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Real-Time Processing of Two-Photon
Calcium Imaging Data Including
Lateral Motion Artifact Correction
Akinori Mitani* and Takaki Komiyama

Neurobiology Section, Center for Neural Circuits and Behavior and Department of Neurosciences, University of California,
San Diego, La Jolla, CA, United States

Two-photon calcium imaging has been extensively used to record neural activity in the
brain. It has been long used solely with post-hoc analysis, but the recent efforts began
to include closed-loop experiments. Closed-loop experiments pose new challenges
because they require fast, real-time image processing without iterative parameter tuning.
When imaging awake animals, one of the crucial steps of post hoc image analysis is
correction of lateral motion artifacts. In most of the closed-loop experiments, this step
has not been implemented and ignored due to technical difficulties. We recently reported
the first experiments with real-time processing of calcium imaging that included lateral
motion correction. Here, we report the details of the implementation of fast motion
correction and present performance analysis across several algorithms with different
parameters. Additionally, we introduce a novel method to estimate baseline calcium
signal using kernel density estimate, which reduces the number of parameters to be
tuned. Combined, we propose a novel software pipeline of real-time image processing
suited for closed-loop experiments. The pipeline is also useful for rapid post hoc image
processing.

Keywords: two-photon calcium imaging, real-time image processing, image registration, closed-loop
experiments, motion artifacts

INTRODUCTION

Two-photon calcium imaging has been widely used to image the activity of neurons in awake
behaving animals. Neurons are loaded with a calcium-sensitive dye or, more commonly, made
to express a genetically encoded calcium indicator, such that their fluorescence signal reflects
spiking activity of the neurons. However, neural activity is not the sole cause of fluorescence
signal change. The recorded movie often entails some artifacts, such as motion artifacts caused
by body movements of the awake behaving animals and baseline changes often observed during
continuous imaging. To better infer neural activity from the fluorescence signal, it is crucial to
correct these artifacts. Of motion artifacts, lateral motion can be computationally corrected. As
such, lateral motion correction has been a crucial step in processing calcium images from awake
behaving animals. After motion artifact is removed, regions of interest (ROIs) are defined, and
average fluorescence intensity of the pixels in each ROI is calculated. Ratio of calcium fluorescence
transient to estimated baseline is calculated to infer the spiking activity of the cell. This process of
taking the ratio can also make the inference less sensitive to gradual shift of ROIs if not corrected
by lateral motion correction. In real-time closed loop experiments, all the image processing steps
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must be performed on each frame with minimal delay, and
parameters cannot be tuned iteratively by assessing the outcome.
If parameters depend on imaging conditions, it must be tuned
and set at the beginning of the experiment, and failure of selecting
the right parameters would result in invalidating the experiment.
Therefore, a fast, integrated pipeline to remove those artifacts
with a small number of parameters is a prerequisite for real-time
closed loop experiments.

TurboReg (Thévenaz et al., 1998) has been widely used to
correct lateral motion artifacts. It utilizes a pyramid approach,
and it first constructs an image pyramid of series of downscaled
images. The transformation at the final resolution is obtained by
optimization using a transformation estimated with a downscaled
image as an initial value, and this step is repeated recursively
several times. A caveat of image downscaling is that when an
image is downscaled too much, the process can remove fine
spatial features important for motion correction.

Two-photon microscopes generally use the excitation light
to scan across the sample, and movement during scanning can
not only shift but also distort the image, because each pixel
or line is scanned at a different time. Several methods based
on hidden Markov model (Dombeck et al., 2007) and optical
flow (Greenberg and Kerr, 2009) have been reported to correct
distortion caused in applications with low scanning rate.

TurboReg can correct motion artifacts with transformation
up to four landmarks, but it could be beneficial to align more
than four landmarks when imaging a larger field of view.
Recently, NoRMCorre (Pnevmatikakis and Giovannucci, 2017)
has been reported to estimate non-rigid transformation for such
application. This method splits imaging field into overlapping
patches, estimates translation of each patch, and upsamples the
dislocation to obtain translation at each pixel. This method
requires each patch to contain enough spatial signal to enable
frame-by-frame alignment, and may not be applicable when
labeling is sparse or weak. If some patches do not contain enough
spatial features, the alignment of the patch may be unstable and
affects the registration of nearby pixels. Scanbox, a Matlab-based
imaging software, includes an automatic stabilization feature
by aligning multiple manually selected subregions in real time
(Ringach1), but the implementation detail and performance
analysis have not been published.

