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Causal Judgments That Violate the Predictions
of the Power PC Theory of Causal Induction
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Department of Psychology
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psygfv{psygram,

Abstract

The causal power theory of the probabilistic contrast model
(or power PC theory) of causal induction (Cheng, in press)
states that estimates of the causal importance of a candidate
cause are determined by the covariation between the cause and
the effect and the probability of the effect as indexed by the
probability of the effect in the absence of the cause. In two
causal induction experiments we tested predictions derived
from the equations of the power PC theory. In Experiment 1,
the power PC theory predicted equivalent causal estimates in
conditions where the probability of the effect given the
presence of the cause, P(effect | cause), equalled 1 and in
conditions where P(effect | cause) equalled 0. Judgments,
however, differed significantly within these conditions and
conformed to the predictions of a simpler contingency model.
These prediction failures might be attributable to the
particular values of P(effect | cause), and thus Experiment 2
set this probability to values other than 1 or 0. Causal
judgments again disconfirmed the predictions of the power PC
theory and this time significantly failed to conform to the
predictions of a simple contingency model.

Introduction

In a causal induction task, reasoners seek to determine the
importance of different candidate causes in producing a target
effect. Cheng and her collaborators have argued that people
base this assessment on the computation of covariation
between each cause and the effect over an appropriate set of
focal observations (e.g., Cheng & Novick, 1992). An index
of covariation is AP which is the difference between the
conditional probability of the effect e given candidate cause
A, P(e | A) and the conditional probability of the effect
given the absence of the cause, P(e | -A). More recently,
Cheng’s (in press) causal power theory of the probabilistic
contrast model (or power PC theory) specified that causal
judgments are not simply a function of AP but also of the
base rate of the effect, as indexed by P(e | -A). For
facilitative causal relationships high effect base rates may
mask the causal power of a candidate cause and reasoners’
estimates should thus increase as the effect base rate
increases. Cheng formalizes this relationship with the
following equation,

AP (D

1 Plel=-A)
FFor preventive causal relationships low effect base rates may
obscure the preventive causal power of a candidate cause and

powera =
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consequently reasoners' estimates should increase as the
effect base rate decreases. Cheng formalizes this relationship
in Equation (2),

—APA (2)

P(e 1-A)
Note that these equations apply only when alternative
candidate causes, in this experiment represented by the
constant cause X (as introduced below), are independent of
the target cause A, and indeed in the experiments reported
below P(X |1 A) = P(X | -A) = P(X).

The experiments reported here tested a number of simple
predictions derived from Equations (1) and (2) in a causal
induction task in which the covariation information between
candidate causes and the effect was presented one trial at a
time, There were two candidate causes in the task, one
present on every trial (the constant cause) and one present on
some trials but absent on others (the variable cause). Data
from Experiment 1 showed that ratings of the causal
importance of the variable cause violated the predictions of
the power PC theory but not those of a simple contingency
model based on AP alone, while the data from Experiment 2
showed that they violated the predictions of both the power
PC theory and the simple contingency model. In turn,
ratings of the constant cause in both experiments were a
function of the probability of the effect in the presence of
the constant cause alone. We show below that on the basis
of a number of auxiliary assumptions the power PC theory
can predict this result.

powera =

Experiment 1

In the first experiment subjects judged the importance of
variable and constant candidate causes in producing an effect
in four conditions. We will refer to the variable cause as
cause A and the constant cause as cause X. In two of the
conditions the probability of the effect in the presence of the
variable cause (and of the constant cause since it is present
on every trial or P(e | A.X)), equalled 1. In these conditions
the power PC theory makes identical predictions, namely
very high estimates of the facilitatory power of A regardless
of the base rate of the effect (and consequently of the
contingency between A and the effect; we will derive these
predictions below). In the remaining two conditions, P(e |
A.X) equalled 0. In these conditions, the power PC theory
predicts very high estimates of the preventive power of A
again regardless of the base rate of the effect .
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Method

Design. Each subject participated in four experimental
conditions. Each condition was composed of 48 trials which
showed either the presence of both a variable and a constant
cause (AX trials) or the presence of the constant cause alone
(X trials) followed with the presence or absence of the effect.
Table 1 shows the probability of the effect in the presence
and in the absence of the variable cause in each of the four
conditions, The top half of Table 2 reports the frequency of
presentation of the four trial types.

