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In Brief
Inherited retinal degenerations
(IRDs) lack effective treatment
options and they are a major
cause of blindness. In this study,
we analyzed the retinal
proteomes of three
translationally relevant IRD
mouse models (two for retinitis
pigmentosa and one for
congenital amaurosis type 2) to
identify convergent signaling
pathways using global
proteomics. Despite different
disease mechanisms between
the models, we found shared
pathways that could be targeted
for broad therapeutic
applications potentially by using
already existing drugs.
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RESEARCH
Highlights
• Proteomic analyses reveal retinal proteome data from three mouse models of degeneration.

• Retinitis pigmentosa and Leber congenital amaurosis type 2 models exhibit distinct proteomic
changes.

• Rd10 and P23H retinitis pigmentosa models display remarkable convergence in proteomic
phenotypes.

• Mutation-agnostic therapies are feasible due to shared pathological phenomena in retinitis
pigmentosa.
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Retinal Proteome Profiling of Inherited Retinal
Degeneration Across Three Different Mouse
Models Suggests Common Drug Targets in
Retinitis Pigmentosa
Ahmed B. Montaser1,* , Fangyuan Gao2,3, Danielle Peters4 , Katri Vainionpää1,
Ning Zhibin4, Dorota Skowronska-Krawczyk2,3, Daniel Figeys5, Krzysztof Palczewski2,3,6,7,
and Henri Leinonen1,*
Inherited retinal degenerations (IRDs) are a leading cause
of blindness among the population of young people in the
developed world. Approximately half of IRDs initially
manifest as gradual loss of night vision and visual fields,
characteristic of retinitis pigmentosa (RP). Due to chal-
lenges in genetic testing, and the large heterogeneity of
mutations underlying RP, targeted gene therapies are an
impractical largescale solution in the foreseeable future.
For this reason, identifying key pathophysiological path-
ways in IRDs that could be targets for mutation-agnostic
and disease-modifying therapies (DMTs) is warranted. In
this study, we investigated the retinal proteome of three
distinct IRD mouse models, in comparison to sex- and
age-matched wild-type mice. Specifically, we used the
Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of
autosomal recessive and autosomal dominant RP,
respectively, as well as the Rpe65−/− mouse model of
Leber’s congenital amaurosis type 2 (LCA2). The mice
were housed at two distinct institutions and analyzed us-
ing LC-MS in three separate facilities/instruments
following data-dependent and data-independent acquisi-
tion modes. This cross-institutional and multi-
methodological approach signifies the reliability and
reproducibility of the results. The large-scale profiling of
the retinal proteome, coupled with in vivo electroretinog-
raphy recordings, provided us with a reliable basis for
comparing the disease phenotypes and severity. Despite
evident inflammation, cellular stress, and downscaled
phototransduction observed consistently across all three
models, the underlying pathologies of RP and LCA2 dis-
played many differences, sharing only four general KEGG
pathways. The opposite is true for the two RP models in
which we identify remarkable convergence in proteomic
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phenotype even though the mechanism of primary rod
death in rd10 and P23H mice is different. Our data high-
lights the cAMP and cGMP second-messenger signaling
pathways as potential targets for therapeutic intervention.
The proteomic data is curated and made publicly avail-
able, facilitating the discovery of universal therapeutic
targets for RP.

Inherited retinal degenerative diseases (IRDs) are eye dis-
eases that lead to significant disability and eventually to
blindness, as they lack effective treatments. Collectively,
IRDs are relatively common disorders with a global preva-
lence of 1/2000 (1), and they form a leading cause of blind-
ness amongst the youth and working-age population in the
developed world (2). IRDs are excellent targets for gene
therapy as typically a single genetic mutation is the causative
factor (3). Furthermore, local delivery of therapeutic agents in
different compartments of the eye is common practice in eye
clinics. These facts facilitated the clinical approval of the first
gene therapy in 2017/2018 for the treatment of Leber's
congenital amaurosis type 2 (LCA2), a severe type of IRD.
This pioneering gene therapy, voretigene neparvovec (Lux-
turna), is a gene-augmentation therapy that supplies some
normal RPE65 protein, which is crucial for the renewal of
visual pigments in the retinal pigment epithelium (RPE) (4).
Since mutations in RPE65 account for only ~1 to 2% of IRD
cases (5, 6) and all affected patients are not eligible for
Luxturna, a great majority of IRD patients are left without
treatment options.
A major challenge with IRDs is that they are very hetero-

geneous genetically. To date, mutations in more than 280
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Retinal Proteome Profiling in Inherited Retinal Degeneration
genes are causative for IRDs, and the types of mutations in
causative genes can be numerous (7). For instance, at least
150 different disease-causing mutations have been identified
in the rhodopsin gene associated with retinitis pigmentosa
(RP) (8). Although the genetic knowledge of IRDs is expanding
constantly, 30% to 50% of IRDs remain idiopathic (9, 10).
Because of these reasons, the applicability of targeted ther-
apies to address all IRDs appears unlikely in the foreseeable
future.
Even though the causative genetic mutations among IRDs

are highly diverse, the pathophysiological signaling events
occurring downstream of the primary insult (typically rod
degeneration) could be shared. Such convergent pathological
mechanisms, potentially driving collateral degeneration (11),
are attractive targets for disease-modifying therapies (DMTs)
that could benefit a broad and diverse patient population (12–
14). However, a comprehensive picture of the pathological
events across distinct IRD etiologies is still missing. Such data
is crucial for enabling the rational design of DMTs. For
instance, no cross-etiology analyses of the global proteome
exist, although technically this would have been possible for at
least a decade (15, 16).
In this study, we aimed to find convergent downstream

retinal signaling events using global proteomics analyses from
the retinas of three distinct IRD model mice. Specifically, we
analyzed retinal samples from Pde6βRd10 and RhoP23H/WT (in
short, rd10 and P23H) mouse models of autosomal recessive
and autosomal dominant retinitis pigmentosa (RP), respec-
tively; and samples from the Rpe65−/− mouse model of LCA2.
As controls, we analyzed retinal samples from age- and sex-
matched wild-type (WT) mice corresponding to the respec-
tive IRD models. The mouse models in this work are highly
utilized disease models in translational IRD research and they
recapitulate the human diseases remarkably well (17). We
found that the great majority of pathological proteomic
changes were the same in rd10 and P23H RP-model mice,
whereas in Rpe65−/− LCA2-model mice numerous proteomic
TABLE

Age and housing conditions of m

Condition DDA_rd10_DR DDA_rd10_CLR DDA_P2

Disease model RP RP RP
Age P37 P38 P90
Housing place UCI UCI UCI
Rearing
condition

DR DR-to-CLRa Normal

LC-MS/MS UCI UO UCI
MS instrument Orbitrap

Lumos
Orbitrap
QExactive

Orbitrap
Lumos

DDA, Data-dependent acquisition; DIA, Data-independent acquisition;
LCA, Leber congenital amaurosis; UCI, University of California, Irvine; U
versity of Ottawa.

aMice reared P0-P29 in DR and in CLR (vivarium) P29-P38.
network changes were distinct. We focused our attention on
the RP models and analyzed datasets not only by following
the traditional LC-MS/MS Data-Dependent Acquisition (DDA)
mode but also by using the Data-Independent Acquisition
(DIA) mode for improved sensitivity. This study is the first one
to analyze global proteomic data from several IRD models
simultaneously. Our analysis identifies numerous convergent
signaling pathways within the common RP models, facilitating
the rational design of DMT strategies.
EXPERIMENTAL PROCEDURES

Animal Models and Study Design

We used three different mouse models of inherited retinal degen-
erative diseases (IRD) to discover retinal proteomic changes that are
common to retinal degeneration (RD). The models used in this study
were B6.CXB1-Pde6brd10/J (RRID: IMSR_JAX:004,297, referred to as
rd10), B6.129S6(Cg)-Rhotm1.1Kpal/J (RRID: IMSR_JAX:017,628,
referred to as P23H), mouse models of recessive and autosomal
dominant retinitis pigmentosa (RP), respectively (18, 19), and B6.129-
Rpe65tm1Tmr/J (RRID:IMSR_JAX:035,329, referred to as Rpe65−/−)
model of Leber congenital amaurosis type 2 (LCA2) which was a kind
gift from Dr Michael Redmond (National Institutes of Health) (20). The
rd10 colony was kept as a homozygote. Age- and sex-matched
C57BL/6J mice (RRID: IMSR_JAX:000,664) were used as controls.
P23H heterozygote mice were bred with C57BL/6J mice yielding
P23H heterozygote and wild-type (WT) littermates. To get Rpe65−/−

and their WT littermate mice, we bred heterozygote Rpe65+/− mice
together. Only WT and homozygote offsprings were used in this study.
Several cohorts of mice were raised, and their retinal samples were
collected, at two different institutions: the University of California Irvine
(UCI) and the University of Eastern Finland (UEF) over the years 2019
to 2021 and 2023, respectively (Table 1). Mice were given water and
standard feed ad libitum at both institutions. Retinal proteome analysis
was conducted using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS), employing data-dependent acquisition (DDA) or
data-independent acquisition (DIA) modes.

