part one paper [99] and discusses the methodology of integrating the CAV-ABM

with the capacity-sensitive CAV traffic assignment model. The simulation scenarios and key

performance metrics are also introduced in this section. Section 2.4 illustrates and analyzes

the simulation results and insights, and Section 2.5 concludes the paper and discusses further

directions.

14



2.2 Related Work

One critical issue for the CAV technology is that vehicle automation is still at its early stage.

Therefore, the lack of empirical data about the use of CAVs and associated implications is

inevitable. The deployment of CAVs could cause a significant impact on both the demand

side and the supply side. We have reviewed the studies focusing on the demand side influence

of CAVs in the part-I paper. In this section, we will mainly review the papers exploring

the supply side impact of CAVs. Many studies have investigated the impacts of CAVs on

roadway capacity through different approaches such as traffic simulation, road test, driving

simulators, among others [169]. Ni et al. [189] estimated the improvement that connected

vehicles could have on freeway capacity by incorporating the effect of connected vehicles on

car-following behavior. The simulation results indicated that the capacity could be improved

by as high as 50% if the connected vehicles are fully in use [189]. Olia et al. (2018) developed

an analytical model to study the influence of AVs on highway capacity. The model proposed

by the authors considered both the car-following behavior and lane-change behavior and was

evaluated in the micro-simulation. Multiple market penetration rates of AVs were simulated.

The results show that a 300% increase in lane capacity can be realized under the 100% market

penetration scenario [201]. Adebisi et al. [3] developed a quantified approach to evaluate

the influence of CAVs on freeway capacity and proposed adjustment factors for the capacity

values recommended by Highway Capacity Manual (HCM). The authors evaluated a series of

scenarios by combining different freeway configurations and multiple CAV applications. The

microscopic simulation results indicated that the capacity can be increased by as much as

40% based on test scenarios and CAV market penetrations [4].

Much literature have investigated how the surging travel demand due to CAVs affects

the VMT by trip-based, activity-based, or agent-based simulation models. Fagnant and

Kockelman [73] estimated the transportation and environmental effect of shared AV operation

based on an agent-based simulation model. Multiple simulation tests were conducted by
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considering factors such as fleet size, modeling area, level of traffic congestion, and so on. The

simulation results indicated that compared with conventional vehicle cases, the total VMT

could increase by 11% [73]. Childress et al. [45] incorporated the behavior changes induced by

AVs into an activity-based travel demand model developed for the Seattle region. The authors

proposed a series of assumptions to reflect the potential impacts that AVs might have on

travelers and on the transportation system. The simulation results showed that there could

be a 4% to 5% increase in VMT and a 3% to 4% decrease in vehicle hours traveled (VHT) by

assuming a 30% growth in road capacity [45]. Auld et al. [15] estimated the implications

of CAV technologies to the system mobility in an activity-based model incorporating AV

behavior changes in the simulation platform POLARIS. The results indicated that VMT

was increased by 10% to 40%, depending on the assumptions on the value of time and CAV

market penetration rate [15].

Emission/fuel consumption implications of CAVs are also analyzed by many other studies

based on simulations or field tests. Wadud et al. [256] proposed a coherent energy decomposi-

tion framework to investigate the underlying implications that automated vehicles might have

on energy consumption and greenhouse gas (GHG) emission. The authors developed multiple

scenarios by combining different conditions of AV market penetration rates, expected reduc-

tions in travel time, levels of congestion mitigation, among others. Modeling results from this

study indicated that partial deployment of AVs could potentially reduce the emission, whereas

fully automated traffic flow could induce a negative effect in terms of emissions [256]. Brown

et al. [34] estimated the consumption and emission effect of vehicle automation using the

MARKet Allocation (MARKAL) energy system model. The simulation results demonstrated

that the surging demand induced by AVs could increase fuel consumption significantly. In

the meantime, fuel prices could go down due to the higher energy efficiency in AVs compared

to conventional vehicles [34]. Ma et al. [160] developed an optimization algorithm dedicated

to controlling and evaluating the energy consumption of CAVs. The authors developed the

model based on the Relaxed Pontryagin’s Minimum Principle (RPMP) and conducted field
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experiments on rolling terrains. The test results implied that an around 20% decrease in

energy consumption can be achieved compared with a conventional driving system [160].

There are very few studies on how the introduction of CAVs impacts travel equity in the

context of a large-scale transportation network. Milakis et al. [168] analyzed the potential

effects of AVs on travel accessibility and equity by applying the Q method to a conceptual

model proposed by Geurs and van Wee [83]. The authors also concluded that AVs could

cause negative impacts on social equity due to the varied affordability of this technology [168].

Winter et al. [268] developed an agent-based model to investigate the mobility change

with the introduction of shared AVs. By testing the scenarios with different shared AV

relocating plans, the results showed that the heuristics balancing of demand and supply

provided the most equity benefits to the users [268]. Nahmias-Biran et al. [182] developed a

modeling framework using the activity and agent-based approach in three cities’ networks to

estimate the implications of AVs on equity. The model covered both auto-dependent and

transit-oriented network patterns. Simulation results showed that the AV benefits on equity

could be achieved in a transit-oriented network when the population size is large. On the

other hand, auto-dependent networks induce much less equity enhancement under the AV

environment [182].

Very few papers specifically addressed the CAV deployment impact problem using the

combination of activity-based demand and traffic assignment model. Unlike existing studies

[45,91], which often use assumptions to model CAV behavior shifts, our research employs both

activity-based demand and traffic assignment models while incorporating stated preference

data. Moreover, it addresses equity concerns explicitly, integrating demand-supply interactions

to offer a comprehensive analysis of CAV impacts on system performance and equity.
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2.3 Methodology

2.3.1 Integration of CAV-ABM and Assignment Model

CAV-ABM

This section reviews the CAV-ABM from He et al. [99], and readers can refer to the Part-I

paper for the explicit description of model development and demand analysis findings. The

CAV-ABM was developed based on the state-of-the-art ABM framework from SCAG [195].

The SCAG ABM models people’s travel behaviors in Southern California from long-term

(e.g., work arrangement and location choices) to short term (e.g., mode choices), as shown in

Fig 2.1. There are seven layers of this model. The first layer generates a synthetic population

for the SCAG area with household-level demographic and socio-economic attributes. In

the following layers, activity and tours would be generated and formulated according to

synthetic person’s type (e.g., worker vs. non-worker). With the synthetic population as

input, the second layer predicts people’s long-term choices, like work arrangements, usual

school and work locations, work schedule flexibility, among others. After the long-term

choices are made, the model determines the mobility choices in the third layer, i.e., driver

license and vehicle ownership. In the fourth layer, people’s medium-term choices are modeled

with the sequence of mandatory activities (work and school) and non-mandatory activities

(household maintenance and individual discretionary). Time window constraints of activities

are also considered. If a household has school-age child/children, the school escort activity is

generated before non-mandatory activities. The fifth layer simulates the interactions among

household members. In layer six, with all activities generated, tours are formulated to connect

all the activities, and the departure time and mode choices are also determined afterward.

Thus, the activity-based travel demand is generated. Lastly, the SCAG ABM assigns the

activity-based travel demand to the physical network (road and transit) to estimate VMT

and other performance metrics to support their transportation planning decision-making.
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A stated-preference survey was designed and distributed in the six counties in Southern

California to collect people’s willingness to use CAV and the travel behavior changes associated

with the CAV deployment. Based on the survey data, a series of models (marked by red boxes

in Fig 2.1) were re-calibrated to incorporate such CAV-associated choice behavior changes of

CAV users in the SCAG ABM framework. In the long-term choice layer, the choices of work

arrangement and usual work location were re-calibrated to incorporate the behavior changes

of CAV users. In the mobility choice layer, a CAV ownership model was developed to predict

the number of CAVs owned per household and presented as one of inputs to subsequent

model layers. In the fourth layer, the adult mandatory activity frequency model was updated

to capture people’s new choices with CAVs. Similar updates were made to maintenance and

individual discretionary activity generation models. At last, the mode choices model was

updated to incorporate both PAV and SAV as emerging mode choices.

According to the survey results, about 53% of the residents in Southern California would

like to use CAVs for their daily travel, and CAV-users’ travel behaviors changed significantly

regarding work locations, activity frequencies, and mode choices. The CAV-ABM also

predicted that the total trip number would increase by 7% with an 11% growth in the travel

distance by car-like modes.

Network Capacity Adjustment

To incorporate the influence of CAV on roadway capacity in our network, we adopted the

highway capacity adjustment factors from the study by Adebisi et al. [3, 4]. The authors

used the roadway capacity estimation developed by the Highway Capacity Manual (HCM) as

the base model, then developed capacity adjustment factors (CAF) for CAVs. The authors

considered different scenarios that could impact the capacity adjustment, including freeway

configurations, traffic demand, and CAV market penetration rate (MPR). The impacts of

CAVs on roadway capacity under different scenarios were evaluated to adjust the use of HCM.

The study considered different freeway segments including basic freeway, merge, and freeway
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Figure 2.1: System design of SCAG ABM

weaving segments. Three traffic demand, or starting capacity were evaluated: 2,400, 2,100,

and 1,800 veh/hr/ln. Five CAV MPRs was considered: 0%, 20%, 40%, 60%, 80%, and 100%.

By conducting microscopic simulation in VISSIM, the study explored the enhancement on

roadway capacity due to CAV under different scenarios and provides guidance to decision

makers on the final capacities. In this study, we apply adjustment factors to all freeway

and arterial links according to the HCM study. In the meantime, we use the proportion

of CAV-mode trip distance in total car-mode trip distance to approximately represents the
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MPR as Equation 2.1.

MPR =
DCAV∑
i∈M Di

(2.1)

where M = {CAV, SOV,HOV 2 driver,HOV 3 driver, taxi}, Di refers to the total travel

distance of each of the modes in M , and Dcav refers to the total travel distance of CAVs.

Here, SOV means single-occupancy vehicles and HOV represents high-occupancy vehicles.

Specifically, HOV 2 refers to HOVs with 2 occupants and HOV 3 refers to HOVs with 3 or more

occupants. In Adebisi’s paper, the capacity adjustment factors under each CAV MPR are

further differentiated into three values based on the link’s original capacity. This assumption

considers the influence of the original link capacity on the link capacity adjustment factor.

In this study, we only referred to the highest factors under each CAV MPR case so that the

original capacity of each link is not considered when applying the capacity adjustment. In

other words, we assumed the best-case scenario for the capacity improvement on network links

under the CAV environment. According to the results in the Part-I paper, the proportion

of trip distance of CAV-mode in all car-mode trip distance is 19.2%. Therefore, according

to the capacity adjustment table developed by Adebisi et al. [3, 4], we selected 1.15 as the

capacity adjustment factor in our model network.

Multiclass User Equilibrium Highway Assignment

The multi-class highway assignment procedure adopted in this model simultaneously loads

the trips predicted by the activity-based demand model and the three classes of heavy-duty

trucks (HDT) denoted as light HDT (LHDT), medium HDT (MHDT), and heavy HDT

(HHDT). The vehicle classes to be assigned to the network are as follows: Drive Alone, Shared

Ride with 2 occupants, Shared Ride with 3 or more occupants, LHDT, MHDT, and HHDT.

To transform CAV mode trips generated from the demand model to the OD trip tables,

all the PAV trips are aggregated into Drive Alone class and all the taxi and SAV trips
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are aggregated with the Shared Ride 2 class. In the rest of this section, we will discuss

the procedure of the highway assignment. Highway assignment represents the process of

loading vehicles onto appropriate highway links. The outputs of the assignment include traffic

volumes, congested speeds, VMT, and vehicle-hours traveled (VHT) estimates. In our model,

the assignment is made for five different time periods, i.e., AM Peak (6 am to 9 am), Midday

(9 am to 3 pm), PM Peak (3 pm to 7 pm), Evening (7 pm to 9 pm), and Night (9 pm to

6 am). The assignments on links or segments of different time periods are integrated to

generate the average daily traffic volumes (ADT) for the model network. The model road

network is shown in Fig 2.2.

Figure 2.2: Model road network in Southern California

The traffic assignment module in the SCAG 2016 model includes a set of multi-class

simultaneous equilibrium assignments for the eight abovementioned classes of vehicles at

each time period. The model involves a three-loop feedback process so that the convergence

of travel time can be achieved between the demand model and the highway assignment

model [195]. There are two reasons why we chose to use three loops: 1) in most cases

the congested speed barely changes after three loops; 2) running the SCAG ABM is very

time-consuming, and a single loop takes around 24 to 36 hours to finish using the work
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station for this study. In the meantime, 10% population sampling was used in the demand

model to save computation time when testing multiple scenarios. 10 percent of the total

households are sampled based on household ID, then household members corresponding

to the sampled households are selected as the synthetic population input for the demand

model. The total computation time is reduced to three days compared with six to seven

days with the full population sampling condition. Though the demand is generated based on

10% population, the OD trips are scaled up to reflect the demands under full population.

Therefore, the assignment results still reflect the impact of the full population demand. Fig

2.3 illustrates how the demand model is combined with the assignment model and how the

feedback between each model loop interacts. The process is described as follows:

Step 1: When starting the demand forecasting during the first loop, the travel times

are derived from the speeds coded on the input highway networks. The demand model then

generates the OD trip tables that contain trips of each vehicle class at different time periods.

The trip tables created for different vehicle classes at each time period are then assigned to

the highway links. This process creates the first set of traffic volumes and congested speeds.

Step 2: The congested speeds generated from the assignment process in the previous

loop are further used as the inputs for the demand model in the following loop. The updated

demand will result in new OD trip tables and then be loaded to the network links to create a

new set of congestion speeds. The variation of volume between the two assignment loops is

smoothed by an approach widely used in traffic assignment called successive averages. The

step size used for the averaging method is 1/i, with i being the number of iterations, and the

equilibrium criteria is when the relative gap is less than 0.001 or the averaging process has

reached 200 iterations.

Step 3: The travel times processed by the successive averages in the previous loops are

further input into the final loop, where the last assignment is conducted for all time periods.
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Figure 2.3: Model Integration Framework

2.3.2 Scenario Design

In the part-I paper of this study, we already analyzed the demand side impacts by introducing

CAVs into the model [99]. With the deployment of CAVs, we can expect around a 7% increase

in total trip numbers and about an 11% increase in total travel distance for car-like mode

trips. With that being said, the influence of the induced demand on the transportation

network incorporating the supply side consideration has yet been thoroughly investigated.

The potential downside impacts, such as increased VMT, increased emission, congestion, and

travel equity concerns, also need to be further discussed based on the results from different

test scenarios.

CAV Base Case Scenario

The base case scenario is developed based on the CAV-incorporated travel demand model,

the capacity adjusted network described, and the traffic assignment procedure presented in
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Section 2.3.1. By assigning the demand of both CAV and non-CAV users into the network,

the base case scenario generated the baseline outputs that reflect the system-level impacts.

The outputs of the base case scenario will be compared with the original SCAG model output,

so that we can quantitatively evaluate the impacts of the CAV deployment. Note that no

travel demand management policies were applied in the base case scenario.

Demand Management Policy Scenarios

Building on the base case scenario outlined in Section 2.3.2 and the travel demand management

(TDM) toolbox detailed in the SCAG TDM strategic plan report [194], we developed a set

of TDM policies aimed at mitigating the negative impacts of CAV integration on the

transportation system. In the SCAG TDM report [194], the TDM strategies that already

exist or will potentially be applied in the SCAG area can be grouped into the following

categories:

• Parking strategies include multiple parking pricing policies aiming to increase the cost

of single-occupancy driving.

• System enhancement strategies produce competitive modes as alternatives to driving

such as transit, taxi, shared bikes, etc. The improvements include both physical (e.g.,

transit lines extension) and systems (e.g., lower transit fares) upgrades.

• Incentives and Facilitation strategies include providing monetary benefits to travelers

for using alternative modes or offering flexible work schedules or telework options to

reduce commuting trips.

• Education and Marketing strategies involve providing travelers with educational infor-

mation regarding travel options or launching marketing programs to promote people’s

awareness of traveling with alternative modes.

• Other supportive strategies.
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This study formulated test policies for each of these categories, taking into account the

feasibility of implementing the scenarios within our model. For example, since the model

cannot simulate infrastructure upgrades to the transit network, we focused on transit im-

provements from a pricing perspective, such as offering subsidized transit passes. To assess

the effectiveness of these policies, we designed multiple scenarios, incorporating the policy

elements into the base CAV demand model and evaluating them through the integrated

demand-assignment framework.

Scenario 1: Telework

Telework and remote travel are direct and effective ways to reduce SOV trips and VMT.

This scenario is inspired by SCAG’s "Future of the Workplace" program [194], which analyzed

the characteristics of telecommuting behavior of those who work from home and those who

travel to remote worksites. In the real world, this requires employers to provide opportunities

for employees to work remotely from the workplace, thereby helping to eliminate the need for

them to travel to the office or worksite. In this scenario, we adopted an optimistic assumption

that the ratio of workers who work from home is doubled across households from different

income groups. This change was made in the long-term decision module in the demand model

where we doubled the target work from home rate for each of the seven income groups as

shown in Table 2.1.

Annual Household Income SCAG Model Scenario 3
< $25,000 8.9% 17.8%

$25,000 to $50,000 6.4% 12.8%
$50,000 to $75,000 6.3% 12.6%
$75,000 to $100,000 6.2% 12.4%
$100,000 to $125,000 6.7% 13.4%
$125,000 to $150,000 8.5% 17.0%
$150,000 to $200,000 9.4% 18.8%

> $200,000 10.6% 21.2%

Table 2.1: Work from Home Rate by Income Groups in SCAG Model

Scenario 2: Transit Fare Subsidy
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In this scenario, we encourage travelers to use more transit modes as alternatives to the

driving mode by providing subsidies on transit passes. Similar policies have already been

put into practice in different regions around the U.S. Some cities are seeking to provide

subsidies according to income levels, such as the "LifeLine Pass" in San Francisco [237],

thereby addressing both equity goals and TDM goals. To model this scenario, we assumed

the best-case scenario where all the population is provided with free transit passes and the

commute to the transit stations was subsidized. This is realized by setting the transit fare

as well as the fuel cost of two car-related transit access modes, kiss-and-ride (KNR) and

park-and-ride (PNR) to zero in the mode choice model.

Scenario 3: Parking Pricing

The first scenario assumes that parking costs for SOVs and PAVs are doubled, while the

parking and the toll fees for HOVs are reduced by half. This scenario is designed to encourage

the use of shared ride modes either HOVs or SAVs and other modes. To test the scenario, we

changed the parking fare in the mode choice model [195]. In the base model, the utility of

parking fare was defined as follows:

Upark = cost scale · βpark · parking cost (2.2)

cost scale =
1

(income/1000)0.8 · party size0.6
(2.3)

where the party size of the trip, parking cost is the model default parking fare related to

parking duration, and βpark is the calibrated coefficient. The cost scale in Equation 2.2 is a

scaling factor corresponding to income and the party size of the trip. Equation 2.3 shows the

definition of the cost scale factor, where income refers to annual household income and party

size represents the number of household members taking part in the trip. The utility function

and cost scale factor were defined in the SCAG mode choice model [255], and the parameters

were calibrated based on 2010-2012 California Household Travel Survey data [192]. The cost
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scale is defined as a function of household income and trip party size and can be regarded as

an indicator of people’s sensitivity to the parking cost.

Scenario 4: Auto trade-in

The last scenario assumes that CAV ownership households use purchased PAVs to replace

the same number of regular vehicles. This policy is inspired by the Clean Cars 4 All program

by California Air Resources Board [27] and Tesla’s Trade-Ins service (Tesla, Inc., 2022). To

model that scenario, household auto ownership was changed. In the original model, the

household auto ownership was modeled before the CAV ownership, which means the output

of CAV ownership would not affect the auto ownership. To incorporate the "trade-in" effect

after purchasing CAVs, we designed an auto ownership adjustment model after the CAV

ownership model to reflect the impact of the number of CAVs on a household’s existing

regular vehicles. We assumed that regular vehicles were equally replaced by CAVs to reflect

a best-case scenario for all CAV ownership households.

2.3.3 Performance Metrics

System Impact Metrics

In this study, we analyzed the implications of CAVs on the transportation system by multiple

performance indicators, including VMT, vehicle hours traveled (VHT), traffic speed, mode

share, trip length, etc. These metrics are widely used in large-scale transportation analysis

[15,45,195]. The total VMT presented in the results and discussion section is the adjusted

total VMT based on the raw model output to reflect the carpool effect in the SAV trips. In

the CAV-incorporated ABM developed in our study, all SAV trips were counted as single-

occupied trips, which might result in overestimated VMT from SAV as ride-sharing trips were

double-counted. Therefore, we adopted an occupancy adjustment factor of 1.4, as suggested

by [105], to adjust the VMT generated by SAV trips to obtain the realistic value.

The traffic speed is measured by the mean speed during two peak hour periods: AM peak
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and PM peak. We also investigate the spatial congestion distribution during peak hours by

measuring the ratio of mean speed to free-flow speed (FFS) defined as follows:

R =
Vmean

VFFS
(2.4)

where Vmean is the average speed of the link during the selected time period; VFFS is the

free-flow speed of the corresponding link.

Emissions are calculated based on the emission factors proposed by EMFAC [48]. The

emission factors are used to convert the traffic output, such as VMT, into equivalent emission

output. The full version of emission factors depends comprehensively on a series of attributes

like region, fuel type, vehicle categories, etc. The final emission output in our model is the

sum of the emissions from 6 counties in the SCAG region. We select four major pollutants as

the emission analyzing objects: Carbon Dioxide (CO2), Nitrogen Oxide (NOx), Particulate

Matter 2.5 (PM2.5), and Reactive Organic Gases (ROG).

Equity Metrics

Aside from system-level impacts, we performed equity analysis for each test scenario at the

household level. Equity is a measure of the distribution of outputs (or inputs) across the

population in a fair manner [143]. We analyzed the equity impacts from three aspects: (1)

trip numbers per household, (2) travel distance per household, and (3) household travel

accessibility. These equity metrics are adopted by another study regarding equity implications

of AVs [182]. For each household, the travel accessibility is calculated as the log sum of

the utilities across all modes for each tour and averaged across tours generated from this

household, as shown in Equation 2.5.

A =

∑n
j=1 log

∑mj

i=1 e
uij

n
(2.5)
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where n is the number of tours of the household, mj is the number of available mode

combinations for tour j, and uij refers to the sum of trip utilities of the ith available trip

mode combination for tour j, which can be expressed as:

uij =

Kj∑
k=1

vkij (2.6)

where vkij is the utility of trip k in mode combination i for tour j, and Kj is the number

of trips in tour j.

Households are categorized into three groups by annual income: lower, middle, and upper.

We use relative values instead of absolute values to evaluate the implications of equity metrics.

In each analyzed scenario, outputs of the lower-income household are used as the baseline

(denoted as 1.00), and outputs of middle- and upper-income households are represented in

relative values proportional to the baseline.

An equity index is used to represent the disparity of equity measurements across income

groups in a test scenario, defined as:

Equity Index =
Range{L,M,U}

Range{L0,M0, U0}
×


−1, if max{L,M,U} = Li

1, if max{L,M,U} ≠ Li

(2.7)

where L,M,U refer to the value of equity measurements of lower-, middle-, and upper-income

households in tested CAV scenarios, while L0,M0, U0 denote the value of equity measurements

in the SCAG model.
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2.4 Results and Discussion

2.4.1 Transportation System Impacts Analysis

The simulation outputs of the SCAG model, the CAV base model, and Scenarios 1 through 4

are presented in Table 2.2. As shown in Table 2.2, VMT, number of trips, and trip distances

have a significant increase in all the CAV models. This indicates that the induced demand

from the deployment of CAVs generated more trips and therefore increased the miles traveled

in the network. Compared to the base SCAG model, total VMT increased by 10.0% following

the adoption of CAVs. This suggests that people are more inclined to travel longer distances

with CAVs. This finding is consistent with results from existing studies on the impact of CAVs

on travel behavior. For instance, Fagnant and Kockelman [73] estimated the transportation

and environmental effects of shared AV operations using an agent-based simulation model.

Their multiple simulation tests, which considered factors like fleet size, modeling area, and

traffic congestion levels, showed a potential VMT increase of 11% compared to conventional

vehicles. Similarly, Auld et al. [15] assessed the impact of CAV technologies on system

mobility using an activity-based model within the POLARIS simulation platform. Depending

on assumptions about the value of time and CAV market penetration rates, their results

indicated a VMT increase ranging from 10% to 40%.

The average speed on freeways during AM peak hours has increased after adopting CAVs,

while it barely changed at PM peak and on arterials. The number of trips during the PM

peak increased significantly, which offset the improvement of road capacity and resulted in

slight changes in travel speed. This finding is also consistent with the lower increase rate in

VHT than in VMT, since vehicles have a higher speed on freeways during AM peak hours. As

for the arterials, the traffic speed has only been increased slightly during the AM peak hours,

whereas the PM speed on arterials is even decreased in the CAV model. This indicates that

the induced demand on arterials has offset the capacity enhancement due to CAVs, which

caused worse congestion during the PM peak hours for arterials.
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Metrics Value SCAG CAV Base CAV S1 CAV S2 CAV S3 CAV S4
VMT (mi) Daily VMT 4.57× 108 5.03× 108 4.93× 108 4.98× 108 4.97× 108 4.71× 108

VHT (h) Daily VHT 1.39× 107 1.47× 107 1.42× 107 1.44× 107 1.43× 107 1.31× 107

Trips Number of trips 12.8 13.84 13.82 13.85 13.85 13.31
Trip length
(mi)

Mean trip length 7.18 7.17 7.10 7.17 7.18 7.21

Speed (mph) Freeway AM
speed

52.79 55.88 56.24 55.91 55.86 56.77

Freeway PM
speed

52.82 53.09 53.43 53.29 53.22 54.27

Arterial AM
speed

29.76 29.84 29.95 29.90 29.93 30.21

Arterial PM
speed

29.52 29.11 29.26 29.19 29.21 29.61

Daily Emission
(ton)

NOx 26.57 29.20 28.65 28.95 28.82 27.34

PM2.5 0.67 0.74 0.73 0.73 0.73 0.69
CO2 1.39× 105 1.53× 105 1.50× 105 1.52× 105 1.51× 105 1.43× 105

ROG 6.61 7.25 7.11 7.18 7.15 6.79

Table 2.2: Comparison of Metrics Across Different Scenarios

2.4.2 Results and Discussion

The spatial distribution of roadway speed is illustrated in Fig 2.4 and 2.5. In this study, we

used the ratio of mean speed to free-flow speed to demonstrate the congestion status during

different time periods. Since most of the congestion occurred in LA County, we presented

the speed distribution of LA County exclusively. Note that in both Fig 2.4 and 2.5, (a)

and (c) are the general views of LA County, while (b) and (d) are the zoom-in views of the

downtown LA area. Fig 2.4 displays the comparison of AM congestion status between the

SCAG model and the CAV base model. As shown in blue circles, the congestion mainly

occurred on freeways and arterials near the downtown area, such as I-405, I-10, and US-101.

With the deployment of CAVs, the congestions are well reduced on multiple freeways around

downtown LA, as marked by the dashed circles in Fig 2.4b and Fig 2.4d. However, the traffic

speed on arterials does not significantly increase after using CAVs. This trend matches the

arterial speed results shown in Table 2.2, indicating that the induced demand on arterials

has offset the capacity enhancement for arterials. Conversely, Fig 2.5 provides a view of the

PM traffic speed comparison between the SCAG and the CAV model. Compared with the
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results in Fig 2.4, the PM period shows worse traffic congestion than in AM. Furthermore, the

enhancement of traffic speed with CAV deployment during the PM period is not as significant

as in AM, as fewer freeways and arterials show congestion reduction with the use of CAVs in

Fig 2.5.

Figure 2.4: Ratio of mean speed to free-flow speed during AM peak: (a) SCAG; (b) Zoom in
view of (a); (c) CAV; and (d) Zoom in view of (c).

The results of mode share change before and after CAV deployment are depicted in Fig

2.6. The CAV demand-only refers to the mode share outputs directly from the demand

model in part-I paper (He et al., 2022), which did not incorporate the 3-loop assignment

feedback introduced in this study. The CAV demand and supply refers to the final outputs

after considering the feedback effect of the assignment results after 3 loops of iteration. As

indicated from Table 2.2 and Fig 2.6, the mode share shows a clear shift from non-CAV modes
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Figure 2.5: Ratio of mean speed to free-flow speed during PM peak: (a) SCAG model; (b)
Zoom in view of (a); (c) CAV base model; and (d) Zoom in view of (c).

to CAV modes and transit before and after CAV deployment. Fig 2.6 also reveals that the

outputs of demand-only slightly overestimated the share of SOV and HOV. It is noteworthy

that the mode shift from SOV to CAV is smaller than from HOV to CAV, suggesting that

most SOV drivers tend to maintain their travel habits while HOV drivers and passengers

are more willing to switch to CAV modes. Note that the transit mode share has increased

from 1.97% in the SCAG model to 6.3% in the CAV model. This growth trend in transit

mode share aligns with [111], where the transit mode share had a 10 times increase after

introducing AVs. Although we did not model the first- and last-mile trips to transit stations

using CAVs, i.e., kiss-and-ride (KNR) and park-and-ride (PNR), this part of the growth in

transit share can be explained as alternative trips by users who intended to ride CAVs but

34



did not have available ones at the moment before their trips take place. Considering the

small size of transit trips, the mode share predicted from the model might also be influenced

by the stochastic noise of the simulation.

Figure 2.6: Comparison of mode share between SCAG, CAV demand-only, and CAV demand
and supply.

The emission results from Table 2.2 indicated very similar trends as the VMT results.

Compared with the SCAG scenario, all the CAV scenarios have shown an increasing trend in

emission for all four pollutant types. The CAV base scenario causes 9% to 10% of emission

growth compared with the SCAG model. After applying the management policies, the CAV

models indicate a reduction in emissions, ranging from 1% to 6%. The policy that induced

the most emission drop is the auto trade-in from Scenario 4. The telework policy and parking

pricing management policies caused less decrease in emissions, while the free transit policy

had the least impact on reducing emissions.
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2.4.3 Travel Equity Analysis

The equity performance measured by relative trip numbers and relative travel distance per

household are presented in Table 2.3 and 2.4. Meanwhile, the comparison of equity indices

for these two equity metrics is shown in Fig 2.7. As seen from Table 2.3 and 2.4, the disparity

in trip numbers and travel distance across different income groups exists both in the SCAG

model scenario and in all the CAV scenarios: lower-income households have fewer trips

under all purposes than medium and upper-income households. As shown in Fig 2.7, all

the CAV scenarios have lower equity indices in mandatory trips but higher equity indices in

non-mandatory trips compared with the SCAG scenario. This indicates that the use of CAVs

helps to reduce the equity issues when traveling for mandatory activities, whereas it worsens

the disparity in household travel demand generation when it comes to non-mandatory trips.

Model Mandatory Non-Mandatory
Lower Middle Upper Equity Index Lower Middle Upper Equity Index

SCAG 1.00 1.43 1.51 1.00 1.00 1.29 1.20 1.00
CAV Base 1.00 1.39 1.46 0.92 1.00 1.35 1.37 1.28

CAV Scen 1 1.00 1.39 1.45 0.88 1.00 1.35 1.37 1.26
CAV Scen 2 1.00 1.39 1.46 0.91 1.00 1.35 1.37 1.28
CAV Scen 3 1.00 1.40 1.47 0.92 1.00 1.35 1.37 1.28
CAV Scen 4 1.00 1.42 1.49 0.97 1.00 1.34 1.37 1.28

Table 2.3: Equity Performance Measured by Relative Number of Trips per Household

Scenario Mandatory Non-Mandatory
Lower Middle Upper Equity Index Lower Middle Upper Equity Index

SCAG 1.00 1.78 2.07 1.00 1.00 1.32 1.29 1.00
CAV Base 1.00 1.74 1.96 0.90 1.00 1.40 1.49 1.54

CAV Scen 1 1.00 1.73 1.91 0.85 1.00 1.39 1.48 1.50
CAV Scen 2 1.00 1.75 1.97 0.90 1.00 1.40 1.49 1.55
CAV Scen 3 1.00 1.75 1.97 0.90 1.00 1.40 1.49 1.54
CAV Scen 4 1.00 1.75 1.97 0.90 1.00 1.39 1.48 1.51

CAV Scen 3 * 1.00 1.75 1.97 0.90 1.00 1.40 1.49 1.54
CAV Scen 4 * 1.00 1.39 1.48 0.44 1.00 1.37 1.44 1.38

Table 2.4: Equity Performance Measured by Relative Travel Distance per Household

Comparing Scenario 1 through Scenario 4 with the SCAG scenario and CAV base scenario

in Table 2.3 and 2.4, and Fig 2.7, we can see that Scenario 1 has the lowest equity index among
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Scenario Income Group Equity Index
Lower Middle Upper

SCAG 1.00 1.03 1.05 1.00
CAV Base 1.00 1.03 1.04 0.93

Scen 1 1.00 1.02 1.04 0.84
Scen 2 1.00 1.03 1.04 0.90
Scen 3 1.00 1.03 1.05 1.04
Scen 4 1.00 1.01 1.02 0.52

Scen 3 * 1.00 0.98 0.98 -0.52
Scen 4 * 1.00 1.02 1.02 0.48

Table 2.5: Equity Performance Measured by Relative Travel Accessibility

all scenarios both in trip numbers and travel distance, indicating the telework policy provides

more equity improvement in terms of household trip numbers and travel distance than others.

