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Abstract

Humans seem to arbitrate between automatic and controlled
processing by optimizing a trade-off between cognitive effort
and performance. Previous research has described ways of
how these costs and benefits can be quantified and how the
trade-off between them can be performed. However, it remains
unclear how the costs should be weighed relative to the benefits
and how the cost of the arbitration mechanism itself factors in.
Here, we derive measures for these separate factors from a sin-
gle objective: the variational free energy. We demonstrate that
by minimizing this objective, the trade-off between automatic
and controlled processing as well as meta-control is optimized
implicitly. As a proof of concept, we show that the congruency
and proportion congruency effects in the Stroop task directly
result from this optimization, given an environment with spe-
cific statistical regularities.
Keywords: conflict tasks, meta-control, free energy princi-
ple, variational inference, resource rationality

Introduction
Rational behavior describes decision making based on pre-
dicted outcomes and their utility (Von Neumann & Morgen-
stern, 1944), a type of decision making that is also a defining
feature of controlled processing (Evans & Stanovich, 2013).
In contrast, theories of resource rationality argue that it is
often not rational to fully rely on controlled processing be-
cause of the cognitive effort it involves (Gershman, Horvitz,
& Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015;
Lewis, Howes, & Singh, 2014; Ortega & Braun, 2013; Shen-
hav et al., 2017). Instead, it may be rational in some situ-
ations to rely on automatic processing, i.e., to make deci-
sions based on previously learned stimulus-response (S-R)
associations (Evans & Stanovich, 2013). This necessitates
a mechanism that arbitrates between these two modes of pro-
cessing, referred to as meta-control (Eppinger, Goschke, &
Musslick, 2021). It has been proposed that this mechanism
reflects a cost-benefit analysis, weighing the increase in flexi-
bility and accuracy of controlled processing against the reduc-
tion in cognitive effort by using automatic processing (Kool,
Gershman, & Cushman, 2017; Shenhav, Botvinick, & Co-
hen, 2013). The benefits of control have been quantified
by the expected increase in reward, whereas its costs have
been expressed as either a simple function of the control sig-
nal strength (Bustamante, Lieder, Musslick, Shenhav, & Co-
hen, 2021; Shenhav et al., 2013; Verguts, Vassena, & Sil-
vetti, 2015) or the informational cost accrued by integrating
the task goal in the belief over actions (Butz, 2022; Ortega &
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Figure 1: Schematic illustration of congruency effect (main
effect of congruency) and PC effect (interaction effect) in the
Stroop task for both reaction time (RT) and error rate. See,
e.g., Spinelli and Lupker (2023).

Braun, 2013; Parr, Holmes, Friston, & Pezzulo, 2023; Zénon,
Solopchuk, & Pezzulo, 2019). These formalizations, how-
ever, leave two challenges unresolved: Firstly, they require a
parameter to scale the trade-off between the costs and ben-
efits, hampering precise resource rational predictions. Sec-
ondly, they imply that the cognitive system can only optimize
this trade-off (perform meta-control) by explicitly estimating
the costs and benefits of control and weighing them against
each other. How these operations are performed and what
additional costs they incur remains unclear.

Here, we address these issues by deriving the costs and
benefits of automatic and controlled processing as well as
meta-control from a single objective function, the varia-
tional free energy (Parr, Pezzulo, & Friston, 2022; Schwöbel,
Kiebel, & Marković, 2018). We show that by minimizing
the free energy of a generative model, a cognitive system im-
plicitly optimizes these costs and benefits. Our formalization
provides a straightforward rationale for the existence this ar-
bitration mechanism in humans and allows to make specific
predictions about when and how to utilise it rationally.

As a proof of concept, we draw on two behavioral effects
from the classical Stroop task (Stroop, 1935), which have
been extensively studied to measure automatic and controlled
processing in humans (see Chuderski & Smolen, 2016). In
the Stroop task, participants must name the print color of a
carrier word while ignoring the color meaning of the car-
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rier word. As illustrated in Figure 1, participants respond
more slowly and less accurately in incongruent trials (i.e.,
trials with a mismatch between print color and word mean-
ing) compared to congruent trials. This congruency effect
demonstrates automatic processing in human decision mak-
ing. Furthermore, the congruency effect is larger in blocks
that contain mostly congruent trials and vice versa, which is
known as the proportion congruency (PC) effect (Spinelli &
Lupker, 2023). This effect arguably shows to what extent
humans modulate the balance between automatic and con-
trolled processing. We contribute to the many existing com-
putational models predicting these effects (e.g., Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Chuderski & Smolen,
2016; Grahek, Musslick, & Shenhav, 2020; Jiang, Heller, &
Egner, 2014) by demonstrating that the effects are a rational
consequence of minimizing free energy in environments with
particular statistical regularities.

