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Defining droughts based on a single variable/index (e.g., precipitation, soil moisture, or runoff) may not
be sufficient for reliable risk assessment and decision-making. In this paper, a multivariate, multi-index
drought-modeling approach is proposed using the concept of copulas. The proposed model, named Mul-
tivariate Standardized Drought Index (MSDI), probabilistically combines the Standardized Precipitation
Index (SPI) and the Standardized Soil Moisture Index (SSI) for drought characterization. In other words,
MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of
drought. In this study, the proposed MSDI is utilized to characterize the drought conditions over several
Climate Divisions in California and North Carolina. The MSDI-based drought analyses are then compared
with SPI and SSI. The results reveal that MSDI indicates the drought onset and termination based on the
combination of SPI and SSI, with onset being dominated by SPI and drought persistence being more sim-
ilar to SSI behavior. Overall, the proposed MSDI is shown to be a reasonable model for combining multiple
indices probabilistically.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Droughts are common climatic extremes that often spread
across large spatial and time scales [27]. Historically, droughts af-
fect more people across the globe than any other climate extremes
[45]. The economic damage of droughts across the United States on
average is estimated as $6–8 billion annually [12]; hence, monitor-
ing and understanding the effects of droughts on water resource
systems are essential to hazard preparedness and sustainable
development.

The drought phenomenon is usually described using drought
detection and monitoring indices. Typically, droughts are catego-
rized into four major classes: meteorological, agricultural, hydro-
logical, and socio-economical [18]. Meteorological drought is
identified by lack of precipitation as the main indicator, while agri-
cultural drought is related to the total soil moisture deficit. Hydro-
logical drought, on the other hand, is characterized by a shortage of
streamflow, as well as ground-water supplies. Several indices have
been developed for drought monitoring based on different vari-
ables, such as precipitation, soil moisture, and runoff [24]. For
example, the Palmer drought severity index (PDSI, [29]), derived
from precipitation and temperature, has been widely used for
drought characterization [8,7,35]. Mckee et al. [23] proposed the
Standardized Precipitation Index (SPI) as a drought indicator for
meteorological drought monitoring and analysis, which is recom-
mended by the World Meteorological Organization (WMO) as a
standard drought-monitoring index [17]. Given its simplicity and
temporal flexibility, the SPI has been commonly used in numerous
publications [26,38,41]. Other drought indices, such as the Crop
Moisture Index, the Vegetation Drought Response Index (VegDRI),
or the Standardized Precipitation Evapotranspiration Index (SPEI),
have also been developed for drought monitoring [6,18,30,43].

A variety of studies have been conducted to evaluate the suit-
ability of drought indices for different applications. Guttman [16]
compared the PDSI and SPI and reported that the PDSI varied from
site to site throughout the US with complex structure and long
memory, while the SPI did not vary from site to site and was an
easily interpreted, simple moving average process. Keyantash and
Dracup [21] evaluated the most prominent indices for different
forms of drought based on a weighted set of six evaluation criteria
(e.g., robustness, tractability). Their results showed that rainfall
deciles (followed by SPI with very close scores), total water deficit,
and computed soil moisture were the overall superior drought
indices for the meteorological, hydrological, and agricultural
droughts, respectively. For monitoring meteorological drought,
[31] suggested that the SPI and deciles (percentiles) were the most
suitable indices.

Drought analyses based on a single variable (or indicator) may
not be sufficient because drought phenomena are related to multi-
ple variables (e.g., precipitation, runoff, and soil moisture). A mete-
orological drought (deficit in precipitation) may not lead to an
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agricultural drought (deficit in soil moisture), for example, in trop-
ical regions where the average precipitation is relatively high. A
complete analysis of drought events necessitates joint analyses of
rainfall, runoff, and soil moisture conditions [9]. To characterize
the overall drought condition, several joint drought indices have
been proposed. Keyantash and Dracup [22] proposed an aggregate
joint index that considers all physical forms of drought (meteoro-
logical, hydrological, and agricultural) through the selection of
drought variables that are related to each drought type. Kao and
Govindaraju [20] developed a copula-based joint index with Ken-
dall distribution to characterize drought from precipitation and
streamflow. Vicente-Serrano et al. [43] proposed the Standardized
Precipitation Evapotranspiration Index based on precipitation and
temperature data that combine multi-scalar characters with the
capacity to include the effects of temperature variability on
drought assessment.