These previous motion correction methods are generally so
slow that it can be an analytical bottleneck. Thus, efforts have
been made to improve the speed of motion correction. For
instance, moco is a fast motion correction algorithm based
on discrete Fourier transform and cache-aware upsampling,
achieving faster motion correction than TurboReg (Dubbs
et al., 2016). Similar to TurboReg, moco minimizes L2 distance
between the template image and the corrected image normalized
by the area of the overlap from all possible pixel-by-pixel
shifts. It was written in Java as an ImageJ plugin and reported
to have close to real-time performance in post hoc analysis.
While moco can only estimate translation of images, non-rigid
transformation may not be necessary with high scanning rate that
has become more common with resonant scanners, because it

1https://scanbox.org/2014/12/09/using-auto-stabilization/

can make within-frame distortion negligible. In fact, translation-
based motion correction algorithms have been widely used in
post hoc analysis, although it may be problematic with higher
zoom that can be affected by small within-frame displacements.
In this study, we focused on rigid translation correction.

Discrete Fourier transform-based registration corrects motion
artifact up to pixel-by-pixel accuracy. When each ROI only
contains a small number of pixels, subpixel registration can
potentially improve accuracy of estimating the calcium signal.
Registering upsampled image is an approach to achieve subpixel
accuracy, but it increases computation for registration. An
efficient method has been introduced to only calculate upsampled
correlation coefficients around the optimal pixel-by-pixel shift
(Guizar-Sicairos et al., 2008). This can be done without
fully calculating the inverse discrete Fourier transform of the
upsampled images, thus reducing the memory requirement and
computation time. However, it has been reported that the overall
registration accuracy was lower compared to moco or TurboReg
when applied to images from two-photon calcium imaging
(Dubbs et al., 2016).

Algorithms discussed above are intensity-based registration
algorithms. Alternatively, feature-based registration can be used
to correct motion artifact (Aghayee et al., 2017). This can be
beneficial when the features are easily recognizable in each frame,
but it may fail when signal to noise ratio is low. At the time
of the research, the implementation was not available2 (empty
repository, accessed on 7/8/2018) and in this study we focused
on intensity-based registration.

Recent studies began to use two-photon calcium imaging in
real-time closed-loop experiments (Clancy et al., 2014; Hira et al.,
2014; Prsa et al., 2017; Mitani et al., 2018). They require fast,
real-time image processing, and lateral motion correction has
not been implemented and ignored in most of these studies
due to technical difficulties. However, imaging in awake animals
necessarily includes motion artifacts, leading to many studies
with post hoc analysis utilizing TurboReg and other image
registration algorithms. Mitani et al. (2018) was the first to our
knowledge to report real-time processing of calcium imaging
incorporating lateral motion correction. This method used hill-
climbing method to reduce computation of correlation coefficient
between template and shifted images. Here, we report the
details and the performance analysis of the implementation of
fast motion correction, including some improvements we have
made since the original study. In addition to real-time image
processing, the method can also be used for faster post hoc
processing.

After motion correction, typically ROIs are identified,
and the relative change of the average fluorescence intensity of
all the pixels in each ROI is calculated, based on the estimation of
the baseline of the average fluorescence intensity. To estimate the
baseline, percentile method and robust mean method are widely
used, but each has shortcomings.

Percentile method estimates the baseline by taking a certain
percentile of the fluorescence intensity time series. In calcium
imaging, the calcium signal tends to have symmetric noise and

2https://github.com/saghayee/Tracking-based-registration
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sparse positive activity. Therefore, the percentile that represents
the true baseline depends on the activity level. With no activity,
the baseline should be the median of the distribution, while
it corresponds to a lower percentile with more activity. In
addition, when the specified percentile does not correspond to
the true baseline, the amount of error depends on the noise level.
With larger noise, the estimate is further away from the true
baseline.

Another popular method for baseline estimation is robust
mean. This method calculates mean of the signal while excluding
outliers, which are assumed to be mainly from calcium activity.
Outliers are typically defined as values different from the mean
more than a set threshold, e.g., 2 standard deviation. An
assumption for this method is that the mean is close to the true
baseline, which is not the case when the activity level is high and
can lead to poor baseline estimation.

