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Article
Exploring Oxidation State-Dependent
Selectivity in Polymerization of Cyclic
Esters and Carbonates with Zinc(II) Complexes
Mark Abubekerov,1 Vojt�ech Vl�cek,1,3 Junnian Wei,1,3,4 Matthias E. Miehlich,2 Stephanie M. Quan,1

Karsten Meyer,2,* Daniel Neuhauser,1,* and Paula L. Diaconescu1,5,*
SUMMARY

Neutral zinc alkoxide complexes show high activity toward the ring-opening polymerization of cyclic

esters and carbonates, to generate biodegradable plastics applicable in several areas. Herein, we use

a ferrocene-chelating heteroscorpionate complex in redox-switchable polymerization reactions, and

we show that it is a moderately active catalyst for the ring-opening polymerization of L-lactide, 3-cap-

rolactone, trimethylene carbonate, and d-valerolactone. Uniquely for this type of catalyst, the

oxidized complex has a similar polymerization activity as the corresponding reduced compound,

but displays significantly different rates of reaction in the case of trimethylene carbonate and d-valer-

olactone. Investigations of the oxidized compound suggest the presence of an organic radical rather

than an Fe(III) complex. Electronic structure and density functional theory (DFT) calculations were per-

formed to support the proposed electronic states of the catalytic complex and to help explain the

observed reactivity differences. The catalyst was also compared with a monomeric phenoxide com-

plex to show the influence of the phosphine-zinc interaction on catalytic properties.
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INTRODUCTION

Aliphatic polyesters and polycarbonates derived from L-lactide (LA), 3-caprolactone (CL), d-valerolactone

(VL), and trimethylene carbonate (TMC) are biodegradable plastics with applications in the biomedical field

and food packaging and with other specialty applications (Suriano et al., 2011; Ulery et al., 2011; Tian et al.,

2012; Vert, 2005; Nair and Laurencin, 2007; Place et al., 2009; Ruzette and Leibler, 2005; Vroman and Tigh-

zert, 2009;Oerlemans et al., 2010). Utilizingdiscretemetal complexes for the ring-openingpolymerizationof

these cyclicmonomers provides a great degree of control over themicrostructure of the resulting polymers.

In particular, neutral zinc alkoxide complexes show high activity toward the ring-opening polymerization of

cyclic esters and carbonates. Due to the ‘‘living’’ nature of these processes, polymers with high molar mass

and low dispersities are typically obtained (Guillaume and Carpentier, 2012; Ajellal et al., 2010; Helou et al.,

2010; Helou et al., 2009;Williams et al., 2003;O’Keefe et al., 2001;Dechy-Cabaret et al., 2004;Wuet al., 2006;

Platel et al., 2008;Wheaton et al., 2009; Arbaoui and Redshaw, 2010; Huang et al., 2013). In addition, utilizing

zinc in polymerizations is advantageous due to the low cost, high abundance, and biocompatibility of the

metal, allowing for wide application of the resulting biodegradable plastics.

The prevalent use of zinc in ring-opening polymerizations of cyclic esters and carbonates is matched by the

use of hard N/O-based supporting ligands. However, only a few reports use soft donor ligands, such as

phosphines, to stabilize the active zinc metal center (Fliedel et al., 2015; D’Auria et al., 2012; Liang et al.,

2010). Such interactions can be beneficial due to the hemilabile nature of the zinc-phosphine bond and

may result in highly active polymerization systems. The use of redox-active ligands in combination with

zinc for ring-opening polymerizations is even less common than the use of soft donor ligands despite

the potential benefits (Bakewell et al., 2015). Redox-active ligands provide a means of affecting the reac-

tivity of the metal through changes in the oxidation state of the ligand. For example, in redox-switchable

hemilabile ligands, the incorporation of a redox-active group into the ligand framework, in close proximity

to a substitutionally labile component, allows to control the strength of the ligand-metal bond, leading to

the dissociation of the ligand fragment upon oxidation (Singewald et al., 1995; Sassano and Mirkin, 1995;

Higgins and Mirkin, 1995; Slone et al., 1997; Weinberger et al., 2001). In addition, the electronic and steric

environment of the transition metal can be controlled without directly affecting its oxidation state (Allgeier

and Mirkin, 1998).
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We previously reported the influence of a redox switch on the lability of [fc(PPh2) (BH[(3,5-Me)2pz]2)] ((fc
P,B),

fc = 1,10-ferrocenediyl, pz = pyrazole) in a palladium methyl complex in the presence of norbornene (Abu-

bekerov et al., 2016). Upon the oxidation of the ferrocene backbone, the phosphine moiety displayed

hemilabile behavior, resulting in norbornene polymerization. We reasoned that using the same ligand to

support a more oxophilic metal, such as zinc(II), may yield a beneficial hemilabile interaction between

the phosphine and the metal in the reduced state of the supporting ligand. In this case, the oxidation of

the ligand could result in the loss of the zinc-phosphine interaction, similar to redox-switchable hemilabile

ligands, and in altering the reactivity of a catalyst. Recently, we described the preparation as well as the

characterization of [(fcP,B)Zn(m-OCH2Ph)]2 (Abubekerov et al., 2018). However, in the case of the reduced

species, a direct zinc-phosphine interaction was not observed. Despite this finding, and because of our in-

terest in redox-switchable catalytic processes (Abubekerov et al., 2016, 2017; Wang et al., 2014, 2015; Quan

and Diaconescu, 2015; Brosmer and Diaconescu, 2015; Abubekerov and Diaconescu, 2015; Upton et al.,

2014; Broderick et al., 2011a, 2011b, 2011c; Quan et al., 2016, 2017; Lowe et al., 2017; Shepard and Diac-

onescu, 2016), we set out to investigate the influence of the redox state of fcP,B on the zinc-mediated

ring-opening polymerization of cyclic esters and carbonates. In addition, an investigation into the redox

and polymerization activity of a monomeric ferrocene-chelating heteroscorpionate zinc complex, (fcP,B)

Zn(OPh), is reported.
RESULTS AND DISCUSSION

Synthesis and Characterization of the Oxidized Zinc Benzoxide Complex

We previously described the preparation and investigation of the solution state behavior of [(fcP,B)Zn(m-

OCH2Ph)]2 (Abubekerov et al., 2018). Our studies revealed that this compound retains its dimeric state

before and during the ring-opening polymerization of LA and TMC. In addition, we determined that the

polymerizations proceeded via a living mechanism, yielding polymers with narrow dispersities and well-

controlled molar masses. However, the influence of the redox state of the supporting ligand on the activity

of this compound was not investigated.
Electrochemical studies performed on [(fcP,B)Zn(m-OCH2Ph)]2 show a reversible curve with a redox potential

of �0.024 V versus Fc/Fc+ (Figure S33), suggesting that ferrocenium salts may be used as chemical oxi-

dants. On nuclear magnetic resonance (NMR) scale oxidation of the dimeric zinc complex with two equiv-

alents of acetyl ferrocenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate ([AcFc][BArF]) in C6D6 results in

the formation of insoluble red solids and acetyl ferrocene, with only the latter being observed by NMR

spectroscopy. Reduction with one equivalent of cobaltocene (Cp2Co) restores the original complex,

[(fcP,B)Zn(m-OCH2Ph)]2, with no apparent decomposition or side products (Equation 1, Figures S1 and

S2). On a larger scale, the addition of one equivalent of [AcFc][BArF] to [(fcP,B)Zn(m-OCH2Ph)]2 led to the

isolation of red solids. Attempts to characterize the oxidation product by NMR spectroscopy were unsuc-

cessful; the complex is insoluble in hydrocarbon solvents and rapidly reacts with non-hydrocarbon solvents

(tetrahydrofuran [THF], chloroform). The reaction product of THF-d8 with [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2 is a

paramagnetic complex, which is 31P NMR silent, similar to the previously reported [(fcP,B)PdMe][BArF](Abu-

bekerov et al., 2016). The 11BNMR spectrum (Figure S4) shows aminor shift from d=�7.2 to�7.8 ppm upon

oxidation. The presence of the [BArF] counterion was confirmed by the presence of a singlet at d = �5.9

and �63.5 ppm in the 11B and 19F NMR spectra (Figures S4 and S5), respectively. Attempts to grow
iScience 7, 120–131, September 28, 2018 121



Figure 1. Zero-Field 57Fe Mössbauer Spectra of [(fcP,B)Zn(m-OCH2Ph)]2 and [(fcP,B)Zn(m-OCH2Ph)]2[BArF]2,

Recorded as Solid Samples at 77 K

The solid lines are fits with Lorentzian doublets to the experimental spectra using the following isomer shifts d and

quadrupole splittings DEQ: d = 0.54(1) mm/s, DEQ = 2.34 mm/s, GFWHM = 0.29(1) mm/s (left) and d = 0.54(1) mm/s,

DEQ = 2.26(1) mm/s, GFWHM = 0.31(1) mm/s (right).
X-ray-quality crystals of the oxidized complex from various neat solvents and solvent combinations were

unsuccessful, and only dark red oils were obtained. However, elemental analysis agrees with the formula-

tion [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2.

