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Preserving Step Edges in Low Bit Rate
Progressive Image Compression

Dirck Schilling and Pamela C. Cosman, Senior Member, IEEE

Abstract—With the growing importance of low-bandwidth ap-
plications such as wireless access to the Internet, images are often
sent or received at low bit rates. At these bit rates they suffer from
significant distortion and artifacts, making it difficult for those
viewing the images to understand them. In this paper we present
two progressive compression algorithms that focus on preserving
the clarity of important image features, such as edges, at compres-
sion ratios of 80:1 and more. Both algorithms capture and encode
the locations of important edges in the images. The first algorithm
then transmits a standard SPIHT bit stream, and at the decoder
applies a nonlinear edge-enhancement procedure to improve the
clarity of the encoded edges. The second approach uses a modi-
fied wavelet transform to “remove” the edges, and encodes the re-
maining texture information using SPIHT. With both approaches,
features in the images that may be important for recognition are
well preserved, even at low bit rates.

Index Terms—Edge preservation, edge-based wavelet transform,
progressive compression.

I. INTRODUCTION

DESIGNERS of image coders face a more complex task
when designing progressive algorithms than nonprogres-

sive ones. While a nonprogressive algorithm seeks to achieve
the highest image quality at a single target bit rate, a progres-
sive algorithm attempts to do the same across an entire range
of bit rates. There are tradeoffs at each bit rate along the way.
Image quality may be improved at a given bit rate, yet this may
require a reduction in quality, relative to other algorithms, at an-
other bit rate.

Image quality is often measured with peak signal-to-noise
ratio (PSNR), and many progressive algorithms are designed
with this measure in mind. Often low frequency information is
sent first, delaying higher frequency information until later. For
many images this approach works very well, particularly those
consisting largely of low-frequency, smooth information such
as natural scenes. For other image classes, such as those con-
taining text or graphics, this prioritization performs poorly at
low bit rates. The sharp edges and details of important features
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are often obscured by blotches and ringing artifacts caused by
coarse quantization of the transform coefficients.

Compression algorithms may employ alternative tradeoff
strategies to the strict minimization of mean squared error (see
e.g., [1]). For example, the coder may spend more of its early
bit rate to improve the appearance of specific image features
deemed to be important, while representing other features at
lower quality until later in the bit stream. Edges are one type
of image feature whose importance for recognition has long
been noted [2]–[4]. For certain image classes, such as those
containing simple, sharply defined objects, text or graphics,
enhancing the visual clarity of some edges early in the bit
stream may allow the user to understand the basic content of
the images, even at very low bit rates.

In this paper, we present two progressive image coders de-
signed with the goal of improving the visual clarity of specific
image features early in the progressive bit stream. Both algo-
rithms capture the locations of important edges with an edge
detection step, then encode these edges and transmit them to
the decoder as part of the image header. The first, anedge-en-
hancing image coder (EEIC), follows the header with a stan-
dard SPIHT bit stream [5]. Its decoder uses the edge informa-
tion to enhance (sharpen) the edges in the blurred, low-bit-rate
image decoded from the SPIHT stream. The second coder im-
proves upon the first by making use of the information con-
tained in the edge packet when performing the wavelet trans-
form. The edges are effectively removed from the image during
the forward transform, and reinserted by the decoder during the
inverse transform. We refer to this algorithm as afeature-pre-
serving image coder (FPIC). We restrict our approach in this
paper to handling step edges. However, both algorithms could
be extended to more general edge models, such as that described
in [6].

This paper is organized as follows. In Section II we describe
the edge detection and coding procedures used in both algo-
rithms, and the edge enhancement technique specific to EEIC.
Section III describes FPIC, particularly its feature-preserving
transform. In Section IV we provide compression results and a
comparison of the two algorithms with existing approaches. We
present our conclusions in Section V.