Methods
Model
We assume that a human’s generative model of the Stroop
task can be described as a Bayesian network (Figure 2),
consisting of six categorical variables: the stimulus s1 ∈
{RED,RED,GREEN,GREEN}, the action a ∈ {red, green},
the outcome state s2 ∈ {correct, incorrect}, the associated
observation o ∈ {good, bad} as well as the current context
ct ∈ {1,2}. Here, the first context, which we refer to as the
automatic context, defines an informative S-R mapping given
by the parameter φ, and the second context, which we refer to
as the non-automatic context, defines a uniform S-R mapping.

Corresponding to Figure 2, the generative model can be
expressed mathematically as

p(ct ,a,s2,o|s1,φ) =p(ct)p(a|ct ,s1,φ)

× p(s2|s1,a)p(o|s2) (1)

Crucially, we extend this generative model by multiplying
it with a prior p(o) that scores the utility of future observa-
tions. This method is frequently used in other Bayesian deci-
sion making or active inference works to define the agent’s
preferences or goal, enabling value-based decision making
and therefore controlled processing (Friston et al., 2015; Parr
et al., 2023; Schwöbel, Marković, Smolka, & Kiebel, 2021;
Solway & Botvinick, 2012).

We start by giving a conceptual overview of the model
before detailing the inference process more formally in the
following section. To behave successfully, the agent has to
change its beliefs over the hidden variables in the model in
light of new evidence p(s1) and its preferences p(o). There-
fore, there are two sources of information influencing the be-
lief over actions. To incorporate p(o) (red edges in Figure
2), the agent has to invert its generative model in order to in-
fer which state most likely causes high utility observations
(p(o|s2)) and, consecutively, which action it must perform to
reach that state (p(s2|s1,a)). This is an instantiation of con-
trolled processing. We fix p(o) = (.95, .05), meaning that

ct ct+1

o

s1

a
ɸ

s2

ct-1

Figure 2: Probabilistic generative model of the Stroop effect
depicted as a Bayesian graph, which maps to the generative
model in Eq. 1. The information processes that are unfolding
within a trial are shown in the gray area. Observed nodes
have black background. Red edges: controlled processing;
blue edge: automatic processing; yellow edge: meta-control;
dotted edges: context transitions across trials t.

the agent highly prefers “good” over “bad” observations. To
incorporate p(s1) (blue edge in Figure 2), the agent can use
the direct mapping from stimulus to action (S-R mapping,
p(a|ct ,s1,φ)), yielding a prior over actions. We define this as
an automatic process because it is independent of the agent’s
goal and it does not require the generative model to be in-
verted (see Discussion). The parameter φ determines how
strong this mapping is by specifying the probability of an ac-
tion given a particular stimulus (for the automatic context).
According to Bayes’ rule, the automatic and controlled pro-
cesses are combined depending on their relative uncertainty
(see also Schwöbel et al., 2021). This means that the more
information the automatic process contains (i.e., the more the
prior diverges from a uniform distribution), the stronger its
influence on the inference process.

Crucially, the strength of the S-R mapping (and therefore
the balance between automatic and controlled processing) is
also context-dependent (yellow edge in Figure 2). This is be-
cause the mapping is informative in the automatic context but
uniform in the non-automatic context, and thus changes de-
pending on the belief over contexts p(ct). As depicted by
the dotted edges in Figure 2, information about which con-
text the agent expects is carried over from the previous to the
current trial t. After having inferred a posterior over actions,
the agent can invert the dependency between ct and a to infer
a posterior belief over the current context. Specifically, if the
posterior over actions corresponds to the prior over actions
(i.e., the automatic process was “helpful”), the probability of
the automatic context is increased, and decreased otherwise.
This information is, again, passed on to the next trial, result-
ing in a continuous meta-control process. We use a parame-
ter, γ (see Equation 8), that governs how much the belief over
contexts is changed, and therefore effectively determines the
flexibility of meta-control.
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Variational inference
Based on the free energy principle (Parr et al., 2022), we as-
sume that the agent performs variational inference to obtain
a joint posterior q by minimizing the variational free energy
F [q].