The lack of a signal in the 31PNMR spectrumof the oxidized complex prompted further investigation into the

electronic state of this compound. A determination of the solution-state magnetic susceptibility using the

Evans method (Evans, 1959) of [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2 was complicated by its lack of solubility in non-

polar solvents and its reactivity with polar solvents. The addition of 50–150 equivalents of monomer was

necessary to solubilize the catalytically active species in deuterated benzene. In particular, we looked at

the effective magnetic moment of in situ-generated [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2 in the presence of mono-

mers that could be ring-opened at ambient temperature, such as TMC, VL, and CL. Due to the rapid rate of

TMC and VL polymerization, by the time the samples were prepared and taken to the NMR spectrometer

(10 min) the polymerization of each monomer was already complete. In the case of TMC, the initial solution

state effectivemagneticmomentwas 1.90 mB per dimer, corresponding to a single unpaired electron.Within

an hour, the paramagnetic sample decayed to a diamagnetic one (Figure S29). In the presence of VL, the

effective initial magnetic moment was determined as 2.60 mB, consistent with two unpaired electrons per

dimer, but slowly decreased to 1.34 mB after 2.5 hr (Figure S30). The reaction with CL is the slowest of the

threemonomers considered and shows the lowest degree of decay of the effectivemagneticmoment in so-

lution: 3.06 mB after 10 minutes and 1.63 mB after 3.5 hr (Figure S31). These findings suggest that [(fcP,B)Zn

(m-OCH2Ph)]2[BAr
F]2 is stable in solution only during the polymerization process and are consistent with

the polymerization results described below. Attempts to acquire reproducible superconducting quantum

interference device (SQUID) results were unsuccessful due to the sensitive nature of the compound.

Due to the difficulty of characterizing the oxidized complex in solution, we turned to 57Fe Mössbauer spec-

troscopy on solid samples. At 77 K, with no applied magnetic field, [(fcP,B)Zn(m-OCH2Ph)]2 shows a doublet

with an isomer shift (d = 0.54(1) mm/s) and quadrupole splitting (DEQ = 2.34(1) mm/s) consistent with a low-

spin iron(II) complex (Figure 1). Surprisingly, under the same conditions, [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2 also

displays a doublet with an isomer shift (d = 0.54(1) mm/s) and quadrupole splitting (DEQ = 2.26(1) mm/s)

similar to [(fcP,B)Zn(m-OCH2Ph)]2, and thus also consistent with a low-spin iron(II) complex (Figure 1). At-

tempts to acquire an X-band electron paramagnetic resonance (EPR) spectrum (in perpendicular mode),

both in the solid and solution states, at liquid helium (7 K), liquid nitrogen (92 K), and ambient temperature

(293 K), under a variety of different conditions, were unsuccessful. Similar Mössbauer and EPR spectroscopy

results were reported for oxidized arylphosphinoferrocenes by Durfey et al. (Durfey et al., 2004) and were

attributed to oxidation either of the phosphorus lone pair or of the aryl groups. The presence of an unpaired

electron in close proximity of the phosphorus atom would be consistent with the lack of a signal in the 31P

NMR spectrum of the oxidized complex. Ligand-based oxidations of ferrocenes, as opposed to iron, were
122 iScience 7, 120–131, September 28, 2018



Figure 2. Total Density of States g(e) for the Top

Valence Region

The highest occupied molecular orbital is indicated

by a black arrow. Contributions of the atomic-like

p and d orbitals of P and Fe are shown by different

colors. Note that due to strong hybridization,

multiple atomic orbitals contribute to each molecular

state.
also reported for various phenylphosphinoferrocenes (Verschoor-Kirss et al., 2016) and ferrocenylpyrrole

(Verschoor-Kirss et al., 2009) species; however, the inability to observe an EPR signal for these species re-

mains puzzling. Isolated products of chemical oxidations displayed low-spin iron(II) species, as evidenced

by 57Fe Mössbauer spectroscopy in the case of a ferrocenylpyrrole complex, and a mix of low-spin iron(II)

and low-spin iron(III) species in the case of phenylphosphinoferrocenes. However, the 31P NMR spectra of

the oxidized phenylphosphinoferrocenes typically display broadened, but detectible signals.

Electronic Structure Calculations

Toprobe further the electronic structure of [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2, we turned to computational studies by

investigating the highest occupied valence states fromwhich the electrons are removed for themodel of [(fcP,B)

Zn(m-OCH2Ph)]2
2+ (see section DFT Calculations, for model description). However, common local and semilocal

density functionals cannot address this problem due to the improper description of the highly correlated d or-

bitals in Fe. The mean field description, i.e., the common exchange-correlation potential in density functional

theory (DFT), fails to capture the physics of the localized states due to a self-interaction error (Perdew and

Zunger, 1981; Kümmel and Kronik, 2008). This leads to a spurious delocalization of orbitals and an incorrect

charge transfer and oxidation energies (Cohen et al., 2008; Kulik, 2015).

We first verified that (semi)local functionals indeed contradict the experimental data. We illustrate this by

the density of electronic states obtained with the common generalized gradient approximation (GGA)

functional (Perdew et al., 1996) (Figure 2). Projection of the corresponding wave functions onto the atomic

orbitals reveals the character of individual states and their mutual hybridization. The top valence region

(close to the HOMO at�3.3 eV) is dominated by the localized d orbitals of iron. An Fe d orbital contribution

is also found in the lower energy molecular orbitals, but these do not participate energetically in the oxida-

tion process. It is important to note that the phosphorus p orbitals are significantly separated in energy

from the top valence region by as much as 0.9 eV. Hence, the GGA results suggest that the Fe atoms

are oxidized, in contradiction to the experimental results.

This conundrum was resolved bymitigating the self-interaction error of the localized states. We resorted to the

established approach of correcting theDFT picture by using a site- and orbital-specific potential U derived from

the Hubbardmodel Hamiltonian (Himmetoglu et al., 2014). We estimated the potential for the Fe d states from

first principles using linear response theory (Cococcioni anddeGironcoli, 2005) andobtainedaU value of 7.7 eV.

Such a high value leads to significant changes in thedensity of states (Figure 2).Weobserved that the Fed states

are pushed down in energy and significantly hybridize with the valence region below�5 eV. The frontier molec-

ular orbitals are at �4.7 eV with a major contribution from phosphorus p states. Indeed, the highest occupied

molecular orbital (HOMO) and HOMO-1 isosurfaces are foundmostly around the phosphorus atoms (Figure 3).

The ground state geometry of the molecule is different when optimized for the cation or neutral species.

