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Broad sense repeatability, which refers to the extent to which individual differences in trait 

scores are maintained over time, is of increasing interest to researchers studying behavioural 

or physiological traits.  Broad sense repeatability is most often inferred from the statistic R 

(the intraclass correlation, or narrow sense repeatability). However, R ignores change over 

time, despite the inherent longitudinal nature of the data (repeated measures over time).  

Here, we begin by showing that most studies ignore time-related change when estimating 

broad sense repeatability, and estimate R with low statistical power.  Given this problem, we 

(1) outline how and why ignoring time-related change in scores (that occur for whatever 

reason) can seriously affect estimates of the broad sense repeatability of behavioural or 

physiological traits, (2) discuss conditions in which various indices of R can or cannot 

provide reliable estimates of broad sense repeatability, and (3) provide suggestions for 

experimental designs for future studies.  Finally, given that we already have abundant 

evidence that many labile traits are ‘repeatable’ in that broad sense (i.e. R > 0), we suggest a 

shift in focus towards obtaining robust estimates of the repeatability of behavioural and 

physiological traits.  Given how labile these traits are, this will require greater experimental 

(and/or statistical) control and larger sample sizes in order to detect and quantify change over 

time (if present).

Keywords:

behavioural syndromes, metabolism, mixed models, personality, plasticity,

A major challenge in studying and describing behavioural and physiological traits is 

their lability.  In contrast to morphological traits, physiology and behaviour are labile traits 

that can change over short periods (e.g. seconds to days) in response to changes in internal 

and external stimuli (Wolak, Fairbairn, & Paulsen, 2012).  High lability implies that 
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individual differences in behavioural or physiological traits observed at one point in time 

might not be observed if the same set of individuals were observed again on one or more 

occasions, even under highly controlled conditions.  

Various terms, including repeatability, differential consistency and differential 

stability have been used by biologists and psychologists to refer to the extent to which 

individual differences in behavioural or physiological scores are maintained over time

(Alison M. Bell, Hankison, & Laskowski, 2009; Caspi & Roberts, 2001; Hayes & Jenkins, 

1997; Roberts, Caspi, & Moffitt, 2001; Stamps & Groothuis, 2010).  However, the term 

'repeatability' also refers to a statistic, R, which has traditionally been used in quantitative 

genetics to estimate the proportion of trait variation that is attributed to individual differences

(see equation 1; Hayes & Jenkins, 1997; Lessells & Boag, 1987b; McGraw & Wong, 1996; 

Nakagawa & Schielzeth, 2010; Wolak, et al., 2012).  Because of the potential confusion over 

the two meanings of the term repeatability, here we use 'broad sense repeatability' to refer to 

the extent to which individual differences in scores are maintained over time (in a given 

context) and 'narrow sense repeatability' to refer to R.  Importantly, although R can sometimes

provide reasonable estimates of broad sense repeatability, this is not always the case.  As we 

discuss below, R makes no implicit inferences about time-related change (there is no term for 

time in its formulation).  Thus, if our longitudinal data contain individual or mean level 

changes over time not accounted for in the underlying statistical model, then inferences about

broad sense repeatability will not be correct because model assumptions are violated. 

Broad sense repeatability is of interest in many areas of research because it indicates 

that a given type of behaviour or physiology can be considered to be a characteristic of an 

individual (i.e. a trait), and may reflect heritability (e.g. Falconer, 1981)but see (Dohm, 

2002).  Recently, broad sense repeatability has attracted considerable interest from 

researchers interested in animal personality, because one of the key criteria for personality is 
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that individual differences in behaviour scores are maintained over time (Alison M. Bell, et 

al., 2009; Stamps & Groothuis, 2010).  Similarly, in recent years physiologists have 

increasingly focused on individual differences that are consistent over time (Careau, Gifford, 

& Biro, 2014; Nespolo & Franco, 2007; Williams, 2008).  Assessing broad sense repeatability

is often a key part of studies of individual differences in labile traits (Nakagawa & Schielzeth,

2010; Wolak, et al., 2012), and the statistic R has been calculated hundreds of time to infer 

broad sense repeatability of behaviour (e.g. Bell 2009; meta-analysis of behaviour: >750 

estimates of R) and physiology (Nespolo & Franco, 2007; White, Schimpf, & Cassey, 2013).  

