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As is well established in invasive breast disease, it is becoming increasingly clear that molecular hetero-
geneity, both between and within lesions, is a prevalent, distinct phenotype of premalignant lesions of the
breast. Key pathways of tumorigenesis modulate critical features of premalignant lesions such as prolif-
eration, differentiation, stress response, and even the generation of diversity. Current studies show that
evaluation of these lesions may provide clinically useful information on future tumor formation as well
as biological insights into the origin and functional significance of this distinct phenotype. Cancer Prev Res;
3(5); 579–87. ©2010 AACR.
Introduction

Premalignant lesions of the breast are becoming an
increasing focus of clinical breast care and translational
and basic science. Detection of these lesions has in-
creased because of widespread screening programs and
increasing numbers of biopsies. Although a prema-
lignancy diagnosis is a risk factor for future development
of invasive breast cancer, the majority of so-diagnosed
individuals will remain free of invasive disease following
excision of the lesion. Therefore, continued scientific in-
sights into the origins and behavior of in situ carcinomas
and atypical lesions are essential to achieving the goal
of distinguishing the higher-risk minority of patients,
who are destined to develop invasive carcinomas and
thus need aggressive prevention and screening, from
the lower-risk majority of patients, who could be direc-
ted to more limited interventions.
Particularly promising efforts toward realizing this

goal of risk stratification are recent studies to elucidate
the molecular heterogeneity of premalignant lesions
such as ductal carcinoma in situ (DCIS). DCIS has long
been known to be heterogeneous in its morphologic fea-
tures, presentation, and clinical behavior. The emergence
of genomic and gene expression profiling has estab-
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lished that DCIS is heterogeneous at a level of molecu-
lar complexity that is comparable with or perhaps
greater than that of invasive disease (1–10). Although
certainly less studied, the heterogeneity observed in the
microenvironment surrounding individual premalignant
lesions may also be a critical determinant of their future
behavior. Recent studies have begun to identify hetero-
geneity within the microenvironment surrounding inva-
sive tumors that could be linked to outcome (11–14).
The genesis of these stromal changes may precede the
formation of invasive lesions and reflect causes or con-
sequences of early tumor progression. This discussion
will focus on the epithelial cells within a premalignant
lesion and the biological and clinical ramifications of its
intralesional and interlesional heterogeneity.

Interlesional Heterogeneity of Premalignant
Lesions

Comparative studies have shown that DCIS has a range
of molecular subtypes similar to those identified through
gene expression profiling of invasive ductal carcinomas
(IDC; refs. 1–4, 7). Important molecular distinctions are
observed in studies of DCIS versus IDC that may provide
clues to the origins of molecular diversity in breast carci-
nogenesis. For example, Allred et al. initially observed that
human epidermal growth factor receptor 2 (HER2) is over-
expressed at a higher frequency in DCIS than in IDC (15).
An increased prevalence of HER2 protein overexpression
(and gene amplification) in DCIS versus IDC has been con-
firmed in a number of subsequent studies (1, 16–18).
HER2 overexpression seems to be most significant in
high-grade DCIS, in which its prevalence is nearly 75%
(17). In contrast to this relatively higher prevalence of
HER2 overexpression in DCIS, the prevalence of marker
expression indicative of the basal-like subtype is relatively
lower in DCIS compared with IDC (1, 3, 4, 17, 18).
579
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The apparent imbalance between DCIS and IDC in mo-
lecular subtype prevalences suggests that there is no simple
linear relationship of progression from DCIS to invasive
disease. These observations further suggest that different
DCIS subtypes might be associated with different malig-
nant potentials. For example, DCIS with basal marker ex-
pression may give rise to invasive carcinoma at a higher
frequency than does DCIS exhibiting HER2 overexpres-
sion. This lack of a linear relationship might explain the
relatively higher frequency of the basal-like subtype recent-
ly observed in studies of IDC versus DCIS (2). Alternative-
ly, immunohistochemical detection of protein markers
may not always reflect microarray gene expression profiles
and therefore may not provide a faithful representation of
subtype distribution (7, 19). Most important, immunohis-
tochemistry and microarray studies to define molecular
subtypes of DCIS (and even IDC) typically fail to address
intralesional heterogeneity, or the possibility of more than
one subtype within a single lesion. As discussed below, a
more thorough analysis or identification of intralesional
heterogeneity may provide new insights into the potential
for progression to malignancy.
Intralesional Heterogeneity of Premalignant
Lesions

