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ABSTRACT 
	

SHIFTING TERRAIN: SOIL MICROBIAL COMMUNITIES IN 
PRECARIOUS CLIMATES AND METHODOLOGICAL CONTESTATIONS 

 
Clara Qin 

Soil microbial communities play critical roles as decomposers, plant pathogens, and 

plant mutualists in terrestrial ecosystems. Understanding how these communities will 

respond to a changing environment requires well-replicated studies across diverse 

ecological contexts and a careful assessment of the methodological dependencies of 

large-scale microbiological research. In my dissertation, I develop methods for the 

study of soil microbial communities across three registers: informatic, ecological, and 

anthropological. First, I present a software package to facilitate access to an open-

access, continental-scale dataset of soil microbial DNA metabarcoding sequences for 

ecological research (Chapter 1). Second, I use this dataset to predict the spatial 

distributions of fungal taxa across the U.S. and Canada and quantify the sensitivity of 

soil fungal community composition to ongoing climate change (Chapter 2). Finally, 

taking an ethnographic approach, I observe how soilborne plant disease comes to be 

known through a variety of scientific practices that stabilize distinct objects of study 

(Chapter 3). Together, this work illustrates that while soil microbial communities 

everywhere may be shifting, these shifts are not the same everywhere. The North 

American boreal forest occupies a particularly precarious climate in which even slight 

warming can create major shifts in the composition of its soil fungal communities. 

Additionally, the enrollment of soil microbial communities in the transition to post-
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fumigant agriculture contributes to a complex political terrain wherein the 

possibilities for knowing soil microbial communities are entangled with the 

possibilities for managing soilborne plant disease. By showcasing diverse methods 

for studying soil microbial communities, this dissertation puts forth an ontological 

approach to scientific inquiry that does not presuppose objects as a given but rather 

enacts them anew through methodological innovations.  
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INTRODUCTION 

 
 
 Everything has come to depend on soil microbial communities. Upheld as a 

natural climate solution (Anthony et al., 2022), the key to sustainable food production 

(Busby et al., 2017), and a model for hospitable relations with the more-than-human 

(Puig de la Bellacasa, 2015), soil microbial communities have emerged as an 

impossibly potent ally in overcoming the interlocking crises of the Anthropocene. Yet 

when challenged, the instability of soil microbial communities suggests that they 

cannot support humanity’s hopes on their own. Soil microbial communities are 

transformed under changing climates (Cavicchioli et al., 2019); their beneficial 

associations with plants are bred out of modern crops (Cordovez et al., 2019); and 

their ecological relations turn out to be different from the speculations that made them 

morally relevant (Paxson and Helmreich, 2014). In methodological considerations, 

the solidity of soil microbial communities begins to unravel into fractal possibilities. 

Soil microbes cultured in a Petri dish look and behave differently from soil microbes 

identified in a bioinformatic analysis of environmental DNA. Within the 

bioinformatic analysis, too, even minor perturbations in the sample collection 

process, the DNA sequencing protocol, and the data processing script can have an 

outsized influence on the resulting microbiome metrics. It would seem, then, that soil 

microbial communities also depend on everything else.  

 In the traditional ordering logic of Western science, the instability of soil 

microbial communities should amount to no less than a scientific crisis (Kuhn, 1962). 
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To stabilize the object of study, it should be necessary to reinscribe clear boundaries 

between interpretations of soil microbial communities and soil microbial 

communities in themselves—perhaps by establishing common methodological 

practices that unite a community of researchers. Once settled, it should finally be 

possible to study objective matters, such as the resilience of soil microbial 

communities to a changing climate, or the proliferation of soilborne fungal pathogens 

and their associated plant diseases in California specialty crop agriculture. To an 

extent, the structure of this dissertation reflects this logic. But its disciplinary breadth 

suggests a different reading that challenges distinctions between subject and object, 

social and natural. 

 In Chapter 1, I introduce neonMicrobe, a suite of computational tools for 

downloading, processing, and conducting sensitivity analyses on microbial DNA 

metabarcoding data from soil samples of the National Ecological Observatory 

Network (NEON). NEON is a federally-funded platform for open ecological data, 

making it a standard-bearer for ecological research in North American ecosystems. 

Thus, as an open-source software library designed to facilitate access into this 

platform, neonMicrobe is a bid to establish a standardized package (Fujimura, 1988) 

for soil microbial ecology.  

 In Chapter 2, I combine NEON data with a second soil sampling network and 

spatially gridded climate data to map the distributions of thousands of fungal taxa 

across the U.S. and Canada. With these distributions, I develop a novel method for 

measuring the sensitivity of soil fungal community composition to ongoing climate 
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change. This analysis predicts that fungal communities in boreal forest soils occupy 

an especially precarious climate, painting a grim picture for the climate resilience of 

an already threatened ecosystem.  

 In Chapter 3, I describe a shift in the methods by which soilborne plant 

disease is known, especially as it relates to the phaseout of methyl bromide, a soil 

fumigant, from California specialty crop agriculture. Through an ethnographic 

method (Mol, 2002), I show how the variety of methods used to study soilborne plant 

disease in an agricultural research laboratory stabilizes a multiplicity of objects “in 

themselves,” not merely their “interpretations” —as if these could ever be separate. 

This reveals new possibilities for how soil microbial communities can be known. On 

the other hand, it also risks sustaining certainties about how industrial agriculture can 

be done.  

 It is possible to read this dissertation with the understanding that statements of 

fact are always contingent on the practices that bring objects into being. Attending to 

knowledge practices recasts this dissertation as a knowledge-making project among 

many possible knowledge-making projects. In other words, this dissertation is not a 

point of closure in the study of soil microbial communities. It is yet another point of 

departure. 
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CHAPTER 1 

 

From DNA sequences to microbial ecology: Wrangling NEON soil microbe data 

with the neonMicrobe R package 

 

Clara Qin, Ryan Bartelme, Y. Anny Chung, Dawson Fairbanks, Yang Lin, Daniel 

Liptzin, Chance Muscarella, Kusum Naithani, Kabir Peay, Peter Pellitier, Ayanna St. 

Rose, Lee Stanish, Zoey Werbin & Kai Zhu 

 

Published in Ecosphere, 2021 

Introduction 

Microbial life on earth is ubiquitous and essential in critical ecosystem 

processes (Cavicchioli et al. 2019). Soils are among the most diverse microbial 

habitats known, and recent surveys at continental (Fierer et al. 2012, Ladau et al. 

2013, Talbot et al. 2014, Prober et al. 2015, Thompson et al. 2017, Wang et al. 2018) 

and global scales (Serna‐Chavez et al. 2013, Thompson et al. 2017, Chu et al. 2020) 

have shed light on the diversity and distribution of soil microbes. Such large-scale 

studies often identify abiotic environmental factors, such as climate and edaphic 

characteristics, to be strong predictors of soil microbial community composition. For 

example, soil fungal richness is strongly determined by climate (Tedersoo et al. 2014, 

Větrovský et al. 2019, Steidinger et al. 2020), soil protist composition by annual 
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precipitation (Oliverio et al. 2020), and bacterial composition and function by edaphic 

characteristics such as pH and soil carbon (Lauber et al. 2009, Delgado-Baquerizo et 

al. 2016). Enough data has accumulated that global meta-analyses of environmental 

controls of microbial biogeography have recently emerged (Větrovský et al. 2019), 

and we are just beginning to discern the influence of biotic interactions on microbial 

diversity and distribution (Bahram et al. 2018, Steidinger et al. 2019). 

While molecular microbial surveys have contributed much to our 

understanding of microbial ecology, they have also highlighted unique problems. One 

conceptual challenge in microbial ecology is scale. Classical ecological theories and 

sampling techniques were developed with macro-organisms in mind, and may not 

apply well to microbes (Levin 1992). Thus, drivers of microbial diversity and 

distribution are highly scale-dependent (Martiny et al. 2011, Peay et al. 2016). 

Sampling techniques that preserve sample scale-dependency are important to broaden 

our understanding of microbial community ecology. For example, the strength of 

positive and negative interactions in microbial community assembly processes is 

predicted to occur at distinct spatial scales (Mod et al. 2020). However, spatially 

explicit tests of assembly rules for microbial groups are lacking (Talbot et al. 2014, 

Maynard et al. 2017), and cross-study comparisons are stymied by widely varying 

sample granularity and survey extent (Zinger et al. 2019). In addition to variation in 

sampling scale, the differences between protocols of sequence-based microbial 

ecological research can make the interpretation of meta-analyses challenging. For 

example, differences in sample collection, such as soil core size, storage method, 
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DNA extraction, sequencing, and bioinformatic approaches, can all have oversized 

effects on our final understanding of microbial abundance, diversity, and distribution 

(Lindahl et al. 2013, Pauvert et al. 2019). Thus, laboratory and bioinformatic 

standardization must complement field sampling designs to truly empower ecological 

inferences. 

The National Ecological Observatory Network (NEON) is a multi-scale 

ecological observation platform spanning the United States for understanding and 

forecasting the impacts of climate change, land use change, and invasive species on 

ecosystems (Schimel and Keller 2015). NEON is designed to enable users, including 

scientists, educators, policymakers, and the general public, to assess large-scale and 

long-term ecological changes and address their major drivers. The NEON Terrestrial 

Observation System monitors environmental drivers and key taxonomic groups at 

multiple trophic levels in order to quantify the responses of biodiversity and 

biogeochemical cycles to climate and land use changes. A component of this data 

collection program, the NEON Microbial Ecology Sampling Program, measures the 

diversity and abundances of microbiota, and archives raw samples and DNA for 

public research use. Sampling and analysis for microbes are performed using 

standardized and freely available methods (Stanish et al. 2018) that help eliminate 

confounding factors in cross-site or cross-study analyses. The data collected by 

NEON are processed into documented, calibrated, and quality-controlled data 

products, and are openly available through the NEON Data Portal and API 

(Application Programming Interface).  
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Given the high diversity of microbial communities relative to most 

macroorganisms, NEON microbial data also presents unique challenges for the end 

user. For those new to “big data,” accessing the NEON API may seem unintuitive: 

acquiring metadata entails downloading data from multiple NEON products and 

preprocessing metadata through table joins before analysis. For high-throughput 

microbial marker gene (amplicon) sequencing data, files are relatively large and 

cannot be readily visualized, and often advanced bioinformatic tools and computing 

capabilities are needed to analyze the data. Our goal is to lower the barriers of entry 

to utilizing NEON microbial data. We provide a data processing pipeline and 

software package to wrangle NEON soil microbial community data and promote its 

wider accessibility and use in a standardized manner, thereby maximizing its potential 

for developing ecological insights. 

In this paper, we introduce neonMicrobe, a novel, quality-tested data pipeline 

that standardizes the processing of NEON soil bacterial and fungal amplicon 

sequence data into abundance tables for microbial ecology research. While the current 

scope of this paper and the accompanying neonMicrobe R package is on soil 

microbes and the soil environment, our package provides the scaffolding for the 

analysis of surface water and benthic microbe marker gene sequence data. Our 

pipeline builds on existing validated protocols (Tedersoo, Ramirez, et al. 2015, 

Callahan et al. 2016, Lunch et al. 2021) to create a reproducible way to download, 

quality-control, and process sequence data into sequence tables all within the R 

statistical computing environment (R Core Team 2021). Acknowledging the 
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complexities behind selecting appropriate parameters for various stages of the 

pipeline, we use a sensitivity analysis to demonstrate how changes in read quality 

filtering parameters may affect downstream ecological inferences. We conclude with 

lessons learned related to the provisioning of microbial data by NEON, as well as the 

use of NEON data products by researchers to generate new insights about microbial 

ecology. 

 

NEON Soil Microbe Marker Gene Sequence Data Products 

This paper utilizes soil microbial 16S and ITS sequence data from NEON 

(NEON DP1.10108.001), which primarily target bacteria and fungi, respectively. A 

full description of the sampling design and analysis methods can be found in the 

documentation available through the NEON Data Portal website 

(data.neonscience.org). 

Sampling design 

 The NEON domain encompasses 47 terrestrial field sites across the United 

States including Puerto Rico, covering 20 eco-climatic domains as defined by NEON. 

Sites are strategically located in ecosystems across the U.S. so that site-level 

measurements can be used to extrapolate across the continent (Barnett et al. 2017). 

Each terrestrial field site contains 10 plots for soil microbial sampling: four tower 

plots within the airshed of an instrumentation tower and six distributed plots that are 

designed to be spatially balanced while reflecting the dominant vegetation type at the 



	 9 

site (Stanish et al. 2018). Each plot is divided into four subplots, three of which are 

randomly chosen for sampling. Random coordinates with a 1-m buffer zone are 

generated for each subplot. Up to three soil cores may be collected within 0.5 m of 

each set of coordinates and combined to provide a sufficient sample volume for 

downstream processing and analyses. 

Sampling events are broadly designed to capture periods when microbial 

activity is expected to be at its highest, or when activity may be rapidly changing, 

such as the transition from the dry to wet seasons or during spring soil thawing. 

Sampling does not occur when the ground is frozen or covered in snow due to 

logistical and safety concerns, which may miss critical periods in snow-covered 

ecosystems (Schadt et al. 2003). Most sites are sampled for microbial community 

characterization three times per year, with one event corresponding to peak plant 

productivity as measured using remote sensing data (Stanish et al. 2018, Stanish and 

Parker 2019). In sites where the activity is more strongly driven by precipitation than 

temperature, historical precipitation data are used to determine sampling periods. 

Soil cores are collected down to a maximum depth of 30 cm. If an organic 

horizon is present, it is collected separately from the mineral horizon. The cores are 

co-located with other critical soil physical and biogeochemical measurements, 

including litter depth, temperature, moisture, pH, and nutrients. The metadata 

associated with NEON samples exceed the minimum standards defined by the 

Genomics Standards Consortium (Yilmaz et al. 2011). Once collected, the cores are 

separated by horizon, homogenized, and subsampled for microbial and chemical 
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analyses. The microbial samples are frozen in the field and shipped to analytical 

facilities for DNA sequencing analysis. 

Molecular methods 

Sample processing and analyses are performed using standardized 

methodologies to the extent possible to ensure comparability of data over time. 

However, methodologies and technologies will change and improve, and adapting to 

changes over time is critical. For full transparency, any changes in laboratory 

methods are captured in the freely available external laboratory standard operating 

procedures (SOPs), which are listed in the metadata for every downloaded sequence 

dataset.  

The processing methods for generating 16S and ITS sequence data used in this 

analysis are detailed in the 16S and ITS Sequencing Standard Operating Procedure 

(Battelle Memorial Institute 2018). Genomic DNA from thawed soil samples is 

extracted using Qiagen DNeasy Powersoil HTP 96 Kits, and quantified with 

Quantifluor ONE dsDNA Kits. The marker genes targeted are the V3-V4 region of 

the 16S ribosomal RNA (rRNA) gene for bacteria and archaea (primers Pro341F and 

Pro805R, Takahashi et al. 2014) and the internal transcribed spacer (ITS) region of 

the rRNA operon for fungal identification (primers ITS1f and ITS2, Walters et al. 

2015). Additional details on PCR processing and quality assurance can be found in 

the associated laboratory SOP (Battelle Memorial Institute 2019) and in the marker 

gene sequencing data product tables “mmg_soilPcrAmplification_16s” and 
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“mmg_soilPcrAmplification_ITS” (NEON DP1.10108.001). All sequencing runs are 

performed on an Illumina MiSeq v3 600-cycles cartridge as 300-bp paired-end reads, 

resulting in one set of forward and reverse sequencing reads for each sample. A 

sequencing run usually consists of a library of samples pooled from multiple sites and 

collection dates, as well as DNA extraction and PCR controls (Battelle Memorial 

Institute 2018). At the time of this study, only samples with a minimum of 3000 reads 

and post-trimming mean quality score of 20 pass the quality filter for the NEON Data 

Portal (Battelle Memorial Institute 2018).  

The neonMicrobe Marker Gene Sequence Processing Pipeline 

The neonMicrobe R package promotes data accessibility by allowing users, 

especially those lacking extensive bioinformatics experience, to wrangle NEON’s soil 

microbe marker gene data products with greater ease and reproducibility. The 

pipeline begins by downloading NEON marker gene sequence data from the NEON 

Data Portal and produces amplicon sequence variant (ASV) abundance tables linked 

to associated taxonomic and soil abiotic data in a Phyloseq data structure. The 

pipeline, which builds on existing validated pipelines (Lindahl et al. 2013), explicitly 

considers the unique properties of NEON data with the goal of maximizing ecological 

insight of microbial communities. While there is no consensus on an optimal 

bioinformatic processing method for microbial amplicon sequence data (Pauvert et al. 

2019), bioinformatic choices are consequential to downstream ecological analysis 

(Tedersoo, Anslan, et al. 2015, Tedersoo, Ramirez, et al. 2015). We preferred 
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bioinformatics approaches that would allow comparability across disparate datasets 

and require a relatively low level of programming knowledge for the end user 

(Callahan et al. 2016, 2017). These criteria align with a major goal of NEON: to use 

standard methods across datasets from large temporal and spatial scales, enabling 

many different studies to answer myriad questions.  

The neonMicrobe R package includes functions for downloading, renaming, 

and subsetting NEON sequencing data, as well as custom wrappers for the DADA2 

algorithms (Callahan et al. 2017, Callahan et al. 2016). Briefly, DADA2 allows 

analysis of microbial taxa at the resolution of exact ASVs, in contrast to the more 

traditional use of operational taxonomic units (OTUs) that are based on a user-defined 

nucleotide sequence similarity (e.g., 97-98.5% pairwise sequence identity). In 

addition to the biological benefits of finer DNA sequence resolution by employing 

ASVs, exact sequences are highly advantageous to OTUs because they can be 

directly compared across datasets, making them critical to NEON’s coordinated 

network sampling design (Callahan et al. 2017). Another benefit is that the DADA2 

pipeline allows sequence processing and data analysis steps to be conducted in the R 

statistical computing environment (R Core Team 2021), which enhances 

reproducibility and lowers barriers to entry for those who are less familiar with 

command-line bioinformatics tools. DADA2 has also demonstrated its compatibility 

with other methods and platforms in biological interpretation related to the assembly 

of paired-end reads, the treatment of chimeras, and the final filtering of the ASV 

tables (Pauvert et al. 2019). Our processing pipeline creates a ready-to-use soil 
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microbial dataset of unprecedented spatio-temporal range and taxonomic resolution. 

In the following subsections, we describe our processing pipeline. Each of the 

following subsections has a corresponding vignette in the neonMicrobe R package 

(Fig. 1.1), which can be accessed at https://github.com/claraqin/neonMicrobe. 

 

Downloading and quality-controlling NEON soil microbe marker gene sequence data 

The neonMicrobe data processing pipeline begins by leveraging the NEON 

Data API via the neonUtilities R package (Lunch et al. 2021) to acquire soil microbe 

marker gene sequencing data. First, the downloadSequenceMetadata function 

downloads and joins the tables within NEON data product DP1.10108.001 (Soil 

microbe marker gene sequences), which includes information about DNA extraction, 

PCR amplification, marker gene sequencing, and sequence file metadata. Because the 

output of this function contains information about sample processing but does not 

include the raw sequence files themselves, we refer to this output as sequence 

metadata. downloadSequenceMetadata can be parameterized to download a subset of 

raw sequence data according to a specific date range, site range, sequencing run, or 

target gene (16S or ITS). Metadata can be further filtered to remove records that 

include quality flags or fail certain quality tests, as described in greater detail below. 