II. EDGE-ENHANCING IMAGE CODER

In [7], we introduced a coder that combines SPIHT (or
any other progressive wavelet coder) and edge enhancement,
with the goal of allowing faster human recognition of the
progressively decoded images. A block diagram for this
edge-enhancing image coder (EEIC) is shown in Fig. 1. The
source image passes through an edge detector, which identifies

1057-7149/03$17.00 © 2003 IEEE
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Fig. 1. Block diagram of edge-enhancing image coder.

prominent edges likely to aid in human recognition. Lines are
extracted from the identified edge pixels, and the line segment
endpoints can be encoded using standard techniques for line
graphics, such as modified multiring chain coding [8]. The
encoded edge information is sent as part of the image header.
Encoding then proceeds in the usual SPIHT fashion. The
decoder enhances edges in the output image by combining
the edge location information with pixel intensity information
available from the progressive SPIHT bit stream.

A. Edge Extraction

The edge enhancement step is independent of the algorithms
used for edge detection and line extraction. Edge detection is
performed by a robust and effective method known as SUSAN
(Smallest Univalue Segment Assimilating Nucleus) [9]. This
method is based on a nonlinear local region-finding procedure
which has several advantages over derivative-based methods
such as Sobel or Canny edge detection. It is insensitive to noise,
provides good edge localization independently of mask size, and
reports sharp corners with good connectivity. Line segment ex-
traction is carried out using methods described by Rosin and
West in [10]. The current implementation approximates curved
edges by sets of linked straight line segments, however the en-
hancement technique is applicable to higher-order representa-
tions such as arcs, ellipses and polynomials.

The primary goal of our approach is to improve recognition
by enhancing only the most “important” edges in the image.
There is no widely accepted measure for the importance of an
edge, however in most situations a longer edge will convey more
information than a shorter one. The edge detection methods de-
scribed above intrinsically filter out much noise, but still report
short, sharply defined edges. Such short edges often correspond
to fine details or cluttered areas in the image. Coding these edges
is costly, and enhancing them is not likely to improve recog-
nition significantly. The edge detection procedure therefore in-
cludes a step to remove short edges.

It would be possible to incorporate other definitions of what
constitutes an important edge. Rohalyet al.discuss metrics that
predict object detection [11], while Giraudetet al. studied the
effect of different spatial frequencies on object recognition [12].
One could consider important edges to be those that keep their
position in a multiscale representation. Alternatively, in some
cases one may be searching for images with specified contents.
In this case important edges might be ones which are similar to
the desired contents (see, e.g., [13]).

Fig. 2. Multiring chain coding grid structure, with the radius 13 ring omitted
for clarity. Dots indicate indexed grid points; X’s are points on the input curve.
The circled grid point indicates the next output point, and the shaded area is the
error between the input and output curves for the current step.

B. Edge Coding

One efficient method of encoding edge information is the
modified multiring chain code with Fibonacci spacing described
in [8]. This method was originally proposed for coding human
signatures, but can be applied to any line-based graphics. Its ad-
vantages include its relatively simple implementation, and the
fact that it allows a tradeoff between cost and distortion. Fig. 2
summarizes the method. Given a base unit of length, a structure
of concentric square rings is defined whose radii are the product
of and the Fibonacci sequence 1, 2, 3, 5, 8, and 13. Grid points
are located along each ring with a spacing of, yielding a total of
256 grid points. The input curve consists of an ordered sequence
of points , which is approximated by
the output sequence . At each step in the
procedure, the multiring structure is positioned with its origin
on the previously coded output point . The intersection of
the input curve with each ring is examined in succession from
the outer ring inward. The nearest grid point to this intersection
is chosen as the next candidate output point . If no point
along between and is further than from the line
segment , then becomes and the encoder
outputs its multiring index.

This approach encodes the input curve nearly losslessly, in
that no point on the input curve is further thanfrom the approx-
imating output curve. Points on the output curve are a maximum
distance of apart, so the choice ofrepresents a tradeoff
between the accuracy of the output curve and the number of
output points (number of ring indices) required to transmit it.
For our implementation, we used pixels.