This leads to a slight variation of the U parameter by 0.3 eV, but the character of the top valence state is not
iScience 7, 120–131, September 28, 2018 123



Figure 3. Isosurface for HOMO and HOMO-1 of [(fcP,B)Zn(m-OCH2Ph)]2
2+

Yellow and light blue coloring represents the positive and negative real parts of the wave function, respectively. For

clarity, the hydrogen atoms were removed from the figure.
affected: for U > 4 eV (i.e., much smaller than the variation due to changes in the geometry), the top valence

orbital becomes dominated by phosphorus p states. TheGGA+U calculations thus show that Fe remains in

its +II oxidation state and the phosphine groups are oxidized.
Polymerization of Cyclic Esters and Carbonates with the Zinc Benzoxide Species

The influenceof the ligandoxidation stateon the reactivityof the zincbenzoxidecomplexwasexamined through

the ring-opening polymerization of cyclic esters and carbonates. Due to the difficulty in isolating and manipu-

lating the oxidized complex, it was generated in situ just before use through the addition of two equivalents

of [AcFc][BArF] to [(fcP,B)Zn(m-OCH2Ph)]2. The role of the oxidant as a potential polymerization catalyst was ruled

out based on control experiments, which showed no activity under polymerization conditions for LA, TMC, and

VL (Figures S14, S15, and S17) and only a minor conversion (<6%) for CL (Figure S16). In all cases, the polymer-

izations are well controlled with the molar masses of the resulting polymers increasing linearly with conversion,

whereas the dispersity values remaining narrow (Tables S1–S6, Figures S47–S52).

Polymerizations of ca. 200 equivalents of LA showed a faster conversion for the reduced than the oxidized

compound at various temperatures. At ambient temperature, a 60% conversion was obtained after 24 hr for

the reduced species, whereas the oxidized complex reached only 17% conversion. Such a low conversion

could be attributed to both the poor solubility of LA and, particularly, to the insolubility of the oxidized

complex in benzene at ambient temperature. Performing the polymerizations at 70�C resulted in much

shorter reaction times for both complexes (Table 1, entries 1 and 2); complete conversion was observed

for the reduced complex and there was 91% conversion for the oxidized complex in 3 hr. The molar masses

for the isolated polymers obtained from the oxidized and reduced complexes agree well with the corre-

sponding theoretical molar masses. The dispersity values (Ð) are within the 1.00–1.15 range, suggesting

that the polymerization process is well controlled.

Contrary to the LA case, the oxidation of the ligand had no observable influence on the rates of polymer-

ization of CL (Table 1, entries 3 and 4). Polymerizations of ca. 200 equivalents of CL at ambient temperature

reached completion for both the oxidized and the reduced species in 24 hr. On the other hand, carrying out

the polymerizations at 70�C resulted in complete consumption of themonomer within 30min for both com-

pounds. Similar to LA, themolar masses of the polymers, obtained by size exclusion chromatography (SEC),

from both the oxidized and reduced species agree well with the theoretical values. However, the dispersity

values (Ð) are slightly narrower and fall between 1.0 and 1.1.

The most pronounced difference between the oxidized and the reduced compounds was observed for the

polymerization of TMC (Table 1, entries 5 and 6) and VL (Table 1, entries 7 and 8). The complete conversion

of ca. 200 equivalents of TMC was accomplished in under 15 min at ambient temperature utilizing the

oxidized species and in up to 90 min for the reduced complex. Similarly, the conversion of ca. 200 equiv-

alents of VL plateaus at 92% for the oxidized species after 20 min at ambient temperature, whereas the
124 iScience 7, 120–131, September 28, 2018



Entry Compound Monomer Time (min) Conversion (%) Mn (NMR) Mn (SEC) Ð

1 Reduced LA 180 >99 1.40 1.38 1.14

2 Oxidized LA 180 91 1.32 1.35 1.02

3 Reduced CL 30 >99 0.90 0.89 1.09

4 Oxidized CL 30 >99 1.07 1.06 1.08

5 Reduced TMC 90 98 1.00 1.00 1.14

6 Oxidized TMC 15 >99 0.79 0.81 1.02

7 Reduced VL 60 92 1.02 1.04 1.01

8 Oxidized VL 20 92 1.01 1.05 1.04

Table 1. Polymerization of Cyclic Esters and Carbonates by [(fcP,B)Zn(m-OCH2Ph)]2 (‘‘Reduced’’) and the In Situ-Generated [(fcP,B)Zn(m-

OCH2Ph)]2[BArF]2 (‘‘Oxidized’’)

Conditions: monomer (0.50 mmol), catalyst (0.0025 mmol), oxidant (0.005 mmol), d6-benzene as a solvent (0.5 mL), and hexamethylbenzene (0.025 mmol) as an

internal standard. Entries 1–4 were carried out at 70�C and entries 5–8 were performed at ambient temperature; Mn are reported in 104 g/mol; Ð = Mw/Mn.
same conversion is obtained for the reduced compound after 60 min. Further conversion of VL cannot be

obtained with an increased time or elevated temperatures. All polymers show excellent agreement be-

tween NMR spectroscopy and SEC molar masses and display narrow dispersity values.

Literature examples of LA and CL polymerization by zinc complexes are rather common (Chisholm et al.,

2000; Honrado et al., 2016; Lian et al., 2007; Alonso-Moreno et al., 2008; Schofield et al., 2009; Mou

et al., 2014; Garcés et al., 2010), whereas examples of TMC and VL polymerizations are not as prevalent

(Vivas et al., 2003; Gowda and Chakraborty, 2010; Helou et al., 2008). Compared with other heteroscorpi-

onate complexes, tris(pyrazolyl)borate complexes, and ligands with similar tripodal frameworks, both the

oxidized and the reduced metal complexes display moderate activity for the polymerization of LA and CL

(Chisholm et al., 2000; Honrado et al., 2016; Lian et al., 2007; Alonso-Moreno et al., 2008; Schofield et al.,

2009; Mou et al., 2014; Garcés et al., 2010). Similarly, the reduced species shows a moderate activity toward

the polymerization of TMC and VL, whereas the oxidized compound shows high activity toward the same

monomers (Vivas et al., 2003; Gowda and Chakraborty, 2010; Helou et al., 2008).
Synthesis and Characterization of a Zinc Phenoxide Complex

To investigate the possibility of redox-switchable hemilabile ligand behavior we also prepared a mono-

meric zinc species containing a phosphorus-zinc interaction. The addition of NaOPh to (fcP,B)ZnCl in meth-

ylene chloride resulted in the isolation of (fcP,B)Zn(OPh) as orange crystals in 79.8% yield (Equation 2). The

solid-state molecular structure of (fcP,B)Zn(OPh) (Figure 4) in crystals of (fcP,B)Zn(OPh),(Et2O) was deter-

mined using single-crystal X-ray diffraction. The coordination environment around the zinc center has a

distorted tetrahedral geometry with a t value of 0.88 (Yang et al., 2007). Unlike in the case of [(fcP,B)Zn(m-

OCH2Ph)]2, the phenoxide ligands do not bridge, resulting in a monomeric species. However, attempts

to prepare additional monomeric zinc species containing bulky aryloxide or amide groups (e.g., 2,4-di-

tert-butylphenoxide, 2,6-dimethylphenoxide, N,N-bis(trimethylsilyl)amide) were not successful.
iScience 7, 120–131, September 28, 2018 125



Figure 4. Molecular Structure Drawing of (fcP,B)Zn(OPh) from Crystals of (fcP,B)Zn(OPh)d(Et2O) with Thermal

Ellipsoids at 50% Probability; Hydrogen Atoms Are Omitted for Clarity

Selected distances (Å) and angles (�): O(1)-Zn(1), 1.9095(15); N(1)-Zn(1), 2.0063(17); N(3)-Zn(1), 1.9921(17); P(1)-Zn(1),

2.3984(5); N(1)-Zn(1)-N(3), 95.55(7); N(1)-Zn(1)-O(1), 115.55(7); N(3)-Zn(1)-O(1), 118.59(7); O(1)-Zn(1)-P(1), 99.79(5);

N(1)-Zn(1)-P(1), 120.60(5), P(1)-Zn(1)-N(3), 107.81(5). See also Figure S38.
Electrochemically, (fcP,B)Zn(OPh) shows a reversible redox event with a half-potential of �0.065 V versus