These steps take place before the user downloads the raw sequence files, saving 

processing time and disk space. Next, the downloadRawSequenceData function 

references the metadata to download the desired raw sequence files. By default, 
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NEON data will be organized into a directory structure illustrated by Fig. 1.2. These 

functions are implemented in the vignette “Download NEON Data.” 

As with any analysis, ensuring that the downloaded data are high-quality, 

correctly formatted, and directly comparable is a critical data processing step. 

Performing quality control steps prior to entering the data analysis workflow can 

reduce downstream processing errors due to incomplete or improperly formatted data, 

and improves efficiency by conserving CPU time processing low-quality data that 

may ultimately be discarded. The NEON microbial data products contain data quality 

flags in which known quality issues are reported. In addition to quality issues, the 

sequence metadata contain other crucial details, some of which can significantly 

affect the comparability of sequencing runs, such as specific laboratory protocols, 

oligonucleotide primer sets, and sequencing platforms.We strongly recommend that 

users review the sequence metadata and consider whether additional data filtering 

should be performed based on the research needs and data stringency requirements.  

We have implemented a number of basic quality control steps in the function 

qcMetadata. In this function, users can opt to (1) remove samples that are flagged as 

having low read quality or being legacy data, (2) check for and remove duplicate 

samples, and (3) prepare for a paired-reads analysis by removing samples for which 

only one read orientation is available. 
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Generating sequence tables and taxonomy tables using DADA2 

16S and ITS sequences are processed by different variations of the DADA2 

workflow. Processing is done on a sequencing-run basis to allow for variable error 

rates between sequencing runs to optimize amplicon sequence variant (ASV) calling 

and chimera detection. For each sequencing run, the generalized steps are: (1) 

filtering samples to remove all reads containing ambiguous (“N”) base calls; (2) 

removing PCR primers, using Cutadapt (Martin 2011) for ITS sequences but not for 

16S sequences; (3) truncating (for 16S reads only) and filtering reads to ensure a 

minimum quality score; (4) building an error model for each sequencing run to 

describe the probability that a given read was produced from a given sample 

sequence; (5) denoising reads into ASVs through the DADA divisive partitioning 

algorithm based on an underlying nucleotide sequence error rate model; (6) 

optionally, removing chimeric sequences; and (7) joining sequence tables across all 

sequencing runs using the DADA2 function mergeSequenceTables, which performs a 

simple merge, and the DADA2 function collapseNoMismatch, which performs 100% 

clustering on the ASVs. (Note that Cutadapt is not supported on Windows computers. 

For Windows users, we recommend running the ITS pipeline in another computer, or 

in a Docker container, as outlined in the section “Extending Scientific Workflow 

Reproducibility with Container Technology.”) As an alternative to step 7 for ITS 

sequences, it may be prudent to cluster ASVs to a lower, user-specified sequence 

similarity threshold (e.g. 97-98.5%) using the VSEARCH or DECIPHER programs 

(Rognes et al. 2016, Wright 2016), because the same ITS ASV may have different 
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length variants across different sequencing runs. This step is not needed for 16S 

reads, for which 100%-similar ASVs can instead be combined using the 

collapseNoMismatch command in DADA2. Finally, a taxonomic reference database 

can be used to assign taxonomy to the ASVs. Many of these processing steps are 

wrapped into the novel functions trimPrimers16S, qualityFilter16S, and runDada16S, 

and their ITS-specific analogues. 

Linking sequence data and soil abiotic data in a Phyloseq object 

By taking advantage of different NEON data products, users can draw 

inferences regarding the relationships between soil microbial community 

characteristics, soil physical and chemical properties, climate variables, and other 

spatiotemporal processes. As demonstrated in the “Add Environmental Variables” 

vignettes, the end product of the neonMicrobe pipeline is a Phyloseq object linking 

the ASV table, its (optional) taxonomy table, and associated soil abiotic data (NEON 

DP1.10086.001) downloaded using the downloadSoilData function, creating a data 

structure that is ready for ecological analysis (McMurdie and Holmes 2013). While 

an overview of statistical microbial community analysis is beyond the scope of this 

paper, excellent reviews of the subject (Hugerth and Andersson 2017) and tutorials 

using Phyloseq are widely available (McMurdie and Holmes 2013) 

(https://www.bioconductor.org/packages/release/bioc/vignettes/phyloseq/inst/doc/phy

loseq-analysis.html).  
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Example: Analysis of soil bacterial diversity in grasslands 

 The processed data are immediately usable in analyses to answer ecological 

questions. To demonstrate this, we present a relatively simple analysis of soil 

bacterial diversity using NEON 16S sequence data that has been processed and 

assembled by neonMicrobe (Fig. 1.3). The code for this analysis is available as 

Supplementary File 1.1. 

 In this example analysis we asked, what controls soil bacterial communities 

within and across sites in a grassland ecosystem? We included three sites—Central 

Plains Experimental Range (CPER), Konza Prairie Biological Station (KONZ), and 

Northern Great Plains Research Laboratory (NOGP)—as these sites share Argiustoll 

soils, but vary in climate and belong to different NEON eco-climatic domains (Fig. 

1.3a). We used soil samples that were collected at peak plant productivity in 2017 (n 

= 86 samples), in order to minimize temporal effects. Across these sites, we examined 

the effects of soil pH and soil moisture on soil bacterial composition, as these were 

previously found to explain substantial variation in soil bacterial community 

composition across NEON sites (Docherty et al. 2015). We additionally included 

mean annual temperature (MAT) and mean annual precipitation (MAP) as climatic 

covariates. We used the adonis2 function in the vegan R package (Oksanen et al. 

2020) to conduct permutational analysis of variance (PERMANOVA). We found that 

significant drivers of bacterial community composition in these grassland sites 

included soil pH (PERMANOVA, P < 0.001), MAT (P < 0.001), and MAP (P < 

0.001), while the effect of soil moisture was not significant (P = 0.089). Our results 
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suggest that climatic variables drive between-site variation, while soil pH drives 

within-site variation, in soil bacterial community composition across grasslands (Fig. 

1.3d). 

Extending Scientific Workflow Reproducibility with Container Technology 

Reproducibility is a major principle of the scientific approach and is critical 

for successful application of the bioinformatics pipeline. One challenge that hinders 

reproducibility in computational tools is the staggeringly large number of possible 

combinations of operating systems, programming languages, and package versions a 

user may have installed locally, which allows variability to creep into analysis 

pipelines. Furthermore, there is a significant time and energy investment required to 

install dependencies, check operating system compatibilities, and implement code at a 

large scale. To minimize this cognitive load, efforts like the Open Container Initiative 

started by Docker (https://opencontainers.org/) enable the deployment of discretized 

applications to cloud computing infrastructure. This container paradigm extends into 

bioinformatics tools through the BioContainers initiative (da Veiga Leprevost et al. 

2017). The offering of these computational biology tools as containers allows users to 

move away from user-specific workflow generation on high-performance computing 

(HPC) systems and into cloud native scientific computing.  

 Due to the network of data products, supporting R packages, bioinformatic 

tools, computational resources, and operating system compatibility requirements 

associated with neonMicrobe, the neonMicrobe R package cannot encapsulate a 
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reproducible scientific workflow on its own (Boettiger 2015). To extend its 

reproducibility, two Docker container images were created for neonMicrobe. First, an 

RStudio Server instance was created from the Rocker Group’s RStudio Server 

tidyverse base image (Nüst et al. 2020). This RStudio image is freely available on the 

CyVerse Docker Hub (https://hub.docker.com/repository/docker/cyversevice/rstudio-

neon-dada2), as well as through the CyVerse Discovery Environment’s (DE) Visual 

Interactive Computing Environment (VICE) as the “rstudio_neon_microbiome” 

application. The CyVerse DE allows users to interact with data and docker containers 

on VICE without explicitly requiring mastery of Docker in the command line. The 

second Docker container image of neonMicrobe is strictly command-line based and 

designed for scaling to larger cloud systems; it is also available on Docker Hub 

(https://hub.docker.com/r/rbartelme/neonmicrobe). Therefore, users may utilize either 

of these containers on their local systems, increasing both access to the tools and 

creating a more easily reproduced environment to conduct microbial ecology 

experimental analyses.  

Sensitivity Analysis of Quality Filtering Parameters 

The choice of bioinformatic software and processing parameters can have 

implications for the accuracy of the inferred microbial community (Pauvert et al. 

2019, Prodan et al. 2020). While we make some recommendations for processing the 

NEON marker gene sequences, such as the use of DADA2 over OTU-based 

processing pipelines, we leave other decisions to the researcher depending on their 
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research needs and computing capacity (Fig. 1.S1). These decisions include but are 

not limited to: the removal or retention of reverse reads, the choice of parameters for 

the quality filter, and the choice of partitioning, alignment, and sequence comparison 

heuristics for DADA2. 

 Exploring all combinations of these decision points to arrive at an optimal 

processing pipeline is beyond the scope of this paper. We expect that the combination 

of choices that creates the most accurate representation of the NEON soil microbial 

communities will change depending on the specific set of samples being processed or 

the metrics of interest to the researcher. However, for any given instance of the 

NEON marker gene sequence data, it should be possible to evaluate how the choice 

of processing parameters influences some benchmark metrics related to the pipeline 

outputs. Here, we provide a framework for conducting a sensitivity analysis on the 

processing pipeline, using the quality filtering parameters for 16S amplicons as an 

example. 

 We investigated how the choice of parameters for the quality filter—which 

truncates or removes low-quality reads—would influence our downstream ecological 

inference. This represents one of the first such sensitivity analyses to compare 

multiple sequencing runs and bioinformatic platforms in an ecologically robust 

manner. To assess parameter sensitivity, we considered the effects of quality filtering 

parameters on the following outcomes: (1) number of reads remaining at each step of 

the pipeline, (2) estimated alpha diversity, and (3) estimated beta diversity, using a 

subset of 16S sequences as a test case. 
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 We varied quality filtering parameters for the reverse reads while holding 

them constant for the forward reads. The reverse reads are typically lower in quality, 

and thus represent the limiting factor for read retention in paired-end marker gene 

sequence analyses. Specifically, we tested the effects of the following quality filtering 

parameters used by DADA2: 

● truncLenR: Reverse reads that do not meet or exceed truncLenR in length will 

be discarded. Reverse reads that exceed truncLenR will be truncated to 

truncLenR.	

● maxEER: After truncation, reverse reads with higher than maxEER expected 

errors will be discarded. Expected errors are calculated from the nominal 

definition of the quality score: 𝐸𝐸	 = ∑ 10!"/$%&
'($ , where l is a base position 

index extending to the length of the sequence, L.	

 

The code used to conduct this sensitivity analysis is available in the 

Supporting Information (Supplementary File 1.2). In summary, the sensitivity 

analysis evaluates variation in our benchmark metrics with respect to variation in 

parameter values. It does this by randomly selecting 10 samples from each of the 20 

available 16S sequencing runs as of January 2021, and processes these samples on a 

sequencing-run basis through the 16S pipeline under a variety of quality filtering 

parameter combinations. The truncLenR parameter was assigned values of 170, 220, 

and 250 base pairs (bp), representing short, medium, and long truncation lengths for 

the 2 × 300 bp reads produced by Illumina MiSeq. The maxEER parameter was 
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assigned values of 4, 8, and 16 maximum allowable errors as invoked in the core 

DADA2 algorithm; the preferred values may vary substantially between sampling 

locations, soil types, and lab protocols, so these values were intended to cover a wide 

range of desirable values. Together, these values resulted in 9 parameter 

combinations. The following processing decisions were held constant over all 

pipeline iterations: minimum required length of reads after trimming and truncating 

(minLen) was set to 50 bp; forward reads were processed with truncation length of 

240 bp (truncLenF) and a maximum of 8 allowable expected errors (maxEEF); all 

other quality filtering parameters were set to their default values; and all sequence 

alignment heuristics for DADA2 were set to their default values. 

Alpha diversity was calculated using the Phyloseq function estimate_richness 

(McMurdie and Holmes 2013) for Shannon diversity and observed richness. Beta 

diversity was assessed by joining sequencing tables from across all parameter 

combinations into one combined sequence table without collapsing sequence-length 

variants and calculating the pairwise Bray-Curtis distance between all versions of all 

samples. Samples with a sequencing depth below 1000 were removed prior to 

ordination and permutational analysis of variance (PERMANOVA). PERMANOVA 

was conducted via the adonis2 function in the vegan R package (Oksanen et al. 2020). 

 

Sensitivity analysis results 

The 200 selected samples represented 37 terrestrial NEON sites, collected 

between May 2014 through November 2018. Sequence read retention throughout the 
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processing pipeline varied across both parameters, though the degree to which they 

varied depended on the sequencing run. As expected, higher values of maxEER 

resulted in greater read retention at the quality filtering step (Fig. 1.4). Differences in 

read retention between sequencing runs could be explained by differences in the 

quality scores of the reads from each sequencing run. For example, sequencing run 

BDNB6, whose read retention is relatively sensitive to maxEER, accumulates more 

expected errors across its read length than sequencing run BFDG8, whose read 

retention is relatively insensitive to maxEER (Fig. 1.S2.) Read retention was relatively 

insensitive to truncLenR except when reverse reads were truncated to 170 bp—this 

would cause a large drop-off in the pair-merging step, likely due to insufficient 

overlap between forward and reverse reads (Fig. 1.4). Overall, we found that a 

moderate value for truncLenR (220 bp) led to the highest rates of read retention. 

 The alpha diversity metrics used in the sensitivity analysis were ASV 

Shannon diversity and observed ASV richness. Shannon diversity (ANOVA, P < 

0.001; Table 1.1) and observed richness (P < 0.001; Table 1.2) were both sensitive to 

variation in truncLenR, and the effect of truncLenR varied across sequencing runs (P < 

0.001; Table 1.1; Table 1.2; diagnostic plots for ANOVA in Fig. 1.S3 and Fig. 1.S4). 

Consistent with our finding that read retention was highest for moderate values of 

truncLenR, we also found the highest estimates of Shannon diversity and observed 

richness when truncLenR was 220 bp (Fig. 1.5). In contrast, maxEER had no 

significant effects on Shannon diversity (P = 0.242; Fig. 1.5; Table 1.1) or observed 

richness (P = 0.151; Fig. 1.S5; Table 1.2). Although maxEER does affect read 
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retention at the quality filtering stage for some sequencing runs, our results suggest 

that for the NEON 16S sequences in general, differences in maxEER have relatively 

inconsequential effects on estimates of soil microbial alpha diversity. However, 

researchers who extend this pipeline to other datasets, such as the NEON ITS 

sequences, should conduct a similar sensitivity analysis before proceeding to make 

ecological inferences about the processed data. 

 Variation in the parameters resulted in a small degree of variation in inferred 

community composition. truncLenR had a significant effect on Bray-Curtis 

dissimilarity (PERMANOVA with 999 permutations, P < 0.001, R2 = 0.012), while 

maxEER had no significant effect (P = 1.000, R2 = 3 ⨉10-5; Table 1.3). Upon 

inspection, setting truncLenR = 170 produced communities with significantly less 

group dispersion (variance) than at higher values of truncLenR (betadisper 

multivariate test for homogeneity of group dispersions in the vegan R package, P < 

0.001; Fig. 1.S6). To confirm that the significant effect of truncLenR in the 

PERMANOVA analysis was attributable to differences in group means rather than 

differences in group dispersions, PERMANOVA was repeated on the dataset after 

removal of communities produced with truncLenR = 170. Within this subset, the 

sensitivities of Bray-Curtis dissimilarity to the quality filtering parameter remained 

largely the same: truncLenR had a significant effect (PERMANOVA with 999 

permutations, P < 0.001, R2 = 6.8 ⨉10-4) while maxEER did not (P = 0.697, R2 = 5 

⨉10-5; Table 1.S1). Since group dispersion did not vary significantly between the 

remaining values of truncLenR in the subset (betadisper, P = 0.388), the results of this 
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repeated analysis confirm that community composition of the NEON 16S sequences 

is sensitive to truncLenR. Nevertheless, the amount of variation explained by 

truncLenR (R2 = 0.012) is small compared to that explained by soil sample ID (R2 = 

0.771; Fig. 1.6, Table 1.S2), suggesting that variation in quality filtering parameters is 

unlikely to obscure real between-sample variation in community composition. 

 Based on these results, we advise against varying truncLenR between 

sequencing runs, as it may lead to inconsistent standards of ecological inference 

across datasets consisting of samples from multiple runs. However, varying maxEER 

to suit the overall quality of each sequencing run may be appropriate depending on 

the metrics of interest. The sensitivity analysis framework above can be generalized 

to test the robustness of ecological inference to other processing decisions, such as 

paired-end read merging, DADA2 sequence alignment heuristics, and incorporation of 

data from different sequencing runs or sequencing platforms.  

Lessons Learned and Future Directions 

Technical challenges associated with processing large-scale marker gene sequence 

datasets 

There is significant technical variation among NEON sequencing runs that 

inevitably impacts subsequent bioinformatic processing. While most NEON 

sequencing runs produced high-quality data, certain runs generated substantially 

fewer sequences that passed quality filtering (Fig. 1.4). Accordingly, the quality 

filtering parameters recommended here necessarily represent a compromise, given the 
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goal of compiling dozens of sequencing runs generated by different sequencing 

centers over many years. A critical step of the pipeline proposed here requires that the 

same portion of rRNA is used to denoise ASV across all sequencing runs; for 

compatibility, we recommend future studies employ identical primers for ease of 

cross-study comparison. Variation across Illumina sequencing runs necessarily 

generates variation in the behavior of quality filtering parameters employed in 

DADA2; however, these parameters must be standardized across sequencing runs in 

order to join ASV tables and to cluster artefactual sequence-length variants. As 

Illumina sequencing chemistry changes and new platforms emerge, we expect that the 

filtering steps employed here will need to be updated. Notably, because reverse reads 

were consistently low-quality across ITS sequencing runs, paired-end ITS read 

processing is not explicitly supported by our pipeline. Low-quality ITS reverse reads 

are typical of Illumina MiSeq data. While the 250-bp unmerged forward read 

sequences may potentially bias against certain fungal taxa (Truong et al. 2019), the 

extent of this bias is likely small (Nguyen et al. 2015, Pauvert et al. 2019).  

 NEON’s continental-scale sample network captures a remarkably broad 

phylogenetic range of microbial taxa. Accordingly, analyzing the effect of geographic 

and ecological distance among samples depends on the taxonomic scale of 

investigation. Perhaps unsurprisingly, certain samples derived from distinct habitats 

share no ASV in common, creating disjunctions in community dissimilarity matrices 

that can complicate distance-based analyses, such as ordination. Clustering ASV at 

the OTU level, however defined (e.g., 97-98.5% sequence similarity), can reduce 
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these statistical disjunctions and allow for more meaningful continental-scale 

analyses of community dissimilarity. Finally, access to sufficient computing 

resources represents a challenge inherent to datasets of this size. Although recent R 

packages such as SpeedySeq (McLaren 2020) can expedite some commands run with 

the popular Phyloseq package (McMurdie and Holmes 2013), we expect more future 

developments. 

 Finally, rapid advances in high-throughput sequencing technologies may 

allow for the generation of long reads that span the entire ITS1, ITS2, and 18S region 

for fungi, and the entire 16S for bacteria, thereby allowing enhanced resolution of 

fine scale taxonomic boundaries and more accurate phylogenetic placement. In order 

to ensure compatibility with the extant NEON data presented here, large portions of 

read overlap with the existing ITS1 and 16S V3-V4 regions analyzed here will be 

necessary for sufficient sequence alignment and ASV and OTU clustering.  