Examination of individual premalignant lesions illus-
trates a second level of premalignant heterogeneity, intra-
lesional heterogeneity. The sectored areas of a single lesion
Cancer Prev Res; 3(5) May 2010
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can evidence characteristic staining for different subtypes
of breast neoplasia. For example, a single lesion might
have areas that express proteins associated with a luminal
subtype distinct from other areas that express proteins as-
sociated with a basal-like subtype (Fig. 1). In addition to
cellular manifestations of heterogeneity, intralesional het-
erogeneity also occurs in nuclear morphologic assessments
of nuclear grade, which is an important factor in the clin-
ical assessment of tumors. Components of nuclear mor-
phology that underlie variations in nuclear grade are
complex and extend beyond size (20, 21). Variations occur
in nuclear shape, contour of nuclear membranes, and
number and size of nucleoli. Chromatin can be dispersed
or marginated and could form coarse and variably asym-
metrical aggregates of heterochromatin. To contend with
intralesional heterogeneity at the morphologic level, histo-
logic grading systems assign a score based on properties of
selected cell subpopulations. For example, the nuclear
grade of a breast IDC is clinically assessed based on nucle-
ar size and shape in areas of highest grade representing as
little as 10% of the cell population. Nuclear morphome-
try, a quantitative approach for assessing heterogeneity
of size and other nuclear characteristics, has prognostic
value in IDC and DCIS and correlates with nuclear grade
(22, 23).
In an early study of intralesional heterogeneity at the

molecular level, Ma et al. observed distinct patterns of
gene expression within premalignant and malignant
breast lesions that suggested intralesional heterogeneity
of histologic grade (24); for example, most grade 2 lesions
Fig. 1. Theoretical spectrum of molecular heterogeneity in DCIS. The two ducts represent theoretical comparisons of DCIS between different individuals
(i.e., interlesional heterogeneity) or between two regions within a patient's single DCIS lesion (i.e., intralesional heterogeneity). DCIS could range from
homogeneity (left) to a surprising degree of heterogeneity (right) within a single lesion. The two ducts depict the ends of a continuum of heterogeneity in
nuclear and cell size, presence and number of coexisting molecular subtypes, and genetic and epigenetic alterations.
Cancer Prevention Research
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exhibited a hybrid of grade 1 and grade 3 molecular sig-
natures. More recently, Allred et al. elegantly addressed in-
tralesional diversity at the molecular level in a large series
of 120 cases of pure DCIS (25). Almost half of these cases
showed variable regions of nuclear grade within an indi-
vidual biopsy. Intralesional areas of variable histologic
grade were microdissected to allow for thorough molecu-
lar characterization with a panel of immunohistochemical
markers (hormone receptors, GATA3, HER2, p53, and
basal cytokeratins) and with gene expression profiling in
a subset of samples. A strikingly high proportion (nearly
three-quarters) of the DCIS samples with intralesional het-
erogeneity in nuclear grade showed more than one molec-
ular subtype, with nearly all possible combinations
represented (e.g., basal-like and luminal-A subtype in
one lesion).
The presence of molecularly and morphologically dis-

tinct subpopulations of cells within DCIS raises important
questions about the origins of molecular variability and
the pathways of breast cancer progression (26). Although
DCIS is considered a nonobligate precursor to invasive
breast cancer, mathematical models of progression suggest
that DCIS and IDC may develop through separate but par-
allel pathways from a common progenitor (27). Different
models that have accurately incorporated progression data
collectively suggest multiple pathways of progression (28).
Genome-wide profiling of invasive and premalignant le-
sions of the breast has revealed that the pathway of pro-
gression for phenotypically low nuclear grade lesions is
molecularly distinct from the pathway for high nuclear
grade lesions (10, 29). Low nuclear grade premalignant le-
sions of the breast include low-grade DCIS, atypical ductal
hyperplasia, flat epithelial atypia, and some lobular neo-
plasias. These lesions all tend to share characteristic altera-
tions such as loss of 16q and gains of chromosome 1q
(reviewed in ref. 30). In contrast, high nuclear grade le-
sions are genetically more complex with varied chromo-
somal losses and gains. The coexistence of low-grade and
high-grade cells in some DCIS lesions therefore suggests
the presence of clonal heterogeneity. Mathematical models
of progression have not yet considered the implications of
intralesional heterogeneity because the primary data typi-
cally are derived from established histologic grading sys-
tems. Accurate models of progression may depend on
consideration of the presence and evolution of clonal di-
versity. Given that clonal heterogeneity in premalignancy
might be an independent risk factor for invasive tumor de-
velopment (reviewed in ref. 31), future genomic character-
ization of areas of intralesional heterogeneity within DCIS
might also be clinically significant.
Deregulated p16/pRb Signaling: Phenotypic
Consequences for DCIS