<H1>Issues surrounding the use of R

Here, we raise some important issues relating to the use and interpretation of R when 

it is used to estimate broad sense repeatability.  Longitudinal data (repeated measures over 

time) are necessarily at the core of any study of individual differences in labile traits, but 

most empirical studies ignore time-related change within and across individuals (see below, 

and Appendix Table A1).  One of the indices that has been widely used to estimate the broad 

sense repeatability of labile traits is the intraclass correlation, or the ICC (Alison M. Bell, et 

al., 2009; Lessells & Boag, 1987a; Nakagawa & Schielzeth, 2010; Nespolo & Franco, 2007; 

Wolak, et al., 2012).  Unfortunately, as was stressed long ago, the ICC ignores trait changes 

over time, which will lead to invalid and biased estimates of broad sense repeatability if such 

changes are present (Hayes & Jenkins, 1997; McGraw & Wong, 1996).  Because the ICC is 

one of several different types of intraclass correlations (McGraw & Wong, 1996), to avoid 

confusion we follow earlier suggestions and refer to this index of R as ‘agreement R’, RA

(McGraw & Wong, 1996; Nakagawa & Schielzeth, 2010).  Note that RA can be calculated 

using a variety of different models, including single-factor ANOVA (e.g. see Lessells & Boag

1987) or mixed-effects models (e.g. see Nakagawa & Schielzeth 2010). 
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Unfortunately, if temporal patterns exist in the data, then RA is not necessarily a good 

measure of broad sense repeatability, and we provide examples to illustrate why this is so.  

Critically, RA assumes there is no temporal change in behaviour (i.e. there is no term for time 

in the underlying statistical model, see below).  If such changes exist, RA will provide an 

inaccurate estimate of broad sense repeatability, because key assumptions of that model have 

been violated (Hayes & Jenkins, 1997; McGraw & Wong, 1996).  The remedy for the 

problem, discussed further below, is to include a term for time elapsed between repeated 

measures (when unequally spaced in time) or observation number in the model.  In addition 

to satisfying model assumptions, incorporating change over time (a ‘time effect’) in the 

model serves the purpose of accounting for any changes in internal state, external stimuli and 

interactions between them that may have generated systematic temporal changes in behaviour

at the mean or individual levels.  A ‘time effect’ should not replace, but rather be used in 

addition to any obvious factors such as size, hunger, sex or temperature that could affect 

variation in the data across individuals and/or across successive measurements.

More generally, R will yield inaccurate estimates of broad sense repeatabiity if 

investigators ignore any factors, whether they be due to change over time or variation in some

identifiable variable (variation in contexts), that might affect R. For instance, some 

investigators have estimated ‘conservative’ values of R, by deliberately excluding factors that 

might affect variation in the data (Laskowski & Bell, 2013; Nakagawa & Schielzeth, 2010).  

While this approach may be sufficient to test whether values of R are significantly greater 

than zero, it necessarily underestimates R, and may also violate assumptions of the statistical 

model used to estimate it (see below).  Therefore, we advocate that researchers include 

predictors for both time-related change and change due to temporal variation in external 

stimuli (e.g. temperature) and factors such as sex and maturity when estimating R.  We 

elaborate on this in later sections.
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<H1>Effects of time are usually ignored

Despite cautions raised long ago (Hayes & Jenkins, 1997; McGraw & Wong, 1996), 

and despite a growing number of recent publications focusing on how to quantify individual 

differences in labile traits (e.g. Dingemanse, Kazem, Réale, & Wright, 2010; Martin, Nussey, 

Wilson, & Réale, 2011; Nakagawa & Schielzeth, 2010; Wolak, et al., 2012) and recent papers

that explicitly consider temporal change (e.g. A. M. Bell & Peeke, 2012; Peter A. Biro, 2012; 

Dingemanse et al., 2012), the importance of including time when computing and intepreting 

R none the less continues to be ignored by most empiricists studying labile traits in 

nonhuman animals. For instance, we reviewed empirical studies published in three prominent

behavioural journals (Animal Behaviour, Behavioral Ecology, Behavioral Ecology and 

Sociobiology) in 2011–2014, using the search keyword ‘repeatability’ in Web of Science.  Of 

41 relevant studies that reported repeatability to make inferences about consistency over time,

only 39% tested for mean level (shared) effects of time on behaviour, and only 15% tested for

individual differences in responses over time on behaviour (see Appendix Table A1).  Thus, 

our aim is to educate those that are not aware of these issues, using simple examples that 

show how temporal change can seriously affect our estimates of broad sense repeatability.

