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Abstract The Neutrino Mass Ordering (NMO) remains one
of the outstanding questions in the field of neutrino physics.
One strategy to measure the NMO is to observe matter ef-
fects in the oscillation pattern of atmospheric neutrinos above
∼ 1 GeV, as proposed for several next-generation neutrino
experiments. Moreover, the existing IceCube DeepCore de-
tector can already explore this type of measurement. We
present the development and application of two independent
analyses to search for the signature of the NMO with three
years of DeepCore data. These analyses include a full treat-
ment of systematic uncertainties and a statistically-rigorous
method to determine the significance for the NMO from a
fit to the data. Both analyses show that the dataset is fully
compatible with both mass orderings. For the more sensi-
tive analysis, we observe a preference for normal ordering
with a p-value of pIO = 15.3% and CLs = 53.3% for the
inverted ordering hypothesis, while the experimental results
from both analyses are consistent within their uncertainties.
Since the result is independent of the value of δCP and ob-
tained from energies Eν & 5 GeV, it is complementary to
recent results from long-baseline experiments. These anal-
yses set the groundwork for the future of this measurement
with more capable detectors, such as the IceCube Upgrade
and the proposed PINGU detector.

1 Introduction

The question of the Neutrino Mass Ordering (NMO) is one
of themain drivers of the field of neutrino oscillation physics.
The NMO describes the ordering of the three neutrino mass
eigenstates m1, m2, and m3. The two possible scenarios de-
pend on the sign of ∆m2

31 = m2
3 − m2

1, often referred to as
the atmospheric mass splitting, where negative values are
known as Inverted Ordering (IO) and positive values as Nor-
mal Ordering (NO).

The three neutrino mass states do not correspond directly
to the three neutrino flavor states νe, νµ, and ντ . Instead, each
mass state is a superposition of the flavour states, with the
mixing described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix U [1–3], such that

να =

3∑
i=1

Uα,iνi, (1)

where α ∈ {e, µ, τ} labels the flavor states and i ∈ {1, 2, 3}
labels the mass states. By convention, ν1 is the state contain-
ing the most electron flavor, and ν3 is the state containing the
least.

The mixing matrix U can be parameterized by a CP-
violating phase δCP and three mixing angles θ12, θ13, and
θ23. In the case of Majorana neutrinos, two additional phases
are included, which are of no relevance for this work. Since
U is non-diagonal, flavor changes are observed depending on

the energy and propagation distance of a neutrino, which are
commonly known as neutrino oscillations. The oscillations
are described by the mass splittings, mixing angles, and the
CP-violating phase [4].

For propagation through dense matter, the neutrino oscil-
lations are modulated by interactions with electrons, which
give rise to matter effects [5] such as the so-called MSW ef-
fect and parametric enhancement [6–10]. Depending on the
NMO, these modulations arise mainly in the neutrino (NO)
or anti-neutrino channel (IO) [11]. In measurements of solar
neutrino oscillations, they were used to determine the order-
ing of the neutrino states ν1 and ν2 by finding m2 > m1.
Moreover, these modulations can be observed for atmo-
spheric neutrinos that undergo matter effects during their
propagation through the Earth. In contrast to long-baseline
accelerator experiments, the signature observed in IceCube
is largely independent of the value of δCP, which allows for
a complementary measurement of the NMO at higher ener-
gies, using atmospheric neutrinos [12].

Atmospheric neutrinos are produced in the Earth’s atmo-
sphere by interactions of cosmic rays with the nucleons of the
air, generating mesons. These mesons decay generating elec-
tron and muon (anti-)neutrinos, which propagate through the
Earth and can eventually be detected by an underground neu-
trino detector, such as IceCube [13]. The baseline of propaga-
tion throughEarth can be inferred bymeasuring the incoming
zenith angle of the neutrino. The highest-energy oscillation
maximum arises at Eν ∼ 25 GeV for vertically up-going neu-
trinos, moving to lower energy at shorter baselines towards
the horizon. For energies above a few GeV, the oscillations
are mostly driven by the parameters θ23 and ∆m2

31, which
are therefore referred to as atmospheric oscillation parame-
ters [4], while for vacuum only oscillations the value of θ13
is too small for any detectable effect. Considering matter
effects, however, the effective value of θ13 under the right
conditions can become sizeable, resulting in oscillation with
electron flavors as shown in Fig. 2.

In atmospheric oscillations, the impact of the presence
of matter arises mainly below Eν ∼ 15 GeV. The strength
of these matter effects depends on the Earth’s matter profile,
which we take as given by the Preliminary Reference Earth
Model (PREM), shown in Figure 1 [14].

The oscillation probabilities for muon-flavored atmo-
spheric neutrinos and anti-neutrinos to be found in the flavor
state α ∈ {e, µ, τ} for a given zenith angle θν , and neutrino
energy Eν , are shown in Figure 2. They are calculated with
the PROB3++ [15] package and the PREM12 approxima-
tion (cf. Figure 1), which are consistently used throughout
this work. Due to the Earth’s geometry and its core-mantle
structure, the visible modulations of atmospheric neutrino
oscillations feature a clear zenith-dependence.

Note that the oscillation patterns for neutrinos and anti-
neutrinos flip between the two orderings. Thus, the NMO can
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Fig. 1 Earth density profile, according to the Preliminary Reference
Earth Model (PREM) and its approximation by 4- and 12-layers of
constant density (commonly called PREM4 and PREM12, respec-
tively) [14].

be determined by finding the enhancement in transition prob-
abilities from matter effects either in the neutrino channel
(NO) or anti-neutrino channel (IO). For detectors insensitive
to distinguishing neutrinos from anti-neutrinos on an event-
by-event level, the NMO still leads to a visible net-effect
in the amplitude of the observed matter effects, because the
atmospheric fluxes and the cross sections for neutrinos and
anti-neutrinos differ [16, 17]. These differences mean that
atmospheric neutrinos are measured at higher rates than the
corresponding anti-neutrinos. Due to this rate difference, the
strength of observed matter effects in a combined sample of
neutrinos and anti-neutrinos is increased in case of NO and
decreased in case of IO, which is the main signature targeted
in this work.