The rd10 mice carry a naturally occurring point mutation in the
phosphodiesterase 6b (Pde6β) gene. This mutation leads to instability
and dysfunction of PDE6 protein and phototransduction, increased
free cGMP, subsequent opening of cGMP-gated channels, and
1
ouse cohorts used in the study

3H DDA_Rpe65−/− DIA_rd10_DR DIA_P23H

LCA RP RP
P45 P23–25 P60
UCI UEF UEF
Normal DR Normal

UCI UEF UEF
Orbitrap
Lumos

Orbitrap
QExactive

Orbitrap
QExactive

DR, Dark rearing; CLR, Cyclic light rearing; RP, Retinitis pigmentosa;
EF, University of Eastern Finland; MS, Mass spectrometry; UO, Uni-

Mol Cell Proteomics (2024) 23(11) 100855 2



Retinal Proteome Profiling in Inherited Retinal Degeneration
increased Ca2+ influx into rods, resulting in robust rod photoreceptor
degeneration (21). The rd10 mice are highly susceptible to the
damaging effects of light and most of their rods die by post-natal day
24 (P24) if mice are reared in cyclic light rearing (CLR), or vivarium
conditions (18). The disease progression is substantially slower if rd10
mice are reared in a dim-light environment, or in a dark room. Several
cohorts of rd10 mice and C57BL6/6J wild-type (WT) control mice were
housed in different light environments, and used for this study:

UCI_DDA_rd10_CLR_cohort 1: rd10 (N = 6; n = 3 females, n = 3
males) and WT (N = 6; n = 3 females, n = 3 males) were housed in
darkroom between P0 and P28. At P29, mice were transferred to
standard vivarium housing conditions (CLR = lights on 6:30 AM, and
off 6:30 PM) at the UCI laboratory animal center (LAC). Mice were
euthanized by cervical dislocation at P38 (9 days in vivarium), their
eyes were enucleated, and their retinas were harvested.

UCI_DDA_rd10_DR_cohort 2: rd10 (N = 6; n = 4 females, n = 2
males) and WT (N = 4; n = 2 females, n = 2 males) were housed in a
darkroom at UCI-LAC throughout their lifespan. The only light expo-
sure they experienced was the dim red light required for daily hus-
bandry. Mice were euthanized by cervical dislocation at P37 in a dark
room, their eyes were enucleated, and their retinas were harvested.

UEF_DIA_rd10_DR_cohort 3: rd10 (N = 4; n = 2 females, n = 2
males) and WT (N = 4; n = 2 females, n = 2 males) were housed in a
dim light environment at UEF-LAC throughout their lifespan. The mice
were kept in a Scantainer, in which glass doors were covered with a
darkening film, limiting light exposure to <0.01 lux inside the mouse
cages. The rd10 and WT mice were euthanized in the same session
with a 3 min exposure to CO2 and subsequent cervical dislocation at
P23 and P25, respectively.

P23H mice harbor a proline to histidine mutation in codon 23 in the
rhodopsin gene, which leads to early rhodopsin misfolding, mis-
localization, and subsequent ER stress in their retinas (22). The mu-
tation leads to gain-of-function pathology, and RhoP23H/WT mice
undergo an intermediately progressing rod degeneration whereby
roughly half of their rods die by 3 months of age (23). Unlike with the
rd10 mice, the housing light conditions do not distinctly affect the
disease progression in RhoP23H/WT (P23H) mice, and all experiments in
P23H mice were performed in standard vivarium conditions. Two
cohorts of P23H mice and WT control mice were used:

UCI_DDA_P23H_cohort 1: P23H mice (N = 10; n = 5 females, n = 5
males) and WT littermates (N = 8; n = 4 females, n = 4 males) were
housed at UCI-LAC. All mice were euthanized by cervical dislocation
at ~ P90, their eyes were enucleated, and their retinas were harvested.

UEF_DIA_P23H_cohort 2: P23H mice (N = 10; n = 5 females, n = 5
males) and C57BL/6J WT control mice (N = 5; n = 2 females, n = 3
males) were housed at UEF-LAC. The P23H and WT mice were
euthanized by cervical dislocation at P60 and P57, respectively. Their
eyes were enucleated, and their retinas were harvested.

The Rpe65−/− mice are fully deficient of RPE65 which is an enzyme
that is necessary for the functioning of the classical visual cycle in the
retinal pigment epithelium (RPE) (24). In Rpe65−/− mice, the cone
photoreceptors do not respond to light at all (25). They also die quickly
after the opening of the eyes due to cone opsin mislocalization in the
absence of 11-cis-retinal production and supply by the RPE (26). In
contrast, rods die slowly in Rpe65−/− mice and they retain some re-
sidual light responsivity despite the severe chromophore insufficiency.
In our experiment, the Rpe65−/− mice were housed in standard vi-
varium conditions and one cohort was used:

UCI_DDA_Rpe65−/− cohort 1: Rpe65−/− mice (N = 8; n = 4 females,
n = 4 males) and C57BL/6J WT control mice (N = 9; n = 3 females, n =
6 males) were housed at UCI-LAC. Both retinas from two Rpe65−/−

mice were pooled during harvesting leading to replicates: N = 4; n = 2
females, n = 2 males. Similarly, retinas from three WT mice were
pooled during harvesting leading to replicates: N = 3; n = 1 female, n =
3 Mol Cell Proteomics (2024) 23(11) 100855
2 males. All mice were euthanized by cervical dislocation at P45, their
eyes were enucleated, and their retinas were harvested.

At both institutions, mice were housed in a temperature-controlled
animal facility with a 12-h light/dark cycle and fed a standard rodent
diet ad libitum. All procedures were conducted in accordance with the
ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. Animal subjects at UCI were treated in accordance with the
NIH guidelines for the care and use of laboratory animals, and all
experimental procedures have been approved by the Institutional
Animal Care and Use Committee (IACUC, protocol #AUP-21-096).
Animal experiments at UEF were conducted in accordance with the
Directive 86/609/EEC for animal experiments, and FELASA Guidelines
and Recommendations, and were approved by the Finnish Project
Authorization Board, with protocol number ESAVI/26320/2021.

Retina Dissection

Retina dissection was performed as previously described (23).
Briefly, following euthanasia, the eyes were quickly enucleated, and
the retinas were excised by performing three incisions starting from
the optic nerve head and cutting toward the ora serrata, which allowed
easy and quick separation of the retina from the rest of the eye cup.
Anterior parts of the eye were discarded, whereas the retinas were
transferred to 1.5 ml Eppendorf tubes and snap-frozen using liquid
nitrogen, and then stored for later processing.

In Vivo Phenotyping by Electroretinography

We tested retinal function by electroretinogram (ERG) recordings
under anesthesia with ketamine (100 mg/kg) and xylazine (10 mg/kg).
ERG recordings were performed with a Diagnosys Celeris ERG device
(Lowell), as described previously (27, 28).

Label-Free Protein Quantifications Following Data-dependent
Acquisition Mode

UCI_DDA_rd10_DR_cohort 2, UCI_DDA_P23H_cohort 1, and
UCI_DDA_Rpe65−/− cohort one were analyzed following the method A
steps, while UCI_DDA_rd10_CLR_cohort one was analyzed following
method B steps (see below).

Sample Preparation and Protein Digestion

Method A–The retinas were suspended in Urea buffer containing
8 M Urea, 0.1 M Tris-HCl (pH 8.5), 1% protease inhibitor cocktail, and
ultrasonicated on ice for 4 min, followed by centrifugation at 12,000g
at 4 ◦C for 10 min. The resulting supernatant (i.e., extracted retinal
proteins) was collected for digestion using the filter-aided sample
preparation (FASP) method (29). In brief, the extracted retinal proteins
were loaded into an Amicon centrifugal filter (Millipore) with a 30-kDa
cutoff. The proteins were then reduced with 10 mM dithiothreitol (DTT)
at 56 ◦C for 1 h and alkylated with 20 mM iodoacetamide (IAA) at room
temperature (RT) in the dark for another 1 h. Subsequently, the buffers
were replaced with 50 mM ammonium bicarbonate (AmBi) through
three washes of the filter membrane. Modified trypsin (Promega) was
added to the protein solution in a 1:50 (w/w) ratio and incubated at 37
◦C overnight. The digested peptides were collected via centrifugation,
along with an additional water rinse. This solution was then vacuum-
dried and reconstituted in 200 μl of 0.5% acetic acid. The peptide
mixture was desalted by C18 solid-phase extraction (provided by The
Nest Group, Inc), and vacuum-dried. For each analysis, 0.5 μg of
digested proteins were loaded for LC-MS/MS analysis in randomized
order.

