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Abstract: The current LHC results make weak scale supersymmetry difficult due to

relatively heavy mass of the discovered Higgs boson and the null results of new particle

searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz

mechanism, is possible to accommodate such situations. A concrete example, the Compact

Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and

large mixing in the top and scalar top quark sector with |At| ∼ 2mt̃ which radiatively

raises the Higgs mass. While the zero mode contribution of the model has been considered,

in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such

contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein

modes, we find the effect significantly enhances the radiative correction to the Higgs quartic

coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed

out from the brane, which makes the top mass depend on higher powers in the Higgs field.

As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We

also show the whole parameter space is testable at the LHC run II.
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1 Introduction

Supersymmetry is the prime candidate for the physics beyond the standard model (for a

review [1]). It can stabilizes the large hierarchy between the electroweak scale and some high

energy scale such as the quantum gravity scale, and also it leads to dynamical electroweak

symmetry breaking by radiative correction effects. The minimal supersymmetric standard

model (MSSM) has been studied as an attractive and minimal model of supersymmetry.

However under its constrained framework, the lightest Higgs mass has an upper bound of

mZ ' 91 GeV at tree level, and hence this has a very strong tension with the recently
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discovered Higgs boson at the Large Hadron Collider (LHC) [2, 3]. As the latest result,

the combined analysis by the ATLAS and CMS says that the measured mass is 125.09 ±
0.21 ± 0.11GeV [4]. To explain the discrepancy it is known that the Higgs mass can be

raised beyond mZ by radiative corrections through large scalar top (stop) mass or large

mixing between left and right stops (large A-term) but in most cases fine-tuning of less

than percent level is accompanied with those radiative corrections [5]. Various extensions

to the minimal model are also considered in order to accommodate the Higgs mass. One

direction is to introduce singlet(s) to the Higgs sector resulting in non-decoupling F -term

as in NMSSM [6–9] and Dirac-NMSSM [10], or to introduce an extra gauge group under

which Higgs is charged resulting in non-decoupling D-term [11, 12]. Also a strongly coupled

Higgs sector is another possibility [13–15].

On the other hand, supersymmetric particles (sparticles) has been extensively searched

for at the LHC. So far the null result has been found at the LHC run I and therefore the

strong constraints on the parameter space are obtained. Typical supersymmetric models

such as the Constrained MSSM (CMSSM) [16] has an exclusion bound on sparticles mass

beyond TeV [17], which is another tension in addition to the discrepancy of the Higgs mass.

The sparticle searches are mainly based on missing transverse energy, /ET ,1 motivated by R-

parity, and the corresponding exclusion bounds are often strong but still model dependent.

The signal becomes weaker, even in presence of enouch sparticle production, due to small

missing energy when a mass spectrum is compressed [18, 19] or sparticles decay to new

states [20, 21], or due to lack of missing energy signal when R-parity is violated [22–26].

The Compact Supersymmetry model has a possibility to accommodate those tensions

because it has a compressed spectrum and large A-term [19]. The model is embedded in

5D spacetime with a simple extra dimension, S1/Z2, and has a field configuration that

quark, lepton and gauge superfields are in the bulk while Higgs fields are localized on a

brane. Supersymmetry is broken by non-trivial boundary conditions of the extra dimen-

sion, called the Scherk-Schwartz mechanism [27, 28]. As a direct consequence of the field

configuration and the Scherk-Schwartz mechanism, the universal soft masses, which is im-

portant for a compressed spectrum, and near maximal mixing by A-term (|At| ∼ 2mt̃),

which enhances the Higgs mass beyond mZ , are obtained. Requirement of the successful

electroweak symmetry breaking fixes the supersymmetric Higgs mass, µ term, which de-

termines the mass scale of the lightest sparticle (LSP). As a result, a spectrum with mass

compression of a few hundreds of GeV is realized in generic parameter space ameliorating

the LHC bounds. The model has further attractive features. The geometrical nature of

supersymmetry breaking does not introduce the conventional CP or flavor problems, and

there are only three free parameters two of which are left after requiring the successful

electroweak symmetry breaking.

Regarding the Higgs mass, the previous computation for the model has included the

only zero mode contributions, that is the MSSM contribution, and the Higgs mass was

1To be precise, this should be called as missing transverse momentum because we can only measure a

missing quantity constructed by transverse momentum conservation, /~PT = −
∑ ~P vis

T . In fact, in a scenario

of compressed spectrum, the energy carried out of the detector is large but the missing momentum can be

small. However here we use the convention that missing transverse momentum is called as /ET .
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expected to be 119 to 125 GeV even for TeV sparticle thanks to the large A-term. Inter-

estingly, without adding any extra things such as singlets, it can be further enhanced by

a contribution from the Kaluza-Klein (KK) tower. This possibility is implied by the Con-

strained Standard model [29] which is another model with the Scherk-Schwarz mechanism

and has a similar Higgs sector of the Compact Supersymmetry model. It is pointed out in

ref. [29] that the KK tower drastically changes the Higgs potential and the Higgs mass is

highly enhanced even with very light stop. While the Constrained Standard model is not

compatible with the LHC results, the KK effect remains interesting especially because the

observed Higgs mass of 125 GeV is relatively heavy for the MSSM. In this paper we revisit

the effect of KK tower to the Higgs sector with general supersymmetry breaking parameter

because the Constrained Standard model focused on the maximal breaking case. Then we

apply the result to the Higgs mass calculation. We find the effect remains large even when

the KK modes are at O(10) TeV, and the enhancement of the Higgs mass from the MSSM

calculation is from 5 to 15 GeV in interesting parameter regions. Since 125 GeV Higgs mass

is realized in a lower supersymmetry breaking scale, TeV range of sparticle mass is still

compatible with the observed Higgs mass and the LHC sparticle searches in this model.

An interesting upper bound of sparticle mass is obtained by the dark matter relic density,

which implies that the whole parameter space can be tested by the LHC run II.

The Scherk-Schwarz mechanism has been discussed with a special attention to the

UV-finite feature: not only quadratic divergence is absent but also log divergence is ab-

sent [29–39]. This is because of the non-local nature of supersymmetry breaking. We see

such a feature in our calculation of the radiative corrections from the KK tower. Also

many models beyond the Standard Model with various field configurations are discussed

in refs. [29–32, 34, 36, 38, 40–49]. As a further extension, the mechanism is used in Folded

Supersymmetry models [50, 51].

In the following section we present an overview of the Scherk-Schwartz mechanism and

the Compact Supersymmetry model. We compute radiative corrections of the KK tower to

the Higgs sector in section 3 and apply the result to the Higgs mass calculation in section 4.

In section 5. we study experimental bounds and show the LHC bound is certainly weaker

due to the compressed spectrum. We conclude in section 6.

2 Overview

2.1 Scherk-Schwartz mechanism and Compact Supersymmetry model

We consider a single compact extra dimension with its coordinate y identified by transla-

tion, T : y → y + 2πR, and reflection, Z : y → −y, where R is the radius of the extra

dimension. This is S1/Z2 orbifold, and it is subject to two consistency conditions,

P2 = 1 , PT P = T −1 . (2.1)

The minimum supersymmetry in 5D corresponds to N = 2 in 4D, leading to a global

SU(2)R symmetry. In presence of such a global symmetry, SU(2)R doublets, such as gaug-

– 3 –
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Figure 1. Field configurations of the Compact Supersymmetry model. Hypermultiplets of quark

and lepton and gauge fields are living in the whole 5D spacetime while Higgs chiral superfields are

localized on a brane.

inos, can have non-trivial boundary conditions with a twist of α under the translation,

P =

(
1 0

0 −1

)
, T = e(2πα)iσ2 =

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)
, (2.2)

where 0 ≤ α ≤ 1/2. We are interested in α � 1. On the other hand, SU(2)R singlets

have only trivial boundary conditions of P = ±1 and T = 1 because they do not have a

matrix structure. The finite twist of α leads to mass splitting in supermultiplets and then

supersymmetry is broken. This mechanism is called the Scherk-Schwarz mechanism [27, 28].

