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Abstract 

Background Genome‑wide studies of gene–environment interactions (G×E) may identify variants associated 
with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome‑wide G×E analy‑
sis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall 
and for estrogen receptor positive (ER +) breast cancer.

Methods Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry 
from the Breast Cancer Association Consortium. Gene–environment interactions were evaluated using standard 
unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast 
cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP‑risk factor pairs.

Results Assuming a 1 ×  10–5 prior probability of a true association for each SNP‑risk factor pairs and a Bayesian False 
Discovery Probability < 15%, we identified two independent SNP‑risk factor pairs: rs80018847(9p13)‑LINGO2 and adult 
height in association with overall breast cancer risk  (ORint = 0.94, 95% CI 0.92–0.96), and rs4770552(13q12)‑SPATA13 
and age at menarche for ER + breast cancer risk  (ORint = 0.91, 95% CI 0.88–0.94).

Conclusions Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the pop‑
ulation level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast 
cancer.

Keywords Breast cancer, Gene‑environment interactions, Genetic epidemiology, European ancestry

associated with breast cancer risk [19]. In the present 
study, we performed a comprehensive genome-wide 
analysis of gene–environment interactions for risk of 
overall breast cancer, as well as estrogen receptor posi-
tive (ER +) breast cancer using data from 72,285 cases 
and 80,354 controls participating in the BCAC.

Methods
Study sample
Analyses were conducted using data from 46 studies (16 
prospective cohorts, 14 population-based case–control 
studies, and 16 non-population based studies) participat-
ing in the BCAC. We excluded participants if they were 
genotypically male, of non-European descent, or had a 
breast tumor of unknown invasiveness or in-situ breast 
cancer. Women with prevalent breast cancer at the time 
of recruitment or with unknown reference age (defined 
as age at diagnosis for cases and age at interview for con-
trols) were also excluded from the analyses. Further, stud-
ies with fewer than 150 cases and 150 controls for the risk 
factor under evaluation were excluded from those analy-
ses. Each participating study obtained informed consent 
from the participants and was approved by their local 
ethics committee.

Risk factor data
Risk factor data from individual studies was checked for 
quality using a multi-step harmonization process based 
on a common data dictionary. Time-dependent risk fac-
tor variables were derived with respect to the reference 
date defined as date of diagnosis for cases and date of 
interview for controls. Analyses were conducted with the 

Background
Breast cancer is a complex disease involving interplay 
between lifestyle/environmental and genetic risk fac-
tors. Risk factors such as parity, breastfeeding, age at 
menarche, age at first full-term pregnancy, body mass 
index (BMI), height, mammographic density, exoge-
nous hormonal use, and alcohol consumption are well-
established [1–7]. Through continued collaborative 
efforts such as the Collaborative Oncological Gene-
environment Study (COGS) and the OncoArray project 
[8], more than 200 common single nucleotide polymor-
phisms (SNPs) associated with risk of breast cancer 
have been identified [9–11].

Traditional genome-wide association study (GWAS) 
analyses assess the marginal effects of variants and 
might miss variants which only show an effect within 
certain strata in the population. These potential gene–
environment interactions where SNPs are associated 
with disease risk in conjunction with lifestyle/envi-
ronmental risk factors can be investigated through 
genome-wide gene-environment interaction studies 
(GEWIS) [12–15].

Very few genome-wide studies of gene-environment 
(G×E) interactions in breast cancer have been con-
ducted to date, and three focused on the use of meno-
pausal hormonal therapy as the single environmental 
risk factor [16–18]. An exploratory analysis of G×E 
interactions examined ten environmental risk factors 
and 71,527 SNPs selected from prior evidence, using 
data from approximately 35,000 cases and controls in 
the Breast Cancer Association Consortium (BCAC). 
That study identified two potential G×E interactions 
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following risk factors among all women: age at menarche 
(per 2 years), parity (per 1 birth), adult height (per 5 cm), 
ever use of oral contraceptives (yes/no), and current 
smoking (yes/no). The analysis of age at first full-term 
pregnancy (per 5  years) was conducted among parous 
women only, and that of body mass index (BMI, per 5 kg/
m2) was conducted among postmenopausal women only. 
Menopausal status was either self-reported or assigned 
as postmenopausal if the reference age was greater than 
54 years.