Method B–Frozen specimens were ground to a powdered state
over liquid nitrogen. Fresh chilled sodium deoxycholate (SDC) lysis
buffer (4 % wt/vol SDC and 100 mM Tris-HCl, pH 8.5) was then added,
and the samples were incubated at 95 ◦C for 5 min with shaking at
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1500 rpm. This was followed by sonication (Q125 Sonicator, Qsonica,
LLC) at 4 ◦C at maximum output power for two 10-min cycles. The
samples were reduced and alkylated using 10 mM TCEP and 40 mM
2-chloroacetamide (pH 7) (Sigma) while incubating for 5 min with
shaking at 1500 rpm at 45 ◦C, and then cooled. Lys-C (Thermo Sci-
entific, 90,051) and TPCK-treated trypsin (Worthington-biochem,
LS02124) were added at an enzyme-to-substrate ratio of 1:100 (w/w)
and digested for 16 h at 37̊C with shaking at 1500 rpm. The SDC was
removed from the samples by acidification with formic acid (FA)
to ~ pH 2, followed by centrifugation at 16,000 g for 5 min. Next, 5 mg
of a slurry of 10-μm C18 column beads (Dr Maisch GmbH) in aceto-
nitrile (Sigma-Aldrich, 1000294000) was loaded into a 200 μl filter tip
(Vertex, 4237NSF) and the tryptic peptides were washed three times
with 0.1% FA (v/v). The peptides were then eluted with 80% aceto-
nitrile (v/v) (Sigma-Aldrich, 1000294000) and 0.1% FA (v/v), freeze-
dried, and reconstituted to 1 μg/μl with 0.5% formic acid (v/v)
(Sigma-Aldrich, 5330020050). An aliquot (1 μl) of each sample was
loaded for LC-MS/MS analysis in randomized order.

Peptide Separation and Data-dependent Acquisition (DDA)

Method A–Proteomics analysis was performed using an UltiMate
3000 UHPLC system (Thermo Fisher Scientific) connected directly to
an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scien-
tific) equipped with an ESI nanospray source. The mobile phase A
consisted of 0.1% FA in water, and mobile phase B consisted of 0.1%
FA in ACN. The peptides were eluted at a constant flow rate of 300 nl/
min and separated over an active 57-min gradient from 4% to 25%
buffer B, with a total sample runtime of 90 min on an Acclaim PepMap
RSLC column (50 cm × 75 μm). Survey MS scans were conducted in
the Orbitrap (FT) with an automated gain control (AGC) target of 8E5, a
maximum injection time of 50 ms, and a dynamic exclusion period of
30 s covering a scan range of 375 to 1800 m/z. MS/MS spectra were
gathered in data-dependent acquisition (DDA) mode at the highest
speed setting for 3-s cycles; the AGC target was set at 1E4 with a
maximum injection time of 35 ms. The ions underwent stepped-
energy, higher-energy collisional dissociation (seHCD) with a
normalized collision energy (NCE) of 20 ± 5%.

Method B–Proteomics analysis was conducted using an EASY-
nLC 1200 System (Thermo Fisher Scientific) linked to a Q-Exactive
mass spectrometer (Thermo Electron) via a nano-electrospray inter-
face operating in positive ion mode. Mobile phase A consisted of
0.1% FA in water, while mobile phase B was comprised of 0.1% FA in
80% acetonitrile. Peptides were loaded into a 75 μm I.D. × 150 mm
fused-silica analytical column packed in-house with 3 μm ReproSil-
Pur C18 resin (Dr Maisch GmbH). The flow rate was set at 250 nl/
min, and peptides were separated over a 105-min active gradient from
5% to 35% buffer B (total method duration 120 min). Survey MS scans
were captured in the Orbitrap with a resolution of 70k at m/z 400, and
the spray voltage was held at 2.0 kV. The capillary temperature was
maintained at 300 ◦C. Data-dependent MS/MS scans were performed
targeting the 12 most intense precursor ions with a dynamic exclusion
of 30 s. MS/MS resolution was set at 17.5k, and real-time internal
calibration was used to enhance mass accuracy with a lock mass of
background ion at 445.120025. Charge states that were unknown or
singly charged were excluded from MS/MS analysis. All data were
collected using Xcalibur software (ThermoFisher Scientific).

DDA Spectrum Match and Identification of Proteins

The raw LC-MS/MS data files were processed using MaxQuant
(version 2.1.0.0) (15), with the spectra matched against the Uniprot
mouse database (UP000000589, updated in April 2022, which con-
tains 21,957 protein entries plus additional Uniprot mouse database
which contains 41,543 protein isoform entries) and cRAP contaminant
database (updated in March 2019, which contains 100 protein entries).
For peptide identification, the mass tolerances applied were 20 ppm
for initial precursor ions and 0.5 Da for fragment ions. Specific Trypsin/
P digestion and up to two missed cleavages were permitted in the
tryptic digests and spectral search. Cysteine residues were treated as
static modifications, and oxidation of methionine was considered a
variable modification. Peptide identification filtering was conducted at
a 1% false discovery rate.

Label-Free Quantification of Proteins Following Data-Independent
Acquisition Mode

UEF_DIA_rd10_DR_cohort 3, and UEF_DIA_P23H_cohort two were
analyzed following method C steps.

Sample Preparation and Protein Digestion

Method C–The mouse retinas were homogenized in 100 μl of
protein extraction buffer (ab193970) (Abcam) using a handheld ho-
mogenizer (Pellet Pestle Cordless Motor, FisherScientific) for 30 s on
ice. The retinal homogenates were then solubilized by sonication in
two 30-s bursts, interspersed with 30-s intervals on ice. The lysates
were then centrifuged at 18,000g for 20 min at 4 ◦C. The supernatants
(extracted solubilized proteins) were collected in separate Eppendorf
low-protein binding tubes (Thermo Fisher Scientific). Total protein
content was measured from retinal lysates using the BCA protein
assay (Thermo Fisher Scientific), and the total protein concentration
was adjusted to 1 mg/ml for all samples using the same lysis buffer.
The extracted and solubilized retinal proteins were processed using
FASP, as previously described (29, 30). Briefly, a total of 50 μg of
protein fraction was loaded on a centrifugal filter 30-kDa cutoff (Merk
Millipore), and the buffer was exchanged with 0.1 M DTT (Merk) in UA
buffer (8 M Urea in 0.1 M Tris/HCl, pH 8.5). The mixture was incubated
at RT on a thermomixer at 500 rpm for 60 min and then washed twice
with UA buffer. Alkylation of the protein samples was performed using
0.05 M iodoacetamide (Merck) in UA buffer on the thermomixer at
300 rpm for 20 min in the dark. The reduced and alkylated proteins on
the filter were washed twice with UA buffer, then incubated with 49 μl
of 50 mM AmBi digestion buffer, 1:100 (w/w) endoproteinase LysC,
and 0.05% ProteaseMax (Promega) on the thermomixer at 600 rpm
and 30 ◦C for 3 h. Subsequently, 1 μl of TPCK-treated trypsin
(Promega) was added to the filter at a 1:50 (w/w) ratio and incubated
for 16 h at 37 ◦C. The digested peptides were recovered by centri-
fugation followed by two elution steps using 50 μl of 50% acetonitrile
in AmBi buffer. The solvent was evaporated via a SpeedVac vacuum
concentrator (Thermo Fisher Scientific) at RT. The dried samples were
reconstituted in a 2% acetonitrile/5% FA solution, and mixed on a
thermomixer at 300 rpm and RT for 20 min. Finally, 10 μl of each
sample, containing 10 μg of protein, was loaded for LC-MS/MS
analysis in randomized order.

Peptide Separation and Data-independent Acquisition (DIA)

Proteomics analysis was conducted using a UPLC (Vanquish Flex,
Thermo Scientific) coupled to a high-resolution Orbitrap Q Exactive
Classic mass spectrometer (Thermo Scientific) operating in positive
ion mode. Mobile phase A consisted of 0.1% FA in water, while mobile
phase B comprised 0.1% FA in ACN. Peptides were loaded into an
Agilent AdvanceBio Peptide Map column (2.1 mm × 250 mm, 2.7 μm,
Agilent Technologies). The flow rate was set at 0.3 ml/min, and pep-
tides were separated over an 80-min active gradient from 2% to 45%
buffer B (total method duration 90 min). Mass spectrometric detection
encompassed Full MS–SIM (Resolution: 35k; AGC target: 3e6; max
injection time: 60 ms; scan range: 385–1015 m/z) and DIA (Resolution:
17.5k; AGC target: 2e6; max injection time: 60 ms; loop count: 25;
isolation window: 24 m/z).
Mol Cell Proteomics (2024) 23(11) 100855 4
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DIA Spectrum Match and Identification of Proteins

The raw data were processed by DIA-NN software (version 1.8)
using the library-free DIA analysis mode (31) with default settings.
The MS/MS spectra library and retention times of peptides were
predicted using the UniProt reference proteome database for
mouse (UP000000589, updated in April 2022, which contains
21,957 protein entries plus additional Uniprot mouse database
which contains 41,543 protein isoform entries). Cysteine residues
were set as static modifications. Oxidation of methionine and N-
terminal acetylation were set as variable modifications while a
maximum number of variable modifications per peptide was set to
2. The predicted MS library was used to search the raw data,
applying 1% thresholds for both precursor and protein group false
detection rates, and requiring the presence of at least one proteo-
typic peptide ranging from 7 to 30 amino acids in length. For data
evaluation, the resulting MaxLFQ normalized intensities (15) were
used.