 

Future directions for NEON-enabled microbial ecology 

Spatial and temporal dynamics of soil microbial communities. NEON’s extensive soil 

sampling network fulfills a pressing need for standardized microbial data in 

advancing research on the spatial and temporal dynamics of soil microbial 

communities. Soil microbial communities are known to display rapid turnover in 

space (Franklin and Mills 2003, Nemergut et al. 2013) and time (Ferrenberg et al. 

2013, Lauber et al. 2013, Shade et al. 2013). However, there has historically been a 

trade-off between spatial and temporal sampling intensity, limiting the 
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generalizability of biogeographic patterns to unsampled regions or timespans. 

Spatially nested sampling designs like that of NEON’s soil data products allow 

researchers to quantify the spatial scaling of microbial diversity from soil cores to 

continents and to identify its drivers at each scale (Talbot et al. 2014). Furthermore, 

because NEON is committed to multiple decades of data collection, its steady 

accumulation of microbial sequence data will facilitate research on the scaling of 

microbial diversity over time, from intra-annual to decadal scales. In combination 

with other NEON data products—such as climate, soil physical and chemical 

properties, and vegetation cover—the soil microbe data will also help to elucidate the 

fundamental drivers of temporal scaling (Guo et al. 2019).  

NEON soil microbe data may also be informative in comparing the rates of 

scaling across intersecting gradients of spatial, temporal, and taxonomic scales. For 

example, a recent study suggests that intra-annual variation in soil fungal 

communities is comparable to that occurring over hundreds to thousands of 

kilometers of space (Averill et al. 2019). One of the implications of this rapid spatial 

and temporal turnover is that sample-pairwise compositional similarity may drop off 

rapidly, creating a technical challenge for dissimilarity-based analyses when two 

samples in the dataset have no taxa in common. This challenge can be partially 

addressed by shifting the unit of taxonomic analysis, e.g., from ASVs to OTUs, or by 

using phylogenetic measures of beta-diversity (Lozupone and Knight 2005). Future 

studies, then, may also explore how turnover in soil microbial communities interacts 

with taxonomic scale.  
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 In addition, the NEON sampling network provides a unique opportunity to 

observe lags in response time between abiotic variables and changes in soil microbes 

and to detect the influence of history on community structure. In traditional 

ecosystem modeling, microbial communities have been assumed to be resilient to 

disturbance and to return quickly to a state of equilibrium (Allison and Martiny 

2008). However, a growing body of evidence suggests that this is not the case; 

microbes experience legacy effects from historical precipitation regimes (Evans and 

Wallenstein 2012), plant communities (Elgersma et al. 2011), and wildfires (Qin et al. 

2020) that may last several years after the change from prior conditions. In the case of 

historical contingencies such as priority effects, the equilibrium state may also change 

(Hawkes and Keitt 2015). By comparing the temporal dynamics of soil microbial 

communities with other variables recorded in NEON data products, we can ask how 

long it takes for soil microbes to react to environmental shifts (e.g., in mean 

precipitation, in mean temperature), how resilient the microbial constituents are to 

this change, and whether historical events modify the equilibrium states of the 

microbial community. Furthermore, the NEON sampling network allows researchers 

to ask questions about synchrony in the spatio-temporal dynamics of microbial 

communities, and to link these dynamics to stability in microbe-mediated ecosystem 

processes (Hall et al. 2018, Wang et al. 2019).  

Finally, the breadth of NEON soil microbe data now allows researchers to 

compare the biogeographic patterns and processes of soil microbial communities with 

those of plants and animals, for which abundance data are also being collected at 



	 30 

NEON sites. This can be used to test the generalizability of macroecological patterns 

(Xu et al. 2020, Dickey et al. 2021) or temporal patterns (Shade et al. 2013, Guo et al. 

2019) that have traditionally been developed for macroorganisms. It may also be 

leveraged to understand whether the assembly “rules” that govern the distributions of 

macroorganisms apply equally as well to microbial community assembly across 

multiple nested spatial scales.  

 

Microbial community composition and ecosystem processes. Soil microbes are 

important regulators of ecosystem processes such as nitrogen and carbon cycling 

(Cavicchioli et al. 2019). However, climate-soil feedbacks remain critical sources of 

uncertainty in ecosystem models (Wieder et al. 2015). This uncertainty arises due to 

poor understanding of soil microbial diversity and function, and the challenge of 

applying macroorganismal functional concepts to microorganisms (Escalas et al. 

2019). There has been some progress, however, in improving ecosystem models by 

assigning microbial species into functional groups (Fry et al. 2019, Sulman et al. 

2019). To enrich our understanding of microbial communities from marker genes to 

ecosystem processes, future studies could take advantage of NEON data to investigate 

the generalizability of the link between microbial taxonomic or functional 

composition and ecosystem function or services (Box 1). For example, Werbin et al. 

(2021) present a pipeline for coupling soil shotgun metagenomic sequence data with 

NEON nitrogen cycling data at each site; this pipeline complements neonMicrobe, 

allowing for an investigation into the linkages between microbial composition and 
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function. From a biogeochemical modeling perspective, the standardized continental 

scale sampling provides unique opportunities to couple plant and microbial dynamics 

with gross primary productivity or soil organic matter dynamics (Fry et al. 2019). 

Moreover, forecasting the distribution of microbial communities under future climatic 

regimes is similarly enabled by standardized continental scale sampling efforts 

coupled with fine-scale soil, plant, and climatic metadata. 

 

Expanded use of NEON samples and infrastructure. For research needs that are not 

precisely met by existing NEON data streams, NEON also offers two programs to 

help researchers leverage NEON sample collections and field infrastructure. The 

NEON Biorepository Data Portal allows researchers to request access to biological 

samples, including frozen subsamples of the soil and extracted DNA used to generate 

the soil microbe marker gene sequence data product, in order to conduct their own 

laboratory analyses. Researchers interested in using a different sequencing protocol or 

conducting a functional assay, for example, may take advantage of this program. As 

another example, a researcher interested in studying food webs may request 

biorepository samples to identify arthropods in pitfall traps beyond beetles—in 

addition to NEON soil microbe amplicon, abiotic, and metagenomic datasets. 

Furthermore, the NEON Assignable Assets Program allows researchers to request the 

use of specialized NEON data collection infrastructure for their own research, 

temporarily adding to the sampling design of NEON field sites. To return to our 

example, the researcher interested in studying food webs may conduct some of their 
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own on-site sampling using similar designs to survey nematodes, via the Assignable 

Assets Program’s Observational Sampling Infrastructure. The flexibility built into the 

NEON data stream infrastructure greatly expands the potential to accommodate future 

research directions that were not part of the original design. 

 

 

Going beyond NEON data. Using networks to synthesize ecological and 

environmental research offers promising new avenues for scientists to create holistic 

representations of natural processes—particularly in fields that account for complex, 

large-scale phenomena such as biogeography (Schrodt et al. 2019). As a nationwide 

monitoring network, NEON provides broad coverage for the collection of ecological 

and environmental data; however, it is limited in its ability to provide sites for field 

experiments. The US Long-Term Ecological Research network (LTER) provides 

complementary infrastructure for experimental studies in a variety of ecosystems, and 

may help to elucidate the processes driving patterns observed in NEON data (Jones et 

al. 2020). At the time of writing, twelve NEON sites are co-located with LTER sites. 

Although scientific research aims to explain natural processes, it is also an 

inherently social process in which tacit, socially-transferred knowledge is especially 

important for the extension of methods to novel or synthetic contexts (Collins 1974). 

The unprecedented spatial and temporal scales of the soil microbe marker gene 

sequence data provided by NEON represent such a context to develop best practices 

for team science. Methodological and epistemological challenges involved in using 
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this data led the authors of this paper to recognize the necessity of having a team of 

collaborators to validate methods and test results before formally embedding them 

into a standard algorithmic process. While there is some research on the social and 

technical factors that allow for effective team science (Rhoten 2003, Oliver et al. 

2018), there is room to consider how to best foster collaborations that can synthesize 

the wide variety of NEON data products to address interdisciplinary problems (e.g., 

Nagy et al. 2021). Interdisciplinary collaborations have been identified as avenues for 

fruitful and novel research in ecology and the environment as discussed above, but 

especially for understanding complex socio-environmental issues (Palmer et al. 

2016). They also provide opportunities for graduate students in ecology to realize and 

develop the unique expertise they bring to the team (Giorgio et al. 2020). Factors that 

may have contributed to our ability to complete this project include the diversity of 

expertise across our team members, which included soil microbial ecologists, 

molecular biologists, and statisticians, as well as a diversity of career stages that 

allowed graduate student members to receive real-time feedback from an informal 

community of mentors. One of the main challenges to our project was the inability for 

authors to hold meetings in person after the Summit—a challenge which was 

exacerbated by the COVID 19 pandemic, and which previous studies have identified 

as a potential hindrance to information sharing (Rhoten 2003). Future studies should 

seek to understand what types of social and technical configurations facilitate or 

hinder data-intensive, interdisciplinary team science, and how data-sharing centers 
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like NEON can take advantage of these findings to make their data more accessible 

and useful across diverse research contexts. 

Conclusions 

We present neonMicrobe, a processing pipeline for the R statistical computing 

environment that streamlines access to NEON microbe marker gene sequence data. 

Our approach adapts state-of-the-art sequence processing pipelines for current NEON 

marker gene sequencing approaches. We have validated the efficacy of recommended 

quality filtering parameters in our pipeline. The collaborative effort represented here 

speaks to the utility of open science, and our publicly available data wrangling tools 

can be adopted for user-specific applications. We expect this community resource 

will expedite NEON-enabled science and herald a new era of continental-scale 

analysis for microbial community dynamics.  
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Box 1: Future Questions for NEON-Enabled Microbial Ecology 

Spatial and temporal dynamics 

● How do soil microbial communities vary across spatial scales (sites, 

ecoregions, continents) and temporal scales (seasonal, annual, decadal)? What 

are the important drivers? 

● How does microbial diversity scale over space, time, and taxonomic 

resolution? 

● What are the patterns of temporal or spatial autocorrelation in soil microbial 

communities? 

● How do macroecological and biogeographical patterns of soil microbial 

communities vary across spatial scales? Do they follow the same “rules” as 

for macro-organisms? 

Ecosystem processes 

● How can we effectively include microbial communities in ecosystem and 

earth systems models? 

● Can we predict ecosystem functions and services (e.g., C flux) from microbial 

taxonomic or functional composition? 

● How can we forecast future changes in these processes? 

Going beyond NEON data  

● How can we design future studies to take advantage of and complement 

NEON observatory, biorepository, and assignable assets data? 

● What are some best practices for fostering interdisciplinary team science, 
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synthesizing a variety of NEON data products to answer complex ecological 

problems? 
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Table 1.1. ANOVA results for the sensitivity of ASV Shannon diversity to quality 

filtering parameters truncLenR and maxEER. 

Covariate df Sum Sq Mean Sq F P(>F) 

truncLenR 1 81.616 81.616 403.053 <0.001 

maxEER 1 0.277 0.277 1.369 0.242 

runID 19 321.151 16.903 83.473 <0.001 

truncLenR ✕ runID 19 36.442 1.918 9.472 <0.001 

maxEER ✕ runID 19 0.132 0.007 0.034 1.000 

Residuals 1740 352.339 0.202 
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Table 1.2. ANOVA results for the sensitivity of observed ASV richness to quality 

filtering parameters truncLenR and maxEER. 

Covariate df Sum Sq Mean Sq F P(>F) 

truncLenR 1 14.598 14.598 66.805 <0.001 

maxEER 1 0.452 0.452 2.069 0.151 

runID 19 485.837 25.570 117.020 <0.001 

truncLenR ✕ runID 19 48.997 2.579 11.802 <0.001 

maxEER ✕ runID 19 0.270 0.014 0.065 1.000 

Residuals 1740 380.213 0.219   
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Table 1.3. PERMANOVA results for the sensitivity of Bray-Curtis dissimilarity to 

quality filtering parameters truncLenR and maxEER. Communities were permuted 999 

times within sample IDs, i.e. each community was compared against other 

communities produced from the same sample. For a PERMANOVA analysis that 

includes sample ID as a permuted variable, see Table 1.S2. 

	

Covariate df Sum Sq R2 F P(>F) 

truncLenR 1 9.61 0.01235 21.373 <0.001 

maxEER 1 0.02 0.00003 0.050 1.000 

Residuals 1709 768.75 0.98762   
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Figure 1.1. Overview of the neonMicrobe package’s marker gene sequence 

processing pipeline. Blue rounded rectangles correspond to main vignettes in the R 

package; white parallelograms represent locally stored data or parameters. Fixed-

width text below blue-rounded rectangles denotes the neonMicrobe functions 

belonging to each vignette. The processing pipeline begins with the download of 

NEON data products containing microbe marker gene sequences. The raw sequence 

data can then be processed into ASV tables with taxonomy using either default or 

custom processing parameters. The sensitivity analysis can be used to determine the 

range of custom processing parameters, if any, that can be used across an analysis 

without creating artifacts in ecological metrics. Finally, the ASV tables can be joined 

with environmental variables and sampling information. The output data is structured 

in the form of one or more Phyloseq objects. See Fig. 1.S1 for finer-level details on 

the functions and parameters in the pipeline. 
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	 42 

Figure 1.2. Default organization of input data for the neonMicrobe R package. The 

tree structure in the upper-left represents the data directory structure constructed 

within the project root directory. Red dotted lines represent explicit linkages between 

NEON data products via shared data fields. (a) Sequence metadata is downloaded 

from NEON data product DP1.10108.001 (Soil microbe marker gene sequences) 

using the downloadSequenceMetadata function. (b) Raw microbe marker gene 

sequence data is downloaded from NEON based on the sequence metadata using the 

downloadRawSequenceData function. (c) Soil physical and chemical data is 

downloaded from NEON data product DP1.10086.001 using the downloadSoilData 

function. (d) Taxonomic reference datasets (e.g., SILVA, UNITE) are added 

separately by the user. 
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Figure 1.3. Simple plots produced using the outputs of the neonMicrobe pipeline for 

analyses of 16S sequences in soil samples collected from NEON grassland sites. (a) 

The three sites used for this analysis (Central Plains Experimental Range, CPER; 

Konza Prairie Biological Station, KONZ; Northern Great Plains Research Laboratory, 

NOGP) span the Great Plains region and belong to different NEON eco-climatic 

domains (delineated with borders). Samples were rarefied to a common sequencing 

depth of 10,000 reads. The sites differ by observed ASV richness (b) and ASV 

Shannon index (c). (d) Pairwise Bray-Curtis dissimilarities were used for NMDS 

ordination analysis, and environmental covariates were fitted to the ordination using 

the envfit function in the vegan R package (Oksanen et al. 2020). Vectors with solid 

lines denote significant drivers (PERMANOVA, P ≤ 0.05); the vector with the dashed 

line denotes an insignificant driver (P > 0.05). Abbreviations: MAT, mean annual 

temperature; MAP, mean annual precipitation; soilMoisture, soil moisture; 

soilInCaClpH, soil pH measured in calcium chloride solution. 
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	 46 

Figure 1.4. Retention of NEON 16S reads throughout the processing pipeline across 

different values of quality filtering parameters truncLenR and maxEER. Read counts 

are tracked for each available NEON 16S sequencing run at each major step in the 

processing pipeline: input, raw marker gene sequence data from NEON; trimmed, 

after primer trimming; filtered, after quality filtering; derepR, reverse reads after 

dereplication; denoisedR, after inferring sequences for reverse reads; merged, after 

merging forward and reverse sequences; nonchim, after removing chimeras. Within 

each sequencing run, the read counts for truncLenR = 170 across different values of 

maxEER largely overlap. 
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Figure 1.5. Shannon diversity of ASV tables produced from NEON 16S marker gene 

sequences across different values of quality filtering parameters truncLenR and 

maxEER. 
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Figure 1.6. Community composition of ASV tables produced by NEON 16S marker 

gene sequences across different values of quality filtering parameters truncLenR and 

maxEER. Each plot corresponds to an NMDS ordination for a specified sequencing 

run (x-axis, NMDS1; y-axis, NMDS2). Note that for a given soil sample and value of 

truncLenR, points corresponding to outcomes across different values of maxEER 

largely overlap. Ellipses are multivariate normal 95% data ellipses for ASV tables 

produced from the same soil sample. Ordinations were based on Bray-Curtis 

dissimilarities and plotted using the metaMDS algorithm in the vegan R package 

(Oksanen et al. 2020). 
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Table 1.S1. Permutational analysis of variance (PERMANOVA) results for the 

sensitivity of Bray-Curtis dissimilarity to quality filtering parameters truncLenR and 

maxEER, after removal of communities produced with truncLenR = 170. Samples 

were permuted 999 times within sampleIDs. PERMANOVA was conducted using the 

adonis2 function in the vegan R package (Oksanen et al. 2020). 

 df Sum Sq R2 F P(>F) 

truncLenR 1 0.37 0.00068 0.8004 <0.001 

maxEER 1 0.03 0.00005 0.0604 0.697 

Residuals 1175 537.00 0.99927   
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Table 1.S2. Permutational analysis of variance (PERMANOVA) results for the 

sensitivity of Bray-Curtis dissimilarity to quality filtering parameters truncLenR, 

maxEER, and sampleID. Samples were permuted 999 times without blocking by any 

grouping variable. PERMANOVA was conducted using the adonis2 function in the 

vegan R package (Oksanen et al. 2020). 

 df Sum Sq R2 F P(>F) 

truncLenR 1 9.61 0.01235 86.0821 <0.001 

maxEER 1 0.02 0.00003 0.2013 1.000 

sampleID 196 599.77 0.77053 27.3985 <0.001 

Residuals 1711 168.98 0.21709   
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Figure 1.S1. Generalized approach to analyzing NEON microbial sequence data for 

ecological analyses using the DADA2 pipeline. Begin by determining the scope of 

the study, in terms of spatial and temporal extent, and determine whether additional 

studies will be incorporated. When combining studies, the methods and the data itself 

may differ significantly, and ensuring that data from different studies follow similar 

methods and are formatted similarly is a critical step that should be taken before 

combining studies: otherwise, results may not be valid. The first decision point is 

whether to merge forward and reverse reads when using bidirectional sequencing 

data. The 16S rRNA gene fragment presents few drawbacks to merging, since this 

region of the rRNA cistron is highly conserved and the read length does not vary 

significantly; both of these factors make it beneficial to merge reads and use as much 

information as possible. The ITS region, on the other hand, is highly variable, which 

makes it more challenging to correctly merge reads, and some research suggests that 

using just the forward reads can more accurately reflect fungal taxonomic 

composition in mock communities (Pauvert et al. 2019). Therefore, users should 

consider the research goals and objectives of their specific study and determine 

whether merging reads for ITS data is optimal. Next, low quality data are removed. 

For NEON 16S data, avoiding excessively permissive or restrictive parameters for 

maximum error rates (e.g. maxEE) and removing short reads using the truncLen 

parameter produced high quality results and retained an acceptable number of reads. 

For ITS data, we recommend a similar range for the maximum error rate (2 ≤ maxEE 

≤ 10), but recommend against using truncLen, in order to preserve natural sequence 
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length variation in ITS sequences. After quality filtering, the reads are denoised using 

DADA2. The denoised data are then merged if desired, and chimeras are removed. 