The Scherk-Schwarz mechanism is applied in the Compact Supersymmetry model [19]

in which three-generation of quarks and leptons as well as the Standard Model gauge groups

are embedded in a bulk (extra dimension) and two Higgs fields, Hu and Hd, are localized

on a brane at y = 0. A schematic picture of the model seen in figure 1. A bulk field forms

a hypermultiplet that have two chiral superfields. One of them, Φ = Q,U,D,L,E, has a

reflection property of P = 1 and keeps zero mode. The other chiral superfield is denoted

with a superscript as Φc and has a property of P = −1 leading to absence of zero mode.

Under the translation, the squark (slepton) in Φ mixes with the squark (slepton) in Φc with

the same twist as in eq. (2.2) because squarks (sleptons) are SU(2)R doublets. Since the

twist parameter is unique in a single global symmetry, SU(2)R doublets, gauginos, squarks,

sleptons and gravitinos, must have the same soft mass of α/R after the KK expansion. A

similar model where Higgs lives in the bulk as well as matters is studied in ref. [43].

Using P = 1 chiral superfields, we can write Yukawa couplings and µ term,

Wbrane = δ(y) {yU5HuQU + yD5HdQD + yL5HdLE + µHuHd} . (2.3)

Matter fields have a non-trivial twist by the Scherk-Schwarz mechanism giving trilinear

scalar couplings which corresponds to soft supersymmetry breaking of Yukawa couplings,

A-terms. However, the Higgs are just 4D field and do not feel supersymmetry breaking at

– 4 –
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the tree level, and therefore soft terms related only to Higgs are absent. In summary, using

the conventional MSSM notation, the soft breaking terms are given by

M1/2 =
α

R
, m2

Q̃,Ũ ,D̃,L̃,Ẽ
=
α2

R2
, A0 = −2α

R
, m2

Hu,Hd
= 0, b = 0. (2.4)

This is more easily derived in an equivalent picture of the Radion Mediation in section 2.2.

We emphasize that the model realizes the large A-term, A0 ≈ −2mt̃, which enhances the

lightest Higgs mass and may explain the observed value, and we will show that it is enhanced

even beyond this expectation. It is noteworthy that the conventional supersymmetric CP

and flavor problems are absent thanks to geometric nature of supersymmetry breaking.

Then model has a compact parameter set of α,R, and µ even more constrained than the

CMSSM, which implies testability of the model. Note that ref. [48] addresses the same

framework with the soft breaking of eq. (2.4) as a possible solution to the little hierarchy

problem [52].

2.2 Picture of Radion Mediation

On S1/Z2 orbifold, refs. [53, 54] show that the Scherk-Schwarz mechanism is equivalent to

the Radion Mediation [42]. The Radion Mediation gives supersymmetry breaking by the

F -term vacuum expectation value of the Radion chiral superfield, T , and hence it is more

comprehensive. The 5D bulk action based on the 4D superspace [55] is

K5 =
T + T †

2R

{
Φ†e−V Φ + ΦceV Φc†

}
(2.5)

+
1

8kg25

2R

T+T †
Tr

[
(∂5+

√
2χ†)e−V (−∂5+

√
2χ)eV +

∂5e
−V ∂5e

V

2
+(χχ+χ†χ†)

]
,

W5 = Φc(∂5 −
√

2χ)Φ +
1

16kg25

T

R
Tr[WαW

α] , (2.6)

where V is gauge superfield, χ is adjoint chiral superfield, and Tr[T aT b] = kδab. V and

χ form a 5D vector supermultplet. Here, fields have trivial boundary conditions under

translation, T = 1, but supersymmetry breaking is introduced by the Radion VEV,

〈T 〉 = R+ θ2FT . (2.7)

As shown in ref. [54], FT can be removed from the action if a twist is introduced in the

global SU(2)R space, resulting in a correspondence of FT = 2α. Then the gaugino mass is

M1/2 = FT /(2R) = α/R from eq. (2.6).

It is easy to see the size of other soft terms. Since Kähler potential for matter fields

is not canonically normalized, we normalize the bulk fields by shifting F terms of matter

fields such that

{Q(c), U (c), D(c), L(c), E(c)} →
(

1− α

R
θ2
)
{Q(c), U (c), D(c), L(c), E(c)} . (2.8)

The squark and slepton masses are given by residual (α/R)2θ2θ̄2 term. Also, a Yukawa cou-

pling comes up with a large A-term, for example, the field redefinition of eq. (2.8) leads to∫
d2θ yU5HuQU →

∫
d2θ

(
1− α

R
θ2
)2
yU5HuQU =

∫
d2θ

(
1− 2α

R
θ2
)
yU5HuQU . (2.9)

– 5 –
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A0 = −2α/R is shown. It is easy to see that this supersymmetry breaking has the minimal

flavor violation structure. Therefore all the soft terms in the Radion Mediation matches

with eq. (2.4).

3 Effective potential

We calculate the effective potential from 1-loop of all the KK modes of top quark and

squark to take into account their effect to the lightest Higgs mass. The 5D Lagrangian for

the up-type squark and quark bilinears is given by

L5 = Q̃†(∂2 − ∂25)Q̃+ Q̃c†(∂2 − ∂25)Q̃c + Ũ †(∂2 − ∂25)Ũ + Ũ c†(∂2 − ∂25)Ũ c (3.1)

+ δ(y)
(
yU5HuQ̃∂5Ũ

c∗ + yU5HuŨ∂5Q̃
c∗ + h.c.

)
− |δ(y)yU5HuQ̃|2 − |yU5HuŨδ(y)|2

+ ΨQ(i/∂+γ5∂5)ΨQ+ΨU (i/∂+γ5∂5)ΨU−δ(y)yU5HuΨ
c
QPLΨU + δ(y)y∗U5ΨUPRΨc

QH
∗
u,

where Q̃(c) = Q̃(c)(x, y), Ũ (c) = Ũ (c)(x, y), Hu = Hu(x), and Ψ represents a 4-component

fermion,

ΨQ ≡

(
Q(x, y)

Q
c
(x, y)

)
, ΨU ≡

(
U(x, y)

U
c
(x, y)

)
. (3.2)

Before going to the effective potential, we have to obtain Higgs-dependent mass eigen-

values. Since it is difficult to obtain the mass spectrum after the KK expansion due to

infinite mixing terms coming from δ(y), we derive mass eigenvalues by solving 5D equa-

tions of motion. We first generally solve Dirac and Klein-Gordon equations in the bulk

respecting properties under the reflection, secondly constraint the solutions by the bound-

ary condition of the translation (the Scherk-Schwarz mechanism), and finally determine

the coefficients by integrating around the brane at y = 0. The integration around the

brane gives the Higgs field dependence to quark and squark masses. The detail is given in

appendix A.

The above computation leads to consistency conditions of mass in eqs. (A.29), (A.51).