Experimental Design and Statistical Rationale

The output protein groups and their normalized intensities,
calculated by the MaxLFQ algorithm (15) integrated into Maxquant
and DIA-NN software, were used for further downstream analysis. The
number of replicates used in each mouse cohort is described in
Table 2, while detailed sample characteristics are described in the
supplementary file (Supp4-Sample_characteristics).

The MaxLFQ intensities were filtered and processed further using
Perseus software (32). First, potential contaminants, only identified
by site, or reversed hits were filtered out. The intensities of the
protein groups were log-transformed, and the study groups were
defined using the category-annotation tab. The groups were then
divided based on data completion and missing values into two
groups; complete dataset (100% valid values in total) and missing
values dataset (at least three valid values in at least one group). The
categorical groups in the complete datasets were compared and
analyzed using a linear model for microarray data test (LIMMA) (33)
followed by multiple testing false discovery rate (FDR) corrections;
and the statistical significance was set at q-value < 0.05. The cat-
egorical groups in the missing values datasets were analyzed using
the Student’s t test and the statistical significance was considered if
there were at least three valid values in each of the compared
groups and a p-value < 0.01. The KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway analysis from statistically significant
differentially expressed proteins (DEPs) was performed using
SRplot (34). Data visualization was performed using several R
packages such as dplyr (35), ggplot2 (36), KEGGREST (37), LIMMA
(33) pheatmap (38), and VennDiagram (39). Figure 1 and
Supplemental Figs. S1 and S2 were created using Jvenn (40), while
violin plots were prepared by SRplot (34). Inkspace 1.2 software
was used to combine the figures.
TABLE

Number of replicates used fo

Condition DDA_rd10_DR DDA_rd10_CLR DDA_P2

RD model 6 (4f + 2m) 6 (3f + 3m) 7 (2f +
WT 4 (2f + 2m) 6 (3f + 3m) 8 (4f +

RD: retinal degeneration, WT: wildtype, f: female, m: male.
aboth retinas of two mice were pooled per replicate.
bsingle retina of three mice were pooled per replicate.
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RESULTS

Profiling of the Mouse Retinal Proteome

In the present study, we identified and quantified over
7000 mouse retinal proteins from 6 mouse cohorts raised at
two different institutions, UCI and UEF. Frozen retinal samples
were processed in three different LC-MS laboratories (at UCI,
UO, and UEF) using two different label-free protein quantifi-
cation methods, the DDA and DIA modes. Consistent and
reliable identifications are presented in (Fig. 1).
The standard data-dependent acquisition (DDA) LC-MS

mode was employed to analyze the retinal proteome of
three different IRD mouse models (rd10, P23H, and Rpe65−/−).
Roughly 53% of identified retinal proteins were quantified in all
three models (Fig. 1A). To investigate the RP-associated
retinal proteome more comprehensively, we employed the
DIA analysis mode through the spectral library prediction tool,
as previously described (31). Importantly, by using the DIA
mode the overall proteome coverage was improved more than
four-fold (Fig. 1B and Supplemental Figs. S1 and S2). In the
DIA analyses, 77% of identified proteins were quantified in
both RP models.
Nevertheless, the consistent identification of proteins across

various research sites and analytical methods reinforces the
reliability and potential for comparative (semi-quantitative)
analysis between the datasets (Supplemental Fig. S4). Indeed,
selected marker proteins showed a similar pattern of expres-
sion change regardless of mouse housing institution (UCI &
UEF), mass spectrometer used, or analysis mode (DDA & DIA)
used in dark-reared rd10 mice (Supplemental Fig. S4A) or
vivarium-housed P23H mice (Supplemental Fig. S4B). Instead,
laboratory light conditions affected the retinal phenotype of the
rd10 mouse significantly (Supplemental Fig. S5), which has also
been described before (41).

Phenotypes of the Three IRD Models Based on
Electroretinography Recording and Marker Protein

Expression

Although the phenotypes of rd10, P23H, and Rpe65−/− mice
are well-characterized in the literature (see e.g., (18–20), we
recorded scotopic electroretinograms (ERG) to highlight some
major differences between the models (Fig. 2A). At the time of
ERG recording, the mice were housed in similar conditions
2
r retinal proteome analysis
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and were at similar ages as those used for the DDA mode-
based proteomics (DDA proteomics data presented in
Figs. 3–7). The ERG responses in rd10 mice at this stage (P39)
were very small (Fig. 2A), and likely dominated by the activity
of surviving cone photoreceptors (42). In contrast, the P23H
mice (P90) displayed intermediately well-preserved and sen-
sitive ERGs, particularly with respect to the b-wave (Fig. 2A).
These responses are driven by the remaining rods together
with the well-preserved cone population (23). The Rpe65−/−

mice (P42) displayed a minuscule a-wave but surprisingly
strong b-wave amplitudes (Fig. 2A). It is notable, however, that
the Rpe65−/− mice only started to respond at the highest
stimulus intensities, which indicates low sensitivity. These
unusual light responses of the Rpe65−/− mice are known to
arise from residual rod activity (43). In fact, retinal light re-
sponses are severely attenuated from birth in Rpe65−/− mice
(25), and they may be practically blind at low light levels such
as in standard vivarium conditions.
For proteomic data processing, before moving into analysis

of DEPs and KEGG pathways, we selected several rod- and
cone-enriched markers (44) (Supplemental Fig. S3), as well as
common inflammation markers, to provide an estimate of how
the different models compare with respect to photoreceptor
degeneration and inflammatory status at the time of sample
collection. Analysis of rod-enriched markers indicated a sig-
nificant loss of rod photoreceptors, with rd10 being the most
affected model, as evidenced by the decreased expression of
rod-enriched proteins (Fig. 2B). The pronounced down-
regulation of RHO and GNAT1 was comparable in rd10 and
P23H models. Rod degeneration is relatively slow in Rpe65−/−

mice (26), which is evident in our data (Fig. 2A).
Analysis of cone-enriched markers OPN1MW, OPN1SW,

PDE6C, GNAT2, and GNGT2 showed downregulation collec-
tively only in the rd10 mice, but not in P23H mice (Fig. 2B).
None of the cone-enriched markers were detected in Rpe65−/−

mice (Fig. 2B), highlighting the severe anatomic cone-
degeneration in these mice (45). Interestingly, while the
short-wavelength sensitive S-opsin (OPN1SW) was down-
regulated in P23H mice also, the middle-wavelength sensitive
M-opsin (OPN1MW) showed upregulation. This finding sug-
gests that the S-cones may be more susceptible to cell death
in the P23H mice, or that retinal degeneration overall is more
pronounced in the inferior retina where these cells are pre-
dominantly expressed (46). The trend towards increased
OPN1MW expression in P23H retinas could be due to ho-
meostatic regulation to counterbalance rod-pathway
dysfunction. Indeed, we previously observed oversensitive
cone-mediated ERG b-wave responses in P23H mice up to
3 months of age (28). In the same study, S-cone responses
appeared to start declining earlier than M-cone responses.
Inflammation markers GFAP, VIM, APOE, CTSB, GSTO1,

and A2M indicated significant inflammatory response in the
Mol Cell Proteomics (2024) 23(11) 100855 6
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Retinal Proteome Profiling in Inherited Retinal Degeneration
retinas of all three IRD models (Fig. 2C). Overall, the order of
inflammatory status in the models at this disease stage
appeared to be from highest to lowest: rd10, Rpe65−/−, and
P23H. Table 3 provides a qualitative summary of retinal
degeneration severity in the three models.

Commonly Regulated Retinal Proteome in the RP and LCA
Mouse Models

The retinas from the three IRD models shared only a few
tens of commonly regulated DEPs (Fig. 3A), leading to a
handful of KEGG pathways that were commonly enriched
among the models (Fig. 3B). The common DEPs largely con-
sisted of cell stress-related proteins such as VIM and GFAP
(Fig. 3C). The four commonly enriched KEGG pathways were:
“Tight junction”, “GABAergic synapse”, “Phototransduction”,
and “Bacterial invasion of epithelial cells” (Fig. 3B). Down-
wards regulation in the “Phototransduction” pathway
(Supplemental Fig. S6) is clearly evident, as a majority of its
components are expressed in the photoreceptor cilia that
stereotypically degenerate in IRDs, including in the disease
7 Mol Cell Proteomics (2024) 23(11) 100855
models used here. The “Tight junction” pathway tends to be
upregulated in all three models, and commonly regulated
proteins include several actin- and myosin-related proteins
such as EZR, MYH9, MSN, ACTN1, and SLC9A3R1. These
changes may act to improve cell mobility, contractility, po-
larity, and survival. The regulation mediated by the KEGG
pathway “Bacterial invasion of epithelial cells” is also largely
linked to changes in cytoskeleton-related components such
as actin, catenin, and filament-forming proteins. The overall
upregulation of “GABAergic pathway” proteins (Supplemental
Fig. S7) indicates modified GABA activity.