The determination of the NMO has important implica-
tions for searches for neutrinoless double-β decay, where the
entire mass region allowed in the case of IO is in reach of the
next generation of experiments [18, 19]. The NMOmust also
be determined as part of the search for CP-violation in the
lepton sector, where the sensitivity to δCP depends strongly
on the ordering [20, 21]. Therefore, a measurement of the
NMO is targeted by several future long-baseline, reactor,
and atmospheric neutrino experiments, such as DUNE [22],
JUNO [23], PINGU [16, 24], ORCA [25], andHyper-Kamio-
kande [26]. Moreover, current neutrino experiments such as
T2K [27], NOvA [28], and Super-Kamiokande [29] provide
first indications of the NMO. Combining the results from
several experiments, recent global fits prefer Normal over
Inverted Ordering at ∼2 − 3.5σ with a small preference for
the upper octant (i.e. sin2(θ23) > 0.5) [30–33].

(a) Normal Ordering

(b) Inverted Ordering

Fig. 2 Oscillation probabilities for an atmospheric νµ or νµ upon
reaching the IceCube detector, as a function of the cosine of the zenith
angle, θν , and the energy, Eν , of the neutrino, for the NO (a) and the IO
(b) hypotheses. The probabilities are shown for the neutrino appearing
as each of the three possible flavors, with the neutrino and anti-neutrino
cases shown as the top and bottom rows in each panel. The dominant
mixing of νµ and ντ is clearly visible, while the νe flavor is mostly
decoupled, except for a small contribution from matter effects below
Eν ∼ 15 GeV.

2 The IceCube Neutrino Observatory

The IceCube Neutrino Observatory [13] is a ∼1 km3 neu-
trino detector at the Geographic South Pole, optimized for
detecting atmospheric and astrophysical neutrinos above
Eν ∼ 100 GeV. It consists of 86 strings running through the
ice vertically from the surface almost to the bedrock, carrying
a total of 5160 Digital Optical Modules (DOMs) at depths
between 1450 m and 2450 m [34]. Each DOM houses a 10”
photomultiplier tube and digitizing electronics, surrounded
by a glass sphere [13, 35, 36].

In the center of the detector, some of these strings form
a more densely instrumented volume called DeepCore [37].
It consists of 8 strings with an increased vertical density
of DOMs with higher quantum-efficiency, surrounding one
IceCube string. Due to the denser instrumentation and the
higher quantum-efficiency DOMs, the DeepCore infill has
a lower energy threshold than the surrounding IceCube ar-
ray. The corresponding detection efficiency of DeepCore in-
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creases steeply between ∼ 3 GeV and ∼ 10 GeV and flattens
for higher energies [13, 37].

Neutrinos are detected by the Cherenkov emissions of
their charged secondary particles, which are generated by
Charged Current (CC) and Neutral Current (NC) interac-
tions with the nucleons of the ice. In the case of CC muon-
neutrino interactions, a hadronic cascade is initiated at the
primary vertex, combinedwith an outgoingmuon. Themuon
can propagate large distances through the detector, leading to
an elongated shape of the energy deposition and thus of the
Cherenkov light emission. Such events are called track-like
signatures. In contrast, CC electron-neutrino, NC, and the
majority of CC tau-neutrino interactions, do not produce a
muon that can travel large distances. Instead, they initiate an
electromagnetic and/or hadronic cascade that develops over
a distance of a few meters. The light emission of this cascade
is considerably smeared around the Cherenkov angle of the
shower direction. Such events are called cascade-like. At low
energies below a few tens of GeV, the separation of track-
and cascade-like events becomes increasingly difficult, due
to the short muon track and the coarse detector granularity.
For oscillation measurements with DeepCore, this separa-
tion of track-like and cascade-like events is used to partially
distinguish neutrino flavors [37].

For the analyses presented here, we use the Honda 3D at-
mospheric neutrino simulation [38], and theGENIE neutrino
interaction generator [39] with KNO [40] and PYTHIA [41].
For quasielastic and resonance events, the axial masses are
set to Mqe

A
= 0.99 GeV and M res

A
= 1.12 GeV, respectively.

Simulation of the atmospheric muon background uses COR-
SIKA [42], with the Polygonato-Hörandelmodel of themuon
energy spectrum [43]. Muons are propagated through the ice
using PROPOSAL [44]; the propagation of all other parti-
cles is based on GEANT4 [45, 46]. Cherenkov photons are
propagated throught the ice using a GPU-based code [47].
More details of the simulation can be found in [48].

3 Data Samples and Reconstruction

In this work, two independent likelihood analyses are used
to extract information about the NMO from DeepCore data.
They are henceforth labelled Analysis A and B, and the
main differences between the two analyses are summarized
in Table 1. AnalysisA is designed to optimize the sensitivity
to the NMO with DeepCore and considered the main result
of this work, while Analysis B is designed to resemble the
proposed PINGU analysis from [24], using only events that
are fully-contained in the DeepCore detector, and is used as
a confirmatory result here. Further details about AnalysesA
and B can be found in [49] and [50], respectively. The use of
two independent analyses with partially complementary data
sets gives great confidence in the quantitative conclusions of

the analysis presented here and the treatment and impact of
the systematic uncertainties.