This is mainly because the reduction of commute trips is more significant in middle- and

upper-income groups since the work-from-home rate is higher in these two groups, i.e., the

demand increase in high-income households is less than that in lower-income households. The

equity index of Scenario 2 in both relative trip numbers and relative travel distance are close

to that of the CAV base model, indicating that the free transit pass policy does not cause

significant implications from the equity perspective. In other words, the population is not

sensitive to the cost change in transit across income groups, indicating that monetary policies

cause a limited impact on changing people’s travel patterns, given the assumption that the

transit network remains unchanged. Scenario 3 shows a very close equity index to the CAV

base scenario, which indicates that differentiating the parking price for SOV and HOV does

not influence the disparity in terms of demand generation and travel distance. The equity

index of Scenario 4 in trip numbers per household is the highest among all test scenarios,

very close to the value of the SCAG scenario, where no CAVs are considered. This indicates

37



that the auto trade-in policy offset the equity improvement in the CAV base scenario. This

can be explained by the fact that although a generic auto trade-in reduces the total auto

ownership, i.e., both AVs and non-AVs for all income groups, higher-income households can

still meet the increased demand due to more AVs purchased, whereas lower-income groups

might experience a lower demand increase because of the fewer AVs they owned. With that

being said, a specified auto trade-in policy in favor of lower-income households instead of a

generic auto trade-in policy should be tested out to ensure that the equity performance is

not sacrificed.

Figure 2.7: Equity Index across Scenarios for (a) Number of Trips per Household and (b)
Travel Distance per Household

The equity performance measured by household travel accessibility and corresponding

equity indices for each test scenario are presented in Table 2.5 and Fig 2.8. Table 2.5

illustrates that the equity index of CAV base, Scenario 1, 2, and 4 are smaller than the

SCAG scenario, indicating a reduction in the disparity of travel accessibility across income
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Figure 2.8: Equity Index across Scenarios on Travel Accessibility

groups in these scenarios. However, it is notable that the equity index for Scenario 3 exceeds

one, suggesting that the equity performance in terms of travel accessibility deteriorates after

implementing the parking pricing policy under CAV deployment. The main reason for this

decline in equity is the variable sensitivity to parking costs across different income groups.

As previously mentioned, an individual’s sensitivity to parking costs is modeled by the cost

scale, which depends on household income; higher income results in lower sensitivity to

price changes. Consequently, increased charges for SOVs and PAVs diminish lower-income

households’ willingness to choose drive-alone modes, while not significantly deterring middle

and upper-income households from using single-occupancy modes.

As concluded in Section 2.4.2, most CAV test scenarios show enhanced equity performance

in terms of household trip numbers, household travel distance, and household travel accessi-

bility compared with the original SCAG scenario. However, the equity of travel accessibility

in the parking pricing scenario and the equity of household trip numbers in the auto trade-in

scenario do not perform as well as in the CAV base scenario, indicating the need for further

policy adjustments. Subsequent sections propose and evaluate modified policies for these

scenarios by applying differentiated strategies across different income groups.
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2.5 Conclusion

Recent studies have been investigating the potential impacts that CAV technologies could

have on future travel. The deployment of CAVs will significantly change the way people live,

travel, and participate in various activities. Therefore, understanding the implications of CAV

deployment is important for stakeholders to prepare for future changes. In the part-I paper [99]

of this study, we investigated the impacts of CAVs on people’s long-term to short-term travel

behaviors by conducting a stated preference survey in Southern California and integrating the

survey results with the SCAG ABM. The new travel demand with the deployment of CAV

was estimated. This study went one step further based on the demand model generated from

the part one study. We incorporated the supply-side impact of CAVs into traffic assignment

modeling, integrated the travel demand model with the SCAG highway assignment model,

and generated system-level outputs by considering the demand-supply interaction in feedback

loops. We also proposed and evaluated a set of travel demand management (TDM) policies

in response to the impacts of CAVs on the transportation system and analyzed the equity

concerns that could occur with CAV deployment. Major findings and conclusions from this

study are summarized as follows:

• The VMT and emissions increased significantly with the deployment of CAV. Given

the base year model, 2016 SCAG ABM, and a model calibration by survey-collected

CAV users’ data (53% of the population are CAV users), the predicted travel demand

could lead to a 9.1% increase in VMT and a 9.6% to 10.4% increase in emissions.

• Variable parking pricing, telework promotion, and auto trade-in are effective strategies

in reducing excessive growth of VMT and emissions induced by CAV adoption. On

the other hand, VMT and emissions are not sensitive to transit fare reductions, even if

transit is free of charge.

• Auto trade-in policy is the most effective policy in controlling the VMT growth in
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future CAV deployment. Under the ideal condition where all CAV users follow trade-in

rules, the VMT growth rate can be reduced from around 9% to 2%.

• With the deployment of CAVs, travel equity in terms of household trip number, house-

hold travel distance, and travel accessibility across income groups is promoted. The

implications of the proposed TDM policies on travel equity are different. Telework helps

to improve equity in all three metrics; free transit policy does not influence the equity

performance; parking pricing policy tends to reduce the equity of travel accessibility,

although it only has a limited impact on the equity of trip numbers and travel distance;

auto trade-in policy worsens the equity in household trip numbers but helps promote

equity in travel accessibility.

• Adjusted demand management policies based on income groups perform better in

promoting transportation equity than generic policies. After equity adjustment, the

trip number disparity in the auto trade-in scenario and the accessibility disparity in

the parking pricing scenario are both reduced. However, excessive policy support for

lower-income households can cause an overbalance in equity, which might need to be

avoided.

There are areas to improve upon the work in this study. First, capacity improvement was

a deterministic parameter and identical for all freeways and arterials in this study. In future

studies, the capacity adjustment factor can be included in the loop feedback and evolved with

the assignment results. Second, the proposed models in this study did not explicitly consider

empty trips of CAVs, such as finding parking locations or returning home. This might become

an inevitable question when the CAV market penetration rate gets higher in future CAV

deployment. Third, the model can be further updated to simulate first- and last-mile service

by CAV in Southern California and provide more explicit policy recommendations for public

agencies to improve the existing transit system.
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Chapter 3

Evaluating the traffic and environmental

impact of telework and remote services

on transportation systems

The proliferation of Information and Communications Technologies has democratized telework

and teleservices (Tele-X), accelerated by evolving attitudes following the COVID-19 pandemic.

As post-pandemic society increasingly embraces remote activities, Tele-X’s potential to miti-

gate congestion and emissions remains uncertain. This study investigates the transformative

impacts of Tele-X on travel patterns and assesses its potential to reduce Vehicle-Miles-Traveled

(VMT) and traffic-related emissions. Our integrated modeling framework encompasses survey

data, travel demand and supply modeling, and environmental analysis. We collected data

regarding individual Tele-X choices via an online survey in Los Angeles (LA) County, which

facilitates calibration of an activity-based model. The calibrated model reveals a rise in

telework adoption from 6% to 24%. Despite marginal increases in total trips, post-pandemic

VMT decreased by 3.9%, concomitantly affecting emissions. This underscores Tele-X’s

potential in reducing VMT and emissions. However, a case study within LA’s Westwood

community reveals that extreme promotion of Tele-X would induce passing-by traffic and
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increase emissions in neighboring areas.

3.1 Introduction

The ongoing evolution of Information and Communication Technology (ICT) has instigated

remarkable transformations within the digital world, thereby fostering a notable shift towards

“everything” online. In alignment with the paradigmatic transition from the physical to the

virtual realm, we introduce a general concept “Tele-X.” Tele-X encompasses a diverse array of

activities facilitated by ICT, including telework and various teleservices. The term “telework”

refers to “a work flexibility arrangement under which an employee performs the duties and

responsibilities of such employee’s position, and other authorized activities, from an approved

worksite other than the location from which the employee would otherwise work,” defined

by the Telework Enhancement Act of 2010 [53]. Teleservice, or remote service, entails “the

delivery of services from a distance using telephony and/or digital technologies” [52], such as

online shopping, online education, telemedicine, online banking, etc. The transition to Tele-X

engendered a reduction in physical travel (either commuting or non-commuting), providing a

promising solution to alleviate adverse impacts on transportation and environment, such as

traffic congestion, energy use, and traffic-related emissions [11,54,290].

Tele-X has become increasingly prevalent in people’s daily lives. The adoption of telework

has exhibited a gradual rise, with the percentage of workers who adopt telework as the primary

arrangement increasing from 4% to 6% from 2009 until the pre-pandemic period in 2020 [49].

Moreover, a larger proportion of workers engage in partial telework. The 2019 American

Time Use Survey indicates that around 24% of workers do telework occasionally [196]. On the

other hand, the growth in teleservice adoption is more significant. Taking online shopping, for

instance, online shopping has seen a surge in popularity, with approximately 76% of American

adults participating in online shopping in 2018 [216]. As the COVID-19 pandemic broke

out in 2020, such a trend was completely disrupted. Following the issuance of stay-at-home
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orders by many U.S. state and local governments in March 2020, a significant number of

people commenced teleworking [164]. In response to the pandemic, major tech companies

also implemented work-from-home policies permanently [69], though some have recently

begun requesting employees to return to the office [38]. Data from a survey conducted by

Pew Research indicated a substantial increase in the telework rate, rising from 20% before

the pandemic to 71% during the pandemic [212]. As for teleservice, [239] showed that there

was a significant surge in online shopping during the pandemic in Chicago. Their findings

revealed that 45% and 67% of Chicago residents became new tele-shoppers for fresh food and

grocery shopping respectively. [20] also reported that the pandemic caused around 76%-80%

disruptions in out-of-home activities, such as social interactions, dine-in experiences, and

shopping.

The changing trend in Tele-X adoption before, during, and after the pandemic has been

shown to have fundamental impacts on individuals’ activity patterns and travel behaviors,

consequently influencing vehicle-miles-traveled (VMT) and traffic-related greenhouse gases

(GHG) and air pollutant emissions. [238] revealed that telework may reduce commuting trips,

while teleworkers are more likely to conduct more teleservices (i.e., online shopping). As

a result of large-scale telework during the pandemic, both traffic congestion and emissions

experienced a record drop [187]. Air quality was also found to have significantly improved

due to reduced vehicle activity in March-April 2020 [150]. Nonetheless, with the economy

starting to reopen in summer 2020, emissions returned to levels similar to those of 2019 in the

second half of 2020 [250]. Furthermore, since people’s travel behaviors changed substantially

during the pandemic (e.g., avoiding transit), congestion after the pandemic might be more

severe than in the pre-pandemic era [259], potentially leading to higher VMT and GHG and

air pollutant emissions. Therefore, it is crucial to comprehend the trends in Tele-X adoption

in the post-pandemic era, understand the resulting changes in activity patterns and travel

behaviors, and evaluate their overall impacts on VMT and traffic-related emissions.

Our study reveals insights into individual choices of Tele-X in the post-pandemic era and
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proposes a modeling framework to fulfill the research needs for evaluating the impacts of

Tele-X. The findings from this study aim to provide policymakers with a deeper understanding

of the changing trends of Tele-X and the associated impacts, enabling them to make informed

decisions on how to effectively leverage its potential benefits for society in the post-pandemic

era. The major contributions of this study are listed below:

• Development of a comprehensive modeling framework: This research proposes

a comprehensive modeling framework that integrates transportation demand and supply

models with air quality models to evaluate the impacts of Tele-X on both transportation

systems and the environment.

• Incorporation of activity-based demand model and agent-based simulation

model: The activity-based model (ABM) fundamentally captures individuals’ travel

behavior changes resulting from the adoption of Tele-X in the post-pandemic era, while

the agent-based model simulates the dynamic movement of individuals and vehicles

within a large-scale multi-modal network. This approach allows for the estimation of

traffic volumes and traffic-related emissions with high spatial-temporal resolution.

• Evaluation of Tele-X Impacts in Los Angeles County: The research assesses the

effects of Tele-X adoption on VMT and traffic-related emissions in Los Angeles (LA)

County. Furthermore, a specific case study is conducted for a major freeway (I-405)

corridor, providing a detailed analysis of the impacts on a local community.

The rest of the paper is organized as follows. Section 3.2 reviews the literature and

summarizes the research gaps. Section 3.3 describes the methodology proposed in this study

and introduces the design of scenarios. Section 3.4 presents and discusses the findings from

the scenarios, and Section 3.5 concludes the paper and provides policy recommendations.
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3.2 Related Work

The impacts of Tele-X have been extensively studied in the literature for decades. Within

the existing body of research, four primary types of influences on in-person activities are

identified: substitution (where Tele-X replaces in-person activities), complementary (where

Tele-X generates additional travel needs), modification (where Tele-X adjusts existing travel

needs), and neutrality (where Tele-X has little influence) [23, 145, 173, 204]. The first two

types of influences, substitution and complementary, take a dominant share [140]. Specifically,

telework and teleservice (e.g., online shopping) are usually studied independently [204].

Since telework was first proposed in the 1960s [193], the potential of telework to mitigate

traffic congestion and improve air quality has captured the attention of policymakers and

researchers for decades [87,137,170,172]. While the intuitive assumption suggests that telework

could reduce commute-related travel demand, some researchers have raised concerns about

the extent of demand mitigation [172,290]. Various factors may offset the benefits of telework

regarding VMT reduction, including induced in-person activities resulting from flexible work

arrangements [43,131,174], longer travel distances due to residential choices [36], increased

dependency on personal vehicles [62], and others. [174] and [131] argue that telework may

indirectly induce daily travel for other activities, using the time saved from commuting and

flexible working schedules. Such induced travel demand may lead to unexpected congestion

and air pollutant emissions in areas near teleworkers’ home locations rather than their

workplaces. [43] also found that people tend to conduct more in-person activities with time

saved by telecommuting. Regarding travel distances, [36] found that teleworkers opt to reside

farther away from downtown for more spacious and comfortable housing options. This shift

in behavior may result in longer trip lengths and a higher reliance on personal vehicles,

which would neutralize the benefits of VMT reduction from telework. Furthermore, a study

conducted by [62] reveals that teleworking may increase weekly miles traveled, particularly

by increasing car use for travel. It is important to note that these studies use data from the
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pre-pandemic period. As people’s perceptions and choices of telework changed significantly

after the pandemic, as well as the policies of governments and employers, it is necessary to

understand people’s choices of telework adoption in the post-pandemic era and estimate the

implications for travel behaviors.

As for teleservices, teleworkers’ schedule flexibility may induce additional in-person

activities, while teleservices themselves can also lead to the replacement of certain physical

trips, resulting in a reduction in corresponding travel demand. For instance, online shopping

has been shown to reduce the number of in-person shopping trips [264], however, the overall

impacts on travel demand remain unclear [40]. Researchers in public health also suggest

that telehealth has the potential to reduce travel demand for healthcare purposes [280] and

decrease the amount of time spent traveling to healthcare facilities [112]. Furthermore, the

choices of teleservices are highly influenced by the choices of telework. [214] attempt to jointly

analyze the relationship between telework, in-person shopping trips, and online shopping

using pre-pandemic 2017 National Household Travel Survey data and during-pandemic travel

data. The results suggest that online shopping is associated with fewer in-person shopping

trips, while telework shows the opposite trend. The pandemic has even accentuated these

correlations. The limitation is that only one type of teleservice (online shopping) is considered,

while many types of activities exist under the category of teleservices. Further investigations

encompassing various teleservices are warranted to gain a comprehensive understanding of

their impact on travel behavior.

The literature review identifies two primary gaps related to the overall impacts of Tele-X.

First, existing research largely focuses on the pre- and during-pandemic periods, constrained

by data availability, leaving a critical need to analyze post-pandemic shifts in activity and

travel behavior. Our study addresses this by evaluating how these behavioral changes affect

travel patterns in a post-pandemic context. Second, there is a lack of comprehensive analyses

that consider the interconnected nature of telework and teleservices alongside daily activity

schedules and space-time constraints. Our research unravels these complex relationships and
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provides a holistic assessment of Tele-X’s overall impacts on travel and activity behaviors.

3.3 Methodology

To understand the impacts of Tele-X on urban transportation systems in the post-pandemic

era, we adopted a comprehensive approach that integrates a survey, an activity-based travel

demand model, agent-based transportation simulation, and an emission estimation model. The

framework of the methodology is presented in Fig 3.1. First, we conducted a comprehensive

mixed-method survey encompassing both stated and revealed preferences in LA County

to gather data on individuals’ Tele-X choices and the corresponding alterations in travel

behavior. Given the notable shift in attitudes towards Tele-X following the pandemic, an

up-to-date survey is necessary to grasp the nuances of these behavioral changes and enhance

the calibration of the extant travel demand model. Next, we modeled the Tele-X choices and

re-calibrated requisite behavioral models within the Activity-Based Model (ABM) framework

to accommodate emerging travel behaviors. The disaggregated feature of ABM affords the

ability to assimilate individual-level travel behavior changes, surpassing the capabilities of

conventional trip-based models that are widely adopted by public agencies in the United

States. Lastly, we employed an agent-based mesoscopic transportation simulation model

(LA-Sim) alongside the Emission Factor (EMFAC) model from the California Air Resources

Board (CARB) to assess the effects of evolving travel demand on the transportation system

and traffic-related emissions. The preference for an agent-based simulation model over a

static traffic assignment (STA) model stemmed from the latter’s inadequacy in addressing

saturated traffic conditions [269]. Various scenarios were designed and implemented within

the integrated model to evaluate the efficacy of promoting Tele-X in LA County and derive

pertinent policy recommendations. The rest of this section describes the details of the

methodology and model specification.
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Figure 3.1: Methodology framework

3.3.1 Tele-X Survey

General Design

A mixed-method survey was designed and conducted from May 2022 to June 2022 in LA

County. The survey was distributed online in collaboration with a professional survey online

sampling and data collection company—Dynata [71]. Questions were asked about people’s

choice of Tele-X, as well as the associated travel behavior changes. Around 1000 responses

were collected, which is a reasonable size to represent the travel behavior changes [100,117].

Significant socio-economic and demographic attributes were selected as quotas: age, ethnicity,

education attainment, employment status, household size, and annual household income.

The survey consists of three layers. The first layer asks questions about the socio-economic

characteristics of people. In the second layer, questions are about pre-/post-pandemic telework

statuses, commuting cost and time with typical transportation modes. For those who work
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remotely, we also asked about their weekly telework frequencies. In the third layer, we asked

about people’s weekly activity frequencies in terms of both teleservice activities and in-person

activities during the post-pandemic era.

Survey Data Post-Processing

In total, we collected 1089 valid survey responses across LA County. Due to the limitation of

online surveys, the raw survey data have some derivations in some demographic attributes.

For example, the proportion of mid-age (40-65) population is lower than the quotas from the

LA population, and the proportion of people with high education attainment (master and

above) is higher.

To reduce bias resulting from such derivations, a raking adjustment was adopted to adjust

the sample weight of each respondent and align the weighted sample with the aggregated

socio-economic distributions of the population from the 2016 ABM from the Southern

California Association of Governments (SCAG). The raking procedure was based on an

iterative proportional fitting procedure and involved simultaneous ratio adjustments to two

or more marginal distributions of population counts [126].

The raking procedure was performed in a sequence of adjustments. Base weights (sampling

weights) were first adjusted to one marginal distribution and then to the second marginal

distribution, and so on. One sequence of adjustments to the marginal distributions is known

as a cycle or iteration. The procedure was repeated until convergence was achieved. The

comparison of the weighted sample and quotas from the SCAG population is presented

in Table 3.1. The demographic analysis of survey data is presented in Supplementary

Information.
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Table 3.1: Raw and weighted survey data compared with quotas
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3.3.2 Activity-Based Travel Demand Modeling

The ABM used in this study is built upon the existing modeling platform from SCAG,

which is one of the largest Metropolitan Planning Organizations in the United States. It

encompasses six counties in California with a population of more than 19 million. The 2016

ABM developed by SCAG is one of the largest ABMs in practice and provides a foundation

for SCAG’s decision-making in transportation planning. More discussions about the SCAG

ABM details can be found in [100], as well as in the Supplementary Information. The SCAG

ABM has the following characteristics:

• 24-hour travel demand patterns with necessary levels of temporal resolution (15-minute

time intervals)

• Detailed synthetic population with demographic and socio-economic information

• Individual travel choices considering intra-household interactions

To incorporate people’s travel behavior changes due to the emergence of Tele-X, several

components of the SCAG ABM were updated. In the long-term choice layer, we added

a telework user choice module to identify teleworkers from the workers. Additionally, we

inserted a teleservice user choice module in the long-term choice layer to filter teleservice

users from the general population. The selected teleworkers’ workplace types were updated to

"home" correspondingly in the work arrangement module. For those identified as teleservice

users, updates were made in their daily activity generation layer. Specifically, their non-

mandatory activity frequencies were updated according to the activity frequency choice

model developed using the survey data. Similar updates were made to the maintenance and

individual discretionary activity generation models. The details of the model updates are

introduced in the following sub-section.
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Telework Model

This model is used to determine whether a worker in the synthetic population chooses to

telework or not on a typical workday. In the survey, we designed two revealed preference

questions related to workers’ current telework status:

1. "Are you currently teleworking at least occasionally?"

2. "How many days per week on average are you currently teleworking?"

According to the responses to the first revealed preference question, 43% of workers telework

at least occasionally. Based on the results from question 2, however, we discovered that only

17% of teleworkers telework five days a week, which aligns with the findings from the 2019

American Time Use Survey [196]. Therefore, instead of directly using the response from the

first question, it is better to first develop the weekly telework frequency model using data

from the second revealed preference question and then convert the weekly frequency to the

equivalent daily telework frequency.

The utility functions are defined in Equation 3.1. The weekly telework frequency model

has six alternatives, ranging from zero to five. Each alternative indicates the number of days

a worker chooses to telework in a week. The choice of zero weekly telework frequency is

regarded as the reference.

Ui,n = h(Xi; βn) + ϵi (3.1)

where Ui,n represents the utility of individual i who chooses to telework n days a week

(n ∈ [0, 5]), Xi is the vector of explanatory variables for individual i, βn is the parameter

vector of alternative n to be estimated from data, ϵi is the random disturbance term, and

h(Xi; βn) is the function to calculate the systematic utility of choosing to telework n days a

week. The most common specification of h(Xi; βn) is a linear format:

h(Xi; βn) = βn,0 +
K∑
k=1

βk · xnk (3.2)
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where βn,0 is the alternative specific constant term, βk is the parameter to be estimated

for the k-th explanatory variable, and xnk is the value of the k-th explanatory variable for

individual i.

Assuming the random disturbance terms ϵi are independent and identically distributed

(i.i.d.) and follow an extreme value distribution (Gumbel distribution), the probability of

individual i choosing a weekly telework frequency of n is:

Pi(n) = Pi

(
Ui,n ≥ max

m=0,...,5,m ̸=n
Ui,m

)
(3.3)

where m denotes an alternative other than n. According to the properties of the Gumbel

distribution, Equation 3.3 can be further expressed as:

Pi(n) =
eµh(Xi;βn)∑5

m=0 e
µh(Xi;βm)

(3.4)

The log-likelihood across the sample is calculated as in Eqs. (3.5)–(3.6). The parameter

vector βn can be estimated by any optimization algorithm by maximizing the log-likelihood.

We adopted the Python Biogeme package [25] for behavior model estimation, and the model

estimation results are presented in Table 3.2.

LL = log
I∏

i=1

5∏
n=0

Pi(n)
yn,i (3.5)

yn,i =


1, if individual i selects alternative n

0, otherwise
, n ∈ {0, 1, 2, 3, 4, 5} (3.6)

The weekly telework frequency model can be leveraged to determine the number of days

that a worker chooses to telework during a week. For workers who choose to telework at

least once a week, the next step is to transfer their weekly telework choices into an equivalent

daily choice. The probability that a teleworker i chooses to telework on a typical workday
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(any day between Monday and Friday) is given by:

Pi =
Fi

Fmax
(3.7)

where Pi is the probability that teleworker i chooses to telework on a typical day, Fi refers to

the weekly telework frequency of individual i, and Fmax is the maximum number of telework

days, i.e., five in this case.

In our model, we first apply the telework weekly frequency model to the workers in the

synthetic population, and then select a fraction of workers to be considered as teleworkers on

a typical workday using the probability defined in Equation 3.7.

Table 3.2: Estimation results of telework weekly frequency model
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Teleservice Model

The teleservice model is intended to explore how many people in the population would

choose teleservices in their daily lives and at what frequency they would use different types

of teleservices. Considering that attitudes towards teleservice may differ between teleworkers

and non-teleworkers, we evaluated the differences in teleservice choices across population

groups and estimated the frequency at which people use teleservices for different activity

types.

(1) Teleservice User Choice Model

The teleservice user choice model is a binary choice model based on the revealed preference

question in the survey: “Do you currently use any type of teleservices (e.g., online shopping,

online education, telehealth) at least occasionally?” This model is used to select active

teleservice users from the whole population. Considering that people’s employment status

might impact their choices regarding the adoption of teleservices, we divide the population

into the worker group and non-worker group. For workers, we further divide them into the

teleworker group and the non-teleworker group. The teleservice user choice model is then

segmented into three sub-models, each estimating the proportion of teleservice users in their

respective population groups.

The binary logit model format is similar to the multinomial model introduced in the

telework model section. The only difference is that the number of model alternatives is

reduced to two: Yes or No. The estimation results of the segmented models are presented in

Table 3.3.

To validate the effectiveness of the model segmentation (teleworker, non-teleworker, non-

worker) regarding the teleservice choice, we conduct a likelihood ratio test between the

segmented models and the pooled model. The pooled model assumes there is no difference

between the three population groups regarding the teleservice choice and is estimated with
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Table 3.3: Estimation results of Teleservice user choice model for teleworkers, non-teleworkers,
non-workers, and pooled
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the whole data set. The likelihood ratio test statistic is calculated by Equation 3.8:

LR = 2(LL(βt) + LL(βnt) + LL(βnw)− LL(βp)) (3.8)

where LL(βt), LL(βnt), LL(βnw), and LL(βp) are the log-likelihoods for the teleworker model,

the non-teleworker model, the non-worker model, and the pooled model, respectively. The

degree of freedom d is calculated as follows:

d = Kt +Knt +Knw −Kp (3.9)

where Kt, Knt, Knw, and Kp are the number of coefficients in the teleworker model, the

non-teleworker model, the non-worker model, and the pooled model, respectively.

From Table 3.3, we can calculate the likelihood ratio test statistic as:

LR = 2(LL(βt) + LL(βnt) + LL(βnw)− LL(βp)) = 111.99 (3.10)

which exceeds the critical value of χ2
d = 32.91 at the significance level p < 0.001. This

result indicates that the three segmented models provide a significantly better fit to the

data than the pooled model. Therefore, our initial conclusion is that the teleservice choice

should be segmented into three models to estimate the teleservice choice for teleworkers,

non-teleworkers, and non-workers.

(2) Teleservice Activity Frequency Model

After we estimate people’s adoption of teleservices, the next step is to estimate the

frequency of teleservices used on a typical weekday. From a survey data collection perspective,

it’s difficult to directly ask respondents how many teleservices they use on a typical day

since people’s daily activity frequency may vary from day to day within a week. However,

people’s weekly activity pattern is usually more consistent from week to week. Therefore, by

asking about respondents’ weekly activity frequency, we are more likely to obtain an accurate
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estimate of their number of activities under different activity purposes.

From a travel demand modeling perspective, we are more interested in investigating

people’s activity patterns on a typical weekday. In this section, we follow a similar modeling

approach to that described in the telework modeling section. In modeling teleservice activity

frequencies, we first estimate people’s weekly teleservice frequencies by teleservice type and

then convert the weekly teleservice frequency into daily teleservice frequencies.

The activities that can be conducted in the form of teleservices in the SCAG ABM include

eating out (food delivery), personal maintenance (online shopping, tele-health care, online

banking, etc.), and personal discretionary (online movies, online religious activities, etc.).

The model estimation results can be found in the Supplementary Information. Moreover,

because the alternatives defined in SCAG’s choice models for the aforementioned activity

types reflect activity frequencies on a typical weekday, we need to map the weekly choice

results generated from the survey data to daily frequency results as used in SCAG ABM.

The detailed data process can also be found in the Supplementary Information.

Agent-Based Transportation Simulation

We adopted the agent-based simulation toolkit, Multi-Agent Transport Simulation (MATSim),

to simulate the movement of travelers and vehicles in a multimodal network of LA County.

The modeling framework of the LA-Sim model is presented in Fig 3.2. The LA-Sim model

integrates inputs comprising a multimodal network and an initial individual-level travel

demand. The Mobility Simulation module simulates the explicit travel behaviors of agents

within the multimodal network. A comprehensive scoring system is employed to quantify

the performance of agents’ plans based on the simulated traffic dynamics. The utilities of

conducting activities (usually positive) and traveling (usually negative) are both calculated.

Agents possess the flexibility to iteratively refine their travel plans to enhance their daily score,

according to their experience in the previous iteration. MATSim employs a co-evolutionary

algorithm to ascertain the user equilibrium of the system, with scores converging after a
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sufficient number of iterations. Beyond the converged simulation outcomes, we undertake

an iterative calibration of road capacity to align simulated volumes with observed data.

Brief introductions of model specification are presented in the following sections, and more

information on the simulation model is presented in the Supplementary Information.

Figure 3.2: Modeling framework of the LA-Sim model

(1) Multimodal Network

The multimodal network consists of a road network and a public transit network, both

generated from open-source datasets. The road network data was adopted from Open Street

Map (OSM, 2020) for LA County, and the data was processed by the open-source Java-based

network editing tool, JOSM [1], to convert it into a MATSim formatted network. The transit

network was developed from the General Transit Feed Specification (GTFS, 2020) data, and

we adopted the "PublicTransitMapper" class within the pt2matsim extension of MATSim

to align the public transit network with the road network. Considering the scale of the LA

network (354,735 links) and the low share of public transit (5%, [63]), we took an alternative

route by treating transit and private vehicle usage as distinct network links to improve

computational efficiency.

(2) Initial Demand
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The initial demand was derived from the SCAG ABM with the Tele-X choice sub-models.

Considering that the SCAG ABM generates the travel demand for six counties in Southern

California, we filtered out daily trips for LA residents for this study. Additionally, we

aggregated the origin/destination points outside of LA County to the nearest zone on the

boundary so that we do not need to simulate the movement of agents outside the area of

interest.

(3) Network Calibration

The population of LA County in 2022 is around 9.7 million [35], which is computationally

expensive to simulate for the entire population in MATSim. For the LA-Sim model, we

simulated 10% of the population of LA County to ensure computational efficiency. This

sample simulation approach is typical in the practice of large-scale simulation, as seen in

Berlin [185] and Zurich [225], which simulated 10% samples of their respective populations.

Based on home locations, we randomly selected 10% of the households from the synthetic

population of LA County and simulated their initial demand in the LA-Sim model. To

account for the sample population, we also needed to reduce the road network capacity to

some extent. However, this relationship is not linear [101]. Further calibration is necessary

to capture the non-linear relationship and the impacts on road capacities from other factors,

such as traffic signals and tourist trips.

Algorithm 1 link capacity factor calibration
1: Input: link capacity factor set θc,
2: Output: calibrated link capacity factor set θc

3: Initialization: set every element in θc to be 0.8 as θck;
4: for k ∈ K do
5: launch simulation with θck and calculate the ysimij

6: compute f(θ) according to Equation 3.11
7: if f(θ) < threshold then
8: stop calibration and output θk
9: else

10: update θck according to Equation 3.12 - 3.13
11: end if
12: end for
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We proposed an iteratively proportional adjustment algorithm to calibrate the road

network. The objective is defined in Equation 3.11:

min
θ

f(θ) =
I∑

i=1

J∑
j=1

(ysimij − yobsij )2 (3.11)

where θ is a parameter set to be calibrated for freeway links, which includes link speed

and capacity factors. ysimij and yobsij represent the simulated and observed volumes for traffic

count station j in time period i. The link speed per hour is calibrated to the average hourly

speed recorded from PeMS data [215]. The capacity adjustment factor is calibrated using

Algorithm 1.

θc(i,k) =

∑J
j=1 y

sim
(ij,k−1) × 10∑J

j=1 y
obs
(ij,k−1)

(3.12)

c(i,k) = c(i,k−1) × f(i,k) (3.13)

where θc(i,k) is the capacity factor in time period i in the calibration iteration k, ysim(ij,k−1)

and yobs(ij,k−1) stand for the simulated and observed traffic volumes in time period i for count

station j in calibration iteration k. c(i,k) is the freeway link capacity in time period i in

calibration iteration k.