Genetic data
All samples were genotyped either using the iCOGS [20, 
21] or OncoArray [9, 10, 22]. Briefly, iCOGS is a custom-
ized iSelect SNP genotyping array, consisting of ~ 211,000 
SNPs [20, 21], whereas OncoArray includes ~ 533,000 
SNPs of which nearly 260,000 were selected as a GWAS 
backbone (Illumina HumanCore) [22]. Detailed infor-
mation is provided elsewhere [9, 10, 20–22]. Data were 
imputed to the 1000 Genomes Reference Panel (phase 3 
version 5). Overall, 28,176 cases and 32,209 controls of 
European ancestry who were genotyped by the iCOGS 
array, and 44,109 cases and 48,145 controls who were 
genotyped using the OncoArray array were included in 
this analysis.

Genetic variants with imputation quality score < 0.5 in 
iCOGS or < 0.8 in OncoArray, or with minor allele fre-
quency < 0.01, were excluded from the analyses. Variants 
in known breast cancer regions were also excluded from 
the analysis since interactions between known suscepti-
bility variants and risk factors have been explored pre-
viously [23, 24]. After applying all exclusions, 7,672,870 
genetic variants (SNPs and indels) were included in the 
analysis.

Statistical analysis
Unconditional logistic regression was employed to assess 
the associations of SNPs and risk factors with breast can-
cer risk. Genotypes were assessed using the expected 
number of copies of the alternative allele (‘dosage’) as 
the covariate under a log-additive model. Interactions 
between genetic variants and risk factors were tested by 
comparing the fit of logistic regression models with and 
without an interaction term using likelihood ratio tests. 
All models were adjusted for reference age, study, and ten 
ancestry-informative principal components. To account 
for potential differential main effects of risk factors by 
study design, all models included an interaction term 
between risk factor and an indicator variable for study 
design (population-based vs. non-population based). 
Analyses with current smoking were further adjusted for 
former smoking.

Analyses were performed separately for overall and 
ER + breast cancer risk, and also separately by genotyp-
ing array. Array-specific results were combined using 
METAL [25]. Quantile–quantile (Q-Q) plots were 
assessed to examine the consistency of the distribution 
of p-values with the null distribution. Interaction P value 
less than 5E-07 was considered suggestive evidence of 
interaction. We also calculated Bayesian False Discov-
ery Probabilities (BFDP) for all suggestive interactions, 
assuming a 1 ×  10–5 prior probability of a true association 
for each SNP-risk factor pair. Overall, G×E interactions 
with BFDP < 15% were considered noteworthy [26]. For 
noteworthy SNP-risk pairs, we evaluated the G×E inter-
action also for ER-negative breast cancer risk. For note-
worthy interactions, we conducted stratified analyses by 
categories of the risk factor. All analyses were conducted 
using R version 3.5.1.

We estimated the overall genome-wide contribution of 
G×E associations for each risk factor to the familial rela-
tive risk of breast cancer using LD score regression [27]. 
The analysis used the G×E interaction summary statistics 
and was restricted to HapMap3 SNPs with MAF > 5% in 
European population from the 1000 Genomes Project. 
Under the log-additive model, the G×E heritability on the 
frailty scale can be estimated by hf2 = hobs2 × var(X)/P(1-
P), where  hobs

2 is the observed heritability given by LD 
score regression, var(X) is the variance of the risk factor 
under evaluation, and P is the proportion of cases in the 
sample. The proportion of the familial relative risk (FRR) 
of breast cancer due to G×E interactions is then given 
by hf2/2log(λ) where λ is the familial relative risk to first 
degree relatives of cases (assumed to be 2) [28].

Results
Studies included in the analysis are summarized in Addi-
tional file 1: Table S1. The number of cases and controls 
in each analysis varied from 61,617 cases and 74,698 con-
trols for parity to 48,276 cases and 60,587 controls for 
current smoking (Additional file  1: Table  S2). Consist-
ent with the literature, increasing age at first full-term 
pregnancy, higher adult height, ever use of oral con-
traceptives, and current smoking were associated with 
increased overall breast cancer risk, whereas increasing 
age at menarche, being parous, increasing number of 
full-term pregnancies, and breast feeding were associ-
ated with decreased breast cancer risk (Additional file 1: 
Table S3).