The analyses are based on DeepCore data taken between
May 2012 and April 2014, comprising a total livetime of
1006 (1022) days for Analysis A (B). The difference in
livetime arises from slightly different criteria on the stabil-
ity of data acquisition. The data is run through two largely
independent processing chains, where both samples are ac-
quired by filtering the data in several successive steps of
selection. These steps include the application of selection
criteria on well-understood variables, as well as machine-
learning methods, namely Boosted Decision Trees [51]. The
selections are aiming for a reduction of the background of
atmospheric muons and triggered noise, while maintaining
a large fraction of well-reconstructed, low-energy neutrino
events below Eν ∼ 100 GeV. Both samples are described in
more detail in [48]. Compared to [48], the samples used in
this work differ by the following modifications:

First, events with a reconstructed vertex outside the de-
tector that enter from below are not vetoed in Analysis A
using the lower part of the DeepCore detector, as it is done
for downgoing and horizontal events using the surrounding
IceCube detector. This increases the statistics at the expense
of a reduced energy resolution for these uncontained events,
especially at high energies. The loss in energy resolution is
due to the unobserved fraction of deposited energy outside
the detector volume. Second, the range of reconstructed en-
ergies considered is extended for both analyses compared
to [48], from 56 GeV to 90 GeV (80 GeV) for Analysis A
(B), allowing us to constrain nuisance parameters outside
the strongest oscillation region. Third, both analyses use ex-
clusively upgoing events (i.e. cos(θreco

ν ) < 0) to reduce the
background from atmospheric muons.

The final samples are reconstructed with the same al-
gorithm for Analyses A and B [48, 49]. It is based on a
likelihood function that links the number and the arrival
times of the observed Cherenkov photons in all DOMs to
a physics hypothesis. The physics hypothesis is given by
the position and time of the interaction vertex, the neutrino
direction, and the neutrino energy, which are the parame-
ters of the likelihood optimization. The reconstruction is run
separately for a starting track and a cascade-only hypothe-
sis, where the starting track hypothesis features a cascade
at the primary vertex with an additional parameter L for
the length of an outgoing muon track. Since the track hy-
pothesis allows for fitting the track length to L = 0, the
7-dimensional cascade-only-hypothesis is nested within the
8-dimensional track-hypothesis. The log-likelihood differ-
ence between track and cascade-only hypothesis is used as
the flavor-separating variable, called Particle Identification
(PID). Besides the reconstructed neutrino zenith angle θreco

ν

and neutrino energy E reco
ν , the PID is used as a third observ-

able entering the likelihood analyses described in Section 4.
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Table 1 Overview of the main differences between the twoNMO analyses in terms of the total number of observed events, the selection strategy, the
reconstruction likelihood, the reconstructed energy range, the number of analysis bins (given as number of E reco

ν , ϑreco
ν , PID bins), the background

(atmospheric muon) description, the template generation, and the estimated fractions of the data sample from each contribution.

Data Selection Recon. Energy Analysis Background Template Estimated Contributions [%]
Events Strategy Likelihood Range Binning Description Generation CCνe/CCνµ/CCντ/NC/µ/noise

A 43 214 high statistics hit-based 4 − 90 GeV 10, 10, 3 simulation KDEs 21.7 / 58.4 / 6.2 / 8.8 / 4.8 / 0.1
B 23 053 quality events charge-based 5 − 80 GeV 10, 5, 2 data histograms 29.4 / 58.0 / 2.0 / 10.4 / 0.2 / –

Ev
en
ts

Fig. 3 The distribution of the particle identification variable for Analy-
sis A. The blue band on the data/MC ratio is the statistical uncertainty.

The distribution of the PID variable for AnalysisA is shown
in Fig. 3.

In the reconstruction, the optimized likelihood function
differs between the two analyses: For Analysis B, the re-
construction likelihood is defined using the observed charge
binned in time for each DOM as a proxy for the observed
number of Cherenkov photons. Since some deviations were
found between data and Monte Carlo in charge-related quan-
tities, the likelihoodwas reformulated in a charge-independent
way for AnalysisA, such that the charge amplitude informa-
tion was removed and the only information used is whether a
DOM is hit or not hit in multiple bins of time. In terms of the
resolutions in reconstructed zenith angle θreco

ν and neutrino
energy Eν , the impact of the likelihood reformulation was
found to be small. Moreover for Analysis B, the impact of
the charge mismatch is estimated to be small in comparison
to the statistical uncertainty on the observed NMO.

After the data selection, the number of events in Sam-
ple A exceed the number of events in Sample B by a factor
of 1.87, while providing similar resolutions in energy and
zenith angle.

Note that for Analysis B, the atmospheric muon back-
ground is estimated from data in an off-signal region, while
for AnalysisA, it is obtained from Monte Carlo simulations
(cf. Table 1). As a result, there is no a priori Monte Carlo
prediction for the atmospheric muon contamination in Sam-

ple B. However, the fraction of atmospheric muons is fitted
in the analysis as discussed in Section 6. The contamination
of triggered noise was found to be only . 0.1% for both
samples. It is included into the likelihood fit for AnalysisA,
while it is neglected for Analysis B.

The final samples consist of CCmuon neutrino, CC elec-
tron neutrino, CC tau neutrino, NC, and atmospheric muon
events. These different components are called contributions
in the following and are simulated separately in Monte Carlo
except for the atmospheric muon contribution used in Anal-
ysis B that is parametrized from an off-signal data region.

The estimated fraction of the data samples from each
contribution is shown in Table 1. These fractions are calcu-
lated using the best-fit values for all systematic parameters,
discussed in Section 4.

4 Analyses

Both Analyses A and B use a binned likelihood method to
determine theNMOby observing the signature fromFigure 2
in reconstructed variables. Since a separation of all flavors
cannot be donewith DeepCore, the PID is used to distinguish
track- and cascade-like events, while neutrino energy and
zenith angle are obtained from the reconstruction described
in Section 3.

For both analyses, the binning is summarized in Table 1.
For Analysis B only two PID bins are used to separate track-
and cascade-like events, analogously to [16], while Anal-
ysis A uses three PID bins. This is motivated by the weak
separation power at low energies, where the confidence in the
separation can be taken into account by including an addi-
tional, intermediate PID bin. The binning in neutrino energy
and zenith angle is chosen to be uniform in log10(E reco

ν ) and
cos(θreco

ν ) for Analysis B. For AnalysisA, it is also uniform
in cos(θreco

ν ), while it is optimized in log10(E reco
ν ) to roughly

follow the available statistics and maintain a large number of
bins in the most interesting region at Eν ∼ 10 GeV.