Emission Factor (EMFAC) Model

On-road emission rates of air pollutants and GHGs for Los Angeles County are retrieved from

EMFAC2021 v1.0.2 [28], an official emission inventory database developed by the California

Air Resource Board. We calculated a vehicle-population-weighted emission rate for each

pollutant and for each emission process. Emission rates are then matched with link-level

hourly vehicle volumes and vehicle activities (starting or ending a vehicle) to calculate

emissions from different emission processes, including running exhaust emissions (RUNEX),
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start exhaust tailpipe emissions (STREX), tire wear particulate matter emissions (PMTW),

and brake wear particulate matter emissions (PMBW). The emissions from all emission

processes are then aggregated to reflect the total emission of a specific link.

Scenario Design

Using the updated travel demand model developed in this study, we created a series of

scenarios to demonstrate how telework and teleservice adoption influence people’s travel

choices and further impact the transportation system. These scenarios are designed to

simulate demand-side variations in travel patterns at different levels of adoption for telework

and teleservice, illustrating the resulting effects on transportation system performance. The

scenarios are carried out at two levels: the network level and the corridor level. The

network-level experiments focus on investigating the impact of telework and teleservice on

the transportation system for LA County, while the corridor-level experiments concentrate

on a major corridor in LA County, Interstate 405 (I-405), and analyze how changes in travel

patterns in communities along I-405 influence the traffic on this corridor.

Table 3.4: Network level scenario specification summary
Index Scenario Model Update Specification

A Pre-pandemic SCAG model calibrated for 2016
B Telework only Implement the telework user choice model in

the Pre-pandemic model
C Teleservice only Implement the teleservice user choice model

and updated non-mandatory activity frequency
model in the Pre-pandemic model

D Current baseline The combination of scenario B and C, account-
ing for current travel behaviors regarding Tele-
X choices

E Extended telework 50% Current baseline + Increasing the telework rate
in 5 industries by 50%

F Extended telework 100% Current baseline + Increasing the telework rate
in 5 industries by 100%

G Corridor analysis Current baseline + Converting all non-work ac-
tivities into teleservice activities in Westwood
community

63



The base scenario incorporates both the telework model updates and the teleservice

model updates into the SCAG ABM, reflecting the current telework and teleservice status of

the population in LA County. To investigate the impact of telework and teleservice on the

transportation system respectively, we designed two independent scenarios for telework and

teleservice. One is the telework-only scenario, where only the telework model update is added

to the SCAG ABM. The other is the teleservice-only scenario, where only the teleservice model

update is incorporated into the SCAG ABM. Finally, two extended scenarios are designed to

illustrate the effects of enhanced telework rates in five selected industry sectors. The five

selected industry sectors are: Finance, Management, Professional Services, Information, and

Education. These sectors are defined by McKinsey [114] as the industries with the highest

potential for remote work in the United States. The specification of each scenario is presented

in Table 3.4.

In the corridor-level analysis, our focus is to illustrate how further improvement in the

level of teleservice in certain communities would impact traffic on major corridors based

on the telework and teleservice status in the current baseline scenario. We selected I-405

as the target freeway to study how the enhanced teleservice rate would change the traffic

performance on the corridor. The reason for selecting I-405 as the experiment corridor is that

I-405 annually ranks as one of the most congested freeways in California and the United States.

For LA County, I-405 is more than just a congested freeway—it serves as a transportation

corridor of local, regional, and national significance, linking critical gateways and trade hubs.

The I-405 freeway is equally important for commuters, residents, and visitors within the

region. More than a quarter of LA County’s population (nearly 2.8 million residents) live

within 3 miles of the I-405 freeway—known as the I-405 Corridor—and about 28 percent

of jobs in LA County (1.4 million) are located within those boundaries. Please refer to the

I-405 Comprehensive Multimodal Corridor Plan [167] for more detailed information about

the I-405 corridor.

In this study, we concentrated on the Westwood community, which generates over 110,000
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daily trips. The UCLA campus is also located in this community, and many education trips

travel to UCLA. To estimate the upper bound of the teleservice impacts, we adopted an

extreme assumption that all non-work activities, including school/university activities, are

performed in the form of teleservice.

3.4 Results and Discussion

3.4.1 Network Experiment Results

Activity Analysis

Table 3.5 provides a summary of activity counts by activity types under different scenarios.

The number of work activities drops in all scenarios compared to the Pre-pandemic scenario

(except for the teleservice-only scenarios that have no constraint on work arrangements). The

telework extended scenarios (E and F) show a massive decrease in work activities (-15.4% and

-18.8%), indicating that the telework promotion policy has an effective influence on reducing

work activities.

Considering the teleservice in the non-work activities, which may not result in actual

trips, we divided the results into two categories: including and excluding teleservice activities.

In the first category, all non-work activities are counted regardless of whether they are

accomplished through teleservice. In the second category, only activities that result in actual

trips are counted. The number of non-work activities, including teleservice, increases across

all scenarios due to flexible activity schedules and a resulting preference for engaging in more

non-work activities, except in the telework-only scenario (Scenario B). This increase is likely

because higher telework rates provide greater flexibility in daily schedules, encouraging the

generation of additional non-work activities. This finding is consistent with the study by

Kim et al. [132], which suggests that telework tends to induce household travel.

The reason why Scenario B is an exception is that this scenario only considers the change
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in telework adoption without accounting for changes in preferences regarding the adoption

of teleservices. In Scenario B, the reduction in non-work activities within work tours (e.g.,

grocery shopping on the way home) is greater than the newly generated non-work activities

due to the flexible work schedule brought by teleworking. If we exclude teleservice, the

number of non-work activities barely changes, indicating that most of the induced non-work

activities might be conducted online.

Let us look at Scenario D, which is the realistic scenario incorporating behavior changes

in both telework and teleservice. The non-work activities (including teleservice) increased by

3.9% compared to the Pre-pandemic case, while the change in the total number of activities is

only 0.2% when excluding teleservice. The decrease in work activities is offset by the increase

in non-work trips.

Table 3.5: Number of activities by activity types
Index Scenario Work* Non-Work

(Including
teleservice)

Non-Work
(Excluding
teleservice)

Total (Ex-
cluding
teleservice)

A Pre-pandemic 4.30× 106 3.83× 107 3.83× 107 4.26× 107

B Telework only 3.83× 106

(-11.0%)
3.75× 107

(-2.2%)
3.75× 107

(-2.2%)
4.13× 107

(-3.1%)
C Teleservice

only
4.25× 106

(-1.1%)
4.08× 107

(6.5%)
3.98× 107

(4.0%)
4.41× 107

(3.5%)
D Current base-

line
3.79× 106

(-11.7%)
3.98× 107

(3.9%)
3.89× 107

(1.6%)
4.27× 107

(0.2%)
E Extended tele-

work 50%
3.64× 106

(-15.4%)
3.96× 107

(3.2%)
3.87× 107

(0.9%)
4.23× 107

(-0.7%)
F Extended tele-

work 100%
3.49× 106

(-18.8%)
3.93× 107

(2.5%)
3.84× 107

(0.3%)
4.19× 107

(-1.7%)

Travel Analysis

Table 3.6 shows the changes in average trip length for each scenario. We found that the

average commuting distance (work trip length) decreases significantly after people shifted to

telework in Scenarios B, D, E, and F. This illustrates that workers with longer commuting
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distances are more likely to switch to telework than workers with shorter commuting distances.

Meanwhile, the average length of non-work trips decreased in all scenarios, leading to a

net decrease in the average trip length across all types of activities. Specifically, in the

telework-only scenario (Scenario B), people conduct non-work trips closer to home rather

than workplaces, which results in a decreased average length of non-work trips. For all other

scenarios incorporating preference changes in non-work activities (C-F), people tend to engage

in non-work activities near their residences when planning induced trips, contributing to the

reduced trip length.

Table 3.6: Average trip length and VMT by activity type (mile)

Table 3.6 also summarizes the Vehicle Miles Traveled (VMT) by activity type for different

scenarios. All scenarios show a decrease in VMT for both work and non-work trips. The

realistic scenario (Scenario D) results in a 13.4% decrease in work trip VMT compared to the

Pre-pandemic scenario. When the telework rate of five selected industry sectors increases to

75% and 100%, as in Scenarios E and F, the VMT drops become even more significant (-16.6%

and -19.3%). From Table 3.6, we can also observe that the VMT generated by non-work

trips decreases. Although the number of trips increases for most scenarios in Table 3.5, the

VMT of non-work trips decreases by 1% to 2% across test scenarios. This can be explained

by two factors: 1) the increased non-work trips are mostly short trips, and 2) a large portion

of long-distance non-work trips are replaced by teleservice activities.
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Fig 3.3 (a) provides a map showing the percentage change in VMT in the current baseline

scenario compared to the Pre-pandemic scenario. The orange and red colors indicate increases

in VMT, while the blue and black colors represent a drop in VMT on the links. Certain

regions, such as the freeway segments north of downtown LA, the northern part of the

I-405, a few east boundary links near San Bernardino County, and the southeast boundary

(highlighted in red circles), show decreased VMT. This indicates that a significant portion of

commute trips through these links has been replaced by telework.

Figure 3.3: Percentage change of (a) VMT (b) NOx (c) PM 2.5 in current baseline scenario
compared to the Pre-pandemic scenario (Scenario A)
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Emission Analysis

Total on-road mobile source emissions for each scenario were estimated using the latest

emissions model, EMFAC22, developed by the California Air Resources Board. Although

the base year of the transportation models (SCAG ABM and LA-Sim) is 2016, the emission

inventory changed significantly from 2016 to 2022. Considering the travel patterns in LA

County did not change drastically, with the daily VMT decreasing by around 4.4% from

2016 to 2022, we used EMFAC22 to estimate the emissions from traffic. The differences

between the test scenarios (Scenarios B-F) relative to the baseline (Scenario A) indicate the

relative benefits of these scenarios. The emission reduction results are provided in Table 3.7.

We categorized the emission sources into two types: air pollutants (NOx and PM2.5) and

greenhouse gases (CO2 equivalent). The first category focuses on emissions hazardous to

health with localized impacts, while the second category focuses on emissions that contribute

to climate change.

Compared to the Pre-pandemic scenario (Scenario A), all test scenarios except Scenario

C reveal emission reduction benefits for both air pollutants and GHG. Note that the relative

reduction in VMT does not directly correspond to the reduction in emissions. Scenarios

with greater VMT reductions in Table 3.6 do not necessarily result in a greater reduction in

emissions. Scenarios C and D exhibit more VMT reduction than Scenario B, but they show

less emission reduction than Scenario B. This can be explained by the fact that the increase

in trip frequency and associated exhaust emissions from trip starts can offset the benefits of

reduced VMT in terms of emission reduction.

Figs 3.3 (b) and (c) provide the percentage emission reduction along the freeways within

the LA County boundary of the current baseline scenario (Scenario D) relative to the pre-

pandemic scenario (Scenario A). As seen in Fig 3.3 (b) and (c), the reduction patterns in air

pollutants are similar to the VMT. In some areas, however, such as the freeways north of the

downtown region (highlighted in the blue circle), emissions are higher than in the baseline
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Table 3.7: Emissions by pollutant type (ton per day)

scenario. This occurs because, for these regions, the VMT increment caused by the growth of

non-work trips exceeds the VMT reduction induced by the decrease in work trips.

3.4.2 Corridor Experiment Results

As introduced in the experiment specification, we selected the Westwood community near

the I-405 to illustrate how changes in activity patterns impact traffic and emissions on the

I-405. All the university/school and non-mandatory activities (eating out, personal/household

maintenance, discretionary, etc.) are converted to teleservice as an extreme case. For the

aforementioned trips, it is important to analyze where they originate and how the elimination

of these trips affects the I-405 corridor. Fig. 3.4 shows the origins of the trips with specific

activity types that end in the four selected communities. Note that some boundary traffic

analysis zones (TAZs) show relatively large trip origin counts. This is because trips originating

from outside LA County are aggregated and assigned to the boundary TAZs adjacent to

those external counties.

Fig. 3.5 (a)-(b) provide the temporal distribution of the traffic volume and travel speed

on I-405 across different scenarios. Two major findings can be observed in Fig. 3.5 (a) and

(b). First, the traffic volume during morning peak hours is reduced in the Westwood scenario

(Scenario G) compared to the Pre-pandemic scenario (Scenario A). Specifically, the volume
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Figure 3.4: Spatial distribution of non-work trip origins from elsewhere, ending in Westwood
communities

from 6 to 7 AM decreases from 4.63 million to 4.27 million (-9%). This reduction is due to

the decreased work trips caused by the increased adoption of telework in Scenario G, which

is similar to the current baseline scenario (Scenario D). Second, the reduction in school and

non-mandatory trips in the Westwood area leads to a significant increase in traffic volume

on I-405 between 4 PM and 10 PM, compared to the other two scenarios (Scenarios A and

D). This can be explained by the reduced trips to Westwood, which decreased congestion on

I-405, thus attracting more vehicles to use the freeway. As for the travel speed, the average

distribution does not change significantly for I-405.

However, Fig. 3.4 indicates that trips to Westwood are highly concentrated along the
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I-405 corridor, making these trips heavily reliant on this freeway segment. The impacts on

the freeway segment in the Westwood region are more pronounced. Fig. 3.5 (c)-(d) provide a

more detailed spatial analysis by showing the traffic volume on the freeway segment within

the Westwood region.

Figure 3.5: Temporal distributions of (a) traffic volume and (b) travel speed on I-405 and (c)
traffic volume and (d) travel speed on Westwood segment

As seen in Fig. 3.5 (c) and (d), the traffic volume increase due to the trip reduction

in Westwood is more pronounced. The current baseline scenario (Scenario D) significantly

reduces traffic volume on the freeway segment during the day (6 AM – 7 PM) compared to

the Pre-pandemic scenario (Scenario A), while the traffic volume increases in the Westwood

scenario (Scenario G) from 5 PM – 10 PM, exceeding even the Pre-pandemic scenario

(Scenario A). This finding can be attributed to the extreme assumption of non-work trip

cancellation, which reduced local trips that would have used the I-405 segment, inducing
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more traffic on the segment and increasing traffic volume.

If we compare the distribution of traffic volume and travel speed, another interesting

finding emerges. During the period (5 PM - 10 PM) when the traffic volume increases

in Scenario G, the travel speed on the I-405 segment also increases. This result appears

counterintuitive, as it is generally expected that travel speed would decrease when traffic

volume rises on a congested freeway segment. One possible explanation for this unexpected

finding is the extreme non-work trip cancellation assumption, which effectively removed local

trips that frequently use on-ramps and off-ramps. By eliminating the congestion and delays

caused by on-ramp/off-ramp traffic, the segment’s travel speed increases despite the overall

volume increase.

Besides the network-level emission analysis in the previous section, we also conducted

a corridor-level emission analysis to investigate the emission impact on the Westwood

community compared to the Pre-pandemic scenario. Table 3.8 provides a summary of the

emissions divided by emission types. As indicated in Table 3.8, the current baseline scenario

(Scenario D) demonstrates a significant reduction in emissions, with approximately -7.2% to

-7.3% reduction in NOx and PM2.5 on the I-405 segment, signifying a notable achievement

in emission reduction. However, when we further promote teleservice specifically in the

Westwood community (Scenario G), air pollutant emissions unexpectedly increase by 2.2%

and 2.1%, respectively.

This finding suggests that Tele-X could indeed serve as an effective solution to alleviate

traffic congestion and traffic-related emissions in local communities. Nevertheless, it highlights

the need for cautious consideration when determining the extent of Tele-X promotion.

Transportation systems are intricately connected and dynamic, meaning that promoting

Tele-X in one community might temporarily alleviate the situation but could lead to an influx

of traffic from other areas, exacerbating the overall situation. Consequently, a comprehensive

and balanced approach is needed to implement Tele-X strategies in various communities,

accounting for potential spillover effects and ensuring that the maximum benefits for traffic
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congestion and emissions reduction are achieved.

Figure 3.6: NOx and PM 2.5 percentage change relative to Pre-pandemic scenario on I-405
for Westwood

Fig. 3.6 illustrates the emission change distribution of NOx and PM2.5 along the I-405.

The general trend shows that promoting teleservice is more likely to increase emissions near

the central and upper segments of I-405, while reducing emissions on the southern segments

of I-405. This is because a full transition to teleservice in Westwood would reduce local needs

for I-405 and, therefore, attract more traffic from nearby areas. The higher passing-by traffic

volume results in increased emissions for the local community.

Table 3.8: Air pollutant emissions generated on the Westwood segment of I-405 (ton per day)

74



3.5 Conclusion

The outbreak of the COVID-19 pandemic has engendered profound repercussions across

multiple facets of individuals’ daily lives. The ensuing alterations in activity preferences and

travel behavior, stemming from pandemic-induced impacts, are poised to persist well beyond

the pandemic’s cessation. This study focuses on the impact of Tele-X on people’s travel

patterns and the consequential shift in the transportation system and associated emissions.

This research collected people’s activity and travel choice data through an online survey,

estimated the changes in travel demand by updating the SCAG ABM with the survey data,

and further conducted an agent-based mesoscopic traffic simulation to analyze how the

transportation system performs under the consideration of Tele-X. The study also designed

several test scenarios to demonstrate the performance of the transportation system when

telework or teleservice statuses change. Selected findings from this study that can inform

policymakers about the features of post-pandemic travel and help them find solutions to

enhance transportation performance include:

• The post-pandemic activity frequency experiences an increase compared to the pre-

pandemic period. While work trips in the post-pandemic era decrease by 11.7% due to

telework, non-work trips surge by 1.6%, yielding an overall marginal change in total

trips (about 0.2% growth).

• The adoption of Tele-X results in a decrease in VMT (3.9% lower than the pre-pandemic

era). While the non-work trip-induced VMT barely changes (-1.6%), the VMT drop is

mainly contributed by work trips (-13.4%).

• The adoption of telework and teleservices exerts a minor impact on ground transportation-

related emissions (NOx -2.1%, PM2.5 -3.1%, and CO2e -3.1%). This general trend is

upheld across the majority of Los Angeles County, albeit certain regions, particularly

those north of downtown LA, exhibit augmented emissions due to induced non-work
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trips.

• The present Tele-X trend yields a modest diminution in peak-hour traffic and perpetuates

a closely analogous diurnal pattern in traffic volume and speed relative to the pre-

pandemic era.

• The promotion of teleservice in communities near the central parts of I-405 (Westwood)

would induce more passing-by traffic on the corridor. This is because trips to West-

wood predominantly originate from nearby areas and are highly dependent on I-405.

Eliminating those trips through teleservice would reduce pressure on I-405 and induce

more passing-by traffic.

It should be acknowledged that while the changes in total trip count, VMT, and traffic-

related emissions may not be of paramount magnitude, statistical analysis may be warranted

to ascertain the degree of confidence surrounding these changes. The limitation of this study

is that given the computational complexity of the proposed methodology, only a singular

simulation run was executed within the scope of this research. However, the representativeness

of similar practices for large-scale simulation models has been corroborated by prior studies [46].

The rigor of this research can be further bolstered by conducting multiple simulation runs in

subsequent endeavors.

This study can also be improved in several ways. First, the network-level analysis

can further incorporate equity considerations to assess disparities in travel across different

communities. Second, the corridor-level analysis can be conducted in a more detailed approach

by extracting the trajectories of each vehicle and focusing only on the trips that pass through

a selected corridor. Third, people’s long-term choice changes can be added to the ABM, as

literature indicates that choices, including home location and vehicle ownership, may change

due to telework [36].
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Chapter 4

Gap assessment and demand projection

of public charging infrastructure in

electrified transportation systems

Transportation system electrification is expected to bring millions of electric vehicles (EVs)

on the road within decades. Accurately predicting the charging demand is necessary to

accommodate the surge in EV deployment. this study presents a novel modeling framework

to predict the public charging demand profile derived from people’s travel trajectories, with

consideration of the demand and supply stochasticity of transportation systems and the

charging behavior heterogeneity of EV users. The vehicle charging decision-making process is

explicitly modeled, and the charging needs of each EV user are estimated based on their travel

trajectories. The methodology enables charging demand prediction with high spatial-temporal

resolution for transportation system electrification planning. A case study was conducted in

Los Angeles County to predict the demand for public charging facilities in 2035 and perform

a corresponding spatial-temporal analysis of EV public charging under various scenarios of

future electrification levels and network conditions.
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4.1 Introduction

The rapid development of advanced vehicle technologies (e.g., electric vehicles (EV), automated

vehicles (AV)) in recent decades has brought various benefits to society, such as reducing

petroleum consumption and decreasing greenhouse gas (GHG) emissions [118,284]. Plug-in

electric vehicles (PEV or EV), further classified as battery electric vehicles (BEV) and plug-in

hybrid electric vehicles (PHEVs), play a significant role in reducing the nation’s dependence

on fossil fuels and achieving zero tailpipe emissions [272]. To achieve climate mitigation goals,

both federal and many state governments have required the acceleration of transportation

sector electrification [110]. For instance, the state of California issued an executive order

in September 2020 requiring that, by 2035, all new passenger cars and trucks sold in-state

must be zero-emission [271]. Specifically, the city of Los Angeles plans to have 80% of total

vehicles be EVs by 2035.

The adoption of EVs is essential to achieving regional electrification goals. Moreover,

people’s willingness to adopt EVs has a strong correlation with access to charging infrastructure

[95, 217]. As of 2019, the planned charging infrastructure in California had only reached

around 40% of the target number required to support the projected fleet size of EVs by

2025. Furthermore, the spatial distribution of public chargers shows significant disparities

across communities in California. [110] found that access to public chargers in lower-income

communities is significantly lower than in upper-income communities, based on public

charging facility data from California in 2021. The allocation planning for public EV charging

infrastructure cannot be performed without understanding the potential spatial and temporal

distribution of charging needs [153]. Therefore, accurately predicting charging demand is

fundamental for regions aiming to meet future electrification goals. A valid estimation of

charging demand, including peak periods and demand locations, would greatly support the

deployment of the EV market and inform regional grid system upgrades.

78



4.1.1 Related Work

Many previous studies have explored different methods for charging demand prediction of

various types of EVs, such as electric taxis [278], electric buses [10], and passenger EVs [202,262].

Considering that EV passenger cars dominate the EV market share, accounting for over

90% of all EV types [113], this study concentrates on predicting the charging demand for

passenger EVs. There are two main approaches for predicting the public charging demand for

passenger EVs. One method is extracting the charging demand from real data by learning

the charging patterns directly from the charging diaries of existing EV fleets, while the other

method derives charging needs from travel trajectories, either from travel surveys or models.

The first method utilizes actual data collected from test EV fleets or selected EV charging

stations to generate the EV charging demand. [262] developed a stochastic method to

generate the daily charging demand pattern for EV users based on driving trajectories and

charging session data from a real-world EV fleet. [10] implemented trajectory data of real

taxis and developed a model for estimating EV taxi drivers’ charging patterns under the

assumption of limited charging locations. [257] developed a regression model to estimate

the key patterns in the use of public chargers, based on charging session data from more

than 200 public charging locations in Amsterdam. [202] used Caltech’s Adaptive Charging

Network (ACN) data, extracted from two public charging points located on campus, to

analyze the occupancy status of both the single charger and the entire charging station.

These studies, however, are limited in EV fleet size, making it difficult to expand the results to

a large-scale transportation network. Moreover, these studies, focused on charging data, lack

the capability to comprehensively understand how charging would influence people’s daily

activities and travel behaviors. Therefore, a detailed travel diary comprising spatial-temporal

varied travel-related choices is essential for studying the charging demand profile of a large

EV fleet and its related characteristics.

Besides data-driven EV charging demand prediction, another commonly adopted method
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is to derive the charging demand from people’s travel trajectories. This method requires a

detailed profile containing the location and schedule information of each individual, which

is typically generated either by travel surveys or transportation simulation models. Some

studies focused on optimizing charger locations [67, 129], while in this study, we pay close

attention to the needs of public charging facilities at the zonal level, helping decision-makers

understand the charging needs distribution and plan accordingly for the investment and

deployment of public charging facilities. A common approach in modeling EV charging

patterns involves using regional or nationwide travel surveys to generate conventional vehicle

usage patterns [59]. These methods are often applied in combination with charging behavior

scenarios to create charging profiles. [107] predicted EV charging load based on data extracted

from the 2009 National Household Travel Survey. They developed a Monte Carlo model from

the survey data and estimated the 24-hour charging load generated by EVs. [177] modeled

EV charging behavior by assuming a determined set of daily travel distances, charging

durations, and charging power for EV users in Western Australia. They designed several fixed

EV charging scenarios to determine the time windows for charging sessions and generated

variable start times for charging events by introducing stochastic delays for each charging

session. [33] predicted specific daily charging demands at various destinations and times

based on data from the 2009 National Household Travel Survey on vehicle travel distance and

origin-destination patterns. The authors conducted experiments to determine EVs’ charging

needs, based on battery capacity and state of charge. [245] investigated the spatial and

temporal distribution of charging load in Berlin by integrating travel patterns extracted from

the 2017 German Household Travel Survey (GHTS) and sociodemographic characteristics

such as population density, household income, and auto ownership levels from census data.

A major limitation of these survey-based models is that they ignore the impacts of charging

strategies on EV travel patterns.

Apart from the survey data-based method, transportation simulation modeling is another

popular approach for analyzing EV charging patterns. Agent-based or activity-based modeling
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(ABM) is one of the most well-accepted methods in EV charging demand applications. [133]

developed an activity-based travel demand model to obtain each vehicle’s schedule and

established a mapping rule to represent EVs of different battery capacities with gasoline

vehicles of varying engine volumes. [85] developed an activity-based EV charging demand

model for small-scale networks using the open-source traffic simulator SUMO. The authors

assumed that EV users’ mobility is not affected by charging needs and that charging sessions

occur at stations close to activity destinations, minimizing the impact on existing schedules.

[278] designed an integrated model combining an activity-based model and the evolution

of EV penetration to estimate EV charging patterns and energy load. The model also

considers vehicle purchasing preferences across sociodemographic groups. [141] presented an

agent-based EV model to investigate the impact of EVs on the grid and validated the model

with real-world observed data. By adopting the agent-based approach, these models capture

the stochasticity in daily travel for each individual in the transportation system. However,

existing agent- or activity-based demand prediction models rarely consider variations in travel

demand or supply, such as weekday/weekend travel differences or roadway capacity variations

under different conditions. For instance, some literature finds that traffic conditions (e.g.,

traffic speed, number of stops) can largely affect EV energy consumption [81,286], thereby

influencing the timing and location of charging activities.

In the travel-based EV charging prediction approaches mentioned above, charging be-

haviors or strategies of EV users are simulated in several ways. Typical charging behaviors

include: 1) Uncontrolled/Uncoordinated charging, where EVs start charging whenever they

arrive at destinations and stop when fully charged or leaving for the next activity [85,142];

2) Controlled/Coordinated charging, where users make charging decisions to minimize costs,

which may include total energy consumed, voltage deviation, current, etc. [235,266,286]; 3)

Delayed charging, where charging is assumed to be delayed until the evening when the cost is

minimized [56,190]; and 4) Off-peak charging, where charging is directly controlled by central

operators and performed only during off-peak hours [82, 93]. A significant limitation of these
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charging behaviors is that they are based on predetermined charging scenarios that do not

fully account for the heterogeneity in EV users’ charging decisions.

4.1.2 Main Contribution

The primary gaps in existing research include: 1) the absence of large-scale, robustness

predictions for EV public charging demand, 2) the lack of a high-resolution charging profile that

captures detailed individual EV usage, and 3) limited modeling of variable travel demand and

supply impacts on charging demand. To address these, we developed the CREATE framework

(Charging Reliability, Resilience, Equity, and Accessibility in Transportation Electrification).

The proposed framework delivers high-resolution, data-driven charging forecasts and proposes

strategies for equitable and resilient charger deployment, ensuring integration with the power

grid. Our framework provides a comprehensive approach to optimizing charger placement

and addressing diverse challenges in transportation electrification. While CREATE is a

comprehensive system comprising the entire process from charging demand generation,

charging system reliability evaluation, to resiliency enhancement, this study focuses on the

first goal: predicting public charging demand. The fundamental principle is that EV charging

activities originate from EV users’ travel activities and are influenced by variations in both

travel and EV usage. This study considers factors that lead to variations in electrified

transportation systems from the following aspects: 1) Travel demand-side variations, such

as weekday/weekend demand differences; 2) Transportation supply-side variations, such as

congestion and road incidents that may influence travel schedules; and 3) Charging behavior

variations, such as triggering battery state of charge (SOC) for charging, range anxiety,

charging duration, and location. this study focuses on public charger demand prediction since

public charging infrastructure is a key factor influencing EV adoption from the public service

perspective [152,183]. The main contributions of the proposed framework are as follows:

• A comprehensive demand prediction modeling framework for EV public charging is
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developed. The framework enables the explicit modeling of individuals’ charging

events derived from activity schedules, travel trajectories, and charging decision-making.

The high-resolution transportation simulation improves charging demand prediction

accuracy.

• The system adopts a scenario-based approach to capture demand and supply-side

variations of transportation systems and incorporates their impacts on public charging

demand. Combinatorial scenarios are simulated by adjusting travel demand and network

supply to represent variations in seasons, days of the week, weather, special events,

incidents, work zones, and more.

• A comprehensive charging decision-making module is developed to explicitly generate

compulsory and conditional charging decisions from the simulated activity schedules

and travel trajectories of EVs under each scenario, representing heterogeneous charging

habits.

• This study investigates public charging demand and the spatial-temporal distribution of

public chargers at both the network and zonal levels. The model outputs estimate public

chargers and accumulative installation costs under various future government/agency

electrification goals as future investment recommendations.

• The equity of public charging accessibility across different socio-demographic groups is

evaluated using a statistical approach. Charging access performance for both the target

year and current year is quantified to indicate how public charging equity evolves with

electrification levels and projected public chargers.
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4.2 Methodology

4.2.1 Model Overview

This section provides an overview of the model for public charging demand prediction in the

CREATE system. The model described here is a holistic demand profile prediction system

for public charging infrastructure in electrified transportation systems at the zone level, such

as traffic analysis zones (TAZ) or census tracts (CT). The outline of the model with its three

major components is illustrated in Fig. 4.1.

Figure 4.1: Model Framework Overview

The travel profile generation module is designed to create the daily travel trajectory for

each individual in the target region. This module inputs synthetic population data and

multimodal network data into travel demand and supply models and outputs travel trajectory

data that includes origins, destinations, activities, schedules, travel modes, routes, and travel

times for each agent. The key feature of this module is that it captures variations in real-life

transportation operations from: 1) the travel demand side, including demand variations for
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seasons, weekdays and weekends, day-to-day differences, and special event days, and 2) the

traffic supply side, such as the impacts on road capacities due to weather, incidents, and

work zones.

The charging profile generation module provides an accurate estimation of the location,

timing, and duration of every single charging need occurring during a typical day. The

charging demand generation is carried out under different electrified transportation operations

determined by future electrification levels and initial state of charge (SOC). First, the future

agency electrification level sets the target year and determines the EV fleet size and private

charger distribution. Second, given each electrification level, the model classifies a typical

day by different initial SOC levels: low initial SOC and high initial SOC. The initial SOC

reflects the SOC level of EVs at the beginning of the day, as adopted by LA100 [50].

Using the charging demand generated from the previous module, the last model component

provides an analysis of the spatial-temporal pattern of charging demand and predicts the

required number of chargers given a specific investment goal. With the estimated number and

location of chargers, we also conducted a charging equity analysis across different communities

in the region. The charging equity performance for the target year is compared with the

current year using existing charging facility data. This allows us to estimate how the disparity

in charging accessibility across different socio-demographic groups may evolve.

4.2.2 Travel Profile Generation

Activity-Based Transportation Simulation System

The activity-based transportation simulation system is a comprehensive implementation of

tools from ABM and dynamic transportation simulation. The ABM adopted in this study

was developed by SCAG (Southern California Association of Governments) [102,118], and

the transportation simulation platform used is the multi-agent transportation simulation

(MATSim) toolkit. Both can be replaced with other widely applied ABM and dynamic
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transportation simulation platforms.

ABM is a regional transportation plan model based on individuals’ activity desires, which

forecasts their travel demand. Based on a synthetic population with demographic and

socio-economic attributes, the ABM predicts all activities of a person as a 24-hour trip chain,

connecting activities in time and space with details such as origin, destination, and scheduled

start/end time of activities. The original ABM was developed to represent the travel demand

of the target region on a typical weekday. To capture the variation in travel demand between

weekdays and weekends, we expanded the scope of the original ABM to generate travel

demand for both weekdays and weekends.

With the travel demand provided by the ABM, MATSim simulates the operation of the

transportation system using additional inputs, such as a topological multimodal network and

road and vehicle attributes [102]. MATSim adopts an iteratively co-evolutionary algorithm

[108] to search for the user equilibrium of the system. Variations in the travel supply side,

such as changes in road capacity due to incidents, extreme weather, and work zones, can also

be incorporated into the simulation. The output of the simulation model is the daily travel

trajectories for all individuals, presented as a tour list table containing vehicular movements

and time-dependent statistics of trips and activities, accounting for the mutual influence of

vehicles on roads.