F [q] = DKL[q(ct ,a,s2,o|φ)||p(ct ,a,s2,o|s1,φ)p(o)] (2)

The free energy essentially measures the KL-divergence
between the model (right part of the KL-divergence), which
includes the agent’s preferences, and the variational posterior
(left part of the KL-divergence). It is an information-theoretic
quantity measured in natural units of information (nats). Note
that our formalization differs from the expected free energy
(e.g., Parr et al., 2023) as it contains no additional term for ex-
pected information gain, which plays no role in our scenario
(for a comparison see Millidge, Tschantz, & Buckley, 2021).
Importantly however, our formalization follows directly from
variational inference (Schwöbel et al., 2018). Furthermore,
be aware that the posterior q does not explicitly depend on s1
because it is the result of an optimization process, but it does
incorporate this observation.

To be able to interpret this quantity and relate it to the costs
and benefits of automatic and controlled processing, we de-
compose it in the following. We posit that the agent mini-
mizes free energy on two different levels—or time-scales—
one within each trial and one across trials (cf., Figure 2). Be-
tween these levels, we assume the mean field approximation
(Friston et al., 2015), which yields

F [q] = DKL[q(ct)||p(ct)]︸ ︷︷ ︸
cognitive effort (between)

+∑
ct

q(ct)F [q|ct ]︸ ︷︷ ︸
free energy (within)

, (3)

where

F [q|ct ] =DKL[q(a,s2,o|ct ,φ)||p(a,s2,o|ct ,s1,φ)p(o)] (4)

Let us first consider how free energy is minimized within a
trial t. On this faster time-scale, we assume that the agent can-
not adjust its belief over contexts, i.e., q(ct) = p(ct). Observ-
ing a stimulus s1 then automatically produces a prior over ac-
tions p(a|ct ,s1,φ) (automatic processing). For controlled pro-
cessing, the agent has to approximate a posterior over actions
by minimizing F [q|ct ]. Given the dependency structure de-
fined by the generative model (Figure 2 and Equation 1) and
assuming the Bethe approximation within a trial (Schwöbel
et al., 2018; Yedidia, Freeman, & Weiss, 2003), we can de-
compose F [q|ct ] as follows:

F [q|ct ] =DKL[q(a,s2|ct ,φ)||p(a,s2|ct ,s1,φ)]︸ ︷︷ ︸
cognitive effort (within)

(5)

+DKL[q(s2,o|ct)||p(o|s2)p(o)]︸ ︷︷ ︸
divergence from goal

(6)

+ H(q(s2|ct))︸ ︷︷ ︸
state uncertainty

(7)

It follows that minimizing free energy within a trial can be
understood as a trade-off between three quantities. The first is
a KL-divergence between the prior and the posterior over the
latent variables, measuring how many nats have to be spent
to change the agent’s belief. We refer to this as the cognitive
effort involved in making a decision within a trial. Since we
assume that the prior results from automatic processing, it is
clear that automatic processing can reduce cognitive effort (if
the prior is similar to the posterior). The second term is a KL-
divergence between the prior over outcomes (the agent’s goal)
with the corresponding state and the posterior over outcomes
and states. This quantifies by how many nats the expected
states and outcomes of the agent’s action diverge from its de-
sired states and outcomes, or in other words, how well the
agent expects to perform. The third term is the entropy of the
agent’s belief over future states, measuring in nats how uncer-
tain the agent is to reach these states. To perform variational
inference therefore means to find a posterior belief that op-
timizes this trade-off. In our implementation, we obtain this
posterior by performing belief propagation, which has been
shown to be equivalent to minimizing free energy under the
Bethe approximation (Yedidia et al., 2003). After having ob-
tained the posterior, the agent samples an action which it then
executes. Therefore, the agent’s expected goal divergence di-
rectly translates to the agent’s real accuracy on average.

Between two trials, we assume that the agent has already
minimized F [q|ct ] (and executed an action), but can adjust its
belief over contexts (meta-control). Turning back to Equa-
tion 3, we see that, at this point, the agent performs another
cost-benefit analysis, trading off the cost of changing its be-
lief over contexts against the resulting reduction in within-
trial free energy. In other words, the agent has to weigh the
cost of meta-control (changing an additional belief) against
the potential improvements for action selection (within-trial
free energy).