Indeed, many authors either implicitly assume that behavioural or physiological traits 

are highly consistent over time, and then sample each individual only once (reviewed in 

Beckmann & Biro, 2013; Garamszegi, Markó, & Herczeg, 2012), or test for broad sense 

repeatability, but do so by only testing each subject twice (reviewed by Alison M. Bell, et al., 

2009; Nespolo & Franco, 2007; Wolak, et al., 2012).  This low level of replicates per 

individual implies that few investigators have explicitly considered just how labile 

physiological and behavioural traits can be, nor have they considered changes in behaviour 

over time, since multiple observations per individual are required to provide reasonable 

estimates of RA, even in the absence of any time-related change (Wolak, et al., 2012).  By 
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7

contrast, psychologists have a long tradition of explicitly modelling temporal variation in 

behaviour (Singer & Willett, 2003).

<H1>How temporally consistent are labile traits?

Currently, estimates of R reported in the empirical literature for nonhuman animals are

rather low (mean = 0.4 or less) for both behavioural and physiological traits (reviewed by 

Alison M. Bell, et al., 2009; Nespolo & Franco, 2007; White, et al., 2013; Wolak, et al., 

2012).  Although many studies refer to R = 0.4 as ‘substantial’, the reality is that it can be 

very difficult to distinguish between individuals and ascertain consistency over time for 

samples with this value of R  (e.g. see Fig. 1c).  Low values of R might occur because (1) 

most of the variation resides within rather than across individuals, (2) broad sense 

repeatability is low (i.e. individual differences in scores are not maintained over the 

observation period) or (3) an investigator has failed to account (or control) for factors, 

including time, that affect trait variation (Hayes & Jenkins, 1997; McGraw & Wong, 1996; 

Nakagawa & Schielzeth, 2010).

<H1>What is narrow sense repeatability, R?

R is the proportion of the total variance in scores in a single context that is due to 

variance across individuals in their expected (mean) scores:  

R =  
VARacross

VAR across+VARresid             (1)

VARacross indicates the variance across individuals in their expected values and VARresid

is any unexplained residual (within-individual) variance in the data.  Several assumptions 

must be satisfied for R to provide a valid estimate of the proportion of the total variance that 

is due to individual differences in expected values.  Arguably, the most important of these is 
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that there is a common population (residual) variance for all measurement conditions

(McGraw & Wong, 1996).  Following from this are the related assumptions that residuals are 

random, independent and normally distributed (for Gaussian data).  In practice, this means 

that for longitudinal data the VARresid should not change over time, that every individual in the

sample should have the same residual variance around its expected value, and that the 

residuals around each individual’s expected value should follow a normal distribution.  For 

instance, if the assumption of a common population variance  is not met due to the omission 

of a key factor(s) in the underlying model such as time, then it ‘would be meaningless’ to 

calculate any index of R (see also Hayes & Jenkins, 1997; p. 37, McGraw & Wong, 1996).

 Importantly, even though R is often interpreted as an estimate of the extent to which 

individual differences in scores are maintained over time (Alison M. Bell, et al., 2009; 

Nespolo & Franco, 2007; Wolak, et al., 2012), one can plainly see that there is no term for 

time in equation 1.  Therefore, if behaviour does systematically change over time, either in 

the same way in all of the subjects, or in different ways in different subjects, but these 

temporal changes are not accounted for in the model that is used to estimate R, then R should 

not be used to infer broad sense repeatability. Below we show why ignoring temporal 

changes in behaviour, if present, can lead to problems when R is used to estimate broad sense 

repeatability. 