In this paper, a multivariate, multi-index drought-modeling ap-
proach is proposed to combine the drought information from pre-
cipitation and soil moisture using the joint distribution function of
the two variables. The proposed multi-index drought modeling
framework is basically the extended version of the commonly used
Standardized Precipitation Index (SPI), developed by [23], that
incorporates soil moisture in addition to precipitation. Similar to
the SPI, the suggested multi-index drought model is capable of
characterizing drought conditions at different time scales. In this
study, the proposed multi-index approach is utilized to character-
ize the drought conditions over several Climate Divisions in Cali-
fornia and North Carolina. The results are then compared with
SPI and SSI.

This paper is organized into five sections. The methodology is
described in Section 2, while Section 3 provides a synthetic exam-
ple and provides a discussion on how to interpret the suggested
multivariate multi-index drought model. The application of the
proposed framework is demonstrated in Section 4, followed by
the summary and conclusion in Section 5.
2. Methodology

Motivated by the commonly used SPI developed by [23], a mul-
ti-index model can be developed through constructing the joint
distribution function of two or more univariate drought variables
(or indices). In this study, the Multivariate Standardized Drought
Index (MSDI) is proposed by extending the univariate SPI through
the joint distribution of precipitation and soil moisture for overall
meteorological and agricultural drought characterization.

Copulas are functions that can be used to derive the joint distri-
bution of two or more variables, regardless of their original mar-
ginal distributions. Assuming precipitation and soil moisture as
random variables X and Y, respectively, the joint distribution with
the cumulative joint probability p can be expressed with a copula C
as [28,40]:

PðX 6 x;Y 6 yÞ ¼ C½FðXÞ;GðYÞ� ¼ p ð1Þ

where C is the copula, and F(X) and G(Y) are the marginal cumula-
tive distribution functions of random variables X and Y, respec-
tively. The copula C offers the flexibility to construct the joint
distribution of random variables in terms of their marginal distribu-
tions. The application of copulas in modeling (nonlinear) depen-
dence structures of multivariate data has become popular in
hydrological and climatological studies, such as multivariate fre-
quency analysis, risk assessment, drought modeling, and geostatis-
tical interpolation [1,2,5,11,14,32,34,36].

There are a wide variety of copula families that have been
developed/used to model different dependence structures of ran-
dom variables [3,4,33]. For example, the Frank copula offers a sym-
metric dependence structure, while Gumbel and Clayton copulas
exhibit asymmetric dependence structures [33,42]. The Frank cop-
ula, for example, can be expressed as [28,33]:

Cðu; vÞ ¼ �1
h

ln 1þ e�hu � 1ð Þ e�hv � 1ð Þ
e�h � 1

� �
ð2Þ

where h is the parameter, and u and v are the marginal cumulative
probabilities of precipitation and soil moisture, respectively. The
parameter h can be estimated from Kendall’s rank correlation s
[13]:

s ¼ 1þ 4½DðhÞ � 1�=h ð3Þ

where D(h) is expressed as:

DðhÞ ¼ 1
h

Z h

0

t
expðtÞ � 1

dt ð4Þ

where t is the integration variable. The choice of copula family is
discussed in Section 4. For detailed descriptions of different copula
functions the interested reader is referred to [19,28].

From the cumulative joint probability p shown in Equation (1),
the Multivariate Standardized Drought Index (MSDI) can then be
defined as:

MSDI ¼ u�1ðpÞ ð5Þ

where u is the standard normal distribution function. Equation (5)
transforms the joint probability to the MSDI that is located in the
same space as the original SPI and allows cross-comparison of dif-
ferent drought indices. The procedure to develop the SPI can also
be applied to other variables such as soil moisture and runoff
[23,25,37]. In this study, we use the Standardized Soil Moisture In-
dex (SSI) for cross-comparison. The proposed MSDI incorporates the
overall drought conditions reflected from precipitation and soil
moisture. Similar to the original SPI, a sequence of negative MSDIs
indicates that the climate condition is dry (drought), while a se-
quence of positive MSDIs represents a wet climate condition. MSDI
near zero refers to normal climate conditions.