Selectively Regulated Retinal Proteome in the LCA Model
Versus the RP Models

A total of 373 DEPs were dysregulated in Rpe65−/− mice
compared to WT (Fig. 4 and Supp2-proteins list). Among these
proteins, 83 showed expression changes in the opposite di-
rection (either upregulation or downregulation) compared to
those seen in rd10 or P23H mice, as illustrated in (Fig. 5). Many
crystallin proteins were highly downregulated in Rpe65−/−
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samples while being stable or slightly upregulated in the RP
mouse retinas (Fig. 4). Similarly, some proteins related to
nucleotide metabolism (ARFGAP1, ARL6IP5, & CDC42EP4), or
cytoskeleton (EIF4G2, HDHD2, & TUBB4A), were down-
regulated in Rpe65−/−, but trending towards upregulation in RP
mice. Fatty acid-binding protein 5 (FABP5) was distinctly
downregulated in Rpe65−/− mouse retinas (>−2 log2FC), while
being upregulated in rd10 and P23H mice (>0.5 log2FC).
Neurochondrin (NCDN) also followed the same pattern. In
contrast, some proteins such as PDC, SAMD11, STX3, SFXN5,
YBX3, AND HMGB2 were upregulated in Rpe65−/− mice, but
downregulated in both rd10 and P23H mice.
There was more discrepancy in Rpe65−/− versus

rd10 mouse proteomic regulation, as compared to Rpe65−/−

versus P23H (Fig. 5). For instance, proteins related to nucle-
osome and chromosome phasing and histone binding to DNA
(e.g., H1F0, H2AFV; H2AFZ, HIST1H1A, HIST1H1B,
HIST1H1C, HIST1H1E, HMGA1, LMNB1, NOP58, RALY,
SMC1A, TOP1, and UPF1) were upregulated in Rpe65−/− but
downregulated in rd10 mouse retinas, while this pattern was
absent in P23H retinas.
The proteomic phenotype of Rpe65−/− mouse retina had

several distinct features (Fig. 6). These included dysregulation
in oxidative phosphorylation, the citrate cycle (TCA), and the
spliceosome pathway. Several components of the mitochon-
drial respiratory chain complex I (NDUFV2, NDUFAB1,
NDUFS3), also known as the NADH: ubiquinone oxidoreduc-
tase, were significantly downregulated in Rpe65−/− mouse
retinas (Fig. 7A). Instead, a major component of respiratory
chain complex II, SDHA, was significantly upregulated.
Several components of the downstream complexes III and IV
showed bidirectional regulations (e.g., opposite regulation of
UQCRH and UQCRB, or COX5A and COX5B); whereas the
subunits of complex V, or ATP synthase (such as ATP5D and
ATP5C1), collectively were upregulated in the Rpe65−/− sam-
ples. The protein expression in the components mentioned
above remained stable in both RP models. Tens of proteins
included in the TCA cycle pathway also showed bidirectional
regulation in Rpe65−/− retinas, but their regulation remained
collectively more stable in rd10 and P23H retinas
(Supplemental Fig. S8). Interestingly, while aconitase 1 (ACO1)
and mitochondrial isocitrate dehydrogenase (IDH2) were
clearly downregulated in Rpe65−/− retinas, the same proteins
were distinctly upregulated in rd10 retinas.
Changes in the proteome of the Rpe65−/− retina also sug-

gested an altered spliceosome pathway through overall
Mol Cell Proteomics (2024) 23(11) 100855 8
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upregulation of spliceosome components, such as ribonu-
cleoproteins (HNRNPK, HNRNPA3, SF3B2, & SNRPD2), RNA
helicases (DDX46 & EIF4A3), and other regulatory or RNA-
binding proteins (FUS, SF3B1, SNRPA, RBM8A) (Fig. 7B).
This phenotype was not evident in the RP mouse retinas.

Analysis of the Retinal Proteome of the RP Mouse Models
with Increased Coverage

The DIA-MS-based analysis of the retinal proteome for rd10
and P23H mice showed higher proteome coverage compared
to the earlier DDA-MS-based method (~four-fold increase)
(Fig. 3 and Supplemental Fig. S2). This increased coverage
enabled a more detailed analysis of the proteome of the two
RP models. As a distinct general feature, significantly
upregulated DEPs (q-value < 0.05 and log2FC > 1) greatly
outnumbered downregulated DEPs (Fig. 8). A total of 151 and
197 proteins were upregulated compared to only 41 and 25
downregulated proteins in the rd10 and P23H retinas,
respectively (Fig. 8, A and B). As expected, due to photore-
ceptor degeneration, most distinctly downregulated proteins
included photoreceptor cilia-specific components such as
RHO, ROM1 and subunits of PDE6. The most strongly upre-
gulated proteins in both RP models included immune system/
inflammation/stress response-associated proteins such as
GFAP, FGF2, H2-D1, S100 A.
Both rd10 and P23H retinas share 600 DEPs (Fig. 9A) which

form 90 commonly enriched KEGG pathways (Fig. 9B).
Selected pathways are shown in (Fig. 9C), while the rest of the
Mol Cell Proteomics (2024) 23(11) 100855 10
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enriched pathways are depicted in (Supplemental Fig. S9). The
findings included, e.g., pathways related to the metabolism of
nucleotides, glutathione, and lipids (Supp3-List of Pathways).
The “Environmental Information Processing” KEGG category
included pathway regulation in, e.g., “cell communication,”
“adhesion,” and “intracellular regulation.” Changes in the
regulation of synaptic/neuronal remodeling and plasticity were
suggested by the enrichment of several pathways such as
regulation of actin cytoskeleton, axon guidance, and focal
adhesion. The KEGG “organismal systems” category showed
involvement of various neurotransmitter and hormone
signaling systems in the RP pathophysiology, such as estro-
gen, insulin, thyroid hormone, prolactin, oxytocin, growth
hormone, neurotrophins, cholinergic, glutamate, GABA,
adrenergic, and dopamine pathways. In the KEGG “human
diseases” category, several cancer-related pathways were
also enriched, indicating common signaling phenomena with
retinal neurodegeneration.
From these numerous common KEGG pathways “Purine

metabolism,” “cAMP signaling pathway,” and “cGMP-PKG
signaling pathway” are particularly relevant targets to thera-
peutic interventions (Y. (11, 14, 47, 48); therefore, they are
considered here in more detail. Except for rod-enriched
components that are downregulated as a direct result of rod
degeneration (e.g., PDE6A, PDE6B, PDE6G, GUCY2E,
11 Mol Cell Proteomics (2024) 23(11) 100855
GUCY2F, NT5E, IMPDH1), the purine metabolism pathway
showed an overall trend towards upregulation in both rd10
and P23H retinas (Fig. 10A). IMPDH1, which catalyzes the
synthesis of xanthine monophosphate from inosine-5′-
monophosphate is downregulated, whereas ADSS1, an
enzyme that plays a role in the conversion of inosine mono-
phosphate to adenosine monophosphate is upregulated in RP
retinas. However, IMPDH1 is enriched in photoreceptors so it
could be decreased simply because of degeneration (44).
Several subtypes of adenylyl cyclases (ADCY2, ADCY5, and
ADCY8), which catalyze the formation of cAMP from ATP,
were significantly upregulated in P23H retinas. In addition,
several cAMP- and cGMP-degrading phosphodiesterases
(PDE1C, PDE3A, PDE4B, PDE4D) were upregulated in P23H
retinas. Adcy2 and Adcy8 mRNA primarily localizes to mouse
cone bipolar cells (CBCs), whereas Adcy5 mRNA is expressed
most abundantly in amacrine cells (AC) and retinal ganglion
cells (RGCs) (44) (Supplemental Fig. S10). Pde4b is mostly
expressed in CBCs while Pde4d expression is rather low but
may be primarily expressed in astrocytes (44). ADCY2,
PDE1C, and PDE3A proteins are overexpressed in both rd10
and P23H mouse retinas. Adcy2 mRNA is detected most
highly in CBCs, horizontal cells (HCs), and RGCs, Pde1c ap-
pears to localize primarily to CBCs, and Pde3a to HCs and
Acs in the mouse retinas (44).
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Retinal Proteome Profiling in Inherited Retinal Degeneration
A similar trend toward upregulation as in the “purine
metabolism” pathway is seen in the cAMP- and cGMP-
signaling pathways; in contrast, the rod-enriched cyclic
nucleotide-gated channels alpha and beta 1 (CNGA1, CNGB1)
TABLE 3
Summary of disease model phenotype

Model rd10 P23H Rpe65−/−

Primary associated disease RP RP LCA
Rod degeneration progression +++ ++ +
Cone degeneration progression ++ + +++
Combined rod-cone dysfunction
(ERG)