<H1>Different indices of R: which to use and when

The variances used to calculate R can be generated by a statistical model that contains

different terms to address the effects of time, which change the relative size of each variance 

component in equation 1, and therefore any inferences about broad sense repeatability that 

follow from them.  We outline the three major indices of R below, their assumptions about 
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change over time, and what they may or may not tell us about broad sense repeatability; in 

Table 1 we describe the underlying statistical model for each.

<H2>‘Agreement’ repeatability (RA) 

The most widely used version of R is RA, an index that provides a measure of the 

agreement (or reproducibility) of the scores of different individuals (Hayes & Jenkins, 1997; 

McGraw & Wong, 1996; Nakagawa & Schielzeth, 2010).  Traditionally, RA has been 

measured using a single-factor ANOVA, in which there is no term for time and individual 

identity is the only predictor variable (Hayes & Jenkins, 1997; Lessells & Boag, 1987b; 

McGraw & Wong, 1996).  More recently, mixed-effects models have been used to estimate 

RA, where individual identity is specified as a random intercept effect. Here we focus on the 

latter models, because they provide direct estimates of variance (for any index of R), and 

handle unbalanced and missing data.

  Because there is no term for time in the underlying model (see Table 1), RA 

implicitly assumes that every individual’s trend line over time is horizontal (see Fig. 1).  If 

this is true, and if other assumptions are satisfied (mentioned above), then RA can provide a 

useful estimate of broad sense repeatability (McGraw & Wong, 1996).  Data that do satisfy 

the assumptions for RA are simulated in Fig. 1.  Here, the expected score of each individual 

does not change over time, and (within each sample) the residual variance around the 

expected values (VARresid) is the same for every individual.  However, because VARresid differs

between the samples, RA also differs between Fig. 1a, b and c. Thus, even though the VARacross

is the same for all three samples (i.e. the individual intercepts are the same in Fig. 1a, b, c), 

individual differences in scores are more strongly maintained over time when RA = 0.9 than 

when RA = 0.4.  As a result, broad sense repeatability is higher in Fig. 1a than in Fig. 1c.  
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Alternatively, of course, RA would also vary across samples if the VARresid were the same for 

every sample, but VARacross was higher in some samples than in others.  

When mixed-effects models are used to generate estimates of RA, these models 

specify an intercept for the fixed-effects portion (representing the population mean) and a 

variance parameter to describe VARacross, which is given as the variance in individual 

intercepts VARint, termed a ‘random intercept effect’; see RA in Table 1).

<H2>‘Consistency’ repeatability (RC)  

If scores change systematically over time, then RA  provides biased estimates of broad 

sense repeatability.  When shared changes over time exist (i.e. individual expected values 

over time are parallel, but not horizontal), then RA cannot provide a good estimate of broad 

sense repeatability unless one accounts for these mean level changes in scores over time in 

the statistical model,  yielding an index of R that has been called ‘consistency’ R, or RC

(McGraw & Wong, 1996; Nakagawa & Schielzeth, 2010).  RC is an index of R that accounts 

for any factor with equal effects on all of the individuals in the sample.  An example of such a

model is presented in Table 1.  Failure to account for mean level change over time will lead to

the residual variance changing over time, violating the constant variance assumption. This 

occurs because we are implicitly fitting horizontal trend lines for each individual, when all of 

the trend lines should instead be increasing or decreasing, with the same slopes.  In turn, this 

leads to underestimates of broad sense repeatability, where the extent of the discrepancy 

depends on the extent to which mean level scores change over time (see Fig. 2).  Here, RC is 

the same for all three samples because neither VARacross nor VARresid varies across samples 

(Fig. 1a, b, c):  thus RC correctly indicates that broad sense repeatability is the same for all 

three samples.  However, if we ignore these mean level changes in scores over time, and use 

RA instead, we would erroneously conclude that broad sense repeatability was substantially 
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higher in Fig. 2a than in Fig. 2b or c; this occurs because any shared within-individual change

over time incorrectly becomes part of VARresid.