Kao and Govindaraju [20] first described the concept of using
the joint cumulative probability as the overall drought indicator
and proposed the joint deficit index based on the Kendall distribu-
tion. In this study, we use the joint cumulative probability to con-
struct the MSDI as an extension to the original SPI developed by
McKee et al. [23]. Therefore, the proposed MSDI bears a close
resemblance to the SPI based on the fact that it can be used to
monitor droughts at different time scales (e.g., 1-, 3-, 6-month).

3. Interpretation of MSDI

In this section, we demonstrate the properties of MSDI through
a numerical example. In Section 4, the process of selecting a copula
family for deriving MSDI is discussed in detail. For now, assume
that Frank copula is selected to construct the joint distribution of
precipitation and soil moisture and to derive the MSDI.

The joint cumulative probability of precipitation and soil mois-
ture given in Eq. (1) based on the Frank copula is displayed in Fig. 1.
In this graph, 0.2 (or �20th percentile) of precipitation and soil
moisture, for example, corresponds to SPI and SSI equal to �0.8.
The MSDI contours for different combinations of precipitation
and soil moisture percentiles are also shown in Fig. 1. Assume a
certain drought threshold of 20th percentile precipitation and soil
moisture (see lines L1 and L2 in Fig. 1). Consequently, four areas,
A1–A4, are defined in the probability space by lines L1, L2, and
the axes. The four areas (A1–A4) define different combinations of
drought conditions indicated by precipitation and soil moisture.
For a better illustration, the four points representing the four com-
binations of precipitation and soil moisture with different



Fig. 1. A numerical example to describe the properties of MSDI.
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probabilities (or percentiles) are plotted in Fig. 1: P1 (0.15,0.25), P2
(0.25,0.25), P3 (0.25,0.15), and P4 (0.15,0.15), which fall into areas
A1–A4, respectively. Considering only 20th percentile of precipita-
tion, points that fall within A1 and A4 are in drought condition.
Similarly, based on 20th percentile of soil moisture only, points
that fall within areas A3 and A4 are in drought. A close look at
Fig. 1 reveals that A1 corresponds to the condition in which precip-
itation shows drought, while soil moisture does not (e.g., P1
(0.15,0.25)). On the contrary, A3 refers to the case in which there
is a deficit in soil moisture, but not precipitation (e.g., P3
(0.25,0.15)).

The area between 0.2 MSDI, L1 and L2, is shown as A2 in Fig. 1.
Based on the 0.2-contour line of MSDI, all points that fall in
A1 + A2 + A3 + A4 indicate drought, meaning that, for the same
percentile (e.g., 20th), MSDI constitutes a larger probability space
below the same percentile. For this reason, MSDI has a higher
chance of detecting a drought based on the states of two variables
(here, precipitation and soil moisture). Assuming a certain alarm
threshold of 0.2, one can see that, for P2 (0.25,0.25) MSDI indicates
drought because both variables are low, although individual vari-
ables are still 0.25 (25th percentile).

Area A4 shown in Fig. 1 corresponds to the condition that both
the soil moisture and precipitation fall below an alarm threshold
(e.g., P4 (0.15,0.15)). Both SPI and SSI will identify such points as
a drought event, assuming an alarm threshold of 0.2 (20th percen-
Fig. 2. Locations of the selected Climate Divisions in California and North Carolina.
tile). As shown, P4 not only falls below the 0.20 contour of MSDI, it
might even fall below a smaller value (here, 0.1). This indicates
that, if both variables fall below an alarm threshold, MSDI will lead
to a more severe drought condition than either SPI or SSI.
4. Results