One for top quark is

tan2(MFπR) =

(
yt5Hu

2

)2

, (3.3)

and this gives mass eigenvalues of KK tower in presence of Higgs VEV,

MF =
n

R
±Mt(Hu) (n : integer) , (3.4)

where

Mt(Hu) ≡ 1

πR
arctan

(
yt5Hu

2

)
= ytHu −

(πR)2(ytHu)3

3
+O(H5

uR
4). (3.5)

The top Yukawa coupling in 4D is given by yt = yt5/2πR. Note that the top mass, Mt, is

not only proportional to Hu but also has higher powers of Hu. This can be understood as

follows. The wave function of top quark zero mode is flat in absence of the Higgs VEV,

but is distorted by the non-zero Higgs VEV at y = 0. Especially, top quark tends to

reduce overlap with Higgs to minimize the energy. This is why top mass has non-trivial

– 6 –
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dependence of Hu. In the language of 4D effective theory, the term of O(H3
u) is due to

higher dimensional operators generated by the non-zero KK modes and the coefficient

actually could be explained by summation of the tower,
∑∞

n=1
1

n2/R2 = R2ζ(2) = π2R2/6.

Similarly, the consistency condition for stop is

cos(2πMBR) = cos(2πα± 2πMtR) , (3.6)

which leads to mass eigenvalues,

MB =
n+ α

R
±Mt(Hu) (n : integer). (3.7)

This result makes sense because supersymmetric limit, α = 0, reproduces quark mass

spectrum and also because mass splitting of zero mode squarks, ±Mt, is as expected by

A0 = −2α/R.

3.1 Effective potential

Once the Higgs-dependent mass spectrum is obtained, we can compute the effective

potential,

Vt =
2Nc

2R4

∞∑
n=−∞

∫
d4k

(2π)4

{
log

k2 + (n+ ωB+)2

k2 + (n+ ωF )2
+ log

k2 + (n+ ωB−)2

k2 + (n+ ωF )2

}
(3.8)

where ωB± = α ±Mt and ωF = Mt. Here, we rescale all the dimensionful parameters to

be dimensionless by using R, for example, Mt → Mt/R. The numerator of the prefactor,

2Nc, represents degrees of freedom of a colored complex scalar or a colored Weyl fermion.

To handle this infinite sum, it is convenient to use W and its derivative defined as

W (ω) ≡ 1

2

∞∑
n=−∞

∫
d4k

(2π)4
log

k2+(n+ω)2

k2+n2
, W ′(ω) =

∞∑
n=−∞

∫
d4k

(2π)4
(n+ω)

k2+(n+ω)2
. (3.9)

Then we can rewrite the effective potential (3.8),

Vt =
2Nc

R4
[W (ωB+) +W (ωB−)− 2W (ωF )]

=
2Nc

R4

[∫ ωB+

0
dω W ′(ω) +

∫ ωB−

0
dω W ′(ω)− 2

∫ ωF

0
dω W ′(ω)

]
. (3.10)

W ′ is computed with a technique well-known in field theory with finite temperature (see

appendix B),

W ′(ω) =
−3i

2(2π)5
[Li4(e

2πiω)− Li4(e
−2πiω)], (3.11)

and hence,

W (ω) =
−3

2(2π)6
[Li5(e

2πiω) + Li5(e
−2πiω)]. (3.12)

Polylogarithm, Lis(z) =
∑∞

k=1
zk

ks , implies the KK tower effect. When z = 1, it coincides

with the Riemann zeta function, ζ(s).

– 7 –
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The effective potential becomes a simple and finite formula,

Vt =
−3Nc

64π6R4

[
Li5(e

2πiωB+) + Li5(e
−2πiωB+) + Li5(e

2πiωB−) + Li5(e
−2πiωB−)

− 2Li5(e
2πiωF )− 2Li5(e

−2πiωF )
]
. (3.13)

In this calculation, the UV regularization is not needed because the Scherk-Schwarz mecha-

nism, thanks to the non-local supersymmetry breaking, has a noble feature of UV finiteness.

Many literatures [29–39] discuss the Scherk-Schwarz mechanism in this context. The UV

insensitivity is actually observed in intermediated steps of our computation (appendix B).

After the summation of the KK modes, there are two pieces: one has stronger UV diver-

gence which is independent of α and the other has exponentially suppressed UV depen-

dence. Since the former is α independent, the divergence pieces are completely cancelled

by combining bosonic and fermionic contributions.

The similar calculation of the effective potential is found in ref. [51] where the Folded

Supersymmetry model is used (see also ref. [56] for a mass spectrum with brane terms).

3.2 Enhancement of Higgs quartic coupling

The obtained effective potential is now used to get a new Higgs quartic coupling which

includes the effect of all the KK modes. First, we put Mt back to a dimensionful parameter

by extracting R factor and expand the potential with respect to Mt(� α/R),

Vt = − 3Nc

32π6R4

(
Li5(e

2πiα) + Li5(e
−2πiα)− 2ζ(5)

)
+

3Nc

16π4R2

(
Li3(e

2πiα) + Li3(e
−2πiα)− 2ζ(3)

)
M2
t

+
Nc

16π2

(
25

6
+ log(1− e2πiα)(1− e−2πiα)− 2 log(2πMtR)

)
M4
t +
O(M6

t R
6)

R4
. (3.14)

The above correction is maximized at α = 1/2. The term of M4
t for small α is

Nc

16π2

(
25

6
+ 2 log

α/R

Mt
− π2α2

3
+O(α4)

)
M4
t . (3.15)

The first two terms give the same result of the Higgs quartic coupling radiatively generated

by the MSSM (zero mode) particles. The last term, −π2α2/3, is from the KK tower but

it is negative, which decreases the Higgs mass. However, an important effect of the KK

tower comes from M2
t term since Mt has higher power of Hu as shown in eq. (3.5). The

potential is expanded with respect to Hu,

Vt = − 3Nc

32π6R4

(
Li5(e

2πiα) + Li5(e
−2πiα)− 2ζ(5)

)
+

3y2tNc

16π4R2

(
Li3(e

2πiα) + Li3(e
−2πiα)− 2ζ(3)

)
H2
u

+
y4tNc

16π2

(
25

6
+ log(1− e2πiα)(1− e−2πiα)− 2 log(2πMtR)

− 2Li3(e
2πiα)− 2Li3(e

−2πiα) + 4ζ(3)

)
H4
u +
O(H6

uR
6)

R4
. (3.16)
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Figure 2. Ratio of 1-loop corrections to H4
u coupling. ∆λFull is Higgs quartic coupling generated

from all the KK modes, while ∆λMSSM is that from the zero mode (only the MSSM contribution).

The last line is from M2
t term, and it gives a large and positive contribution,

− 2Li3(e
2πiα)− 2Li3(e

−2πiα) + 4ζ(3) = (12− 8 log(2πα))π2α2 +O(α4). (3.17)

For instance, combining with the last term in eq. (3.15), −π2α2/3, a total contribu-

tion to the Higgs quartic coupling from the KK tower is proportional to (−1/3 + 12 −
8 log(2πα))π2α2 = 3.3 × 10−2 – 3.9 for parameter of our interest, α = 10−2 – 0.2, which

can be compared to the MSSM contribution ≈ 25/6. To see the impact of this new ef-

fect, figure 2 shows a comparison between ∆λFull defined as the Higgs quartic coupling in

eq. (3.16) and the Higgs quartic coupling in the MSSM, ∆λMSSM, defined by

∆λMSSMH
4
u ≡

y4tNc

16π2

(
25

6
+ 2 log

α/R

Mt

)
H4
u, (3.18)

where Mt � α/R is assumed. It is shown in figure 2 that even for a 10 TeV scale of the

extra dimension, the effect of the KK modes enhances 10 ∼ 50% radiative correction to the

quartic coupling. This is surprising because, if the MSSM has mass scale of α/R ∼ TeV,

modification from the KK modes is naively expected to be (α/R)2/R−2 ∼ 1% rather than

O(10%). Therefore this new contribution will give a big change to the calculation of the

lightest Higgs mass.