Scenario-Specific Travel Demand and Transportation Network

This section explains how demand variations are modeled and how various network scenarios

are generated. The method of defining various travel demand and traffic network scenarios is

similar to what has been adopted by SHRP 2 Reliability Project L04 [162].

First, a travel demand profile was created to account for various temporal variations,

such as seasonal changes and weekday/weekend differences. The method for generating

travel demand files for these variations involves adjusting the baseline travel demand output

produced by the original ABM, as detailed in Section 4.2.2. Since the baseline ABM only
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simulates demand for a typical weekday, it is necessary to modify the original ABM output

to reflect demand across different seasons of the year and days of the week. This adjustment

ensures that the temporal distribution of travel demand aligns with patterns extracted from

historical traffic count data collected by detectors.

Secondly, the method for creating simulation networks with varying supply-side conditions

involves adjusting network link capacities based on historical data sampled throughout the

year. A mix-and-match approach is used to combine all possible external variations, from

seasonal demand patterns to weather conditions. For instance, one example of a traffic

network variation could involve a spring season, a Monday weekday, a non-holiday, and rainy

weather. Each variation in the combination may alter traffic demand (e.g., increased demand

on a holiday compared to a regular day) or network supply (e.g., reduced road capacity

during rainfall compared to clear weather). The addition of one variation layer means the

occurrence of this layer under all previous layers, whose probability, p(TN1,2,...,i), satisfies

the multiplication rule based on conditional probability, Equation 4.1. ‘TN’ stands for the

transportation network, and the subscripts 1, 2, . . . , i represent the variation layers from the

season, working day, and day of the week to the weather. These layers target the entire traffic

network.

p(TN1,2,...,i) = p(TNi|TN1,2,...,i−1)× p(TN1,2,...,i−1) (4.1)

The last variation layer of the scenario-specific transportation network relates to traffic

incidents or work zones that focus on specific road segments in a network. This layer concerns

the temporal and spatial uncertainties of network operations. Therefore, Monte Carlo

simulation is well-suited to generate finite network-level traffic incidents or work zone cases.

These cases are under the condition of different network variation combinations, which vary

from season to weather, 1 to i. Equation 4.2 gives the probability of the last layer j, similar

to Equation 4.1. The conditional occurrence probability of layer j, p(TNj|TN1,2,...,i), is the
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statistical distribution of the daily incident/work zone frequency based on their historical data,

together with the information on incident/work zone start times and associated durations.

p(TN1,2,...,i,j) = p(TNj|TN1,2,...,i)× p(TN1,2,...,i) (4.2)

The above process implements the transportation network scenario generation with

demand and supply variations, particularly in the temporal aspect. To distribute the

simulated scenarios spatially into the network, the study follows SHRP 2 Reliability Project

L04 to assign traffic incidents/work zones independently based on the vehicle miles traveled

(VMT) under a specific network variation combination. In other words, the larger the VMT

of road l, the higher the probability p(l) that an incident/work zone will occur. The VMT of

road l is the product of its length (lenl) and the annual average daily traffic (AADTl). Monte

Carlo simulation is conducted to generate road samples based on the discrete probability

distribution until the incidents/work zones reach their occurrence frequency for a day in a

network scenario.

p(l) =
lenl × AADTl∑
l lenl × AADTl

(4.3)

Finally, the probability of a network scenario k built by the previous steps, p(TN1,2,...,i,j)k,

should be normalized to satisfy
∑

k p(TN1,2,...,i,j)k = 1, which applies finite traffic network

scenario simulations to represent the uncertainty of scenarios, as shown in Equation 4.4.

{1, 2, . . . , n} is the scenario set.

p(TN1,2,...,i,j)k =
p(TN1,2,...,i,j)k∑
k p(TN1,2,...,i,j)k

, k ∈ {1, 2, . . . , n} (4.4)
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4.2.3 Charging Profile Estimation

This section first provides the definition of future electrification levels and initial SOC, then

explains how a single charging session is defined using explicit charging rules.

Future Electrification Levels

Future electrification levels estimate the potential transportation electrification level, con-

sidering the use of renewable energy and grid system updates. In this study, we use two

electrification levels: moderate and high. Each level represents different EV market shares

and the proportion of residential and workplace chargers. The electrification levels used in

this study are based on the National Renewable Energy Laboratory (NREL) study [50].

Figure 4.2: Initial SOC definition
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Initial SOC

Due to the variation in EV users’ charging frequency, the initial SOC of an EV varies on a

given day [246]. Therefore, we can expect a large deviation in charging needs throughout

the day by selecting different initial SOC distributions across EV users. For instance, when

most EV users start the day with a high SOC, the public charging needs could be very low,

as the remaining range is sufficient to cover the whole day’s trips. In contrast, when most

EV users have a low SOC at the beginning of the day, the potential need for public charging

could be considerably high. According to [246], the average charging frequencies for BEV

and PHEV are 1.5 and 1.2 days, respectively. This means an EV would recharge about a day

and a half after the last charge, as illustrated in Fig. 4.2. In other words, we can define two

initial SOC states for EV users: (1) high initial SOC, or fully charged status (day one of a

charging cycle); and (2) low initial SOC, or partially charged status (day two of a charging

cycle). The high initial SOC scenarios can be regarded as the lower bound condition for

charging demand since EVs start the day with a fully charged battery and are less likely to

need public chargers. Meanwhile, the low initial SOC scenarios can be considered the upper

bound condition for charging demand, as EVs start the day with partially charged states and

are more likely to need public charging services.

Charging Rule Definition

The charging rule defined in this study synthesizes literature associated with real-world

charging behaviors [246], private/public charger distribution and disparities [21], macroscopical

charging infrastructure assessment and projection [271], and EV battery performance [64].

Fig. 4.3 illustrates the logical decision-making process for applying destination-based public

charging events. The core idea is to fully utilize the dwell time of scheduled activities

to conduct charging events without interrupting the original schedule, unless the required

charging time is insufficient for adjacent trips.
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Charging decisions are made at the destination of each trip to determine whether to start

a charging session at the destination. All charging rules can be categorized into two groups:

(1) compulsory charging and (2) conditional charging.

• Compulsory charging ensures that all BEVs can complete all trips throughout the

day by preventing BEVs from remaining in a very low SOC state.

• Conditional charging is implemented for both BEV and PHEV users when the

external conditions are feasible to carry out a charging event without an urgent need for

battery recharge as in compulsory charging. While most charging decisions are made at

a trip destination, for trips that are the first trips of the tour and are BEV trips, an

additional decision is made at the origin to ensure the EV’s SOC is sufficient for the

first trip.

The compulsory and conditional charging rules work simultaneously to ensure EVs always

have enough electricity to travel and avoid impractical or excessive charging behaviors. The

following criteria define charging behaviors:

• A compulsory charging decision is made when either of the following criteria is met:

1. The SOC is lower than the minimum acceptable SOC.

2. The SOC is insufficient for the energy required for the next adjacent trip.

• A conditional charging decision is made when all of the following criteria are met

simultaneously:

1. The SOC is below the anxiety SOC.

2. The dwell time is long enough to recharge the EV to 80% SOC (EV maximum

health SOC).

3. The charging fee is cheaper than that at the next destination.
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• When the EV is in a compulsory charging condition and the dwell time is insufficient for

the required charging, a minimum charging period is added to the current destination’s

dwell time to fulfill the charging electricity requirement. All following trip schedules for

this agent would be delayed accordingly.

Note that some workers in the synthetic population are identified as workplace charger

users. The charging events carried out by these EV users at their workplace will still be

simulated but will not be counted as charging demand for public chargers.

Figure 4.3: The public charging decision-making process

To sum up, the charging demand profile that comprises every single charging need across

the day is generated by applying the charging rules to each travel profile provided in Section
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4.2.2 under various combinations of electrification levels and initial SOC. Based on the

individual-level charging demand, the temporal and spatial estimation of total charging needs

and charging energy load at a higher level, such as TAZ or CT, can be accomplished.

4.2.4 Demand Aggregation and Equity Assessment

Charging Demand Aggregation and Charger Estimation

Sections 4.2 through 4.3 provide a complete process of calculating the EV charging demand

under combinations of different electrification levels, initial SOC, daily travel demand, and

traffic network condition variations. Furthermore, from a planning perspective, it is more

important to provide an overall estimation of charging demand. For instance, given a certain

electrification level, what is the upper and lower bound estimation of charging demand for

each zone and for the whole region? Or what is the estimated number of chargers required to

satisfy a certain level of upper bound charging demand? This section (Section 4.2.4) will

primarily discuss these questions.

(1) Demand aggregation under each electrification level

The first step in demand aggregation is to determine what fraction of simulated scenarios

should be used for generating aggregated demand. The selection of simulated scenarios

depends on the occurrence probabilities of the scenarios, as defined in Equation 4.6. Our goal

is to avoid introducing bias in the ultimate estimation from scenarios with very low occurrence

probabilities. We define an index called acceptance level (AL) to eliminate the impact of

scenarios with minimal occurrence frequency, as they are not common cases that need serious

attention from planners. The idea of AL is similar to the concept of risk acceptance in risk

management, where a business or individual acknowledges that the potential loss from a risk

is not significant enough to warrant effort to avoid it. AL is implemented by ensuring that

the sum of occurrence probabilities of those high-frequency scenarios is at or close to AL,

as shown in Equations 4.5 and 4.6. TN′
(1′,2′,...,n′) in Equation 4.5 is the network scenario set
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with the descending order of occurrence probability p(TN(1,2,...,i,j))k, reindexed by 1′, 2′, . . . , n′.

Equation 4.6 requires that the public charging demand profile prediction satisfies the top 1′

to m scenarios in TN′, which occupies frequent network scenarios up to AL. AL is adjustable

depending on the number of simulated scenarios, evaluated case by case.

TN′
(1′,2′,...,n′) = TN(1,2,...,n)

[
sorteddesc

(
p(TN(1,2,...,i,j))k

)]
(4.5)

AL ≈
∑

TN′
1′,2′,...,m, m ≤ n (4.6)

After applying AL, the predicted charging demand for a zone under an electrification level

e, De
zone, is obtained as the maximum of the charger numbers for this zone across scenarios 1′

to m, as shown in Equation 4.7.

De
ct = max

(
TN′

(1′,2′,...,m)

{
D(1′,e)

zone , D
(2′,e)
zone , . . . , D

(m,e)
zone

})
(4.7)

(2) Charger number estimation

Based on the charging demand estimation, this study proposes an approach to estimate

the minimum number of chargers required to satisfy the charging demand of each zone. By

assuming that a charger can serve multiple charging needs as long as they do not overlap

in time, the charger number estimation problem is transformed into an equivalent problem

of finding the maximum overlap of charging sessions for each zone over 24 hours. Fig. 4.4

provides an example of the relationship between the number of charging demands and the

number of required chargers. As seen in Fig. 4.4, there are five charging needs scheduled

between time t1 and t2, and each charging session is represented as a horizontal bar with an

exclusive start and end time. The maximum overlap between the five charging sessions during

time t1 to t2 is three, meaning that three chargers are sufficient to serve the five charging

needs without a waiting time between two adjacent charging sessions. Similarly, the minimum
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number of chargers required to serve all charging demands for a day in a given zone can be

derived by calculating the maximum overlap between each charging session over 24 hours.

Figure 4.4: Relation between charging demand and required chargers

Considering the difference in charging needs between high and low initial SOC, the

charging needs per zone may vary across days, which might be much lower than the predicted

maximum charger number. To account for the utility rate of chargers and installation

budgets, we define a satisfaction level (SL) to represent to what extent the predicted number

of chargers can be satisfied between the lower and upper bounds of charge demands. For a

given electrification level e, SL = 100% means the installation of chargers is not restricted by

the budget and satisfies the upper bound of estimated chargers for each zone in the system.

SL = 0% means the investment can satisfy the lower bound of estimated chargers in the

entire network. Other values in-between (0% and 100%) represent the tradeoff between

improving system charging service and managing installation costs. The budget constraint is

formulated as Equation 4.8.

For a given electrification level e, the required number of chargers for each zone is in

the range of [C(e,low)
zone , C

(e,up)
zone ], where C

(e,low)
zone and C

(e,up)
zone refer to the lower and upper bounds
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of the estimated number of chargers (Ce
ct), considering the maximum overlap of charging

sessions in electrification level e. Uins is the unit installation cost of a charger. Ibud,e is the

installation investment budget for electrification level e.

∑
zone

Uins ×
[
SL× (C(e,up)

zone − C(e,low)
zone ) + C(e,low)

zone

]
≈ Ibud,e (4.8)

Equations 4.9 and 4.10 present the final projected zone-level and network-level public

charger numbers (Tzone,e and Tnet,e) of the transportation system under a given electrification

level e to maximize system charging service under financial restrictions on installation.

Tzone,e = SL× (C(e,up)
zone − C(e,low)

zone ) + C(e,low)
zone (4.9)

Tnet,e =
∑
zone

Tzone,e (4.10)

Charging Equity Measurements

In order to assess the equity performance of public charging accessibility at the projected

electrification level, this subsection evaluates social equity in accessibility across various

groups of zones for the target year and compares the performance with the current year.

(1) Socio-demographic classification

We selected a couple of representative socio-demographic variables to divide the whole

study area into different groups of zones. These variables are also adopted by similar EV

charging equity studies. The following equity analysis will be conducted based on these

different socio-demographic groups. The definition of the socio-demographic variables can be

found in Table 4.1.

(2) Charging equity metrics

The assessment adopts two accessibility metrics to indicate the level of accessibility to

public charging across the different socio-demographic groups.
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Table 4.1: The definition of the socio-demographic variables

Charger access probability (CAP). For a single CT, if it has at least one public

charger within its boundary, it is defined as having public charging access. For a group of

CTs, CAP is calculated as the portion of CTs with at least one charger among all tracts given

a selected grouping of socio-demographic features.

CAPi =
ni

Ni

(4.11)

where i refers to the ith socio-demographic group, ni represents the number of CTs with

at least one public charger in group i, and Ni is the number of CTs in group i.

In addition, we use the Gini index [253] to indicate the quantitative disparity in charging

accessibility across different groups with regard to CAP.

Gini index across socio-demographic groups. The Gini index is the most frequently

used equity indicator for the distribution of accessibility and other effects. For a given

socio-demographic metric in a selected year, a Gini index is calculated to indicate the level of

disparity across socio-demographic groups. In general, the greater the Gini index, the larger

the disparity. The Gini index is calculated for both 2022 and 2035 to compare their charging

equity performance.

Gini Index =
1

2n2X̄

n∑
i=1

n∑
j=1

|Xi −Xj| (4.12)
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where n refers to the number of socio-demographic groups (e.g., income groups or ethnicity

groups), Xi refers to the value of the selected equity performance metric for socio-demographic

group i, and X̄ is the mean of all Xi.

(3) Control variable

To visualize the public charging disparities in depth, the charging equity metrics for every

socio-demographic group are displayed by varying the value of the control variable. The

multi-family housing unit (MFHU) rate is adopted as the control variable because higher

MFHU concentrations in a CT lead to a greater public charger need due to lower access to

dedicated parking and home chargers, which has been discussed in other public charging

studies. The MFHU rate is calculated as the total number of MFHU units divided by the

total number of housing units per CT. To investigate the charging equity performance at

different MFHU levels, the MFHU rate is divided into four groups with identical intervals:

[0, 0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1].

MFHU Ratei =
Nmfhu,i

Ni

(4.13)

where Nmfhu,i refers to the number of MFHU units in the ith CT, and Ni refers to the

total number of units in the ith CT.

To summarize, Sections 4.2.1 through 4.2.4 provide a complete description of the framework

for public charging demand estimation that accounts for different future electrification levels,

travel demand and traffic condition variations, and charging behavior heterogeneity. As an

expansion of Fig. 4.1, a more specific illustration of the major steps involved in the charging

demand prediction system developed in this study is shown in Fig. 4.5.
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Figure 4.5: Major Steps in the Charging Demand Prediction Model

99



4.3 Case Study and Data Specification

The case study focuses on the large-scale transportation system of Los Angeles (LA) County

in California. The studied transportation system contains 2,342 CTs and 38% of them are

DACs, with all primary and secondary roads, a population of over 10 million, and more than

6 million vehicles, with only 1.23% EV market share in 2022, see Fig. 4.6.

Figure 4.6: (a) Census tracts of LA county (CTs); (b) The road transportation network

4.3.1 Travel Data Specification

This section follows Section 4.2.2 to simulate transportation network scenarios in 2035 via

historical traffic data. Given the data availability, the case study practically concerns the

scenario components of the day of the week and traffic incidents (i.e., traffic interruptions

and road closures) from both traffic demand and network supply sides. Fig. 4.7 provides an

illustration of the travel demand distribution across the 24 hours of weekday and weekend

scenarios. As shown in Fig. 4.7(a), the weekday demand has two notable peaks: the AM peak
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near 8 AM and the PM peak near 4 PM, while the weekend demand shows no significant

peak. Fig. 4.7(b) and Fig. 4.7(c) show a breakdown of travel demand by trip purpose. It can

be seen that the number of work trips drops significantly on weekends compared to weekdays.

On the other hand, the non-work trips on weekdays and weekends do not show a significant

difference in magnitude, though their temporal patterns differ.

Figure 4.7: Travel demand temporal distribution by trip purposes: a) All trips, b) Work
trips, and c) Non-work trips

Generally, the data parameters and distributions associated with the transportation

network scenario generation in the case study are listed in Table 4.2. Then, the mix-and-

match approach was used to merge the weekday/weekend and weather status, and the Monte

Carlo approach was conducted based on the distributions in Table 4.2 to produce the incident

frequency of a day under each group of the day of the week, weather status, start time,

101



duration, and related road capacity loss of each traffic incident. This study assumes that

weather and people’s traffic behavior will remain consistent over the next decade. However,

due to the significant growth rate (15.2%) of the population in 2035 estimated by SCAG, the

daily incident number in 2035 is linearly projected by the product of the incident frequency

in 2022 and the 2035 population growth rate. Finally, the case study simulates 10 network

scenarios (from scenario S1 to S10) of the LA County transportation system in 2035, as

shown in Table 4.3. The 10 scenarios are assigned based on the probability of each condition

group in Table 4.2, with higher probability groups having more scenarios; for example, 6 out

of 10 scenarios are in the weekday with no-rain/snow group.

4.3.2 Electrification and Charging Data Specification

To ensure a valid comparison of results among network scenarios and transportation electrifi-

cation operations, EV-related assumptions and parameters for the case study are defined in

the following bullets and in Table 4.4. Table 4.4 specifically lists the parameter values and

literature associated with EV batteries, charge prices, and charger efficiency.

Electrification Data

The EV market share rate for each CT in LA County in 2035 is assumed to have the same

distribution across all CTs as in 2022, with a linear projection of the total number of EVs

from 2022 to 2035. The projected number of EVs is 1.16 million under the 2035 moderate

electrification level and 3.09 million under the 2035 high electrification level. The spatial

distribution of the 2035 EV adoption rate is shown in Fig. 4.8.

Referring to California electrification research, under a moderate electrification level [14],

80% of EV residents are assumed to have home chargers; under a high electrification level,

potentially 70% of EV residents have home chargers. The total number of home chargers

is first divided into four batches by residency type. Then, within each residency type, the
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Table 4.2: Parameters and distributions of LA county transportation network scenarios
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Table 4.3: The simulated transportation network scenarios in 2035 with their incident numbers
and normalized occurrence probability

Table 4.4: EV-related parameters for the 2035 electrified transportation system in LA county
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home chargers are randomly assigned to households. The share of home chargers in each

residency type is determined by the California Energy Commission’s report on future PEV

infrastructure projections [271]. As estimated by NREL [50], 14% (moderate electrification)

or 28% (high electrification) of EV residents in 2035 can access workplace chargers during

their work activities.

The focus of this study is on Level 2 (L2) chargers due to their wide adoption in the public

charger market (nearly 90%) and their wide installation with less technical requirements on

the grid system. This study assumes that one charger has one plug for users.

Charging Data

Since 80% of full SOC is the cap of the healthy operational state for prolonging the life of EVs

and reducing battery degradation, for EV (BEV and PHEV) residents with home charger

access, we assume they always start their first trips of the day with 80% SOC, regardless of

whether it is a high- or low-initial SOC scenario.

For EV residents without access to home chargers, due to limited charging opportunities

(only public and workplace charging), two SOC values are designed for their first trips of the

day in the case study. In high initial SOC scenarios, it is assumed that all EVs are charged

to a high SOC before their first trips, and that 80% of full SOC (healthy battery state) is

assigned to EVs before the first travel on average. In low initial SOC scenarios, the second

day after charging leads to a low SOC for the start of daily trips. In this condition, on

average, EV residents without home chargers start their day with 40% of full SOC (half of

the first day’s SOC) to reflect the first day’s energy consumption.

The EV energy consumption rate (ECR) is typically determined by an EV traveling a

certain distance and the corresponding travel characteristics, such as travel speed, terrain

conditions, temperature, waiting time, etc. However, for a large-scale road network with tens

of thousands of EVs, a more general assumption is often made to use the average travel speed

to indicate the ECR (e.g., kWh/km) for a specific EV trip. This study adopted the empirical
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equation for the relationship between average speed and ECR derived by [81] to calculate the

electricity consumption of each EV trip. The equation is based on data collected from GPS

loggers installed in 200 BEVs used by 741 drivers for 276,102 trips covering about 2.3 million

km traveled. The equation is shown in Equation 4.14, where v refers to the average travel

speed. The relationship between the average travel speed and the ECR indicates that driving

at very slow or very fast speeds increases the ECR, and the most energy-efficient driving

speed is between 45 and 56 km/h.

ECR = −0.0002v3 + 0.071v2 − 5.6558v + 308.82 (4.14)

Figure 4.8: 2035 EV adoption rate across CTs under (a) moderate electrification level and
(b) high electrification level
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4.4 Results and Discussion

4.4.1 Network-Level Charging Demand Analysis

Table 4.5 provides the network-level outcome associated with the CREATE application to

predict the needs for public charging (specifically L2 chargers) in the electrified transportation

network of LA County in 2035. This table presents the mean values and standard deviations

to illustrate the prediction variation influenced by different scenarios. The prediction results

are divided by weekday and weekend, given their distinctive differences in travel demands.

Table 4.5 and most of the following discussions focus on the charging demand during the

peak demand hour, i.e., the one-hour period with the maximum charging demand throughout

the day.

Table 4.5: Network-level L2 public charging demand for LA county in 2035 under all scenarios

The peak demand columns in Table 4.5 provide the range of charging demand during

the peak demand hour for weekday or weekend scenarios. The charging demand under the

high electrification level is about 2.3-2.6 times that under the moderate level, and under the

same electrification level, the demand for the low SOC scenario is nearly 1.8-2.0 times that

in the high SOC scenario. Additionally, the high values in the weekday peak demand column

are primarily produced by relatively long-distance mandatory trips, whereas the low values

in the weekend peak demand column are mainly due to the dominance of short-distance
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non-mandatory trips.

The peak energy consumption represents the hourly electrification load when the peak

charging demand appears. The energy consumption values in the weekday and weekend

columns follow the same trend as the peak demand columns. The average duration in this

table is the average charging time per charging event for an EV user under a scenario. The

low initial SOC scenarios, due to the low SOC of EVs at the start of their daily travels,

generate a longer charging duration for both high and moderate electrification levels on

average. Another contributing factor is that the high electrification level has a higher EV

market share, while the development of home chargers is constrained by land use, power

restrictions, etc., leading more EVs to rely on public chargers, which results in longer public

charging durations under high transportation electrification.

Although Table 4.5 does not show a significant network-level difference in public charging

needs across scenarios for each column, the results in Sections 4.1.1 and 4.1.2 reveal that the

temporal and spatial variations at the CT level are distinct.

Network-level Temporal Pattern Analysis

Fig 4.9 demonstrates the temporal charging demand pattern of weekday and weekend scenarios

under four electrification groups with a 1-hour time interval throughout the day. We calculated

the hourly charging demand for all scenarios and used the average demand during each one-

hour period across scenarios to represent the temporal charging pattern for both weekday

and weekend scenarios. This process is repeated for four combinations of electrification levels

and initial SOC.

As shown in Fig 4.9, under the same electrification levels, the weekday charging demand

is significantly higher than the weekend demand across all time periods. The peak weekend

demand is only about 25% of the peak weekday demand under the same electrification level.

The peak of daily charging demand appears near 10 to 11 AM for weekday scenarios and

1 to 2 PM for weekend scenarios. The large gap between weekday and weekend charging
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demand is due to the reduced work trips during weekends compared to weekdays. Since

the number of weekday work trips is significantly larger than on weekends, and the average

work trip distance is 68% longer than non-work trips, it is expected that EVs generate

more charging needs during weekdays than weekends. The temporal charging energy load

pattern is consistent with the temporal charging demand pattern. The peak of daily charging

energy load appears around 10 AM for weekday scenarios and around 1 to 2 PM for weekend

scenarios.

Figure 4.9: Temporal distribution of charging demands from weekday scenarios and weekend
scenarios of (a) High electrification plus low initial SOC; (b) High electrification plus high
initial SOC; (c) Moderate electrification plus low initial SOC; and (d) Moderate electrification
plus high initial SOC
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Network-level Spatial Pattern Analysis

This subsection studies the spatial distribution of charging demands across electrification

groups. Fig 4.10 shows the geographic regions and the spatial distribution of population

density in LA County. As seen in Fig 4.10(b), the population is concentrated near central

LA, San Fernando Valley, southern San Gabriel Valley, and the South Bay area. To illustrate

the spatial distribution of charging demand more intuitively, we select the charging demand

generated from the weekday scenarios as an example and calculate the average charging

demand for each CT across different weekday scenarios to reflect the spatial pattern under

four electrification groups.

Figure 4.10: LA county (a) Geographic regions (Wikimedia, 2022); and (b) Population density
distribution (California Air Resources Board (CARB), 2022)

The charging demand in Fig 4.11 is measured in area density, i.e., demands per square

kilometer, for each CT. CTs are colored into two groups where dark red indicates high-density

CTs and light red represents low-density CTs. The classification threshold is determined by

the median charging needs density across CTs, i.e., 16 demands/1,000 inhabitants in the
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weekday scenario of the high electrification, high charging-demand-day group. As shown

in Fig 4.11, areas with higher charging demand density correspond to areas with higher

population density in Fig 4.10(b). Among the four maps in Fig 4.11, Fig. 4.11(a) shows the

most concentrated distribution of charging demand, where the high-density CTs occupy the

majority of central and southern LA regions. In contrast, the demand density distribution is

less concentrated under conditions with high initial SOC or a moderate electrification level.

Notably, for the moderate electrification level, due to the low EV market share rate estimated,

both high and low initial SOC scenarios exhibit lighter density distributions compared to the

maps of the high electrification level.

4.4.2 Zone-level Charging Demand Variation Across Scenarios

To analyze the demand variation of CTs across all test network scenarios, the mean and

standard deviation of the peak charging demand across scenarios for each CT are calculated.

As discussed in Table 4.4, the predicted charging demand differs under different electrification

levels, days of the week, and daily charging demands. Thus, the sample scenarios applied

in this subsection to emphasize zone-level demand variation under multiple scenarios are

scenarios S1 to S7, weekday scenarios under high electrification level plus low initial SOC.

We only demonstrate one combination of electrification levels and initial SOC because other

combinations share similar characteristics. We then normalize the peak charging demand by

dividing the peak demand by the total number of dwelled cars within the one-hour period

of peak demand for each CT. Here, dwelled cars refer to cars that dwell in a zone within a

one-hour period. The public charging demand distribution of the mean and the standard

deviation for the sample scenarios is plotted in Fig 4.12.

As shown in Fig 4.12(a), the mean of average demand for weekday scenarios is 12.5

charging needs per 100 dwelled cars in a CT during the peak demand hour. In Fig 4.12(a),

we can see that the standard deviations of the normalized charging demand are relatively
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Figure 4.11: Spatial distribution of peak charging demand from weekday scenarios of (a)
High electrification plus low initial SOC; (b) High electrification plus high initial SOC; (c)
Moderate electrification plus low initial SOC; and (d) Moderate electrification plus high
initial SOC
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Figure 4.12: Charging demand variation across weekday scenarios: (a) Distribution of mean
and standard deviation of normalized charging demand; and (b) Distribution of standard
deviation divided by the mean of normalized charging demand

large. The average standard deviation of charging need mean per CT across all scenarios

is around 27% of the mean of average charging need. This highlights that although the

total demands generated by different scenarios are very close at the network level (see Table

4.4), the variation of charging demand across scenarios at the CT level is not negligible.

This variation can be caused by the differences in the spatial and temporal distribution of

incidents across scenarios, as incidents can impact link capacity, which will in turn influence

the average travel speed and routing choices of EV users, and eventually affect the energy

consumption rate as well as charging timing and locations.

To provide a more intuitive demonstration of how network variation impacts the charging

demand of a CT, we selected one test CT near downtown LA and plotted the charging

demand across 24 hours in Fig 4.13. The dashed lines in Fig 4.13(b) represent the average

hourly charging demand across different network scenarios, while the semi-transparent bands

indicate the lower and upper bounds of hourly charging demand across network scenarios.

As shown in Fig 4.13(b), the variation in network scenarios causes significant differences in

charging demand. During the peak demand hour (12 PM to 1 PM), the maximum charging
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Figure 4.13: Temporal charging demand distribution of a Test CT across all network scenarios.
a) The location of the test CT. b) 24-hour charging demand distribution of the test CT. The
semi-transparent bands represent the upper and lower bound of the charging demand across
network scenarios

demand (340) is 42% higher than the minimum charging demand (240), indicating that the

variation in charging needs induced by different traffic conditions is non-negligible at the

single CT level.

4.4.3 Zone-level Charging Demand Variation Across Functional

Areas

To explore the charging demand patterns at the zonal level, we selected sample CTs by

functional area and conducted a temporal analysis for each functional area. The CTs of

each functional area are defined based on the trip purpose from the SCAG ABM. For each

functional area, we focus on the top 20 CTs with the largest number of trips for the selected

trip function, i.e., work, school, shopping, and dining. In this section, we plot the demand

comparison for each functional area under the high electrification plus low initial SOC as a

sample, as the other three combinations of electrification levels and initial SOC have similar
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patterns. The scenario-aggregated plots are shown in Fig 4.14, where the dashed line shows

the average value and the shaded area marks the upper and lower bounds across scenarios.

As shown in Fig 4.14(a) and Fig 4.14(b), the weekday peak demand hour for working

areas and school areas are close to each other, both occurring near the midday hours, around

11 AM to 1 PM. These charging demands are generated by EVs dwelling near workplaces

or schools after completing commute trips. On the other hand, the peak demand hours in

shopping and dining areas, shown in Fig 4.14(c) and Fig 4.14(d), occur a few hours later than

in the working and school areas, from around 2 PM to 4 PM. The shift in peak demand hours

in Fig 4.14(c) and Fig 4.14(d) corresponds to the fact that these non-mandatory activities

(i.e., activities other than work or school) usually happen during traffic off-peak hours (e.g.,

10 AM through 4 PM for LA County).

From Fig 4.14, we also find that the variation of peak demand across scenarios is more

pronounced in working and school areas, where the maximum peak demand differences across

scenarios can be as high as 8%. By contrast, the maximum peak demand difference in the

shopping and dining areas is less than 5%. This is mainly because work and school trips often

involve more long-distance travel than other types of trips, where travel speed and travel

time are more likely to be affected by incidents on the routes, thereby making individual

charging needs more likely to be impacted.

4.4.4 Estimation of Public Chargers and Installation Cost for the

Year 2035 in LA County

The previous results discussed the scenario-based charging demand profile prediction regarding

the entire network, the temporal distribution, and the spatial difference in view of diverse

electrification levels, daily charging demand, and CTs. This section provides the estimation of

required public chargers using the method discussed in Section 4.2.4. For a given electrification

level, the required number of chargers is first estimated for each zone under each scenario and
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Figure 4.14: Spatial distribution of charging demand with all scenarios under high electrifica-
tion level plus low initial SOC y at (a) Working area; (b) School area; (c) Shopping area; and
(d) Entertaining area
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then aggregated to the system level. For each zone, we use the maximum hourly required

chargers across 24 hours to represent the estimated chargers for the day. Fig 4.15 provides an

example of the temporal distribution of charging demand across a day for a single CT under

high electrification plus low initial SOC in the network scenario S0. The CT selected for

this example is the same as the test CT demonstrated in Section 4.4.2. We can observe that

although the maximum hourly charging demand exceeds 300 between 12 PM to 1 PM, the

maximum number of hourly required chargers is only 280, which means the required chargers

to meet the charging demand of this zone under this specific scenario is 280. By repeating

the aforementioned process across all zones in the system, we can determine the required

chargers for the entire transportation system.