4.1. Data description

Monthly precipitation and soil moisture data are processed to
illustrate the application of the proposed MSDI. Monthly precipita-
tion and soil moisture data for the same period 1932–2009 were
obtained from the Climate Prediction Center (CPC). The soil mois-
ture data set is based on a one-layer water-budget soil moisture
model available for the entire US [10]. As shown in Fig. 2, two Cli-
mate Divisions (3,5) in California and three Climate Divisions (1, 4,
and 8) in North Carolina are used as case study sites. The Climate
Divisions represent different climate, different land-use and topo-
graphical conditions in the western and eastern United States. In
California, Climate Division 3 is primarily an agricultural area,
whereas Climate Division 5 is an inland mountainous are. Climate
Divisions 1, 4, and 8 in North Carolina are mountainous, semi-ur-
ban, and coastal, respectively.

4.2. Copula-based joint distribution

Following the procedure presented by [23], the standard precip-
itation index (SPI) and standard soil moisture index (SSI) are de-
rived using the precipitation and soil moisture data sets
discussed above. In order to investigate the MSDI at different time
scales (i.e., 3-, 6- and 12-month), SPI and SSI are computed for the
same durations and used for cross-comparison.

Three copulas, namely, Clayton, Frank, and Gumbel, are used to
derive the joint probability distribution of precipitation and soil
moisture. The Cramér–von Mises statistic (Sn) and Kolmogorov–
Smirnov statistic (Tn) are used for goodness-of-fit tests to assess
the performance of different copulas in modeling the dependence
structure between precipitation and soil moisture [13,15]. The p-
values of statistics Sn and Tn, based on a run of 5000 samples of
each month for a 3-month duration for Climate Division 3, are
shown in Table 1. For constructing the joint distribution, a copula
cannot be rejected if the corresponding p-value is equal to or high-
er than 0.05 (5% significance level). The goodness-of-fit test of the
copula is performed at a monthly scale in order to be consistent
with SPI and SSI analyses. The tables indicate that most months
can be modeled using the Frank and Gumbel copulas, while Clay-
ton occasionally fits as well (see underlined p-values in Table 1).
When several copula families fit the data, the one with the highest
p-value is selected for deriving the joint distribution of precipita-
tion and soil moisture.

4.3. Standardized precipitation and soil moisture indices

The original SPI and SSI at different time durations (i.e., 3-, 6-
and 12-month) are compared for Climate Divisions 3 and 5 dis-
played in Figs. 3 and 4, respectively. One can see that, while the
two indices are generally consistent, there are discrepancies at sev-
eral time steps between the two indices. In a few time steps, even
the wet (positive) and dry (negative) signals are different. For
example, in 1977, the 3-month SPI for Climate Division 3 shows
a recovery from drought, while the SSI indicates that the drought
continues for a few more months (see the top panel in Fig. 3). Such
discrepancies could be due to abnormally high rainfall over a very
short period of time, while most of the month remains dry (SPI > 0
and SSI < 0). Alternatively, a below-average rainfall distribution



Table 1
p-values for the goodness-of-fit tests Sn and Tn for deriving 3-month MSDI based on precipitation and soil moisture over Climate Division 3 in California (the underlined values for
each month correspond to the suitable copula family).

Copula p-value 1 2 3 4 5 6 7 8 9 10 11 12

Clayton Sn 0.00 0.02 0.06 0.07 0.16 0.01 0.02 0.01 0.26 0.46 0.07 0.04

Clayton Tn 0.00 0.04 0.05 0.02 0.46 0.03 0.01 0.02 0.28 0.34 0.07 0.17

Frank Sn 0.46 0.33 0.40 0.33 0.57 0.42 0.13 0.61 0.80 0.01 0.32 0.84

Frank Tn 0.64 0.18 0.42 0.62 0.80 0.20 0.32 0.48 0.90 0.02 0.73 0.38

Gumbel Sn 0.27 0.39 0.23 0.85 0.82 0.35 0.35 0.28 0.95 0.01 0.84 0.41

Gumbel Tn 0.11 0.26 0.22 0.77 0.82 0.39 0.39 0.25 0.87 0.01 0.89 0.34

Fig. 3. Comparison of 3-, 6-, and 12-month SPI and SSI for Climate Division 3 in California (y-axes show the dimensionless values of SPI and SSI).