The output ASV data from this pipeline would then be used for taxon classification 

and downstream ecological analyses. 
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Figure 1.S2. Cumulative expected error profiles for NEON 16S sequencing runs 

BDNB6 and BFDG8, based on the first 10 samples from each run. Curves represent 

the number of expected errors for the mean (solid green), median (solid orange), and 

first and third quartiles (dotted orange) of forward and reverse reads in each 

sequencing run. Horizontal gray lines indicate possible cut-off points for the 

maximum number of expected errors (maxEE) allowed in each read after truncation 

to a given length (truncLen) at the quality filtering step; these lines do not appear 

when the cut-off point for maxEE = 1 exceeds the maximum range of the y-axis. Note 

the differing y-axis scales. Expected error profiles were generated using the novel R 

function plotEEProfile. See Supplementary File 1.3 for cumulative expected error 

profiles for each sequencing run, and the code used to plot them. 
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Figure 1.S3. Standard ANOVA diagnostic plots for the sensitivity of ASV Shannon 

diversity to quality filtering parameters. See Table 1.1 for ANOVA results.
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Figure 1.S4. Standard ANOVA diagnostic plots for the sensitivity of observed ASV 

richness to quality filtering parameters. See Table 1.2 for ANOVA results.
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Figure 1.S5. Observed richness of ASV tables produced from NEON 16S marker 

gene sequences across different values of quality filtering parameters maxEER and 

truncLenR. 
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Figure 1.S6. Tukey’s HSD test for the homogeneity of group dispersions (variances) 

for different values of truncLenR (170, 220, 250). 
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CHAPTER 2 

 

Niche modeling predicts that soil fungi occupy a precarious climate in boreal 

forests 

 

Clara Qin, Peter Pellitier, Michael Van Nuland, Kabir Peay & Kai Zhu 

 

Published in Global Ecology and Biogeograpy, 2023 

 

Introduction 

 

 Because soil fungi both regulate and respond to global biogeochemical cycles, 

elucidating their roles in the trajectory of earth system dynamics requires a precise 

understanding of their sensitivity to climate change (McGuire & Treseder, 2010; 

Terrer, Vicca, Hungate, Phillips, & Prentice, 2016; Cavicchioli et al., 2019). Climate 

has been shown to shape soil fungal communities from small-scale climate change 

experiments (Fernandez et al., 2017; Qin et al., 2020; Van Nuland et al., 2020) to 

continental-scale observational studies (Talbot et al., 2014; Tedersoo et al., 2014; 

Větrovský et al., 2019; Steidinger et al., 2020). However, research displays 

considerable variability in the influence of climatic drivers on fungal community 

assembly (Hendershot, Read, Henning, Sanders, Classen, 2017), especially in 

comparison to other factors such as host distribution, edaphic conditions, and 



	 63 

stochastic mechanisms (Peay, Kennedy, & Talbot, 2016; Zhou & Ning, 2017). 

 Some of this variability may be ascribed to differential responses to climate 

change across environmental space. For example, previous studies have shown that 

the effect of warming on ectomycorrhizal (EcM) fungal species richness depends on 

initial temperatures due to the existence of multiple diversity optima along 

temperature gradients (Steidinger et al., 2020), and the relative abundance and 

activity of soil saprotrophic fungi change abruptly across particular temperature 

thresholds (Feng et al., 2022). In the absence of this research, one might initially 

expect that these community properties change in a smooth, linear fashion across 

climate gradients. Indeed, this reasoning provides the basis for linking novel climates 

to no-analog communities (Williams & Jackson, 2007), as their novelty from the 

perspective of organismal life histories suggests that climatic factors should dominate 

predictions of biotic response. The prevalence of differential responses to climate 

change, on the other hand, demonstrates that climate-driven changes in fungal 

assemblages depend critically on the sensitivity of fungal assemblages to the extent of 

climate change under study. 

 In conservation biology, the term “sensitivity” was introduced in a conceptual 

framework to guide the conservation of species and populations in a changing climate 

(Williams et al., 2008). It refers to the biotic factors that shape organisms’ responses 

to climate change, including physiological limits, plasticity, and genetic diversity 

(Williams et al., 2008; Dawson, Jackson, House, Prentice, & Mace, 2011). We extend 

this concept to the community level to describe variation in the rate of compositional 
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turnover with respect to climate. While there already exist community-level modeling 

approaches for representing possibly nonlinear compositional turnover (e.g., Ferrier, 

Manion, Elith, & Richardson, 2007), an alternative approach is to model turnover as 

the aggregate of individual species’ presence or absence through ecological niche 

modeling (ENM; Murphy & Smith, 2021; Calabrese, Certain, Kraan, & Dormann, 

2014). In this approach, the overlay of species niches predicts the composition under 

a set of environmental conditions, and the distribution of niche edges gives the 

compositional turnover predicted with an environmental change (Figure 2.1). 

Stacking ENMs has been shown to reproduce patterns in plant community 

composition (Peppler-Lisbach & Schröder, 2004). Furthermore, niche modeling 

opens new avenues to research: it not only captures a finer scale of biological 

organization which aids in the inference of community assembly processes, but it also 

enables the testing of hypotheses that require community data to be disaggregated to 

individual taxa or functional guilds. 

 For instance, an ongoing area of research in fungal biogeography concerns the 

drivers of the distributions of saprotrophic fungi and mycorrhizal fungi (Peay, 2016; 

Dickey et al., 2021) – two functional guilds of major importance to carbon and 

nutrient cycling in terrestrial ecosystems (McGuire & Treseder, 2010; Fernandez & 

Kennedy, 2016). Mycorrhizal fungal distributions are strongly influenced by plant 

host ranges (Sato, Tsujino, Kurita, Yokoyama, & Agata, 2012; Kivlin, Muscarella, 

Hawkes, & Treseder, 2017; van der Linde, et al., 2018), and some evidence suggests 

that this creates stronger climatic controls on EcM fungi relative to saprotrophic fungi 
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(Sato et al., 2012). Among mycorrhizal fungi, EcM fungi are a particularly useful 

point of comparison for saprotrophic fungi because EcM lineages evolved multiple 

times from free-living saprotrophic ancestors (Tedersoo, May & Smith, 2010). The 

ratio of EcM fungi to saprotrophic fungi was decreased by in situ warming in an 

experimental forest site (Van Nuland et al., 2020), suggesting that saprotrophic fungi 

may tolerate higher temperatures than EcM fungi. In addition, there is evidence that 

EcM fungi can acquire water from their plant hosts during extreme drought 

(Querejeta, Egerton-Warburton, & Allen, 2003), providing a potential mechanism for 

greater drought tolerance in EcM fungi relative to saprotrophic fungi. Applying niche 

models to observational data at large spatial scales provides a means for validating 

these hypotheses. 

 In this study, we unify the climate sensitivity concept with a niche modeling 

approach to investigate the climatic drivers of soil fungal community assembly. We 

combine fungal sequence data from two continental-scale sampling networks in North 

America spanning all major biomes except tropical rainforest (Figure 2.2), and use 

ecological niche modeling (ENM) to model the composition of climate-constrained 

fungal assemblages across present North American climates. By constraining our 

analysis to the continental scale, we avoid the intercontinental dispersal barriers 

which would have otherwise violated the equilibrium assumptions of niche modeling, 

while maintaining an unprecedented breadth of climatic gradients over which to 

detect fungal niches. Finally, we operationalize the climate sensitivity of fungal 

assemblage composition using a novel statistical index that is a function of the 
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distribution of niches within climate space (Figure 2.1). We hypothesize that (1) the 

compositional turnover of soil fungal assemblages exhibits differential responses to 

climate change across environmental space, as captured by the clumped distribution 

of climate sensitivity values, and (2) ectomycorrhizal fungi differ from saprotrophic 

fungi in the distribution of their climate niche edges. Furthermore, we identify the 

biomes in which soil fungal assemblages are most sensitive to climate change. 

 

 

Materials and Methods 

 

Sequence data and bioinformatics 

Soil samples were derived from two sampling networks: the Dimensions of 

Biodiversity of Ectomycorrhizal Fungi (DoB-Fun) network, which includes 68 sites 

distributed across North American forests dominated by Pinaceae, and the National 

Ecological Observatory Network (NEON), which includes 47 terrestrial sites 

distributed across all major eco-climatic zones in the USA. DoB-Fun samples were 

collected in 2011 through 2013, and we compiled data from all NEON soil samples 

collected in 2016 through 2018 using the ‘neonMicrobe’ R package (Qin et al., 2021). 

Across DoB-Fun sites, sampling and DNA extraction was conducted using methods 

previously described by Talbot et al. (2014). Across NEON sites, soils from multiple 

40 m-by 40 m plots were cored to a maximum depth of 30 cm and split into mineral 

and organic horizons; DNA was then extracted from individual soil horizons. The 



	 67 

molecular methods for NEON soil samples are described in NEON’s standard 

operating procedures (Battelle Memorial Institute, 2018, 2022). Combining these 

networks yielded 7,749 soil samples from across 113 sites (Figure 2.2; not all NEON 

sites yielded soil samples in this time frame).  

  Across all soil samples, DNA was extracted and the ITS1 locus of the internal 

transcribed spacer (ITS) region was amplified (Schoch et al., 2012) using the ITS1F–

ITS2 primer pair (Smith & Peay, 2014). All NEON samples and a majority of DoB-

Fun samples were sequenced on the Illumina MiSeq platform, while the remaining 

DoB-Fun samples were sequenced using 454 pyrosequencing technology. Due to the 

generally low quality of reverse reads, only forward reads were retained for Illumina 

sequences. Single read approaches have been found to be highly accurate in 

recovering mock fungal communities (Pauvert et al., 2019). Illumina-sequenced 

amplicon reads were processed using the DADA2 pipeline (Callahan et al., 2016) 

with the following quality filtering parameters: maxN = 0, maxEE = 8, truncQ = 2, 

minLen = 50. 454 pyrosequencing reads were processed using a separate pipeline due 

to challenges in using DADA2 to generate reasonable estimates of sample richness. 

Briefly, QIIME and USEARCH (Edgar, 2010) were used to process and denoise 454 

pyrosequencing reads, with a minimum (maximum) sequence length cutoff of 350 

(1,200) bp, maximum homopolymer run length of 10 bp, and maximum barcode error 

number of 1.5. Due to computational constraints, denoised sequences could not be 

directly merged across sequencing runs. To facilitate cross sequencing platform 

comparisons, denoised sequences were clustered into species-level operational 
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taxonomic units (OTUs) at 97% similarity using VSEARCH (Rognes, Flouri, 

Nichols, Quince, & Mahé, 2016); only OTUs comprising more than 25 sequences 

were retained post clustering.  

  Representative sequences for each OTU were assigned taxonomy using the 

IDTAXA classifier via the ‘DECIPHER’ R package, which has been shown to 

outperform the naïve Bayesian classifier (Wright, 2016; Murali, Bhargava, & Wright, 

2018). The UNITE v9 dynamic database (Nilsson et al., 2018) served as the reference 

for the IDTAXA classifier. In total, we identified over 68,000 fungal OTUs. In order 

to reduce the variance associated with conducting logistic regression on sparse 

datasets (Šinkovec, Heinze, Blagus, & Geroldinger, 2021), we retained only those 

OTUs present in at least 10 “operational sites,” as defined below. Finally, OTUs were 

assigned to functional guilds using the FungalTraits database (Põlme et al., 2020). 

 

Ecological niche modeling 

Mean annual temperature (MAT), annual precipitation (MAP), temperature 

seasonality (TSEA), and precipitation seasonality (PSEA) were retrieved for the years 

1970 to 2000 from WorldClim v2 (Fick & Hijmans, 2017). Climate data was 

structured as raster objects with a spatial resolution of 10 minutes of a degree. Soil 

samples were spatially aggregated into the nearest climate raster cells, resulting in 

128 “operational sites.” Soil pH in water (pH), total soil carbon content (%C), and 

total soil nitrogen content (%N) were retrieved from our soil samples or, when 

missing (8 missing pH, 5 missing %C and %N), were filled in using SoilGrids 2.0 
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(Poggio et al., 2021). 

 ENM was conducted independently using regularized logistic regression for 

each species present in at least 10 operational sites. We initially fit species presence–

absence against all climate variables and soil physicochemical variables, in addition 

to the quadratic transforms of MAT and MAP (MAT2 and MAP2). However, to 

reduce the computational complexity of the proceeding climate sensitivity analysis 

while minimizing the impact on model performance, we excluded PSEA and %N 

from our final models, as these were the two least important covariates not counting 

the quadratic transforms of more important variables (Table 2.1; see Appendix 2.1).  

To improve model performance and reduce overfitting, we apply the ridge 

penalty to our logistic regression models using the ‘glmnet’ R package (Friedman, 

Hastie, & Tibshirani, 2010). Ridge regression is a form of regularization that 

penalizes model complexity by shrinking coefficients towards zero, thereby yielding 

more stable coefficients and predictions. Ridge regression and other forms of model 

regularization (e.g. the lasso) are already standard practices in maximum entropy 

modeling of species distributions (Warren & Seifert, 2011). The maximum likelihood 

estimator for the coefficients of the logistic ridge regression model for the kth OTU is 

given by the following set of equations: 

 

𝛽)) 	= 	 𝑎𝑟𝑔𝑚𝑖𝑛*![(𝜇) 	− 	𝑋 × 𝛽))
+ 	+ 	𝜆‖𝛽)‖+] (Equation 1) 

𝜇) 	= 	𝑙𝑛<𝑌) 	/	(1	 −	𝑌))?  
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The regularization parameter λ was chosen to minimize model deviance across 10 

cross-validation folds using the cv.glmnet function in the ‘glmnet’ R package. ENMs 

predict habitat suitability, a continuous metric. To convert these predictions into 

species presence–absence Zk, a dynamic threshold qk was selected for each ENM such 

that Zk = I(Yk > qk) maximizes the true skill statistic (Allouche, Tsoar, & Kadmon, 

2006). The logistic ridge regression model was validated alongside an alternative 

maximum entropy model (Table 2.S1), implemented with the ‘maxnet’ (Phillips, 

2021) and ‘enmSdm’ (Smith, 2021) R packages. These two independent approaches 

yield similar results; thus, we focus on reporting results from logistic regression in the 

main text. For all proceeding steps of our analysis, we remove OTUs with TSS less 

than or equal to zero. 

 

Single-axis climate niche edges 

We define the climate niche edges of an OTU by its predicted presence–

absence transition points across MAT and MAP gradients. We construct MAT and 

MAP gradients spanning the range of observed values in our dataset (-13 to 25.1 ºC; 

11.6 to 2556 mm), holding all other covariates constant at their median observed 

values (TSEA = 8 ºC; pH, 5.11; %C, 7.3%). For each OTU, we find the minimum and 

maximum values along each gradient for which an OTU is predicted to be present, 

and aggregate these distributions across all OTUs and by guild. We test for 

differences in the distributions of niche edges between guilds using the Kolmogorov–

Smirnov test. In addition, we count the number of OTUs that are predicted to be 
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present at either extreme of each gradient, and consider these to be representative of 

niche truncation in our dataset, i.e. the degree to which the characterization of niches 

is limited by the extent of the environmental gradients sampled. 

 

Climate sensitivity of fungal assemblage composition 

To examine patterns in the compositional turnover of fungal assemblages with 

respect to climate, ENMs were used to predict species presence or absence across an 

environmental space that is discretized into a regular grid to form five-dimensional 

environmental grid cells spanning our predictor axes: MAT, MAP, TSEA, pH, 

and %C. The niche count in cell j, nj, is operationalized as the number of species 

predicted to be present somewhere in the enclosed set of environmental conditions, 

i.e. Σk Zjk. A cell j is considered to be a climate niche edge for species k if the 

following conditions are met: (1) species k is predicted to be present in cell j, i.e. Zjk = 

1; (2) cell j is edge-adjacent to another cell j’ in which species k is predicted to be 

absent, i.e. Zj’k = 0; and (3) cell j is adjacent to cell j’ along the MAT, MAP, or TSEA 

axes. The latter condition ensures that only niche edges related to changes in climate 

are counted. The niche edge count in cell j is described by δj = Σk εjk , where εjk is a 

dummy variable that equals 1 if cell j is a niche edge for species k, and equals 0 

otherwise.  

 We propose an index for the climate sensitivity of the composition of 

biological communities. The Sørensen climate sensitivity index (abbreviated as 

Sørensen sensitivity or SS) is defined for a given climate cell j by the following 
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equation: 

 

SSj = δj / nj (Equation 2) 

 

 The Sørensen climate sensitivity index is analytically related to the Sørensen 

dissimilarity index. Let a equal the number of species shared between two 

communities; let b and c be the number of species unique to the respective 

communities. Then the Sørensen dissimilarity index is defined by the following 

equation: 

 

S = (b + c) / (2a + b + c) (Equation 3) 

 

  The numerator in Equation 3, b + c, corresponds to the number of species 

gains plus the number of species losses associated with a transition from either 

community to the other; analogously, the numerator in Equation 2, δj, corresponds to 

the number of species that transition between presence and absence within cell j. The 

denominator in Equation 3, 2a + b + c, corresponds to the number of species in either 

community (a + b) plus the number of species in the other (a + c); the denominator in 

Equation 2, nj, corresponds to the number of species in the quasi-community 

consisting of species whose niches overlap with cell j. Our method for counting 

niches and niche edges within a cell ensures that the niche edge count does not 

exceed the niche count (i.e. δj ≤ nj), so Sørensen sensitivity is bounded between 0 
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and 1. 

 Niches and niche edges were counted and Sørensen sensitivity was calculated 

across a five-dimensional grid formed by splitting each predictor axis into 9 regularly 

spaced intervals spanning the range of observed environmental conditions. For 

display purposes, these niche metrics were separately calculated across a 2-

dimensional grid formed by splitting MAT and MAP into 20 regularly spaced 

intervals while all other predictors were held constant at their median observed 

values. Because all metrics are dependent on cell size, we generalize niche count and 

niche edge count as measures of niche overlap and niche edge density, respectively, 

and only compare metrics derived from the same grid. Metrics for cells that fell 

outside a 15% buffer of the convex hull enclosing observed environmental conditions 

were removed to limit model extrapolation. Niche overlap, niche edge density, and 

Sørensen sensitivity were mapped onto geographic space using the climate and soil 

rasters, generating maps of the spatial distribution of the metrics across North 

America. Sørensen sensitivity was summarized across all North American biomes 

compiled from the World Wildlife Fund (WWF) Terrestrial Ecoregions (Olson et al., 

2001). 

 We used bootstrapping to produce uncertainty estimates for all our proposed 

metrics. Specifically, we used random resampling with replacement to generate a 

bootstrap sample of operational sites, then re-fitted ENMs across all OTUs and re-

calculated all metrics. We repeated this procedure 50 times and calculated the mean 

and coefficient of variation across bootstrap iterations. 
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Metrics standardization and permutation analysis 

To account for potentially spurious patterns generated in niche overlap, niche 

edge density, and Sørensen sensitivity during the modeling procedure, we generated 

null model distributions for each niche metric by randomly reshuffling the 

environmental data across sites, re-fitting ENMs, and re-calculating niche metrics; 

this was repeated 150 times. We then compare the distribution of each metric to its 

respective null distribution in two ways. First, we calculate a standardized form of 

each metric by dividing it by its mean null-model value on a cell-by-cell basis. 

Second, we use the null model to construct a permutation test for the hypothesis that 

each metric exhibits a more clumped distribution across environmental space than 

expected by random chance. We chose the variance-to-mean ratio as the test statistic 

for our clumping hypothesis: higher variance-to-mean ratios are indicative of more 

clumped distributions, whereas lower ratios are indicative of more uniform 

distributions. For a given metric, an empirical distribution of P-values was generated 

by calculating the proportion of null distributions with a variance-to-mean ratio 

greater than that of each bootstrap iteration. Because the expected distribution of P-

values under the null model is uniform, a one-sided one-sample Kolmogorov-

Smirnov test of the P-value distribution against the uniform distribution can be used 

to test the clumping hypothesis. 