Figure 4.15: Temporal distribution of charging demand and estimated chargers for a single
zone under a specific simulation scenario

With the estimation of required chargers across each zone, the next step is to estimate the
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required chargers for the entire system. The estimation is conducted following the method

described in Section 4.2.4 by adopting AL and SL. In this case study, due to the limited

number of network scenarios, all scenarios were kept for the estimation of total required

chargers. Therefore, the value of AL in this case study is set at 100%. In the meantime,

we applied different levels of SL to represent the installation investment boundaries. SL

= 100% means there is no installation investment constraint, meaning the upper bound of

predicted EV charging demand can all be satisfied without a waiting time between charging

activities. In contrast, SL = 0% means that the installation can only satisfy the lower bound

of predicted chargers. Other SL values (25%, 50%, 75%) represent the linearly interpolated

estimation of charger numbers between the upper and lower bounds for each electrification

level.

Table 4.6 provides a summary of the estimated number of chargers and the corresponding

installation cost under each SL for different electrification levels. This would help planners

understand the cumulative investment scale by the year 2035. As shown in Table 4.6, the

number of chargers reflects a significant difference depending on the electrification level. The

estimated number of chargers under the moderate electrification level is only around half

the number under the high electrification level, and so is the installation cost. For a given

electrification level, the estimation of chargers also shows a large gap between the lower and

upper bounds. The predicted L2 charger number under the high electrification level increases

from 0.2 to 0.36 million; the charger number under the low electrification level ranges from

1.16 to 0.18 million.

Note that the installation cost per L2 public charger is based on the study by Smith et

al. [241] and is adjustable for planners. It is expected to be cheaper in the future. Moreover,

the projected number of L2 chargers is closely related to the number of plugs per L2 charger.

In this case study, one L2 charger has only one plug. With the development of charging

equipment, one L2 charger may have multiple plugs, which would significantly reduce the

required number of public chargers.
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Table 4.6: Public L2 charger predictions for LA county in 2035

4.4.5 Equity Assessment of Public Charging

To validate the equity benefits of improving charging opportunities through the CREATE

prediction system, disparities in charger access probability across different socio-demographic

groups are compared between the current year 2022 and the target year 2035. The spatial

distribution for current L2 chargers is derived from current charger location data in LA

County from the Alternative Fuels Data Center of the US Department of Energy (US DOE,

2022). The L2 charger spatial distribution for the year 2035 is based on the public charger

prediction via CREATE, with both high and moderate electrification levels considered. For

both electrification levels, we select SL = 50% as the representative SL to indicate the public

charging equity performance for the year 2035 in LA County.

Fig 4.16 shows the L2 charger access probability across different socio-demographic groups

against the MFHU rate. As indicated in Fig 4.16, the charger access probability increases

with the increase in MFHU rate in 2022, regardless of socio-demographic groupings. In

contrast, charger access probability does not show a pronounced ascending tendency against

the MFHU rate in 2035, as all MFHUs have fine access probability. We can see that even the

lowest charger access probabilities in 2035 are higher than the highest access probabilities

in 2022 across various socio-demographic groupings. This can be explained by CREATE

considering the overall increase in public charging demand across the entire network in 2035,

including disadvantaged, low-income, and minority communities.

Specifically, Fig 4.16 indicates that non-DAC, income > $91k, and White communities have

better charger access than DAC, income < $44k, and Asian, Black, or Hispanic communities,
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Figure 4.16: Charger access probability across different socio-demographic groups for 2022 (a,
d, g), 2035 moderate electrification level (b, e, h), and 2035 high electrification level (c, f, i)
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Figure 4.17: Charger access disparity of 2022 and 2035 across different socio-demographic
groups: (a) DAC/non-DAC groups; (b) income groups; (c) ethnicity groups
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with similar trends observed in both 2022 and 2035. The disparity in charger access probability

can be attributed to disparities in EV ownership, household travel frequency, and the share

of car mode in daily travel.

To assess charging equity across different socio-demographic groups, Fig 4.17 provides

a quantitative comparison of the disparity in public charger access probability using the

Gini index. It is evident that the charger access disparity across different socio-demographic

groups decreases significantly in 2035 compared to 2022. This trend is consistent across all

three socio-economic classifications under any given MFHU rates. This indicates that the

disparity in charger access between communities with DAC/non-DAC, varying income levels,

and ethnicities is mitigated in 2035 compared to 2022, meaning that equity in public charging

accessibility is enhanced. Another finding from Fig 4.17 is that the Gini indexes for 2035

under both moderate and high electrification levels show very little difference across MFHU

rates. This suggests that the two electrification levels achieve similar equity performance in

terms of charger access probability.

4.5 Conclusion

This study developed a public charging demand profile prediction system to serve the future

EV market and satisfy the future transportation system with electrification levels, which is

the first study of the proposed CREATE framework. This study leveraged activity-based and

agent-based transportation simulation models to generate individuals’ travel trajectories and

estimate each EV user’s charging needs in public places. It also adopted a scenario-based

approach to capture the variations in the demand and supply sides of transportation systems

and to estimate the associated impacts on public charging demand.

The case study analyzed the charging demand characteristics in LA County for 2035.

Simulation results indicate that:

1. The total charging demand varies significantly across different electrification and oper-
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ation settings in terms of charging needs, consumed electricity, and average charging

durations.

2. The zone-level charging demand reveals significant variation in zonal charging needs

across network scenarios with different distributions of incidents, indicating the in-

evitable impact of traffic conditions on zonal charging needs.

3. The temporal charging demand pattern shows a distinguished shift in peak demand

hour across functional areas, suggesting that the public charging load is correlated with

people’s daily activity patterns.

4. By introducing installation investment limitations, the final demand profile prediction

accomplished the cost-efficiency balance between maximizing the charging service for

supporting diverse electrified transportation scenarios and managing the investment

under planners’ financial capability.

5. Charging accessibility disparity is investigated across different socio-demographic groups

to evaluate charging equity performance under the target and current years. The results

indicate that charging accessibility is well enhanced in the target year in most cases,

though specific communities still need additional efforts on the charging demand side

to achieve a more equitable electrified transportation system.

One limitation of this study is the assumption of EV market dynamics. We use a linear

projection of the EV population per zone based on 2022 EV ownership data. However, studies

show that EV adoption is closely tied to charging facility accessibility [95, 217]. Additionally,

EV adoption and charging infrastructure investment are interdependent [284]. Future research

could employ more sophisticated models to predict the equilibrium between these two factors.

Potential areas for further study include:

1. Timing of Charging Sessions: Improved data collection at the charging station
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level would enable more accurate modeling of charging session timing and support the

development of a refined charging decision model.

2. Charger Searching Assumptions: The current model simplified the charger searching

assumption by guaranteeing chargers for every single demand. For a more realistic

consideration, characteristics at charging locations such as queuing, charger selection,

or the electricity load of a charging station are good research points.

3. Integration of Charger Types: Although fast chargers (Level 3 chargers) have

strict technical requirements on the grid system that limit their wide adoption in the

transportation system, it is expected to occupy 0%-10% of public chargers in the future.

The next step is to combine the research domains of L2 chargers, fast chargers, and the

capability of grid systems.

4. Behavioral Modeling: Replacing deterministic thresholds with insights from survey

or charging record data could yield a more realistic representation of charging behavior.
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Chapter 5

Deep activity model: a generative

approach for human mobility pattern

synthesis

Human mobility significantly impacts various aspects of society, including transportation,

urban planning, and public health. The increasing availability of diverse mobility data and

advancements in deep learning have revolutionized mobility modeling. Existing deep learning

models, however, mainly study spatio-temporal patterns using trajectories and often fall

short in capturing the underlying semantic interdependency among activities. Moreover,

they are also constrained by the data source. These two factors thereby limit their realism

and adaptability, respectively. Meanwhile, traditional activity-based models (ABMs) in

transportation modeling rely on rigid assumptions and are costly and time-consuming to

calibrate, making them difficult to adapt and scale to new regions, especially those regions

with limited amount of required conventional travel data. To address these limitations,

we develop a novel generative deep learning approach for human mobility modeling and

synthesis, using ubiquitous and open-source data. Additionally, the model can be fine-tuned

with local data, enabling adaptable and accurate representations of mobility patterns across
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different regions. The model is evaluated on a nationwide dataset of the United States,

where it demonstrates superior performance in generating activity chains that closely follow

ground truth distributions. Further tests using state- or city-specific datasets from California,

Washington, and Mexico City confirm its transferability. This innovative approach offers

substantial potential to advance mobility modeling research, especially in generating human

activity chains as input for downstream activity-based mobility simulation models and

providing enhanced tools for urban planners and policymakers.

5.1 Introduction

Understanding and synthesizing human mobility patterns has become increasingly important

as population growth, more complex travel behaviors, and diverse societal needs reshape

modern transportation systems. Human mobility influences many facets of modern life,

including traffic management, air quality, energy usage, and public health, as seen during

the COVID-19 pandemic, which significantly altered travel patterns due to shifts to remote

work and reduced mobility [70, 135, 260]. Other factors intertwined with human mobility

include responses to natural disasters [123], traffic congestion and safety [273,287], citizen

well-being [210], air pollution [30], and energy and water consumption [171]. Consequently,

human mobility modeling has garnered significant interest for its impact on these critical issues.

Facing these challenges, activity-based models (ABMs) emerged in the late 1990s and early

2000s [22,31] to capture the sequential nature of activities and predict interdependent activity

choices at the individual level. ABMs are widely used by Metropolitan Planning Organizations

(MPOs) in the U.S. [32]. For instance, the Southern California Association of Governments

(SCAG) uses an ABM to predict activity patterns and travel demand for Southern California,

a region with about 26 million people [104,120]. Despite being state-of-the-practice models,

ABMs face several limitations: data collection, model development, and calibration are costly

and time-consuming; their intricate structures lead to high computational complexity; and
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they rely on numerous assumptions about human activity patterns and travel behaviors,

limiting their transferability to different contexts or regions.

Data-driven approaches offer promising solutions to address the limitations of ABMs.

Advances in mobility data and computing power have enabled researchers to use artificial

intelligence (AI) techniques for human mobility modeling. Deep learning (DL) approaches and

generative algorithms replicate real-world human mobility trajectories, ensuring that generated

patterns closely match observed data [18,127,208]. Research in generative algorithms focuses

on spatial properties (e.g., travel distance distribution [88] and preferred locations [209]) and

temporal properties (e.g., activity schedules [226]). Additionally, Studies show that over 90%

of human activity patterns are similar across different regions, captured by a limited set of

human motifs [39,234]. In other words, a pre-trained model based on fundamental human

mobility data can be fine-tuned with local data for adaptable and accurate representation in

various geographic locations.

Although data-driven approaches show strong prediction capabilities, their performance

relies heavily on emerging mobility data sources like GPS data, communication records, and

social media from phones or cellular stations [88,125,139,207]. The diverse characteristics and

formats of these data sources result in unique model features that are not easily adaptable to

other datasets. Additionally, some data sources are costly, difficult to access, and not widely

available for diverse geographic regions, limiting the adaptability of DL models. Moreover,

existing DL models mainly focus on spatial-temporal relationships using human trajectories,

and often overlook the underlying semantic interdependencies of human activities, as well as

the attributes of a person and their family that affect activity choices.

In this study, to address these challenges, we present a novel generative DL model, the

Deep Activity model, to reveal the fundamental and generic human activity patterns that

underlie human mobility of the studied region. Derived from trip diaries in household travel

survey (HTS) data (Fig. 5.1 (a)), we use the concept of an "activity chain" (Fig. 5.1 (b)),

which represents one-day activity sequences for individuals. HTS data forms the training
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[Household travel survey data]

[Activity chains
examples]

Figure 5.1: Model human mobility pattern using household travel survey (HTS) data. (a) HTS
data includes information about each household member’s social-demographics, the household
itself, and their daily non-commercial travel. This data covers daily non-commercial travel by
all modes, along with details about the travelers, their households, and their vehicles [163].
(b) Typical weekday and weekend activity chains in HTS.
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foundation for our model. Using regional population information, the Deep Activity model

generate realistic and varied activity chains, effectively explaining human mobility patterns

for the target region. Experiments show that the Deep Activity model generated highly

realistic activity chains, evidenced by a Jensen-Shannon divergence (JSD) of just 0.001,

indicating that generated chains closely match real-world data. Additionally, our model can

be fine-tuned for specific regions, successfully capturing patterns in California, the Puget

Sound region (in Washington), and Mexico City.

With such synthesis capability, the automatic generation of transportation system simula-

tion models becomes much feasible. This addresses the significant challenge of the extremely

high costs and labor-intensive nature of hand-crafted models that has persisted for a long

time. More implications include facilitating location choice models and urban planning

models by integrating the Deep Activity model. This study sets the foundation for human

mobility synthesis, enabling the automatic generation of data for new regions and significantly

advancing the field of transportation modeling. Our key contributions include:

• We are the first to define the human activity chain generation problem for human mobility

pattern research and introduce corresponding performance metrics for evaluation. We

also pioneer integrating mobility generation with activity location assignment, loading

the generative travel demand within a large-scale simulation network to validate the

model’s performance from a transportation system perspective.

• We propose a novel deep learning approach to generate synthetic human mobility

data. Our method develops a transferable model that can be fine-tuned with local

data, enabling the study of human mobility in data-limited regions by leveraging the

generalizability of HTS data. By utilizing a well-designed loss function and effective

input data construction, even the vanilla transformer proves highly effective in addressing

this complex task.

• We explicitly model and reveal the interdependencies among activities and household
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members, exploring how one household member’s decisions influence another’s.

• We explore a standard technique for multivariate, multi-objective data balancing to

process the ubiquitous HTS data, pioneering its use in deep learning methods for human

mobility studies. This data balancing method enhances the applicability of HTS data

in modern analytical contexts and benefits the transportation modeling and planning

community.

5.2 Related work

In recent years, human mobility has garnered significant attention due to the availability of

mobility data, advancements in computing technologies, and the application of AI techniques.

The literature on human mobility defines two major tasks: generation and prediction [156].

Generative models aim to create spatially and temporally realistic human trajectories. At the

collective level, these models seek to replicate real-world mobility flow. On the other hand,

prediction models focus on tasks such as predicting the next location for individuals [51, 289]

or forecasting crowd flow distributions based on historical data [79,261]. In this study, we

specifically concentrate on generative models for human mobility patterns, particularly the

activity chain generation problem.

Transportation Models. ABMs are the state-of-the-practice model to generate human

activity patterns. An ABM is a type of modeling approach used in transportation planning

and urban studies to predict and analyze individual activity patterns and travel behavior.

ABMs aim to understand and simulate how people make decisions about their daily activities,

such as work, shopping, education, recreation, and other social and personal activities, and

how these activities influence their travel choices and travel patterns. Bowman and Ben-

Akiva [31] proposed an ABM prototype to predict individual activity and travel schedule

based on discrete choice models and forecasted the travel demand of the Boston metropolitan

area. Goulias et al. [89] developed an ABM system (SimAGENT) to simulate the activity

130



and travel patterns for Southern California. The SimAGENT incorporates five components:

a population synthesizer, a econometric micro-simulator for socioeconomics, a land use

and transportation systems, a econometric micro-simulator for daily activity-travel, and

transportation simulation [24]. Different components predict individual activity and travel

choices at different levels. However, ABM’s development necessitates extensive data collection,

making calibration and implementation expensive and time-consuming. Additionally, ABM’s

high dependency on local data restricts its adaptability to diverse geographic regions.

Model-Based Data Driven Methods. Data-driven models offer an alternative approach

for activity generation problems. The Exploration and Preferential Return (EPR) model,

a stochastic method, simulates human mobility by balancing exploration of new locations

with returns to previously visited ones [242]. In the EPR model, individuals move through a

spatial environment, making decisions influenced by location popularity and distance. The

model considers the balance between exploration and preferential return and evolves over time.

Enhancements like TimeGeo by Jiang et al. [124] add temporal choices, such as home-based

tour number, dwell rate, and burst rate, along with a hierarchical multiplicative cascade

method to measure generated trips and land use. These improvements bypass HTS data

limitations by offering a flexible, data-driven framework. However, model-based data-driven

methods often require prior expert knowledge, and their simple implementation mechanisms

may constrain realism.

Deep Learning Approaches. Multiple DL models were adopted to model human

mobility and generate human activity and trajectories, such as fully connected networks,

recurrent neural networks (RNN), attention mechanisms, convolutional neural networks

(CNN), and generative models (Variational AutoEncoders (VAEs) and Generative Adversarial

Networks (GANs)). See Luca et al. [156] for a detailed review. The limitations of model-based

data-driven methods can be tackled by generative models (GANs or VAEs), because they can

incorporate different aspects of human trajectory simultaneously (e.g., spatial and temporal

features), and capture complex non-linear relationships in the data. DL model performance
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Figure 5.2: Workflow of activity chain generation

is heavily dependent on the amount and quality of data and is limited by the fact that

human mobility data is usually expensive or difficult to access (e.g., requiring Non-Disclosure

Agreements), as discussed in Section 5.1. Therefore, it is necessary to explore the potential

of DL models to synthesize human mobility patterns using ubiquitous and open-source data.

5.3 Problem Formulation

One of the fundamental principles of ABM is that "the demand for travel is derived from the

demand for activities" [31]. This principle highlights the nature of human mobility, where

activities form the foundation of human trajectories. In this study, the concept of an "activity

chain" is used to describe the structure of these trajectories, and the human mobility of a

region can be represented by the activity chains of its population.

We denote i for an agent. An activity chain for the agent i is a time-ordered sequence

Ai = {A1,i, A2,i, . . . , An,i}, where An,i = [Tn,i, Sn,i, En,i] represents the n-th activity con-

ducted by agent i. Here, Tn,i is the activity type of An,i. Sn,i and En,i stand for start

time and end time of An,i, respectively. Then the mobility trajectory can be expressed

as Traji = {(A1,i, Z1,i) , . . . , (An,i, Zn,i)}, where Zn,i denotes the zone-level location where

the An,i occurs. A generative model M can generate activity chains Ai for each individual

i, given socio-demographic attributes of the target agent and other household members,
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Dk,i = {d1,i, d2,i, . . . , dK,i}, where dK,i represents the k-th socio-demographic attributes.

5.4 Dataset

5.4.1 Household Travel Survey (HTS)

To generate the activity chain for each individual in the region of interest, we rely on data

collected through the HTS, following a standard format across different regions, as introduced

in Fig. 5.1(a). In the US, this survey is usually conducted by federal agencies or state

agencies to gather detailed information about people’s travel behaviors. The Federal Highway

Administration (FHWA) administered the National Household Travel Survey (NHTS) for

the United States [74]. To uncover regional activity patterns, many states also conducted

statewide HTS [55,184,186,191,197,251]. This travel-diary data source is also widely available

in many countries as government agencies need such data for various purposes of public

resource management. Building on this standardized HTS data, the Deep Activity model can

be easily trained and transferred to other regions.

In this study, the generic model is developed using the 2017 NHTS to enhance adaptability

across regions, leveraging its large dataset of over 129,600 US households, which includes

demographics, activity patterns, and travel behaviors for each household member. As

presented in TABLE 5.1, the activity types in NHTS are aggregated to 15 types based on

the locations of activities. For instance, regular home activities and work from home are

grouped as the home activity. Besides NHTS, the 2010–2012 California Household Travel

Survey [198] (collected from 42,500 households), the 2017 Puget Sound Regional Travel

Study [55] (collected from 3,285 households), and the 2017 Origin-Destination Survey across

the Mexico City Metropolitan Area [197] (collected from 66,625 housing units) are adopted

in this study for transferability exploration.
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Table 5.1: Activity category code and their corresponding descriptions from 2017 NHTS
1 Home 2 Work 3 School
4 Care giving 5 Buy goods 6 Buy services
7 Buy meals 8 General errands 9 Recreational
10 Exercise 11 Visit friends 12 Health care
13 Religious 14 Something else 15 Drop off/Pick up

5.4.2 SCAG ABM Data

In addition to the travel survey data, we utilize synthetic mobility data [243], specifically

the SCAG ABM data, for this study. The SCAG ABM dataset represents simulated human

mobility patterns, providing detailed synthetic single-day activity diaries across six counties

in Southern California, encompassing a population of over 19 million. The model captures

24-hour travel demand patterns at a 15-minute temporal resolution, including start and end

times, types of activities, and zonal-level locations for each individual agent.

One notable advantage of the SCAG ABM data is the inclusion of zonal-level location data

for each simulated activity. These zones, known as Transportation Analysis Zones (TAZs),

contain demographic and spatial information about the residents and destinations within

each zone, serving as both origins and destinations of trips. The use of this data significantly

enhances our ability to validate the spatial-temporal performance of the mobility patterns

generated by the model proposed in this study, providing a robust framework for further

analysis and validation. In this study, we select Los Angeles (LA) County, which contains

5,967 TAZs, as the target area for validation.

5.4.3 Data Preparation

The first step in training the model involves preparing the agent information and activity

chain pairs, which includes selecting relevant features for the agent information and encoding

the activity chain data.

According to ABM, socioeconomic and demographic attributes significantly influence
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individual activity patterns and travel choices. In the context of the activity generation model,

the function of these attributes is similar to a prompt (as in the language model), determining

the start of activity sequence generation and influencing the entire sequence generation

process. These attributes include typical individual characteristics, such as gender, race,

age, employment status, and job category, capturing personal and professional demographics.

Education level and student status provide insights into the academic background and current

academic involvement.

Household-related attributes such as the number of persons, relationships within the

household, home ownership, and household size are also considered for their impact on daily

routines and mobility. The number of vehicles owned, workers in the household, and the

household employed count are indicative of transportation needs and capabilities. Household

income level, along with the percentage of renter-occupied housing in the household’s location,

offers a socioeconomic perspective.

Additionally, zonal attributes, including the population density, housing units, and the

classification of the residence type as rural or urban, provide a geographical context. Finally,

the life cycle stage of the household is included as it reflects the evolving needs and behaviors

of individuals over time. These demographic features collectively offer a comprehensive

description of an individual’s background. Finally, there are 13 personal attributes, 13

household shared attributes, in total 26 attributes selected to describe one individual. In

conclusion, the personal and household features used for the model are presented in Table

5.2.

The attribute data, originally in text or label format, is transformed into categorical data.

Not everyone answers all the privacy-related questions in the survey, so for any attributes left

blank or marked as ’not responded’ in the NHTS, we used a dummy number for encoding.

The the continuous activity start and end times are encoded with segmenting a 24-hour day

into 96 intervals, each lasting 15 minutes, and numerically encoded from 1 to 96 to represent

the time slots.
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Regarding the SCAG ABM dataset, we sample subsets from the overall population of

10 million individuals for the purposes of model transfer learning and validation. Specifically,

we prepare two subsets: a smaller sample of 100,000 individuals, which is used for model

transfer learning, and a larger sample of approximately 1 million individuals, employed to

assess the scalability of the model trained on the smaller subset to a larger population. The

activity types in the SCAG ABM data are mapped to correspond to 15 categories consistent

with the NHTS data, and the time variables are similarly encoded into 96 time slots, following

the same procedure used for the NHTS data.

Table 5.2: Socio-demographic attributes from HTS dataset
Attribute Name

Driver’s License Status Number of Workdays
Education Level Job Category
Gender Age
Racial/Ethnic Identity Weekly Transit Usage
Household Role Household Income
Current School Grade Level Household Size
Employment Location Type Household Vehicles
Number of Jobs Home Ownership Status
Employment Status Household Students
Household Licensed Drivers Household Life Cycle Stage
Household Employed Members Type of Residence
Housing Status Housing Density
Population Density Renter-Occupied Housing Ratio

5.5 Methodology

The workflow for generating activity chains for an individual using our Deep Activity model

is illustrated in Fig. 5.2. The process begins with household socio-demographic data, which

includes information about the target person and any family members. The Deep Activity

model captures the influence of household members on the target person and ensures that

the generated activity chain reflects real-world interdependencies. The model then auto-
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Figure 5.3: Deep Activity model architecture. (a) Input data construction. (b) Transformer-
based network architecture with well-designed data injection.

regressively generates a sequence of activities, forming the target person’s activity chain

Ai. Finally, location is assigned for each activity in Ai, completing the synthetic mobility

trajectory generation.

5.5.1 Model Architectures

To generate an activity chain, comprising activity types alongside their corresponding start

and end times, based on the demographic attributes of individuals. The structure of the

activity chain generation problem is analogous to text generation tasks tackled by language

models. Just as words in a sentence follow a logical sequence based on context, activities in a

person’s daily routine are sequentially dependent on preceding activities and time constraints.

Hence, a model based on Transformer [254] is developed and trained for the activity chain

generation task, as shown in Fig. 5.3.

Data structure design. To analyze the influence of household members and previous

activities on the target person’s decision, we developed an innovative data concatenation

strategy. This approach combines embedded social-demographic data, data of other household

members, and embedded activity data within the time domain. To standardize dimensions
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across these diverse data sets, we integrated fully connected layers and employed learnable

delimiters <SEP> for separation. Fig. 5.3(a) illustrates this process for a household with five

members, demonstrating how the data is transformed into a comprehensive feature vector.

This vector subsequently serves as input for the network’s deeper layers, enabling more

nuanced analysis. Our model is designed to accommodate households of up to five members,

a decision informed by statistical analysis of the NHTS dataset, which reveals that 95% of

households do not exceed this size.

Feature Embedding. We employ embedding layers to map each categorical variable

into a continuous space, utilizing the Embedding function [213], which can be optimized

through backpropagation. To ensure accurate representation of categories, we created a

distinct embedding layer for each categorical attribute. Formally, for a categorical feature c

with N unique categories, the embedding function is defined as: Ec : 1, 2, .., N → Rd, where

d represents the dimension of the embedding space for that feature. The optimal value of d

was determined through validation performance.

As illustrated in Fig. 5.3(a), the embedding layer processes the activity chain data,

represented by a tensor with dimensions (5, t, n), where these dimensions correspond to

features, time, and batch size, respectively. Additionally, another embedding layer handles the

target individual’s social-demographic data, shaped as (26, 1, n), and the data pertaining to

the target person and other household members. These diverse data sets are then seamlessly

combined, utilizing five <SEP> delimiters to maintain clear separation between different

data types.

Network structure design. The network structure integrates a Transformer encoder-

decoder architecture. As shown in Fig. 5.3 (b), the Transformer encoder receives combined

embeddings of personal and household information, and previous activities, along with

padding masks to ignore irrelevant parts and causal masks to maintain the autoregressive

nature of the sequence prediction. The decoder then takes the combined activity sequence and

the output (memory) from encoder as additional context. By processing the entire context in
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the encoder and focusing on the next activity prediction in the decoder, the model captures

complex dependencies and interactions. This approach simultaneously considers personal,

household, and previous activity influences on the target person’s next activity decision,

improving prediction accuracy and providing a deeper understanding of the factors driving

activity choices. Next, positional encoding are added to both encoder and decoder inputs to

retain temporal information. Finally, the model generates predictions for the activity type

Tn,i, start time Sn,i, and end time En,i, forming the next activity. The prediction process

continues until either the activity marked as the end-of-the-sentence (EOS) is predicted, or

the chain reaches the maximum length, at which point the prediction terminates.

5.5.2 Loss functions

Predicting activity type is a classification task. Because the day was segmented into 96

intervals, each lasting 15 minutes, predicting start and end times is also a classification

task. Cross-entropy loss, LCE(y, ŷ) = −
∑

i yi log(ŷi), is commonly used to measure

the discrepancy between predicted probabilities and actual outcomes and is the first loss

term to minimize activity mismatch. However, given the uncertainty of human activity,

time prediction should not be overly strict but rather should allow for a certain level of

deviation. Therefore, we incorporate a custom loss function that includes soft labels to

allow the prediction results to deviate within a small window, enhancing the flexibility and

robustness for start and end time prediction.

Soft label loss Ls. Soft labels loss is calculated in two steps: 1) generate soft labels. 2)

calculate the soft cross entropy loss. First, soft label matrix (S) of dimension N × C are

generated by assigning higher weights to the true class and lower weights to adjacent classes.

C denotes the number of activity class, and N is the batch size. For each true label step yi,

Si,yi = wm, Si,yi±s = ws for s ∈ [1, ns], where wm (set to 1) and ws (set to 0.1) are the

main and side weights, respectively, and ns is the number of allowance deviation side steps.
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Then the soft label cross entropy loss for is computed as:

Ls =
1

N

N∑
i=1

(
−

C∑
j=1

Si,j log (Pi,j + ϵ)

)
, Pi,j =

eZi,j∑C
k=1 e

Zi,k

(5.1)

where Z is the predicted result; Pi,j represents the probability that the i-th sample in batch

N belongs to the j-th class, as predicted by the model; ϵ is a small constant added to prevent

the logarithm of zero.

Additionally, to guarantee that the generated sequence of activities adheres to a logical

chronological order, two specialized time penalty losses, i.e., temporal order loss (Lo) and

sequential timing loss (Lseq), are incorporated. These losses ensure that the predicted

end time of an activity does not precede its start time and that the end time of a preceding

activity does not exceed the start time of the subsequent activity.

Lo =
1

N

N∑
i=1

max
(
0, tend

i−1 − tstart
i

)
,

Lseq =
1

N

N∑
i=1

max
(
0, tstart

i − tend
i

) (5.2)

where tend
i−1 denotes activity end time at i-1 step, and tstart

i means activity start time at i step.

Our final loss L combines five loss terms as below:

L = w1 · LCE(T, T̂ ) + w2 · Ls(S, Ŝ)

+ w3 · Ls(E, Ê) + w4 · Lo + w5 · Lseq (5.3)

5.5.3 Data Balancing

To create a fair and representative training dataset for model development, data balancing is

essential to address the imbalances in HTS data. Most people follow similar activity patterns
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[39,234], which can overshadow less common activities and lead to biased models favoring the

majority class. To address this, we developed a multivariate, multi-objective data balancing

technique for curating the HTS dataset. In this study, three target features need to be

balanced, as shwon in Table 5.3, which showcases examples of these target features, with

each data sample representing a day’s activities for an individual.

Algorithm 2 Data balancing for multiple target features
1: Input: (1) Training dataset, (2) Adjustment rate at each step: stepsize
2: Output: Weights W assigned to training dataset for data resampling
3: Select n target representation features features and calculate the original distributions:

Dori = {O1, O2, ..., On}
4: Ideal distribution for n target features: Dideal = {I1, I2, ..., In}
5: Initialize target distributions: Dtar = {T1, T2, ..., Tn} = Dori = {O1, O2, ..., On}
6: repeat
7: for each feature i in n target features do
8: // Calculate the differences between adjusted and target share for each class in

feature i:
9: Di = Ti − Ii

10: ▷ Adjust the elements based on its difference and the step_size:
11: Ti = Ti −Di · step_size
12: // Ensure the sum of percentages remains equal to 1 by normalizing the values:
13: Fi = 1/sum(Ti) ▷ define a normalization factor
14: Ti = Ti · Fi ▷ update the target distribution
15: // Calculate weights for each sample (W ) using the raking algorithm:
16: W = raking(Dori, Dtar, train_data)
17: end for
18: until raking algorithm not converging or |Dtar −Dadj| < threshold
19: return W

Table 5.3: Examples of target features to be balanced
id Activity Type Chain Length Duration (15-min)

1 {Home, Work, Home,
Exercise, Home} 5 {28, 32, 4, 7, 6}

2 {Home, School,
Buy meals, Home} 4 {25, 35, 8, 24}

3 Home, Work, Home 3 {30, 60, 15}
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The proposed data balancing method iteratively calculates weights for each data sample

based on its significance, then performs random resampling with replacement to produce a

balanced training dataset. This process can be summarized as in Algorithm 2, involving

five key steps:

Step 1. Feature representation: As indicated in TABLE 5.3, activity type and

duration are recorded in sequence, while the length of activity chain is a singular value,

making it difficult to balance. Therefore, the most frequently occurring activity type ("mode

type") and activity duration ("mode duration") are selected from each activity chain, as

representations of the original target features, excluding the first and last home activities,

since most of activity chains start and end at home.

Step 2. Initial distribution Dori computation: Calculate the real class distribution

for each target feature.

Step 3. Target distribution Dtar specification: Set Dtar as an intermediate between

the actual and ideal distributions Dideal (uniform distribution) to facilitate convergence.

Step 4. Sample weights calculation: Compute sample weights to individual samples

using the raking algorithm [65], based on Dori and Dtar from Steps 2 and 3.

Step 5. Iterative refinement: If convergence is achieved, adjust Dtar closer to Dideal

and recalculate sample weights by repeating Steps 3 and 4.

5.5.4 Model Transfer

As aforementioned in Section 5.1, modeling human mobility patterns in regions with limited

data is challenging using traditional approaches. Even with advanced deep learning methods,

such as transformer models, the data-hungry nature of these models can limit their effectiveness

when datasets are small [254]. By leveraging the concept of transfer learning [291], we can

address this challenge effectively. The proposed Deep Activity model, initially trained on

the NHTS dataset (160,000 training samples), serves as a generic pre-trained model, which

142



can then be fine-tuned using the limited local HTS data, adapting the generic model to the

specific characteristics of smaller regions. The fine-tuning the Deep Activity model involves

three primary steps:

Step 1: Adding new layers to adapt to new features. Augment the existing

architecture with new layers to handle region-specific features and complexities, enabling

better representation of diverse activity patterns.

Step 2: Freezing part of the pre-trained model. Initially freeze certain parts of

the pre-trained NHTS model to maintain stability and leverage learned representations,

preventing overfitting and ensuring effective capture of regional features.