<H2>‘Conditional’ repeatability (R|condition)

When scores change over time, but the extent of change differs between individuals 

(Fig. 3a, b), then neither RA nor RC   should be used to infer broad sense repeatability.  In this 

situation, using RA as an index of R is invalid because the key assumption of equal residual 

variance across individuals is violated: individuals whose behaviour changes markedly over 

time (a substantial time trend) have higher residual variance than individuals who maintain 

the same expected values over time (no time trend).  Similarly, RC cannot provide a valid 

index of R because it assumes that individuals all have the same time trends.  If individuals 

differ in their time trends (Fig. 3b), then VARacross necessarily also changes over time, and so 

must R as well.  In other words, R varies as a function of time.  In this case, the appropriate 

index of R has been termed ‘conditional R’ (Nakagawa & Schielzeth, 2010), where R is 

specific (conditional) to a particular value of time (here, R|time).

Unfortunately, R|time cannot be used to estimate broad sense repeatability, because a 

value of R that is specific to only one point in time cannot tell us about the extent to which 

individual differences in scores are maintained across the observation period.  Rather, R|time 

tells us the extent to which individuals differ at a given point in time, under the assumption 

that within-individual (residual) variance is constant across individuals and over time (Fig 

3b).  If values of R|time change dramatically across observations, this implies that broad 

sense repeatability is low, but there is no simple mapping between R|time and broad sense 

repeatability.  

A statistical model that can be used to determine whether individuals have different 

trend lines over time is outlined in Table 1.  Detailed descriptions of this type of mixed 
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model, called ‘random regression’, can be found in several good texts (e.g. Singer & Willett, 

2003; Verbeke & Molenberghs, 2009; Zuur, Ieno, Walker, Saveliev, & Smith, 2009).  Briefly, 

if there is significant variance across individuals in their estimated slopes (VARslopes), then 

individuals differ in trends over time, and R must therefore vary as a function of time (Table 

1).  

<H1>Summary of what R tells us about broad sense repeatability

Currently, most empirical studies use RA to estimate broad sense repeatability, and 

then use these estimates of RA to infer the extent to which individual differences in scores are 

maintained over time (Alison M. Bell, et al., 2009; Nakagawa & Schielzeth, 2010; Wolak, et 

al., 2012), Appendix Table A1).  However, RA  only provides a valid estimate of broad sense 

repeatability if behaviour does not change over time.  If there are shared trends over time (i.e.

a significant fixed effect of time), then RC should be used instead of RA.  The indices RA and 

RC can provide reasonable estimates of broad sense repeatability only if individual trends 

over time all have zero slopes, or if individual trends are nonzero but parallel, respectively 

(see above).  Finally, if the functional relationships between behaviour and time differ 

significantly between individuals (i.e. VARslopes is significant), then R|time can be used to 

estimate the extent to which individuals differ at a given point in time. However, in this 

situation none of the indices of R discussed above can provide valid estimates of broad sense 

repeatability (see above; Table 1).

<H1>Assumptions when choosing an index of R

Before using any index of R to estimate the level of broad sense repeatability in a 

sample, we must verify that we have not violated assumptions of the model used to generate 

that index.  Testing assumptions should begin by first asking whether individuals have 

different slopes (see R|time, Table 1) or different residual variation.  If there is no indication 
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that slopes differ between individuals, or that individuals differ in residual variation, then one

can test for a shared effect of time (see RC, Table 1).  If there is a shared (fixed) effect of time,

then RC can be used to assess broad sense repeatability.  If not (time effect P > 0.1), then one 

may simplify the underlying model further by removing the fixed effect of time and then use 

RA to estimate broad sense repeatability (Table 1).  An essential part of this process is to plot 

model predicted values against the raw data for each individual in the sample, to ensure that 

model predictions are meaningful, and to verify assumptions about residuals (see above).  In 

addition, if the focus of a given study is on individual differences, then one should report 

individual level data and model predictions in relation to the repeated measures.

One practical difficulty with testing assumptions is that detecting individual 

differences in slopes with reasonable power requires very large samples.  Depending upon 

assumptions about the size of VARresid, this can require total sample sizes (individuals and 

repeated measures per individual) of nearly 1000 (Martin, et al., 2011; van de Pol, 2012).  To 

date, most studies of labile traits reporting R measure about 30 individuals twice each (Alison

M. Bell, et al., 2009; Nespolo & Franco, 2007; Wolak, et al., 2012), which is clearly 

insufficient to detect individual differences in slopes with power or precision (Martin, et al., 

2011; van de Pol, 2012).  With such small samples, one could not conclude much if a 

statistical test for shared or nonshared time trends yielded a statistically nonsignificant result.