Predictions. Before examining the predictions of the
power PC theory a caveat is in order. The output values of
Equations (1) and (2) are not understood (o map
isomorphically onto a rating scale. The mapping function
that binds the theory’s prediction to a subject’s judgments is
not known but is assumed to be monotonic.

A simple contingency model based on AP predicts that
estimates of the variable candidate cause should be
proportional to AP, namely more positive in Condition 1
where AP is 0.83 than in Condition 2 where AP is 0.17 and
more negative in Condition 3 where AP is -0.83 than in
Condition 4 where AP is -0.17. The power PC theory
makes different predictions from the simple contingency
model. Thus, on the basis of Equation (1) the predictions of
the power PC theory for the two conditions where AP is
positive are equivalent. In Condition 1 where AP = 0.83 and
the probability of the effect in the absence of the variable
cause, P(e | -A.X), is 0.17 the predicted power of A is,

0.83 0.83

1-0.17 0.83
and in Condition 2 where AP = 0.17 and P(e | -A.X) = 0.83,
the predicted power of A is also 1,
0.17 0.17 i

1-0.83 0.17
For the two negative conditions, the power PC theory
predictions are also equivalent. The AP term in Equation (2)
1s negated to yield positive estimates of preventive causal
power, but since a negative rating scale was used in this
study we have removed the negative. In Condition 3 where
AP = -0.83 and P(e | -A.X) = 0.83 the predicted power of A
is,
—0.83

=—=_F

0.83
For Condition 4 where AP = -0.17 and P(e | -A.X) = 0.17,
the predicted power of A is also -1,

-0.17

0.17
The left panel and the middle panel of Figure 1 illustrate the
predictions of the power PC theory and the simple
contingency model respectively, While the simple
contingency model predicts a contingency polarity (i.e.,
positive/negative) by absolute AP interaction, the power PC
theory predicts no such interaction.

The covariation between the constant cause and the effect
is incalculable within the task trials since P(e | -A.-X) is
undefined. The power PC theory (as well as a simpler model
based on the calculation of AP alone) must postulate that

subjects redefine the focal set to include observations other
than the ones presented during the experimental procedure.
Since the causal scenario used in these experiments was
fictitious, actual or similar observations outside the
laboratory that would lend themselves to a definition of P(e |
-A.-X) are rare. Instead, subjects may be argued to set Ple |
-A.-X) to some value on the basis of their understanding of
the task. As long subjects define Pe | -A.-X) in a systematic
way across all experimental conditions, the value of the
contrast for the constant cause should be determined only by
the probability of the effect in the presence of the constant
cause alone or P(e | -A.X). Thus, the power PC theory and a
simpler contingency model based solely on the computation
of AP, with the help of a few auxiliary assumptions, predict
that the ratings of the causal importance of a constant
candidate cause should be a function of P(e | -A.X).

Cause A Cause X

ﬂ"m"’“ PeTAX) AP PPC est eslt
1 1.00 0.17 0.83 1 85.9 -295
63) | 9.1

2 1.00 0.83 0.17 1 61.8 67.9
99) | 8.2)

3 0.00 0.83 -0.83 -1 -85.4 76.8
(8.6) | (3.4)

4 0.00 0.17 017 | -1 [ -61.5 ] -21.5
(8.3) | (10.7)
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Table 1. Probability of the effect in the presence, P(e |
A X), and in the absence of the variable candidate cause,
P(e | -A.X); output of a simple contingency model AP and
of the power PC theory (PPC); mean terminal estimates
for the variable cause (A) and the constant cause (X) in
each of the four conditions of Experiment 1 (standard error
in parentheses).

Procedure. The causal induction task was couched in a
fictitious scenario involving samples of laboratory mice
having been exposed (o radiation. The mice were
subsequently injected with certain hormones (e.g.,
Curie3CT, AsloX7), and one month later cell growth was
analysed. Some mice were injected with two hormones,
others with only one. The task instructions informed the
subjects that the hormones could either potentiate cancerous
cell growth or prevent it. There were four groups of 48
mice, each group corresponding with one of the four
experimental conditions. The record for each mouse was
presented one at a time on a computer screen and informed
the subjects whether it had been injected with one or two
hormones. Subjects were then asked to predict the health of
that mouse, which they did by entering “1" for “abnormal
cell growth” or “0” for “healthy cell growth”. One second
later feedback appeared on the screen, informing the subjects
about the health of that mouse. The feedback stayed on the
screen until subjects depressed the spacebar to see the next
record. Four sets of labels for the fictitious hormones were
used and their assignment counterbalanced across conditions
and across hormone types (i.e., variable or constant).