Step 3: Fine-tuning with regional data and unfreezing layers. Train the modified

model using regional datasets, updating weights of new layers. Gradually unfreeze selected

parts of the pre-trained model, allowing comprehensive adaptation to unique regional patterns

while retaining beneficial pre-trained knowledge.

The California and Puget Sound regions have input features similar to NHTS in terms of

feature number, categories, and activity types. However, their datasets are relatively smaller

(60,000 training samples for California and 8,000 for Puget Sound). For these regions, we

apply only steps 2 and 3 of our process. In the case of Mexico City, which presents a distinct

challenge due to its significantly reduced number of input features (40 compared to 60 in

NHTS) and divergent activity types, we implement all three steps of our methodology.

5.5.5 Activity Location Assignment and Network Traffic Loading

To evaluate the Deep Activity model in a real-world transportation network and test its

applicability for transportation system analysis, we propose an activity location assignment

(ALA) method as an extension of the mobility pattern generation to enhance the model’s

functionality and ensure its practical application. This method aims to address the common

limitation in travel survey data, where precise location information is often missing. The goal
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is to develop a simplified location assignment method for rapid implementation in regions

without high-resolution location data.

Algorithm 3 Activity Location Assignment
1: Input: (1) Fitted distributions for all sub-regions: home-work/school distance distribution

Dmd = {D1
md, D

2
md, ..., D

n
md}; Non-mandatory trip distance Dnmd = {D1

nmd, D
2
nmd, ..., D

n
nmd};

location angular difference distribution Dad = {D1
ad, D

2
ad, ..., D

n
ad}; (2) Land use types of all

zones LU ; (3) Zone-to-zone distance matrix Md, angle matrix Ma; (4) Home locations HL
and predicted activity chains C for all agents.

2: Output: Assigned zone IDs Z = {Zmd, Znmd} for all activities, including mandatory and
non-mandatory activities.

3: Select n target representation features features and calculate the original distributions: Dori =
{O1, O2, ..., On}

4: Ideal distribution for n target features: Dideal = {I1, I2, ..., In}
5: Initialize target distributions: Dtar = {T1, T2, ..., Tn} = Dori = {O1, O2, ..., On}
6: repeat
7: for each agent i with mandatory activities do
8: Disti = sample(Dmd) ▷ Assign home-work/school distance based on agent i’s zonal

distance distribution
9: Zmd

i = match(HLi, Disti, LU) ▷ Select the most matched zone based on assigned
distance from work/school zones and land use type

10: end for
11: for each non-mandatory trip j do
12: Distj = sample(Dnmd) ▷ Assign distance to next zone based on last activity’s zonal

Dnmd

13: Ang2Ancj = GetAngle(Ma) ▷ Get the angle between previous zone and next anchor
zone from angle matrix

14: AngDj = sample(Dad) ▷ Assign angle difference based on last activity’s zonal Dad

15: Angj = Ang2Ancj +AngDj ▷ Compute the direction to next location
16: Znmd

j = match(Distj , Angj , LU) ▷ Select the most matched zone based on the assigned
distance, angle to next zone, and land use type

17: end for
18: Adjust the parameters of Dmd, Dnmd, and Dad by a small margin to slightly change the

shape of the distributions
19: until |Ntarget −Nassigned| < threshold ▷ Stop when the error of activity numbers across

sub-regions between assigned and target locations is lower than threshold
20: return Z

The proposed method assigns zone-level locations Z for each predicted activity by consid-

ering the distribution of distances and angular deviations between preceding and subsequent

activities. For large metropolitan regions, the spatial distribution is further refined by apply-

ing sub-region-specific distance and angle distributions to capture local spatial variations.
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This ensures that the assigned locations reflect the heterogeneity within different areas of the

region. This is particularly important in large metropolitan areas, such as the Greater LA

area, where spatial distributions may vary significantly across sub-regions, as shown in Fig.

5.4.

Figure 5.4: Distributions of activity distances and angular deviations across sub-regions in
LA

The proposed ALA process consists of the following key steps, as shown in Algorithm 3:

Step 1. Assigning TAZs for Mandatory Activities. The primary assumption is

that each individual’s home location is predetermined in the dataset. The first group of

activities to be assigned locations are mandatory activities (e.g., work or school). For each

individual, a home-to-work or home-to-school distance is assigned based on their demographic
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characteristics. Within each sub-region, these assigned distances follow the target distribution

of commute distances between home and mandatory activity locations for that specific

sub-region, denoted as Dmd. A TAZ with the appropriate land use type (work or school)

and closely matching the assigned commute distance is then allocated to the individual.

Step 2. Assigning TAZs for Non-Mandatory Activities. After assigning TAZs

for mandatory activities, these locations serve as anchor points within the individual’s daily

activity chain. The subsequent step involves assigning locations for non-mandatory activities

(e.g., shopping, leisure, exercise) that occur between these anchor points. Non-mandatory

activity locations are assigned based on two key parameters: (1) the distance to the next

non-mandatory activity, and (2) the angular deviation between the direct path to the next

non-mandatory location and the direct path to the next anchor location. The assigned

distances and angular deviations follow the target distributions of distance (Dnmd) and

angular deviations (Dad) for each sub-region, ensuring that the spatial distribution aligns

with regional patterns.

Step 3. Refinement of Location Assignment. The objective of the location

assignment process is to ensure that the spatial distribution of generated activity locations

closely resembles the true activity distribution across sub-regions. This spatial similarity

is assessed by comparing the occurrence frequencies of activities across sub-regions in the

location assignment output with those in the ground truth data. To minimize bias in the

generated distribution, the reference distributions used in Steps 1 and 2 are iteratively

adjusted until the assigned activity number of sub-regions match the ground truth. This

refinement process is initially applied to a small sample of the population to fine-tune the

reference distributions for each sub-region. The refined distributions (Dmd, Dnmd, and Dad)

are then applied to the larger population for large-scale transportation system analysis.

It is important to note that the objective of this location assignment method is not to

predict the exact location of each activity, but rather to ensure a realistic spatial distribution of

activity locations across the study area. This method provides a suitable input for subsequent
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transportation system analyses, such as regional traffic volume estimation and congestion

assessment.

The mobility patterns and the corresponding activity location assignments together form

a comprehensive regional travel demand input. This generated travel demand is integrated

into an existing transportation simulation framework, LASim [103]. LASim is a large-scale,

agent-based multimodal transportation simulation designed for the Greater LA area, as

shown in Fig. 5.11 (c). The framework builds on the Multi-Agent Transport Simulation

(MATSim) to tackle the challenges induced by urbanization and changing mobility patterns.

By loading the synthesized travel demand into the LA roadway network, we can generate the

synthetic traffic flow and further evaluate the transportation system performance based on

the generated human mobility patterns.

5.6 Experiments and Results

5.6.1 Training and Evaluation Methods

All experiments are conducted on a NVIDIA RTX A5000 GPU. We employ the Adam

optimizer with an initial learning rate of 0.005. The scheduler multiplicative decays the

learning rate by a factor of 0.95 after each epoch. The model is trained on a dataset with

160,831 activity chains for training and 18,106 for validation over 150 epochs with a batch

size of 512. To prevent overfitting, we use regularization methods like dropout and early

stopping. Finally, a test set of 18,106 activity chains is used to evaluate performance.

Given the inherent uncertainty in human behavior, evaluating the accuracy of a specific

agent can be challenging and may not always be appropriate. Therefore, the performance of

the Deep Activity model is assessed at the system level by comparing the similarity between

the distributions of generated and real-world activity patterns, and the location assignment

is evaluated at the traffic network level.
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In this study, the Jensen-Shannon Divergence (JSD) is used as the similarity metric [156],

as shown in Equation 5.4. The goal is to minimize the difference between the distributions of

generated and real activity patterns from activity chains. The metrics include: 1) activity

frequencies, 2) start times, 3) end times, 4) number of daily activities (activity chain

length), and 5) duration of each activity.

JSD(P∥Q) =
1

2

∑
x∈X

[
P (x) log

(
P (x)

M(x)

)]
+
1

2

∑
x∈X

[
Q(x) log

(
Q(x)

M(x)

)]
(5.4)

where M = (P +Q)/2. Here, P is the distribution of activity patterns from the generated

activity chains, and Q is the distribution from the ground truth activity chains. X represents

the full range of probabilities for a specific activity pattern statistic. A JSD value closer to

zero indicates greater similarity between the distributions, showing the model’s effectiveness

in approximating the true distribution.

In addition to quantifying the model’s performance at the distribution level using JSD

values, it is also critical to analyze it at the chain level. By aggregating activity chains

into graphs, where activity types are nodes and transitions between activities are edges,

completeness of the activity chains, as the sixth metric, can be examined to ensure no

activity types or transitions are missing. These graphs can be converted into transition

matrices, which reveal the transition probabilities between any two pairs of activities. As

the seventh metric, the similarity of activity transition probability is quantified by

Frobenius norm, i.e., |A−B|F =
√∑m

i=1

∑n
j=1 |aij − bij|2, where matrix A and B are the

transition matrix of generated activity chains and the ground truth, respectively.

For the validation of the ALA and network traffic loading, given that the objective of the

location assignment is not to precisely predict the next location in each activity chain, we do

148



not employ metrics typically used in location prediction tasks, such as the accuracy of top-k

recommended locations [151]. Instead, we compare the performance of the proposed method

with SCAG ABM using transportation system-level metrics, including the cosine similarity

of Origin-Destination Flow matrices [92], the number of activities across sub-regions [178],

hourly vehicle-miles-traveled (VMT) [120], traffic volume [120], and traffic speed [120] over a

24-hour period. The error is quantified using Mean Absolute Percentage Errors (MAPE), a

widely adopted measure in transportation system analysis [144]. We also conduct performance

comparisons at multiple scales, including both the whole network level and a selected corridor

level.

Figure 5.5: Detailed analysis and comparison of activity generation on (a)(b) temporal
dynamics, (c) activity chain length, (d) activity duration, and (e) activity type distribution.

5.6.2 Baseline Models

Decoder-only transformer. In language modeling and sequence generation tasks, the

"decoder-only transformer" is commonly adopted due to its effectiveness [227], making it

a natural baseline for activity generation, allowing for a clear comparison when evaluating

more complex models.
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Recurrent Neural Network (RNN) and their variants are widely used for predicting travel

behavior, e.g., next location prediction [13]. In this study, they are used as a comparison

against the transformer-based models.

Vanilla RNN has a simple architecture where the output from the previous step is fed

back into the network to influence the output of the current step [13].

Gated Recurrent Unit (GRU) introduces gating mechanisms to control the flow of

information, maintain long-term dependencies, and address the vanishing gradient problem

[146].

Long Short-Term Memory (LSTM) features a more complex architecture, consisting

of three gates: the input gate, the forget gate, and the output gate [136], compared to the

two gates used by GRU.

Large Language Models (LLMs) have demonstrated exceptional capabilities in

understanding context and generating complex sequences without the need for extensive

training periods, making them a suitable baseline for human mobility modeling. In our

previous study [155], we utilized pre-trained models such as ChatGPT-4 and the open-source

Llama2-70b to generate daily activity chains based solely on socio-demographic information,

without the need for long-term training on domain-specific data.

5.6.3 Evaluation on Activity Generation

Distribution Similarity

To evaluate the performance of the proposed Deep Activity model, a comparative analysis

is conducted involving the baseline models. The results of seven metrics are presented in

Table 5.5, where the proposed Deep Activity model outperforms the others by achieving the

lowest JSD values for activity chain length, duration, start time, and end time. These results

indicate a high degree of similarity between the generated and ground truth activity patterns,

underscoring the model’s accuracy in capturing dynamic human activities. Additionally,
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it excels in edge completeness, with a percentage of 92.2%, significantly surpassing other

models and illustrating its robustness in capturing the full spectrum of activity transitions.

The LSTM model stands out in two metrics, showing superior performance compared to

the Decoder-only Transformer. It achieves the lowest JSD value for activity type and the

lowest Frobenius norm, indicating minimal discrepancy in transition probabilities between

the generated and ground truth activity chains.

The LLMs demonstrate mixed results. While LLMs like GPT-4 show promise in activity

type and chain length prediction, their higher JSD values for temporal aspects and lower

edge completeness scores reveal significant limitations in capturing the complex dynamics

of daily activities. These constraints, particularly evident in LLaMA2’s underperformance

across all metrics, indicate that current LLMs are not yet suitable for generating accurate

activity chains without substantial adaptations to better model the nuanced patterns of

human routines.

On the other hand, traditional models like GRU and RNN, with notably higher JSD

values, demonstrate moderate performance but fall behind more advanced approaches. This

indicates that they struggle to capture the complex temporal dependencies and transitions

that characterize human activity patterns.

Table 5.4: Activity chain generation evaluation
Model Len. Dur. Start End Type EC F-Norm

GRU 0.015 0.032 0.085 0.217 0.013 51.6% 0.934
RNN 0.064 0.029 0.067 0.121 0.024 50.9% 1.291
LSTM 0.006 0.003 0.019 0.004 0.003 91.4% 0.377
D-TF 0.011 0.011 0.014 0.012 0.013 67.1% 0.784
GPT-4 0.011 0.018 0.064 0.074 0.009 42.4% 1.111
LLaMA2 0.048 0.024 0.159 0.156 0.045 19.9% 1.404
Proposed 0.002 0.002 0.003 0.003 0.005 92.2% 0.643

Table 5.5: *
*D-TF: decoder-only transformer; Len.: activity chain length; Dur.: duration of each activity; EC: edge
completeness in percentage; F-Norm: Frobenius norm. All models reach 100% node (activity occurrence)

completeness. Numbers except EC and F-Norm are JSD values.

In addition to the quantitative analysis, Fig. 5.5 provides a deeper insight into how
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each model performs in predicting specific details of human activities. Poorly performing

models were excluded from the figure to maintain focus on the most relevant comparisons.

For instance, in terms of start times (in Fig. 5.5(a)), both the LSTM and Decoder-only

Transformer underestimate evening activities, whereas for end times (in Fig. 5.5(b)), the

LSTM overestimates evening activities, and the Decoder-only Transformer overestimates

midday activities. Meanwhile, ChatGPT4 demonstrates high volatility in predicting both start

and end times, suggesting challenges in capturing consistent temporal patterns. Regarding the

activity chain length (in Fig. 5.5(c)), the Decoder-only Transformer tends to generate three

activities per day for individuals, while all models, except ChatGPT4, tend to underestimate

the four-activity chains. This suggests a tendency in most models to simplify daily activity

sequences, potentially missing the complexity of real-world behavior. In terms of activity

types (in Fig. 5.5(e)), Transformer-based models, LSTM, and ChatGPT4 perform well,

especially for the common activities.

Loss Term Ablation Study

To assess the impact of individual loss terms in our Deep Activity model, we performed

an ablation study, summarized in Table 5.6. The findings illustrate how each loss term

contributes to model performance across the seven metrics.

Removing the soft label loss (Ls) has the most significant impact across all metrics. This

underscores the critical role of Ls in encouraging the model to explore different combinations

and learn overall temporal patterns, rather than overfitting to specific time stamps. The

flexibility provided by Ls appears crucial for capturing the inherent variability in human

activity schedules. The absence of the temporal order loss (Lo) results in noticeable

performance drops across all metrics, including duration and activity chain length. While

the impact on start and end time predictions is less severe than removing Ls, the decline

in length accuracy suggests that Lo plays a role in maintaining not just the chronological

order, but also the overall structure of daily activity chains. When the sequential timing
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loss (Lseq) is removed, we observe relatively minor decreases in most metrics, with duration

accuracy remaining largely unchanged. However, the higher Frobenius norm indicates that

Lseq is particularly important for maintaining accurate activity transition probabilities, even

if its impact on individual activity timings is less pronounced.

Table 5.6: Influence of each loss term
Loss Len. Dur. Start End Type EC F-Norm

w/o Ls .025 .012 .039 .024 .018 65.6% .907
w/o Lo .024 .011 .017 .016 .014 68.5% .711
w/o Lseq .013 .006 .015 .014 .013 72.6% .739
All .002 .002 .003 .003 .005 92.2% .643

Contextual Variation

Distinct activity patterns between weekdays and weekends are effectively captured by the

proposed model, as presented in Fig. 5.6. The start time distribution (a) reveals a later peak

for weekend activities compared to weekdays, with a notable weekend shift towards midday

starts. In Fig. 5.6(b), there are more activities around 7.5 hours during week, implying

the working hours, which can also reflected in Fig. 5.6(c). Clear variations are displayed in

activity types, with work-related activities dominating weekdays while leisure activities like

"EatOut" and "Visit" increase on weekends. Notably, the proposed model closely mirrors these

temporal and categorical differences, demonstrating its ability to distinguish and reproduce

weekday-weekend variations in human activity patterns.

Age is another crucial factor influencing activity patterns synthesis process, alongside day-

of-week. Fig. 5.7 illustrates how the proposed model captures age-related differences across

young (0-18), middle-aged (19-65), and elderly (65+) groups. In Fig. 5.7 (a), distinct end-time

distributions are observed. Young individuals show peaks aligned with school schedules,

middle-aged adults exhibit a more varied pattern reflecting diverse work commitments, while

the elderly display a gradual curve peaking around midday. The activity type distribution in
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Figure 5.6: Activity patterns in weekdays and weekends

Fig. 5.7 (b) further highlights these differences, with high school attendance and recreation

for the young, significant work-related activities for middle-aged, and increased shopping and

eating time for the elderly. Notably, the Deep Activity model accurately reproduces these

age-specific patterns in both timing and activity types, demonstrating its ability to synthesize

realistic activity chains that reflect the distinct lifestyles associated with different age groups.
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Figure 5.7: Activity patterns across age groups

Interdependency among Household members and Activity in Activity Generation

The utilization of attention mechanisms in transformer models provides valuable insights

into the decision-making processes within families, as illustrated by the detailed attention

heatmap and graphical representation in Fig. 5.8. With its unique input data design, we are

able to visit the attention from the first layer of encoder of the Deep Activity model, which

reveals the interdependencies among the person’s household and their activities.

Each row in the heat map (Fig. 5.8(a)) corresponds to specific activities of the target

person—a male worker and father in a five-member family. The columns demonstrate how

interactions with other family members and previous activities influence subsequent activities.

The step-by-step activity generation is detailed in Fig. 5.8(b), where each step is labeled in

a unique color, and the varied thickness of the lines indicates the relative influence of each
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[Attention weights.]

[Activity chain generation process.]

Figure 5.8: Attention weights reveals the interdependency among household members and
activities.

interaction. For example, Child 3 exerts a significant influence on the target person’s activities,

such as "BuyMeal" and "Visit," highlighting the interdependencies of family members in

coordinating daily schedules.

Model Transferability

To demonstrate the transferability of the proposed model, we applied fine-tuning techniques

to three diverse regions: California, Puget Sound, and Mexico City. These areas represent a

wide range of different geographies and sizes, each exhibiting unique mobility patterns, as

shown in Fig. 5.9. The datasets highlight distinct variations in activity timing, duration,
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type, and daily frequency.

For activity end times, Puget Sound and California peak around 17:00-18:00, while Mexico

City shows three peaks, notably at 08:00 and 14:00-15:00. Puget Sound has more short

activities (less than 0.5 hours) compared to the other regions. Chain lengths vary, with

Mexico City having more 3-activity chains than other regions. "Home" is the most frequent

activity type across all regions, followed by "Work." Mexico City has a higher proportion of

"Home" and fewer "Work" activities than the U.S. regions. Activity types like "EatOut,"

"ChildCare," and "Visit" present in the U.S. datasets are missing from Mexico City HTS,

where "Exercise" is grouped under "Recreation." These differences highlight challenges in

standardizing activity classifications, emphasizing the need for region-specific fine-tuning of

the NHTS pre-trained model to capture unique mobility behaviors.

Our fine-tuning approach has proven highly effective, as evidenced in Table 5.7. The

fine-tuned models successfully adapted to different regions, maintaining robustness and

achieving accuracy levels comparable to those derived from the full NHTS dataset.

Table 5.7: Transfered Deep Activity model to other regions
Region Len. Start End Dur. Type EC F-Norm
California .004 .013 .033 .002 .007 83.6% .460
Puget Sound .030 .009 .051 .010 .012 79.5% .652
Mexico City .010 .056 .010 .006 .009 63% .339

To further illustrate the performance of our proposed method, we visualized detailed fine-

tuning results for each region, as illustrated in Fig. 5.9. Importantly, although the transfer

learning only use very few samples, the model’s predictions closely match the ground truth

across all metrics and regions, with only minor discrepancies. This demonstrates the model’s

effectiveness in capturing and reproducing diverse regional mobility patterns, validating the

success of the transfer learning approach in adapting to different urban environments.

157



Figure 5.9: Distribution comparison for datasets from three regions, showing significant
different activity patterns. Activity type labels are excluded because dataset of Mexico City
only contain 10 types of activity that are different from CA and Puget Sound region.
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Data Balancing Algorithm Evaluation

: Data balancing is performed on biased datasets to mitigate issues of skewed representation.

To demonstrate its effectiveness, we focused on the most biased dataset in this study: the

Mexico City dataset, specifically regarding activity length and activity type. The balancing

process reduces the overrepresentation of common activities such as work and school, while

enhancing the visibility of less frequent activities. It also reduced the dominance of 3-activity

chains, helping to achieve a more even activity distribution. Importantly, while other features

were adjusted, the overall activity duration distribution remained consistent. For better

visualization, the dominant "Home" activity was excluded.

The outcomes of this balancing effort is elaborated in Fig. 5.10. Fig 5.10. (a) and (c)

illustrate the adjusted distributions for activity type and length, with a noticeable reduction

in overrepresented activities and chains. Fig5.10. (b) highlights that the activity duration

distribution is preserved despite other changes. Fig 5.10. (d) depicts improvements in model

performance metrics, showing significant reductions in JSD for activity type, from 0.038

to 0.009, indicating over 76.3% improvement. Frobenius Norm is also improved by 59.4%,

from 0.834 to 0.339. Though temporal metrics shows smaller enhancements due to the focus

on activity duration, overall model performance benefits significantly from data balancing,

demonstrating its effectiveness in mitigating dataset biases.

5.6.4 Validation of ALA and Network Traffic Loading

To validate the results of the ALA method and assess the transportation system-level

performance of integrating the Deep Activity model with ALA in a large transportation

network, we conduct a series of experiments. As shown in Fig. 5.11 (a), the LA County

region is divided into eight sub-regions. We use 100,000 agents from the SCAG ABM dataset

as a training set to transfer the mobility model initially trained on the NHTS dataset, and

fine-tune the ALA to obtain reference distributions of distances and angles for each sub-region.
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Figure 5.10: Data balancing is performed on Mexico City.

The fine-tuned mobility generation model and ALA are then applied to a population sample

of 1 million to evaluate its validity and scalability.

Fig. 5.12 (a) presents the distribution of activity locations across sub-regions in LA

County. The results demonstrate that the ALA effectively captures the spatial distribution

of activity locations across all sub-regions. The cosine similarity of OD matrices between

SCAG ABM and ALA is 0.997, indicating the flow pattern generated by ALA closely aligns

with that of SCAG ABM. With the mobility patterns and assigned locations generated, we

further load the travel demand into the LA transportation network, as depicted in Fig. 5.11

(b). The system-level traffic performance is illustrated in Fig. 5.12 (b), which shows the

hourly VMT and traffic speed over 24 hours, aggregated across all freeway segments. From a

network-wide perspective, the proposed Deep Activity model and ALA collectively ensure

a well-aligned temporal distribution of traffic flow, yielding MAPEs of 4.97 for VMT and

1.16 for traffic speed when compared to benchmark results from SCAG ABM, demonstrating

strong system-level performance.

Beyond the system-wide traffic metrics, we conduct further analysis at the corridor level

by selecting a major segment from Interstate 405, a key freeway in the LA network. The

location of the selected freeway segment is highlighted by the purple rectangle in Fig. 5.12
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Figure 5.11: LA County Map and Freeway Network.
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Figure 5.12: Validation for ALA and traffic loading at network level.

(b). The 24-hour traffic volume and speed in both directions on the target corridor segment

are shown in Fig. 5.13 for comparison. To ensure the fidelity of the simulation, we include

real-world observation data from the Caltrans Performance Measurement System (PeMS) [37]

as a reference and compare the results from our proposed model with those from the SCAG

ABM data. Note that the MAPE is just calculated between the proposed model results and

SCAG ABM, as PeMS data serve only as a reference. As seen in Fig. 5.13, PeMS observations

indicate that both directions of the selected corridor experience high traffic volumes and

significant congestion during the daytime. Notably, congestion patterns differ between the

two directions: the northbound direction experiences major congestion throughout most of

the midday, from 6 AM to 8 PM, while the southbound direction’s primary congestion occurs

after 12 PM and continues into the evening. The MAPE for traffic volume in the northbound

and southbound directions is 5.85 and 9.32, respectively, while the MAPE for traffic speed in

the northbound and southbound directions is 4.45 and 4.36, respectively.

These comparisons suggest that the proposed Deep Activity model and ALA successfully

capture the dynamic temporal variations in traffic flow at the corridor level, demonstrating

the model’s good representation of the transportation system from both a travel demand

generation and traffic loading perspective.
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Figure 5.13: Validation for ALA and traffic loading at corridor level.

5.6.5 The Influence of Model Complexity and Data Size

The Deep Activity model was trained on the NHTS dataset, which has a modest sample

size, potentially limiting the training effectiveness of complex models like Transformers. In

this section, we explore the relationship between model complexity and data size in activity

generation tasks.

To determine the optimal balance between model complexity and dataset size, we evaluated

nine Transformer configurations on the NHTS dataset (180,000 samples). These models,

which varied in the number of decoder layers (D), encoder layers (E), and attention heads (H),

represented a spectrum of complexity, with parameters ranging from 434,000 to 2,344,000.

Our analysis, as illustrated in Fig. 5.14, indicated that models with fewer layers generally

performed better, as reflected by lower JSD values and Frobenius norms. Simpler decoder-only

models and those with a balanced encoder-decoder structure showed competitive results.
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Figure 5.14: Performance evaluation for transformer models with different complexity.

Moreover, increasing the number of attention heads had only a moderate effect on performance.

This suggests that, for the given dataset size, adding more layers or attention heads does not

guarantee improved performance and may lead to diminishing returns or increased complexity

without significant accuracy gains.

To further understand the scaling effects of data size on different models, we compared a

Transformer model with an LSTM model, as shown in Fig. 5.15. The Transformer exhibited

improved performance with increased data size, from 45,000 to 180,000 samples, whereas the

LSTM model’s performance plateaued, indicating its limited ability to benefit from larger

datasets. These results highlight the Transformer’s superior capacity for utilizing larger

datasets, aided by its parallel processing capabilities and global receptive field.

Model Selection. Given the modest sample size of the NHTS dataset, our findings

suggest that: 1) training on NHTS dataset, Transformer-based models with fewer layers

perform better; 2) the number of attention heads has moderate influence on the performance;

3) Transformer-based model leverage larger datasets better, with performance increased

when data size increases; 4) LSTM-based models reach their limitation in current dataset

and plateau with increased data size. Moreover, the explainability (as in Section 5.6.3) and
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Figure 5.15: Training data size effect on decoder-only transformer and LSTM.

transferability (as in Section 5.6.3) of transformer-based models resulted in choosing the

transformer-based Deep Activity model.

5.7 Conclusion and Future Work

In this study, we proposed the Deep Activity model, a generative deep learning approach for

human mobility modeling. We adopt the concept of "activity chains" to accurately represent

the daily mobility patterns of individuals by applying household travel survey data in deep

learning to model human mobility patterns, showcasing a pioneering method in the field. The

Deep Activity model demonstrated its ability to generate realistic activity chains with high

fidelity. Our experiments confirmed the model’s robustness and adaptability, showing strong

performance when fine-tuned with data from diverse regions such as California, the Puget

Sound region, and Mexico City.

Limitations and Broader Impacts. While we have established the Deep Activity

model, there are opportunities for further exploration. Our current approach is limited by

the existing Household Travel Survey (HTS) datasets, which lacks accurate location data.

Integrating precise location data into the network could enhance the model’s accuracy and
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applicability. However, current GPS datasets lack semantic information (e.g., activity type).

Therefore, human trajectory data mining to link semantic information with GPS data and

create new datasets is crucial [154]. Further integration of location data, activity data, and

social-demographic data would facilitate more comprehensive modeling and provide deeper

insights into human mobility patterns, supporting advanced applications in urban planning

and transportation management.
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Chapter 6

Deploying scalable traffic prediction

models in real-world large transportation

networks during hurricane evacuations

Traffic prediction plays a crucial role in facilitating traffic management during hurricane

evacuation. Precisely predicting traffic states enables safe and smooth deployment of resources

and effective operational strategies by traffic management agencies. However, accurate traffic

prediction during evacuation remains challenging due to heterogeneous human behaviors,

scarcity of traffic data during evacuation, and uncertainty of hurricane events. This study

presents a comprehensive modeling framework that leverages Multilayer Perceptron (MLP)

and Long-Short Term Memory (LSTM) models to capture long-term congestion patterns

and short-term speed patterns during hurricane evacuation. This framework takes into

account various input variables, including archived traffic data, spatial-temporal information

of the road network, and hurricane forecast data. The model has been deployed in a real-

world traffic prediction system for predicting traffic speed in Louisiana during hurricane

evacuation conditions. An evaluation was conducted using archived traffic data from 5

historical hurricanes. The MLP model achieved an accuracy of approximately 82% in
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predicting long-term congestion states over a 6-hour period within a 7-day hurricane-impacted

duration. Additionally, the short-term speed prediction model demonstrated prediction Mean

Absolute Percentage Errors (MAPEs) ranging from 7% to 13% for various evacuation horizons,

spanning from 1 hour to 6 hours. The evaluation results demonstrate the model’s potential in

enhancing traffic management during hurricane evacuation events. Moreover, the real-world

deployment showcases the model’s adaptability and scalability for traffic prediction in diverse

hurricane situations within large transportation networks.

6.1 Introduction

Over the past few years, several coastal regions in the United States have encountered

devastating hurricanes, leading to substantial property damage and loss of lives [138, 288].

These catastrophic events have triggered a renewed focus on the enhancement of evacuation

management systems. The effectiveness of evacuations crucially depends on the guidance of

evacuation routes and the management of traffic flow [96]. The accuracy of traffic congestion

forecasts before hurricanes and real-time traffic state predictions during hurricanes play

a pivotal role in achieving these objectives. Providing reliable traffic predictions allows

individuals to make well-informed decisions about evacuating, while also enabling emergency

management authorities to assess the necessity of issuing evacuation orders.

During recent hurricanes (e.g., Ida 2021), for instance, massive evacuations took place

in the southern Louisiana region, especially in its coastal parishes [203]. Severe congestion

occurred on several major evacuation routes due to mandatory evacuation orders impacting

hundreds of thousands of people [90]. To mitigate the impact of congestion, traffic management

agencies can implement various strategies, such as staged evacuation, hard shoulder running,

route guidance, and more. However, the success of these measures depends on the accuracy

of traffic prediction during the evacuation.

Modeling and predicting traffic conditions during hurricane evacuations presents three
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significant challenges. Firstly, the inherent uncertainty of hurricane events encompasses

variations in intensity, landfall locations, duration, and more [29]. All these uncertainties

lead to changes in the evacuation scale, evacuation direction, evacuation route, size of the

evacuating population, and so on, subsequently leading to diverse traffic patterns. Secondly,

the decision-making process of evacuees during such critical events is intricate [60,80,228],

including when to start evacuating, where to evacuate to, which evacuation route to choose,

and more. Unlike daily traffic, where commuters follow relatively predictable spatial-temporal

patterns, mass evacuations can yield entirely different traffic patterns. Thirdly, the scarcity of

high-resolution traffic observation data during historical hurricanes compounds the challenge

[6,222]. In specific regions, powerful hurricanes can be infrequent, resulting in limited available

traffic data for evacuation analysis. Take the State of Louisiana as an example, there were

only 4 major hurricanes (Category 3 or higher) making landfall on its coast from 2010 to 2023.

Moreover, hurricane damage may render road sensors inoperative during evacuations, further

constraining the dataset’s usefulness in studying spatial-temporal traffic patterns [247].

Regarding traffic prediction for evacuation scenarios, many previous papers utilized travel

demand modeling and traffic assignment simulations to represent the travel behaviors and

results of traffic flows during evacuations [148, 179, 223]. These approaches follow typical

traffic model principles, using either agent-based or four-step modeling methods to reflect the

travel demand generated by evacuation events and simulate the traffic in the transportation

network [166,267]. However, these models require a large amount of survey data to capture

people’s activity preferences and develop a series of choice models to generate travel demand,

which usually requires calibrating numerous parameters for each sub-model. The nature of

this type of modeling makes them a more appropriate tool to analyze existing hurricanes,

but they are unable to respond to the rapid evolution of upcoming hurricanes with variable

trajectory and intensities, due to the large amount of time and computing resources required

to develop these models.