The ring indices are entropy coded to take advantage of the
predictability in continuous curves. In our implementation, after
each ring index is sent, the grid points are renumbered such that
the indices corresponding to “straight ahead”—0, 8, 24, 48, 88,
and 152—are positioned along the line extending in the direc-
tion of the previously encoded line segment. The remaining in-



SCHILLING AND COSMAN: PRESERVING STEP EDGES IN LOW BIT RATE PROGRESSIVE IMAGE COMPRESSION 1475

TABLE I
EDGE PACKET CODING COSTS FORSEVERAL IMAGES. FIGURES IN

PARENTHESES AREBITS PERORIGINAL EDGE POINT

dices are shifted by a corresponding amount around their respec-
tive rings. The result is that each index reflects an angular offset
relative to the previously coded line segment, rather than an ab-
solute offset. The distribution of index occurrences is thereby
skewed toward smaller angular changes, improving compres-
sion of the indices. The 256 ring indices, plus a 257th index to
indicate “end of edge,” are encoded using integer arithmetic en-
coding similar to the technique in [14].

We obtain a small additional improvement in coding effi-
ciency by representing each ring index as a combination of three
values: the ring on which the index lies, the number of gridpoints
away from “straight ahead” that it lies, and whether it lies to the
left or right of straight ahead. Each component is arithmetically
encoded with a context of one or two previous values. The im-
provement can be attributed to the reduced number of contexts
that the adaptive encoder must learn for each value.

1) Coding of Start Points and Single Segments:The multi-
ring chain coder must be initialized with the starting point of
each edge. For this purpose we employ arithmetic differential
offset coding of the edge start points. The encoder computes
the means of the horizontal and vertical offsets between succes-
sive edge start points, and transmits these along with the total
number of edges in an edge packet header. The encoder then
arithmetically encodes the differences between the means and
the horizontal and vertical offsets to each successive edge from
the previous one.

The multiring chain code is particularly effective for long,
smooth curves. It performs less well for edges consisting of only
one line segment, since no information is available from which
to predict the angle of the line segment. For this reason we use
differential offset coding to transmit both the start and end points
of these edges.

2) Edge Coding Performance:Table I shows the cost of
coding the edge information for several test images. Costs are
shown both in total bits, and inbits per original point(bpop).

Fig. 3. Edge enhancement procedure used in EEIC.

These images ranged in size between 256 and 512 pixels
in each dimension, so transmitting each original edge point
uncompressed would require . Three
methods for coding the ring indices are compared: Huffman
coding, arithmetic coding with no initial data, and arithmetic
coding with initial index probabilities computed from several
training images. In both the Huffman and trained arithmetic
cases, the training sets used to generate index probabilities did
not include the test images. In the arithmetic cases, the coder
state included context from prior indices. Arithmetic coding
with initial probabilities performed best in most cases except
those with the smallest edge packets. Untrained arithmetic
coding performed worse than Huffman coding, due primarily to
the small amount of data to be coded: the arithmetic coder has
too little time to adapt. Based on these results, Huffman coding
is a good choice because of its simplicity and performance.

C. Edge Enhancement

We now describe the approach used by the decoder to en-
hance the edges transmitted in the edge packet. For the current
implementation we assume that the edges of interest are pre-
dominantly of the step or single-sided ramp type. Extensions
are possible, however, which allow other types of edges such as
narrow ridges to be handled. The basic principle of the edge en-
hancement procedure is illustrated in Fig. 3.

The original edge, shown in profile in part A of Fig. 3, is
reconstructed by the wavelet coder at a low bit rate as B. This
is the version of the edge that is obtainable from the SPIHT
(or other wavelet coder) bit stream alone, without making use
of the edge information received. The decoder smooths B to
obtain C (we used a 20-point Gaussian filter); alternatively it
could retain an earlier version of B in memory. The decoder
obtains the location of the edge from the image header. The
intensity values of profile C at a distance from the edge on
either side, and , are used to define a target profile D. In
the current implementation, this profile is a nearly ideal step,
where and are the step’s two values, with a 1-pixel-wide
ramp between them. The difference between D and C yields E,
the enhancement profile. Finally, E is added to the reconstructed
profile B, resulting in the enhanced edge profile F.
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Fig. 4. Pixel enhancement for edgek. Pixels in shaded area belong tok.