To understand the behavioral consequences of intrale-
sional heterogeneity, it is useful to examine the molecular
programs that dictate the different phenotypes of DCIS.
www.aacrjournals.org
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DCIS lesions are often classified as low, intermediate, or
high grade. Several grading systems have been developed
and are based on evaluating several phenotypes within the
premalignant lesion. The mitotic rate is routinely evaluat-
ed in invasive carcinoma and has also been well studied in
DCIS. The most commonly evaluated clinical phenotypic
features of DCIS are (a) the degree of differentiation, (b)
degree of nuclear atypia, and (c) extent of necrosis. The
role of the pRb pathway is particularly interesting in the
context of histologic grading because the p16/pRb signaling
pathway controls a coordinated ensemble of phenotypes
that influence grade (i.e., genes that regulate cell cycle pro-
gression, differentiation, chromatin remodeling, and cell
death). Although not currently used for clinical assessment
of DCIS, the status of stress responses in premalignant le-
sions may provide clinically useful information. These
processes contribute to the clinical manifestations of carci-
nogenesis and may contribute molecular markers that
have clinical utility.
The pRb pathway plays a key role in mitotic rate (prolif-

eration), one of the critical phenotypes in determining his-
tologic grade in invasive breast carcinomas. Repression of
E2F-dependent transcriptional targets that control cell cy-
cle arrest is assumed to be the major mechanism by which
pRb exerts antitumorigenic effects. This focus on cell cycle
effects and antiproliferative functions was substantiated by
mutation studies showing that removal of pRb allowed ac-
celerated entry into the G1-S phases of the cell cycle and
that exogenously introduced unphosphorylated pRb
caused cell cycle arrest (32–35). This alteration in cell cycle
control would be expected to manifest itself via an
elevated mitotic rate, such as a higher fraction of cells
expressing Ki67, and consequently, via hyperplastic mor-
phologic alterations.
Abrogation of cyclin-dependent kinase 4/6 (CDK4/6),

cyclin D1, p16, and/or pRb seems to be required for malig-
nancy, and tumor types are often distinguished by particu-
lar alterations in onemember of the pathway. Although the
abrogation of eachmember of this pathway imparts tumor-
igenic potential, emerging evidence in breast carcinogene-
sis suggests that different mechanisms of p16/pRb pathway
inactivationmight lead to diverse tumor subtypes (Fig. 2A).
For example, cyclin D1 is overexpressed (primarily through
gene amplification) predominantly within tumors of the
luminal B subtype (2, 36–39), whereas basal-like tumors
typically show overexpression of p16 and elevated levels
of E2F target genes, accompanied by loss of pRb expression
(2, 40). Although we do not know if deregulation of pRb
signaling (Fig. 2B) has implications for the origins of the
basal-like subtype, these data do support that deregulation
of pRb is mechanistically linked to it.
Although undoubtedly important to neoplasia, the mi-

totic rate is not the only phenotype providing prognostic
information that is influenced by abrogation of the pRb
pathway. For example, it is becoming widely appreciated
that the pRb protein integrates cell cycle arrest with cel-
lular differentiation. Both in vitro and in vivo model sys-
tems have provided evidence that pRb plays a role in
Cancer Prev Res; 3(5) May 2010 581
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determining cell fate (41–43). Work in a growing num-
ber of tissues has shown that functional expression of
pRb transcriptionally modulates genes that are important
in achieving complete cellular differentiation. These reg-
ulatory properties seem to be independent of pRb effects
on cell cycle progression. For example, pRb mutants that
uncouple cell cycle properties from differentiation effects
have been identified (44).
In normal cells, the pRb protein is upregulated during

differentiation and interacts with selected coregulators of
transcription to activate or repress gene loci. Absence of
pRb function allows morphologic differentiation but pre-
vents full functional maturation of cells. In human breast
epithelial cells, removal of pRb function allows cells to
form characteristic acinar structures in three-dimensional
Cancer Prev Res; 3(5) May 2010