 

Results 
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Ecological niche models 

After filtering to OTUs present in at least 10 out of 128 operational sites, 

8,597 OTUs remained, including 1,015 EcM OTUs and 2,887 saprotrophic OTUs. 

ENMs based on logistic ridge regression have an out-of-sample predictive accuracy 

of 0.738 ± 0.101 (mean ± 1 SD) across OTUs and a true skill statistic (TSS) of 0.398 

± 0.295, outperforming maximum entropy models (Table 2.S1). TSS does not vary 

substantially across guilds or with the minimum number of presence or absence 

records (Figure 2.S6). After filtering to OTUs for which the model TSS was greater 

than zero, 7,274 OTUs remained, including 848 EcM OTUs and 2,426 saprotrophic 

OTUs.  

Across ENMs, temperature covariates (MAT, TSEA, MAT2) have a higher 

median variable importance than precipitation covariates (MAP, PSEA, MAP2; Table 

2.1, Figure 2.S5), suggesting that temperature is a stronger driver of fungal 

distributions in North America than precipitation. Among soil covariates, pH and %C 

are more important than %N, and all soil covariates are generally less important than 

temperature covariates (Table 2.1, Figure 2.S5). 

 

Climate niche edges across guilds 

Across the MAT gradient, 13.6% of all OTUs (19.6% of EcM, 14.1% of 

saprotrophs) of have cold niche edges that extend to the coldest sampled climates (-13 

ºC), while 49.7% of all OTUs (47.3% of EcM, 51.2% of saprotrophs) have warm 
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niche edges that extend to the warmest sampled climates in our dataset (25.1 ºC; 

Figure 2.3a). Across the MAP gradient, 8.96% of all OTUs (12.0% of EcM, 9.8% of 

saprotrophs) have dry niche edges that extend to the driest sampled climates (116 

mm), while 58.5% of OTUs (56.1% of EcM, 58.6% of saprotrophs) have wet niche 

edges that extend to the wettest sampled climates (2556 mm; Figure 2.3b). EcM and 

saprotrophic fungi differ in their distributions of cold and warm niche edges (two-

sample Kolmogorov–Smirnov test, Pcold = 0.005, Pwarm = 0.004; Figure 2.3a) but not 

in their distributions of dry and wet niche edges (Pdry = 0.413, Pwet = 079; Figure 

2.3b). Notably, the cold niche edges of ectomycorrhizal fungi tend to occur at cooler 

temperatures than those of saprotrophic fungi (Figure 2.3a), though there exists 

considerable intra-guild variation in temperature niche edge distributions across taxa 

(Figure 2.S1). The null model partially accounts for the unimodal shape of the niche 

edge distributions, but not the differences between upper and lower niche edges 

(Figure 2.S2).  

 

Clumped distributions of niche metrics 

The permutation test provides strong support for the hypothesis that there are 

clumped patterns in the distributions of niche overlap (one-sample Kolmogorov-

Smirnov test, P < 0.0001), niche edge density (P = 0.0001), and Sørensen climate 

sensitivity (P < 0.0001) across North American environments (Figure 2.4g-i). Niche 

overlap and niche edge density are highest in the warmest and wettest regions of the 

sampled environmental space (Figure 2.4b; Figure 2.S3). Sørensen sensitivity exhibits 
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a multimodal distribution across an environmental space defined across MAT and 

MAP, such that its response to precipitation depends on temperature (Figure 2.4c). 

These metrics exhibit different patterns prior to standardization, underscoring the 

importance of the null model for producing interpretable results (Figure 2.S3, Figure 

2.S4).  

 

Niche metrics over geographic space 

Mapping niche metrics onto geographic space reveals high standardized niche 

edge density in the boreal forest, the Washington Cascades, and the southeastern U.S. 

(Figure 2.5a). Standardized niche overlap is high across southern temperate 

grasslands and eastern temperate forests and low across cooler and drier regions 

(Figure 2.5b). Consequently, standardized Sørensen sensitivity peaks in boreal forests 

and the small portions of tundra and Neotropical environments represented in our 

dataset (Figure 2.5c, Figure 2.6a). However, standardized Sørensen sensitivity in the 

tundra and the Neotropics displays high bootstrap uncertainty (Figure 2.5f, Figure 

2.6b).  

 

 

Discussion 

 

Niche distributions suggest abrupt transitions and inter-guild differences 
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 We find that the distribution of fungal niches displays nonuniform patterns 

across contemporary climate space, suggesting that despite the local-scale relevance 

of niche partitioning in maintaining the high α-diversity of soil fungal communities, 

broad groups of fungi share physiological limitations that create clusters in the 

distribution of their climate niches. Specifically, niche overlap and niche edge density 

are each more clumped in their distributions than expected by random chance (Figure 

2.4g-i). This manifests in the unimodal distribution of cold and dry niche edges across 

the observed climate gradients (Figure 2.3). The peak in cold niche edges may reflect 

biophysical constraints on the reaction rate of extracellular enzymes involved in 

decomposition (Razavi, Blagodatskaya, & Kuzyakov, 2015), whereas the peak in dry 

niche edges may reflect biophysical limitations to substrate transport at low water 

potentials (Lennon, Aanderud, Lehmkuhl, & Schoolmaster, 2012; Schimel, 2018). By 

contrast, the distributions of warm and wet niche edges are not well characterized 

because approximately half lie beyond the climatic extent of our dataset (Figure 2.3). 

This indicates that in climates typical to North America, soil fungal assemblages are 

more likely to be constrained by cold and dry environments than by warm and mesic 

environments. Indeed, fungal isolates have been known to tolerate temperatures up to 

40 ºC (Pietikäinen, Pettersson, & Bååth, 2005; Maynard et al., 2019). Because 

warming is expected under climate change, our results suggest that fungal ranges in 

North America will tend to expand in the future. It has been theorized that the 

hypoxic conditions associated with especially wet soils may inhibit fungal activity 
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(Lennon et al., 2012), but as a local-scale control on fungal distributions, the effects 

of soil moisture may not be well represented by precipitation gradients. 

 The distributions of warm and wet niche edges within our sampling extent 

nonetheless provide novel insights into fungal compositional turnover at continental 

scales. Previous research utilizing the DoB-Fun network found that EcM fungal 

species richness displays two local optima across a temperature gradient, separated by 

a dip in diversity and a rapid shift in composition at mean annual temperatures around 

10 ºC (Steidinger et al., 2020). In our analysis, this temperature separates a cluster of 

warm niche edges from a cluster of cold niche edges, such that the effects of warming 

between 0 and 20 ºC are characterized by species loss followed shortly by species 

gain (Figure 2.3a). In other words, we find evidence that non-EcM fungi also 

experience rapid compositional turnover and abrupt changes in species richness that 

are consistent with the existence of multiple α-diversity optima across this 

temperature range.  

 EcM fungi and saprotrophic fungi display subtle differences in their climatic 

controls, with EcM fungi spanning cooler but not necessarily drier or wetter climatic 

ranges than saprotrophic fungi (Figure 2.3). Sato et al. (2012) hypothesize that these 

inter-guild differences primarily reflect the host specificity of EcM fungi and the 

limited availability of EcM plant hosts across climatic gradients, rather than the 

physiological tolerance limits of EcM fungi per se. The tendency for EcM fungi to 

inhabit cooler climates is consistent with the observation that EcM plants tend to 

dominate in seasonally cold climates and diminish in abundance in warm, aseasonal 
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climates (Steidinger et al., 2019). 

 

The compositional precarity of soil fungi in boreal forests 

 Considering patterns in standardized Sørensen climate sensitivity, we identify 

North American boreal forests as a segment of environmental space where soil fungal 

assemblage composition is likely to be especially sensitive to climate change (Figure 

2.6a). We believe that this biome may have been overlooked in previous analyses due 

to their focus on warming-induced species losses and not species gains (e.g. Tedersoo 

et al., 2022). As the boreal forest is experiencing especially rapid warming relative to 

lower-latitude biomes (Serreze & Barry, 2011), we predict that the effects of this 

exposure will be compounded by the compositional changes in soil fungi expected 

across these climatic gradients. Our findings are consistent with experimental studies 

that identify the boreal–temperate forest ecotone as a rapid transition zone for soil 

microbial communities. Fernandez et al. (2017) find that rapid shifts in the 

ectomycorrhizal fungal community at the boreal–temperate forest ecotone can be 

linked to warming-induced changes in the carbon allocation strategies of 

ectomycorrhizal hosts. We predict similarly rapid shifts across EcM and saprotrophic 

fungi, suggesting the effect of temperature on soil fungal community assembly is not 

entirely mediated by the response of plant hosts. Furthermore, our findings suggest 

that the increased dominance of saprotrophic fungi relative to EcM fungi under a 

warming experiment at the boreal–temperate forest ecotone (Van Nuland et al., 2020) 

is not solely driven by abiotic factors, but rather involves environment–species 
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interactions (Clark, Scher, & Swift, 2020) in which saprotrophs gain a competitive 

advantage over EcM fungi at higher temperatures. 

 Our findings complement previous studies that report rapid biotic changes 

among tree communities in the boreal–temperate forest ecotone, where warming may 

boost the competitive advantage of temperate tree species near their cold range limits 

relative to boreal species near their warm range limits (Reich & Oleksyn, 2008; Reich 

et al., 2015). Consequently, the communities that co-occur in this ecotone, including 

trees (Reich et al., 2015) and EcM fungi (Steidinger et al., 2020), are expected to 

have regionally divergent responses to warming depending on their association with 

temperate or boreal forests. This divergent response may account for the appearance 

of a latitudinal gradient in climate sensitivity (Figure 2.5c). Under equilibrium 

assumptions of community assembly, the northward migration of temperature isolines 

projected under most climate change scenarios could bring sweeping changes to the 

composition of soil fungal communities throughout Canada and Alaska within the 

twenty-first century, characterized largely by the influx of warm-adapted species.  

 The composition of soil fungal communities is closely tied to the rates of 

ecosystem processes such as decomposition (McGuire & Treseder, 2010) and the CO2 

fertilization effect (Terrer et al., 2016). These links exist independently of climate, 

such that the decomposition rate of recalcitrant organic matter such as wood is better 

predicted by fungal community structure than by climate (Bradford et al., 2014; 

Maynard et al., 2018; Smith & Peay, 2021). Thus, the multimodal pattern in the 

climate sensitivity of fungal assemblage composition points to potential climate 
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tipping points. In our study, the clearest peak in climate sensitivity is located spatially 

and environmentally within the boreal forest, a biome distinguished by its massive 

soil carbon stocks and slow carbon turnover (Crowther et al., 2019). Ultimately, the 

ecosystem implications of this high climate sensitivity depend on how fungal species 

are reshuffled into communities, how these communities are stratified across 

functional traits and guilds, and what kinds of disturbance regimes and successional 

trajectories are underway. 

 

Limitations and future directions 

 Although our dataset offers an unprecedented coverage of soil fungal diversity 

across the North American continent and global biomes (Figure 2.2), it nevertheless 

has limitations to estimating fungal species niches and modeling community-level 

properties. Most niche models require tens to hundreds of presence or presence–

absence records in order to fit a species niche; however, the high degree of regional 

endemism across fungal species (Talbot et al., 2014) forces a steep trade-off between 

taxonomic coverage and niche modeling performance. Consequently, our results 

primarily reflect the climatic responses of common taxa, which in our dataset tend to 

be niche generalists and pine specialists. Due to the prevalence of niche truncation in 

our dataset (Figure 2.3), an analysis of niche breadth is also not possible. In addition, 

our modeling approach seeks to represent deterministic community assembly via 

climate filtering and its associated biotic interactions. It does not account for resource 

limitation which can be important in tropical regions (Kivlin et al., 2017), nor does it 
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account for community assembly mechanisms with a stochastic component such as 

dispersal, diversification, drift, or priority effects (Zhou & Ning, 2017). Finally, our 

modeling approach does not predict abundance, which is a limitation of ecological 

niche modeling (Lee‐Yaw et al., 2022). Changes in the abundance of guilds, 

functional groups, or important taxa characterize the mycorrhizal fungal community 

shifts in some climate change experiments, sometimes to a greater extent than 

changes in diversity (Antoninka, Reich, & Johnson, 2011; Fernandez et al., 2017). In 

addition, recent studies find that the relative abundance of saprotrophs decreases 

under warming (Feng et al., 2022) while the relative abundance of pathogens 

increases (Delgado-Baquerizo et al., 2020); in conjunction with our finding of greater 

niche overlap at higher temperatures, this suggests that competition among soil fungal 

taxa could increase at higher temperatures with consequences on ecosystem function.  

 Future studies may investigate the influence of environment–species 

interactions in fungal community assembly (Clark et al., 2020), and the role of 

stochastic community assembly mechanisms such as dispersal limitation, historical 

contingencies, and drift in driving the high diversity of soil fungi, rather than niche 

partitioning across climate alone. Another potential area of research concerns the 

scale-dependency of the dispersion of fungal traits. Our study examines soil fungal 

species pools across sites and identifies under-dispersed trait distributions in the form 

of clustered niche edges, whereas at a finer-scale unit of analysis, over-dispersed trait 

distributions among fungi may point to the importance of competition in structuring 

communities (Crowther et al., 2014). Finally, the Sørensen sensitivity index may 
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warrant more analytical attention, particularly as a tool for not only quantifying the 

rate of compositional turnover across environmental gradients but also predicting the 

total extent of turnover across spatiotemporal gradients. 

 

Conclusions 

 While climate is not the sole driver of fungal community assembly, we 

demonstrate that its relationship with the distributional patterns of North American 

soil fungi is strong enough to drive complex, multimodal patterns in the rate of 

compositional turnover of soil fungal assemblages with respect to environmental 

gradients. We identify distinct patterns in the distribution of soil fungal niches and 

consequently the climate sensitivity of the composition of soil fungal assemblages, 

which peaks in boreal forests. Boreal forests have previously been shown to occupy a 

precarious climate space with respect to carbon storage and plant community 

turnover, and our findings demonstrate that this precarity extends to the composition 

of soil fungal assemblages. We propose that by modeling fungal assemblages in 

environmental hyperspace, niche modeling captures variation in compositional 

turnover that can be generalized to regions occupying similar climates around the 

globe. Thus, while the ecosystem implications of this compositional precarity are 

uncertain, the scale of its potential impacts is massive, as the geographic space 

occupied by the peak in high climate sensitivity is projected to sweep throughout 

subarctic latitudes under climate change. 
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Appendix 2.1: Variable importance and model validation 
 

  Variable importance and selection are coupled under the elastic net, a 

regularized regression method that penalizes unimportant variables in a model by 

shrinking their coefficients. In our analysis, we use a form of the elastic net known as 

ridge regression, which enforces an L2 penalty that shrinks coefficients toward zero. 

Consequently, the absolute values of scaled coefficients in a ridge regression model 

can be used as a metric of variable importance (Kuhn, 2008). 

  To select variables for use in modeling the presence and absence of fungal 

operational taxonomic units (OTUs), we begin with the dataset containing only OTUs 

present in at least 10 operational sites. We split this dataset into training and testing 

subsets using an approximate 70-30 split, leaving 88 operational sites in the training 

set and 40 operational sites in the testing set. First, we fit an initial suite of logistic 

ridge regression models (n = 8,597) using the full set of available predictors: mean 

annual temperature (MAT), annual precipitation (MAP), temperature seasonality 

(TSEA), precipitation seasonality (PSEA), soil pH in water (pH), total soil carbon 

content (%C), and total soil nitrogen content (%N). This produces a distribution of 

variable importance for each predictor (Figure 2.S5). Second, we fit a suite of logistic 

ridge regression models consisting of only the climate predictors. Third, we fit a suite 

of logistic ridge regression models consisting of the 5 most important predictors, 

including any applicable quadratic transforms; this excludes PSEA and %N (Figure 

2.S5).  

  We select from among the candidate predictors by validating their models’ 



	 86 

performance against the testing subset. The models using only climate predictors are 

consistently outperformed by the alternatives; the models using the full set of 

variables perform marginally better than the models using the 5 most important 

variables in terms of the true skill statistic, while the opposite is true for total 

accuracy (Table 2.S1). Because the computational complexity of our climate 

sensitivity analyses increases exponentially with the addition of new predictor axes, 

we decide to use only the 5 most important variables rather than the full set of 

predictors in our climate sensitivity analyses. 

  Finally, we compare the logistic ridge regression model using the 5 most 

important variables against a maximum entropy model using the same predictors.  

The code used for this appendix is available at 

https://github.com/claraqin/fungal-climate-niche. 
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Table 2.1. Variable importance of the full set of covariates across ridge regression 

models for all fungal operational taxonomic units (OTUs; n = 8,597), in order of 

median variable importance. The right-most column indicates whether each variable 

was ultimately included in the models used to quantify Sørensen climate sensitivity. 

Covariate Variable importance, 

median 

Variable 

importance, mean 

Included in final 

models 

Mean annual temperature 

(MAT) 

0.200 0.392 Yes 

Temperature seasonality 

(TSEA) 

0.196 0.408 Yes 

Soil pH (pH) 0.193 0.296 Yes 

Total soil carbon content 

(%C) 

0.176 0.329 Yes 

MAT2 (MAT2) 0.169 0.288 Yes 

Mean annual precipitation 

(MAP) 

0.155 0.334 Yes 

Precipitation seasonality 

(PSEA) 

0.155 0.254 No 

Total soil nitrogen content 

(%N) 

0.0969 0.177 No 

MAP2 (MAP2) 0.0899 0.175 Yes 
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Figure 2.1. Conceptual diagram of the relationship between niche distributions and 

the climate sensitivity of soil fungal assemblage composition, i.e. Sørensen climate 

sensitivity. (a) If niches (gray ellipsoids) are randomly or uniformly distributed across 

environmental space, then the numbers of niches and niche edges within a standard 

unit of climate change (unfilled square) are approximately regularly distributed across 

environmental space. (b) On the other hand, if niches are clustered together, then the 

numbers of niches and niche edges have clumped distributions, resulting in pockets of 

environmental space in which fungal assemblage composition is especially sensitive 

to climate change. Although a 2-dimensional climate space is used here, this 

conceptual framework may be extended to any n-dimensional environmental 

hyperspace. 
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Figure 2.2. Distribution of soil sampling sites (n = 113) in (a) geographic space and 

(b) climate space. Points represent site locations: blue, NEON site; red, DoB-Fun site. 

The study sites cover all major biomes except tropical rain forest. The biome plot is 

constructed using the ‘plotbiomes’ R package (Stefan & Levin, 2022). 