Note that terms with higher power of Hu, such as H6
u, are not important for the Higgs

mass when we consider parameter space of v � R−1 hence HuR expansion is valid. We

explicitly show this in appendix C.

4 Higgs mass

We found the Higgs quartic coupling enhanced by the full KK tower. Then we need

electroweak symmetry breaking parameters, such as tan β ≡ 〈Hu〉/〈Hd〉, to evaluate the

lightest Higgs mass, mh. In the following section 4.1, we obtain µ and tanβ by solving

– 9 –
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Figure 3. µ and tan β are determined by requiring the successful electroweak symmetry breaking.

Black lines show µ in GeV and purple lines show tan β.

electroweak symmetry breaking conditions. In section 4.2, we improve 1-loop calculation

from the top sector by RGE to include next-to-leading logarithm order and also take into

account the leading correction of electroweak gauge couplings. Finally, in section 4.3, we

present results of the Higgs mass and fine-tuning.

4.1 Electroweak symmetry breaking

Despite the constrained structure of the model, successful electroweak symmetry breaking

can be achieved. Since the scale of the extra dimension is well above the supersymmetry

breaking scale, we match the theory onto the MSSM with a matching (renomalization)

scale,

QRG =
1

2πR
. (4.1)

Higgs soft terms are absent at tree level but are generated radiatively. We calculate those

corrections including all the KK modes which are finite thanks to the Scherk-Schwarz

mechanism, and subtract the MSSM parts which are regularized with the DR scheme from

them. As a result, threshold corrections to the Higgs soft terms at the matching scale are

m2
Hu =

(
−3y2t
π2

+
3(g22 + g21/5)

8π2

)(α
R

)2
, (4.2)

m2
Hd

=
3(g22 + g21/5)

8π2

(α
R

)2
, (4.3)

b =

(
3y2t
4π2
− 3(g22 + g21/5)

16π2

)
µ
α

R
. (4.4)

The detail of these results is given in appendix D. We solve electroweak symmetry breaking

conditions using SOFTSUSY 3.4 [57]. Among three free parameters of the model, one of

them is determined by the Higgs VEV. In figure 3, µ as well as tan β are shown in α/R

and 1/R parameter space.
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We find the Higgsino mass scale, µ, has to be close to gaugino, squark, and slepton

mass scale, α/R, which leads to a compressed spectrum which ameliorates LHC bounds.

The spectrum is more compressed as R−1 gets large because µ grows to compensate −|m2
Hu
|

which becomes larger due to a long RGE running. Since tan β is found to be as low as

tanβ . 10 in the parameter space, the tree level Higgs mass, |mZ cos(2β)|, is rather low and

hence a large radiative correction is needed to realize the observed value mh ≈ 125 GeV.

4.2 Higher order corrections

It is known that the corrections at O(y4t g
2
s , y

6
t ) are significant and this is mainly due to the

scale of the top mass. Here we adopt a RG-improved method [58] (see also refs. [59–61])

based on our 1-loop calculation. The top mass (top Yukawa and Hu VEV) runs to an

intermediate scale of top quark and stop by

yt → yt(Mt)

(
1 + βt log

Q

Mt

)
, vu → vu(Mt)

(
1 + γvu log

Q

Mt

)
, (4.5)

where

Q = ct

√
Mt(M2

t + α2/R2)1/2 . (4.6)

The beta function and anomalous dimension are those for the two-Higgs Doublet Model,

βt =
9y2t

32π2
− g2s

2π2
, γvu = − 3y2t

16π2
. (4.7)

We choose ct = 2.1 so that this RG-improved calculation for the MSSM Higgs mass repro-

duces the 2-loop result calculated by FeynHiggs [62] to a good accuracy. This top mass

is used for the formulae for the Higgs quartic coupling in eqs. (3.16), (3.18). Regarding

the KK mode contribution, say ∆λKKH
4
u ≡ (∆λFull − ∆λMSSM)H4

u, a more appropriate

treatment is that ∆λKKH
4
u is given at the KK scale of 1/R and runs down to the scale

α/R. However, since such an effect is subdominant and requires to consider mixing with

other operators, it is beyond the scope of this paper.

In order to further improve our computation to the Higgs mass, we include

O(y2t g
2
1, y

2
t g

2
2) correction. Here, we focus on the MSSM contribution and the corresponding

correction to the Higgs potential is

Vy2t g2 = −g
2
1 + g22

4

3y2t
8π2

log
m2
t̃

+M2
t

M2
t

(
|Hu|4 −

1

2
|Hu|2|Hd|2

)
, (4.8)

where we neglect the mixing between t̃R and t̃L. The top Yukawa here is also given by

eq. (4.5).

4.3 Enhanced Higgs mass

Based on the RG-improved method and electroweak parameters, we calculate the Higgs

mass. In figure 4, we show the Higgs mass calculated at the MSSM level and that calculated

with the full KK tower. Even for heavy KK modes of R−1 ∼ 10 TeV, a line of mh =

125 GeV based on the MSSM is underestimated because once the full KK tower is included,

the Higgs mass is significantly enhanced and then the line of mh = 125 GeV based on the

MSSM actually corresponds to mh = 130–140 GeV. The true line of mh = 125 GeV is

realized in a lower supersymmetry breaking scale. The line becomes a band if we consider
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Figure 4. The lightest Higgs mass in an unit of GeV. Each blue solid line is Higgs mass calculated

with the full KK tower, and each red dashed line corresponds to Higgs mass based on the MSSM

calculation. The MSSM calculation always underestimates the Higgs mass. The yellow band is a

region of mh = 125± 2 GeV.

an uncertainty of our prediction, and we take conservatively 2 GeV as an uncertainty

of the Higgs mass which corresponds to a band in figure 4. As in figure 8 of the Higgs

quartic coupling, the effect of KK modes eventually disappears when R−1 goes beyond

100 TeV (α . 0.01).

Improvement of Higgs mass calculation is very important in the Compact Supersym-

metry model because it has only three free parameters, R, α/R, and µ, one of which is

determined by the Higgs VEV, and furthermore the observed Higgs mass constraints one

more parameter leading to just a line (a band with an error) in the parameter space. It

is shown that the MSSM calculation points to wrong region in the parameter space. The

improved calculation tells that supersymmetry breaking scale that explains the Higgs mass

is lowered, which motivates TeV supersymmetry signature with a compressed spectrum.

Also, testability of the model at the LHC increases.

Fine-tuning is also investigated. For the successful electroweak symmetry breaking,

µ has to be almost as big as the supersymmetry breaking scale, α/R, which leads to a

tree level tuning of the weak scale due to µ � v,mZ . Since µ is the dominant source of

fine-tuning to realize the correct weak scale as pointed out in ref. [19], we adopt a simple

fine-tuning measure, ∆−1µ , varying only µ,

∆−1µ =

∣∣∣∣∂ log v2

∂ log µ

∣∣∣∣−1 ≈ m2
h

4µ2
. (4.9)

The last approximation is valid when heavy Higgs states are decoupled [48]. In this case,

the Higgs sector corresponds to SM-like one-Higgs doublet model, and we can derive

∂v2

∂µ2
=

v2

m2
h

∂m2
h

∂µ2
=
−2v2

m2
h

. (4.10)

Using this approximation, in figure 5, we show fine-tuning of the Compact Supersymmetry

model is percent level.
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Figure 5. Fine-tuning ∆−1
µ ≈ m2

h/(4µ
2) is plotted as black dashed lines. Blue solid lines correspond

to the lightest Higgs mass in a unit of GeV calculated with the full KK tower, and the yellow band

is a region of mh = 125± 2 GeV.