To overcome these issues of the common methods, we
estimated the baseline using kernel density estimation. Kernel
density estimation is a method to estimate kernel density from
a limited number of samples under the assumption that the
kernel density function is smooth. Kernel density is a probability
distribution from which each sample is produced. After the
estimation, the peak of the kernel density approximates the center
of the baseline. It only assumes that the baseline distribution
peaks at the center with symmetric noise, and the peak is
higher than the kernel density at fluorescence values during
calcium events. Taking the peak of kernel density of a continuous
distribution is comparable to taking the mode of a discrete
distribution. Therefore, we hypothesized that there is little bias
from increased activity and increased noise. Additionally, this
method does not assume a specific distribution of noise and has
fewer parameters than the other two methods. Here, we examined
the three baseline estimation algorithms.

MATERIALS AND METHODS

Experimental Methods
Animals
All procedures were in accordance with protocols approved
by UCSD Institutional Animal Care and Use Committee and
guidelines of the US National Institutes of Health. All animals
were group housed in disposable plastic cages with standard
bedding in a room on a reversed light cycle (12 h/12 h).
Experiments were typically performed during the dark period.
Cross between CaMK2a-tTA [JAX 003010] and tetO-GCaMP6s
[JAX 024742] was used for cell body imaging. All the animals
were C57bl/6 background.

Surgery
Surgical procedures were performed as previously described
(Mitani et al., 2018). Adult mice (6 weeks or older, male and
female) were anesthetized with isoflurane and injected with
Baytril (10 mg/kg), dexamethasone (2 mg/kg) and buprenorphine
(0.1 mg/kg) subcutaneously to prevent infection, inflammation
and discomfort. A custom head-plate was glued and cemented
to the skull. Craniotomy (∼3 mm) was performed over the

right caudal forelimb area (300 µm anterior and 1,500 µm
lateral from the bregma). A mixture of AAV1.Syn.Flex.GCaMP6f
(1:5000–10000 final dilution) and AAV1.CMV.PI.Cre (1:2 final
dilution) diluted in saline was injected 20–30 nL at 3–5 sites
(∼250 µm depth, ∼500 µm apart) for dendrite imaging.
Experiments were performed at least 7 days after surgery.

Imaging
Imaging was conducted with a commercial two-photon
microscope (Bscope, Thorlabs) using a 16x objective (NIKON)
with excitation at 925 nm (Ti-Sa laser, Newport). Images were
acquired with ScanImage 4 (Vidrio Technologies). Imaging was
conducted in awake animals. Images (512 × 512 pixels) were
acquired at∼28 Hz.

Computational Methods
Motion Correction (General)
First, the template image was generated from 1000 image frames
obtained before the experiments. Using the OpenCV template
matching method (explained later), the first 500 images were
aligned to the average of the last 500 images, the last 500 images
were aligned to the average of the 500 corrected images, and the
average of all the 1000 corrected images were used as a template.

Maximum absolute shift (m) in each direction was set to be
1/4 of the width (w) and height (h) of the image. From each edge
of the template image, m pixels were cropped to take the central
part [(w-2m)× (h-2m) pixels]. To correct motion artifact of each
image, the objective is to find where in the image best matches
this central part of the template and maximizes the correlation
coefficient, which is used as a similarity metric (reviewed in
Zitová and Flusser, 2003).

Motion Correction (Hill-Climbing Method)3

Instead of the global maximum, a local maximum can be reached
iteratively by a hill-climbing technique (discussed in Lucas and
Kanade, 1981). Let (x, y) be the current position, where the shift
maximizes the correlation coefficient among all the shifts tested
up to that point. The correlation coefficients for shifts (x+1, y),
(x-1, y), (x, y+1), and (x, y−1) are calculated, and if there is any
shift that increases the correlation coefficient, the current position
is updated by 1 pixel to maximize the correlation coefficient.
This step is repeated until the current position reaches the local
maximum. To assess the computational complexity, we use big
O notation here to indicate how the running time requirements
grow as the input size grows. When an algorithm takes O(n)
time for an input of size n, it means that the computation time
scales linearly or less with n. Assuming the path is somewhat
straight, the above hill climbing method requires O(m) steps
to converge, and each step takes O(wh) time. Therefore, the
computational complexity of the algorithm is O(mwh) under the
assumption.