The genome-wide analysis of interactions with seven 
environmental risk factors yielded two SNP-risk factor 
pairs at BFDP < 15%, one for risk of overall breast can-
cer and one for ER + breast cancer risk (Table  1, Fig.  1, 
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2, Additional file 1: Figure S1A-S1B). No inflation in the 
test statistics was observed for either of the environ-
mental risk factors. The heritability on the frailty scale of 
breast cancer risk explained by G×E interaction is shown 
in Additional file 1: Figure S2. The estimated proportion 
of the frailty scale heritability explained by G×E interac-
tions was very low for all factors, being highest for age 
at first full-term pregnancy (~ 1.5% for both overall and 
ER + breast cancer risk), age at menarche and post-men-
opausal BMI.

For overall breast cancer risk, there was evidence 
of interaction between SNP rs80018847 and adult 
height  (ORint = 0.94, 95% CI 0.92–0.96,  Pint = 4.34E−08, 
BFDP = 11%) without an apparent marginal effect of the 
rs80018847 variant  (ORmarg = 1.00, 95% CI 0.98–1.03, 
 Pmarg = 0.88). By categories of adult height defined a pri-
ori, the estimated per allele  ORmeta of rs80018847-G var-
ied from 1.03 (95% CI 0.94–1.13,  Pmeta = 0.53) for women 

shorter than 158  cm, 1.13 (1.02–1.25) for women 158–
162  cm in height, to  ORmeta of 1.01 (95% CI 0.93–1.09, 
 Pmeta = 0.88) for women who were 168  cm or taller risk 
(Additional file  1: Table  S4). Therefore, there is no lin-
ear relationship between the SNP and categories of adult 
height. The interaction with height was also observed 
for ER + breast cancer  (ORint 0.95, 95% CI 0.93–0.97, 
 Pint = 5.62E-06) but not for ER negative (ER-) breast can-
cer risk  (ORint = 0.98, 95% CI 0.93–1.03,  Pint = 0.77). The 
regional plot for overall breast cancer shows another SNP 
(rs1360506) at this locus in high linkage disequilibrium 
(LD)  (r2 = 0.81) with rs80018847 (Additional file 1: Figure 
S3).

For risk of ER + breast cancer, a statistically signifi-
cant interaction was observed between SNP rs4770552 
and age at menarche  (ORint = 0.91, 95% CI 0.88–0.94, 
 Pint = 4.62E−08, BFDP = 11%). There was weak evidence 
for a marginal association between the rs4770552-T 

Fig. 1 Manhattan plot of genome‑wide interactions of adult height on overall breast cancer risk. The genome‑wide significance threshold of P < 5 
x  10−8 is indicated by the dashed black line. Genome‑wide significant findings are highlighted in blue

Fig. 2 Manhattan plot of genome‑wide interaction of age at menarche for ER + breast cancer risk. The genome‑wide significance threshold of P < 5 
x  10−8 is indicated by the dashed black line. Genome‑wide significant findings are highlighted in blue.
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allele and ER + breast cancer  (ORmarg = 1.02, 95% CI 
1.00–1.05,  Pmarg = 0.10). The per allele  ORmeta appeared 
to decrease with increasing age at menarche, from 1.07 
(95% CI 1.00–1.15,  Pmeta = 0.04) for age at menarche less 
than 13  years to 0.92 (95% CI 0.77–1.09,  Pmeta = 0.33) 
for age at menarche greater than 15  years (Additional 
file  1: Table  S4). There was weaker evidence of interac-
tion between SNP rs4770552 and age at menarche for 
overall breast cancer risk  (ORint = 0.93, 95% CI 0.90–0.96, 
 Pint = 5.47E−06), but no interaction for ER- breast can-
cer risk  (ORint = 0.98, 95% CI 0.89–1.08),  Pint = 0.66). 
At this locus, we found suggestive evidence of interac-
tions between further 13 SNPs and age at menarche for 
ER + breast cancer risk. However, these 13 SNPs are in 
high LD  (r2 = 0.8–1.0) with SNP rs4770552 (Additional 
file 1: Figure S4).