In Analysis B, the binning is used to generate Monte
Carlo distributions, called templates, in E reco

ν , θreco
ν , and PID

for each contribution to the data sample, using histograms.
In contrast, Analysis A applies an adaptive Kernel Density
Estimation (KDE)method to produce these templates, which
smooths the fluctuations from limited Monte Carlo statistics.
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Fig. 4 Comparison of Monte Carlo template for atmospheric muons in
Analysis A, generated as histogram (top) and KDE (bottom): the latter
one is used in the analysis, due to the reduced impact of limited Monte
Carlo statistics.

These uncertainties arise mainly from the atmospheric muon
template, where the availableMonte Carlo statistics are simi-
lar to those from experimental data, due to the time-intensive
simulation of atmospheric muons.

The KDE method is analogous to the one used in [52]
and based on [53]. However, the method from [53] is ex-
tended by reflecting the KDE at the boundaries of the binned
parameter space and integrating the resulting distribution
to obtain a prediction for the bin content [54]. For the at-
mospheric muons, this is illustrated in Figure 4, where the
Monte Carlo template for atmospheric muons is generated
with histograms (top) and the above mentioned KDEmethod
(bottom). In the case of histograms, the fluctuations in the
bin content, arising from limited Monte Carlo statistics, are
clearly visible.

The uncertainties on the KDE prediction are estimated
using bootstrapping for every contribution from Section 3
separately [55]. For each contribution, which consists of N
MC events, events are drawn randomly from this sample,
replacing the event each time so that it can be drawn again,
until N events have been drawn. This new sample of N events
is called a bootstrapped sub-sample, and from this a new
KDE template is generated. This process is repeated several
times and the uncertainty on each bin content in the original
KDE template is estimated from the resulting distribution of
bin contents in the bootstrapped samples.

For AnalysisA, the three-dimensional template obtained
from the combination of all Monte Carlo contributions is

Fig. 5 Top: the distribution in PID, zenith angle, and neutrino energy for
Analysis A that enters the likelihood calculation; bottom: correspond-
ing signature of the NMO, given as expected pull on the bin content in
case IO is observed but NO is tested, using Poissonian statistics.

shown in Figure 5. Additionally, the expected pulls on each
bin are shown in the case that the true ordering is inverted but
the NO hypothesis is tested. This is used as a metric to visu-
alize the signature of the NMO [16]. As can be seen in Fig-
ure 5, the expected pulls betweenNO and IO are small, which
already indicates the low sensitivity due to the limited reso-
lution and statistics of DeepCore at energies Eν . 15 GeV.

Using these distributions, likelihoods are defined for both
analyses. For Analysis A, the negative log-likelihood LLH
is given by

LLH =
−

∑
i∈{bins}

ln

(
ptot
i (N

A
i , µ

A
i , σ

A
µi
)

ptot
i (N

A
i , N

A
i , σ

A
µi )

) +
1
2

S, (2)

where the term S is common to the likelihood of both analy-
ses and will be defined after discussing the other terms. The
term ptot

i (N
A
i , µ

A
i , σ

A
µi
) gives the probability of observing

NAi events in bin i, if µAi events are expected. It is obtained
by a convolution of a Poissonian distribution and a narrow
log-normal probability density function that describes the
uncertainty σAµi on the Monte Carlo prediction µi . The un-
certainty σAµi is obtained from a quadratic combination of
the individual template uncertainties for every contribution,
obtained from bootstraping.

Due to the KDE method used in Analysis A, the domi-
nant template uncertainties in the description of atmospheric
muons are strongly reduced, such that the uncertainties on
the total template are typically ∼ 10% of the Poissonian er-
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ror expected from data fluctuations. Thus, for Analysis A
these template uncertainties contribute only marginally to
the following results.

For Analysis B, the likelihood is adapted from [56],
where a χ2-value is calculated by quadratically combining
the Poissonian error on the predicted bin content µBi with
the uncertainty σBµi on the combined template of all contri-
butions. It is given by

χ2 = 2LLH =
∑

i∈{bins}

(
NBi − µ

B
i

)2

µBi + (σ
B
µi )2
+ S, (3)

where the labels are analogous to Equation 2.Here, the uncer-
taintiesσBµi on the templates are estimated from the statistical
error due to limited Monte Carlo and an uncertainty on the
atmospheric muon template, estimated from off-signal data.

The dominant systematic uncertainties are included in
both likelihood fits using nuisance parameters. These nui-
sance parameters comprise uncertainties in the atmospheric
neutrino flux, the atmospheric oscillation parameters, the
neutrino-nucleon cross sections, and the detector response.
All systematic parameters are allowed to vary simultane-
ously and independently in the fit; we assume there are no
correlations between the pulls on the various parameters.
The parameters are listed in Table 2. To account for external
constraints on these systematic parameters, Gaussian priors
are included into the likelihood by the term S,

S =
∑

s∈{sys}

(
s − s0
σs

)2
, (4)

where the sum runs over all systematic parameters. For each
parameter, the tested value s is compared to the expected
baseline value s0 with respect to its estimated uncertainty
σs . The baseline value s0 and width σs of each prior are
identical for both analyses, and are stated in Table 2; the
central value and the width are motivated by the provided
references where possible. As indicated in Table 2, the prior
for some parameters was removed in Analysis B. Due to
the small sensitivity to the NMO, the prior assumption was
found to imply a preference on the NMO in case the true
parameter value differs from the baseline value, which is
avoided by removing the corresponding priors from the like-
lihood. Thus, no external knowledge is included on these
parameters, allowing for larger deviations from the baseline
value.

The parameters Nν , Nνe , NNC, and Nµ are used to vary
the normalizations of the different contributions from Ta-
ble 1. Thus, they account for uncertainties in interaction
cross sections, the total neutrino and muon fluxes, the νe/νµ
production ratio, and detection efficiencies.

Additional uncertainties on the neutrino fluxes predicted
in [38] are modelled by the parameters γν , σzenith

ν , and
∆(ν/ν̄). Here, γν incorporates uncertainties in the neutrino

energy spectrum, arising from flux, and cross section uncer-
tainties, according to a reweighting of Monte Carlo events
∝(Eν/GeV)γν , whileσzenith

ν and∆(ν/ν̄) incorporate the dom-
inant uncertainties from [58] in an ad hoc parametrization.
The uncertainties on the production of atmospheric muons
arising from the spectrum and compositions of the cosmic
ray primary flux are represented by the parameter γµ. Note
that γµ is only included as an uncertainty for Analysis A,
since the atmospheric muon template in Analysis B is esti-
mated from data.