5 Experimental bounds

In this section, we discuss how experimental results bound on the parameter space. The

first constraint we consider is from the electroweak precision test. Since this model has

brane-localized Higgs, the Higgs VEV mixes zero mode and non-zero modes of electroweak

gauge bosons at tree level. Refs. [44, 45] study such bounds and lead to a limit on a size

of the extra dimension, R−1 & 5 TeV. It does not constrain interesting parameter space

which can explain the Higgs mass and the current LHC results.

Secondly, the ATLAS and CMS experiments search for supersymmetric particles and

derive bounds in many channels. Here we study a representative analysis of multijet+ /ET .

Since the Compact Supersymmetry model has a compressed spectrum whose mass differ-

ence between the LSP and gluino/squark is typically 300 GeV, the bound is weaker than

those for the CMSSM and simplified models (mg̃ ≈ mq̃) [17]. For the spectrum calculation,

as discussed in section 4.1, we match the theory onto the MSSM at a scale of 1/(2πR)

and consider RGE running down to the supersymmetry breaking scale, α/R. We gener-

ate signal events by PYTHIA 6.4 [63], and use PGS 4 [64] for the detector simulation and

NLL-fast [65–70] for estimation of the production cross section including next-to-leading

order QCD corrections and the resummation at next-to-leading-logarithmic accuracy. We

compare the obtained event numbers with ATLAS searches using multijet + /ET without

lepton with L = 20.3 fb−1 at
√
s = 8 TeV [17], and the result is shown as a lower shaded

region in figure 6. We find the exclusion bound is extended up to mg̃ ' 1 TeV, and for

a region at R−1 ∼ 10 TeV the bound is stronger as mg̃ & 1.3 TeV because the spectrum

is less compressed in this region. In contrast, the CMSSM and simplified model are more

constrained as the bound is mg̃ & 1.7 TeV.

Finally, the LSP can be a dark matter candidate. As long as the LSP is stable, its relic

abundance should be lower than the observed dark matter relic abundance. We calculate

thermal relic abundance of the LSP using MicroOMEGAs [71, 72], and put a 95% C.L. upper
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Figure 6. The upper (purple) shaded region is excluded by the thermal relic abundance of the

LSP larger than the observed dark matter relic abundance, Ωh2 > 0.125. The lower (gray) shaded

region is excluded by one of the ATLAS results which are based on multijet+ /ET . Blue solid lines

correspond to the lightest Higgs mass in a unit of GeV calculated with all the KK tower, and the

yellow band is a region of mh = 125± 2 GeV.

bound on the relic abundance, Ωh2 < 0.125, obtained by Planck collaboration [73]. The

LSP in this model is dominated by the Higgsino component because of µ < α/R, and then

the thermal relic abundance of the LSP is smaller than the observed abundance unless it

is heavy to decouple from thermal bath earlier. The excluded region is shown as an upper

shaded region in figure 6. It is very interesting because this tells that the model can be

tested, that is, along the Higgs mass band there is upper bound in the TeV range by the

dark matter relic abundance and the LHC bound from the bottom will be improved at

upcoming LHC run at
√
s =13 and 14 TeV.

Regarding the future search for models with a compressed spectrum such as the Com-

pact Supersymmetry model, since the signal is weaker, it is important to improve the

sensitivity. One possibility is to utilize MT2 [74] which can systematically separate sig-

nal and background, and its validity is demonstrated in ref. [75] that MT2 significantly

improves discovery potential of the Minimal Universal Extra Dimension [76] which has

a compressed spectrum. Also, other useful techniques [77–83] are developed to improve

the sensitivity to models with compressed spectra at the LHC. Using these techniques

and all channels of experiments, we believe the whole parameter space of the Compact

Supersymmetry model compatible with the observed Higgs mass and the dark matter relic

abundance (α/R . 1.8 TeV) is explicitly testable at the LHC.

6 Conclusions

We studied an impact of the KK tower to the lightest Higgs mass in the Compact Super-

symmetry model. We computed the effective potential of all the KK modes (with Higgs

dependent mass eigenvalues), and find the enhancement of the Higgs quartic coupling is

unexpectedly large. The effect of the KK modes enhances the radiative contribution to the
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Higgs quartic coupling by from 10 to 50% even for heavy KK modes of O(10) TeV, and

the effect remains non-negligible until O(100) TeV. This is mainly because the top quark

wave function is pushed out from the brane, which makes the top mass depend on higher

powers in the Higgs field. Correspondingly, the Higgs mass is raised by from 5 to 15 GeV,

and hence the Higgs mass of 125 GeV is realized in a lower supersymmetry breaking scale

of α/R. The better knowledge of the Higgs mass together with the Higgs VEV essentially

leaves only one free parameter of the model. Furthermore the parameter space is bounded,

with respect to α/R, from the bottom by the LHC searches at α/R ' 1 TeV and from the

top by the the dark matter relic abundance at α/R ' 1.8 TeV. Although the compressed

spectrum weakens LHC bounds, since the LHC run II can investigate higher mass scale by

the higher energy, the whole parameter space of the model will be explicitly tested.
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A Mass spectrum

A.1 Equations of motion

In order to obtain Higgs-dependent mass eigenvalues, we solve 5D equations of motion and

find wave functions. Equations of motion for squark are

(−∂2 + ∂25)Q̃− y2U5H
2
uδ(y)δ(0)Q̃+ yU5Huδ(y)∂5Ũ

c = 0 , (A.1)

(−∂2 + ∂25)Ũ c − yU5Hu∂5[δ(y)Q̃] = 0 , (A.2)

(−∂2 + ∂25)Ũ∗ − y2U5H
2
uδ(y)δ(0)Ũ∗ + yU5Huδ(y)∂5Q̃

c∗ = 0 , (A.3)

(−∂2 + ∂25)Q̃c∗ − yU5Hu∂5[δ(y)Ũ∗] = 0 . (A.4)

Since we are only interested in top quark, Q̃(c) represents 5D top squark field in the

SU(2)L doublet and Ũ (c) also represents 5D top squark field, and therefore Yukawa coupling

here corresponds to top Yukawa, yU5 → yt5. All the parameters are taken to be real for

simplicity. In the following, we perform 4D Fourier transformation and consider on-shell,

that is, −∂2 → p2 = M2.

Equations of motion for quark are

(i/∂ + γ5∂5)ΨQ + δ(y)yU5PRΨC
UHu = 0 , (A.5)

(i/∂ + γ5∂5)ΨU + δ(y)yU5PRΨC
QHu = 0 , (A.6)

where the superscript C denotes charge conjugation of the fermion. As in the squark case,

we focus on top quark.
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A.2 Solution for quark

We can separate quark wave functions to 4D parts and extra dimensional parts,

ΨQ(x, y) =

(
Q(x, y)

Q
c
(x, y)

)
= ψQ−(x)fQ−(y) + ψQ+(x)fQ+(y), (A.7)

ΨU (x, y) =

(
U(x, y)

U
c
(x, y)

)
= ψU−(x)fU−(y) + ψU+(x)fU+(y). (A.8)

ψ± is four component spinor which has a chirality, γ5ψ± = ±ψ±. Under the reflection,

Z : y → −y, fQ−(y) and fQ+(y) should have the same transformations of Q(x, y) and

Q
c
(x, y), respectively, as

fQ−(−y) = +fQ−(y), fQ+(−y) = −fQ+(y). (A.9)

This condition is same for U quark fields.