Fc/Fc+ (Figure S36). On an NMR scale, the oxidation of (fcP,B)Zn(OPh) with 1.1 equivalents of [AcFc][BArF]

in C6D6 results in the formation of insoluble red solids, just like in the case of [(fcP,B)Zn(m-OCH2Ph)]2. How-

ever, the complete oxidation of the starting material does not occur, and a mixture of (fcP,B)Zn(OPh) and
AcFc is observed spectroscopically (Figure S22). Similarly, utilizing excess AgBF4 did not result in the com-

plete oxidation of (fcP,B)Zn(OPh), which could still be observed as broad peaks in the 1H NMR spectrum due

to the presence of solid silver in the sample (Figure S23).
Polymerization of Cyclic Esters and Carbonates with the Zinc Phenoxide Species

Despite the lack of a robust redox-switchable behavior, we looked into the polymerization activity of (fcP,B)

Zn(OPh). Although (fcP,B)Zn(OPh) is a monomeric complex, its propensity to form a dimeric species during

the polymerization of cyclic esters and carbonates must be considered. Since [(fcP,B)Zn(m-OCH2Ph)]2 re-

mains a dimeric species during the ring-opening polymerization of cyclic esters and carbonates, it is worth

considering that (fcP,B)Zn(OPh) might dimerize after a single reaction with a monomer. To test this theory,

the polymerization of ca. 10 equivalents of LA in the presence of (fcP,B)Zn(OPh) was monitored by NMR

spectroscopy (Figure S24). The rate of polymerization is substantially slower compared with that of

[(fcP,B)Zn(m-OCH2Ph)]2, reaching only a 65% conversion of the 10 equivalents after 5 hr at 100�C (Figure S25).

However, after the reaction onset, the signals corresponding to (fcP,B)Zn(OPh) do not shift in the 1H NMR

spectra (Figure S24); this finding prompted a further look into the polymerization process by diffusion or-

dered spectroscopy. We previously used this technique to illustrate that our zinc polymerization systems

show the same diffusion rate for the catalyst and the polymer (Abubekerov et al., 2018). However, in the

present case, the diffusion rate of polylactide (PLA) was substantially different from that of (fcP,B)Zn(OPh),

suggesting that (fcP,B)Zn(OPh) does not participate in the polymerization process (Figure S26). Similar re-

sults were obtained in the case of TMC. Polytrimethylenecarbonate (PTMC) was formed at a slow rate, but

no change was observed for (fcP,B)Zn(OPh) (Figures S27 and S28), suggesting that an impurity or a decom-

position product might be responsible for monomer conversion.
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Figure 5. Optimized Structures for Models of [(fcP,B)Zn(m-OCH2Ph)]2[BArF]2
DFT Calculations

To gain a better understanding of the influence of ligand oxidation on the activity of the catalyst, we turned

to DFT. All calculations were carried out with the Gaussian09 program package (Frisch, 2010 [see Supple-

mental Information for the full reference]) on the Extreme Science and Engineering Discovery Environment

(Towns et al., 2014). The methyl groups of the pyrazole substituents were replaced by hydrogen atoms and

the phenyl groups of PPh2 were replaced by methyl groups to simplify the calculations (for more details

about calculations, see Supplemental Information). Lactide was chosen as the model substrate for the

DFT calculations. Although DFT calculations did not describe correctly the electronic structure of [(fcP,B)

Zn(m-OCH2Ph)]2
2+, the results reported below are still meaningful.

We previously reported a computational study comparing the energies of possible monomeric and

dimeric structures of the zinc benzoxide complexes and showed that the dimer [(fcP,B)Zn(m-OCH2Ph)]2
was more stable (by 3.3 kcal/mol) than the corresponding monomer (fcP,B)Zn(OCH2Ph) (Abubekerov

et al., 2018). Calculations conducted at the same level of theory showed that, in the oxidized state,

the dimeric species [(fcP,B)Zn(m-OCH2Ph)]2
2+ was also greatly favored (20.1 kcal/mol) over the

corresponding monomer (Figure 5). This preference was maintained even after the insertion of the first

lactide, with the dimeric intermediate being 12.7 kcal/mol lower in energy than the monomeric interme-

diate (Figure 6). These results suggest that the active species in the reactions involving the oxidized

complex is a dimer, similarly to what was previously found for the reduced compound (Abubekerov

et al., 2018).

A look at the energy surfaces of the reduced (Abubekerov et al., 2018) and the oxidized complexes during

TMC polymerization showed a small difference between the two reactions (Figures S53 and 7, respec-

tively). The highest activation barrier for both reactions corresponds to the ring-opening step (TSII-III),

with the activation barrier for the reduced complex being lower by 5.3 kcal/mol. Such a small difference

between the two compounds is in agreement with the minor rate differences observed for the ring-open-

ing polymerizations catalyzed by the reduced and oxidized species. These results also agree with the elec-

tronic structure calculations described above: since the oxidation of the supporting ligand is centered on

the phosphine ligand, it has little impact on the rate of ring-opening polymerization due to the lack of a

phosphine-zinc interaction in both the reduced and oxidized states.
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Figure 6. Optimized Structures of the Product Obtained after the First Lactide Ring-Opening Event Indicating

that the Dimeric Species Is More Energetically Favored than the Monomeric Species
Conclusions

The zinc complexes supported by a ferrocene-chelating heteroscorpionate ligand showed reversible

electron transfer events during cyclic voltammetry experiments. Consequently, their applicability

toward redox-switchable catalysis in the ring-opening polymerization of cyclic esters and TMC was inves-

tigated. However, [(fcP,B)Zn(m-OCH2Ph)]2[BAr
F]2 proved difficult to characterize due to its poor

solubility and thermally sensitive nature. A combination of NMR and Mössbauer spectroscopies sup-

ported the existence of a paramagnetic species, but with the ferrocene iron remaining in a +2 oxidation

state. A careful analysis of the electronic structure of the oxidized complex via a computational study

concluded that the electron is removed from the phosphorus atom and not iron, as was originally

expected.

Different polymerization rates for [(fcP,B)Zn(m-OCH2Ph)]2 and the corresponding oxidized complex, [(fcP,B)

Zn(m-OCH2Ph)]2[BAr
F]2, toward the same set of monomers were observed. The differences in the observed

reactivity are attributed to the difference in charge distributions between the neutral and the cationic zinc

species. More importantly, unlike in other redox-switchable systems reported by us, both oxidation states

of the same pre-catalyst reacted with all the substrates investigated. This lack of selectivity is attributed to

the absence of a zinc-phosphine interaction in both the reduced and oxidized states of the zinc benzoxide

species and was probed via DFT calculations. However, the monomeric zinc phenoxide species, (fcP,B)

Zn(OPh), which retains the phosphine-zinc interaction in solution, was found inactive toward the ring-open-

ing polymerization of LA and TMC. Based on the results of this investigation, we are currently developing a

monomeric zinc alkoxide species bearing a ferrocene-chelating heteroscorpionate derivative, and are

interested in studying its application toward the ring-opening polymerization of cyclic esters and

carbonates.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND SOFTWARE AVAILABILITY

The cif was deposited with CCDC, #1838242. The optimized coordinates are available as an excel spread-

sheet (Data S1) and an xyz file (Data S2) as Supplemental Information.
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Figure 7. Energy Profile for the Ring-Opening Polymerization of TMC Catalyzed by the Oxidized Form of the Zinc Complex

See also Figure S53.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 53 figures, 7 tables, and 2 data files and can be

found with this article online at https://doi.org/10.1016/j.isci.2018.08.020.
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Transparent Methods  

General considerations. All reactions were performed using standard Schlenk techniques or in 

an MBraun drybox (<1 ppm O2/H2O), unless noted otherwise. All glassware, cannulas, and Celite 

were stored in an oven at > 425 K before being brought into the drybox. Solvents were purified 

using a two-column solid-state purification system by the method of Grubbs (Pangborn et al., 

1996) and transferred to the glovebox without exposure to air. NMR solvents were obtained from 

Cambridge Isotope Laboratories, degassed, and stored over activated molecular sieves prior to use. 

NMR spectra were recorded at ambient temperature on Bruker AV-300, AV-400, AV-500, and 

DRX-500 spectrometers, unless otherwise noted. Proton and carbon chemical shifts are given 

relative to residual solvent peaks. Phosphorus, boron, and fluorine chemical shifts are given 

relative to external standards, H3PO4, Et2O·BF3, and 1% Freon-113 in C6D6, respectively. 