 

  



	 90 

Figure 2.3. Fungal species niche edges across temperature and precipitation gradients 

in North America. (a) The distributions of cold and warm niche edges for all fungal 

operational taxonomic units (OTUs) and across guilds, and the proportions of cold (or 

warm) niche edges that are truncated at the minimum (or maximum) sampled mean 

annual temperature (MAT). (b) The distributions of dry and wet niche edges for all 

OTUs and across guilds, and the proportions of dry (or wet) niche edges that are 

truncated at the minimum (or maximum) sampled annual precipitation (MAP). P-

values correspond to the two-sample Kolmogorov-Smirnov test comparing the niche 

edge distributions between ectomycorrhizal and saprotrophic fungi. All covariates not 

displayed in a plot are held constant at their median observed values: MAT, 8 ºC; 

MAP, 810 mm; temperature seasonality, 8 ºC; soil pH, 5.11; soil carbon content, 

7.3%. If an OTU is absent across an entire displayed gradient (MAT: 29.1% absent; 

MAP: 30.0% absent), it is not included in the OTU counts for the gradient. 
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Figure 2.4. Standardized niche metrics and climate sensitivity of soil fungal 

assemblage composition across North American climates. Mean standardized values 

(a-c) and coefficients of variation of standardized values (d-f) are calculated across 

bootstrap iterations and displayed across a two-dimensional slice of climate space for 

each metric: standardized niche edge density (a, d), standardized niche overlap (b, e), 

and standardized Sørensen sensitivity (c, f). Points in (a-f) represent the positions of 

operational sites (n = 128) in climate space: blue, NEON site; red, DoB-Fun site; 

green, operational site composed of both NEON and DoB-Fun sites. Metrics 

displayed in (a-f) are calculated over a 20×20-cell regular grid spanning observed 

mean annual temperature and annual precipitation values constrained by a convex 

hull, while all other covariates are held constant at their median observed values: 

temperature seasonality, 8 ºC; soil pH, 5.11; soil carbon content, 7.3%. (g-i) Support 

for the hypothesis that a metric follows a clumped rather than a random distribution 

across the five-dimensional environmental hyperspace is based on the empirical 

distribution of P-values derived from the permutation analysis. A randomly 

distributed metric would produce a uniform distribution of P-values, whereas a 

clumped metric would produce a distribution of P-values that tends toward zero. The 

deviation from a uniform distribution is evaluated using the one-sided one-sample 

Kolmogorov-Smirnov test, producing one measure of significance (PKS) for each 

metric.  
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Figure 2.5. Niche metrics and climate sensitivity of soil fungi across North America. 

For each metric, mean standardized values (a-c) and coefficients of variation of 

standardized values (d-f) are calculated across bootstrap iterations and mapped to 

North American geographies according to climatic and soil physicochemical rasters: 

standardized niche edge density (a, d), standardized niche overlap (b, e), and 

standardized Sørensen sensitivity (c, f). Metrics are calculated over a 9×9×9×9×9-cell 

regular grid spanning the observed range of each environmental axis, constrained by a 

five-dimensional convex hull with a 15% buffer.
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Figure 2.6. Standardized Sørensen climate sensitivity of soil fungi across major 

North American biomes. (a) Mean standardized Sørensen sensitivity across bootstrap 

iterations and (b) the coefficient of variation of standardized Sørensen sensitivity 

across bootstrap iterations are grouped by biome boundaries to generate within-biome 

distributions. Black vertical lines mark the median of each distribution. Biomes are 

displayed from top to bottom in order of increasing median value of the mean 

standardized Sørensen sensitivity. Only North American biomes occupying more than 

500,000 km2 of the climates represented in our dataset are displayed.  
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Table 2.S1. Out-of-sample predictive performance of logistic ridge regression models 

and maximum entropy models for the presence and absence of 8,597 fungal 

operational taxonomic units (OTUs) present in at least 10 operational sites. Three sets 

of predictors are compared based on total accuracy, sensitivity, specificity, and true 

skill statistic. The full model includes mean annual temperature (MAT), annual 

precipitation MAP), temperature seasonality (TSEA), precipitation seasonality 

(PSEA), the quadratic transforms of MAT (MAT2) and MAP (MAP2), soil pH in 

water (pH), total soil carbon content (%C), and total soil nitrogen content (%N). 

MAT, MAP, TSEA, PSEA, MAT2, and MAP2 comprise the full set of climate 

variables. Values shown are the mean (and standard deviation) across all OTUs.  

 

Model class Predictors Accuracy Sensitivity Specificity True skill 
statistic 

Logistic 
ridge 
regression 

Full set 0.737 
(0.102) 

0.650 
(0.302) 

0.750 (0.118) 0.400 
(0.299) 

Logistic 
ridge 
regression 

Climate variables 
only 

0.724 
(0.104) 

0.640 
(0.313) 

0.738 (0.124) 0.378 
(0.303) 

Logistic 
ridge 
regression 

MAT + MAP + 
TSEA + MAT2 + 
MAP2 + pH + %C 

0.738 
(0.101) 

0.647 
(0.304) 

0.751 (0.118) 0.398 
(0.295) 

Maximum 
entropy 

Climate variables 
only 

0.621 
(0.197) 

0.839 
(0.206) 

0.545 (0.252) 0.384 
(0.288) 

Maximum 
entropy 

MAT + MAP + 
TSEA + MAT2 + 
MAP2 + pH + %C 

0.473 
(0.127) 

0.783 
(0.174) 

0.377 (0.165) 0.160 
(0.216) 
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Figure 2.S1. Fungal species presence–absence transitions across a temperature 

gradient, by genus. Only the top 10 most abundant genera among ectomycorrhizal 

and saprotrophic fungi in our dataset are displayed, from top to bottom. The 

distribution of cold and warm niche edges is plotted across a mean annual 

temperature gradient, with all other climate variables held constant at their median 

observed values: annual precipitation, 81.0 cm; temperature seasonality, 8 ºC; soil 

pH, 5.11; soil carbon content, 7.3%. Fungal species-level taxa are approximated by 

operational taxonomic units (OTUs) at 97% similarity. If an OTU is absent across an 

entire displayed gradient, it is not included in the OTU counts for the gradient. 
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Figure 2.S2. Fungal species niche edges across temperature and precipitation 

gradients in North America under the null model. The null model is constructed using 

10 random permutations of the environmental data. The distributions of cold and 

warm niche edges (a) and dry and wet niche edges (c) for all fungal operational 

taxonomic units (OTUs). Thin lines represent distributions across null-model 

permutations, and bold lines represent the average distributions across permutations. 

(b) The proportions of cold (or warm) niche edges that are truncated at the minimum 

(or maximum) sampled mean annual temperature (MAT), and (d) the proportions of 

dry (or wet) niche edges that are truncated at the minimum (or maximum) sampled 

annual precipitation (MAP). Bars represent the mean across permutations and error 

bars represent the mean ± 1 standard deviation across permutations. All covariates not 

displayed in a plot are held constant at their median observed values: MAT, 8 ºC; 

MAP, 810 mm; temperature seasonality, 8 ºC; soil pH, 5.11; soil carbon content, 

7.3%.  
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Figure 2.S3. Niche metrics and climate sensitivity of soil fungi across a two-

dimensional slice of North American climate space, including null and standardized 

distributions. All metrics reported in this figure are the mean values across 200 

iterations (of bootstrap samples or null-model permutations). (a) Niche edge density, 

reported as the mean number of niche edges cell across bootstrap iterations in each 

climate cell. (b) Niche overlap, reported as the mean number niches across bootstrap 

iterations in each climate cell. (c) Sørensen climate sensitivity is calculated by 

dividing niche edge density by niche overlap and is reported as its mean value across 

bootstrap iterations. The metrics are also reported as mean values in the null model 

(d, e, f), and mean values in standardized form (g, h, i); the latter is obtained by 

dividing the mean boostrap values by the mean null-model values on a cell-by-cell 

basis. Points represent the positions of operational sites in climate space: blue, NEON 

site; red, DoB-Fun site; green, climate cell containing both NEON and DoB sites. 

Climate cells displayed in this plot are defined by a 20 cell-by-20 cell regular grid 

spanning observed mean annual temperature and mean annual precipitation values, 

constrained by a convex hull. Across climate cells displayed in this figure, all other 

environmental covariates are held constant at their median observed values: 

temperature seasonality, 8 ºC; soil pH, 5.11; soil carbon content, 7.3%. 
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Figure 2.S4. Niche metrics and climate sensitivity of soil fungi across North 

America. For each metric, mean values across bootstrap iterations (a-c), mean values 

across null model permutations (d-f), and mean standardized values (g-i) are mapped 

to North American geographies according to climatic and soil physicochemical 

rasters: niche edge density (a, d, g), niche overlap (b, e, h), and Sørensen sensitivity 

(c, f, i). Metrics are calculated over a 9×9×9×9×9-cell regular grid spanning the 

observed range of each environmental axis, constrained by a 5-dimensional convex 

hull with a 15% buffer. 
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Figure 2.S5. Variable importance of the full set of predictors across all ridge 

regression models (n = 8,597), in order of median variable importance. Each red point 

represents a variable importance estimate for the ridge regression model for a given 

OTU, and a violin plot summarizes the distribution of variable importance values for 

each predictor. Abbreviations for variable names: MAT, mean annual temperature; 

TSEA, temperature seasonality; MAP, mean annual precipitation; PSEA, 

precipitation seasonality; MAT2, quadratic transform of mean annual temperature; 

MAP2, quadratic transform of mean annual precipitation; pH, soil pH in water; %C, 

total soil carbon content; %N, total soil nitrogen content. 
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Figure 2.S6. Model validation metrics for the logistic ridge regression models 

including all predictors except soil pH and total soil nitrogen content (n = 8,597). 

True skill statistic (TSS) (a), sensitivity (b), and specificity (c) versus the lower value 

between the number of presences and the number of absences (min(#Pres., #Abs.)) of 

the corresponding fungal operational taxonomic unit (OTU). The blue line represents 

the line of best fit. TSS (d) and min(#Pres., #Abs.) (e) across the major guilds 

analyzed in this study (nEcM = 1,015, nSapr = 2,887, nOther = 4,695). Guild 

abbrevations: EcM, ectomycorrhizal fungi; Sapr., saprotrophic fungi; Other, fungi 

from another guild or with an unknown guild assignment. 
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CHAPTER 3 

 

“It could be anyway”: Ambivalence to the knowing of soilborne plant disease in 

post-fumigant agriculture 

 

Introduction 

 The plant pathology lab at the U.S. Department of Agriculture (USDA) 

research station in Salinas, California is made up of several sites. Greenhouses are 

lined with potted plants awaiting or undergoing a randomized controlled trial. 

Agricultural fields are available for production-scale trials operating on similar 

experimental principles. Aptly named “clean rooms” are designated for cell culturing 

and DNA-based molecular work. In theory, all sites are united in the study of 

soilborne strawberry disease and methods for controlling it. However, in practice, 

disease looks and behaves differently at each site. In the fields, disease is confirmed 

by the sight of wilted leaves. In the greenhouse, disease is discerned not by symptoms 

but by the density of a pathogen in the soil. In the analysis of DNA from a soil 

microbiome, disease is marked by the presence of a pathogen amidst the absence of 

suppressive microbiota. All of these methods were used by the same research team—

a group of agricultural scientists whom I was fortunate to call my colleagues—and 

were not considered to be particularly unusual. Our methods had, in fact, been vetted 

and funded by a research grant program administered by the USDA specifically to 

rescue the specialty crop industry from the existential threat posed by soilborne plant 
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disease. 

 California is a major producer of specialty crops, including 90 percent of 

strawberries in the U.S. (CDFA, 2022). The adoption of chemical fumigants into its 

production routines in the mid-twentieth century was key to its success (Guthman, 

2019), as it allowed the industry to control soilborne diseases without practicing crop 

rotation (Willhelm & Paulus, 1980). In particular, methyl bromide fumigants helped 

the California strawberry industry gain a foothold by controlling Verticillium wilt 

(Wilhelm et al., 1961), weeds, and nematodes (Fennimore et al., 2003). Under the 

Montreal Protocol of 1987, however, methyl bromide was phased out of agricultural 

production due to its deleterious effects on the ozone layer. Its phaseout coincided 

with the proliferation of novel soilborne fungal pathogens that cause widespread wilt 

and root rot in strawberry, motivating a search for alternatives to methyl bromide. In 

the short term, the reduction in methyl bromide has been offset by an increase in other 

fumigants (CDPR, 2019), though mounting pressure from public health advocates 

may lead to more general fumigant bans (Holmes et al., 2020). Popular non-fumigant 

methods for soil disinfestation, which include soil solarization and steam sterilization, 

have proven cost-prohibitive or inconsistent in their performance (Holmes et al., 

2020). The absence of a perfect alternative to methyl bromide is evidenced by 

California strawberry growers’ struggle to find economically feasible disease 

management solutions without it. As a result, California strawberry growers received 

critical use exemptions to continue fumigating with methyl bromide through 2016, 

over ten years later than outlined in the original mandate. Now the California 
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strawberry industry, along with several other specialty crop industries for which 

methyl bromide served as the cornerstone of disease management, is forced to 

consider more radical departures from chemical fumigation. 

 “Biological control” offers an alternative approach to disease management. 

Unlike chemical methods, biological control methods manage disease by managing 

the interactions between a disease-causing pathogen and the organisms that inhibit its 

growth or suppress its pathogenicity. This can be achieved through the direct 

inoculation of beneficial microbes like Trichoderma and Bacillus, or through 

modifications to the soil environment to indirectly enhance beneficial populations 

(Mazzola & Freilich, 2017). The phaseout of methyl bromide thus created a market 

opportunity for soil microbial inoculants, recently valued at over $400 million 

(Mazzola & Freilich, 2017), and simultaneously spurred an interest in evaluating the 

biocontrol potential of time-honored practices for improving soil health. These 

include cover cropping and a lesser-known organic method called anaerobic soil 

disinfestation (ASD), which combines organic soil amendments, plastic tarping, and 

irrigation to induce oxygen-free conditions in agricultural soils (Shennan et al., 2014). 

Of the over $100 million that the USDA has invested into research and extension 

projects through the Methyl Bromide Transitions (MBT) program and related 

programs (Holmes et al., 2020), a small but increasing percentage has been awarded 

to projects that employ biological rather than strictly chemical control methods 

(USDA 2023). 

 The push for biological alternatives to methyl bromide reveals an opening to 
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reconceptualize disease in the agricultural industry. Perhaps disease is not only the 

presence of one microbe—the pathogen—but the absence of a whole consortium of 

microbes that could have suppressed the development of disease. In mapping a future 

for the specialty crop industry, it is reasonable to expect that the question of how 

disease should be managed hinges on the matter of what disease is. If disease is the 

presence of a pathogen, then other broad-spectrum, biocidal solutions will do: 

chemicals, steam, and solarization. But if disease is anything other than the presence 

or absence of a pathogen, then we can no longer be confident in treatments deemed 

superior for their ability to exclude or eliminate pathogens. Understood as a question 

about objective reality, it is turned over to the scientists. And once in their 

laboratories, it also becomes a question about how reality is known—at what sites, 

with what methods, and with what explanations? 

 In this chapter, I build upon a body of scholarship in Science and Technology 

Studies (STS) that follows the sociomaterial practices through which objects are 

known and simultaneously made to matter (Mol, 1999, 2002; Moser, 2008; Latour, 

2004). This literature stresses the ontological stakes of knowledge practices that had 

previously been considered merely epistemic—a move that has been called the 

“ontological turn” in STS (Woolgar & Lezaun, 2013). I situate myself within the 

ontological turn to ask, what are the limitations of knowledge practices as points of 

intervention, especially when those practices are being deployed in a highly 

instrumental research setting? I propose that multiplicity in knowledge practices does 

not merely create new possibilities; it may also enshrine preexisting certainties in 
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other practices that draw from them.  

 This chapter stems from my observations on how soilborne plant disease is 

known and how its knowing is entangled with the technical and economic realities of 

production agriculture. For two consecutive summers, I worked alongside scientists 

who sought to understand the mechanisms of biological methods for soilborne disease 

control. I assisted them on a research and extension project funded by the MBT 

program to optimize biological disease control strategies in California strawberry 

production. To understand disease in practice, I follow the knowledge practices of the 

research team, focusing on techniques used in the field and the laboratory. I 

supplement my observations of knowledge practices with a review of recent literature 

on the biological control of soilborne plant disease. Additionally, I incorporate 

interviews with some of my collaborators to understand why certain practices are 

used over others. I find that changes in how soilborne plant disease is known do not 

guarantee a change in how agricultural production is done. On the contrary, new ways 

of knowing disease can even help agriculture stay the same when they are cited as 

potential mechanisms by which incumbent agricultural practices take effect.  

 In what follows, I first outline the theoretical foundations of this chapter, 

which center on Annemarie Mol’s (1999, 2002) method of observing objects as they 

are done in practice, or “enacted.” Thinking with Mol, I identify three sets of 

practices for distinguishing disease. I call the versions of disease that they enact 

symptomatic disease, pathogenic disease, and microbiomic disease (Figure 3.1). 

Along the way, I describe how each version contends with the shifting realities of 
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specialty crop agriculture in the phaseout of methyl bromide. In the following section, 

I show how the multiplicity of practices for knowing soilborne plant disease has been 

incompletely managed, such that two versions of disease now coexist in tension 

without either consistently dominating the other. I then recount an instance where this 

multiplicity was instrumentalized in deference to an existing agricultural practice—a 

stance that I call “ambivalence.” Finally, I theorize ambivalence as a style of 

ontological politics that troubles calls within STS to seek more relations always. 

 

Enacting and interfering 

 In The Body Multiple, Mol (2002) presents a method for studying the 

entanglements between ontology and epistemology. By observing medical practices 

in a hospital setting, Mol found that what seemed at first to be a singular disease 

called atherosclerosis took on multiple forms depending on how it was diagnosed or 

treated by medical professionals. Atherosclerosis under the microscope was different 

from atherosclerosis in the clinical interview was different from atherosclerosis in the 

bypass surgery. It is tempting to resolve this tension by presuming a singular object, 

“atherosclerosis itself,” at the center of multiple perspectives. But Mol rejects this 

logic, claiming that it falls back on subjectivist explanations that fail to take seriously 

the materiality of objects. As an alternative to what she calls “perspectivalism,” Mol 

proposes attending to the practices through which objects are “done” or “enacted.” 

An object enacted in a variety of practices can thus be more than singular—it can 

have multiple ontologies. In this framing, objects are not given, but rather “brought 
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into being, sustained, or allowed to wither away in common, day-to-day, 

sociomaterial practices” (Mol, 2002, p. 6). Instead of interpretations on the one hand 

and the “object-in-itself” on the other, Mol’s ethnography observes their shared point 

of origin in practices. It is a “praxiography.” 

 Against the Western, modernist logics that presume a singular reality of 

objects gradually “revealed” by science, the main intervention of a praxiographic 

approach is to demonstrate that objects are multiple, and thus, that their reality is 

always up for debate. Objects appear singular in spite of their multiplicity, and only at 

the resolution of ontological contestations that make realities commensurable 

(“coordination”) or justify the local suspension of one reality for another 

(“distribution”). Mol is careful to point out that multiplicity does not imply plurality, 

however. While atherosclerosis is “more than one,” it is also “less than many,” 

because the practices that enact atherosclerosis depend upon each other (Mol, 2002, 

p. 55). Statistical norms in the blood analysis inform clinical diagnosis, and clinical 

diagnosis informs statistical norms. The reality of non-disease objects is also at stake. 

Because the normal ranges of hemoglobin are known to differ between men and 

women, statistical norms of hemoglobin levels inform sex difference, and sex 

difference informs statistical norms. In this way, seemingly distinct objects may 

interfere with one another (Mol, 1999). A practice for diagnosing disease becomes a 

practice for enacting differences in other parts of reality. If reality itself is thus open 

for debate, then the contestations and interferences revealed in a praxiographic 

analysis form the basis for a new mode of politics. It is an “ontological politics” (Mol, 
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1999, 2002), which does not operate between competing subjects, but between 

multiple, partially overlapping objects. 

 What gets left in the background of Mol’s approach is the multiplicity of other 

practices that are engaged in interference with knowing disease. Whereas Mol’s 

interferences are located in the hospital and the lives of its patients, Bruno Latour 

(1988) provides a framework for thinking about the interferences between scientific 

ideas and broader societal-scale concerns. In The Pasteurization of France, Latour 

(1988) examines the seemingly transformative power of the Pasteur Institute’s 

scientific ideas, showing that what was commonly attributed to the goodness of the 

science or the “genius” of Louis Pasteur could instead be attributed to the alliances 

forged between Pasteurian scientists and a broad array of actors. Pasteurian science, 

weak on its own, became strong by “translating” the various concerns of the public 

hygiene movement, medical professionals, and French colonial interests into matters 

pertaining to the microbe—matters over which the Pasteurians, with their serums and 

vaccines, could then claim authority. According to Latour, the universalization of 

Pasteurian science is the exception to the rule. The Pasteurians’ influence grew not 

because everybody believed in its scientific principles, but because “the hygienists 

believed them and forced everybody else to put them into practice” (Latour, 1988, p. 