The complexity can be further reduced with a pyramid
approach (Adelson et al., 1984). Aligning images downscaled by
2 takes 1/8 of the time, and the corresponding shift in the original
image should give a good estimate. It may not give the exact

3 https://github.com/amitani/mex_tools/tree/master/mexBilinearRegistrator
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maximum, but the difference should be small as long as the
downscaled images have enough features for motion correction.
Using this shift as an initial shift constrains the number of
expected steps until the convergence to the final target. With
a deep enough image pyramid, the computational complexity
approaches O(wh). However, it requires spatial features for
alignment to be available in all the downscaled images, and
practically too deep a pyramid makes the algorithm unstable
(Dubbs et al., 2016).

Motion Correction (Dense Search Method)4

To reach the global maximum, correlation coefficients for
all possible shifts must be calculated. Naively implemented,
computational cost of calculating correlation coefficient is
proportional to the number of pixels, which is O(wh), and
there are O(m2) potential shifts. Thus, the computational
complexity of the naive algorithm is O(m2wh). This may
be too slow to be applied to an image at the original
resolution, but the time reduces rapidly as the image is
further downscaled as it is proportional to the square of the
number of pixels (note that m is proportional to w and h).
We applied this method to estimate the optimal shift for
the most downscaled image of the image pyramid, combined
with the hill-climbing method at each scale as described
above.

Motion Correction (OpenCV Template Matching
Method)5

The objective is the same as the hill-climbing method, but
with matchTemplate6 function of OpenCV7, it calculates
correlation coefficient for every possible shift to reach the
global maximum. The function uses discrete Fourier transform
internally. Correlation theorem states that correlation coefficients
can be efficiently calculated from Fourier transforms of images
using Fast Fourier Transform (Brown, 1992). To increase the
speed of computation, the image can be downscaled first, and
then the shift can be multiplied for the original resolution, even
though this would reduce the resolution of motion correction
unless subpixel registration is applied.

Motion Correction (Subpixel Registration)
In many calcium imaging experiments, ROIs are small
(∼10 pixels wide), and subpixel registration can improve
the accuracy of calcium activity estimation. Subpixel
registration has been done with optimization (Thévenaz
et al., 1998) or upsampling (Guizar-Sicairos et al., 2008),
but each has either speed or accuracy problem (Dubbs
et al., 2016). Here, we used a parabola fit approach
(Debella-Gilo and Kääb, 2011), which is faster and more
suitable for real-time application. Subpixel registration was
achieved by finding the peak of the correlation coefficient
heatmap in subpixel accuracy using a parabola fit. In

4 https://github.com/amitani/mex_tools/tree/master/mexBilinearRegistrator
5 https://github.com/amitani/mex_tools/tree/master/cvMotionCorrect
6 https://docs.opencv.org/3.2.0/de/da9/tutorial_template_matching.html
7 https://opencv.org/

the hill-climbing method, it uses custom implementation in
C++ using the 5 points in the heatmap (the peak and the
adjacent points in 4 directions). In either x- or y-axis, correlation
coefficient of the peak point and the two adjacent points
are fit with a parabolic curve, and the peak of the parabolic
curve was used as a subpixel estimate of the peak location
in that axis. In the OpenCV method, the same algorithm
implementation by William Arden (minMaxLocSubPix8) was
used.

Performance Measurement of Motion Correction
Methods
The objective of our methods is to maximize correlation
coefficient between two images with lateral shifts. Motion
correction algorithms by maximizing some similarity
metric for lateral shifts have been widely used, e.g.,
TurboReg (Thévenaz et al., 1998) and moco (Dubbs
et al., 2016), moco being especially close to our methods
(moco minimizes L2 distance, and maximizing correlation
coefficient is equivalent to minimizing L2 distance after
normalization).

To assess the accuracy of the algorithms, we examined
how the correction is affected by adding random shifts (up to
16 pixels for neural ensemble imaging and up to 8 pixels for
dendrite imaging in both x- and y-axis). For each frame, we
repeatedly applied random shifts before motion correction for
100 times, and we examined the net translation, which is the
sum of the initial random shift and the estimated translation.
If an algorithm can correct initial random shifts along with
motion artifacts, net translations should be consistent among
different random shifts. If they are not consistent, it indicates
that the algorithm has failed to align images. Here, frames
with motion correction errors are defined as follows: among
100 random shifts, there are at least five net translations which
are different from the median of the 100 net translations
by more than 10 pixels. This was applied to the images in
Figures 1, 3 with the algorithms and parameters examined in
the figures. Chi-square test was used to compare the frequency
of the frames with motion correction errors between different
methods.

In addition, the speed of the algorithm applied to a
512 × 512 × 1000 movie was measured using the following
configurations:

Hardware: Intel Core i7 4790, 16GB DDR3.
Software: Windows 10, Matlab R2014a, OpenCV 3.2.0, Visual

Studio 2013.