Trimethoxybenzene was purchased from Sigma Aldrich and recrystallized from diethyl ether prior 

to use. L-lactide was purchased from TCI and recrystallized from THF prior to use. Liquid 

monomers were distilled over CaH2 and brought into the box without exposure to air. Trimethylene 

carbonate (Matsuo et al., 1998), [AcFc][BArF] (Dhar et al., 2016), (fcP,B)ZnCl·(C7H8) (Abubekerov 

and Diaconescu, 2015), and [(fcP,B)Zn(μ-OCH2Ph)]2 (Abubekerov et al., 2018) were prepared 

using literature procedures, and, unless otherwise noted, all reagents were acquired from 

commercial sources and used as received. Elemental analysis of [(fcP,B)Zn(OCH2Ph)]2[BArF]2 was 

carried out by Midwest Microlab, LLC, Indianapolis, IN. Elemental analysis of (fcP,B)Zn(OPh) 

was performed on an Exeter Analytical, Inc. CE-440 Elemental Analyzer. Molar masses of the 

polymers were determined by a MALS using a Shimazu Prominence-i LC 2030C 3D equipped 

with an autosampler, two MZ Analysentechnik MZ-Gel SDplus LS 5 μm, 300 × 8 mm linear 

columns, a Wyatt DAWN HELEOS-II, and a Wyatt Optilab T-rEX. The column temperature was 
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set at 40 °C. A flow rate of 0.70 mL/min was used, and samples were dissolved in chloroform. The 

number average molar mass and dispersity were found using the known concentration of the 

sample in chloroform with the assumption of 100% mass recovery to calculate dn/dc from the RI 

signal. Zero-field 57Fe Mössbauer data were recorded on a WissEl spectrometer (MRG-500) at 

77 K with alternating constant acceleration. 57Co/Rh was used as the radiation source. The 

minimum experimental line width was 0.21 mm s-1 (full width at half-height). The temperature of 

the samples was controlled by an MBBC-HE0106 MÖSSBAUER He/N2 cryostat within an 

accuracy of ±0.3 K. Isomer shifts were determined relative to α-iron at 298 K. Analysis and 

simulation of the data was done using the software “mcal” and “mf” written by E. Bill (Max Planck 

Institute for Chemical Energy Conversion, Mülheim an der Ruhr). All measurements were 

conducted with solid-state samples. The obtained solid was filled into PTFE 

(polytetrafluoroethylene) capsules in the glove box and placed in liquid nitrogen directly after 

being discharged from the glovebox. Handling and mounting of the samples were performed under 

liquid nitrogen. EPR spectra were recorded on a JEOL continuous wave spectrometer JES-FA200 

equipped with an X-band Gunn oscillator bridge, a cylindrical mode cavity, and a helium cryostat. 

The samples were freshly dissolved in the respective solvent in an air-tight quartz EPR tube under 

nitrogen in the glovebox. The solution in the tube was frozen in liquid nitrogen upon exiting the 

glovebox and kept frozen until measured. Analysis and simulation of the data was done using the 

software “eview” and “esim” written by E. Bill (MPI for Chemical Energy Conversion, Mülheim 

an der Ruhr).  

 [(fcP,B)Zn(OCH2Ph)]2[BArF]2. To solid [AcFc][BArF] (67.8 mg, 0.062 mmol) was added 

[(fcP,B)Zn(μ-OCH2Ph)]2(THF)2 (55.8 mg, 0.034 mmol) in 4 mL of toluene/trifluorotoluene (1:1 

vol %). The reaction mixture was stirred for 30 min at ambient temperature. The toluene solution 
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was decanted and the remaining oily red solids were washed with 2 × 2 mL of toluene. The product 

was isolated as a red solid after an hour under reduced pressure (77.8 mg, 78.0%). 1H NMR (THF-

d8, 500 MHz, 298 K): δ (ppm) 2.24 (s), 2.39 (s), 4.40 (s), 4.43 (s), 4.63 (s), 4.66 (s), 6.07 (s), 7.09 

(t), 7.14 (s), 7.28 (t), 7.58 (s), 7.71 (m), 7.79 (s), 8.95 (br s), 10.64 (br s). 11B NMR (THF-d8, 161 

MHz, 298 K): δ (ppm) -5.9 (s), -7.8 (br s, Δν1/2 = 289.2 Hz ). 19F NMR (THF-d8, 376 MHz, 298 

K): δ (ppm) -63.5 (s). Anal. Calcd: [(fcP,B)Zn(OCH2Ph)][BArF] (C71H52B2F24FeN4OPZn) C, 53.07; 

H, 3.26; N, 3.49. Found: C, 53.17; H, 3.32; N, 3.54. 

(fcP,B)Zn(OPh). To (fcP,B)ZnCl·( C7H8) (121.1 mg, 0.158 mmol) in 4 mL of methylene chloride 

was added solid NaOPh (27.6 mg, 0.238 mmol) and the suspension stirred for 1 h at ambient 

temperature. The reaction mixture was filtered through Celite and volatile substances were 

removed under reduced pressure. The remaining oily solids were dissolved in 2 mL of diethyl ether 

and stored at -35 °C for several hours. Decanting of the solution and washing with cold diethyl 

ether yielded the product as orange crystals (101.4 mg, 79.8%). X-ray quality crystals were 

obtained from diethyl ether at -35 °C. Crystals of (fcP,B)Zn(OPh) always contain a molecule of 

diethyl ether per molecule of compound as supported by NMR data. 1H NMR (C6D6, 500 MHz, 

298 K): δ (ppm) 2.21 (s, 6H, CH3), 2.27 (s, 6H, CH3), 3.53 (q, 2H, Cp-H), 3.93(t, 2H, Cp-H), 4.00 

(t, 2H, Cp-H), 4.04 (t, 2H, Cp-H), 4.70 (br s, 1H, BH), 5.69 (s, 2H, CH), 6.68 (m, 1H, p-Ph), 6.89 

(m, 2H, m-Ph), 7.02 (m, 6H, m-Ph, p-Ph), 7.15 (m, 2H, o-Ph), 7.98 (m, 4H, o-Ph). 13C NMR (C6D6, 

126 MHz, 298 K): δ (ppm) 13.3 (s, CH3), 14.0 (s, CH3), 68.1 (d, Cp-C), 68.2 (s, Cp-C), 69.6 (s, 

Cp-C), 72.2 (d, Cp-C), 72.6 (s, Cp-C), 75.1 (s, Cp-C), 106.8 (s, CH), 115.4 (s, aromatic), 119.4 (s, 

aromatic), 129.3 (d, aromatic), 130.2 (s, aromatic), 131.2 (d, aromatic), 131.4 (d, aromatic), 134.5 

(d, aromatic), 147.9 (s, CCH3), 150.1 (s, CCH3), 168.0 (d, aromatic). 31P{1H} NMR (C6D6, 203 

MHz, 298 K): δ (ppm) -15.5 (s). 11B NMR (C6D6, 161 MHz, 298 K): δ (ppm) -7.0 (br s, Δν1/2 = 



	 S5

343.7 Hz). Anal. Calcd: (fcP,B)Zn(OPh)·(Et2O) (C42H48BFeN4O2PZn) C, 62.75; H, 6.02; N, 6.97. 

Found: C, 61.83; H, 5.81; N, 6.75. 

NMR Scale Polymerizations. To a small vial, [(fcP,B)Zn(μ-OCH2Ph)]2 (2.5 μmol), an external 

standard, hexamethylbenzene (0.025 mmol), the monomer (0.5 mmol), and 0.5 mL of C6D6 were 

added. The contents of the vial were stirred and the homogeneous solution was transferred to a J. 

Young NMR tube equipped with a Teflon valve. The NMR tube was sealed, taken out of the box 

and placed in an oil bath. The polymerization was monitored by 1H NMR spectroscopy until the 

conversion stopped or reached completion. The contents of the NMR tube were diluted with 0.5 

mL of dichloromethane and poured into 10 mL of methanol to yield white solids. The product was 

collected on a glass frit, washed with additional 5 mL of methanol and kept under reduced pressure 

until it reached a consistent weight. For the control experiments, [AcFc][BArF] (5 μmol) was used 

instead of [(fcP,B)Zn(μ-OCH2Ph)]2 under similar conditions as above (Figures S14-S17). 