The order of presentation of each of the four conditions
was counterbalanced across subjects. The trial presentation
was randomized but constrained to match exactly the



conditional probabilities of the effect in the presence and
absence of the variable cause shown in Table 1 after each
block of 24 trials. After each block ol 24 tnals, subjects
were asked “what is your estimate of the relationship
between <hormone name> and abnormal cell development?”
which they answered by entering a number between -100
and 100. Subjects were told that "a positive cstimate
indicates that you believe the hormone to CAUSE" and "a
negative estimate indicates that you believe the hormone to
PREVENT abnormal cell development” Since the trials
main effect was not reliable in any of the analyses conducted
on the causal ratings, only the terminal ratings will be

reported.

Experiment 1
Conditions

Trial Type TR | 2010 | 308D | 3(010
AX - E 24 24 0 0
AX - no E 0 0 24 24
X - E 4 20 20 4
X—=nE 20 4 4 20

Experiment 2
Trial Type T30) | 2100 | 3(-050) | 3 (0.10)
AX - E 10 18 10 2
AX - no E 10 2 10 18
X->E 0 16 20 4
X —-noE 20 4 0 16

Table 2. Frequency of presentation of each of the four trial
type in each condition of Experiment 1 (top half) and of
Experiment 2 (bottom half). For each condition AP for A
is given in parentheses. A = variable cause, X = constant
cause, £ = effect.

Subjects. Twenty-four undergraduates from the University
of Hertfordshire received course credits for their participation.

Results and Discussion

Variable Cause. The mean terminal ratings of the causal
importance of the variable candidate cause are shown in the
sixth column of Table 1 and are plotied in the right-most
panel of Figure 1. It seemed that the ratings were influenced
by AP in that they were more positive when AP increased
from 0.17 to 0.83 in the two positive conditions, and they
were more negative when AP decreased from -0.17 to -0.83
in the two negative conditions. Hence, the ratings did not
conform to the power PC theory predictions. The statistical
analysis supported this observation (the rejection criterion
was set at .05 for all analyses unless indicated otherwise). In
a two-way repeated measures analysis of variance (ANOVA),
the main effect of the absolute value of AP (i.e., the 10.17I
conditions versus the 10.83] conditions) was not reliable
because of the symmetry in the estimates, the main effect of
contingency polarity (i.e., the positive versus the negative
conditions) was reliable, F(1, 23) = 262, and importantly,
the interaction between these two factors was reliable, F(1,
23) = 6.44. Thus, while the power PC theory predicted no
interaction between these two factors (see the left-most panel
of Figure 1), there was a significant interaction.
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Figure 1. Predicted causal ratings in the two
positive contingency conditions (black circles) and
in the two negative contingency conditions (white
circles) derived {from the power PC theory (left
panel) and the simple contingency model (middle
panel) for Experiment 1: mean observed terminal
causal ratings (right panel).

Constant Cause. The mean terminal ratings of the
constant causc are reported in the right most column of
Table 1. The ratings appeared determined by the likelihood
of the effect occurring in the absence of the variable cause
(see the P(e | -A.X) column of Table 1). In the two positive
conditions this probability was low only when AP was
highly positive, while in the two negative conditions this
probability was high only when AP was highly negative.
We thus expected to obtain a reliable interaction in a two-
way repeated measures ANOVA. In such an analysis, neither
the main effect of absolute AP nor the main effect of
contingency polarity was reliable (again because of the
symmetry in the estimates), but the interaction between
these two factors was, F(1, 23) = 89.2. Thus, subjects were
willing to rate the importance of a constant candidate cause
even if its contingency with the effect was incalculable in
the focal set delimited by the task trials (see also Vallée-
Tourangeau, Murphy, & Baker, 1996). Moreover, these
estimates appeared to be systematically determined by the
frequency with which the effect occurred in the absence of
the variable cause.