54, emphasis in original). There it is again: the materiality of practice. But unlike the 

focus of Mol’s praxiography, these are not knowledge practices. They are social, 

technical, and managerial practices that are informed—or perhaps interfered in—by 

knowledge practices. Latour (1988) demonstrates that the scope of a praxiographic 
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analysis can be broadened to include an object’s allies. In contrast to Mol’s (2002) 

praxiographic approach, which starts with knowledge practices and notes their 

interferences, Latour’s (1988) approach emphasizes the dynamic configuration of 

knowledge practices within heterogeneous networks of practice. 

 However, knowledge practices are not always so privileged. While Pasteurian 

science acted as an “obligatory passage point” (Callon, 1984), there are other 

networks wherein knowledge practices do not occupy such a central position. Many 

scholars in Science and Technology Studies (STS) have followed the enacted realities 

of disease through to their handling in the policy sphere. This tradition shows that 

science and policy, and a range of practices that span between them, all have a role in 

the ontological politics of disease. For example, Ingunn Moser (2008) considers 

Alzheimer’s disease. Moser explains that the dominance of pharmaceutical treatments 

over care-based treatments is due not only to the practices through which Alzheimer’s 

is known, but to the “performativity of parliamentary politics” that approves pills but 

not caregivers for public healthcare reimbursements (pp. 106-107). Later work, 

especially on infectious animal diseases, has examined the difficulty of sustaining 

multiple ontologies in policymaking sites (Law & Singleton, 2014; Mather, 2014). 

Policymakers tend to presume that there exists a singular reality upon which a general 

policy may be built. While a heterogeneous reality of disease would appear to the 

praxiographer as the expected outcome of multiple knowledge practices, it appears to 

the policymaker as a gap in scientific knowledge (Schrader, 2010). Policymakers may 

hold off on policy action until a “consensus” has been reached, resulting in policy 



	 117 

inaction (Oreskes & Conway, 2011). Alternatively, they may attempt to privilege one 

reality to the exclusion of others (Law & Singleton, 2014). In either case, the object 

multiple is made to be singular again. 

 Aside from policy, there may be other kinds of practices interfering with the 

realities of disease. Julie Guthman (2019), writing on the California strawberry 

industry’s attempts to repair itself in the wake of the methyl bromide phaseout, 

provides an interesting example. Guthman found that agricultural scientists tended to 

assume the emergence of novel strawberry diseases was linked primarily to the spread 

of pathogens and dismissed other explanations, including those invoked by biological 

control, as speculative and “of no practical importance.” It is not that these scientists 

could produce evidence to settle the matter for good; the science had simply not been 

done. While alternative realities of strawberry disease have not been refuted in theory, 

they were discounted in practice—that is, by the technical routines and infrastructural 

commitments that comprise the engines of agricultural production. In this sense, the 

practical constraints of the specialty crop industry interfere with the knowing of 

disease, shaping its possibilities. To understand how objects are enacted, then, it may 

also be necessary to understand how their enactments are configured within networks 

that include production practices. 
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Figure 3.1. Sociomaterial knowledge practices enacting multiple ontologies of 

soilborne plant disease in the agricultural sciences, and their configuration with(in) 

production agriculture. Knowledge practices are unbracketed demonstrations of the 

relations that constitute the ontologies of disease. Production agriculture brackets 

some objects and their relations (dotted lines)—especially those already established 

through knowledge practices—to instead validate or legitimize the relation between a 

production practice and the presumed “underlying disease.”  

 

Symptomatic disease 

 Plant disease: you know it when you see it. Or do you? Even through visual 

inspection, plant disease appears multiple. For example, strawberry disease may look 

like wilt symptoms. It may also look like stunted plant growth or yellowing leaves. 

Sometimes it looks like the browning of crown tissues, but this is only apparent when 

the plant is cut open. While different pathogens are associated with different disease 

symptoms in strawberry, their symptoms can look strikingly similar. Disease may 

also look like a decline in crop yield. In the push for alternatives to methyl bromide, it 

could be argued that yield loss is the disease ontology that the specialty crop industry 

knows best. The 2023 request for applications for the USDA Methyl Bromide 

Transition Program prioritizes projects that control “economically important pests” 

and encourages applicants to include a “focused economic analysis” of the costs and 

returns of implementation. I refer to soilborne plant disease enacted through these 

everyday visual inspections of plants as symptomatic disease (Figure 3.1a).  
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 The methods sections of scientific articles on soilborne plant disease reveal 

how disease is practiced. While some descriptions consider disease to be self-evident, 

others delve into the particularities that enact disease, a move that Mol (2002) calls 

“unbracketing.” To unbracket knowledge practices is to lay bare the simultaneously 

social and material elements that go into the doing of objects. For example, here is the 

unbracketing of “disease incidence”: “Disease incidence (%) was calculated using the 

formula: (number of dead plants/sum of plants in each replicate) × 100” (Liu et al., 

2022). Disease incidence is thus enacted as the aggregate of a binary condition—

diseased or healthy. But how is the diseased state enacted? In most enactments of 

disease incidence, the diseased state is assumed to be so obvious that it warrants no 

explanation. But in this article, the authors continue: “Clear pathological symptoms of 

Fusarium wilt were noted before the watermelon plant died, which mainly manifested 

as severe infection of the vascular bundles and wilting of the leaves” (Liu et al., 

2022). Thus, disease incidence is shown to rely upon visual cues, making it a form of 

symptomatic disease. In other methods, disease is enacted on a scale of “disease 

severity.” This can be done by reference to a visual aid—for instance, photos of 

plants at different stages of disease development, ordered on a linear scale by the 

similarity of their symptoms (e.g. Mendes et al., 2011). Or it may be enacted by 

measuring plant biomass and calculating its deviation from a standard. For example, 

van Agtmaal et al. (2015) report the following method: “Roots were visually 

examined for root rot severity according to van Os et al. (1998) using an arbitrary 

disease index ranging from 0 to 5, where 0 = no root rot, 1 = 1–20%, 2 = 21–40%, 3 = 
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41–60%, 4 = 61–80%, and 5 = >80% root rot, i.e., relative loss of healthy root mass 

induced by infection, compared to the corresponding healthy root systems.” The use 

of the word “arbitrary” in the preceding quote demonstrates that scientists themselves 

recognize disease scoring as a sociomaterial practice that functions primarily to make 

their science doable. Rather than being given to them, it requires them to make a leap 

of faith. The saving grace is that they make this leap together with their colleagues 

and predecessors, including “van Os et al. (1998),” such that it becomes standard 

practice. It is only through these resolutions that disease symptoms come to stand in 

for “disease itself,” while the heterogeneous social and material elements that allow 

for this translation, like biomass and the trained eye, get bracketed once again. 

 Yet, there is more to disease than visual symptoms. It is telling that I never 

encountered symptomatic disease during my participation in the project, at least to 

my knowledge. This is to make two points. First, it underscores that disease 

symptoms are not self-evident to the untrained eye. The brown, wilted strawberry 

plants that I noticed on the lab bench may have been wilted because of disease or 

because they had not been watered in a long time. The two conditions share a 

common reality after all, as wilt diseases are known to constrict water uptake by plant 

vascular tissue. Second, it shows that symptomatic disease is not always worth 

training the eye for. The main problem with symptomatic disease is that it is difficult 

to study in the laboratory. As I alluded to in my introduction, it is not straightforward 

to reproduce disease symptoms in strawberry plants in a greenhouse setting. They 

simply do not develop, except when manipulated through specific techniques. One of 
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my collaborators informed me that it is possible to induce disease in strawberry plants 

by penetrating the plant tissue with a pathogen-infested toothpick. This is where a 

praxiographic analysis breaks most clearly from perspectivalism. Disease not only 

looks but behaves differently under different practices. 

 But then the challenge lies in making the case that disease-infested toothpicks 

or their absence have meaningful analogues in production practices (Figure 3.1b). 

The production setting can be better represented by a field trial. However, field trials 

are time- and labor-intensive. A researcher needs to be fairly confident in their 

experimental design before rolling it out in a full-blown field trial. And even with all 

the necessary precautions, field trials can still go awry for many reasons: 

unseasonable weather, broken irrigation tape, and miscommunications or misaligned 

priorities between the researcher and the grower, to name a few. In the end, it can be 

ambiguous whether the development of disease symptoms in treated field soils was 

due to ineffective treatments or due to any number of potential interferences. 

 In addition to these technical and biological limitations, symptomatic disease 

has another weakness: it is always already too late. My collaborator tells me, “Once 

you observe disease in the field, there’s basically nothing that you can do to prevent 

disease progression other than continuing to fertilize and irrigate to promote a healthy 

crop to reduce plant stress.” Growers can also slow the spread of the disease and the 

accumulation of the pathogen by killing symptomatic plants with herbicides—a 

practice known as crop termination (Holmes et al., 2020). And they can plan ahead 

for the next crop with the knowledge that their soils are infested—but only if their 
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operations can survive the losses from the current one, and only if they can expect to 

maintain land tenure. Thus, however “real” symptomatic disease appears to be, its 

conditions of possibility make it impractical for specialty crop growers and scientists 

alike.  

 Agricultural scientists would prefer to work with a version of disease that is 

not so unruly, so they can anticipate treatment effects before investing in field trials. 

And growers want practices for identifying disease before the wilting, stunting, and 

damping-off. Fortunately for both of these groups, a second version of soilborne plant 

disease can be enacted without the participation of the plant at all. 

 

Pathogenic disease 

 On my second day in the research team, I learned a method for quantifying the 

soilborne population density of Macrophomina phaseolina, a strawberry pathogen 

that causes a disease known as charcoal rot. I blended soil samples into a slurry with a 

bleach solution, which acted as a chemical filter for sclerotia, the hardened and stress-

tolerant vegetative bodies of Macrophomina. After being sieved, rinsed, and diluted 

in water, the resulting soil solution was plated onto Petri dishes, where a selectively 

antibiotic agar gel further narrowed down the remaining microbial survivors. In a few 

weeks, someone would count the number of “colony-forming units” visible to the 

naked eye as white clusters of hyphae, the thread-like structures that comprise the 

non-reproductive bodies of multicellular fungal species. This configuration of 

biological knowledge and technical know-how is called a cell culture assay. In my 
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observations and in the literature, it was used for the detection and quantification of 

fungal pathogens that comprised the major pathogens of strawberries in the California 

specialty crop industry. Apart from innovations like the use of bleach solution for 

Macrophomina, the cell culture assay is a time-honored practice for knowing 

pathogens, with its roots in the beginnings of the field of bacteriology. In the past two 

decades, molecular tools have been developed as an alternative for quantifying 

pathogens via strain-specific DNA markers, but even so, the metrics of DNA density 

are converted back to “colony-forming units per gram soil” using correlations that 

have become conventional in the field of plant pathology (e.g. Bilodeau et al., 2012). 

 I use pathogenic disease to describe the enactment of soilborne plant disease 

as the presence or abundance of particular pathogens. Pathogens, after all, have been 

considered an obligatory passage point to disease ever since Pasteur demonstrated 

that anthrax, a disease of cattle, developed if and only if cattle were infected with the 

anthrax bacillus (Latour, 1988). Whereas plant pathologists understand symptomatic 

disease to be built upon an axiomatic relation between a symptom and its supposed 

referent—that is, “disease itself”—pathogenic disease is built upon empirically 

derived relations to symptoms (Figure 3.1c). The associations upon which they are 

built are not so different, however; they are both constituted in practice. Guthman 

(2019) describes how the plant pathologist Harold Thomas established Verticillium 

dahliae as a strawberry pathogen in 1931. After culturing a population of Verticillium 

in the lab, Thomas inoculated half of the plants in an experiment with a serum 

containing live Verticillium—which he must have initially been isolated, purified, and 
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cultured—and found that a substantial proportion of those plants developed disease 

symptoms while none of the controls did. Through these practices, pathogen 

abundance comes to stand in for disease symptoms (Figure 3.1d). 

 In the contemporary literature on ASD and other soilborne disease control 

methods, pathogenic disease is used more frequently than symptomatic disease as the 

variable for judging the efficacy of treatments. Some studies acknowledge that this is 

the result of a translation, and that as such, it may not always line up with 

symptomatic disease. Even so, many of these same studies slip up in ways that reveal 

the solidity of pathogenic disease. Some equate “disease suppression” with a decline 

in soilborne pathogen abundance (e.g. Trivedi et al., 2017), and some even use 

pathogen presence to define “diseased soils” (e.g. Liu et al., 2022), as if plant disease 

did not require plants. 

 Growers would prefer practices for identifying disease ideally before their 

plants even enter the soil, and pathogenic disease offers that. Perhaps the popularity 

of this plant-free disease enactment across the specialty crop industry can also be 

understood as the legacy of fumigation having been the primary method of disease 

control for so long. After methyl bromide, the specialty crop industry is not looking 

for just any solution to its disease problems; it is specifically looking for methyl 

bromide alternatives. This framing reveals an ideological and infrastructural 

commitment to solutions that operate in much the same way as methyl bromide 

fumigation did—that is, applied to soil before planting and used in conjunction with 

disease-free nursery stock, thereby closing all passage points for soilborne strawberry 
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pathogens. The prevalence of pathogenic disease in scientific studies says less about 

agricultural scientists’ abilities to do holistic research and more about how they 

contend with “economic realities,” especially those of the growers for whom they 

produce solutions and the federal research programs that fund them to do so. 

 

Microbiomic disease 

 In 1959, the plant pathologist James Menzies became the first to document the 

phenomenon of disease-suppressive soils. He described a soil that slowed the 

development of common scab of potatoes even when inoculated with its causative 

pathogen, Streptomyces scabies. He also found that these soils lost their 

suppressiveness after being sterilized. Noting that little changed in the process of 

sterilization except for the inactivation of its biota, Menzies (1959) concluded that the 

cause of suppressive soils must be biological. And since the pathogen was not 

introduced until after sterilization, suppressiveness must have specifically been linked 

to soil biota not including the pathogen—in other words, it was attributed to the soil 

microbiome (Figure 3.1e). 

 I use microbiomic disease to describe the enactment of soilborne plant disease 

as a soil microbiome that fails to suppress disease in the presence of a pathogen. 

While a suppressive soil microbiome cannot definitively prevent disease symptoms 

from developing, it can reduce disease incidence across the field to manageable 

levels. Suppressive soil microbiomes not only reduce the soil pathogen population; 

they may also outcompete the pathogens for space on the root surface, which is 
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thought to be necessary for soilborne plant disease to develop (Trivedi et al., 2020). 

Whereas pathogenic disease made it possible to study soilborne plant disease without 

plants, microbiomic disease makes it impossible—or at least, less convincing—to 

study pathogenic disease without also considering the microbiome.  

 A recent variation of microbiomic disease stems from the adoption of so-

called “omics” methods into plant pathology. This variation relies on notions of the 

microbiome that began with the introduction of “molecular tools,” DNA- and RNA-

based methods introduced in the 1990s to characterize the genetic makeup of 

biological entities. Molecular tools are often described as a revolution for 

microbiology because they allowed researchers to survey a wider diversity of 

microbiota from the environment. A major limitation of the more classical culture-

based tools was that the vast majority of soil microbes could not be reliably grown in 

cell culture. While sequencing was initially expensive and could only be used to 

sequence one DNA strand at a time, technological improvements at the turn of the 

century collectively known as “high-throughput sequencing” accelerated the pace and 

lowered the cost of sequencing. This made it feasible to sequence whole communities 

of organisms all at once, creating a class of methods known as metagenomics. 

Metagenomics joins other “post-genomic” methods—including transcriptomics, 

proteomics, and metabolomics—as a standardized package (Fujimura, 1988) that 

grew out of the Human Genome Project and the data-driven science that it propelled 

(Falkenberg et al., 2023). Omics technologies made it possible to know who is 

present in a community and what the community is doing as a whole, but they cannot 
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identify the functional contributions of any individual microbial taxon in the way that 

culture-based studies do. Thus, while omics technologies are more holistic in some 

ways, they are also disintegrative in others. Omics technologies have not, for 

example, yielded a consensus regarding which microbes are responsible for disease 

suppressiveness in soils. The “omic” in “microbiomic disease” is a nod to the omics 

technologies, especially metagenomics, that have contributed to this highly technical 

enactment of soilborne plant disease. 

 In the literature, Mendes et al. (2011) were among the first to use 

metagenomics to confirm that soils suppressive to R. solani were associated with 

distinct microbial communities that declined after gamma irradiation—a thorough 

method for killing microbes (Weller, 2002). While previous iterations of molecular 

methods also found traces of distinct microbial communities in suppressive soils, 

metagenomic methods allowed Mendes et al. (2011) to identify specific bacterial taxa 

associated with disease suppression. Studies like these helped to define a research 

program for translating disease suppressiveness to specific microbial taxa or 

properties of the microbiome, like its biodiversity, overall composition, or emergent 

qualities of biotic interactions. Recent studies even describe changes to the soil 

microbiome under ASD without measuring disease symptoms or specific soilborne 

pathogens at all (e.g., Achmon et al., 2020; Vincent et al., 2022). 

 Omics technologies may have helped operationalize microbiomic disease as a 

way of knowing soilborne plant disease, but microbiomic disease is a relative 

newcomer, still finding its place within agricultural science. Crucially, microbiomic 
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disease in its current state cannot guide new interventions in production settings. 

While experiments have shown that the disease-suppressive microbiomes are 

transferable between soils through the “inoculation” of conducive soils with 

suppressive soils in a ten-to-one ratio (Weller et al., 2002), this nonetheless requires 

too much soil to be economically feasible. On the other hand, experiments on isolated 

microbial populations have proven more fruitful. Numerous studies have linked 

disease suppression to individual microbial taxa, such as Bacillus and Trichoderma 

(Weller et al., 2002). Yet, the performance of individual taxa in field settings has 

proven inconsistent (Holmes et al., 2020; Mazzola & Freilich, 2017), suggesting that 

perhaps a consortium of microbiota that mutually sustain each other may be necessary 

for longer-lasting disease suppression. Thus, the strength of microbiomic disease as 

an ontology of knowing in agricultural science and management today should not be 

overstated. 

 Notwithstanding its current limitations, microbiomic disease occupies a 

similar niche as pathogenic disease, in that both can be enacted without the 

participation of the plant. Many of the advantages that pathogenic disease displays 

over symptomatic disease therefore reappear as promises that microbiomic disease 

makes today. Yet, as I will show in the next section, microbiomic disease does not 

replace pathogenic disease. In the phaseout of methyl bromide, they instead coexist in 

tension with each other. 

 

A tense coexistence 
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 Symptomatic disease, pathogenic disease, and microbiomic disease make up 

the cast of this praxiography. Because they are enacted through distinct practices, it is 

not a given that they will agree with one another—by what measure should they be 

said to agree? In this section, I use Mol’s (2002) concepts of “coordination” and 

“distribution” to explore how clashes between different versions of soilborne plant 

disease are managed, either by making realities commensurable or by assigning them 

to non-overlapping settings. Within this framing, the coherence of disease realities is 

neither given nor guaranteed. It is achieved by scientists as the resolution to an 

ontological contestation, and yet, not every contestation resolves or stays resolved. In 

the phaseout of methyl bromide, I find that microbiomic disease has not been made 

commensurable to pathogenic disease, as if they measure the same thing, nor has 

microbiomic disease fully replaced pathogenic disease, as if in a paradigm shift. 