Now we investigate the bulk Lagrangian omitting arguments for simplicity,

ΨQ(i/∂ + γ5∂5)ΨQ =
(
ψ̄Q−f

∗
Q− + ψ̄Q+f

∗
Q+

)
(i/∂ + γ5∂5) (ψQ−fQ− + ψQ+fQ+)

= (ψ̄Q−i/∂ψQ−)(f∗Q−fQ−) + (ψ̄Q+i/∂ψQ+)(f∗Q+fQ+)

+ (ψ̄Q−γ5ψQ+)(f∗Q−∂5fQ+) + (ψ̄Q+γ5ψQ−)(f∗Q+∂5fQ−) . (A.10)

EOMs in the bulk lead to

i/∂ψQ−(f∗Q−fQ−) = −ψQ+(f∗Q−∂5fQ+), (A.11)

i/∂ψQ+(f∗Q+fQ+) = ψQ−(f∗Q+∂5fQ−). (A.12)

The last equality is obtained by integration by parts. Separation of variables is used,

i/∂ψQ−(x)

ψQ+(x)
= M = −

∂5fQ+(y)

fQ−(y)
, (A.13)

i/∂ψQ+(x)

ψQ−(x)
= M ′ =

∂5fQ−(y)

fQ+(y)
. (A.14)

M and M ′ constant and interpreted as 4D quark mass, and M = M ′ is necessary because

ψQ+ and ψQ− behave as a single Dirac fermion. Then, a differential equation for fQ−(y) is

∂25fQ−(y) = ∂5(MfQ+(y)) = −M2fQ−(y), (A.15)

and a general solution of fQ− in the bulk is

fQ−(y) = A cos(My) +Bsign(y) sin(My). (A.16)

A solution of fQ+ is given by fQ+(y) = ∂5fQ−(y)/M ,

fQ+(y) = −A sin(My) +Bsign(y) cos(My). (A.17)
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For U quark, we have similar conditions,2

M =
i/∂ψU−(x)

ψU+(x)
= −∂5fU+(y)

fU−(y)
=
i/∂ψU+(x)

ψU−(x)
=
∂5fU−(y)

fU+(y)
(A.18)

and here are solutions,

fU−(y) = C cos(My) +Dsign(y) sin(My), (A.19)

fU+(y) = −C sin(My) +Dsign(y) cos(My). (A.20)

For the case of quark, we can define another reflection, Z ′ : y + πR→ −y + πR, that

is a product of T and Z (Z ′ = ZT ). For fermions of Φc which are odd under Z, they are

also odd under Z ′ because of T = 1. In particular, Qc(πR) = U c(πR) = 0 gives

A sin(MπR) = B cos(MπR), (A.21)

C sin(MπR) = D cos(MπR). (A.22)

We determine the coefficients by integrating EOM of eq. (A.5) around y = 0 with an

infinitesimal interval of ε,

0 =

∫ ε

−ε
dy
{

(i/∂ + γ5∂5)ΨQ(y) + δ(y)yU5PRΨC
U (y)Hu

}
. (A.23)

The 4D kinetic term does not give a constraint because it automatically vanishes,∫ ε

−ε
dy i/∂ΨQ(y) =

∫ ε

−ε
dy {MψQ+fQ−(y) +MψQ−fQ+(y)} = 0 . (A.24)

We focus on the right-handed component of eq. (A.23),

0 =

∫ ε

−ε
dy
{
ψQ+∂5fQ+(y) + δ(y)yU5ψ

C
U−f

∗
U−(y)Hu

}
= ψQ+fQ+(ε)− ψQ+fQ+(−ε) + yU5ψ

C
U−f

∗
U−(0)Hu

= 2ψQ+B + yU5Huψ
C
U−C

∗. (A.25)

The other fermion EOM of eq. (A.6) gives a similar condition,

2ψU+D + yU5Huψ
C
Q−A

∗ = 0. (A.26)

This is modified using eq. (A.18),

2i/∂ψU+D + yU5Hui/∂ψ
C
Q−A

∗ = 2MψU−D + yU5HuMψCQ+A
∗ = 0 . (A.27)

Finally, eqs. (A.21), (A.22), (A.25), (A.27) lead to

ψQ+A sin(MπR) = −yU5Hu

2
ψCU−C

∗ cos(MπR)

=

(
yU5Hu

2

)2

ψQ+A
cos2(MπR)

sin(MπR)
. (A.28)

2The reason that the constant M here is common with one for Q is because we later obtain conditions

that ψQ and ψcU are related in eqs. (A.25), (A.26). In other words, they are mixed by Higgs VEV.
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Hence, a consistency condition of quark mass is

tan2(MπR) =

(
yU5Hu

2

)2

. (A.29)

The lowest mass eigenvalue gives top quark mass which is not simply proportional to Higgs,

Mt(Hu) ≡ 1

πR
arctan

(
yt5Hu

2

)
, (A.30)

and general mass eigenvalues of top quark are

M =
n

R
±Mt(Hu) (n : integer). (A.31)

These eigenvalues are used to calculate the effective potential.

We give the KK expansion for top quark for completeness,

ΨQ =
∞∑

n=−∞
Nf t

(n)
L (x)

[
cos
( n
R

+Mt

)
y + tan(MtπR) sign(y) sin

( n
R

+Mt

)
y
]

+

∞∑
n=−∞

Nf t
(n)
R (x)

[
− sin

( n
R

+Mt

)
y + tan(MtπR) sign(y) cos

( n
R

+Mt

)
y
]
, (A.32)

ΨC
U =

∞∑
n=−∞

Nf t
(n)
R (x)

[
cos
( n
R

+Mt

)
y + tan(MtπR) sign(y) sin

( n
R

+Mt

)
y
]

+
∞∑

n=−∞
Nf t

(n)
L (x)

[
− sin

( n
R

+Mt

)
y + tan(MtπR) sign(y) cos

( n
R

+Mt

)
y
]
, (A.33)

where Nf = cos(MtπR)

(2π)1/2
is a normalization factor.

A.3 Solutions for squarks

Similarly to the quark case, we solve Klein-Gordon equations for squarks in the bulk

respecting properties of Z reflection,

Q̃(y) = A1 cos(My) +B1sign(y) sin(My) , (A.34)

Ũ c(y) = C1sign(y) cos(My) +D1 sin(My) , (A.35)

Ũ∗(y) = A2 cos(My) +B2sign(y) sin(My) , (A.36)

Q̃c∗(y) = C2sign(y) cos(My) +D2 sin(My) . (A.37)

These profiles of eqs. (A.34)–(A.37) are valid for an interval of −2πR ≤ y ≤ 2πR. In

principle δ(y) terms are allowed for Q̃ and Ũ , but we neglect those because we can easily

show these should terms vanish by EOMs. Discontinuity at y = 0 is necessary to take

into account Higgs effect localized on the brane. For the translation, squarks have twisted

boundary conditions,(
Q̃(y + 2πR)

Q̃c∗(y + 2πR)

)
=

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)(
Q̃(y)

Q̃c∗(y)

)
, (A.38)(

Ũ(y + 2πR)

Ũ c∗(y + 2πR)

)
=

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)(
Ũ(y)