Baseline Estimation
Three baseline estimation methods, percentile method, robust
mean method and kernel density estimation method were
examined on two consecutive windows of 2000 frames with
and without apparent calcium activity. We used the difference
of the estimates between two windows as a proxy for the
sensitivity of the method to activity levels. First, the frames were

8 http://answers.opencv.org/question/29665/getting-subpixel-with-
matchtemplate/
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FIGURE 1 | Comparison of speed and stability with different algorithms and parameters for neural ensemble imaging. Estimated shifts (blue: Y axis, green: X axis)
with different algorithms and parameters for cell body imaging (512 × 512 pixels, 1000 frames). Dense search was slowest even at depth = 2 and shallower depth
was not included.). Maximum shift for correction was set to be 128 pixels in all conditions.

split into 100 bins of 20 consecutive frames. For downscaling, the
20 frames were averaged. For downsampling, the first frame in
each bin was chosen, and 19 frames were excluded. Downscaling
reduces frame-by-frame noise by averaging, and downsampling
simulates when the signal has more frame-by-frame noise. From
these 100 values, percentile method uses the 20th percentile as
a baseline estimate. For robust mean method, robust mean was
calculated by excluding frames with absolute standard deviation
larger than 2. This step was repeated until convergence using

newly estimated robust mean and standard deviation at each
step. Kernel density estimation method uses the peak of kernel
estimation calculated by ksdensity function of Matlab (R2014a).
Briefly, it is done by convolving a Gaussian kernel of width
optimized to samples. Range of the estimates in four conditions
(first and second window, downscaling and downsampling) was
compared across the three methods.

In real-time experiments, every 20 frames, the baseline of
each selected ROI was updated as follows. The preceding 2000
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frames were used to estimate the baseline. 2000 frames were
first split into 100 bins of 20 consecutive frames, and the
average fluorescence of each bin was calculated. The baseline was
estimated to be the value at the peak of the estimated kernel
density distribution of the 100 average values. The script to
process calcium intensity at each frame and estimate baseline is
available at https://github.com/amitani/baseline_kde.

RESULTS

Motion Correction
Especially in a real-time analysis application, time spent for
motion correction should be kept short. While direct comparison
to previously reported computation time is difficult, partly
because the details of the configuration are often not reported,
NoRMCorre was reported to correct a 512 × 512 × 2000
movie in 40 s (rigid transformation) and 117 s (non-rigid
transformation) (Pnevmatikakis and Giovannucci, 2017). moco
was reported to correct a 512 × 512 × 2000 movie in
90 sec, while TurboReg (Thévenaz et al., 1998) took 170 s
(fast) and 298 s (slow) as reported in the same study
(Dubbs et al., 2016). At 30 frames per second of image
acquisition, 2000 frames take 66 s to capture. Only rigid
transformation with NoRMCorre is slightly faster than this,
but it still takes more than half of the acquisition time to
process a frame. Considering the overhead of other steps, e.g.,
image transfer between processes and baseline estimation, it is
necessary to make the processing time shorter for a real-time
analysis.

We compared three implementations of motion correction
based on correlation coefficient maximization. Our methods
are similar to moco, but instead of using the whole overlap,
we took the central part of the template image, and tried to
maximize the correlation coefficient with the corresponding part
of the target image. We first tested a hill-climbing method
to find a local maximum. To increase speed, a pyramid
approach was used. In this approach, the initial shift for hill-
climbing is determined by the alignment of a downscaled
image. Theoretically, it becomes faster with a deeper image
pyramid, but there was no significant speed increase when
the shift was small (Figure 1, left column). This is because
the default initial shift (no shift) is close enough to the final
shift.

A caveat of the hill-climbing method is that it does not
perform well when the true final shift is far from the initial
shift. As the path becomes longer, it requires more computation,
making it slower. Furthermore, if there is another local maximum
along the path, the algorithm can converge to the local maximum,
not the true final shift. This can be problematic in long
experiments when a slow drift was not adjusted properly during
the experiment. To simulate this situation where the images are
far from the template, we artificially shifted each image frame
by 32 pixels in both X and Y axis before motion correction
(Figure 2). Without an image pyramid, the algorithm almost
never converged to the true final shift; instead, it jumped among
local maxima as indicated by sudden jumps in the corrected

distance (Figure 2, top left). An image pyramid with four layers
was required for the algorithm to converge to the same final shift
estimated without the additional shift (Figure 2, left column).
However, a deep image pyramid can lead to unstable results (see
Discussions), and this solution may not be applicable in other
situations.