Cancer Rese
cancerpreventionresearch.aacrjournals.orgDownloaded from 
culture conditions, but the expression of lactoferrin and
serum cytokeratin 19 (CK19), which are markers for lumi-
nal differentiation, are not expressed (45). Molecular stud-
ies have shown that the upregulation of pRb transcription
in some tissue systems is regulated by p53 and by mechan-
ical forces in the surrounding stroma. Manipulation of
these conditions could induce lactoferrin production in
human mammary epithelial cells (46). The consequences
of these regulatory circuits in breast premalignancy are in-
teresting. In tumors in which the pRb pathway has been
abrogated by mutation of other members of the pathway,
e.g., CDK4mutation, p16 silencing or cyclin D1 overexpres-
sion, inactivation of pRb interactions with E2F would still
affect cell cycle arrest and allow an increased mitotic rate.
However, tumors with these mutational alterations would
Fig. 2. Distinct molecular subtypes of invasive breast tumors; p16/pRb signaling in breast neoplasia. A, hierarchical clustering (by gene expression) of
130 primary invasive breast tumors identifies distinct molecular subtypes, which are color-coded (top of diagram) as follows: light blue, luminal B; dark blue,
luminal A; green, normal-like; orange, basal-like; pink, HER2-positive; gray, unclassified. Loss of functional pRb signaling defines the basal-like subtype
of invasive tumors. Expression levels of cyclin D1, p27, pRb, phosphatase and tensin homologue (PTEN), cyclin E, p16, E2F3, Dp2, and AKT3 are
shown. The level of expression of each gene is relative to the median expression of this gene across all 130 samples. Adapted from Gauthier et al.
(ref. 2; reprinted with permission from Elsevier). B, regulation of p16/pRb signaling is represented diagrammatically. pRb plays an integral role in cell cycle
regulation and coordinates multiple signal transduction pathways that regulate proliferation. Deregulation of pRb could occur through multiple mechanisms
including loss of heterozygosity, promoter hypermethylation, and gene mutation. Methods of inactivation of the p16/pRb signaling pathway include
aberrant phosphorylation through amplification of cyclin E, loss of p27, activation of AKT signaling, and/or loss of PTEN through gene mutation or
promoter hypermethylation.
Cancer Prevention Research
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still express pRb protein, which could coregulate genes im-
portant in differentiation. In contrast, basal-like tumors,
which are missing pRb function, not only experience a loss
of cell cycle control but also fail to express markers of cel-
lular differentiation.
Recent studies indicate that pRb may also play a pivotal

role in the generation of nuclear atypia through the regu-
lation of genetic and epigenetic alterations and changes in
cellular polarity. Nuclei of an abnormal shape, size, and
texture are a hallmark of malignancy. These nuclear prop-
erties are governed by the packaging of chromatin within
the nucleus and the proper partitioning of chromosomal
elements. Epigenetic systems that dictate chromatin struc-
ture are regulated by pRb, most often through the down-
stream regulation of transcriptional targets that activate
histone methyltransferases, DNA methyltransferases, or
acetylases. The repression of p16 activity, accompanied
by the inactivation of pRb as a transcriptional repressor,
leads to the overexpression of chromatin-remodeling pro-
teins such as EZH2 and SUZ12 (47, 48). In addition to
executing the silencing of selected loci, overexpression of
these proteins has been identified in approximately half of
DCIS lesions and indicate a poor prognosis when detected
in invasive breast cancers (49, 50). In addition to epigenet-
ic controls on nuclear size and shape, genetic changes may
also play an important role in generating nuclear atypia.
The role of the pRb pathway in disrupting genomic integ-
rity is discussed below. Last, coordination of centrosome
duplication with DNA synthesis is choreographed by the
pRb pathway. Abrogation of this pathway leads to the gen-
eration of aneuploidy and the loss of proper polarity (51).
Potential mechanisms of pRb pathway alterations, in-

cluding deletion, mutation, and/or promoter hypermethy-
lation, may have differential effects on the nucleus. Studies
by our group and others show that pRb gene expression
levels are lowest in basal-like tumors (2, 40, 52, 53). Tu-
mors with loss of functional pRb signaling have a higher
frequency of chromosome copy number alterations than
do tumors with aberrations of other members of the
p16/pRb pathway (54).
Finally, in the assessment of DCIS lesions, increased cell

death is associated with a more aggressive behavior. The
control of cell death pathways is complex, but studies have
linked pRb alterations with the control of p53 function
and the regulation of cell death (55). Therefore, alteration
of the pRb pathway modulates multiple phenotypes, in-
cluding proliferation indices, differentiation, nuclear aty-
pia, and death indices that are important in malignancy.
A careful analysis of the mechanisms of deregulating this
pathway may provide useful clinical information.