In practice, several complications to the above procedure
arise, for instance when two or more edges fall within a dis-
tance of one another. The intent of the target profile D is to
determine valid pixel intensities to use for the “high” and “low”
sides of the edge. Thus, the desired target pixel intensities
should not be drawn from the opposite side of a neighboring
edge. To handle this, the decoder computes a distance transform
(such as the 5–7–11 Chamfer algorithm [15]), labeling each
image pixel with its distance from the nearest edge and the
identity of that edge. For each edge, the enhancement procedure
is performed on all pixels within of the edge and not closer
to another edge. Fig. 4 illustrates the regions of influence of
two neighboring edges. For each pixel lying within edge ’s
region of influence, an enhancement target value is determined,
i.e., the value from profile D corresponding to ’s location.
This target value is taken as the intensity of the target pixel

, where is the pixel in ’s region of influence that is
farthest from along the normal line from to .

EEIC is successful in improving the clarity of edges in highly
compressed images; in Section IV we provide examples of its
output. However, EEIC and related edge-based coders such as
[16] function only as an enhancement procedure at the decoder:
the edge information extracted at the encoder is not used at all
in encoding the transform coefficients. Because of this, there
is redundancy between the edge packet and the coefficients. A
further shortcoming is EEIC’s reliance on the fixed parameter
for determining the width of an edge. In Section III, we discuss
a coder designed to address these issues.

III. FEATURE-PRESERVINGIMAGE CODER

Ideally, we wish to avoid any redundancy in encoding the
various types of information contained in an image. The fea-
ture-preserving image coder (FPIC) [17] described in this sec-
tion treats an image as being composed of three types of infor-
mation:edges, texture, andedge-associated detail. Each compo-
nent is encoded progressively by a method tailored to its specific
characteristics. This approach allows a great deal of flexibility
at the encoder in balancing the bits budgeted for, and thus the
resulting quality of, each component.

A block diagram of FPIC is shown in Fig. 5. As with EEIC,
the encoder determines the locations of important edges and
transmits them to the decoder. Edge detection, line segment ex-
traction and edge encoding are performed in almost the same
manner as for EEIC, with one small improvement. Occasion-
ally, input edges may contain exceptionally long line segments

Fig. 5. Block diagram of FPIC.

(e.g., pixels). The multiring chain coder handles these by
repeating the same ring index numerous times, which can be
inefficient, and may allow small but visible deviations in the
straightness of these edges. Instead, we send an escape code
when encountering such a segment, and transmit theand off-
sets for the segment. Ring coding then resumes as before. This
modification improves the appearance of long, straight edges,
and it often reduces their cost in bits.

In contrast to EEIC, FPIC makes use of the edge locations
when encoding the remaining image information. The input
image is passed through a wavelet-based encoder which also
receives the encoded (lossy) edge locations as input. This
encoder, like SPIHT, consists of a forward wavelet transform,
a quantization (zerotree coding) step, and arithmetic encoding
of the quantized wavelet coefficients. In place of the standard
wavelet transform employed by SPIHT, however, FPIC uses a
new feature-preserving transform. This transform separates the
image into its three components: it removes information about
the edge locations (which has already been transmitted), and
divides the remaining information into texture and edge-asso-
ciated detail.

A. Feature-Preserving Wavelet Transform

The wavelet transform employed in FPIC improves the effi-
ciency with which the texture can be encoded, by reducing the
energy caused by the edges in the high-frequency bands of the
transform. It also extracts the edge-associated detail informa-
tion, contained in isolated coefficients near certain edges, and
passes this out for separate encoding.

1) Forward Transform: A standard one-level, one-dimen-
sional (1-D) forward wavelet transform is illustrated in Fig. 6.
The input signal contains an ideal step function. As the low-
pass filter passes over the step, its averaging properties cause it
to smear the step across several coefficients in the transform’s
low band. Similarly, as the highpass filter encounters the step, it
results in several spikes in the transform’s high frequency band.
If these spikes are coarsely quantized or zeroed during low bit
rate transmission, the step becomes distorted.