To overcome this, we performed dense search to align
the most downscaled image of an image pyramid, calculating
correlation coefficients for all possible shifts to find the
global maximum (Figure 2, middle column). With an image
pyramid downscaling the image twice, this algorithm could
converge to the same final shift as originally estimated
without additional shift, different from the hill-climbing
algorithm. However, it was implemented by naive exhaustive
search, hindering the speed with shallow or no image
pyramid.

Alternatively, we used matchTemplate function in OpenCV
to search all possible shifts to reach the global maximum. When
downscaling was used to reduce computation time, the estimated
shift was transformed for the original image resolution with a
parabola fit (no hill climbing was used). This was fast enough
to apply to a 2× downscaled image, and more accurate than the
hill-climbing method with similar speed.

We further examined the performance of the algorithms with
sparsely labeled dendrite imaging data (Figure 3). This data
is more challenging for motion correction because the motion
artifact is severer with a higher zoom, and the signal tends to
be weaker in dendrites. The results show that the alignment
becomes unstable when the image is downscaled too much
(Figure 3, bottom row), and the hill-climbing method is unstable
without an image pyramid or with a shallow image pyramid
(Figure 3, left column). To simulate severer motion artifacts,
we added random shift up to 8 pixels in each direction at
each frame (Figure 4). The results further illustrate the speed
and the stability of OpenCV template matching method in
severer conditions. Interestingly, the estimate becomes noisier
with OpenCV template matching method when applied to more
downscaled images. This is because the estimate is affected by
how the pixels are split into patches for downscaling. Note that
this effect is negligible when the image is only downscaled up to
a factor of 2.

To provide one example set of quantifications of the accuracy
of the shown algorithms, we examined the number of frames
with motion correction errors (Methods). For neural ensemble
imaging (from Figure 1), a hill-climbing method with an image
pyramid of 4 layers, dense search methods with image pyramids
of 2, 3, and 4 layers, and OpenCV methods with downscaling
factors of 1, 2, 4, 8, and 16 had no frames with motion
correction errors. On the contrary, hill-climbing methods with
0, 1, 2, and 3 layers of image pyramids had 1000 (p < 0.0001,
Chi-square test, comparison to methods with no errors; same
applies hereafter), 881 (p < 0.0001), 266 (p < 0.0001), and 4
(p = 0.0453) frames, respectively. For dendrite imaging (from
Figure 3), dense search methods with 2 and 3 layers of image
pyramids, and OpenCV methods with downscaling factors of 1,
2, 4, and 8 had no frames with motion correction errors. Hill-
climbing methods with 0, 1, 2, 3, and 4 layers of image pyramids

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2018 | Volume 12 | Article 98

https://github.com/amitani/baseline_kde
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00098 December 18, 2018 Time: 17:55 # 7

Mitani and Komiyama Real-Time Calcium Image Processing

Added fixed shift = 32 pixels
Max margin = 128 pixels

Target image (512×512 pixels)

60 μm

0 500 1000
−40

−20

0

20
OpenCV (matchTemplate)
(factor = 1, time = 9.8 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
OpenCV (matchTemplate)
(factor = 2, time = 2.1 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
OpenCV (matchTemplate)
(factor = 4, time = 0.9 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
OpenCV (matchTemplate)
(factor = 8, time = 0.6 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
OpenCV (matchTemplate)
(factor = 16, time = 0.5 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing

(depth = 0, time = 1.7 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing

(depth = 1, time = 1.9 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing

(depth = 2, time = 1.6 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing

(depth = 3, time = 1.3 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing

(depth = 4, time = 1.3 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing + Dense search
(depth = 2, time = 20.5 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing + Dense search

(depth = 3, time = 2.6 [s])

Frames

Sh
ift

 [p
ix

el
s]

0 500 1000
−40

−20

0

20
Hill climbing + Dense search

(depth = 4, time = 1.5 [s])

Frames

Sh
ift

 [p
ix

el
s]

Y axis X axis

FIGURE 2 | Comparison of speed and stability with different algorithms and parameters with artificially added fixed shifts for neural ensemble imaging. Same as
Figure 1 with fixed shifts (32 pixels in both X and Y axis) added artificially before motion correction.

had 829 (p < 0.0001), 728 (p < 0.0001), 423 (p < 0.0001),
173 (p < 0.0001), and 74 (p < 0.0001) frames with motion
correction errors, respectively, and a dense search method with
an image pyramid of 4 layers and an OpenCV method with a
downscaling factor of 16 had 78 (p < 0.0001) and 32 (p < 0.0001)
frames with motion correction errors, respectively. These results
support that with large shifts the hill-climb methods fail to find
the global maximum by converging to a local maximum, and

that motion correction becomes unstable if the images are too
downscaled.