Discussion
This is the largest genome-wide gene-environment inter-
action study for breast cancer to date. We found evidence 
of one novel susceptibility loci interacting with adult 
height associated with increased breast cancer risk over-
all, and one interaction for increased risk of ER + breast 
cancer with age at menarche. It is important to note, 
however, that while these associations reached conven-
tional levels of genome-wide statistical significance, they 
may still represent chance associations. Based on the 
assumed prior distribution of effect sizes, the BFDP for 
both loci were 11%, considered noteworthy. Neverthe-
less, studies with an even larger sample size are required 
to confirm or refute these associations.

Many observational studies have shown an association 
between increasing adult height and increased breast 
cancer risk, in both premenopausal and postmenopausal 
women [7, 29, 30]. A meta-analysis estimated that each 
10  cm increment in height was associated with a 17% 
increase in breast cancer risk [31]. The biological link 
between height and breast cancer is poorly understood, 
but some studies have suggested that increased height 
corresponds to more stem cells at risk of acquiring driver 
mutations [32]. Another hypothesis is that adult height 
could be a surrogate for nutritional intake, potentially 
implying a role for insulin-like growth factor 1 (IGF1) 
[33]. The functional basis of the potential interaction 
between adult height and the SNP rs80018847 is unclear. 
This SNP is in an intronic region of the leucine rich 
repeat and Ig domain containing 2 gene (LINGO2) on the 
short arm of chromosome 9 (9p13). This gene encodes a 
transmembrane protein belonging to the LINGO/LERN 
protein family [34]. Studies in mouse embryos have 
shown expression of LINGO2 specifically in the central 

nervous system [34], but it has not been implicated in 
breast cancer to date.

Early age at menarche is known to be associated with 
elevated risk of breast cancer. There is an approximate 5% 
decrease in risk with each year delay in the initiation of 
menstruation [35]. It has been postulated that younger age 
at menarche corresponds to longer cumulative hormonal 
exposure and therefore elevated levels of estradiol [3, 36]. 
SNP rs4770552 is an intronic variant within the spermato-
genesis associated 13 gene (SPATA13) at 13q12. SPATA13 
encodes a guanine nucleotide exchange factor (GEF) for 
RhoA, Rac1 and CDC42 GTPases [37, 38]. Although the 
role of this gene in breast cancer is still unclear, there 
could be an indirect link via the role of RhoA GTPases in 
breast tumorigenesis. Rho GTPase signaling is altered in 
human breast cancers, and dysregulation of Rho GTPase 
may have differential effects on the development of breast 
tumors depending on the stage and subtype [39]. Activa-
tion of RhoA results in release of megakaryoblastic leuke-
mia 1 (MKL1), which in turn has been observed to alter 
the transcriptional activity of ERα, known to play a critical 
role in breast tumors [40]. Therefore, SNP rs4770552 may 
potentially indirectly interact with the regulatory region 
of SPATA13 and affect the breast tumorigenesis process 
via activation of RHoA GTPases.

Given that the marginal effects of the common genetic 
variants are small and the associations of environmental 
risk factors with breast cancer are modest, interactions 
are also expected to be weak (Additional file 1: Figure S5). 
Although this is the largest breast cancer dataset available 
to date with more than 60,000 cases and 70,000 controls, 
the study is underpowered to detect weak interactions. 
Also, this study included only women of European ances-
try and the findings may not be generalizable to women 
of other ancestries.

Using LDSC regression, we estimated the overall herit-
ability due to G×E for each of the risk factors. The esti-
mated frailty scale heritability (≤ 0.015) can be compared 
with corresponding heritability for the SNP main effects 
(for which heritability is about 0.47) or the overall her-
itability based on the familial risk (~ 1.4) [28, 41]. The 
implication is that G×E interactions make very little con-
tribution to the heritability of breast cancer, at least for 
the known risk factors and common genetic variants that 
can be evaluated using genome-wide arrays, and hence 
do not make an important contribution to risk prediction 
at the population level. This is consistent with the fact 
that detection of G×E interactions is rare. This does not 
rule out the possibility that G×E interactions could be 
identified in additional large studies or that such interac-
tions may provide important clues to mechanisms.
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Conclusions
In conclusion, we identified two novel genome-wide gene–
environment interactions for overall and ER + breast can-
cer risk for women of European ancestry. These results 
contribute to our global body of knowledge on genetic 
susceptibility for breast cancer by generating plausible bio-
logical hypotheses, but they require replication and further 
functional studies.
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