Fig. 4. Comparison of 3-, 6- and 12-month SPI and SSI for Climate Division 5 in California (y-axes show the dimensionless values of SPI and SSI).
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Fig. 5. Comparison of 3-, 6- and 12-month MSDI, SPI, and SSI for Climate Division 3 in California (y-axes show the dimensionless values of SPI, SSI and MSDI).
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throughout a month, such that the soil stays wet (SPI < 0 and
SSI > 0), could lead to opposite signs of SPI and SSI.

It is emphasized that as the drought duration increases (e.g.,
from 3- to 12-month), the differences between the SPI and SSI tend
to decrease (see Figs. 3 and 4). For example, the 12-month SPI and
SSI are more consistent compared to those of the 3-month or 6-
month drought durations. It is worth mentioning that both SPI
and SSI capture historical drought conditions, such as the California
drought of 1976–1977. However, the SPI and SSI show different
levels of severity (the horizontal lines in Figs. 3 and 4 represent
the moderate drought threshold (severity of �0.8) for better com-
parison). Having different severities indicates that the risk assess-
ment and return-period estimation using SPI and SSI will lead to
different results. Furthermore, the results demonstrate that the
estimated drought duration from SPI and SSI often varies consider-
ably (e.g., 2001–2003 in Fig. 3(bottom) and 1991–1993 in
Fig. 4(bottom)). These differences may lead to different definitions
for drought onset and termination.

4.4. Multivariate Standardized Drought Index (MSDI)

We hypothesize that MSDI can provide a new perspective based
on the joint probability distribution of precipitation and soil mois-
ture. The 3, 6 and 12-month MSDI (solid line), SPI (dashed line),
and SSI (dotted line) for the Climate Division 3 are plotted in
Fig. 5 (for better visualization, only the results for 1974–1990 are
shown). As an example, during 1976–1978, the 3-month SPI and
SSI both show deficits in precipitation and soil moisture with dif-
ferent durations (Fig. 5(top)). The SPI captures the drought earlier
than the SSI, and shows more variability compared to SSI. On the
other hand, SSI indicates a longer drought compared to SPI, mean-
ing it shows the drought persistence more reliably. The MSDI
exhibits the drought onset similar to the SPI and drought persis-
tence similar to SSI. The drought duration based on MSDI is similar
to that of SSI and longer than the duration of the same event based
on SPI. During this 2-year drought period, precipitation shows sig-
nals of drought recovery in mid-1976 and mid-1977 (see high val-
ues of SPI). However, the drought termination signals based on
precipitation are temporary and primarily because of high variabil-
ity of precipitation (see SSI which does not show much variability
and shows the persistence of drought for the entire 2-year event).
Therefore, describing droughts based on solely the state of the pre-
cipitation may be misleading at certain time-steps. Here, MSDI
captures the drought as early as SPI (�2 month before SSI shows
the drought onset) and describes the drought development and
termination based on the state of both precipitation and soil mois-
ture. Therefore, a temporary change in one variable (e.g., precipita-
tion) does not affect the MSDI.

The above example highlights an attractive property of MSDI
which is describing the drought onset and persistence based on
the states of multiple variables. When either precipitation or soil
moisture indicates a drought event, MSDI will also show a drought
event. Regarding the drought severity, the MSDI generally resem-
bles the severity of the SPI or SSI whichever is lower. The MSDI will
lead to even a more severe drought than SPI and SSI when both
indices show deficits in both precipitation and soil moisture (e.g.,
during 1976–1978 drought in Fig. 5).

As shown in the 6-month SPI, SSI and MSDI in Fig. 5 (middle),
for the drought that occurred at the end of 1981, the drought onset
is first captured by the MSDI while neither precipitation nor soil
moisture indicate the drought onset. However, both indicators
are low and show signs of deficit. This is the case when the com-
bined precipitation and soil moisture fall within the A2 area (see
Fig. 1). For this reason, MSDI can improve earlier detection of
droughts than each individual index. The presented results show
that MSDI can combine the information from two indices and pro-
vide one measure of drought based on the states of both precipita-
tion and soil moisture.