Among the algorithms and parameters examined in the
current study, we conclude that applying the OpenCV method
to a twice downscaled image best balances speed and accuracy
in our experiments. This was the fastest combination which
did not cause motion correction errors even when the
downscaling factor was either doubled or quadrupled. Figure 5
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FIGURE 3 | Comparison of speed and stability with different algorithms and parameters for dendrite imaging. Same as Figure 1 applied to dendrite imaging.

shows the improvement of fluorescence signals from motion
correction.

Baseline Estimation
We compared the baseline estimation on two consecutive
windows of 2000 frames with and without apparent calcium
activity. We used the difference of the estimates between two
windows as a proxy for the sensitivity of the method to activity
levels. Furthermore, to simulate increased noise, we compared
downsampling and averaging of the bins (Figure 6). These results
show that the estimates by the kernel density estimation method

were the most robust across different conditions, even with
increased activity and increased noise.

Implementation of Real-Time Image
Processing for Closed-Loop
Experiments
We developed a real-time image processing pipeline for two-
photon calcium imaging for closed-loop experiments that
includes a lateral motion correction with a comparable accuracy
to popular post hoc methods as well as an improved baseline
estimation method. In the pipeline, each image is first copied to
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FIGURE 4 | Comparison of speed and stability with different algorithms and parameters with artificially added random shifts for dendrite imaging. Same as Figure 1
applied to dendrite imaging with random shifts (up to 8 pixels in each direction) added artificially before motion correction. For visualization, these artificially added
shifts were subtracted before the corrected distances are plotted.

a memory-mapped file at the time of acquisition by a custom
plugin9 for ScanImage 4. A custom Qt GUI application10 reads
each image from the memory-mapped file, corrects for motion
artifact with the OpenCV template matching method, and saves
the corrected image in another memory-mapped file. Another

9https://github.com/amitani/mex_tools
10https://github.com/amitani/onlineMotionCorrection

instance of Matlab reads the corrected image from the memory-
mapped file, calculates average pixel intensity of each ROI,
estimates baseline11, and calculates 1F/F. This information of
relative change in fluorescence is further used in a closed-loop
experiment.

11https://github.com/amitani/baseline_kde
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FIGURE 5 | The effect of motion correction on calcium fluorescence signal. Estimated shifts (blue: Y axis, green: X axis) (top row), calcium fluorescence signal
(middle row), and average images (bottom row) of cell body imaging (left column) and dendrite imaging (right column). Calcium fluorescence signal was
estimated without motion correction (blue lines) and with motion correction (red lines). Blue triangles indicate when motion correction improves signals. ROIs for
calcium fluorescence signals are outlined in red on the average images. OpenCV method with twice downscaled images was used for motion correction.

DISCUSSION

Here, we discussed our implementation of fast motion
correction and baseline estimation algorithms for real-time
image processing of two-photon calcium imaging. This is to our
knowledge the first reported real-time image processing pipeline
not specific to a particular imaging platform for closed-loop
experiments with motion artifact correction. The source code of
the implementation is hosted as public repositories at GitHub.

We included a plugin for ScanImage, and it would also work
with other Matlab-based imaging platforms with minimal
modifications. An earlier version of the implementation was used
in a previous study for real-time feedback experiments (Mitani
et al., 2018).