 In a situation in which significant differences in individual slopes (trends over time) 

are detected, how can one obtain a reasonable index of broad sense repeatability, given that 

none of the indices of R are valid?  At present we do not have a solution to this problem. This 

is because broad sense repeatability refers to the extent to which individual differences in 

scores are maintained over time; it does not refer to the extent to which individual differences

in expected values are maintained over time.  If one is interested in the temporal consistency 

of expected values (as opposed to the raw scores), then this might be explored using an effect 
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size estimator of the variation in individual slopes over time (Singer & Willett, 2003).  

Alternatively, the range of R|time values across the observation period might provide an 

index of the extent to which individual differences in expected values were maintained across

the observation period.

<H1>Sample sizes and confounding factors

Throughout this discussion we have assumed that behaviour or physiology is 

measured under carefully controlled conditions, that repeated measures for all of the subjects 

were all taken in a single context (same set of external stimuli) using protocols that controlled

for variation in many of the other factors  that contribute to behavioural variability (e.g. time 

of day, feeding history, sex, age, etc.).  Failure to control experimentally for these sources of 

variability could inflate estimates of R (in the case of sex differences) or underestimate R (in 

the case of time of day variation).  For instance, the repeatability of metabolism declines with

time between successive measures (White, et al., 2013), suggesting that ontogenetic or ageing

effects may confound our estimates of broad sense repeatability if we do not account for time 

effects.  In some cases, with sufficient samples, it may be possible to measure and then 

control statistically for sources of variability (other than time) using additional fixed and/or 

random effects (Peter A Biro, Adriaenssens, & Sampson, 2014).  However, the greater the 

number of such effects, the greater the chance that individual differences will be confounded 

with these effects, reducing the power to detect and estimate broad sense repeatability (see 

also discussion by Martin & Reale, 2008).  

A related issue is whether sample sizes are sufficient to provide reasonably precise 

estimates of the value of R (and by extension, reasonable estimates of individual means), as 

opposed to simply testing whether R > 0.  For instance, even in the absence of any time-

related change in scores at the mean or individual levels, or any other confounding fixed 
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effects, one would need to sample about 100 individuals, five times each (or 250 individuals 

twice each), in order to estimate an RA value of 0.4 with reasonable precision (see Figure 3 in 

Wolak et al. 2012).  Using data from Bell et al. (2009), of some 759 estimates of behavioural 

repeatability we estimated that the average study (with ca. 40 individuals and two repeated 

measures) have only 20% of the required sample size mentioned above.  Thus, both past 

studies (Bell et al. 2009) and recent ones (Wolak et al. 2012) typically have sample sizes too 

low for rigorous estimates of RA.  At the same time, larger sample sizes provide more robust 

estimates of individual predicted mean values which, in addition to estimates of R, aid in 

exploring links between traits at the across-individual level (see Adolph & Hardin, 2007).

Of course, it is obvious that large sample sizes and careful controls over 

environmental conditions are much easier to achieve in the laboratory than in the field.  Even 

so, researchers studying free-living animals have been able to gather substantial numbers of 

repeated measures (Carter, Heinsohn, Goldizen, & Biro, 2012), and have been able to detect 

not only changes in mean level behaviour as a function of time (e.g.  Martin & Reale, 2008), 

but also significant individual differences in the rates of change in behaviour as a function of 

time (e.g. Dingemanse, et al., 2012).  Hence it is clearly feasible for investigators studying 

free-living animals to determine an appropriate index of R (or none!) to estimate broad sense 

repeatability of those animals.  Thus, it should be possible to increase the number of samples 

per individual beyond the N = 2 that is still common in many field studies reporting R.  