Experiment 2

Subjects' ratings of the variable candidate cause in
Experiment 1 were in line with the predictions of a simple
contingency model. In this respect, this result is not
genuinely embarrassing for the power PC theory as long as
auxiliary assumptions are developed that would specify the
circumstances in which the computation of AP is or is not
further weighted by an effect base rate index. One such
auxiliary assumption might have something to do with
extreme predictions. That is, in Experiment 1 the power PC
predictions were either perfect facilitatory or perfect
preventive causal power by setting P(e | A.X) at 1.00 or
0.00. These extreme values might represent some
uninteresting boundaries (o the application of the power PC
theory. Experiment 2 thus set P(e | A.X) at values other
than 1.00 and 0.00, and investigated moderate predictions of
the power PC theory, namely, predicted causal power of
0.50 or -0.50.



Cliuse A Cause X
(e TAX) Piel-AX) &1: Prc est esl

1 0.50 0.00 0.50 0.5 24 .4 -60.6
(10.3) | (10.6)

2 0.90 0.80 0.10 0.5 43 8 0.8
(75) | (3.8)

3 0.50 1.00 -0.50 ] -05] -10.2 90.5
(10.0) | (2.2)

4 010 0.20 -0.10 | -05| -49.8 -42.3
8.2) | (10.2)

Table 3. Probability of the effect in the presence, Ple |
A.X), and in the absence of the variable candidate cause,
P(e | -A.X): output of a simple contingency model AP and
of the power PC theory (PPC); mean terminal estimates
for the variable cause (4) and the constant cause (X) in
each of the four conditions of Experiment 2 (standard error
in parentheses).

Method

Design and Procedure. As in Experiment 1, each
subject participated in four experimental conditions. Each
condition was composed of 40 trials. The different
contingencies between the variable cause and the effect
necessitated different trial numbers from Experiment 1 to
maintain equal frequencies of the different trial types in both
blocks of trials in each condition. Table 3 shows the
probability of the effect in the presence and in the absence of
the variable cause in each condition. The frequency of the
trial types for each condition is shown in the bottom half of
Table 2. The same procedure as in Experiment 1 was
employed.

Predictions. The simple contingency model predicts that
causal ratings should be less positive in Condition 2 (AP =
0.10) than in Condition 1 (AP = 0.50). It also predicts that
the ratings should be less negative in Condition 4 (AP =
-0.10) than in Condition 3 (AP = -0.50). The power PC
predictions are different: on the basis of Equation (1) the
predicted ratings should be equivalent in the positive
conditions. In Condition 1 where AP = 0.50 and the
probability of the effect in the absence of the variable cause,
P(e 1 -A.X), equals 0, the predicted power of A is,

0.50 ;5
= —= (.50
1-0.00 1
and in Condition 2 where AP = 0.10 and P(e | -A.X) = 0.80,
the predicted power of A is the same, namely

0.10 0.10
=——=10.50

1-0.80 0.20
For the two negative conditions, the power PC theory
predicts equivalent causal ratings as well. In Condition 3
where AP = -0.50 and P(e | -A.X) = 1.00 the predicted power
of A is,

-0.50
—=-0.50
1.00

In Condition 4 where AP = -0.10 and P(e | -A.X) = 0.20, the
predicted power of A is also -0.50, namely
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=0.10

0.20
The far left panel and the middle panel of Figure 2 illustrate
the predictions of the power PC theory and the simple
contingency model respectively. As in Experiment 1 the
power PC theory predicts no interaction between
contingency polarity and absolute AP, whereas the simple
contingency model does.

As in Experiment [, both the power PC theory and the
simple AP model can predict how the constant cause will be
rated by postulating that subjects calculate its contingency
by redefining the focal set. As long as subjects redefine the
focal set in the same way in the four conditions, then these
models predict that ratings of the constant cause will be
determined by the probability of the effect in the presence of
the constant cause alone,

==().50

Subjects. Twenty four undergraduates from the University
of Hertfordshire received course credits for their participation.