Intralesional Heterogeneity of Premalignant
Lesions: Clinical Consequences for DCIS

In addition to the typical phenotypes used to classify
DCIS in the clinic, several molecular markers might prove
useful in stratifying risk for future invasive tumor forma-
tion and may also relate to pRb biology. There is a notable
www.aacrjournals.org
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link between the pRb pathway and the activation of cellu-
lar senescence. Although well-studied in vitro, senescent
cells are just beginning to be studied in vivo, in which
the understanding of their presence and significance is rap-
idly emerging. Studies in human samples (2) and murine
models of prostate carcinogenesis (56), melanocytic nevi
(57–59), lung adenomas (60, 61), and lymphoma (62)
show that overexpression of p16 protein and other mar-
kers of cellular senescence preferentially identify indolent
premalignant and benign lesions. In studying p16/pRb sig-
naling within premalignant lesions such as DCIS and atyp-
ical ductal hyperplasia, it is important to consider that p16
overexpression is conditional on the functional state of
pRb. Unlike cells of most malignant tumors, cells within
premalignant lesions may have intact pRb signaling. The
p16 overexpression in premalignancy may be a physiolog-
ic response to stress activation leading to cell cycle arrest
and a senescence program. Indications of an intact re-
sponse to cellular stress in DCIS seems to be of clinical sig-
nificance because overexpression of p16 in the absence of
proliferation (i.e., activation of a senescence program)
identifies women less likely to develop subsequent breast
cancer (2). These observations support the hypothesis that
cellular senescence is a barrier to tumorigenesis, which is
maintained in some premalignant lesions.
In normal cells, activation of the pRb pathway in

response to cellular aging or cellular stress such as oxida-
tive, metabolic, hypoxic, and/or oncogenic stress drives
cell cycle arrest and plays an important role in pre-
mature and replicative senescence-response pathways
(63, 64). Through inhibition of CDK4/6, p16 blocks
the phosphorylation of pRb and thus inhibits E2F tran-
scription factors from binding to promoter sequences es-
sential for cell cycle progression (65–69). Furthermore,
the pRb pathway regulates the expression of stress pro-
teins known to be important in conferring malignant
phenotypes. Human mammary epithelial cells typically
do not express the proinflammatory protein cyclooxy-
genase-2 (COX-2). However, mutations within the pRb
pathway affect the expression of this protein in distinct
ways. As recently reported, abrogation of the pRb path-
way through p16 repression enhanced the induction of
COX-2 when cells were exposed to a variety of exoge-
nous stresses (2). In contrast, cyclin D1 overexpression
did not sensitize cells to the stress signals and did not
induce COX-2. Of interest, removal of pRb function it-
self caused a constitutive overexpression of COX-2. It is
intriguing to consider that subpopulations of normal hu-
man mammary epithelial cells in vivo and in vitro show
p16/pRb inactivation through promoter hypermethyla-
tion, and consequently, COX-2 overexpression (70, 71).
Because COX-2 enhances cell migration, angiogenesis,
and proliferation and inhibits apoptosis and immune
surveillance, it is clear that different mutational mechan-
isms for abrogating the pRb pathway have important
phenotypic consequences for tumors.
Premalignant cells that have abrogated pRb signaling