Uncertainties in neutrino-nucleon interactions are repre-
sented by the parameters M res

A
and Mqe

A
, which model the

axial mass of resonant and quasi-elastic interactions. Note
that uncertainties on the cross section for deep inelastic scat-
tering were also parametrized, but found to be negligible and
therefore not included into the likelihood fit.

Detector uncertainties are modelled by the parameters
εopt, εlateral, and εhead−on, which describe the optical detection
efficiency of the DOMs. The value of εopt gives the total
detection efficiency per photon, relative to the baseline sce-
nario. In contrast, the parameters εlateral and εhead−on describe
the dependence of the photon detection efficiency on the in-
clination angle of the incoming photon. Here, εlateral changes
the slope of the acceptance curve, while εhead−on controls
the acceptance of very vertically upgoing photons indepen-
dently. Besides actual uncertainties in the DOMs’ detection
efficiency, these parameters incorporate uncertainties with
respect to the optical properties of the ice in the refrozen
drill holes that surround the DOMs.

All of the systematic parameters mentioned above are
described in more detail in [48]. Besides the parameters
included in the fit, additional uncertainties have been in-
vestigated and tested for their possible effect on the anal-
ysis [49, 50]. These parameters are the normalizations of
sub-dominant experimental backgrounds (detector noise and
event pile-up from coincident atmospheric muons), addi-
tional uncertainties on the optical properties of the ice, the os-
cillation parameters (θ12, θ13,∆m2

21, and δCP), and Bjorken-x
dependent uncertainties in the cross section for deep-inelastic
neutrino-nucleon scattering. Two types of tests were per-
formed to determine the impact of these parameters. In the
first test, a parameter is injected into a MC fake dataset,
shifted from its nominal value by ±1σ in the case of a de-
tector systematic and by ±3σ in the case of an oscillation
parameter. This MC fake data is fit using the same MC set,
but with the parameter in question fixed to its unshifted nom-
inal value to assess whether the uncertainty in the systematic
parameter can bias the measured ordering hypothesis. This
test is repeated for MC fake datasets generated with both
mass orderings. For none of these systematic or oscillation
parameters is a bias observed in the measured preference for
the mass ordering of more than 0.05σ. For the case of δCP,
the value of δCP = 180◦ is being used as the ‘nominal’ value
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Table 2 Systematics treated as nuisance parameters in the likelihood analysis, including normalization (N), detector response (D), oscillation
(O), flux (F), and neutrino-nucleon interaction (I) uncertainties. These parameters are discussed in more detail in [48]. The table gives the
baseline value and, if the parameter is used with a prior in the likelihood, the standard deviation of the Gaussian prior, as well as the
experimental best-fit values for both analyses and ordering hypotheses.

Label Type Description of Parameter Baseline±Prior Analysis A Analysis B
NO IO NO IO

Nν N, F normalization of total neutrino template 1ae 0.83 0.84 0.98 0.99
Nνe N, F normalization of νe flux before oscillations 1 ± 0.05ad 1.00 1.00 1.37 1.38
NNC N, I normalization of NC events 1 ± 0.2a 0.74 0.75 0.99 0.99
Nµ N, F normalization of atmos. muon events 1ae 1.35 1.34 0.2%c 0.2%c

εopt D overall optical efficiency [13] 1 ± 0.1ad 1.00 1.00 0.92 0.92
εlateral D lateral dependence of optical efficiency [13] 0 ± 1b 0.68 0.68 -0.46 -0.46
εhead−on D head-on optical efficiency [13] 0be -1.01 -1.01 -2.00 -1.92
∆m2

31/(10−3 eV2) O atmospheric mass-splitting 2.5(NO)/−2.43(IO)e 2.626 -2.511 2.462 -2.348
sin2(θ23) O atmospheric neutrino mixing angle 0.455e 0.476 0.485 0.558 0.539
γν F neutrino spectral index unc. [38] 0.0 ± 0.1d 0.073 0.071 -0.025 -0.027
γµ F atmospheric muon spectrum unc. [50, 57] 0.0 ± 1.0b 0.04 0.04 – –
σzenith
ν F zenith-dependent unc. in ν/ν̄ flux [58] 0.0 ± 1.0bd -0.12 -0.11 -0.86 -0.89
∆(ν/ν̄) F energy-dependent unc. in ν/ν̄ ratio [58] 0.0 ± 1.0b -1.03 -1.02 0.05 0.07
M res

A
/GeV I axial mass unc. of resonant events [39] 1.12 ± 0.22 1.091 1.095 1.003 0.999

M
qe
A
/GeV I axial mass unc. of quasi-elastic events [39] 0.99 ± 0.25 0.862 0.867 0.881 0.888

a relative to the nominal value of this parameter
b parametrized with respect to the value and the uncertainty obtained from the provided reference
c given as fraction of the total sample, since no Monte Carlo prediction exists to compare to
d no prior used for likelihood in Analysis B
e parameter allowed to vary freely (no prior) in both analyses

for theMC fake dataset, with the value of δCP = 270◦ injected
into the MC used in the fit; a negligible (less than 0.01σ)
bias in the ordering preference is observed. In the second
test, the same shifted values as above are injected into the
MC fake dataset, but now the parameter under test is allowed
to vary in the fit. This allows us to determine if the inclusion
of these parameters into the fit causes any loss of sensitivity
to the mass ordering. None of the parameters in question
cause a loss of sensitivity of more than 0.05σ; the inclusion
of δCP reduces the sensitivity by less than 0.03σ. Since all
the parameters described in this paragraph are shown to have
no impact on the mass ordering sensitivity, or the potential
to cause a bias, they have been set to their nominal values (in
the case of oscillation parameters, to the NuFit [32] best-fit
values), and are not included in the final fit in order to min-
imise the computing time required for the multi-parameter
minimisation.