+++ ++ +++

Inflammation markers +++ ++ +++

Analysis derived from literature data, as well as ERG and marker
protein expression data from this work.
are highly downregulated (Fig. 10, B and C). Both homologs of
rho kinases (ROCK1 & ROCK2) are upregulated in RP retinas.
The increased activity of the rho kinases has been implicated
frequently in neurodegeneration (49). Calcium/calmodulin-
dependent protein kinases CAMK2G and CAMK4 are also
upregulated in rd10 and P23H retinas. Camk2g and Camk4
mRNAs are mostly localized to ACs and RGCs, or CBCs,
respectively (44). Overall, it appears that the inner retina re-
sponds to photoreceptor degeneration by upregulating pro-
teins that belong to the purine metabolism and cAMP/cGMP
pathways, suggesting increased activity of the cAMP and/or
cGMP second messengers in retinal compartments that are
not affected primarily.
The retinal proteomes of both rd10 and P23H mice generally

exhibited changes in the same direction, either upregulated or
downregulated, compared to their respective WT controls;
Mol Cell Proteomics (2024) 23(11) 100855 12
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however, the extent of these changes varied with the pro-
gression of the disease (see example: Supplememental
Figs. S6–S8). However, some proteins exhibited opposite
13 Mol Cell Proteomics (2024) 23(11) 100855
expression patterns (absolute log2FC > 0.5) (Fig. 11), with only
10 of these protein changes (ALDH1A7, COX6B1, DNAJC19,
ENSA, IDE, MFGE8, NDUFAB1, OPN1MW, PCP4, ZNF219)
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being statistically significant in both mouse models (q-value <
0.05). Alpha-endosulfine (ENSA) was downregulated and
insulin-degrading enzyme (IDE) was upregulated in
rd10 mouse retinas, while the opposite was observed in P23H
mouse retinas; these proteins are associated with insulin
catabolism and secretion (50). DEPs or enriched pathways
that are only detected in rd10 retinas, or only in P23H retinas
are reported in the supplementary data (Supp2 - List of
Proteins and Supp3 - List of Pathways).
DISCUSSION

This study provides a comparative analysis of retinal pro-
teomes from three distinct IRD mouse models. Two of the
models represent RP, while one model is more closely asso-
ciated with LCA2. Mice were housed, and retinal samples
were collected in two different institutions, while LC-MS/MS
was performed in three different laboratories. However, for
peptide search and statistical analysis, the LC-MS/MS data
was aggregated, and data analysis was performed simulta-
neously by the same researcher following the same parame-
ters for each dataset. The data provides accurate relative
proteome quantification across the three different IRD models.
The data have been meticulously analyzed and curated, of-
fering a valuable resource to identify distinct and reproducible
proteomic changes occurring among these three IRD models,
and in particular, between the RP models. Indeed, our analysis
reveals highly convergent retinal proteomic changes within the
RP models (rd10 and P23H), whereas the LCA2 (Rpe65−/−)
samples show several uniquely altered proteomic pathways.

Overall Characteristics of the Disease Models and
Proteomics Data

Rod-enriched markers and scotopic ERG responses were
significantly dampened in all three models, confirming rod
degeneration (Fig. 2A). However, the pathologic characteris-
tics of the Rpe65−/− mice were distinct. The anatomic
degeneration of rods is minor at this disease stage in the
Rpe65−/− mice, but the rod-mediated function is impaired due
to full blockade of the RPE-mediated visual cycle in these
animals (24). The cone photoreceptors quickly die in Rpe65−/−

mice, and from birth, they fail to respond to light (25). Because
only 3% of mouse photoreceptors are cones (51), and their
distribution across the retina is rather homogenous (46), their
loss does not cause a clear change in the retinal
macrostructure.
In rd10 mice the progression of anatomic rod degeneration

is fast, and in P23H mice it occurs at an intermediate rate.
Cone degeneration is a secondary outcome and occurs much
later in both models (Fig. 2A) (18, 23). These characteristics of
the different models are important to bear in mind when
Mol Cell Proteomics (2024) 23(11) 100855 14
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drawing conclusions from the data presented in this work. We
expect that in the retinas of Rpe65−/− mice, proteomic
changes are due to loss of photoreceptor function, and less so
from anatomic degeneration. In both RP models, the photo-
receptors, particularly cones, still signal well to the down-
stream neurons in the inner retina, and we interpret the
proteomics changes in their retinas as being caused more by
anatomic rod degeneration than in Rpe65−/− mice. Neverthe-
less, markers of inflammation and cell stress state were rela-
tively similarly upregulated in all three models (Fig. 2C).
Since our DDA datasets did not detect many differences

between the rd10 and P23H models, we performed additional
analyses in the DIA mode. In general, the DIA mode generated
over two-fold proteome coverage than did the DDA mode:
5913 vs 2688 in rd10, and 6843 vs 3150 in P23H
(Supplemental Fig. S2). A total of 257 proteins were exclu-
sively identified using the DDA mode in both rd10 and P23H
models, whereas approximately 4251 proteins were uniquely
detected through the DIA analysis mode. Despite the retinal
samples being collected in two different laboratories, the
relative quantification accuracy compared to their respective
WT controls was similar for the two analysis modes, as illus-
trated by the comparison of retinal marker proteins
(Supplemental Fig. S4).

Common Modes of Regulation in the Retinal Proteomes of
the Three IRD Models

Only 28 proteins showed significant regulation commonly
between all the rd10, P23H and Rpe65−/− models according to
our statistical threshold. Three known RD-associated proteins
GNB1 (52), LMPDH1 (53), and ARL3 (54) were downregulated.
Common upregulation was observed for proteins that respond
to inflammation and cell stress (APOE, ATP6V1G2, CLU,
CORO1C, GFAP, LASP1, LMNA, LRP1, MSN, NRCAM, and
TWF1), vascular remodeling and proliferation (CTNNB1,
GAP43, TF, VCL, VIM), oxidative stress (GSTT1), or apoptosis
(CAPN2, NEBL, NME2). The classic inflammatory markers
APOE, GFAP, and VIM indicated stress-phenotype severity in
the following order: rd10 > Rpe65−/− > P23H.
Five DEPs showed opposite regulation in the retina of the

LCA model as compared to both RP models. Thus, DCLK1,
ARHGAP1, and TPPP3 showed downregulation in Rpe65−/−

samples but were upregulated in rd10 and P23H. DCLK1 is a
doublecortin-like kinase that regulates microtubule binding
(55), and it has been shown to promote neuronal survival,
growth cone formation, and axon regeneration in retinal gan-
glion cells (RGCs) after axotomy (56). ARHGAP1 belongs to
the family of Rho GTPase-activating proteins that play a role in
axon guidance (57). TPPP3 belongs to the family of tubulin
polymerization-promoting proteins, and its upregulation may
promote axon regeneration (58). These findings are consistent
with the interpretation that retinas affected with primary rod
degeneration (rd10 and P23H) would display more remodeling
than retinas with little anatomic rod degeneration (Rpe65−/−).
HMGB2 and PDC were upregulated in Rpe65−/− but

downregulated in rd10 and P23H mouse retinas. HMGB2 is a
pro-inflammatory protein that can cause photoreceptor death
when released into the extracellular space upon oxidative
stress via the activation of NF-κB/NLRP3 signaling pathways
(Y (59). Vice versa, the knockdown of HMGB2 suppresses cell
death in a light-induced retinal degeneration (LIRD) mouse
model (44). HMGB2 is a relatively rod-enriched protein, which
could explain its downregulation in the rd10 and P23H mouse
models. PDC, phosducin, is a phosphoprotein expressed in
the rod inner and outer segments; it participates in regulating
the light sensitivity of synaptic transmission between
Mol Cell Proteomics (2024) 23(11) 100855 16
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photoreceptors and ON-CBCs (60). The specific role of PDC is
not fully understood but it is hypothesized to be crucial for rod
photoreceptor adaptation to bright light (61). PDC is
decreased in both RP models, particularly strongly in rd10
retinas, likely due to the decrease in volume of the rod outer
segment. The slight upregulation of PDC protein in Rpe65/-

retinas is a more intriguing finding. It is notable that the
Rpe65−/− mice retain some rod-mediated ERG responses and
residual visual function (43) even though their chromophore
content enabling phototransduction is undetectable, at least
with typical HPLC-based methods (20). It remains enigmatic
what enables the rods of Rpe65−/− mice to function without
the classical visual cycle, but it appears that their rod system
is supersensitized. One interesting hypothesis is that some
compensatory mechanisms, perhaps including PDC, scale up
rod-mediated signaling to counteract visual cycle dysfunction
(62). Based on published single-cell RNA-sequencing data
(63), Pdc gene expression is increased in Rpe65−/− mouse rod
cells but lowered in bipolar cells and Müller glia cells
compared to corresponding WT cells.
The commonly regulated 28 DEPs are associated with four

KEGG pathways. Downregulation of the phototransduction
pathway is expected in all models; however, it varies between
the models and follows the severity of rod death rather than
phototransduction efficiency (Supplemental Fig. S6). The
pathways bacterial invasion of epithelial cells and tight junction
mostly correspond to the regulation of cytoskeleton-related
proteins such as myosins, alpha-actinins, ezrin, tight junc-
tion protein ZO-1, and alpha-tubulins, which play a role in
functions such as maintenance of cell morphology, cell
motility, and dynamic stability of the cytoskeleton. We assume
that their upregulation is a survival mechanism aimed at
counteracting degeneration (64). Gamma-aminobutyric acid
(GABA) is the primary inhibitory neurotransmitter in our ner-
vous system, including in the retina (65, 66). Based on our
data, the GABA pathway is modulated in IRD retinas regard-
less of disease mechanism. However, it is far more robustly
regulated in the retinas of rd10 mice, and particularly P23H
mice, compared to Rpe65−/− mice (Supplemental Fig. S7).
Regulated components in the GABAergic synapse pathway
include, e.g., vesicular inhibitory amino acid transporters and
sodium- and chloride-dependent GABA transporters. The
primary enzyme responsible for catalyzing the production of
GABA from glutamate, GAD1, is significantly upregulated in
rd10 and P23H retinas. These data are in line with literature
suggesting catabolism of GABA and related metabolites as a
hallmark of retinal degeneration (62, 67).