Ũ c∗(y)

)
. (A.39)
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We determine the coefficients of the general solutions by EOMs and the above twisted

boundary conditions. Here, only two EOMs of eqs. (A.1), (A.3) are relevant. We consider

integral of eq. (A.1) around y = 0,

0 =

∫ ε

−ε
dy
{

(M2 + ∂25)Q̃(y)− y2U5H
2
uδ(y)δ(0)Q̃(y) + yU5Huδ(y)∂5Ũ

c(y)
}

=

∫ ε

−ε
dy {M2Q̃(y)}+ ∂5Q̃(ε)− ∂5Q̃(−ε)− y2U5H

2
uδ(0)Q̃(0) + yU5Hu∂5Ũ

c(0)

= 2MB1 − y2U5H
2
uδ(0)A1 + yU5Hu(2δ(0)C1 +MD1) . (A.40)

Therefore comparing coefficients leads to two conditions,

C1 =
yU5Hu

2
A1, B1 = −yU5Hu

2
D1 . (A.41)

Similarly, eq. (A.3) gives

C2 =
yU5Hu

2
A2, B2 = −yU5Hu

2
D2 . (A.42)

Next we apply boundary conditions of the translation. The condition for Q̃ of eq. (A.38)

leads to (
Q̃(2πR− ε)
Q̃c∗(2πR− ε)

)
=

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)(
Q̃(−ε)
Q̃c∗(−ε)

)
(A.43)(

A1 cos(2πMR) +B1 sin(2πMR)

C2 cos(2πMR) +D2 sin(2πMR)

)
=

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)(
A1

−C2

)
. (A.44)

Eq. (A.39) leads to a similar equation exchanging subscripts, 1 ↔ 2. Hence we have,

A1 [cos(2πMR)− cos(2πα)] +B1 sin(2πMR) + C2 sin(2πα) = 0 , (A.45)

C2 [cos(2πMR) + cos(2πα)] +D2 sin(2πMR) +A1 sin(2πα) = 0 , (A.46)

A2 [cos(2πMR)− cos(2πα)] +B2 sin(2πMR) + C1 sin(2πα) = 0 , (A.47)

C1 [cos(2πMR) + cos(2πα)] +D1 sin(2πMR) +A2 sin(2πα) = 0 . (A.48)

There are enough conditions of eq. (A.41), (A.42), (A.45)–(A.48) for 8 coefficients. We

solve them,

A1

[
(1 + ξ2) cos(2πMR)− (1− ξ2) cos(2πα)

]
+ 2A2ξ sin(2πα) = 0, (A.49)

A2

[
(1 + ξ2) cos(2πMR)− (1− ξ2) cos(2πα)

]
+ 2A1ξ sin(2πα) = 0, (A.50)

where ξ ≡ yU5Hu
2 . Because A1 = ±A2 is obviously a solution of eqs. (A.49), (A.50), a

consistency condition is found to be

cos(2πMR) = cos(2πα± 2θ), (A.51)

where tan θ ≡ ξ (or θ = MtπR). Hence squark mass eigenvalues are given by

M =
n+ α

R
±Mt (n : integer). (A.52)
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For completeness, we determine coefficients. In a case of A1 = A2,

B1 = B2 = C1 = C2 = A1 tan(MtπR), D1 = D2 = −A1 , (A.53)

and in the other case of A1 = −A2,

B1 = −B2 = −C1 = C2 = −A1 tan(MtπR) , D1 = −D2 = A1 . (A.54)

The KK expansion for squark is

Q̃ =

∞∑
n=−∞

Nbt̃
(n)
1 (x)

[
cos

(
n+ α

R
+Mt

)
y + tan(MtπR) sign(y) sin

(
n+ α

R
+

θ

πR

)
y

]

+
∞∑

n=−∞
Nbt̃

(n)
2 (x)

[
cos

(
n+ α

R
−Mt

)
y − tan(MtπR) sign(y) sin

(
n+ α

R
−Mt

)
y

]
,

(A.55)

Q̃c∗ =
∞∑

n=−∞
Nbt̃

(n)
1 (x)

[
− sin

(
n+ α

R
+Mt

)
y + tan(MtπR) sign(y) cos

(
n+ α

R
+Mt

)
y

]

−
∞∑

n=−∞
Nbt̃

(n)
2 (x)

[
sin

(
n+ α

R
−Mt

)
y + tan(MtπR) sign(y) cos

(
n+ α

R
−Mt

)
y

]
,

(A.56)

Ũ∗ =
∞∑

n=−∞
Nbt̃

(n)
1 (x)

[
cos

(
n+ α

R
+Mt

)
y + tan(MtπR) sign(y) sin

(
n+ α

R
+Mt

)
y

]

−
∞∑

n=−∞
Nbt̃

(n)
2 (x)

[
cos

(
n+ α

R
−Mt

)
y − tan(MtπR) sign(y) sin

(
n+ α

R
−Mt

)
y

]
,

(A.57)

Ũ c =

∞∑
n=−∞

Nbt̃
(n)
1 (x)

[
− sin

(
n+ α

R
+Mt

)
y + tan(MtπR) sign(y) cos

(
n+ α

R
+Mt

)
y

]

+

∞∑
n=−∞

Nbt̃
(n)
2 (x)

[
sin

(
n+ α

R
−Mt

)
y + tan(MtπR) sign(y) cos

(
n+ α

R
−Mt

)
y

]
,

(A.58)

where Nb = cos(MtπR)

2π1/2 is a normalization factor.

B Infinite sum

In order to deal with infinite sums, we replace each element of a sum with a pole in a

complex integral. For a function that has no singularities on the real z axis, f(k, z), there

is a useful relation,

∞∑
n=−∞

f(k, n+ α) =
∞∑

n=−∞

∮
Cαn

dz f(k, z)
coth[iπ(z − α)]

2
, (B.1)
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Figure 7. Integral path of Cαn in the upper plot. They are combined as shown in the lower plot.

where the contour Cαn is a path which rounds about z = n+α with an infinitesimal radius.

When z → α,

coth[iπ(z − α)]

2
=

1

2iπ(z − α)
+O(z − α) , (B.2)

and the function above is periodic under a transformation of z → z + nπ, so each
∮
Cαn

dz

generates a discrete point of f(k, z). We combine all the contours to paths as in figure 7

and obtain a form with a simple integral,

∞∑
n=−∞

∮
Cαn

dz f(k, z)
coth[iπ(z − α)]

2

=

(∫ −∞+iε

∞+iε
dz +

∫ ∞−iε
−∞−iε

dz

)
f(k, z)

coth[iπ(z − α)]

2

=

∫ ∞−iε
−∞−iε

dz

{
f(k, z)

coth[iπ(z − α)]

2
− f(k,−z)

coth[iπ(−z − α)]

2

}
=

∫ ∞
−∞

dz

{
f(k, z) + f(k,−z)

2

}
+

∫ ∞−iε
−∞−iε

dz

{
f(k, z)

e2iπ(z−α) − 1
+

f(k,−z)

e2iπ(z+α) − 1

}
. (B.3)

Here, we used

coth(x) = 1 +
2

e2x − 1
= −

(
1 +

2

e−2x − 1

)
. (B.4)

We are interested in f(k, z) = 1/(k2 + z2), z/(k2 + z2), and hence, for such functions that

damps for z → ±∞−iε and can be suppressed by e−2iπz for z → −i∞, the second expression

– 21 –



J
H
E
P
0
4
(
2
0
1
6
)
0
2
5

of eq. (B.3) can enclose the path, referred as to C5, in the negative imaginary z plane,

∞∑
n=−∞

f(k, n+α) =

∫ ∞
−∞

dz

{
f(k, z)+f(k,−z)

2

}
+

∮
C5

dz

{
f(k, z)

e2iπ(z−α)−1
+

f(k,−z)

e2iπ(z+α)−1

}
.