For Analysis A (B), the negative log-likelihood from
Equation 2 (3) is optimized. To do this, LLH ≡ −0.5χ2 is
used as the negative log-likelihood for Analysis B. During
this optimization, the first and the second octant in θ23 are
fitted separately for both orderings, allowing all the parame-
ters listed in Table 2 to vary, and the fit optimizing the LLH
is taken as the best-fit for this ordering. The resulting dif-
ference, 2∆LLHNO−IO ≡ ∆χ2

NO−IO, between the NO and IO
hypotheses is then calculated for both analyses.

Finally, 2∆LLHNO−IO (χ2
NO−IO) is used as a test-statistic

(TS) in Section 6 for Analyses A (B) to derive the experi-
mental result from the fit to the data.

5 Sensitivity to the Neutrino Mass Ordering

The determination of the NeutrinoMass Ordering is a binary
hypothesis test, which requires the test of two non-nested hy-
potheses. This is different from most other applications in
particle physics, where a general hypothesis HG is tested
against a specific one, HS , in the sense that the specific hy-
pothesis is obtained for a certain realization of the parameters
ofHG . For such nested hypotheses,Wilks’ Theorem is com-
monly used to derive sensitivities and to estimate limits on
fitted parameters [59]. In contrast, Wilks’ Theorem does not
apply to the determination of the Neutrino Mass Ordering,
since the discrete choice of Normal or Inverted Ordering is
not related to the fixing of degrees of freedom [60].

Due to the subtleties involved in the statistical treatment
and since a determination of the NMO is expected within the
next decade, the correct method to quantify the preference is
object of many discussions [60–62]. Here, two methods are
used to estimate the sensitivity, which are described in the
following.

The first method is a statistically rigorous analysis of
the resulting likelihood values, using the obtained value of
2∆LLHNO−IO as a TS. It derives the resulting sensitivity,
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Fig. 6 Sketch of the frequentist method, using idealized distributions
to illustrate the concepts. The red (blue) distribution will be derived
from from PTs assuming the HNO (HIO) hypothesis. The black vertical
line represents a hypothetically observed value of ∆LLHNO−IO. The
resulting p-values (right, vertical axis) for the hypotheses are derived
from the cumulative density distributions, marked as red (blue) solid
lines for NO (IO)

given by the expected confidence in the determination of the
NMO, from a frequentist coverage test. To do this, the data
is fit with both ordering hypotheses giving a value for the TS
and two sets of best-fit systematic parameters, ηNO and ηIO.
These fits are called fiducial fits (FD) in the following.

From these parameters, the resulting best-fit templates
are generated for NO and IO. Then, these templates are used
to generate Pseudo-Experiments or Pseudo-Trials (PT)s by
adding Poissonian fluctuations on the bin-contents, as ex-
pected in a real-world experiment; in this analysis, which
has a sensitivity dominated by the statistical uncertainty, it
is unnecessary to fluctuate each PT according to the sys-
tematic uncertainties. Afterwards, each PT is fitted with
both ordering hypotheses, resulting in a new value for the
TS = ∆χ2

NO−IO = 2∆LLHNO−IO. From these PTs, two dis-
tributions of the TS are obtained for the two sets of injected
parameters ηNO and ηIO.

This process of creating PTs for ηNO and ηIO and fitting
them with both hypotheses is repeated several times to esti-
mate a TS distribution for each of the ordering hypotheses.
The TS distributions for NO and IO are then used to esti-
mate the analysis sensitivity, i.e. the expected p-values for
the exclusion of each hypothesis. To do this, the fraction of
PTs for NO (IO) that is to the right (left) of the median of
the IO (NO) distribution is taken as the expected p-value for
the exclusion of the NO (IO) hypothesis, if IO (NO) is the
true ordering. This is sketched in Figure 6 for two generic
distributions.

The frequentist method is summarized as a flow-chart in
Figure 7. Note that this procedure is similar to the treatment
of data, described in Section 6, where the experimental fit
is used as fiducial fit to produce PTs. Unfortunately, the

Fig. 7 Flow-chart representing the procedure of the frequentist method
used to derive p-values for the NO and IO hypotheses. Abbreviations,
as defined in the text, are FD (fiducial fits), PD (pseudo-dataset), H
(hypothesis), and TS (test statistic).

frequentist method is computationally very expensive. Thus,
for performing more detailed parameter studies, a second,
faster method is used.

The secondmethod for deriving sensitivities is anAsimov
approach adapted from [60]. Instead of generating PTs, the
total MC template, with no Poissonian fluctuations, is fitted
directly for both hypotheses. In the following, we refer to
thisMC template as the generated-ordering (GO) hypothesis,
HGO, where theGO can be either NOor IO. This is then fitted
under assumptions of both hypotheses, NO and IO, where
the hypothesis used in the fit is called the fitted-ordering
(FO) hypothesis, HFO. The negative log-likelihood value
obtained from the fit is LLHFO(HGO) = 0 if HFO = HGO
and LLHFO(HGO) > 0 otherwise, where the bars indicate
that the values were obtained by injecting the template of the
GO directly.

The resulting value of 2∆LLHNO−IO is assumed to be
representative for the behavior obtained using PTs. The sen-
sitivity to the generated ordering, nGO

σ , in terms of one-sided
Gaussian standard deviations is

nGO
σ =

∆LLHNO−IO(HGO) − ∆LLHNO−IO(HG̃O)√
2∆LLHNO−IO(HG̃O)

, (5)

where G̃O ∈ {IO,NO} is the opposite hypothesis to GO,
generatedwith the best-fit set of systematic parameters ηG̃O ∈
{ηIO, ηNO} corresponding to the set ηGO ∈ {ηNO, ηIO} used
forHGO. Note that the sensitivity nGO

σ describes the expected
p-value for the exclusion of the G̃O hypothesis in the case
that the true ordering is the GO [60].