On the contrary, data-driven models, which rely on massive historical data instead of

169



physical models, have drawn more attention in recent years as an important approach to

studying evacuation traffic [9,26,200]. With the growing number of detectors installed on

roadways, data-driven approaches are more often being leveraged to model traffic flows [94].

With data-driven models, the traffic patterns hidden in historical traffic data can be learned

and used to predict the traffic in the future. However, due to the scarcity of hurricane events,

the data-driven hurricane evacuation traffic analysis is still not very abundant. Existing

data-driven models also have various limitations, such as focusing only on one hurricane [221],

which cannot be used to predict hurricanes with variable properties; focusing on one or a few

segments of the roadway network [229], which cannot provide predictions for the large-scale

network; and requiring explicit certain types of data to run the model training, which cannot

be transferred to other regions with only a limited source of historical data.

In 2015, the Federal Highway Administration (FHWA) began developing the Integrated

Modeling for Road Condition Prediction (IMRCP) system, a tool that fuses real-time and

archived data with results from an ensemble of forecast and probabilistic models [6, 7]. One

of the system’s objectives is to enhance its capabilities in traffic predictions during hurri-

cane/tropical storm season for states along the southern coast such as Louisiana, Mississippi,

and Alabama. The model proposed in this study, as the core traffic prediction module in

the IMRCP system, aims to address three gaps in the field of hurricane evacuation traffic

prediction. First, while both long-term planning and short-term response are essential in

the planning and management of hurricane evacuation events [19], current emergency traffic

prediction models predominantly focus on short-term, real-time predictions due to limitations

in the scope of model design. Secondly, hurricane evacuations entail the movement of a sig-

nificant population across extensive roadway networks, often spanning different cities [19, 72].

However, most existing evacuation traffic models concentrate on specific key corridors or

selected road segments, overlooking the broader spatial-temporal correlations across the entire

network and their impact on traffic patterns. Lastly, many of the prevailing approaches exhibit

a high dependence on data quality and the richness of traffic data features [221, 222, 229].
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This focus on comprehensive data requirements often neglects scenarios where a complete

dataset is frequently absent in many hurricane-impacted regions, such as cases where only

traffic speed data is available.

To address these gaps, this study proposes a multi-scale modeling framework utilizing

both Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) models. The

objective is to offer a full-spectrum prediction that encompasses both long-term congestion

patterns and short-term speed value predictions for a large-scale transportation network. The

primary contributions of this study are summarized as follows:

• Proposing an integrated hurricane evacuation traffic prediction framework:

This study developed an integrated hurricane evacuation traffic prediction pipeline

that encompasses the entire forecast lifecycle, including data acquisition, preprocessing,

model training, and deployment. This framework has demonstrated its applicability in

a real-world traffic prediction system, IMRCP, and has been proven to provide support

for hurricane evacuation management and planning.

• Facilitating multi-scale and network-wide evacuation traffic predictions:

Utilizing a link-based modeling approach augmented with spatial attributes and dynamic

hurricane-related features, our model effectively captures intricate spatial-temporal

dependencies between hurricane dynamics and traffic patterns within a comprehensive

transportation network. This capability empowers the model to make predictions

regarding both long-term congestion states and short-term traffic speeds across an

entire state-level transportation network in the context of hurricane evacuation.

• Applicability to sparse datasets: Our model introduces a specialized feature

engineering and data balancing strategy tailored for hurricane evacuation scenarios,

effectively addressing historical data with limited traffic attributes and a scarcity of

hurricane records. This strategic approach results in robust prediction performance,

facilitating the model’s applicability in scenarios characterized by the absence of
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comprehensive traffic or hurricane data.

6.2 Related Work

6.2.1 Model-based evacuation traffic modeling

The majority of model-based traffic evacuation analyses primarily focus on studying the

evacuation decisions of evacuees from a behavioral perspective [223]- [148]. Key aspects

influencing evacuation travel behaviors include evacuation decisions [270]- [98], estimated

travel time [97], departure time [233], and destination choices [224]. While numerous studies

have explored the impact of individual decision-making processes during evacuation [166] [267]

on resulting travel demand, these approaches mainly rely on traditional methods, such as

collecting survey data, which may prove inadequate for real-time hurricane evacuation

scenarios. Lindell et al. [148] summarized the modeling procedures and components of

large-scale evacuation processes; however, only a few models have been validated, and they

are validated mainly at regional scales [66] [176] [279]. Among model-driven approaches, only

a limited number of model-based methods have addressed traffic patterns during evacuation,

primarily centered on analyzing highway capacity loss during the evacuation process [61] [244].

Moreover, the process of gathering and calibrating parameters for model-based approaches

often proves laborious and time-consuming, leading to a growing inclination towards utilizing

data-driven methods as a viable alternative.

6.2.2 Data-driven evacuation traffic modeling

Data-driven methods enable the prediction of future traffic states by analyzing historical

traffic data to discern traffic patterns. Several factors contribute to the growing popularity of

data-driven approaches: firstly, model-based approaches demand tedious, labor-intensive, and

time-consuming calibration efforts [86]. Secondly, the widespread deployment of diverse traffic
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sensors on roadway networks facilitates the use of methods reliant on extensive archived

traffic data [200] [84] [258]. Thirdly, data-driven methods offer streamlined and generalized

model training and updating frameworks, easing their transferability to different regions

with reduced additional model development and maintenance efforts [26]. These data-driven

approaches find applications in various scenarios, such as speed prediction [47], travel time

prediction [9], and traffic flow prediction [94].

However, early-stage data-driven methods predominantly rely on simplistic machine

learning models such as Support Vector Machine (SVM) [281], K-Nearest Neighbor (KNN)

[283], and Artificial Neural Network (ANN) [211]. Their limitations lie in handling large-scale

networks and complex traffic patterns. As a consequence, an upward trend involves employing

deep neural networks for traffic prediction, including Recurrent Neural Networks (RNN) [180]

[236] [248], Convolutional Neural Networks (CNN) [221] [229], Graph Convolutional Neural

Networks (GCN) [8] [68], and their combined forms [6] [42]. Nevertheless, in the context of

hurricane evacuation scenarios, the scarcity of specific traffic data during hurricane periods

poses additional challenges in adopting the aforementioned models, which demand extensive

data for robust performance.

Although the above methods have been used in the general traffic prediction field, to

the best of our knowledge, only a few papers have touched on using deep learning models

to predict traffic during hurricane evacuation [223] [221] [229]. The problem with these

studies is that they focus only on one small segment from the freeway network and only

use one historical hurricane for training, validation, and testing, which lack scalability and

transferability. The only paper that has studied the network-level traffic prediction issue is

presented by Rahman et al. [222]. This model first introduced network-wise traffic prediction

using a graph convolution LSTM model. However, the author only used Hurricane Irma’s

historical traffic data for model development and testing, therefore the model’s performance

is unknown if implemented in other hurricanes.
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6.3 Methods

6.3.1 Methodology Overview

In general traffic predictions, the prediction can be divided into short-term and long-term

forecasts [263]. A time span of fewer than one hour is usually considered a short-term

forecast, otherwise, it is considered a medium and long-term forecast [109] [282]. In the

context of emergency evacuation, however, the requirement for long-term traffic forecasts

extends far beyond one hour into the future. Due to the nature of hurricane events where

hurricanes continuously change intensity and position, the planning for hurricane evacuation

events requires two-fold support from the traffic prediction model [19]: 1) long-term traffic

information that can be generated well ahead of the hurricane (e.g., multiple days) to assist

in advance planning and coordination of potential support, and 2) short-term real-time

prediction to provide dynamic changes in the traffic pattern (e.g., a few hours) for quick

emergency response.

Based on these two requirements, our multi-scale hurricane evacuation traffic prediction

model proposes two modules that tackle different aspects of the evacuation planning require-

ments: 1) a long-term prediction module, which provides a prediction with a long span into

the future with low time granularity, this helps initiate the evacuation plan days before

the hurricane makes landfall, and 2) a short-term model, which focuses on the near future

but with high time granularity, this helps evacuation agencies perform timely responsive

operations to the most updated road traffic conditions based on the real-time traffic data fed.

Fig 6.1 illustrates the comprehensive framework of the hurricane evacuation traffic predic-

tion model proposed in this study. This model utilizes three main categories of input data:

traffic data, hurricane data, and network geospatial data. This comprehensive set of input

features enables the model to learn the interdependencies between various types of hurricane

events and the corresponding traffic patterns during evacuations. The input data encompasses

both historical data from past hurricane evacuation events for training purposes and real-time
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Figure 6.1: The framework of the multi-scale hurricane evacuation traffic prediction model

175



data during active hurricane events for deployment. The model proposed in this study, being

one of the core traffic prediction components within the IMRCP system [7], utilizes IMRCP’s

integrated data sources for both development and deployment phases. During the model

development phase, multi-source historical data from previous hurricane events are extracted

from the IMRCP system and leveraged to train both long-term and short-term prediction

models. In the deployment phase, the model utilizes the pre-trained prediction model as

a predictor and leverages real-time data from IMRCP to provide predictions for both the

long-term congestion state and short-term traffic speed. After each new hurricane event,

the data is archived and subsequently transferred to the model development module for the

purpose of updating the prediction models.

6.3.2 Long-term Congestion State Prediction Model

The long-term model’s primary objective is to offer multi-day predictions concerning the

location and timing of congestion during a hurricane. Many existing multi-day traffic

analysis studies use a 7-day or one-week duration as the minimum duration for traffic pattern

analysis [26] [221]. Therefore, we also adopt a 7-day span as the prediction duration for

long-term congestion prediction during hurricane evacuation. To encompass traffic patterns

both before and after the hurricane, the 7-day prediction horizon is defined as follows: 3 days

before the landfall, the day of landfall, and 3 days after the landfall. Given the extended

prediction duration, the long-term model emphasizes the network-level spatial-temporal

distribution of potential congestion at a sparse time resolution (e.g., 6 hours over 7 days),

rather than providing precise speed value predictions at a high temporal resolution.

In contrast to short-term traffic prediction, where real-time traffic data continuously feeds

into the model, the long-term prediction model needs to provide 7-day predictions without any

online data input during this period. This technical challenge renders regression prediction

impractical. Consequently, we transformed this problem into a multi-class classification task,
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Figure 6.2: Model framework for long-term hurricane evacuation traffic prediction model

predicting the congestion state for each sub-segment (e.g., 6-hour) across the 7-day duration.

Assume the input feature for a single time slot can be represented by:

Si = {xh, xt, xsp, xl} (6.1)

The output can be expressed as:

Ci = MC(Xi) (6.2)

In this study, we adopted the MLP as the classification model for the long-term congestion

state prediction. The MLP model proves particularly suitable for complex and non-linear

classification tasks with intricate relationships between input features and the target class.

The model’s hidden layers enable it to learn intricate patterns and representations from

the data, effectively handling complex decision boundaries and capturing high-dimensional

feature interactions. Compared to traditional classification models like Logistic Regression,

SVM, or Decision Trees, the MLP exhibits greater power in modeling complex relationships

and achieving higher accuracy [223] [86] [200]. To prepare the training samples, we conduct

data aggregation and annotation on original high-resolution (e.g., 5-minute interval) traffic

data from historical hurricanes, identifying congestion states for each 6-hour period across
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the 7-day horizon. For determining the congestion state, we adopt the speed performance

index (SPI) from previous traffic congestion studies [68], representing the ratio of average

speed to the maximum permissible speed:

SPI =
vmean

vp
× 100% (6.3)

In this study, we use the weekly average speed from the previous week to represent the

maximum permissible speed. Congestion states are categorized as heavy congestion (SPI <

50%), light congestion (50% < SPI < 75%), and no congestion (SPI > 75%).

Fig 6.2 illustrates the model framework for the long-term congestion state prediction

module. This model receives various sources of data as input, including historical traffic

data, historical hurricane data, and network geospatial data. Upon integrating these diverse

features, the samples are labeled using the criteria outlined in Equation 6.3. Subsequently,

we conduct data balancing based on congestion labels to ensure the dataset’s impartiality

with respect to different classes. Following this, we normalize the input data and feed it into

the core training module. For the multi-class classification task in this study, we employ an

MLP neural network, comprising an input layer, multiple hidden layers, and an output layer.

Firstly, the input layer serves as the initial processing stage, receiving and transmitting

input data to subsequent layers. Each node (neuron) in this layer corresponds to a specific

feature or attribute present in the input data. The input features utilized in our model

can be categorized into four distinct groups. These groups encompass link features, such

as the number of lanes, directions, and non-evacuation average speed, providing essential

transportation link characteristics. Spatial features, including latitude, longitude, and distance

to the landfall location, contribute valuable spatial context. Temporal features, such as time

of day and time to landfall, offer crucial temporal information. Lastly, the hurricane features,

encompassing forecast hurricane category and potential landfall location, provide essential

hurricane-related data.
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Secondly, the hidden layer plays a pivotal role as intermediary layers responsible for

information processing. Each node in a hidden layer receives inputs from all nodes in the

preceding layer and forwards its output to all nodes in the subsequent layer. This configuration

allows the neural network to learn intricate patterns and relationships present in the data

across different categories of features in the input layer.

Lastly, the output layer generates the final predictions or outputs of the model. In our

long-term prediction model, the output layer offers predictions among three congestion labels:

no congestion, light congestion, and heavy congestion. This final prediction from the output

layer reflects the model’s evaluation of the congestion state during the hurricane evacuation

process.

6.3.3 Short-term Traffic Speed Prediction Model

The short-term model focuses on accurately predicting speed values for each link during the

7-day hurricane impact horizon, as defined in the problem statement. It aims to forecast

speeds for a short-term horizon ranging from one to several hours into the future, given a

particular start time. The short-term speed prediction is framed as a many-to-one time series

regression problem, where the input includes time sequence data (e.g., speed data for the last

24 hours) along with link attributes, spatial-temporal attributes, and the latest hurricane

attributes. The output is the predicted speed value after the specified prediction horizon

from the current time step.

Assume we have a sequence of data for the last N time steps:

Si = {y1, y2, . . . , yN} (6.4)

where each data point yi contains the traffic speed, link attributes, hurricane forecast,

and spatial-temporal features for a specific link. We want to predict the speed value that is k

time steps from now:
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Figure 6.3: Model framework for short-term hurricane evacuation traffic prediction model

YN+k = TS(X) (6.5)

where k is defined as the prediction horizon.

Fig 6.3 illustrates the model framework for the short-term traffic speed prediction module.

The short-term module utilizes data resources similar to the long-term module as input.

Following the integration of features, a crucial step in the short-term module involves

partitioning the raw time-series data into small sequential samples of equal sequence length.

To maximize the generation of samples, especially in cases of limited time-series data during

historical hurricane evacuation events, we have adopted a sliding-window approach that has

previously been employed in other time-series forecasting problems. This approach allows us

to extract numerous small sequential data segments from the same road link sample over

multiple days. Subsequently, we also perform data balancing on the partitioned samples.

In this stage, we utilize pre-generated labeled data from the long-term module to ensure

a balanced representation of time-series samples across different congestion states. After

balancing and normalizing the pre-processed data, we then proceed to feed the data into the

model training procedure.

Given the complex non-linearity and spatial-temporal dependencies between speed pat-
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terns, links, and hurricanes, the short-term prediction adopts LSTM, an advanced form of

RNN that can overcome the disadvantages of RNNs such as gradient vanishing when dealing

with long input sequences. LSTM is specifically designed to handle sequential data, making it

highly effective in capturing long-term dependencies [6]. These characteristics render LSTM

a suitable choice for real-time traffic prediction during hurricane evacuation scenarios.

The cell state is a crucial component of the LSTM as it serves as a memory that runs

through the entire sequence. It allows relevant information to persist over long sequences,

enabling the model to capture long-term dependencies effectively. The cell state is updated at

each time step using the gates and the previous cell state. In an LSTM, the cell state (hidden

state) is divided into two states: short-term state (ht) (similar to an RNN) and long-term state

(ct). The long-term state (ct) stores the information to capture the long-term dependencies

among the current hidden state and previous hidden states over time. Traversing from the

left to the right, the long-term state passes through a forget gate and drops some memories

and then adds some new memories via an additional operation. A fully connected LSTM cell

contains four layers (sigma and tanh), and the input vector (xt) and the previous short-term

state (ht−1) are fed into these layers. The main layer uses tanh activation functions which

output (gt). The output from this layer is partially stored in the long-term state (ct). The

other three layers are gate controllers using logistic activation functions, and their output

ranges from 0 to 1. The forget gate controls which parts of the long-term state should be

erased, while the input gate in the middle decides which parts of the input should be added.

The output gate finally controls which parts of the long-term state should be read and output

at this time step (yt).

Throughout the sequential processing, the LSTM iteratively updates its cell state and

hidden state, considering the current input and the information from previous time steps.

The final hidden state at the last time step can be used for making predictions or passed as

input to other layers of the neural network for further processing. This capacity to control

the flow of information through the cell state and the presence of the forget, input, and
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output gates enable the LSTM model to learn and capture long-term dependencies effectively,

making it a powerful tool for various tasks involving sequences.

Figure 6.4: IMRCP system integration diagram

6.4 Experiment Design

6.4.1 Data Preparation

In 2015, the FHWA Road Weather Management Program (RWMP) began developing the

IMRCP system to investigate and capture the potential for operational improvements [6].

The resulting IMRCP tool incorporates real-time and archived data from various data sources

with results from an ensemble of forecast and statistic models, fusing them together in order

to predict the current and future overall road/travel conditions for travelers, transportation

operators, and maintenance providers. Besides different types of forecasts, IMRCP also

provides flexible reporting tools and an interactive map to meet those needs. The data
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that populates these user interface features are kept in a data store that contains collected

data and data generated through forecasting components. An illustration of the correlation

between each component in the IMRCP system is shown in Fig 6.4.

Figure 6.5: Roadway network of Louisiana

The latest phase of IMRCP is engaging multiple state agencies in Louisiana, Mississippi,

and Alabama to apply IMRCP capabilities in order to expand situational awareness, planning,

and response to extreme weather and operational events, such as hurricane evacuations, as

highlighted in the IMRCP Module in Fig 6.4. The Phase 5 IMRCP adopts the traffic speed

prediction model proposed in this study as the hurricane evacuation traffic speed prediction

module. The model is developed based on historical traffic speed and hurricane data from

the past four years in the state of Louisiana. The transportation network of Louisiana is

shown in Fig 6.5. There are about 8,000 segmented roadway links along the evacuation routes

suggested by LADOTD, which contain all interstate freeways and some U.S. highways in

Louisiana.

The total dataset contains five separate datasets corresponding to 5 hurricanes that made

landfall in Louisiana from 2019 to 2021, as shown in Table 6.1. Each dataset covers a 7-day

time range, including 3 days before landfall, the day of landfall, and 3 days after the landfall.
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Table 6.1: Dataset description

The speed data is recorded at an interval of 5 minutes, as shown in Fig 6.6. In the example

from Fig 6.6, we selected a link on westbound I-10 at (30.19 N, 93.32 W) and plotted its speed

across the 7-day hurricane horizon. We can find that the 7-day speed pattern illustrates a

clear congestion pattern lasting for over 20 hours about a day prior to the hurricane’s landfall,

which could be regarded as evacuation-induced traffic congestion. The hurricane-related data

are extracted from the National Hurricane Center (NHC) [203].

Table 6.2 provides the description of variables used for model training. As shown in

Table 6.2, the variables are categorized into four groups: link-related, spatial, temporal, and

hurricane-related. The only different variables for the long-term and short-term models are

the temporal variables. In the long-term model, the time-of-day variable has four classes,

each representing a 6-hour period of the day, and the time-to-landfall variable is calculated

as the number of 6-hour periods from the current time to the landfall time. On the other

hand, for the short-term model, the temporal variables adopt the hour of the day instead of

the time of the day, and the time-to-landfall is defined as the number of hours to the landfall

time.

6.4.2 Baseline Models

To evaluate the significance and benefits of using the MLP and LSTM, we also tested a

few other machine learning models as a baseline performance reference. By comparing the

results of the proposed models to the baseline models, we can better understand whether the
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Figure 6.6: Example speed data during hurricane evacuation: (a) Link location; (b) 7-day
speed plot of an example link during hurricane Ida
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Table 6.2: Input variable description

Table 6.3: Summary of model parameters
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additional complexity of the new model is justified by its performance gains.

For long-term congestion pattern prediction, we selected the following models as baseline

models:

• K-nearest neighbors algorithm (KNN). KNN is a non-parametric, supervised

learning classifier, which uses proximity to make classifications or predictions about

the grouping of an individual data point. While it can be used for either regression or

classification problems, it is typically used as a classification algorithm, working off the

assumption that similar points can be found near one another.

• Support vector machine (SVM). SVM is a supervised learning model used mainly

for binary classification tasks, but it can be extended to multi-class classification as well.

The primary objective of SVM is to find the optimal hyperplane that best separates

the data points belonging to different classes in a high-dimensional feature space.

For short-term traffic speed prediction, we selected the following two models as baseline

models:

• AutoRegressive Integrated Moving Average (ARIMA). ARIMA is a time series

forecasting model used for analyzing and forecasting time-dependent data. It is a

combination of three components: AutoRegressive (AR), Integrated (I), and Moving

Average (MA). ARIMA is widely used for time series forecasting when the data exhibits

trends, seasonality, and autoregressive patterns.

• Vanilla RNN model. Vanilla RNN, also known as Simple RNN, is the basic and

original form of a recurrent neural network. It is a type of artificial neural network

designed for processing sequential data, such as time series, natural language, and audio

data. The basic RNN has a feedback loop that allows information to persist from one

time step to the next, making it suitable for sequential data.
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For both the long-term and short-term prediction models, we used a stratified 6:2:2

data split for the training, validation, and testing sets, repeating this process five times for

cross-validation. In each iteration, the model was trained on the training set and evaluated on

the testing set of the current split. The results from these five iterations were then averaged

to provide a reliable assessment of model performance. Table 6.3 presents a summary of

the estimated parameters for the MLP and LSTM models in our study. We implemented

all the models in Python. Unless otherwise specified in Table 6.3, we have used the default

parameters of PyTorch for MLP and LSTM.

6.4.3 Evaluation Metrics

A comprehensive set of evaluation metrics was chosen to evaluate the prediction performance

of both the long-term congestion prediction model and the short-term speed prediction model.

For the long-term speed pattern prediction model, which involves a multi-class classification

problem, we utilized elements from the confusion matrix, specifically True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives (FN), to calculate the following

performance metrics:

• Accuracy is the most straightforward metric and represents the ratio of correctly

predicted samples to the total number of samples in the dataset. It measures the overall

performance of the model across all classes:

accuracy =
TP + TN

TP + TN + FP + FN
(6.6)

• Precision, also known as Positive Predictive Value (PPV), measures the proportion

of true positive predictions (correctly predicted positive samples) out of all positive

predictions made by the model. It indicates how many of the positive predictions are
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actually correct:

precision =
TP

TP + FP
(6.7)

• Recall is the proportion of true positive predictions (correctly predicted positive

samples) out of all actual positive samples in the dataset. It indicates the model’s

ability to correctly identify positive samples:

recall =
TP

TP + FN
(6.8)

• F1 score is the harmonic mean of precision and recall. It provides a balance between

precision and recall and is useful when both false positives and false negatives are

equally important. The F1 score ranges from 0 to 1, with 1 being the best possible

score:

F1 =
2× precision × recall

precision + recall
(6.9)

In the evaluation of hurricane congestion prediction, recall is more important than precision.

This is because ensuring the safety of evacuating residents is the top priority. Predicting

congested road links allows authorities to anticipate potential bottlenecks and take proactive

measures to prevent evacuees from being exposed to hazardous conditions. Therefore, our

model prioritizes whether the majority of actually congested links are predicted as congested,

even if this means the results come with a high number of false positives.

For the short-term model, we utilized the following metrics:

• Root Mean Squared Error (RMSE) is a measure of the average difference between

the predicted values and the actual target values. It is calculated by taking the square

root of the mean of the squared differences between the predicted and actual values:

RMSE =

√√√√ 1

N

N∑
i=1

(yitrue − yipredict)
2
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• Mean Absolute Error (MAE) is another measure of the average difference between

the predicted values and the actual target values. It is calculated by taking the mean of

the absolute differences between the predicted and actual values. Unlike RMSE, MAE

does not square the errors, so it treats all errors equally regardless of their magnitude:

MAE =
1

N

N∑
i=1

|yitrue − yipredict|

• Mean Absolute Percentage Error (MAPE) is a relative measure of the average

difference between the predicted values and the actual target values. It calculates the

percentage difference between the predicted and actual values and then takes the mean

of these percentage differences:

MAPE =
1

N

N∑
i=1

|yitrue − yipredict|
yitrue

× 100

6.5 Results

6.5.1 Long-term congestion state prediction

Table 6.4 presents the prediction performance of various models in forecasting long-term

congestion patterns during hurricane evacuation. Our proposed MLP model stands out,

outperforming all baseline models across all three congestion labels and performance metrics.

This outcome highlights the efficacy of the MLP architecture, with its multiple hidden layers

and activation functions, in effectively handling complex and non-linear relationships between

input features and target classes, particularly in the context of hurricane congestion patterns.

The MLP model achieves an impressive total accuracy of 82%, indicating its ability

to accurately predict the locations and timings of congestion during hurricane evacuation

periods. Notably, the prediction performance for heavy congestion surpasses that of light
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Figure 6.7: Example speed data during hurricane evacuation: (a) Link location; (b) 7-day
speed plot of an example link during hurricane Ida
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congestion in all three models (KNN, SVM, and MLP). The precision, recall, and F1 scores

are consistently higher for heavy congestion compared to light congestion. This discrepancy

can be attributed to the nature of heavy congestion, which is more likely to occur in specific

locations, such as freeways outbound from cities, and during specific time periods, like one

or two days before hurricane landfall. As a result, its spatial-temporal pattern exhibits a

stronger correlation with temporal events, such as hurricane evacuations. In contrast, light

congestion may occur due to various localized incidents and may not necessarily correlate

directly with hurricane evacuation. Consequently, the spatial and temporal patterns for light

congestion are less significant compared to heavy congestion.

Table 6.4: Performance of MLP and other baseline models on long-term congestion prediction
(average ± standard deviation across 5 experimental repeats)

It is worth noting that while the MLP model only increases the overall prediction accuracy

from 79% (SVM) to 82%, its impact on recall for congestion is quite significant. The recall

for light congestion increases from 76% to 83%, and for heavy congestion, it improves from

78% to 86%. These enhancements indicate that despite the MLP introducing more false

positives, the prediction performance for real-congested links has been greatly improved. This

highlights the importance of adopting the MLP model in traffic congestion prediction during

hurricane evacuation.

To visually demonstrate the spatial distribution of hurricane-induced congestion during

evacuation, we focused on a specific day (one day before hurricane Ida’s landfall) to evaluate
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the performance of our long-term congestion pattern prediction model. Fig 6.7 illustrates a

comparison between the ground truth and prediction results generated by the MLP model

for four distinct time periods on the aforementioned day.

The left column of maps displays the actual locations of congestion throughout the four

time periods, while the right column depicts the predicted congestion locations. Congestion

status is represented by three colors: blue indicates no congestion, orange indicates light

congestion, and red denotes heavy congestion. Analyzing the ground truth congestion maps,

we observe that congestion predominantly occurs along the east-west direction of the freeway,

near the Louisiana coastline. This observation suggests that the primary evacuation routes

are directed either westward towards Texas or eastward towards Mississippi. Temporally,

congestion initiates during the morning period (6 AM to 12 PM), intensifies during the

afternoon period (12 PM to 6 PM), and persists into the evening period. This distinctive

pattern differs from daily recurring traffic congestion, typically concentrated within city

roadways during peak commuting hours. In contrast, hurricane-induced congestion can

manifest on freeways connecting cities and endure for extended hours.

Examining the prediction results shown in the right column maps, we find that the MLP

model successfully identifies congested roadway segments during each time period, closely

aligning with the actual congested locations. The predicted congested links can cover more

than 85% of actual congested links across different time periods on the day before hurricane

Ida made its landfall. However, it is worth noting that the predicted results occasionally show

heavy congestion labels on road segments with either no congestion or only light congestion.

This discrepancy suggests that the model may have overfitted the heavy congestion label

compared to the other two labels, which corresponds to the recall results shown in Table 6.5.

In conclusion, our long-term congestion pattern prediction model, based on the MLP

architecture, effectively captures and predicts the spatial distribution of hurricane-induced

congestion during evacuation. It demonstrates a comprehensive understanding of congestion

patterns across various time periods on the day before hurricane Ida’s landfall. Nonetheless,
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some overfitting issues were observed, especially concerning heavy congestion predictions. As

a result, further refinement and optimization of the model may be required to enhance its

performance and accuracy in predicting congestion levels during such critical events.

6.5.2 Short-term traffic speed prediction

Table 6.5 presents a comprehensive comparison of prediction performance among different

models under various prediction horizons. It is important to note that all models demonstrate

high accuracy when dealing with recurring patterns and non-congested links. However, for

the evaluation in Table 6.5, we focused exclusively on links experiencing heavy congestion

throughout the 7-day hurricane period to assess their true performance in challenging scenarios.

Table 6.5: Performance of LSTM and other baseline models on long-term congestion prediction
(average ± standard deviation across 5 experimental repeats)

From the results presented in Table 6.5, it is evident that the LSTM model consistently

outperforms the other two models across all three metrics. As the prediction horizon increases,

all models experience a decrease in prediction accuracy, with the errors between predicted

and true speed values becoming more pronounced. Notably, the LSTM model exhibits

the remarkable ability to minimize prediction errors even when dealing with a long 6-hour

prediction horizon. Interestingly, when comparing the performance of LSTM with Vanilla

RNN and ARIMA, it becomes apparent that the LSTM model’s 6-hour prediction performance
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surpasses the 1-hour and 3-hour predictions of the other two models. This finding suggests

that the LSTM model effectively captures sequential dependencies between previous and

future timesteps, enabling it to discern correlations between hurricane features and speed

patterns more adeptly than the baseline models.

The results in Table 6.5 underscore the superiority of the LSTM model in tackling

challenging congestion scenarios and extending its predictive capabilities to longer horizons.

The LSTM’s ability to understand and leverage sequential dependencies enables it to excel in

learning the intricate relationships between hurricane features and speed patterns, setting it

apart from the Vanilla RNN and ARIMA models. These findings solidify the LSTM model’s

potential as a valuable tool for traffic prediction tasks, especially during hurricane-induced

congestion periods.

Figure 6.8: Comparison of prediction performance with LSTM and baseline models during
hurricane Ida ((a), (b), (c): test link 1 with 1-, 3-, and 6-hour horizon; (d), (e), (f): test link
2 with 1-, 3-, and 6-hour horizons)

To intuitively present the performance of the short-term traffic speed prediction model,

we selected two test links and plotted the continuous speed prediction over a multi-day range.

As seen in Fig 6.6, link 1 is on northbound I-59 near the border with Mississippi, and link 2

is on westbound I-10 near the border with Texas. Both links are on major evacuation routes
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of Louisiana during hurricane Ida. Fig 6.8 illustrates the prediction performance of LSTM

and baseline models on two selected test links over a three-day range, from two days before

hurricane Ida made its landfall to the day of landfall. The top three plots (Fig 6.8 (a), (b)

and (c)) represent the results for test link 1, while the bottom three plots (Fig 6.8 (d), (e)

and (f)) correspond to test link 2. Both tests were conducted using prediction horizons of 1,

3, and 6 hours. Several key findings emerged from the analysis:

• LSTM predictions exhibit reduced delay compared to ground truth when compared

to baseline models. For a 1-hour prediction horizon, all three models demonstrate

minimal delay in predicting congestion periods. As the prediction horizon increases,

the LSTM model continues to accurately capture the start and end of congestion, while

the baseline models show a substantial delay. Specifically, when the prediction horizon

is extended to 6 hours, the ARIMA model can barely predict the onset of congestion,

and the Vanilla RNN model’s predicted onset time is 4 to 5 hours later than the actual

congestion. A similar trend is observed when predicting the recovery of traffic speed

from congestion. Both the ARIMA and Vanilla RNN models struggle to accurately

predict the return of speed, with predicted recovery times being 2-3 hours late using a

3-hour prediction horizon and 5-6 hours late using a 6-hour prediction horizon.

• The LSTM model also demonstrates superior performance in predicting the lowest

speed during periods of heavy congestion. For a 1-hour prediction horizon, both LSTM

and Vanilla RNN models provide reasonably accurate predictions for the lowest speed.

However, as the prediction horizon increases, the performance of the baseline models

significantly deteriorates, while the LSTM model maintains its accuracy with only

around a 5 to 10 mi/h error on the test links. Notably, when the horizon is set to 6

hours, the speed difference between the real and predicted lowest speed is approximately

30 mi/h for the Vanilla RNN model and 45 mi/h for the ARIMA model, in contrast

to the LSTM’s 10 mi/h difference. These findings suggest that the baseline models
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are inadequate in providing valid predictions, not only in speed magnitude but also in

the timing of congestion when the prediction horizon is relatively large. Additionally,

the results demonstrate that the LSTM model effectively handles the spatial-temporal

relationships required for short-term speed prediction, even when predicting speed

values several hours into the future.