<H1>Concluding Remarks

We hope to have convinced the reader that using R to infer broad sense repeatability is

not as simple as commonly supposed, and requires much larger sample sizes than is usually 

the case.  There are different indices of R, and whether any of them can provide a useful 

index of the temporal consistency of individual scores requires us to explicitly consider the 
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possibility that trait values might systematically change over time.  If they do, then using 

indices of R that ignore changes in scores over time can result in invalid (due to violations of 

assumptions) or seriously biased estimates of broad sense repeatability.   More generally, now

that there is abundant empirical evidence that many labile traits are ‘repeatable’ we suggest 

that researchers, especially those studying animals in the laboratory, pay less attention to 

whether or not R is significantly greater than zero, and more attention to obtaining robust 

estimates of the repeatability of behavioural and physiological traits.  
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Figure 1. Hypothetical (simulated) samples of six individuals sampled repeatedly over time. 

Within each sample (a–c), the residual variance (around the expected values) is the same for 

every individual, and neither the expected behaviour nor the residual values of each 

individual change as a function of time.  Although VARacross is the same in a, b and c 

(individual expected values, i.e. the intercepts, are the same), the residual variance (VARresid) 

differs, generating RA values of (a) 0.9, (b) 0.6 and (c) 0.4.  At present, many behavioural and 

physiological studies report RA values of less than 0.4 (Alison M. Bell, et al., 2009; Nespolo 

& Franco, 2007).

Figure 2.  Simulated data showing the effect of shared (mean level) change over time on 

estimates of RA and RC, when VARacross (variance in individual intercepts) and VARresid 

(within-individual variation) are both held constant. (a) RA = 0.9, RC = 0.9, slope = 0. (b) RA =

0.77, RC = 0.9, slope = 1. (c) RA = 0.45, RC = 0.9, slope = 2. Individual intercepts are also 

identical in a, b and c.  In this example VARresid is assumed to be very low in order to more 

clearly distinguish individual trends from one another.

Figure 3.  Simulated data showing how the extent to which individuals differ in their trends 

(expected values) over time affects the various indices of R (i.e. VARslopes differs between a, 

b). (a) RA = 0.75, RC = 0.9, R|’time = 1’ = 0.9, R|’time = 15’ = 0.9. (b) RA = 0.5, RC = 0.75, 

R|’time = 1’ = 0.7, R|’time = 15’ = 0.96. For simplicity, individual intercepts are held 

constant, but individual slopes differ, in a and b. Residual variance is identical and low in a 

and b to aid the reader in distinguishing the individual trend lines.
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Appendix

Mean-level Individual-level time
time considered? effect considered? Year Journal Authors Title of article

Yes No 2014 Anim Behav Watts et al. Diel patterns of foraging aggression and antipredator behaviour in the trashline orb-weaving spider, Cyclosa turbinata
Yes Yes 2014 Anim Behav Davy et al. When righting is wrong: performance measures require rank repeatability for estimates of individual fitness
No No 2014 Anim Behav Trnka and Grim Testing for correlations between behaviours in a cuckoo host: why do host defences Not covary?
No No 2014 Anim Behav Jacobs et al. Personality-dependent response to field playback in great tits: slow explorers can be strong responders
No No 2014 Anim Behav Taylor et al. Colour use by tiny predators: jumping spiders show colour biases during foraging
No No 2014 Anim Behav Laskowski and Bell Strong personalities, Not social niches, drive individual differences in social behaviours in sticklebacks
No No 2014 Anim Behav Sussman et al. Tenure in current captive setting and age predict personality changes in adult pigtailed macaques
No No 2013 Anim Behav Petelle et al. Development of boldness and docility in yellow-bellied marmots
No No 2013 Anim Behav Nandi and Balakrishnan Call intensity is a repeatable and dominant acoustic feature determining male call attractiveness in a field cricket
No No 2013 Anim Behav Jennings et al. Personality and predictability in fallow deer fighting behaviour: the relationship with mating success
Yes No 2013 Anim Behav Fowler-Finn and Rodriguez Repeatability of mate preference functions in EncheNopa treehoppers (Hemiptera: Membracidae)
No No 2012 Anim Behav Dammhahn and Almeling Is risk taking during foraging a personality trait? A field test for cross-context consistency in boldness

No No 2012 Anim Behav Seltmann et al. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders
No No 2012 Anim Behav Deb et al. Females of a tree cricket prefer larger males but Not the lower frequency male calls that indicate large body size
No No 2012 Anim Behav Kluen et al. A simple cage test captures intrinsic differences in aspects of personality across individuals in a passerine bird