Assuming F [q|ct ] to be fixed, Equation 3 can be trans-
formed into an update equation for the belief over contexts
(see Schwöbel et al., 2018):

q(ct) =
p(ct)e−γF [q|ct ]

∑c′t p(c′t)e−γF [q|c′t ]
(8)

This shows that the belief is changed in favor of contexts that
are associated with a smaller within-trial free energy. For the
present model, this means that if the prior over actions spec-
ified by a context was helpful (i.e., similar to the posterior),
this context subsequently receives a higher probability. Here,
we follow previous work in the active inference and reinforce-
ment learning literature (Friston et al., 2015; Ortega & Braun,
2013; Schwöbel et al., 2021; Verguts et al., 2015) by utilizing
a parameter γ to determine the extent to which the context is
updated (i.e., the flexibility of meta-control).

Information about which context should be expected is re-
tained over time through

p(ct) = ∑
ct−1

p(ct |ct−1)q(ct−1) (9)
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We fix the off-diagonal elements in p(ct |ct−1) to .05, result-
ing in a slight blurring of the context belief over time, which
we found useful to keep the model flexible enough to incor-
porate environmental changes. Note that the off-diagonal el-
ements in p(s2|s1,a) and p(o|s2) are set to .01, making them
nearly deterministic.

Exploiting statistical structure in the environment
We assume that humans further minimize free energy on an
even longer time scale by learning the strength of S-R map-
pings and of their adjustment (i.e., of meta-control). In our
formalization, this can be modeled by optimizing the param-
eters φ and γ, respectively. As a proxy for the learning process
we perform a grid search over the parameter space, minimiz-
ing the average free energy over an agent’s life time.

φ
∗,γ∗ = arg min

φ,γ
F [q] (10)

The optimal strength of S-R mappings and meta-control
depends on the statistical structure of an environment. To
illustrate this, we assume that an agent interacts over its life
time with an environment that consists of two contexts (not to
be confused with the contexts that are part of the agent’s gen-
erative model). In the first context, the word the agent reads
is associated with the action it executes in 90% of the cases,
introducing a strong contingency between word meaning and
action. In the second context this contingency is instead in-
valid in 90% of the cases. We further assume that an agent
switches back and forth between these contexts but spends
more time in the first (75% of interactions). In summary, this
means that there is relationship between word meaning and
action of 70% across contexts, but that this relationship is
even stronger in the first context (90%) and much weaker in
the second context (10%).

To analyze the effects of the agents’ learning abilities, we
compare three setups: a first “controlled processing agent”
does not learn structure at all (φ = .5 and γ = 0), a second
“mixed processing agent” learns a general S-R association (φ
is optimized, γ = 0), and a third “meta-control agent” addi-
tionally learns to change its belief over contexts (both φ and γ

are optimized).

Simulating the Stroop task
Once learning in the environment described above is com-
plete, we freeze the agents’ parameter values and subject
them to the Stroop task. The task consists of two blocks with
400 trials each, where one block contains 25% congruent tri-
als (mostly incongruent) and one contains 75% congruent tri-
als (mostly congruent). To obtain RT predictions, we assume
that changing a belief happens at a constant rate and therefore

RT = NDT +α ·DKL[q(a,s2|ct ,φ)||p(a,s2|ct ,s1,φ)] (11)

For illustration purposes we choose a change rate (α) of 0.005
nats per millisecond with a non-decision time (NDT ) of 650
ms.
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Figure 3: Congruent trials with s1 = RED are shaded red,
incongruent trials with s1 = GREEN are shaded green. 1:
Agent’s belief over contexts at the beginning of a trial (dashed
line marks uniform probability). 2: Agent’s prior (blue line)
and posterior belief (orange line) over actions. 3: Cog-
nitive effort (CE) dispensed for controlled processing (CE
within) and context adaptation (CE between). 4: Information-
theoretic measures for divergence from goal, state uncer-
tainty, and total free energy. Parameters are set to optimal
values γ∗ = 1.21, φ∗ = 0.89.

Results
Conceptual illustration
As an example, we show in Figure 3 the model’s behavior
and the associated information-theoretic quantities for a se-
quence of nine trials. In this specific example, the first ac-
tion (a = red) is correct in all nine trials as the word color
is always red. First, the agent is presented with three con-
gruent trials (s1 = RED), i.e., the automatic response ten-
dency is helpful. The agent starts with a uniform belief over
contexts, leading to a moderate automatic response tendency
(p(a = red|ct ,s1 = RED,φ)> .5). Because the response ten-
dency is helpful three times in a row, the agent increasingly
beliefs to be in the automatic context (p(c = 1)) and there-
fore relies more strongly on this response tendency in the
next trial. This leads to a decrease in cognitive effort for
action selection (within) and a decrease in the overall free
energy. However, when the agent is presented with a series
of three incongruent trials (s1 = GREEN), the response ten-
dency is misleading, which is accompanied with a substantial
increase in cognitive effort for action selection (within) and
overall free energy. To counteract this, more cognitive effort
(between) is spent to adjust the current belief over contexts
in favor of the non-automatic context. The reverse happens
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Figure 4: Life-time average of information-theoretic quanti-
ties for the three agents (1: controlled processing; 2: mixed
processing; 3: meta-control). CE: cognitive effort. FE: free
energy.

when the agent is again presented with a series of congruent
trials.