In order to further investigate the proposed methodology, MSDI
is applied to three other Climate Divisions (1, 4, and 8) in North
Carolina, which represent different land-use and topographical fea-
tures (Division 1 is mountainous, 4 is semi-urban and 8 is coastal
region) [39]. The 3-month SPI, SSI, and MSDI for the three Climate
Divisions are shown in Fig. 6. As shown in Fig. 6(top), the onset of
the drought that occurred between 1984 and 1986 in Climate Divi-
sion 1 is first recognized by the 3-month SPI and MSDI. The SSI



Fig. 6. Comparison of 3-month MSDI, SPI, and SSI for Climate Division 1, 4, and 8 in North Carolina (y-axes show the dimensionless values of SPI, SSI and MSDI).
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does not capture this drought condition as early as SPI and MSDI.
This is the case when the combination of precipitation and soil
moisture falls in the A1 area displayed in Fig. 1. In this case, the
MSDI, along with the SPI, identifies the drought, while SSI does
not. As the drought develops, SSI also shows a deficit in soil mois-
ture, which results in the MSDI showing an even higher severity le-
vel (or lower joint probability). This is the case where both
precipitation and soil moisture highlight the drought (A4), and as
such, MSDI exhibits an even more severe drought condition than
SPI and SSI alone. As time evolves, precipitation returns to a
near-normal level (above �0.8 thresholds) several months earlier
than the SSI (and MSDI). This is the case where the combination
of precipitation and soil moisture lies in the A3 area given in
Fig. 1. As mentioned earlier, MSDI capture all conditions that fall
in the four areas (A1–A4) highlighted in Fig. 1. Similar behavior
can be observed in Climate 4 (the middle panel in Fig. 6) and Cli-
mate Division 8 (the bottom panel in Fig. 6) during this period.
In summary, MSDI captures the drought onset as early as SPI (or
earlier if both precipitation and soil moisture are low) and de-
scribes the drought persistence similar to SSI.

5. Summary and conclusions

The fundamental difference between droughts and other cli-
mate extremes such as floods and hurricanes lies in the fact that
droughts occur over much longer time spans, and their onsets
and terminations are difficult to identify [44]. While drought
events are typically defined as periods with a sustained lack of
water, depending on the region, indicator variable, and/or user
requirement, they may be defined differently (e.g., lack of soil
moisture, ground water, or precipitation). For this reason, provid-
ing reliable and relevant drought information based on multiple
indicator or variables is important for overall characterization of
drought.

In this paper, a multivariate, multi-index drought-modeling ap-
proach is proposed using the concept of copulas. The proposed
model, named Multivariate Standardized Drought Index (MSDI),
determines drought onset and termination based on the combina-
tion of SPI and SSI, with onset time being dominated by SPI and the
persistence of droughts being more similar to SSI behavior. The
properties of the MSDI that can be summarized as follows: (a)
MSDI captures a drought condition indicated from either precipita-
tion or soil moisture; (b) MSDI describes the drought onset as early
as SPI, while it shows drought persistence similar to SSI; and (c)
MSDI shows a more severe drought condition when both the pre-
cipitation and soil moisture exhibit a deficit. Notice that MSDI, sim-
ilar to univariate SPI and SSI, provides probability of occurrence
and thus can be used for risk analysis as well.

The proposed framework for creating multi-index drought
models is rather general, and other indices can be integrated into
MSDI. In the future, the authors will evaluate the integration of
other indices, such as runoff or ground-water storage, to evaluate
meteorological, agricultural, and hydrological droughts. The
authors emphasize that drought information should be based on
multiple sources of information and, for this reason, MSDI is not
meant to replace SPI and SSI. Instead, we propose that MSDI be
used as an additional source of information based on the joint
probability of precipitation and soil moisture.
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