Yes Yes 2012 Anim Behav Stamps et al. Unpredictable animals: individual differences in intraindividual variability (IIV)
Yes Yes 2012 Anim Behav Biro Do rapid assays predict repeatability in labile (behavioural) traits?
Yes Yes 2012 Anim Behav Carter et al. Boldness, trappability and sampling bias in wild lizards
Yes No 2012 Anim Behav Betini et al. The relationship between personality and plasticity in tree swallow aggression and the consequences for reproductive success
No No 2011 Anim Behav David et al. Personality affects zebra finch feeding success in a producer-scrounger game
No No 2011 Anim Behav Jenkins Sex differences in repeatability of food-hoarding behaviour of kangaroo rats
No No 2011 Anim Behav David et al. Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context
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No No 2014 Behav Ecol Socio Kortet et al. Behavioral variation shows heritability in juvenile brown trout Salmo trutta
Yes Yes 2014 Behav Ecol Socio Grim et al. The repeatability of avian egg ejection behaviors across different temporal scales, breeding stages, female ages and experiences
Yes No 2014 Behav Ecol Socio Boulton et al. How stable are personalities? A multivariate view of behavioural variation over long and short timescales in the sheepshead swordtail
No No 2014 Behav Ecol Socio ToscaNo et al. Effect of predation threat on repeatability of individual crab behavior revealed by mark-recapture
No No 2014 Behav Ecol Socio Kekalainen et al. Do brain parasites alter host personality? - Experimental study in minNows
No No 2014 Behav Ecol Socio Kluen et al. Testing for between individual correlations of personality and physiological traits in a wild bird
No No 2013 Behav Ecol Socio Fitzsimmons et al. Signaling effort does Not predict aggressiveness in male spring field crickets
Yes No 2013 Behav Ecol Socio Cordes et al. Risk-taking behavior in the lesser wax moth: disentangling within- and between-individual variation
Yes Yes 2012 Behav Ecol Socio Lupold et al. Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus).
No No 2012 Behav Ecol Socio Hedrick and Kortet Sex differences in the repeatability of boldness over metamorphosis
Yes No 2011 Behav Ecol Socio Koski Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations
No No 2011 Behav Ecol Socio Gladbach et al. Can faecal glucocorticoid metabolites be used to monitor body condition in wild Upland geese Chloephaga picta leucoptera?

No No 2014 Behav Ecol Wignall et al. Extreme short-term repeatability of male courtship performance in a tropical orb-web spider
Yes No 2014 Behav Ecol Grunst et al. Age-dependent relationships between multiple sexual pigments and condition in males and females
Yes No 2014 Behav Ecol Perez et al. When males are more inclined to stay at home: insights into the partial migration of a pelagic seabird provided by geolocators and isotopes
Yes No 2013 Behav Ecol Carvalho et al. Personality traits are related to ecology across a biological invasion
No No 2013 Behav Ecol Kluen and Brommer Context-specific repeatability of personality traits in a wild bird: a reaction-Norm perspective
No No 2012 Behav Ecol Edelaar et al. Tonic immobility is a measure of boldness toward predators: an application of BaYesian structural equation modeling
Yes No 2012 Behav Ecol Low et al. Food availability and offspring demand influence sex-specific patterns and repeatability of parental provisioning

TABLE 1

41
42

463

464

465

466

467



22

Index of R Assumptions Graphical depiction Assumptions in terms of  Statistical model effects  

of the assumptions statistical effects

fixed effects random effects residual

(each line represents (mean-level (across-individual (within-individual 

one individual) trend) variance) variance)

      

 

RA Individual expected (a) individual differences in Y = intercept VARint VAR

values do not change over intercepts

time

RC Individual expected (a) individual differences Y = intercept + TIME VARint VAR

values change identically in intercepts

over time (b) mean-level effect of TIME

R|time Individual expected values (a) individual differences Y = intercept + TIME VARint VAR

change over time differently  in intercepts VARslope

(b) mean-level effect of TIME COVi,s

(c) individual differences
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in change over time (slopes)

(d) covariance between individual

intercepts and slopes (COVi,s)

       

45
46

468

469



24

Figure 1

47
48

470

471

472



25

Figure 2
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