The choice of one- instead of two-sided Gaussian stan-
dard deviations is motivated by the fact that an experiment
with no sensitivity to the NMO, i.e. if the two distributions
for NO and IO in Figure 6 were identical, would lead to
a 50% chance of obtaining the correct ordering by random
chance. This should not be misinterpreted as sensitivity and
thus should give nNO, IO

σ = 0, which is the case for one-sided
but not two-sided Gaussians.
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Fig. 8 Sensitivities of Analyses A and B to the NMO in terms of one-
sided Gaussian sigmas (left vertical axis) and p-values (right vertical
axis) derived by the Asimov-method (lines), and validated at certain
values of sin2(θ23) using the frequentist method (markers). The statis-
tical errors on the frequentist points arise from the finite number of
PTs used due to the computationally intensive nature of the frequentist
method.

The resulting sensitivities for both methods are shown
in Figure 8, as a function of the true value of sin2(θ23). The
blue and red lines indicate the result from theAsimovmethod
for Analysis A (solid lines) and Analysis B (dashed lines).
The sensitivities are validated at certain values of sin2(θ23)
using the frequentist method, as indicated by the circle (A)
and star (B) markers, where the uncertainties arise from the
finite number of PTs.

As visible in Figure 8, the resulting sensitivity is< 1σ for
both orderings and analyses. Moreover, Analysis A is more
sensitive to the NMO than Analysis B, which is due to the
increased statistics, the additional bins in PID, energy and
zenith, and the reduced impact from limited Monte Carlo
statistics, due to the usage of KDEs in the generation of
Monte Carlo templates.

Note that a characteristic shape is found for the sin2(θ23)-
dependence of nNO, IO

σ , which is different for the NO and
IO hypotheses. The observed features are similar to those
found for the PINGU sensitivity in [16]. They arise from the
interplay of the two independent octant fits for LLHGO and
LLHG̃O, used to calculate the values of ∆LLHNO−IO(HGO)
and ∆LLHNO−IO(HG̃O) in Equation 5, where the preferred
octant is not necessarily the true one in the case that G̃O is
fitted. As a result, the behavior of nNO, IO

σ changes each time
the octant is flipped for one of the two negative log-likelihood
differences (∆LLH) in Equation 5.

The observed sensitivities for the Asimov method agree
roughly with the PTs, while perfect agreement is not ex-
pected due to several approximations used in the Asimov-

method [60]. However, the Asimov method is used as an
estimator for the true sensitivity.

Note that for some observed values in Figure 6 the p-
values for both hypotheses can be small, in case the observed
data agrees with neither the NO nor IO hypotheses. For
example, this could be the case for ∆LLHNO−IO > 2 or
∆LLHNO−IO < −2, which is in the tail of both distributions
in Figure 6. In this case, the small p-value might lead to the
wrong impression that the data clearly favors the alternative
over the null hypothesis. To properly account for this, the
p-values are combined into a CLS-value,

CLA/B
S
(HTO) =

pA/B(HTO)
1 − pA/B(HT̃O)

, (6)

where TO is the tested ordering and T̃O is the opposite
ordering hypotheses. This equation is taken from [63] where
a more detailed discussion of its derivation can be found. Its
value is limited to CLS ∈ [0, 1], where CLS ≈ 1 indicates
no preference for one hypothesis over the other and CLS ≈ 0
indicates a strong disfavoring of the given hypothesis. The
CLS value can be interpreted as confidence in the result with
a confidence level of 1 − CLS . More illustratively, the CLS

value describes how much less likely the observed value
would occur under the disfavored hypothesis, compared to
the favored one.

Finally, potential improvements of the sensitivity are
tested for Analysis A. By fixing individual and combina-
tions of systematic parameters in the Asimov fit, the abso-
lute gain in sensitivity from an improved understanding of
systematic uncertainties is found to be small, except for the
oscillation parameters. This is due to the weak NMO signa-
ture, which barely pulls the systematic parameters and thus is
only weakly affected by fixing them. Instead, it is found that
the sensitivity could be improved in the future by additional
data statistics and improvements on the event reconstruction,
which reduce the smearing-out of the NMO signature due to
the low resolution in energy, zenith, and PID at the lowest
energies [49].

6 Results

For both analyses, the experimental data is fittedwith the like-
lihood method, described in Section 4. The data, along with
the best-fit predictions, are shown for AnalysisB in Figure 9.
The resulting best-fit values for all systematic parameters are
shown in Table 2. The observed pulls are within the expected
ranges for all parameters, taking statistical fluctuations and
the uncertainties of the true value of each parameter into
account. The corresponding values of the metric for the NO
(IO) hypothesis are 2LLH = 293.38 (294.12) for AnalysisA
and χ2 = 107.82 (107.50) for AnalysisB. The metric is used
as a goodness-of-fit estimator for the agreement of data and
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Fig. 9 The energy and zenith-angle distributions of the data fromAnal-
ysis B. Also shown are the best-fit simulations for both orderings, where
the red and blue lines fall almost on top of each other.

Monte Carlo by comparing these values to the expectation
from PTs. The resulting p-values for Analyses A and B are
pAgof = 43.5% and pBgof = 11.0%, indicating the data to be
well-described by the MC templates.

For Analyses A and B, the observed values of the test-
statistic are 2∆LLHNO−IO = −0.738 and ∆χ2

NO−IO = 0.3196.
Thus, the fits for the main result (A) and the confirmatory
result (B) prefer NO and IO, respectively, while both results
are compatible within their statistical uncertainties, i.e. both
results have a test statistic within one unit of zero.

Fig. 10 Distribution of the TS from PTs, generated with the best-fit
systematic parameters ηNO and ηIO from Table 2 for Analysis A (top)
andAnalysis B (bottom). The red and blue distributions are obtained for
the NO and IO hypotheses, respectively, while the black, solid vertical
line shows the observed value in data, giving the p-values for the NO
and IO hypotheses stated in the legends.