and bypass stress-induced senescence may also manifest
Cancer Prev Res; 3(5) May 2010 583
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overexpression of p16. In this setting, elevated levels of
p16 protein in highly proliferative cells suggest that the
growth-suppressive effects of p16 are short-circuited
downstream of p16. Despite exhibiting hallmarks of
Cancer Prev Res; 3(5) May 2010
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stress activation, such as overexpression of p16, p53,
p21, and COX-2 and phosphorylation activation of
stress-activated kinases such as p38, which are usually
associated with the induction of a proliferative arrest,
Fig. 3. p16 Overexpression coupled with proliferation increases the risk of subsequent tumor events among women with DCIS. A, immunohistochemistry
staining for p16 and Ki67 in normal breast tissue (n = 40), atypical ductal hyperplasia (ADH; n = 33), low-, intermediate (Int)-, and high-grade DCIS (n = 142),
and IDC (n = 100). Each bar graph represents the percentage of immunopositive cases. p16 staining was scored on a 0, 1, 2, 3 scale based on the
extent of immunopositive cells (0, no staining; 1, <25%; 2, 25-75%; 3, >75%). Positive/high p16 staining is defined as a score of ≥2. The Ki67 index
was determined by manually counting a minimum of 1,000 nuclei within at least three 40× fields. Positive/high Ki67 is defined as greater than 10%
immunopositive cells. B, Kaplan-Meier plots of recurrence-free survival by p16 status, Ki67 status, and p16/Ki67 coexpression status among 70 patients
diagnosed with and treated for pure DCIS. Adapted from Gauthier et al. (2); reprinted with permission from Elsevier.
Cancer Prevention Research
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cells with dysfunctional pRb undergo unobstructed pro-
liferation (2, 55, 72). An abrogated response to stress
signals in DCIS also seems to have clinical value be-
cause overexpression of p16 in the presence of ongoing
proliferation identifies women more likely to develop
subsequent breast cancer (Fig. 3).
In support of pRb biology linking multiple malignant

phenotypes, tumors with the lowest expression of pRb
exhibit illuminating characteristics. Increased immunode-
tection of p16 correlates with decreased pRb levels in
breast carcinomas (2, 53, 73, 74). Tumors with p16 over-
expression at the immunohistochemical level have been
identified as poorly differentiated tumors through asso-
ciations with high nuclear grade, high Ki67, increased
p53, and low estrogen receptor/progesterone receptor
expression (75–79). Of importance, these tumors also
overexpress COX-2. Therefore, although the activation
or inactivation of cellular stress and senescence pathways
are not currently used clinically, this information may be
helpful in the future.

Deregulated p16/pRb Signaling: Clues to the
Origins of Molecular Heterogeneity in Breast
Tumors

The acquisition of genomic instability through the dereg-
ulation of p16/pRb signaling provides the potential for gen-
erating heterogeneity. Despite the well-established role of
pRb dysfunction in deregulating cell cycle progression and
desensitizing cells to damage-induced cell cycle arrest or ap-
optotic signals, only more recent studies have directly ad-
dressed the causal relationship between loss of pRb
signaling and genomic instability. The loss of pRb deregu-
lates the expression of genes involved in mitotic progres-
sion and chromosome segregation generating genetic
diversity. Furthermore, the loss of functional pRb not only
leads to inappropriate proliferation but also to whole-chro-
mosome gains and losses (aneuploidy) due to aberrant ex-
pression of spindle checkpoint proteins such as mitotic
arrest-deficient 2 (MAD2; refs. 80, 81). It is interesting to
note that loss of p16 expression also results in chromosome
instability and aneuploidy but through a pRb-independent
mechanism. Indeed, it was recently shown that loss of p16
www.aacrjournals.org
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expression in genomically stable, normalmammary epithe-
lial cells results in the production of supernumerary centro-
somes in a CDK2/p21-dependent fashion (51). These
collective results suggest that the loss of p16/pRb signaling
may cause chromosome and genomic instability early dur-
ing tumorigenesis (i.e., prior to the acquisition of oncogenic
events) and might contribute to the genesis of molecular
heterogeneity in tumors.
However, differences in marker expression might repre-

sent the end result of increased mutations or, alternatively,
may represent the emerging result of ecological interac-
tions. Consistent with this speculation, our studies of
DCIS (2) found that heterogeneity was the prevalent phe-
notype, with few lesions showing homogeneous expres-
sion of a given marker. In DCIS lesions expressing a
senescence signature, differences in the extent of p16 ex-
pression might represent regional differences in cellular
stress or different “snapshots in time” of the stress re-
sponse rather than the consequence of mutation.
Last, concepts ordinarily used in evolutionary or ecolog-

ical studies might provide insights into the functional sig-
nificance of heterogeneity in premalignant lesions. The
significance of intralesional heterogeneity may be analo-
gous to that of the generation of diversity observed in eco-
logical interactions developed by stressed populations. In
these populations, exposure to stress activates evolution-
ary and ecological interactions that result in diversity
which buffers against complete loss of viability under rap-
idly changing conditions (i.e., the insurance hypothesis;
ref. 82). Conceptually speaking, the generation of hetero-
geneity therefore serves a function that might extend be-
yond direct induction of mutational changes, serving, for
example, to preserve the survival of the population as a
whole.
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