(B.5)

If f(k, z) has poles inside the closed path C5, the second term on the right-hand side

becomes a function of k, otherwise it vanishes. In the following section, we will see the

cases of,

f(k, z) =
1

k2 + z2
,

z

k2 + z2
. (B.6)

Using eq. (B.5), formulae of infinite sum are

∞∑
n=−∞

1

k2 + (n+ α)2
=

∫ ∞
−∞

dz

k2 + z2
+
π

k

{
1

e2π(k−iα) − 1
+

1

e2π(k+iα) − 1

}
, (B.7)

∞∑
n=−∞

(n+ α)

k2 + (n+ α)2
= (−iπ)

{
1

e2π(k−iα) − 1
− 1

e2π(k+iα) − 1

}
. (B.8)

This is finite because the momentum dependence is exponentially suppressed in the UV

regime. The divergent part appear as the first term of eq. (B.7) which has a higher power

of UV divergence. However, this divergence is insensitive to supersymmetry breaking

parameter, α, and then it completely vanishes after combining bosonic and fermionic con-

tribution. Only finite pieces depend on α. This is consistent with the non-local nature of

supersymmetry breaking by the Scherk-Schwarz mechanism. Because fields notice super-

symmetry breaking only when they travel around the extra dimension, local effects still

hold supersymmetric nature leading to absence of UV divergence.

Finally, we calculate the following sum and integral for the effective potential,

W ′(ω) =
∞∑

n=−∞

∫
d4k

(2π)4
(n+ ω)

k2 + (n+ ω)2

=

∫
dk k3(2π2)

(2π)4
(−iπ)

{
1

e2π(k−iω) − 1
− 1

e2π(k+iω) − 1

}
=
−3i

2(2π)5
[Li4(e

2πiω)− Li4(e
−2πiω)] , (B.9)

where ∫ ∞
0

dk
kn

e2π(k∓iω) − 1
=

n!

(2π)n+1
Lin+1(e

±2πiω). (B.10)

Here the divergence piece does not appear because ω independent terms are already sub-

tracted when W is constructed as in eq. (3.9).

C Effect of higher order terms of O(H6
uR

6) to Higgs Mass

Top quark wave function we solved tells that top mass is polynomial of Hu in eq. (3.5). For

our Higgs mass calculation, we use an expansion with respected HuR and take into account
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Figure 8. Deviation of (∆m2
approx −∆m2)/∆m2 in percent. We fix parameters as vu = 174 GeV

and yt = 1 for simplicity.

up to Higgs quartic terms as in eq. (3.16). Here we show this is good approximation in

parameter of our interest, v � 5 TeV . R−1.

To simplify discussion, we consider the following potential depending on only Hu,

V (Hu) = (µ2 +m2
Hu)H2

u +
g2Z
4
H4
u + Vt(Hu) (C.1)

where g2Z ≡ (g2 + g′2)/2 and Vt is potential from the radiative correction. The second

derivative around the VEV gives the Higgs mass,

m2
h '

1

2

∂2V

∂v2u
= (µ2 +m2

Hu) +
3g2Z
2
v2u +

1

2

∂2Vt
∂v2u

= g2Zv
2
u +

1

2

(
∂2Vt
∂v2u

− 1

vu

∂Vt
∂vu

)
(C.2)

where we used the vacuum condition in the last step. In our estimate we expand the poten-

tial with respect to HuR and take up to H4
u terms. In order to verify this approximation

in parameter of our interest, v � 1/R, we numerically evaluate the last term of eq. (C.2),

∆m2 ≡ 1

2

(
∂2Vt
∂v2u

− 1

vu

∂Vt
∂vu

)
. (C.3)

In case that the full formula of Vt without any expansion, eq. (3.13), is adopted, we refer

to it as ∆m2
full. On the other hand, we denote ∆m2

approx is ∆m2 using approximated

Vt that includes up to H4
u terms as in eq. (3.16). Deviation due to the approximation,

(∆m2
approx−∆m2

full)/∆m
2
full, is shown in figure 8, and it is at most a few percent and is less

than percent for R−1 & 10 TeV. This is because the higher order terms are suppressed by

vuR � 1. Since this radiative correction contributes to a half of Higgs mass-squared, the

Higgs mass changes only by about a quarter of the deviation, (∆m2
approx−∆m2

full)/∆m
2
full.

Therefore the approximation of eq. (3.16) is valid, and the higher order terms of O(H6
uR

6)

can be neglected.
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D Threshold corrections to Higgs soft terms

Including all the KK tower, we obtain finite results for the Higgs soft terms through 1-loop

calculation,

δm2
Hu =

Ncy
2
t

16π2
3

π2R2

[
Li3(e

2πiα) + Li3(e
−2πiα)− 2ζ(3)

]
+

∑
A=1,2C

h
Ag

2
A

16π2
−2

π2R2

[
Li3(e

2πiα) + Li3(e
−2πiα)− 2ζ(3)

]
, (D.1)

δm2
Hd

=

∑
A=1,2C

h
Ag

2
A

16π2
−2

π2R2

[
Li3(e

2πiα) + Li3(e
−2πiα)− 2ζ(3)

]
, (D.2)

δb =
iµ

16π2
−Ncy

2
t + 2

∑
A=1,2C

h
Ag

2
A

πR

[
Li2(e

2πiα)− Li2(e
−2πiα)

]
. (D.3)

The Casimir invariants for SU(2)L and U(1)Y in SU(5) normalization are Ch2,SU(2)L
= 3/4

and Ch2,U(1)Y
= 3/20. The complete diagrammatic calculations are found in ref. [84]. Since

we match the theory with the MSSM at about compactification scale and solve EWSB

conditions, we subtract the MSSM contributions (with the DR scheme),

δm2
Hu(Q) =

Ncy
2
t

16π2

(α
R

)2{
6 log

[
Q2

(2πR)−2

]
− 16

}
+

∑
A=1,2C

h
Ag

2
A

16π2

(α
R

)2{
−4 log

[
Q2

(2πR)−2

]
+ 8

}
+O(α4) , (D.4)

δm2
Hd

(Q) =

∑
A=1,2C

h
Ag

2
A

16π2

(α
R

)2{
−4 log

[
Q2

(2πR)−2

]
+ 8

}
+O(α4) , (D.5)

δb(Q) =
Ncy

2
t

16π2
µ
(α
R

){
−2 log

[
Q2

(2πR)−2

]
+ 4

}
+

∑
A=1,2C

h
Ag

2
A

16π2
µ
(α
R

){
4 log

[
Q2

(2πR)−2

]
− 4

}
+O(α3) . (D.6)

We check the IR effect such as log α terms is certainly cancelled. And the renormalization

scale we choose, QRG = 1
2πR , the Higgs soft terms are

m2
Hu =

(
−3y2t
π2

+
3(g22 + g21/5)

8π2

)(α
R

)2
, (D.7)

m2
Hd

=
3(g22 + g21/5)

8π2

(α
R

)2
, (D.8)

b =

(
3y2t
4π2
− 3(g22 + g21/5)

16π2

)
µ
α

R
. (D.9)

These results are slightly different from those in ref. [19], since ref. [19] uses the cutoff

regularization to matched the theories.
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