Results and Discussion

Variable Cause. The mean terminal ratings of the
variable candidate cause are reported in the sixth column of
Table 3 and are plotted in the right-most panel of Figure 2.
It seemed that the estimates were in line with the predictions
of neither the power PC theory nor of the simple
contingency model. Interestingly, in the positive conditions,
ratings were more positive when AP equalled 0.10 than
when it equalled 0.50, and in the negative conditions, ratings
were less negative when AP equalled -0.50 than when it
equalled -0.10. Hence, there seemed to be a strong
interaction in the ratings but of a kind opposite to the one
predicted by the simple contingency model. In a two-way
repeated measures ANOV A, the main effect of the absolute
value of AP (i.e., the 10.50! conditions versus the 10.10]
conditions) was not reliable again because of the symmetry
in the estimates, the main effect of contingency polarity
(i.e., the positive versus the negative conditions) was
reliable, F(1, 23) = 47.8, and importantly, the interaction
between these two factors was reliable, F(1, 23) = 6.9.
These data undermine the claim that the power PC theory
proffers an adequate description of causal judgments and
invalidate the argument that subjects were still sensitive to
some elements of the power PC theory equations, namely
AP, since ratings were significantly different from those
predicted by a simple AP model.

Constant Cause. The mean terminal ratings of the
constant candidate cause are reported in the right-most
column of Table 3. As in Experiment 1, the estimates
appeared to be a function of P(e | -A.X). In a two-way
ANOVA on these estimates the main effect of absolute AP
was not reliable, the main effect of the variable cause’s
contingency polarity was reliable, F(1, 23) = 15.8 and the
interaction between these two factors, as expected, was
highly significant, F(1, 23) = 166. The contingency polarity
main effect was reliable because P(e | -A.X) in the two
negative conditions (viz., 1.00 and 0.20 in Conditions 3 and
4 respectively, see Table 3) was larger than in the two



positive conditions (viz., 0.00 and 0.80 in Conditions 1 and
2 respectively). This is further evidence that subjects’ ratings
of the constant cause closely reflected the frequency with
which the effect occurred in the absence of the variable
cause.

Power PC Simple AP Causal Ratings
TTe—— / \ ”
0
[« < ”0
~ ~ ’,
o=-=-=-0 -] ~
T T T 1 B T 50
010 050 0.10 0.50 0.10  0.50
Absolute AP

Figure 2. Predicted causal ratings in the two
positive contingency conditions (black circles) and
in the two negative contingency conditions (white
circles) derived from the power PC theory (left
panel) and the simple contingency model (middle
panel) for Experiment 2; mean observed terminal
causal ratings (right panel).

General Discussion

In the experiments reported here, estimates of the causal
importance of a variable candidate cause disconfirmed the
predictions of the power PC theory. However, in the first
experiment, these estimates conformed to the predictions of
a simpler model based simply on the computation of AP.
Even this simpler model had to be rejected in the light of the
data obtained in the second experiment where the causal
ratings were inversely proportional to AP. Thus, the ratings
of the variable candidate cause provided strong evidence that
the process of causal induction is not describable in terms of
the equations developed in the power PC theory.

Subjects also rated the causal importance of a constant
candidate cause. These ratings were a function of the
probability of the effect in the absence of the variable cause,
or P(e | -A.X). If indeed the computation of contrasts
underlies causal induction then subjects asked to rate the
causal important of a constant cause were facing an ‘impasse’
because the second probability needed for this computation,
namely P(e | -A.-X) was undefined. The power PC theory
must therefore assume that subjects redefine the focal set to
include observation from outside the experimental procedure.
Assuming that this new focal set fixed P(e | -A.-X) at the
same value in all conditions, ratings of the constant cause
should be a function of P(e | -A.X), which indeed they were.
A direct test of these assumptions has not yet been
undertaken.

A class of simple connectionist architectures originally
developed to model Pavlovian conditioning offer an
alternative account of causal induction. Associative models
of causal induction such as the Rescorla-Wagner model
(Rescorla & Wagner, 1972; henceforth R-W model) and
Pearce's (1987) model of stimulus generalization do not
postulate that reasoners compute contrasts or redefine focal

sets. Rather, they take the form of simple two-layer
networks with an input layer coding for the candidate causes
and an output layer coding for the target effect. Both use
error reduction learning algorithms similar to the delta rule.
The R-W model stipulates that the change in the weight of
any cause-cffect connection on any given trial is a function
of Equation (3)

Aw = aff(A - ﬁw)

where o and B are learning parameters, A is the target
activation on that trial and Lw represents the actual
activation of the output node (determined by the sum of the
weights along the & active connections (a connection is
active when the corresponding candidate cause is present; the
activation function of the output unit is linear, not
sigmoidal).