Electrochemical studies. Cyclic voltammetry studies were carried out in a 20 mL scintillation 

vial with electrodes fixed in position by a rubber stopper, in a 0.10 M tetrabutylammonium 

hexafluorophosphate solution in THF. A glassy carbon working electrode (planar circular area = 

0.071 cm2), a platinum reference electrode (planar circular area = 0.031 cm2), and a silver-wire 

pseudo-reference electrode were purchased from CH Instruments. Before each cyclic 

voltammogram was recorded, the working and auxiliary electrodes were polished with an aqueous 

suspension of 0.05 μm alumina on a Microcloth polishing pad. Cyclic voltammograms were 

acquired with a CH Instruments CHI630D potentiostat and recorded with CH Instruments software 

(version 13.04) with data processing on Origin 9.2. All potentials are given with respect to the 

ferrocene-ferrocenium couple. 
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X-ray crystallography. X-ray quality crystals were obtained from various concentrated 

solutions placed in a -35 °C freezer in the glove box unless otherwise specified. Inside the glove 

box, the crystals were coated with oil (STP Oil Treatment) on a microscope slide, which was 

brought outside the glove box. The X-ray data collections were carried out on a Bruker SMART 

1000 single crystal X-ray diffractometer using MoK radiation and a SMART APEX CCD 

detector. The data was reduced by SAINTPLUS and an empirical absorption correction was 

applied using the package SADABS. The structure was solved and refined using SHELXTL 

(Brucker 1998, SMART, SAINT, XPREP, AND SHELXTL, Brucker AXS Inc., Madison, 

Wiscosin, USA). Tables with atomic coordinates and equivalent isotropic displacement 

parameters, with all the distances and angles, and with anisotropic displacement parameters are 

listed in the cif. 

DFT calculations. All calculations were carried out with the GAUSSIAN 09 program package. 

Geometry optimizations were performed with B3LYP (Becke, 1993a, Lee et al., 1988, Becke, 

1993b). The LANL2DZ basis set (Hay and Wadt, 1985, Roy et al., 2008, Ehlers et al., 1993) with 

ECP was used for Zn and Fe, and the 6-31G(d) basis set (Ditchfield et al., 1971, Hehre et al., 1972, 

Hariharan and Pople, 1973) was used for other atoms. Frequency analysis was conducted at the 

same level of theory to verify that the stationary points are minima or saddle points. The single 

point energies and solvent effects in benzene were computed with PBE1PBE (Perdew et al., 1996) 

/ SDD-6-311+G(d,p) basis sets (Dolg et al., 1987) by using the PCM solvation model (Scalmani 

and Frisch, 2010). The D3 version of Grimme's dispersion was applied for the dispersion 

correction (Grimme et al., 2010). All enthalpies and the Gibbs free energies are given in Hartree. 

Electronic structure calculations. The electronic structure of the system was investigated with 

the Quantum Espresso software package (Paolo et al., 2009) by using the geometry optimized with 
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Gaussian 09 (see “DFT calculations” paragraph). For the exchange-correlation, a PBE generalized 

gradient approximation was used. This approach was combined with a U parameter obtained with 

the approach of Cococcioni & de Gironcoli (Cococcioni and de Gironcoli, 2005). Projected 

augmented wave pseudopotentials were used for all atoms. The kinetic energy cutoffs were 50 and 

400 Ry for the planewave and density expansions, respectively. The total energy was converged 

to 0.05 Ry and the eigenvalues to 0.01 eV. 
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NMR Spectra 
 

 
Figure S1. 1H NMR spectra (C6D6, 500 MHz, 298 K) of [(fcP,B)Zn(μ-OCH2Ph)]2 (bottom), 
[(fcP,B)Zn(μ-OCH2Ph)]2 + [AcFc][BArF] (middle), [(fcP,B)Zn(μ-OCH2Ph)]2 + [AcFc][BArF] + 
Cp2Co (top); related to Equation 1. 
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Figure S2. 31P{1H} NMR spectra (C6D6, 202 MHz, 298 K) of [(fcP,B)Zn(μ-OCH2Ph)]2  
(bottom), [(fcP,B)Zn(μ-OCH2Ph)]2 + [AcFc][BArF] (middle), [(fcP,B)Zn(μ-OCH2Ph)]2 + 
[AcFc][BArF] + Cp2Co (top); related to Equation 1. 
 

 
Figure S3. 1H NMR spectrum (THF-d8, 500 MHz, 298 K) of [(fcP,B)Zn(μ-OCH2Ph)]2[BArF]2: 
δ (ppm) 2.24 (s), 2.39 (s), 4.40 (s), 4.43 (s), 4.63 (s), 4.66 (s), 6.07 (s), 7.09 (t), 7.14 (s), 7.28 (t), 
7.58 (s), 7.71 (m), 7.79 (s), 8.95 (br s), 10.64 (br s). Peaks at 2.31 ppm, 7.10 ppm and 7.19 ppm 
are attributed to residual toluene; related to Equation 1. 
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Figure S4. 11B NMR spectrum (THF-d8, 161 MHz, 298 K) of [(fcP,B)Zn(μ-OCH2Ph)]2[BArF]2: 
δ (ppm) -5.9 (s), -7.8 (br s); related to Equation 1. 
 

 
Figure S5. 19F NMR spectrum (THF-d8, 376 MHz, 298 K) of [(fcP,B)Zn(μ-OCH2Ph)]2[BArF]2: 
δ (ppm) -63.5 (s); related to Equation 1. 
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Figure S6. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of L-lactide (LA) polymerization. The 
standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-OCH2Ph)]2 : HMB : LA ratio is 
1:10:194. δ (ppm) 1.32 (d, 6H, CHCH3 PLA), 2.11 (s, 18H, CH3 HMB), 5.01 (q, 2H, CHCH3 
PLA); related to Table 1, entry 1. 

 
Figure S7. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of L-lactide (LA) polymerization. The 
standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-OCH2Ph)]2[BArF]2 : HMB : LA 
ratio is 1:10:184. δ (ppm) 1.21 (d, 6H, CHCH3 LA), 1.32 (d, 6H, CHCH3 PLA), 2.11 (s, 18H, CH3 
HMB), 4.01 (q, 2H, CHCH3 LA), 5.01 (q, 2H, CHCH3 PLA); related to Table 1, entry 2. 
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Figure S8. 1H NMR spectrum (C6D6, 300 MHz, 298 K) of ε-caprolactone (CL) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-OCH2Ph)]2 
: HMB : CL ratio is 1:10:158. δ (ppm) 1.0–1.6 (6H, CH2 PCL), 2.09 (t, 2H, CH2 PCL), 2.11 (s, 
18H, CH3 HMB), 3.95 (t, 2H, CH2 PCL); related to Table 1, entry 3. 

 
Figure S9. 1H NMR spectrum (C6D6, 300 MHz, 298 K) of ε-caprolactone (CL) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 : HMB : CL ratio is 1:10:188. δ (ppm) 1.0–1.6 (6H, CH2 PCL), 2.09 (t, 2H, 
CH2 PCL), 2.11 (s, 18H, CH3 HMB), 3.95 (t, 2H, CH2 PCL); related to Table 1, entry 4. 
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Figure S10. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of trimethylene carbonate (TMC) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-OCH2Ph)]2 
: HMB : TMC ratio is 1:10:194. δ (ppm) 0.80 (t, 2H, CH2 TMC), 1.67 (t, 2H, CH2 PTMC), 2.11 
(s, 18H, CH3 HMB), 3.37 (t, 4H, CH2 TMC), 4.01 (t, 4H, CH2 PTMC); related to Table 1, entry 5. 