Rational automatic processing and meta-control
Figure 4 shows the life-time average of the information-
theoretic quantities defined above for the three agents. For
the “mixed control agent”, φ∗ = 0.73 was optimal and the fig-
ure demonstrates that learning this S-R association reduces
the overall free energy by about 12% in the example environ-
ment. This reduction is the result of trading off a reduced cog-
nitive effort and state uncertainty against an increased diver-
gence from the goal (which directly translates to the agent’s
accuracy, see Methods section). Therefore, relying on auto-
matic processing is rational in this environment.

For the “meta-control agent”, γ∗ = 1.21 and φ∗ = 0.89 was
found to be optimal, suggesting that through the meta-control
mechanism, the agent was able to utilize a stronger S-R as-
sociation. Figure 4 shows that this reduces the overall free
energy by 19% compared to learning no S-R mapping at all
and by 9% compared to learning a general S-R mapping. This
is because the cognitive effort involved in controlled process-
ing is reduced substantially, at a relatively small cost of an
increased error rate and cognitive effort (between) for updat-
ing the context belief.

Figure 5 shows the same information-theoretic quantities
depending on the values of γ and φ for the “meta-control
agent”. In the top row it can be seen that, as the S-R map-
ping becomes stronger, the cognitive effort needed for ac-
tion selection and the uncertainty of future state predictions
is reduced. However, the divergence from the agent’s goal
is increased. The lower left graph shows that when doing
the cost-benefit-analysis, the agent does best if it accepts to
stray slightly from its goal to save cognitive effort and make
more precise predictions. This means that, in this particu-
lar environment, the agent benefits from relying on automatic
processing to a larger extent.

The same graph also suggest that the stronger the meta-
control, the better—arguably because this leads to a more

fine-grained balance between automatic and controlled pro-
cessing. However, when taking the cost of meta-control
(lower middle graph) into account, the lower right graph
shows that the agent does best if it has a strong automatic
response tendency in one context (φ = .89), and if it weighs
the costs of meta-control roughly equally against the benefits
(γ = 1.21). It can also be seen that a strong S-R associa-
tion is only beneficial for the agent if it has the right amount
of meta-control—both too weak and too strong settings of γ

lead to considerable increases in free energy. Thus, the graph
defines precisely how to best arbitrate between automatic and
controlled processing, given this environment.

Resulting effects in the Stroop task
Figure 6 shows that the “controlled processing agent” does
not exhibit a congruency or proportion congruency (PC) ef-
fect. The “mixed processing agent” shows the congruency
but not the PC effect. Only the “meta-control agent”, which
fully minimizes free energy by exploiting structure in the en-
vironment, shows both a congruency and a PC effect and is
therefore qualitatively most similar to human behavior (com-
pare with Figure 1).

Discussion
We found that (1) measures of the costs and benefits of auto-
matic and controlled processing as well as meta-control can
be derived from the free energy principle, (2) relying on au-
tomatic processing can be rational depending on the environ-
ment, (3) using a specific amount of meta-control is rational
depending on the environment, and (4) the congruency and
PC effect in the Stroop task are a direct consequence of min-
imizing free energy in the given environment.

Our derived measures align well with previous formaliza-
tions, such as the expected value of control (Griffiths et al.,
2019; Shenhav et al., 2013; Bustamante et al., 2021; Lieder,
Shenhav, Musslick, & Griffiths, 2018) or the utility of effort
(Verguts et al., 2015). Moreover, they are partially equivalent
to other information-theoretic approaches (Butz, 2022; Parr
et al., 2023; Zénon et al., 2019). We extend these previous
measures by including meta-control (see also Bustamante et
al., 2021) and demonstrate that all measures are implicitly
optimized by minimizing free energy. This is particularly rel-
evant in the light of previous research that has investigated
how these measures can be estimated efficiently, e.g., through
learning associations between stimuli and the value of control
(Lieder et al., 2018; Bustamante et al., 2021). It also sheds
further light on the “homunculus problem” of cognitive con-
trol (i.e., “who controls the controller?”; Botvinick & Cohen,
2014) as it defines an optimum for both the use of controlled
processing and meta-control itself (Boureau, Sokol-Hessner,
& Daw, 2015).