Rather, the work of coordination and distribution remains incomplete. As a 

consequence, where pathogenic disease once dominated, microbiomic disease now 

sits alongside it in a tense coexistence. 

 Coordination is one of two primary means by which the multiplicity of objects 

is managed. It relies on the notion that while objects-in-practice may be different, 

they are not necessarily incommensurable—that is, they can be brought together 

through what Mol (2002) calls “coordination work” (p. 66). In the preceding sections, 

coordination is what allows me to name only three versions of disease but more than 

three knowledge practices. Naming three versions of disease is meant to illustrate the 

ease with which agricultural scientists coordinate across some diseases-in-practice, 
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which are cohered into “versions,” but not across others. 

 Sometimes coordination is straightforward. For instance, every knowledge 

practice includes a coordination technique at its core. In the biomass-based disease 

index from descriptions of symptomatic disease, a root biomass loss of 21% is made 

equivalent to a root biomass loss of 40%, and a 40% root biomass loss is the same 

regardless of whether the loss is due to fewer roots or shallower roots. Coordination 

also occurs when researchers translate diseases-in-practice to answer to a common 

measure. For example, while my engagement with the research team began with cell 

culture assays, my primary responsibilities changed to focus on quantifying pathogen 

DNA in soil samples using molecular tools. I would then follow up by converting 

these DNA quantities into counts of colony-forming units using pathogen-specific 

calibration curves that had been derived from prior experiments (e.g. Bilodeau et al., 

2012). This allowed us to enact pathogenic disease in some experiments as if it had 

been done in a cell culture, but using a different practice entirely. 

 Coordination techniques make difference out of differences, sustaining 

difference when it is deemed important for the knowing of an object and flattening 

difference when it is not. The singular noun in each of “symptomatic disease,” 

“pathogenic disease,” and “microbiomic disease” is meant to reflect this flattening of 

difference. Yet Mol (2002) reminds us that while disease is “less than many,” it is 

also “more than one” (p. 55). It is not obvious how one should coordinate across 

differences between these three versions of soilborne plant disease. It does not make 

sense to create calibration curves to translate between them. If anything, correlations 
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between them are treated as a welcome surprise. Liu et al. (2022), for example, report 

that “the abundance and proliferation of F. oxysporum [a soilborne fungal pathogen] 

after planting significantly and positively (p < 0.05) correlated with the disease 

incidence (Fig. 2c and d).” In the literature, these correlations are surprising enough 

to warrant statistical support and multiple subfigures. Even after coordination has 

done all the work that it can do, three versions of disease remain. 

 Distribution is the other primary means for managing multiplicity. It relies on 

the notion that when multiple versions of an object exist, they are not necessarily put 

into practice in the same settings. Mol (2002) uses a spatial metaphor to convey this: 

realities are “distributed over different sites” such that they no longer contradict each 

other (p. 115). In the literature on soilborne plant disease control, distribution indeed 

occurs across spatial compartments. For instance, a symptomatic plant does not 

necessarily contradict a suppressive soil microbiome, as the soil microbiome merely 

serves as the “first line of defence” (Trivedi et al., 2020). Similarly, distribution may 

occur across chains of probabilistic cause and effect. Studies on disease control posit, 

for example, that “the quantity of the pathogen in root tissue may be predictive of 

spread to crown tissue, and subsequent wilt development, later in the growing season” 

(Muramoto et al., 2016). Here, pathogen density is a risk factor for disease symptoms 

but does not decide them. Distribution may also occur across types of disease. Some 

types of disease are difficult to diagnose using visual methods. Instead, their 

pathogens must be cultured in selective media, or—for pathogens that cannot be 

cultured—identified using molecular tools. In these cases, pathogenic disease is 
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enacted over symptomatic disease. Other types of soilborne disease, like apple replant 

disease (Mazzola et al., 2012) and Prunus replant disease (Browne et al., 2018), are 

thought to be caused by a consortium of microbial taxa under the banner of a “disease 

complex.” Lacking a single known pathogen, these types of diseases can only be 

studied through an analysis of the whole microbiome (e.g., Khan et al., 2022; 

Dundore-Arias, 2023). Finally, as highlighted in the preceding sections, distribution 

may occur across different conditions of possibility. Plants are required for 

symptomatic disease, but not for pathogenic disease. This makes pathogenic disease 

particularly useful for pre-plant soil tests, which can help a grower decide what kind 

of disease management strategy to use before the growing season begins.  

 In practice, these distributive criteria appear as rules and routines that are 

shared across the community of practitioners. In the hospital, for instance, Mol (2002) 

observed well-established “indication criteria” that determine which patients are 

given which treatments (p. 101). Clashes are thereby avoided in practice. In the 

agricultural sciences, however, the rules appear to be less established. Thus, 

contestations arise in the form of research questions such as: Can this pathogen cause 

asymptomatic infections (Henry et al., 2019)? (If so, symptomatic disease loses some 

ground to pathogenic disease.) Can the endosphere microbiome, which resides inside 

plant tissue, act as a second line of defense against disease (Carrión et al., 2019)? (If 

so, pathogenic disease loses some ground to microbiomic disease.) Can this disease 

complex be narrowed down to a manageable number of taxa, which is thereafter 

treated in practice as if they were the causative agents (Khan et al., 2022)? (If so, the 
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lines between pathogenic disease and microbiomic disease are blurred.) These 

ongoing contestations demonstrate that the realities of soilborne plant disease are 

incompletely distributed. Their borders push, pull, and overlap. 

 

 The multiplicity of objects is not apparent when different versions are made to 

answer to a common measure, nor when only one version exists at a time. But in the 

ongoing contestation between pathogenic disease and microbiomic disease, neither of 

these conditions has been met. The phaseout of methyl bromide has changed the 

conditions of possibility over which the multiplicity of disease had once been neatly 

distributed. Pathogen presence is no longer a meaningful way to measure or manage 

the risk of soilborne plant disease because pathogens have become endemic in soils 

seemingly everywhere and methyl bromide fumigation—growers’ go-to method for 

keeping pathogens at bay throughout the latter half of the twentieth century—has 

been banned. For growers today, it is no longer a question of whether to exclude 

pathogens. Like it or not, pathogens are here to stay. Growers have to search for other 

ways to close off the possibility of disease. One approach is to accept that pathogens 

are likely to colonize the plant tissue, which informs efforts to breed new crop 

varieties for disease resistance. Another approach, which is more specific to this 

chapter’s focus on soilborne disease, is to shore up the plant’s defenses in the 

surrounding environment through modifications to the soil microbiome. This raises 

an important question: what happens when an abundant pathogen meets a suppressive 

soil microbiome?  
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 Until these questions are resolved, the tense coexistence of pathogenic disease 

and microbiomic disease will be difficult to ignore. For example, a recent study on 

the population dynamics of Fusarium oxysporum, the pathogen linked to Fusarium 

wilt in strawberry, acknowledges in closing that “if general suppression by the 

microbial community also occurs, then increased inoculum density may not correlate 

with disease severity” (Henry et al., 2020). Microbiomic disease has become just 

relevant enough to agricultural production that it is able to undercut pathogenic 

disease in places where it once stood unchallenged. In the following section, I explore 

the implications of this tense coexistence for how soilborne plant disease gets to be 

managed. 

 

The ontological politics of ambivalence 
 During my engagement with the research team, I worked with one of my 

collaborators on a project to investigate the effects of cover cropping treatments on 

charcoal rot of strawberry, a disease linked to the pathogen Macrophomina 

phaseolina. He suspected that charcoal rot would be reduced by all of the treatments 

except one, and he included that treatment with the specific intent to dispel a rumor. 

According to my collaborator, the treatment in question had been presented to 

growers after a sparsely replicated greenhouse trial showed that it led to small 

improvements in disease outcomes. Since then, it has spread widely among growers 

through word-of-mouth. While the cover crop treatment was neither proprietary nor 

costly, it did deprive growers of the opportunity to plant other crops that could control 
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disease more effectively or simply bring in revenue, which this treatment did not. 

Using a field trial, my collaborator found that the treatment in question was not 

associated with any significant difference in the abundance of the pathogen in soil. So 

far, things were not looking good for the treatment. But before making a definitive 

statement, my collaborator suggested that we conduct an additional analysis to 

examine the composition of the soil microbiomes across these treatment groups. 

Through a metagenomic analysis, we found that the cover cropping treatment led to a 

subtle shift in the soil microbiome. It is hard to say what this means for soilborne 

plant disease. As I alluded to earlier, scientists do not yet have a predictive 

understanding of the connections between soil microbiomes and disease suppression. 

Thus, my collaborator and I had no reason to suspect that the pathogen would behave 

any differently within the treated microbiome. But my collaborator, as a scientist who 

must also confront the needs and desires of growers, understood that a shift in the 

microbiome whatsoever could be read as conflicting evidence. That is, a shift in the 

microbiome could be a shift towards disease suppressiveness—never mind the fact 

that it could also be a shift towards disease conduciveness (Figure 3.1g). If the 

microbiome had been unchanged, then perhaps we could confidently refute this cover 

crop treatment. Or if we had inoculated the soils with a pathogen, planted the soils 

with strawberries, and surveyed their disease symptoms, then perhaps that could 

provide more conclusive evidence as well (Figure 3.1f). As it stood, however, our 

study would not be the one to settle the debate. 

 When I mentioned this outcome to other scientists at a plant pathology 
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conference, they were not surprised. In response to the claim that the cover crop 

treatment suppresses charcoal rot, they agreed that “that doesn’t sound right.” But 

they were also understanding of my collaborator’s abundance of caution. Another one 

of my collaborators who attended the conference added that conflicting 

recommendations from scientists may ultimately lead to a loss of growers’ trust. 

Before making a claim that contradicted popular belief, then, my collaborator on the 

cover cropping project would need evidence capable of either resolving the 

contestations between pathogenic disease and microbiomic disease or getting around 

them by measuring disease symptoms (Figure 3.2). 

 

 

Figure 3.2. An ontological contestation between pathogenic disease and microbiomic 

disease and its temporary resolution in deference to an existing disease management 

practice. The practice in question could have been connected to “underlying disease” 

through either pathogenic disease or microbiomic disease. 
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 What this anecdote shows is that introducing more ontologies of disease does 

not merely open up new possibilities for managing disease. It may also enshrine 

existing practices by giving them a new plausible mechanism of action. What is at 

stake in ontological clashes about mechanisms? More than nothing, but less than 

everything. Researching potential mechanisms may help to tailor disease management 

practices to specific conditions, but it usually does not refute them altogether. The 

configuration of a mechanism within production practices makes it neither the 

beginning nor the end of a chain of associations. Inserted into the middle, it becomes 

instrumentalized to reinforce or provide a backup plan to what may otherwise be only 

tentative connections between a production practice and its intended effect. “The 

consistency of an alliance is revealed by the number of actors that must be brought 

together to separate it” (Latour, 1988, p. 206), and it does not matter where, exactly, 

those separations happen. 

 Ontological multiplicity implies difference, and difference implies the 

possibility of change in the constitution of objects—this is ontological politics. Yet 

even when multiple ontologies are enacted, as in the knowing of soilborne plant 

disease, little may change about the applications. Prior work on ontological politics 

has linked this stagnation to the assertion that an object “can only be what it 

obviously is” (Woolgar & Lezaun, 2013). Here I want to make a slightly different 

point. It is not that a belief in any particular reality-as-we-know-it underlies a 

commitment to a particular kind of application. Rather, a particular kind of 
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application may incorporate multiple ontologies into its logics, ambivalent to their 

possibilities as long as they pose no threat. 

 Ambivalence is not the same as ignorance. Ignorance, as theorized by the 

historian Frank Uekötter (2014), entails the dominance of one form of knowledge 

over another. In the history of soil fertility management, chemical knowledge came to 

dominate over microbiological knowledge, tying the rise of industrial agriculture to a 

post-war boom in agrochemical manufacturing (Uekötter, 2014). The coexistence of 

pathogenic disease and microbiomic disease cannot be analyzed using this same 

framework, as neither consistently dominates over the other. Instead, their dynamic 

more closely resembles that depicted by Anna Krzywoszynska (2019) when she 

describes the role of soil scientists in a community of farmers who were 

experimenting with sustainable soil management practices. Scientists there did not 

provide recommendations so much as they legitimized practices that farmers were 

already using. Ambivalence and ignorance have something in common: they are both 

made possible by ontological contestations, known outside of a praxiographic 

analysis as uncertainty. This enables them to dismiss a particular ontology at the 

crucial moment—but unlike ignorance, which confronts that moment early and often, 

ambivalence saves that moment for the very end. This makes ambivalence a relatively 

easy stance to adopt. If growers and agrochemical manufacturers were able to get 

behind a particular solution even when it consistently ignored a particular reality, then 

what is preventing them from tentatively enlisting multiple realities and cherry-

picking the one that is most compatible with their proposed solutions at any given 
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moment? Ambivalence, after all, is less of a feat than ignorance. 

 Admittedly, the ontological stakes of ambivalence in the cover cropping 

example are relatively low. Cover cropping is done in sequence with fumigation, not 

instead of it, so it cannot challenge major presuppositions about how disease should 

be managed. To fully appreciate the stakes of ambivalence, then, one can look to the 

literature on disease control by fumigants and their biological alternatives. This time, 

it requires reading beyond the methods sections where knowledge practices are 

foregrounded, and turning one’s attention to the discussion sections where specific 

interferences are proposed. For example, the premise of Shi et al. (2022) reads at first 

like a paradox. The authors set out to examine the impacts of triple fumigation on the 

soil microbiome in order to “provide theoretical guidance on its application” (Shi et 

al., 2022). How is it that chemical fumigants, brought into agriculture specifically to 

create conditions inhospitable to life, were now being considered as potential allies to 

biological control? In the discussion section, the authors’ rationale becomes clear: 

“the low dosage of three fumigants used at one time effectively improved the control 

effect on pathogenic fungi such as Fusarium oxysporum, saving the control time [sic], 

significantly increasing the abundance of beneficial species such as Bacillus and 

Trichoderma and improving the potential disease resistance of soil” (Shi et al., 2022). 

(Lest one mistakes “potential disease resistance of soil” as a separate enactment 

involving disease symptoms, the authors clarify elsewhere that this is merely a 

restatement of the observed increase in Bacillus and Trichoderma.) One could attempt 

to pit this study against contrasting studies that find deleterious effects of fumigation 
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on the soil microbiome (e.g. Dangi et al., 2017), but that is not the point. It is, in fact, 

plausible that triple fumigation might nudge the soil microbiome toward that of a 

suppressive soil because all of the fumigants tested by Shi et al. (2022) are known to 

be less-deadly alternatives to methyl bromide (Rosskopf et al., 2016). This crucial 

fact allows the authors to cite both pathogenic disease and microbiomic disease as 

potential mechanisms by which an already-established production practice may be 

legitimized. Fumigation may work because it reduces pathogen density, or it may 

work because it makes soils more disease-suppressive. Either way, the reader is 

reminded that fumigation works.  

 By contrast, the challengers of well-established production practices are not in 

a strong position to be ambivalent, as claims about the potential mechanisms of effect 

are less convincing when the effect itself is still in question. Considerable research on 

ASD, for instance, is dedicated to understanding the conditions where it does work—

including specific combinations of target pathogens, treatment durations, organic 

amendments, and soil textures (Shrestha et al., 2016). Many of these studies employ 

methods that characterize the soil microbiome, enacting microbiomic disease in 

addition to pathogenic disease. However, microbiomic disease does not tip the scales 

against fumigants—except on the rare occasions when specific microbiomes are first 

linked to disease symptoms and are then shown to be more closely associated with the 

alternative practice than with fumigation (e.g. Mazzola et al., 2015). Yet these are the 

exceptions that prove the rule. Microbiomic disease can uplift less-established 

practices only when it is first translated to symptomatic disease. Ambivalence 



	 142 

between microbiomic disease and pathogenic disease does not provide the same 

leverage here. 

 Ironically, even as ambivalence appears to level the playing field between 

multiple realities of disease, it also widens the gap between the production practices 

that the reality of disease is thought to inform. Moser (2008) recognized that even in a 

praxiographic analysis, the ontological is not necessarily privileged. In the mattering 

of Alzheimer’s disease, the sphere of formal politics is a site where ontological 

multiplicity becomes singularized (Moser, 2008). In production agriculture, on the 

other hand, production practices and their infrastructural commitments play the role 

of “politics by other means” (Latour, 1988). The object, soilborne plant disease, is 

political, but so are the economic realities that it is enacted within. I find that 

microbiomic disease, despite offering an alternative way of knowing soilborne plant 

disease, does not turn the ratchet of progress. It does not create a paradigm shift or 

consistently dominate over any other ontologies. Despite its status as a 

reconfiguration of disease, it is subsequently configured into the same position—that 

of a mechanism—that has housed a pathogenic ontology of disease. There, 

microbiomic disease and pathogenic disease coexist in tension, to the ambivalence of 

incumbent practices.  

 Against this backdrop, ambivalence emerges as a style of ontological politics. 

While ontological politics requires contestations about the reality of objects, it does 

not have to begin and end with objects. Similarly, ambivalence concerns the 

ontological multiplicity of objects, but it does not preoccupy itself with them. It 
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instrumentalizes them. 

 

Conclusion: “It could be anyway” 
 In The Body Multiple, Mol (2002) lays the groundwork for what would 

eventually be called the ontological turn in STS. Instead of privileging the social, as 

had been implied by the term “social constructivism,” ontological approaches 

consider how technoscientific objects are done in practice (Sismondo, 2015). Its 

political stakes, however, were less obvious. Mol speculates thus: “In stressing 

ontological multiplicity this book lays bare the permanent possibility of alternative 

configurations. […] Medical practice is never so certain that it might not be different; 

reality is never so solid that it is singular” (Mol, 2002, p. 164). This foreshadows the 

slogan now used to convey the significance of the ontological turn, that “it could be 

otherwise” (Woolgar & Lezaun, 2013).  

 Contrary to this slogan, however, I find that an agricultural industry deeply 

committed to particular sociomaterial practices can use ontological multiplicity to its 

own benefit. The fact that agricultural science more commonly positions microbiomic 

disease as a launch pad for “precision farming” technologies that introduce specific 

beneficial microbes (e.g., Berg et al., 2020), rather than a justification for biodynamic 

farming principles that seek to enrich native biodiversity (e.g., Mazzola & Freilich, 

2017), may have less to do with its methodology and more to do with its deference to 

industrial agriculture. Perhaps agriculture can be different, but it is conditional on 

more than simply the reality of soilborne plant disease. In the highly instrumental 
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research programs created in the wake of methyl bromide, I find that the slogan “it 

could be otherwise” is just one degree of separation away from its ambivalent twin: 

“it could be anyway.” 

 To the extent that ontological multiplicity draws upon the STS tradition of 

relational materialism (Law & Singleton, 2014), this chapter troubles the heuristic in 

STS that relationality is inherently good. For one, some relations are toxic, and doing 

well becomes a matter of entangling oneself with certain toxicities to exclude even 

worse relations (Roberts, 2017). Similarly, the reconfiguration of soilborne plant 

disease to include microbiomic enactments reflects a more relational understanding of 

disease than was voiced by Guthman’s (2019) interlocutors, yet it does not change 

much about the way production works. I propose that attending to knowledge 

practices and their configuration within production practices is one way to study 

whether ontological multiplicity, and the new relations that they entail, will lead to 

new possibilities or simply perpetuate existing certainties. 
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SUPPLEMENTARY FILES 

 

 Supplementary Files 1–3 are available as Data S1–S3 at 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3842. 
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