 
Figure S11. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of trimethylene carbonate (TMC) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 : HMB : TMC ratio is 1:10:156. δ (ppm) 1.70 (br s, 2H, CH2 PTMC), 2.12 (s, 
18H, CH3 HMB), 4.00 (br s, 4H, CH2 PTMC); related to Table 1, entry 6. 
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Figure S12. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of δ-valerolactone (VL) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-OCH2Ph)]2 
: HMB : VL ratio is 1:10:204. δ (ppm) 0.95 (m, 2H, CH2 VL), 1.03 (m, 2H, CH2 VL), 1.42 (m, 
2H, CH2 PVL), 1.54 (m, 2H, CH2 PVL), 2.00 (t, 2H, CH2 VL), 2.07 (t, 2H, CH2 PVL), 2.11 (s, 
18H, CH3 HMB), 3.59 (t, 2H, CH2 VL), 3.94 (t, 2H, CH2 PVL); related to Table 1, entry 7. 

 
Figure S13. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of δ-valerolactone (VL) 
polymerization. The standard is hexamethylbenzene (HMB). Compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 : HMB : VL ratio is 1:10:202. δ (ppm) 0.95 (m, 2H, CH2 VL), 1.03 (m, 2H, 
CH2 VL), 1.42 (m, 2H, CH2 PVL), 1.54 (m, 2H, CH2 PVL), 2.00 (t, 2H, CH2 VL), 2.07 (t, 2H, 
CH2 PVL), 2.11 (s, 18H, CH3 HMB), 3.59 (t, 2H, CH2 VL), 3.94 (t, 2H, CH2 PVL); related to 
Table 1, entry 8. 
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Figure S14. Control experiment of 40 equivalents of L-lactide (LA) with 5 equivalents of 
[AcFc][BArF] at 70 °C for 3 h; related to Table 1. 
 

 
Figure S15. Control experiment of 40 equivalents of trimethylene carbonate (TMC) with 5 
equivalents of [AcFc][BArF] at ambient temperature for 2 h; related to Table 1. 
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Figure S16. Control experiment of 64 equivalents of ε-caprolactone (CL) with 5 equivalents 
of [AcFc][BArF] at 70°C for 1 h; related to Table 1. 

 
Figure S17. Control experiment of 76 equivalents of δ-valerolactone (VL) with 5 equivalents 
of [AcFc][BArF] at ambient temperature for 2 h; related to Table 1. 
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Figure S18. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of (fcP,B)Zn(OPh): δ (ppm) 2.21 (s, 
6H, CH3), 2.27 (s, 6H, CH3), 3.53 (q, 2H, Cp-H), 3.93(t, 2H, Cp-H), 4.00 (t, 2H, Cp-H), 4.04 (t, 
2H, Cp-H), 4.70 (br s, 1H, BH), 5.69 (s, 2H, CH), 6.68 (m, 1H, p-Ph), 6.89 (m, 2H, m-Ph), 7.02 
(m, 6H, m-Ph, p-Ph), 7.15 (m, 2H, o-Ph), 7.98 (m, 4H, o-Ph). The peaks at 1.11 and 3.53 are 
attributed to co-crystallized diethyl ether; related to Equation 2. 
 

 
Figure S19. 13C NMR spectrum (C6D6, 126 MHz, 298 K) of (fcP,B)Zn(OPh): δ (ppm) 13.3 (s, 
CH3), 14.0 (s, CH3), 68.1 (d, Cp-C), 68.2 (s, Cp-C), 69.6 (s, Cp-C), 72.2 (d, Cp-C), 72.6 (s, Cp-C), 
75.1 (s, Cp-C), 106.8 (s, CH), 115.4 (s, aromatic), 119.4 (s, aromatic), 129.3 (d, aromatic), 130.2 
(s, aromatic), 131.2 (d, aromatic), 131.4 (d, aromatic), 134.5 (d, aromatic), 147.9 (s, CCH3), 150.1 
(s, CCH3), 168.0 (d, aromatic). The peaks at 15.9 and 66.3 are attributed to co-crystallized diethyl 
ether; related to Equation 2. 
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Figure S20. 31P{1H} NMR spectrum (C6D6, 203 MHz, 298 K) of (fcP,B)Zn(OPh): δ (ppm) -15.5 
(s); related to Equation 2. 
 

 
Figure S21. 11B NMR spectrum (C6D6, 161 MHz, 298 K) of (fcP,B)Zn(OPh): δ (ppm) -7.0 (br 
s); related to Equation 2. 
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Figure S22.	1H NMR spectrum (C6D6, 500 MHz, 298 K) of (fcP,B)Zn(OPh) + [AcFc][BArF]; 
related to Equation 2. 
 

 
Figure S23. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of (fcP,B)Zn(OPh) + AgBF4; related 
to Equation 2. 
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Figure S24. 1H NMR spectra (C6D6, 500 MHz, 298 K) of L-lactide polymerization (10 
equivalents) in the presence of (fcP,B)Zn(OPh); related to Table 1. 
	

 
Figure S25. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of L-lactide polymerization (10 
equivalents) in the presence of (fcP,B)Zn(OPh) after 5 h at 100 °C; related to Table 1. 
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Figure S26. 1H DOSY NMR spectrum (C6D6, 500 MHz, 298 K) of L-lactide polymerization 
(10 equivalents) in the presence of (fcP,B)Zn(OPh) after 5 h at 100 °C; related to Table 1. 
 

 
Figure S27. 1H NMR spectra (C6D6, 500 MHz, 298 K) of trimethylene carbonate 
polymerization (13 equivalents) in the presence of (fcP,B)Zn(OPh); related to Table 1.	
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Figure S28. 1H NMR spectrum (C6D6, 500 MHz, 298 K) of trimethylene carbonate 
polymerization (13 equivalents) in the presence of (fcP,B)Zn(OPh) after 3.5 h at 100 °C; related 
to Table 1. 
 

 
Figure S29. Solution state magnetic susceptibility (C6D6, 500 MHz, 298 K) of [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 in the presence of 60 equivalents of trimethylene carbonate. The 
separation between the solvent peak containing the metal complex and the solvent in the insert is 
displayed; related to Table 1. 
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Figure S30. Solution state magnetic susceptibility (C6D6, 500 MHz, 298 K) of [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 in the presence of 136 equivalents of δ-valerolactone. The separations 
between the solvent peak containing the metal complex and the solvent in the insert are displayed; 
related to Table 1. 
 

 
Figure S31. Solution state magnetic susceptibility (C6D6, 500 MHz, 298 K) of [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2 in the presence of 95 equivalents of ε-caprolactone. The separations 
between the solvent peak containing the metal complex and the solvent in the insert are displayed; 
related to Table 1. 
 
 
 



	 S24

Cyclic Voltammetry Data  
 
Calculating ipc/ipa: 
 

 
 
The ratio of the peak currents, ipc/ipa, was determined by the equation above, because the actual 
baseline for measuring ipc could not be determined in most cases.  This was calculated from (a) the 
uncorrected cathodic peak current, (ipc)0, with respect to the zero current baseline and (b) the 
current at the switching potential (isp)0.  
 

 
Figure S32. Cyclic voltammograms recorded with a glassy carbon electrode at 100 mV/s in 
THF, 0.10 M [TBA][PF6] containing (a) no [(fcP,B)Zn(μ-OCH2Ph)]2, (b) 2.5 mM [(fcP,B)Zn(μ-
OCH2Ph)]2; related to Equation 1. 
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Figure S33. Cyclic voltammogram recorded with a glassy carbon electrode at 100 mV/s in 
THF, 0.10 M [TBA][PF6] containing 2.5 mM [(fcP,B)Zn(μ-OCH2Ph)]2. E1/2 =  -0.024 V, ipa/ipc = 
1.02; related to Equation 1. 
 

 
Figure S34. Cyclic voltammograms recorded with a glassy carbon electrode at 50, 100, 250, 
and 500 mV/s in THF, 0.10 M [TBA][PF6] containing 2.5 mM [(fcP,B)Zn(μ-OCH2Ph)]2; related 
to Equation 1. 
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Figure S35. Cyclic voltammograms recorded with a glassy carbon electrode at 100 mV/s in 
THF, 0.10 M [TBA][PF6] containing (a) no (fcP,B)Zn(OPh), (b) 5.0 mM (fcP,B)Zn(OPh); related 
to Equation 2. 