To estimate the corresponding p-values, PTs are gener-
ated with the best-fit parameters ηNO and ηIO from Table 2;
for each PT, both ordering hypotheses are fitted. The result-
ing distributions of TS = 2∆LLHNO−IO and TS = χ2

NO−IO
are shown in Figure 10. The experimentally observed value
is indicated by the solid, vertical black line, indicating the
preference for Normal over Inverted Ordering in AnalysisA
and Inverted over Normal Ordering in Analysis B.

The resulting p- and CLS-values for the main result are

pA(HNO) = 71.1% (CLAS (HNO) = 83.0%), (7)

pA(HIO) = 15.7% (CLAS (HIO) = 53.3%), (8)

while for the confirmatory result we find

pB(HNO) = 11.4% (CLBS (HNO) = 73.5%), (9)

pB(HIO) = 84.5% (CLBS (HIO) = 95.4%). (10)
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Fig. 11 The negative log-likelihood (LLH) as a function of sin2(θ23)
for AnalysisA, relative to the global minimumLLHmin. The preference
for NO over IO is visible over all the range of sin2(θ23) with the best-fit
for both orderings being in the lower octant (sin2(θ23) < 0.5).

In addition to testing the NMO with PTs, the likelihood
is scanned across sin2(θ23) for the more sensitive AnalysisA
and both ordering hypotheses. The resulting scan is shown
in Figure 11, where the LLH is shown with respect to its
global minimum. The vertical offset between the NO and
IO curves indicates the preference for NO over IO, which is
visible at all values of sin2(θ23). The observed minimum is in
the lower octant, near sin2(θ23) = 0.455, for both orderings,
while maximal mixing is separated from the best-fit point
by only 2∆LLHNO−IO = 0.128 (0.681) for NO (IO). As a
result, the preference for the lower octant is small, such that
a substantial range of sin2(θ23) > 0.5 is still compatible with
the observed data for NO and IO.

Note that the preference for NO over IO in Analysis A
already indicates an observed preference for matter effects in
data (cf. Section 1), i.e. a preference for matter effects over
vacuum oscillations. To quantify this preference, the fit is
repeated assuming vacuum oscillations. The resulting log-
likelihood difference between matter effects (MA) and vac-
uum oscillations (VA) is ∆LLHMA−VA = −0.869 (−0.500) in
case NO (IO) is assumed. Thus, matter effects are preferred
over vacuum oscillations, independent of the assumption on
the NMO. The p-values and CLS-values that quantify the
preference for matter effects (Mat) and vacuum oscillations
(Vac) are

p(HMat |HNO) = 62.3%, CLS(HMat |HNO) = 71.0%, (11)
p(HVac |HNO) = 12.3%, CLS(HVac |HNO) = 32.6%, (12)
p(HMat |HIO) = 53.2%, CLS(HMat |HIO) = 68.4%, (13)
p(HVac |HIO) = 22.2%, CLS(HVac |HIO) = 47.4%. (14)

7 Conclusion

We have developed two independent likelihood analyses
to demonstrate the extraction of the neutrino mass order-
ing from atmospheric neutrino data. We have applied these
analyses to three years of IceCube DeepCore data. The
first analysis aims for an optimized sensitivity with Deep-
Core, the second for an analysis chain as similar as possi-
ble to the proposed NMO analysis with PINGU [16]. The
sensitivities were estimated with two independent meth-
ods. For the more sensitive, main analysis, the sensitivity
was found to be ∼ 0.45 − 0.65σ (one-sided Gaussian),
within the most interesting region close to maximummixing
(sin2(θ23) ∈ [0.45, 0.55]) for both orderings, while for the
confirmatory analysis, the sensitivity was found to be ∼ 50%
smaller.

Due to the weak signature of the NMO in DeepCore, the
sensitivity is found to be mostly unaffected by improvements
in the understanding of systematic uncertainties. Instead, a
future gain in sensitivity might come from additional statis-
tics or potential improvements in the resolution of the event
reconstruction.

The analyses presented here find the data to be fully com-
patible with bothmass orderings. Themain analysis observes
a preference for NO over IO at 2∆LLHNO−IO = −0.738,
which corresponds to a p-value of 15.3% (CLs = 53.3%) for
the IO hypothesis, based on the presented frequentistmethod.
This result is in line with recently reported preferences for
the NO by Super-Kamiokande [29], T2K [27], NOνA [28],
MINOS [64], and recent global best fits [31, 32]. However,
it complements these results due to the higher energy range
used for determining the NMO (Eν & 5 GeV) and the fact
that it is independent of the value of δCP. Finally, the data
indicates a preference for matter effects over vacuum oscil-
lations, independent of the assumption on the NMO.

The study presented here allows us to consider what fu-
ture steps will allow a determination of the NMOwith atmo-
spheric neutrino data. Given the statistically-limited nature
of this result, it is clear that a reduction of systematic un-
certainties is not a priority, and we have performed studies
to show that even the most optimistic reduction of system-
atic uncertainties can achieve at most a 10% improvement
in the NMO sensitivity of this dataset[49]. The same study
also showed that a removal of backgrounds (atmospheric
muons and triggered noise) delivers at most a 5% improve-
ment in sensitivity. In the coming years, a factor of four more
statistics is expected from DeepCore (including both addi-
tional data and expected data-selection improvements), and
this can result in a factor of two improvement in sensitivity.
A more significant improvement that can be made is in the
measurement resolutions: our studies [49] show that a 50%
improvement in resolution on both neutrino direction and
log10(Eν) would produce a factor of two improvement in the
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sensitivity of this dataset. To achieve an NMO determination
in a reasonable timescale, a final necessary improvement is
a lowering of the neutrino energy threshold; this, along with
the improved resolutions, can be achieved by the PINGU
concept [16, 24] that reduces the energy threshold to below
10GeV to enable a 3σ determination of the NMO for even
the least optimistic values of the oscillation parameters.

Besides the experimental result, the presented analyses
provide a proof-of-concept for determining the NMO from
matter effects in atmospheric neutrino oscillations with the
IceCubeUpgrade [65] or PINGU [16]. They test the full anal-
ysis chain by means of real DeepCore data and validate
the understanding and treatment of systematic uncertainties,
which are largely consistent with those that will be encoun-
tered by future IceCube extensions.
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