The Rpe65−/− Model Displays Several Proteomic Features
that are Distinct From the RP Models

Metabolic imbalance has been demonstrated as an early
pathological event in RD including Pde6 mutation-associated
diseases (58), and candidate therapies are being investigated
to address the problem (68, 69). Our analysis from adult
17 Mol Cell Proteomics (2024) 23(11) 100855
mouse retinas demonstrates significant regulation of several
proteins involved in the mitochondrial electron transport chain;
e.g., oxidative phosphorylation (OXPHOS) and tricarboxylic
acid (TCA) cycle in the Rpe65−/− mice, but less so in the RP
models. Based on this analysis, altered mitochondrial function
in adult Rpe65−/− mouse retinas seems evident, whereas the
retinas in adult rd10 and P23H mice may be better able to
maintain mitochondrial function via homeostasis. Several
findings distinguish the LCA2 model from the two RP models.
For example, fatty acid-binding protein 5 (FABP5) is down-
regulated 2.6-fold in Rpe65−/− retinas but upregulated 0.4-fold
in rd10 and P23H retinas. Many OXPHOS or TCA cycle
components that have normal expression in rd10 and P23H
retinas show significant alterations from WT levels in Rpe65−/−

mouse retinas (Fig. 7A and Supplemental Fig. S8). The
opposing regulation of COX5A and COX5B in Rpe65−/− retinas
is particularly noteworthy as the upregulation of COX5B and
downregulation of COX5A could indicate cellular stress under
anaerobic conditions (70). Additionally, the upregulation of
mitochondrial aconitate hydratase (ACO2) and downregulation
of cytosolic aconitate hydratase (ACO1) represent distinct
metabolic features in the Rpe65−/− retinas.
In addition to OXPHOS- and TCA cycle-related changes,

another distinct feature of the Rpe65−/− model includes robust
downregulation of multiple lens crystalline proteins (Fig. 4).
The lens crystalline proteins are believed to play an important
protective role in RGC survival and regeneration (71, 72). While
tens of crystalline proteins were downregulated monotonically
in the retinas of Rpe65−/− mice, many of the same proteins
showed increased mean expression (not necessarily signifi-
cant) in the retinas of rd10 and particularly P23H mice (Fig. 4).
Apart from cell metabolism, several pathways related to DNA
(cell cycle) and RNA (spliceosome) functions, protein trans-
lation (Aminoacyl-tRNA biosynthesis), as well as neurode-
generative diseases, were also distinctly regulated in the
Rpe65−/− mouse retinas (Figs. 6 and 7B). The overexpression
of many histone and nucleosome-related proteins in the
Rpe65−/− retina suggests altered chromatin accessibility
(Fig. 5A). This observation implies a potential epigenetic
regulation mechanism affecting gene expression and cellular
functions. These phenomena were not observed in either of
the RP-model retinas, which is somewhat surprising.
Decreased chromatin accessibility has been identified as a
characteristic feature in retinal diseases, mostly in age-related
macular degeneration (73), and HDAC11 in particular has been
proposed as a therapeutic target. Further investigation of this
epigenetic aspect in RD is warranted.

Commonly Regulated Retinal Proteome in the rd10 and
P23H Models of RP

Hundreds of proteins and tens of KEGG pathways were
found to be co-regulated in rd10 and P23H mouse retinas
(Fig. 9 and Supplemental Fig. S9), indicating that the two
different RP models possess convergent downstream
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pathophysiological pathways, regardless of their primary
mechanisms of rod degeneration. Identification of these
common pathophysiological pathways is advantageous for
the conceptualization of novel DMTs for RP. Accordingly, all of
the proteomic data from this study is carefully curated and
made publicly available (See Data Availability). Here, we
highlight some of the common pathways that we believe could
be directly relevant with respect to therapeutic strategies.
Notably, pathways under the “cellular processes” KEGG
category (e.g., apoptosis, autophagy, regulation of actin
cytoskeleton) contained the largest number of DEPs identified
in our study. This result is likely a direct consequence of
cellular stress response. Another example is the KEGG cate-
gory “organismal systems,” which includes many signaling
pathways comprising hundreds of potentially targetable G
protein-coupled receptors (GPCRs) and related proteins.
Regulation of the actin cytoskeleton is a crucial function in

injury-induced axon retraction by rod cells (74). The overall
upregulation of several actin and myosin regulation proteins in
the retinal proteome of the RP models indicates retinal
remodeling. Also, the rho-associated protein kinase (ROCK)
pathway, FGF2-HRAS pathway, and RhoA-LIMK-Cofilin
pathway were found to be enriched in our analysis that re-
quires further investigation regarding their roles in actin dy-
namics and retinal remodeling. Also noteworthy, the
Proteoglycans in cancer pathway are enriched in the RP retinal
proteome, with significant upregulation of proteins related to
chondroitin sulfate, heparan sulfate, and hyaluronan. Such
proteoglycans regulate axon guidance and synapse formation
during the development of the nervous tissue (75), and thus
their upregulation could play a role in adaptive plasticity. On
the other hand, proteoglycan-deficient retinas display a
retinal-degeneration phenotype (76). Significant enrichment of
phosphatidylinositol signaling-related proteins is also
observed in the RP retinal proteome, primarily attributable to
the marked upregulation of phosphatidylinositol C phospho-
lipases. These enzymes play a crucial role in the metabolism
of phosphatidylinositol 4,5-bisphosphate into second mes-
sengers such as inositol (1,4,5) trisphosphate and diac-
ylglycerol, besides the regulation of lipid-signaling pathways
in a calcium-dependent manner (77). Dysfunctional phos-
phatidylinositol metabolism can cause retinal degeneration
(78, 79). The observed upregulation of this pathway in the RP
models may indicate calcium dysregulation, a hallmark of
neurodegeneration (80, 81). Further investigation of these
changes is warranted to better understand their underlying
mechanisms and to identify potential therapeutic targets for
RP. In addition, the increased expression of glutathione S-
transferases and peroxiredoxin-6 (PRDX6) may represent a
defense mechanism to counteract oxidative stress, which
represents an attractive target to mitigate secondary cone
death in RP (82).
The Purine metabolism pathway in the retina is distinctly

enriched in both RP models as well as the associated cAMP
signaling and cGMP-PKG signaling pathways. Many proteins
included in these pathways are highly rod-enriched and
consequently downregulated (e.g., PDEs & CNGA1/B1).
Membrane-bound guanylate cyclases (e.g., GUCY2E and
GUCY2F), which are also rod-enriched (44), are down-
regulated, whereas soluble guanylate cyclases (sGC) (e.g.,
GUCY1a1, GUCY1a2, and GUCY1b1), which are not
photoreceptor-enriched (44), are upregulated. This regulation
pattern indicates that sGC may secondarily modulate the
levels of cGMP during rod degeneration. The changes in the
expression of guanylate cyclases are in line with the impli-
cated important role of cGMP dysregulation during RD (83).
Moreover, our data demonstrated the upregulation of several
adenylate cyclases (ADCYs) and their downstream targets
(e.g., EPAC2, MAPK8, and RRAS2) in RP retinas, with no
detected downregulations in these components. Possibly as a
response to increased ADCY activity, many components of
the calcium/calmodulin-dependent protein kinases are
upregulated.
Pharmacologically targeting the dysregulation of intracel-

lular signaling molecules such as cAMP and cGMP offers a
potential DMT strategy to treat retinal degeneration (48, 84).
The second messengers cAMP and cGMP are regulated by
ADCY and GUCY enzymes which synthesize them, and
phosphodiesterases which degrade them, to maintain a
balanced level. The role of the cGMP-PKG pathway in retinal
degeneration has been extensively studied (85–87), and
pharmacological inhibition of excessive cGMP activity pro-
tects the retinas in rd1, rd2, and rd10 RP mouse models (48). It
remains to be determined if suppression of cAMP activity
could also be protective in RP, but indirect evidence from
studies using GPCR drugs to suppress cAMP production
suggests therapeutic potential (88–90). Another intriguing
question is if simultaneous cAMP and cGMP inhibition could
provide additive or even synergistic therapeutic effects.