Our implementation of motion correction is significantly
faster than previously reported software packages, while
maintaining the accuracy by globally maximizing correlation
coefficient. Using a regular personal computer, our OpenCV
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FIGURE 6 | Comparison of percentile, robust mean, and kernel density estimate methods for baseline estimation. (A) Analysis on a window of 2000 frames with little
calcium activity. Blue line shows raw signal, and red line shows the signal after binning and averaging every 20 frames, which was used for baseline estimation (Top).
Histogram of signal intensity. Red line indicates kernel density estimate. A triangle with dotted line indicates the 20th percentile, a solid line indicates the peak of
kernel density estimate, a diamond with a dashed line indicates robust mean (excluding values not within 2 SD from the mean) (Middle). Cumulative density function
of the intensity distribution (blue line) (Bottom). (B) Same as (A) on the next 2000 frames to (A). This window contains a high level of calcium activity. (C,D) Same as
(A,B) with downsampling. Red line indicates the signal downsampled by 20 (excluding 19 frames from 20 frames), which is further used for baseline estimation (Top).
Note that only the kernel density estimate method identified consistent baseline values in averaged and downsampled data.

template matching method with downscaling by a factor of two
processed a 512 × 512 × 1000 movie in less than 3 s, while
moco (Dubbs et al., 2016) and NoRMCorre (Pnevmatikakis and
Giovannucci, 2017) (rigid) are reported to take 40 and 90 s to
process a 512× 512× 2000 movie, respectively.

Images are often downscaled to reduce computational
cost for motion correction, e.g., image pyramid method
in TurboReg (Thévenaz et al., 1998), but the process can
erase fine spatial features necessary for motion correction.
Supporting this, a previous study reported that an image
pyramid method downscaling images 3 and 4 times gave severe

errors (Dubbs et al., 2016). We observed such errors in dendrite
imaging with a deep image pyramid. On the other hand, due
to iterative optimization process, the hill-climbing method with
a shallow image pyramid converged to a local maximum and
failed when the shift is large. These imply that the number
of layers of an image pyramid has to be properly adjusted for
each experimental condition. However, parameter tuning often
incorporates trials and errors, which is not suitable for real-time
experiments. In contrast, our OpenCV-based implementation
is fast enough to find a global maximum in real-time without
extensive downscaling.
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Out methods and moco estimate translation of the
whole image. However, non-uniform artifact can arise from
deformation of tissue and distortion due to a finite scanning
speed (Pnevmatikakis and Giovannucci, 2017). Deformation is
more problematic with a larger imaging field, and distortion
is more problematic when movements while scanning a
frame correspond to more pixels. In such applications, non-
rigid correction can be beneficial. NoRMCorre is a non-rigid
registration method based on piecewise-rigid algorithm, which
involves translation-based registration of patches (Pnevmatikakis
and Giovannucci, 2017). While NoRMCorre is not fast enough
to process 512 × 512 images at 28 Hz, combining our method
with their piecewise-rigid algorithm may lead to faster non-rigid
motion correction applicable to real-time processing.

Baseline estimation of calcium signal is another crucial step
of calcium imaging. Among percentile method, robust mean
method and kernel density method, we showed that our kernel
density method gave most consistent estimate among different
noise and activity levels. Furthermore, a potential limitation
specific to the percentile method may arise when there is
increasing or decreasing trend of the baseline. Typically, a
percentile lower than the median is used as estimated baseline.
In this case, there is a jitter in timing caused by the changing
trend of the baseline. When the baseline is increasing, the increase
of the estimate happens later. On the other hand, when the
baseline is decreasing, the decrease of the estimate happens
earlier. For example, let us consider a situation estimating
baseline from 100 values without noise and activity. In this
case, the 20th percentile of the intensity values is at the
20th bin when the baseline is constantly increasing, and at
the 80th bin when the baseline is constantly decreasing. This
creates temporal difference equivalent to 60 bins. According to
the increasing or decreasing trend of the baseline, there is a
different degree of delay in the estimate of the baseline. Robust
mean method and kernel density method do not have this
shortcoming.

Kernel density method has only two parameters, the length
of the window and the size of each bin, which can be adjusted
depending on the signal to noise ratio, the activity duration, and
how quickly and how often the baseline fluctuates. Binning and
averaging are commonly performed preprocessing steps in other

methods as well, while other methods have extra parameters, e.g.,
percentile value for percentile method, and cutoff threshold for
robust mean method. Having less parameters is especially useful
in closed-loop experiments, when rerunning the analysis with
updated parameters is not possible.

Our implementation of fast motion correction and baseline
estimation provides a real-time image processing pipeline, and
the small number of parameters to tune makes it easy to use
and assess for each application. The pipeline can also be used
for fast post hoc analysis. Indeed many of the recent publications
from our laboratory used this or previous versions of the method
for post hoc analysis (Chu et al., 2016, 2017; Hwang et al., 2017;
Peters et al., 2017; Li et al., 2018; Mitani et al., 2018), showing the
applicability of this method across different brain areas, different
expression methods and different imaging configurations.
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