 
Figure S36. Cyclic voltammogram recorded with a glassy carbon electrode at 100 mV/s in 
THF, 0.10 M [TBA][PF6] containing 5.0 mM (fcP,B)Zn(OPh). E1/2 = -0.065 V, ipa/ipc = 1.06; related 
to Equation 2. 
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Figure S37. Cyclic voltammograms recorded with a glassy carbon electrode at 50, 100, 250, 
and 500 mV/s in THF, 0.10 M [TBA][PF6] containing 5.0 mM (fcP,B)Zn(OPh); related to 
Equation 2. 
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X-ray Crystallographic Data 

 
Figure S38. Molecular structure drawing of (fcP,B)Zn(OPh) with thermal ellipsoids at 50% 
probability; hydrogen atoms are omitted for clarity; related to Figure 4. 
 
Crystal data for C42H48BFeN4O2PZn; Mr = 803.84; Monoclinic; space group P21/n; a = 12.2440(9) 
Å; b = 14.1412(11) Å; c = 22.6967(17) Å; α = 90°; β = 94.557(1)°; γ = 90°; V = 3917.4(5) Å3; Z 
= 4; T = 100(2) K; λ = 0.71073 Å; μ = 1.064 mm-1; dcalc = 1.363 g·cm-3; 50393 reflections collected; 
9606 unique (Rint = 0.0324); giving R1 = 0.0508, wR2 = 0.0924 for all 9606 data. Residual electron 
density (e–·Å-3) max/min: 0.63/-0.58.  
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Size Exclusion Chromatography 
 

 
Figure S39. Polymerization of 194 equivalents of L-lactide by compound [(fcP,B)Zn(μ-
OCH2Ph)]2; Mn = 13,800; Đ = 1.14; related to Table 1, entry 1. 
 

 
Figure S40. Polymerization of 184 equivalents of L-lactide by compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2; Mn = 13,500; Đ = 1.03; related to Table 1, entry 2. 
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Figure S41. Polymerization of 158 equivalents of ε-caprolactone by compound [(fcP,B)Zn(μ-
OCH2Ph)]2; Mn = 8,900; Đ = 1.09; related to Table 1, entry 3. 
 

 
Figure S42. Polymerization of 188 equivalents of ε-caprolactone by compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2; Mn = 10,500; Đ = 1.08; related to Table 1, entry 4. 
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Figure S43. Polymerization of 194 equivalents of trimethylene carbonate by compound 
[(fcP,B)Zn(μ-OCH2Ph)]2; Mn = 10,000; Đ = 1.14; related to Table 1, entry 5. 
 

 
Figure S44. Polymerization of 156 equivalents of trimethylene carbonate by compound 
[(fcP,B)Zn(μ-OCH2Ph)]2[BArF]2; Mn = 8,100; Đ = 1.02; related to Table 1, entry 6. 
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Figure S45. Polymerization of 204 equivalents of δ-valerolactone by compound [(fcP,B)Zn(μ-
OCH2Ph)]2; Mn = 10,400; Đ = 1.01; related to Table 1, entry 7. 
 

 
Figure S46. Polymerization of 202 equivalents of δ-valerolactone by compound [(fcP,B)Zn(μ-
OCH2Ph)]2[BArF]2; Mn = 10,500; Đ = 1.04; related to Table 1, entry 8. 
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Conversion Studies 
 
Table S1. Molar mass versus conversion study of L-lactide in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
35 25 10,500 11,800 1.05 
55 36 14,300 15,500 1.08 
75 43 17,100 18,600 1.06 
95 49 19,700 20,900 1.11 

115 55 22,600 22,800 1.05 
Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at 70 °C. 

	
Figure S47. Conversion of L-lactide versus Mn in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 
	
Table S2. Molar mass versus conversion study of trimethylene carbonate in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
2 20 3,500 3,100 1.09 
3 35 5,900 5,800 1.01 
4 41 7,000 7,100 1.02 
5 43 7,300 7,600 1.04 
6 48 8,200 8,800 1.00 
7 68 12,100 12,200 1.02 

Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at ambient temperature.	
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Figure S48. Conversion of trimethylene carbonate versus Mn in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 
	
Table S3. Molar mass versus conversion study of δ-valerolactone in the presence of 
[(fcP,B)Zn(OCH2Ph)]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
10 21 6,000 5,800 1.03 
15 30 8,000 7,400 1.01 
25 48 13,000 11,800 1.04 
30 58 15,800 14,100 1.03 
35 65 17,900 15,900 1.04 
40 71 18,800 16,900 1.04 

Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at ambient temperature.	

	
Figure S49. Conversion of δ-valerolactone versus Mn in the presence of 
[(fcP,B)Zn(OCH2Ph)]2; related to Table 1. 
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Table S4. Molar mass versus conversion study of δ-valerolactone in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
2 27  8,300   8,900  1.1 
4 36  10,900   11,900  1.04 
6 40  12,100   13,200  1.04 
8 44  13,500   14,700  1.04 

10 49  15,000   16,300  1.02 
12 56  16,700   17,700  1.03 
14 61  17,800   18,500  1.02 

Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at ambient temperature.	

	
Figure S50. Conversion of δ-valerolactone versus Mn in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 
 
Table S5. Molar mass versus conversion study of ε-caprolactone in the presence of 
[(fcP,B)Zn(OCH2Ph)]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
60 15  5,100  5,100 1.01 

120 25  8,900  8,300 1.02 
180 32  11,300  10,100 1.01 
240 43  15,100  14,000 1.01 
300 52  18,100  16,400 1.01 
360 57  19,800  18,100 1.01 

Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at ambient temperature.	
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Figure S51. Conversion of ε-caprolactone versus Mn in the presence of [(fcP,B)Zn(OCH2Ph)]2; 
related to Table 1. 
 
Table S6. Molar mass versus conversion study of ε-caprolactone in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 

Time (min) Conversion (%) Mn (NMR) Mn (SEC) Đ 
60 17  6,000   5,700  1.06 

120 30  10,500   9,300  1.09 
180 46  16,100   16,200  1.03 
240 57  19,900  20,000  1.04 
300 68  23,800   23,800  1.02 
360 75  26,200   26,300  1.02 

Conditions: benzene as a solvent (1.5 mL) and hexamethylbenzene as an internal standard. The 
experiment was performed at ambient temperature.	

	
Figure S52. Conversion of ε-caprolactone versus Mn in the presence of 
[(fcP,B)Zn(OCH2Ph)]2[BArF]2; related to Table 1. 
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DFT Calculations (Frisch, 2010) 

Table S7. Energies, enthalpies, and free energies of the structures calculated at the 
PBE1PBE/SDD, 6-311+G(d,p) (PCM, GD3, benzene)//B3LYP/LANL2DZ, 6-31G(d) level; 
related to Figures 5-7. 

 
 

Structures H G G 
E with 

corrections 
new G with 
corrections 

Cat-monomer-1 0.43718 0.345 -1587.434324 -1748.702933 -1748.357933 
Cat-monomer-2 0.437257 0.344178 -1587.424939 -1748.716437 -1748.372259 

After-insertion-LA-
dimer 1.031576 0.837546 -3709.203046 -4031.463474 -4030.625928 

After-insertion-LA-
monomer 0.591316 0.470926 -2121.704113 -2282.701359 -2282.230433 

I 0.875768 0.706086 -3174.908168 -3497.482632 -3496.776546 

TSI-II 0.989208 0.807349 -3556.520989 -3878.906822 -3878.099473 

II 0.99036 0.805784 -3556.557152 -3878.90713 -3878.101346 

TSII-III 0.989663 0.808934 -3556.548578 -3878.897142 -3878.088208 

III 0.990874 0.803592 -3556.564162 -3878.909919 -3878.106327 

IV 0.991638 0.802899 -3556.575983 -3878.920882 -3878.117983 

TMC 0.111273 0.074079 -381.634182 -381.4101659 -381.3360869 

Lactide 0.151554 0.105907 -534.250539 -533.935059 -533.829152 
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Figure S53. Comparison of the initiation steps of TMC polymerization catalyzed by a 

monomeric (red) or dimeric (black) form of the zinc complex; figure adapted from 

(Abubekerov et al., 2018); related to Figure 7. 
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