Methodological Limitations and Future Perspectives

In proteomic analyses of bulk retinal tissues, such as those
undertaken in this study, there is a concern regarding the
unequal volumes of retinal layers, particularly when comparing
samples from healthy versus degenerative states. Given that
rods constitute 97% of the outer retinal cells in mice, the
proportion of outer retina volume in the homogenate used for
proteomic analysis is decreased in the RD samples compared
to those from WT mice. This disparity results in an apparent
decrease in proteins enriched in rods. Vice versa, the proteins
in surviving retinal-cell populations (e.g., inner retina
compartment) may seem proportionally upregulated, even if
their expression per cell remains unchanged. Our datasets
revealed a higher number of overexpressed proteins, sug-
gesting alterations in protein expression not solely attributable
to a decrease in rod volume, but possibly to the increased
proportional volume of the inner retinal compartment in RD
samples. Therefore, findings from bulk retina proteomics (and
Mol Cell Proteomics (2024) 23(11) 100855 18
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other omics approaches) in the RD context need to be inter-
preted with caution, and firm conclusions should not be drawn
from stand-alone data. However, the primary findings pre-
sented in this manuscript, such as changes in cyclic nucleo-
tide metabolism in RP models and alterations in OXPHOS,
spliceosome, and TCA cycle in the LCA2 model, are so clearly
supported by the data, and in the case of RP, reinforced by
existing literature, that we believe they reflect genuine
signaling changes rather than misinterpretations due to
changes in retinal volume.
While awaiting the widespread application and cost-

reduction in single-cell proteomics, immunohistochemistry
can offer insights into localized changes in protein expression,
albeit with limited quantification potential. Also, some
methods to fractionate different layers of the retina have been
developed (91). Alternatively, specific cell populations can be
isolated using techniques such as fluorescence-activated cell
sorting (FACS) prior to LC-MS/MS analysis.

CONCLUSION

Mutation-agnostic disease-modifying therapies for the
various forms of retinitis pigmentosa are feasible due to
shared pathological phenomena downstream from primary
rod degeneration. Here, we highlighted some potential ther-
apeutic targets, particularly the cyclic-nucleotide second-
messenger pathways, that are practicable not only for novel
drugs but also for drug-repurposing strategies. This study
contributes valuable data to the public research domain,
supporting the pursuit of the first broadly applicable thera-
peutics for RP.
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85. Arango-Gonzalez, B., Trifunović, D., Sahaboglu, A., Kranz, K., Michalakis, S.,
Farinelli, P., et al. (2014) Identification of a common non-apoptotic cell
death mechanism in hereditary retinal degeneration. PLoS One 9, e112142

86. Farber, D. B., Park, S., and Yamashita, C. (1988) Cyclic GMP-
phosphodiesterase of rd retina: biosynthesis and content. Exp. Eye
Res. 46, 363–374

87. Sancho-Pelluz, J., Arango-Gonzalez, B., Kustermann, S., Romero, F. J., van
Veen, T., Zrenner, E., et al. (2008) Photoreceptor cell death mechanisms
in inherited retinal degeneration. Mol. Neurobiol. 38, 253–269

88. Kanan, Y., Khan, M., Lorenc, V. E., Long, D., Chadha, R., Sciamanna, J.,
et al. (2019) Metipranolol promotes structure and function of retinal
photoreceptors in the rd10 mouse model of human retinitis pigmentosa.
J. Neurochem. 148, 307–318

http://refhub.elsevier.com/S1535-9476(24)00145-2/sref94
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref94
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref94
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref94
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref94
https://doi.org/10.7554/eLife.56840
https://doi.org/10.1073/pnas.2221045120
https://doi.org/10.1073/pnas.2221045120
https://doi.org/10.1073/pnas.1718792115
https://doi.org/10.1073/pnas.1718792115
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref44
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref44
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref44
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref29
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref29
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref29
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref29
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref16
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref16
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref16
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref58
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref58
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref58
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref7
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref7
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref7
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref7
https://doi.org/10.3389/fcell.2021.720782
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref1
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref1
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref1
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref60
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref60
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref60
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref60
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref60
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref61
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref61
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref61
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref38
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref38
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref38
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref38
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref93
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref37
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref37
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref37
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref77
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref77
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref77
https://doi.org/10.3389/fendo.2013.00048
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref52
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref52
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref52
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref52
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref2
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref2
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref10
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref10
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref55
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref55
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref55
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref66
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref66
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref66
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref47
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref92
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref92
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref92
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref92
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref17
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref17
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref17
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref17
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref33
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref33
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref68
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref68
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref83
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref83
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref83
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref85
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref85
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref85
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref85
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref39
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref39
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref6
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref6
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref6
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref70
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref70
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref32
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref32
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref32
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref86
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref86
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref9
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref9
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref30
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref30
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref14
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref14
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref26
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref26
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref26
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref26
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref80
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref80
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref80
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref3
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref3
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref3
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref3
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref31
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref31
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref31
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref75
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref75
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref75
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref41
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref41
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref41
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref41


Retinal Proteome Profiling in Inherited Retinal Degeneration
89. Leinonen, H., Choi, E. H., Gardella, A., Kefalov, V. J., and Palczewski, K.
(2019) A mixture of U.S. Food and drug administration–approved
monoaminergic drugs protects the retina from light damage in diverse
models of night blindness. Invest. Ophthalmol. Vis. Sci. 60, 1442–1453

90. Orban, T., Leinonen, H., Getter, T., Dong, Z., Sun, W., Gao, S., et al. (2018)
A combination of G protein–coupled receptor modulators protects pho-
toreceptors from degeneration. J. Pharmacol. Exp. Ther. 364, 207

91. Todorova, V., Merolla, L., Karademir, D., Wögenstein, G. M., Behr, J.,
Ebner, L. J. A., et al. (2022) Retinal Layer Separation (ReLayS) method
enables the molecular analysis of photoreceptor segments and cell
bodies, as well as the inner retina. Sci. Rep. 12, 20195
92. Deutsch, E. W., Bandeira, N., Perez-Riverol, Y., Sharma, V., Carver, J. J.,
Mendoza, L., et al. (2023) The ProteomeXchange consortium at 10 years:
2023 update. Nucleic Acids Res. 51, D1539–D1548

93. Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana,
S., Kamatchinathan, S., et al. (2022) The PRIDE database resources in
2022: a hub for mass spectrometry-based proteomics evidences. Nucleic
Acids Res. 50, D543–D552

94. Sharma, V., Eckels, J., Schilling, B., Ludwig, C., Jaffe, J. D., MacCoss,
M. J., et al. (2018) Panorama public: a public repository for
quantitative data sets processed in skyline. Mol. Cell Proteomics 17,
1239–1244
Mol Cell Proteomics (2024) 23(11) 100855 22

http://refhub.elsevier.com/S1535-9476(24)00145-2/sref49
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref49
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref49
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref49
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref64
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref64
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref64
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref79
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref79
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref79
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref79
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref28
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref28
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref28
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref65
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref65
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref65
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref65
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref76
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref76
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref76
http://refhub.elsevier.com/S1535-9476(24)00145-2/sref76

	Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targe ...
	Experimental Procedures
	Animal Models and Study Design
	Retina Dissection
	In Vivo Phenotyping by Electroretinography
	Label-Free Protein Quantifications Following Data-dependent Acquisition Mode
	Sample Preparation and Protein Digestion
	Method A
	Method B

	Peptide Separation and Data-dependent Acquisition (DDA)
	Method A
	Method B

	DDA Spectrum Match and Identification of Proteins
	Label-Free Quantification of Proteins Following Data-Independent Acquisition Mode
	Sample Preparation and Protein Digestion
	Method C

	Peptide Separation and Data-independent Acquisition (DIA)
	DIA Spectrum Match and Identification of Proteins
	Experimental Design and Statistical Rationale

	Results
	Profiling of the Mouse Retinal Proteome
	Phenotypes of the Three IRD Models Based on Electroretinography Recording and Marker Protein Expression
	Commonly Regulated Retinal Proteome in the RP and LCA Mouse Models
	Selectively Regulated Retinal Proteome in the LCA Model Versus the RP Models
	Analysis of the Retinal Proteome of the RP Mouse Models with Increased Coverage

	Discussion
	Overall Characteristics of the Disease Models and Proteomics Data
	Common Modes of Regulation in the Retinal Proteomes of the Three IRD Models
	The Rpe65−/− Model Displays Several Proteomic Features that are Distinct From the RP Models
	Commonly Regulated Retinal Proteome in the rd10 and P23H Models of RP
	Methodological Limitations and Future Perspectives

	Conclusion
	Data Availability
	Supplemental data
	Funding and additional information
	Author contributions
	References