The present model differs from previous influential works
which have assumed that cognitive control adjusts the influ-
ence of competing automatic processes (S-R mappings) on
the response (e.g., Botvinick et al., 2001). We instead assume
that automatic processes provide a prior belief over actions
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Figure 5: Life-time average of information-theoretic quantities for the “meta-control agent”. The two horizontal axes show
parameters controlling the strength of the S-R mapping (φ) and the context update (γ). The vertical axis and color correspond
to respective values in nats (blue: lower; yellow: higher).
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and that controlled processing updates this belief by condi-
tioning it on desired future observations (see also Schwöbel
et al., 2021). While this makes the arbitration between them
straightforward, it also describes them as two fundamentally
different operations: The former comprises a simple mapping
from stimulus to response, whereas the latter requires an in-
version of the generative model. S-R mappings can be learned
and therefore be executed with little effort, for instance, as a
forward pass through a neural network. Arguably, however,

learning a simple mapping for the inversion process (see, e.g.,
Kingma & Welling, 2022) seems impractical both because the
learning problem is much harder and because it would nullify
the capacity to react flexibly to changes in the environment
(e.g., contingency degradation). This provides a mechanistic
argument as to why the use of cognitive control is experi-
enced as effortful (Kool & Botvinick, 2018) and is therefore
sometimes substituted with simpler automatic processes.

Furthermore, the free energy objective urges the agent to
minimize cognitive effort even though we do not define a
limit on the amount of effort that can be exerted or the time
available to do so. Arguments about metabolic resource lim-
itations or opportunity costs (see, e.g., Kool & Botvinick,
2018), therefore, have no bearing on it. It instead suggests
that constraining cognitive effort in itself might be adap-
tive, for instance, because it reduces the risk of overfitting
to data—a common notion in statistical modeling. In our
case, this means that the agent is biased by its previous ex-
perience (i.e., automatic processing) instead of only relying
on the immediately available sensory observations (i.e., con-
trolled processing)—an arguably adaptive approach. Similar
to this, previous work has argued that cognitive control might
be limited not because of an inherent scarcity of cognitive
resources but because the constraint optimizes a trade-off be-
tween cognitive stability and flexibility (Kool & Botvinick,
2018; Musslick & Cohen, 2021). Our results corroborate this
account, considering that the limitation is effectively imple-
mented by the cognitive effort discounting the controlled pro-
cess.
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Schwöbel, S., Marković, D., Smolka, M. N., & Kiebel, S. J.
(2021, February). Balancing control: A Bayesian interpre-
tation of habitual and goal-directed behavior. Journal of
Mathematical Psychology, 100, 102472.
doi: 10.1016/j.jmp.2020.102472

Shenhav, A., Botvinick, M., & Cohen, J. (2013, July). The
Expected Value of Control: An Integrative Theory of Ante-
rior Cingulate Cortex Function. Neuron, 79(2), 217–240.
doi: 10.1016/j.neuron.2013.07.007

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths,
T. L., Cohen, J. D., & Botvinick, M. M. (2017, July). To-
ward a Rational and Mechanistic Account of Mental Effort.
Annual Review of Neuroscience, 40(1), 99–124.
doi: 10.1146/annurev-neuro-072116-031526

Solway, A., & Botvinick, M. M. (2012). Goal-directed de-
cision making as probabilistic inference: A computational
framework and potential neural correlates. Psychological
Review, 119(1), 120–154.
doi: 10.1037/a0026435

Spinelli, G., & Lupker, S. J. (2023, May). Robust evi-
dence for proactive conflict adaptation in the proportion-
congruent paradigm. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 49(5), 675–700.
doi: 10.1037/xlm0001144

Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of experimental psychology, 18(6), 643–
662.

Verguts, T., Vassena, E., & Silvetti, M. (2015, March). Adap-
tive effort investment in cognitive and physical tasks: a
neurocomputational model. Frontiers in Behavioral Neu-
roscience, 9.

doi: 10.3389/fnbeh.2015.00057
Von Neumann, J., & Morgenstern, O. (1944). Theory of

games and economic behavior. Princeton University Press.
Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2003). Under-

standing Belief Propagation and its Generalizations. Ex-
ploring artificial intelligence in the new millennium, 8,
239–269.
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