The input layer of a Pearce network codes for the
configuration of causes experienced by the subjects, namely
AX and X. On any given trial, the weight for the A X
configuration is updated using the following rule

Awax = B(A = [Eax — Lx]) @
where f is a learning parameter and A is the target activation

of the output node on that trial. The actual activation of the
output node reflects the sum of the strength of two types of

connection, one excitatory (E) and one inhibitory (I; again
the activation function is linear). Critically, these measures
of excitatory and inhibitory associative strength include the
generalized excitatory (or inhibitory) associative strength of
candidate causes that are similar to the compound AX, in
this case X (see Pearce, 1987, Equations (6) and (8)). The
change in weight for the constant cause is determined by the
learning rule,

Awx = B(A —[Ex— Lk]) &)
The causal ratings for the constant cause are a function of
the cumulative weight changes as specified in Equation (5).

The predictions concerning the ratings of the constant
candidate cause derived from the R-W model and the Pearce
model are plotted in the left half of Figure 3. Both
associative models predict that ratings of X will be a
function of P(e | -A.X) (shown in Tables 1 and 3). While the
power PC theory formulated the same predictions it did so
by postulating that subjects 1. redefined the focal set to
include real or imagined 'observations' outside the task trials
and 2. computed a contrast.

The predictions of the three models fare much poorer for
the ratings of the variable candidate cause. As Figures 1 and
2 showed, the predictions of the power PC theory were
disconfirmed in both experiments. The predictions of the R-
W model and the Pearce! model are shown in the right half
of Figure 3. The R-W model predicts the development of

€)

1 Since the variable cause was never experienced on its own, the
Pearce model stipulates that its causal estimation is a function
of the cumulative weight changes for the AX configuration as
specified in Equation (4) multiplied by a coefficient that indexes
the similarity between A and AX. Since A constitutes half of the
AX configuration, the Pearce model assumes that that
coefficient equals .5 (see Pearce, 1987, Equation (3)).
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Figure 3. Mean terminal predicted associative strength of the constant
candidate cause and the vanable candidate cause in the four conditions of each
experiment. The o parameter in the R-W algorithm was set to 0.35. The B
parameters in both the R-W and the Pearce algorithms were equated and set to
I. The mean terminal associative strength was calculated atter 100 training

trials over 100 epochs.

associative bonds whose magnitude approximates AP at
asymptote. Thus, its predictions are the same as those from
a simple contingency model. Hence, the R-W can anticipate
the results of the first experiment, but not those of the
second. In tum, for Experiment 1, the Pearce model predicts,
as did the power PC theory, that ratings of the variable cause
within the positive conditions and within the negative
conditions should be equivalent. The Pearce model, however,
is the only model that can anticipate the ratings of the
variable cause in Experiment 2 because the associative
strength of the constant cause, which increases as the effect
base rate increases, generalizes to the variable cause. The
notion that the influence of the effect base rate on the ratings
of the variable cause may be mediated by the transfer of
associative strength from the constant cause may have
important implications for associative models of causal
induction. For example, Dickinson and Burke (1996) have
argued that retrospective revaluation such as backward
blocking may be mediated by within compound
associations. Their account proposes that the associative
strength of a given cause can be influenced by the strength
of other causes with which it has been repeatedly paired.

In summary, then, all three models considered here (R-W,
Pearce, power PC), can anticipate the ratings of the constant
cause. However the associative models do so without
postulating that subjects redefine focal sets and compute
contrasts (AP is not a theoretical primitive in those models).
Instead, the magnitude of the causal ratings reflect the
acquisition of an association between a cause and an effect,
and this developmental process is mediated by the cause-
effect contiguity. As for the ratings of the variable candidate
cause, all three models postulate that they are influenced by
both the cause-effect covariation and the base rate of the
effect. The local prediction failures of the Pearce model (for
Experiment 1) and the R-W model (for Experiment 2)
suggest that these associative models have not fully captured
the interactive nature of these influences. Of course, it is

precisely the integration of these influences that the
equations of the power PC theory attempt to formalize.
However, the fact that the predictions derived from these
equations were disconfirmed in both experiments
demonstrate that the formalization is inadequate,
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