In conclusion, the LSTM model outperforms the baseline models in terms of reduced

delay, accurate prediction of congestion periods, and the ability to predict lowest speeds

during heavy congestion periods. The findings highlight the LSTM model’s capability to

handle spatial-temporal dependencies in short-term speed prediction, making it a promising

approach for traffic forecasting applications.

6.6 Conclusion

In this study, we discussed and defined the research question of network-level traffic speed

prediction during hurricane evacuation with limited traffic data scenarios. A comprehensive

model framework adopting the MLP and the LSTM is developed to learn the long-term

congestion pattern and short-term speed pattern during hurricane evacuation. A case study

using the Louisiana evacuation route network and archived speed data from 5 historical

hurricanes demonstrated that the MLP long-term congestion state prediction achieved about

82% accuracy in predicting the congestion state of 6-hour period across the 7-day horizon.

Additionally, the short-term speed prediction model achieved prediction MAPE from 7%

to 13% for different horizons, ranging from 1 hour to 6 hours. Notably, both the MLP and

LSTM outperformed other baseline models in terms of prediction accuracy. The case study

results demonstrate that the proposed model framework presents a valuable contribution

for efficient traffic management by offering a holistic approach to predict traffic conditions

during hurricane events in a large-scale transportation network.
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As for the future research directions, firstly, it is necessary to extend the current horizon

for both MLP and LSTM and explore the upper bound of the prediction performance with

extended horizons. Secondly, while the current model focuses only on traffic speed due to

source data limitation, we should consider incorporating the output layer with additional

traffic-related features if sufficient traffic data becomes available in the future.
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Chapter 7

Leveraging data-centric AI for work zone

traffic impact prediction

Work zone is one of the major causes of non-recurrent traffic congestion and road incidents.

Despite the significance of its impact, studies on predicting the traffic impact of work zones

remain scarce. In this study, we propose a data integration pipeline that enhances the

utilization of work zone and traffic data from diversified platforms, and introduce a novel

deep learning model to predict the traffic speed and incident likelihood during planned work

zone events. The proposed model transforms traffic patterns into 2D space-time images for

both model input and output and employs an attention-based multi-context convolutional

encoder-decoder architecture to capture the spatial-temporal dependencies between work

zone events and traffic variations. Trained and validated on four years of archived work zone

traffic data from Maryland, USA, the model demonstrates superior performance over baseline

models in predicting traffic speed, incident likelihood, and inferred traffic attributes such as

queue length and congestion timings (i.e., start time and duration). Specifically, the proposed

model outperforms the baseline models by reducing the prediction error of traffic speed by

5% to 34%, queue length by 11% to 29%, congestion timing by 6% to 17%, and increasing

the accuracy of incident predictions by 5% to 7%. Consequently, this model offers substantial
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promise for enhancing the planning and traffic management of work zones.

7.1 Introduction

The rising load on road infrastructures driven by population growth has resulted in an

increased demand for road maintenance and reconstruction activities [75]. These work zone

events often involve lane closures that lead to more traffic crashes and delays caused by

reduced road capacity. Unlike the usual congestion seen during peak traffic hours, work

zone activities typically create non-recurring, unexpected travel delays. According to the

Federal Highway Administration [78], work zones account for nearly 24% of non-recurring

traffic congestion. Additionally, work zone events significantly endanger the safety of both

travelers and workers; for instance, in 2022, traffic accidents in work zones resulted in 891

fatalities [78].

To address safety and mobility requirements during highway maintenance and construction,

and to align with the expectations of the travelers, it is important for traffic management

and work zone planning agencies to have an accurate estimation of how work zone events will

impact traffic. Modeling and predicting work zone impacts can enhance an agency’s decision-

making as well as its overall understanding of the factors affecting work zone decisions [76].

Research on predicting the impact of work zones on traffic is limited. Over the past

few decades, related studies can be broadly divided into two categories: simulation or

parametric-based approaches and non-parametric, data-driven approaches.

In the field of simulation-based studies, Ping and Zhu [252] estimated the changes in

traffic capacity under various work zones using CORSIM. Chatterjee et al. [44] incorporated

drivers’ behavior into simulations and developed a work zone traffic flow estimation model

in VISSIM. Wen [265] developed a work zone traffic simulation model for connected traffic

conditions. These simulation-based models usually only consider a few work zone factors and

network configurations, thus are mostly unable to predict traffic conditions under unseen
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work zones with complex spatial-temporal patterns.

As the availability of data expands, facilitated by development in sensors and data

collection techniques, the focus of research is increasingly turning toward data-driven methods,

even though these data are not yet fully integrated. On the data-driven side, Adeli and

Jiang [5] created a neuro-fuzzy model to estimate the traffic flow impacted by work zones. The

results demonstrated the model’s superiority over empirical approaches. Karim and Adeli [128]

proposed an adaptive neural network model to predict the traffic impact including capacity,

queue length, and delay during work zones. Hou et al. [277] developed four machine learning-

based work zone traffic prediction models: random forest, baseline predictor, regression tree,

and neural network, evaluated on two selected roadway segments in St. Louis, MO, USA.

Bae et al. [115] developed a multi-contextual machine learning method to model the traffic

impact of urban highway work zones. By adopting machine learning-based approaches, these

models handle more complex work zone conditions compared to simulation-based models.

However, the performance is still constrained due to overly simplified model assumptions and

structures. These models either provide only aggregated traffic indicator predictions or focus

narrowly on specific aspects of the traffic impact caused by work zone events.

Reviewing existing research highlights two major limitations in predicting the impact

of work zone traffic: 1) The quality and quantity of data sources are limited, as there is

often no comprehensive pipeline for integrating, curating, and augmenting work zone traffic

data for enhanced data-driven methods; 2) The data-driven methods currently used are

overly simplified and not capable of handling the complex and dynamic traffic variations

associated with work zones. Consequently, there is a pressing need for a model that can

effectively capture the dependencies between spatial-temporal traffic patterns and work zone

characteristics, providing a holistic perspective on both mobility and safety impacts.

The Work Zone Data Exchange (WZDx) Feed Registry, maintained by the U.S. Department

of Transportation (USDOT), contains up-to-date metadata on work zone feeds that adhere to

WZDx specifications [77]. Launched in 2019 by the Federal Highway Administration (FHWA)
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and the Intelligent Transportation Systems Joint Program Office (ITS JPO), this initiative

seeks to enhance road safety and mobility by standardizing work zone data and ensuring its

broad accessibility in a consistent format [249]. In this study, we utilize WZDx datasets from

the ITS DataHub combined with the University of Maryland CATT Laboratory’s Regional

Integrated Transportation Information System (RITIS) data [249], providing insights into

travel times and traffic speeds across Maryland’s transportation network. Additionally, we

integrate the Maryland Department of Transportation’s (MDOT) Annual Average Daily

Traffic statistics and loop detector data with incident data from RITIS and MDOT to create

an enriched work zone dataset for predictive model training.

Besides the integration of multi-context datasets, the selection of data-driven models is

crucial for estimating the traffic impact of work zones. Generally, traffic prediction models

are categorized into short-term and long-term traffic forecasts [275] [12] [159] [116]. Both

use a sequence-to-sequence or sequence-to-one approach, where a sequence of past traffic

readings from the previous N timesteps is used to predict the traffic status for the following

one or several timesteps, ranging from several minutes to multiple hours. These methods

depend on the most recent traffic data to forecast future traffic conditions. However, these

sequence-based models do not align with the objectives of our study. Our research aims to

predict the traffic conditions on road segments with planned work zones well in advance

before their implementation (e.g., days or weeks ahead), meaning no real-time traffic data

at the time of making the prediction. To the best of the authors’ knowledge, none of the

existing traffic prediction models are designed for such goals. Inspired by image-based

sequence-to-sequence traffic prediction methods [181] [57] [206], which transform city-level

space-time traffic states into 2D images for model inputs and outputs, this study proposes a

novel image-to-image prediction method for work zone traffic forecasts. This method converts

the historical spatial-temporal traffic patterns into multi-channel image inputs and conducts

a joint representation with the planned work zone features to deliver a comprehensive traffic

prediction for the entire duration of the work zones at once, which enables the estimation of
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the traffic impact with high time resolution for the planning of work zones.

In summary, based on the curated dataset created by the data integration pipeline, we

introduce an attention-based multi-context convolutional encoder-decoder neural network,

named AMCNN-ED, to predict the impact of planned work zones, specifically focusing on

mobility impacts such as traffic speed, queue length, congestion start time/duration, and

safety impacts such as incident likelihood. The contributions of this study are outlined as

follows:

• Developed a data curation pipeline that integrates work zone event data with traffic

and roadway network datasets, creating an enhanced data source tailored for predicting

the traffic impacts of work zone events.

• Introduced an image-based modeling approach to estimate traffic impact caused by work

zones by converting historical space-time traffic patterns into 2D images as model inputs.

Based on that, we developed a novel attention-enhanced multi-context convolutional

encoder-decoder neural network structure to capture the spatial-temporal dependencies

between work zone characteristics and dynamic traffic patterns, enabling in-advance

prediction of traffic impact (i.e., speed, queue length, congestion start time/duration,

and incident likelihood) for planned work zones well ahead of time.

• Conducted a comprehensive evaluation of the proposed model using a real-world dataset

from Maryland’s transportation network, benchmarking it against baseline models to

demonstrate its superior performance.
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7.2 Data Integration and Reconstruction

7.2.1 Multi-Context Work Zone Data

To construct a comprehensive work zone dataset, this study follows the process outlined in

Fig. 7.1, which details the integration of datasets from various sources. WZDx provides

dynamic and detailed work zone information, including precise locations, timings, lane counts,

geometries, and potential vehicular impacts. Traffic data from RITIS adds link-level metrics

such as travel time and traffic speed, along with historical and reference speeds, enriching

the dataset further. By combining this data with MDOT’s volume data and supplementing

it with incident information, the dataset achieves a high level of granularity, encompassing

individual work zones and their broader impact on the transportation network.

Figure 7.1: Multi-context data integration pipeline

By incorporating these diverse data streams, valuable operational metrics are acquired

at a granular level, encompassing individual work zones, their immediate surroundings,

the impacted corridor, and the broader regional road network. Furthermore, the robust
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data capabilities will also facilitate more in-depth categorization based on different types of

work zones and specific geographical regions. This enhanced categorization will provide an

understanding of the diverse impacts and dynamics across various work zone scenarios and

geographic contexts.

Figure 7.2: Spatial distribution of work zone, detectors, and road segments in Maryland
transportation network

7.2.2 Data Integration and Space-Time Traffic Image Generation

The integration of these datasets employs a sophisticated spatial-temporal matching process.

As illustrated in Fig 7.2, this map highlights the geospatial alignment of work zones, loop

detectors, and road segments throughout the Maryland transportation network. Initially,

matching is conducted using precise GPS coordinates to ensure each work zone is accurately

paired with its corresponding road segment. Subsequently, traffic data of road segments and

loop detectors relevant to the operational hours of each work zone are extracted. This dual-

layered matching strategy—first spatial, then temporal—ensures a seamless amalgamation of

location and time-specific traffic patterns.

Specifically, after cleaning and filtering, a total of 3646 work zones were identified from

2016 to 2019, excluding 2020 to 2022 due to the biased traffic patterns during the COVID-19
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Figure 7.3: Work zone space-time traffic image generation: (a) 2D space-time traffic matrix;
(b) Two examples of converted 2D space-time traffic images (work zone traffic speed and
historical traffic speed)
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pandemic. The study focuses on temporary work zones with durations of less than 24 hours.

To capture pertinent data for the temporal work zone study and enable the development of an

AI model, our approach compiles data on a case-by-case basis for each work zone. For every

individual case, we systematically collect traffic data encompassing the complete duration

of the work zone event. In terms of spatial information, we include data for road segments

extending 5 miles upstream relative to each work zone. Based on this spatial matching result,

a feature of “distance to work zone” is calculated for each road segment; similarly, “time to

work zone start” and “time after work zone end” are calculated for each time step. To ensure

a high level of data fidelity, we maintain a time resolution of 15 minutes throughout the

dataset.

As a result, for each work zone case, as shown in Fig 7.3 (a), a 2D space-time matrix

containing spatial-temporal information is organized, with the highlighted area indicating

affected traffic. This matrix can be used to further represent other traffic features such as

speed, historical average speed, and historical average volume, as well as geospatial features

like link length and distance to the work zone link, all updated in 15-minute intervals. These

2D space-time matrices are further converted to 2D heatmap images with different colors

indicating different levels of values for particular traffic features, as seen in Fig 7.3 (b).

This systematic organization not only captures the real-time dynamics of work zones but

also furnishes a standardized dataset format from which AI models can learn the complex

spatial-temporal dependencies of traffic flow in relation to work zone activities, enhancing

predictive capabilities.
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7.3 Methodology

7.3.1 Problem Definition

The methodology proposed by this study tackles the problem of spatial-temporal traffic

speed and incident likelihood prediction on road segments of planned work zone events well

in advance before their implementation (e.g., days or weeks ahead). The definition of this

predictive problem is presented as follows: For a planned work zone event scheduled to

start at T0 and end at Tn at location L of a roadway, we define all the link segments on the

same roadway within 5 miles upstream of L as target links. Assume that for these target

links, the historical average traffic sequences (e.g., traffic speed, volume) during the same

time of day and day of week corresponding to the planned work zone schedules are known.

Additionally, the geospatial correlations between the links (e.g., link length, link order) and

the characteristics of the planned work zone event (e.g., number of closed lanes, number of

total lanes, etc.) are also known. The model aims to predict two key outcomes: 1) A sequence

of traffic speeds on all the target links throughout the duration of the planned work zone; and

2) The likelihood of an incident occurring on the target links during the work zone period.

The spatial-temporal traffic speed output can further be used to infer other traffic impact

attributes such as maximum queue length, congestion start time, and congestion duration.

7.3.2 Model Structure

Model Overview

As shown in Fig 7.4, the model input encompasses two components: 1) A set of historical

traffic patterns and geospatial sequences, which have been converted into a multi-channel

2D space-time image, and 2) A tabular feature vector of work zone characteristics. The 2D

space-time image consists of multiple channels, each representing the historical traffic pattern

and geospatial correlations of the link segments within the 5-mile range upstream of the work
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Figure 7.4: Model structure of AMCNN-ED
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zone. The input image, Ximage, can be defined as:

Ximage ∈ Rh×w×c = {Ih×w
1 , Ih×w

2 , . . . , Ih×w
c } (7.1)

where h refers to the height of the image (the number of links within the work zone 5-mile

range), w refers to the width of the image (the number of timesteps of the work zone event),

and c is the number of channels of the input image, representing features related to historical

traffic patterns and geospatial relationships. In this study, we selected historical average

speed, historical average volume, link length, and distance to the work zone location as the

four channels of the input image.

The second input component is the feature vector of planned work zone characteristics,

denoted as:

Xwz ∈ Rn×1 = {x1, x2, . . . , xn} (7.2)

where n denotes the number of features of the work zone. In this study, we consider the

following features: start time of day, day of the week, work zone duration, number of lanes

closed, number of total lanes, road type, and on-ramp/off-ramp connection.

The output of the model is defined as:

Y = {Yspeed, Yinci} (7.3)

This includes a predicted 2D space-time traffic speed image Yspeed ∈ Rh×w×1, which

indicates the speed of target links within 5 miles upstream of the anticipated work zone at

15-minute intervals for the work zone duration, and a likelihood indicating the probability of

incident occurrence during the projected work zone event. The goal of the work zone traffic

impact prediction is to learn a mapping function f : X → Y that can predict the traffic speed

for each timestep on each upstream link and the likelihood of incident occurrence during the
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work zone event.

The AMCNN-ED model constructs 3 modules: encoder layers, attention layer, and decoder

layers. The multi-context encoder extracts the spatiotemporal features from historical space-

time traffic data and static work zone features from planned work zone tabular data. The

extracted feature maps are combined and passed to the attention layer to weigh the importance

of each part in the concatenated feature representation. Then the attention-enhanced feature

vector is sent to decoder layers with multiple transposed CNN layers and split in the output

layer to generate both the 2D speed image and incident likelihood.

Encoder Layers

The encoder consists of two parallel modules designed to create a joint representation of

historical traffic information, geospatial features, and planned work zone characteristics. As

shown in Fig 7.4, the image encoder module employs two convolutional neural network (CNN)

layers to extract spatial-temporal dependencies in the historical traffic patterns of upstream

links during the work zone period. Each convolutional layer comprises a 2-dimensional

convolution layer (Conv2D), a ReLU activation layer, and a max pooling layer, which

collectively extract spatial-temporal features from the preceding layer. At the end of the

two CNN layers, a flattened layer converts the feature map into a 1D vector representation.

Additionally, a tabular feature extraction module extracts features from work zone-related

attributes and converts them into a 1D feature vector, which can then be concatenated with

the feature vector extracted from the CNN layer.

Attention Layer

As presented in Fig 7.4, the proposed network uses the self-attention mechanism to weigh

the importance of different parts of the feature representation from the encoder layer. The

self-attention mechanism is a deep learning technique originally designed for natural language

processing (NLP) tasks to improve the modeling of relationships in sequential data [2], and
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further implemented in other areas such as helping the model to learn which part of the

feature representation is more informative for succeeding model components [232,285].

When image and tabular data features are concatenated, they form a combined feature

space. This space includes both the spatial information from the images and structured

information from the tabular data. However, not all features contribute equally to the task at

hand. An attention mechanism is employed here to dynamically learn to focus more on those

features that are more relevant, effectively learning a task-specific weighting of features. By

applying attention to the concatenated features, the model can highlight aspects of the data

that are more informative for the specific prediction or reconstruction task. This selective

focus can improve accuracy and robustness by reducing the impact of less relevant or noisy

data.

To compute the decoder input, first, features extracted from both the image and the

tabular data are combined into a single feature vector. This combined feature vector is then

transformed into three different sets of vectors [232]: queries (Q), keys (K), and values (V ).

These transformations are achieved through multiplication by three distinct sets of weights.

The model computes scores by comparing all the queries with all the keys. These scores

determine how much attention or importance should be given to each value vector. Each

value vector is then multiplied by its corresponding attention score, effectively emphasizing

more important features and diminishing less important ones. The resulting weighted sum

forms a new, attention-enhanced feature vector that is used as the input for the decoder.

The process of implementing the self-attention mechanism on the encoded input feature can

be expressed by the following equations:



[Q,K, V ] = [WQ,WK ,WV ] · x

A = softmax
(
Q ·KT

√
dk

)
z = AV

(7.4)
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where x is the concatenated input feature vector from the encoder layer, WQ,WK , and

WV are weight matrices,
√
dk is a scaling factor, and z is the output feature vector after

applying self-attention.

Decoder Layers

The decoder layer of this network consists of two transposed convolution layers for image

reconstruction and a set of fully connected layers for incident likelihood prediction. The

transposed convolution layers, denoted as DeCNN, are used to reconstruct the encoded

feature vector to produce a 2D image for speed prediction.

The decoder receives an attention-enhanced feature vector from the attention layer. Then,

the first DeCNN layer takes the flattened feature vector from the previous layer and reshapes

it back into a multi-dimensional tensor. It then applies transposed convolution operations to

start upsampling the features back to the spatial dimensions needed for image reconstruction.

Following the initial upsampling, the second DeCNN layer further increases the spatial

dimensions of the feature map, continuing to add detail and structure. It reduces the number

of channels, aiming to reconstruct the spatial structure of the original input image. After

each transposed convolution, an activation function such as ReLU is applied to introduce

non-linearity, helping to model complex patterns in the data.

Following two consecutive DeCNN layers, the image output path employs a sigmoid

activation to normalize the image pixels for the one-channel speed graph. On the classification

output side, the attention-enhanced feature vector is sent to a set of fully connected layers

with a softmax activation function at the end to output a probability between 0 and 1,

indicating the likelihood of the input belonging to one of two incident labels.
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7.3.3 Loss Function

Given that the model adopts a multi-task learning structure and outputs two types of

outputs, i.e., 2D space-time traffic speed image and incident likelihood, we employ distinct

loss functions for each target output and combine them to represent the model’s overall loss.

For traffic speed prediction, we implement the widely used Huber loss function to mitigate

the impact of outliers in speed predictions [158]. The definition of Huber loss is provided in

Equation 7.5, where y and ŷ refer to observed and predicted speeds, respectively, and δ is a

hyperparameter that requires tuning:

Lδ(y, ŷ) =


1
2
(y − ŷ)2 for |y − ŷ| ≤ δ

δ|y − ŷ| − 1
2
δ2 otherwise

(7.5)

For incident prediction, we employ cross-entropy loss, commonly used in classification

problems [115], denoted as Lce. This loss function measures the performance of the classifica-

tion output, which is a probability value between 0 and 1. The total loss can be expressed as

the weighted sum of the losses from the two tasks:

L = w1 · Lδ + w2 · Lce (7.6)

where weights w1 and w2 are hyperparameters to be tuned during model training.

7.4 Experimentation

7.4.1 Performance Metrics

The experimentation adopts three widely applied evaluation metrics to quantify the perfor-

mance of speed prediction of each model [2, 218,219]. They are Mean Square Error (MSE),

Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The
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performance metrics are presented in (5), where ŷi represents the predicted speed made by

the model, and yi represents the corresponding ground-truth value. The evaluation metrics

are defined as:



RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2

MAE =
1

N

N∑
i=1

|ŷi − yi|

MAPE =
1

N

N∑
i=1

|ŷi − yi|
yi

(7.7)

For incident prediction, we adopted three commonly used classification prediction metrics:

recall, precision, and F1 score to assess each model’s performance [157]. Recall measures the

proportion of actual positives correctly identified by the model, highlighting its sensitivity.

Precision assesses the accuracy of the positive predictions made by the model, indicating the

proportion of true positives among all positive predictions. F1 score is the harmonic mean

of precision and recall, providing a single metric that balances both precision and recall to

measure a model’s accuracy more comprehensively.

For work zone samples exhibiting congestion patterns, we introduced three congestion-

specific metrics to evaluate the prediction performance: the start time, duration, and

maximum queue length of the congestion, where the duration and queue length are the

width and depth of the congestion area on the space-time speed image. For each 2D space-

time image corresponding to a work zone, to minimize the interference of random data

noise, we only consider congestion that lasts over one hour and extends across multiple

consecutive link segments as valid. To identify valid congestion areas in the space-time

images, we employed Otsu’s method, an automated process widely used in image segmentation.

Otsu’s thresholding algorithm is particularly effective for automatically performing clustering-

based image thresholding [230]. The method operates by calculating the histogram of pixel
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Figure 7.5: Work zone space-time traffic image processing

intensities and systematically testing all possible thresholds to determine which maximizes

the between-class variance (i.e., the variance between the pixel intensities above and below

the threshold) [274].

7.4.2 Baseline Models

The results of our model are compared against the following models:

• ARIMA: Auto-regressive integrated moving average.

• GRU: Gated recurrent unit network.

• LSTM: Long-short-term memory network.

• Conv-LSTM: Convolutional long-short-term memory network.

The first four models—ARIMA [16], GRU [220], LSTM [220], and Conv-LSTM [181]—all

make speed predictions in an autoregressive form. They require a short initial sequence as

216



input to predict the very first timestep during the work zone. They then gradually append the

newly predicted speed values to the input sequence and use the extended sequence to predict

the next timestep until the entire duration of the work zone is predicted. The MCNN-ED

model uses the same encoder-decoder structure as the AMCNN-ED proposed by this study,

with the only difference being that MCNN-ED does not incorporate a self-attention layer to

enhance the feature representation.

It should be noted that there aren’t any existing models that can be applied directly

for the problem defined in this study, therefore the baseline models listed here are highly

customized to fit the work zone prediction scenario in this study. The literature cited here

only provided high-level concepts instead of complete model structures.

All neural network models were implemented using Pytorch 2.0. Each model was trained

on an RTX A5000 GPU, providing ample GPU memory to facilitate the learning process.

Additionally, the Adam optimizer was employed. The models were run for 200 epochs, with

early stopping implemented to prevent overfitting. Training was halted if the validation loss

deteriorated for a specified number of epochs, even if the training loss continued to decrease.

7.5 Results and Performance Evaluation

7.5.1 System-Level Performance Analysis

Tables 7.1, 7.2, and 7.3 present the prediction results of the proposed model and baseline

models on the testing dataset for the 547 work zone events. Table 7.1 displays the results for all

test work zones, while Table 7.2 focuses on results in congested areas of impacted work zones.

The results in Table 7.1 demonstrate that the neural network-based models all outperform the

ARIMA model. This is because ARIMA relies solely on previous timesteps’ traffic data and

fails to account for changes in traffic caused by work zone activities. Additionally, the results

indicate that RNN-based autoregressive models do not perform as well as encoder-decoder
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structures, due to their inability to capture the comprehensive spatial-temporal dependencies

between work zone properties and traffic patterns. Among the two encoder-decoder models,

AMCNN-ED outperforms CNN-ED. This superior performance can be attributed to the

self-attention layer in AMCNN-ED, which enhances the model’s ability to discern the relative

importance of different sectors in the joint feature representations produced by the encoder

layers.

Table 7.1: Speed Prediction Results

From the perspective of in-advance traffic management and long-term work zone planning,

accurately forecasting the road segments impacted by work zone activities is of paramount

importance. Therefore, we selected 50 work zone samples that experienced congestion during

the work zone duration from a total of 547 test work zones to compare the performance

between our model and baseline models. The ARIMA model, unable to predict traffic

congestion caused by work zone activities, was excluded from the analysis in Table 7.2.

As shown in Table 7.2, compared to RNN-based autoregressive models, the two encoder-

decoder approaches demonstrate substantial improvements. This suggests that multi-context

convolutional feature extraction is more effective at capturing the spatial-temporal correlations
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Table 7.2: Congested Area Prediction Results

across multiple adjacent locations over extended periods. This capability is particularly crucial

for predicting non-recurrent congestion patterns during work zone events. Furthermore, the

AMCNN-ED structure outperforms the CNN-ED structure, primarily due to its self-attention

mechanism, which enables the model to identify key elements in the feature vectors from

both the static work zone features and the historical spatial-temporal traffic patterns, thus

more accurately predicting the occurrence of traffic congestion.

Table 7.3 presents the prediction results for collision incidents during work zone events.

We excluded ARIMA from the model list since it is designed solely for time-series prediction

and cannot provide classification outputs. The results show that the AMCNN-ED model

outperforms the baseline model across all three performance metrics. This suggests that the

AMCNN-ED model is more effective at predicting potential collision incidents compared to

autoregressive models and non-attention-based encoder-decoder models, while also minimizing

false alarms in work zones. It should be noted that the prediction accuracy of all the listed

models remains below 0.7. This limitation is largely due to the stochastic nature of incidents

and the current limitations of available data. According to various studies [157, 165,231], the
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occurrence of collisions is influenced by numerous factors, including traffic, road closures, and

external conditions such as weather, driver behavior, and vehicle conditions. Therefore, it

is challenging to achieve precise forecasts for incident occurrences based solely on historical

traffic data and projected work zone properties. However, the results demonstrated by this

model still show promising potential to assist in the prevention of potential crashes during

the planning of work zone activities.

7.5.2 Event-Level Spatial-Temporal Performance Analysis

In this section, we focus on the model performance of selected examples from the test dataset

to illustrate the prediction performance of the proposed AMCNN-ED model and compare it

with the best-performing baseline model at the event level, as shown in Fig 7.6. Each plot

in Fig 7.6 represents a 2D space-time speed difference graph for the duration of each work

zone. In Fig 7.6, the ground truth speed graph is displayed in the left column, the prediction

results from AMCNN-ED are in the middle column, and the results from the best-performing

autoregressive model (Conv-LSTM) are in the right column. The dark blue areas indicate

significant speed drops compared to the historical average speed at the same time of day,

signaling severe congestion, while the yellow areas indicate speeds similar to the historical

average. As shown in Fig 7.6, the four work zones caused one or more instances of congestion

during the work zone period, extending to multiple link segments upstream. The AMCNN-ED

model more accurately captures the timing and spatial extent of the congestion compared

to the autoregressive model. In contrast, the Conv-LSTM model tends to underpredict or

overpredict the congestion area.

A key insight from this comparison is that autoregressive models may incorrectly interpret

traffic flow’s temporal variations. This occurs because they predict each timestep based

solely on previous timesteps, ignoring shockwave propagation. In contrast, the AMCNN-ED

model incorporates global information, both temporally and spatially, for the work zone event.
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Figure 7.6: Examples of event-level speed prediction performance
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Table 7.3: Incident Prediction Results

This underscores the benefits of using an attention-based encoder-decoder structure over an

autoregressive structure for predicting traffic patterns during planned work zone activities.

7.6 Conclusion

This study presents a data curation pipeline for data-centric work zone traffic prediction

problems and proposes an attention-based multi-context encoder-decoder convolutional model

to predict the traffic impact of planned work zone events. Our method consists of two

main steps. First, we integrated archived data from multiple data platforms to construct a

curated work zone traffic dataset that encompasses the essential factors influencing traffic

changes and work zone characteristics. Next, we developed a convolutional encoder-decoder

model to create a joint representation of multi-context spatial-temporal input features and

implemented a self-attention mechanism to highlight key sectors within the encoded features.

These features are then reconstructed through the transposed convolutional decoder layers to

generate predictions for traffic speed and incident likelihood during the work zone events.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In the concluding remarks of this dissertation, we reflect on the advancements in using

mobility agent and network modeling to create a comprehensive digital representation of

transportation systems. This research explores both the synthetic and practical applications

of digital twin frameworks for transportation systems, facilitating improved decision-making

under dynamic mobility and traffic conditions. The key contributions of this dissertation are

outlined as follows:

• We successfully developed a digital twin framework that integrates real-world mobility

data with advanced simulations for decision support in transportation systems. By

leveraging multi-context data from the physical transportation system and combining

it with AI-driven mobility agents and network models, this framework addresses the

limitations of traditional approaches, particularly in adaptability, transferability, and

predictability. The digital twin framework offers both online and offline decision-making

capabilities, providing actionable insights for real-time traffic management and long-term

transportation planning.
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• We introduced an agent-based modeling approach designed to integrate demand-side

and supply-side variations for more adaptable transportation system models. The

framework is tailored to accommodate new mobility trends, changing travel behaviors,

and emerging vehicle usage patterns. By enhancing adaptability, this agent-based

approach ensures that travel demand and network simulation models remain relevant

and responsive to the evolving transportation innovations.

• We explored a fully data-driven AI agent modeling approach for synthesizing human

mobility patterns. This approach automates the traditionally resource-intensive process

of travel demand modeling, providing more efficient and transferable models. The

AI agent models were evaluated within an agent-based network traffic simulation

environment, demonstrating high fidelity and efficiency. This contribution significantly

advances the automation of mobility pattern generation, making it applicable to regions

with limited mobility data.

• Lastly, we successfully developed multiple AI network modeling approaches to improve

the predictability of traffic states, especially during non-recurrent events like natural

disasters or special road conditions. By incorporating multi-context data and leveraging

deep learning models, this research enhances the accuracy of spatial-temporal traffic

predictions. These models are critical for both regional transportation planning and

real-time traffic management, providing decision-makers with better tools to manage

and predict traffic flows in unpredictable scenarios.

In conclusion, this dissertation contributes to transportation systems research by integrating

intelligent agents, advanced network models, and a digital twin framework, offering robust

solutions for adaptability, transferability, and traffic predictability. These advancements

support smarter decision-making processes, ensuring future transportation systems are

equipped to handle the complexities of modern mobility and dynamic traffic conditions.
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8.2 Future Work

Looking ahead, there are still several promising paths for advancing research in mobility

agent and network modeling.

• Firstly, data from multiple contexts should be integrated into the synthesis of mobility

patterns. Currently, mobility modeling heavily depends on travel survey data, which is

often limited or outdated in many regions. To address this, the capability to extract

meaningful insights from alternative data sources, such as social media activity and

person-based GPS log data (e.g., Veraset), should be prioritized. Using more advanced

AI techniques, such as large language models (LLMs), to interpret these diverse data

streams could significantly enhance the richness, functionality, and robustness of both

mobility agents and network models. With these multisource data inputs, models can

capture a broader spectrum of human mobility patterns and adapt to shifts in behavior

and context that are often missed by traditional data sources alone.

• Additionally, the dynamic integration of AI agents within network modeling deserves

further attention. Advanced traffic prediction models, which go beyond traditional

simulation processes in agent-based multimodal transportation, could help account for

non-recurrent roadway conditions, such as accidents, weather changes, and events, that

impact travel patterns. By incorporating predictive elements into the core framework

of transportation system models, we can improve the overall accuracy and reliability of

predictions across various real-world scenarios, offering more resilient and adaptable

solutions for transportation management.

• Lastly, bridging the gap between academic research and practical implementation in

transportation modeling remains a critical focus. By collecting more comprehensive

and naturalistic travel behavior and traffic data, we can create models that more

closely represent real-world interactions between agents and networks. This effort would
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also involve closer collaboration with practitioners to ensure that models are not only

theoretically sound but also practically viable and actionable in real-world applications,

ultimately facilitating the deployment of innovative mobility solutions.
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