Fig. 7 illustrates the operation of the forward feature-pre-
serving wavelet transform. In this case, both the forward and
inverse transforms know the location of the ideal step, or edge.
In this paper, we specify the location of an edge by using
pixel cracks, also called crack edges. An edge of any width
can have its location specified as being centered between two
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Fig. 6. Schematic of a standard one-level wavelet transform on a 1-D input
signal containing an ideal step function.

Fig. 7. Schematic of a one-level feature-preserving wavelet transform on a 1-D
input signal containing an ideal step function.

pixels, rather than being centered on a pixel. This method of
specifying edge location can be used for step edges as well as
ramp edges and other edge models. In the forward transform,
as the lowpass filter crosses the edge, the heightof the step is
subtracted from each input value beyond the edge before that
value is fed to the filter. Then, after the center tap of the filter
passes the edge, is added to each input value prior to the
edge. In this way, all values seen by the filter at each position
have had the step removed from them. For the lowpass filter,
this means that the ideal step is reproduced without smearing
in the transform’s low band. Likewise, since the highpass filter
never sees the step, no spikes due to that step occur in the
high band. Even if the coefficients in either band are coarsely
quantized, the sharpness of the step remains unaffected. The
step’s height has been preserved in the low band (scaled by the
gain of the lowpass filter), but, because of the downsampling,
its precise location is now contained only in the separate edge
information, not in the transform coefficients. The edge has
been removed from the high band coefficients.

2) Inverse Transform:The edge removal procedure de-
scribed above is a linear one, and so can be described fully
by a system of equations of the form , where is
the vector of transformed coefficients prior to reordering into

high and low bands. is an matrix consisting of the
base wavelet transform matrix plus an edge-removal
matrix . It is therefore possible to reconstruct the original
input vector from the coefficients by matrix inversion with

.
Given an input signal of length , with lowpass filter

and highpass filter, the standard one-level octave-band wavelet
transform is computed by

...
...

...

or . Note that the filter taps in and must be
properly reflected back on themselves at the signal boundaries.
For the following discussion we assume odd-length filters, with

and . In the edge-re-
moval procedure applied during the forward transform, the
transformed coefficients are computed as follows:

...

...

where the step occurs between the input values and ,
and has height . In this example, is even. Stated
in matrix notation, and substituting for, this is

...
...

...
...

...
...

...
...

...

...

Denoting the edge removal matrix as, the transform be-
comes . The one-level inverse transform is there-
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fore given by . The effect of additional edges
is additive, so that for edges,
, and . The combined

edge removal matrix is , and
the overall transform matrix is then . Note that,
as with the base transform matrix, care must be taken when
constructing to properly reflect the filter taps near the matrix
boundaries.

Computational Complexity of the Inverse Transform:
As described above, the inverse transform requires inverting
an matrix for each -length signal, i.e., each row and
column of an image. Although matrix inversion in general
is approximately an process, inversion of the overall
transform matrix can be accomplished by methods costing
substantially less than , since is constant, and each
contains only two nonzero columns. The Sherman-Morrison
formula can be applied [18], reducing the cost when the number
of edges in a given input line is small in relation to. Another
possibility is to use matrix inversion only on the portions of the
input signal affected by an edge. That is, only submatrices of

containing the edges need be inverted.
Computational complexity can further be reduced by precom-

putation. The matrix contains only information about the
edge locations, not their heights, so that its inverse is valid for
any signal having the same edge positions. The inverses of sub-
matrices of can be precomputed for common edge combi-
nations. A precomputed submatrix for a lone edge, and subma-
trices for two edges within one to pixels of one another, given
filter length , would be applicable to many commonly occur-
ring cases. The overall inverse matrix can then be assembled
at run-time by reading these submatrices from lookup tables.

B. Edge Preprocessing

The wavelet transform is clearly dependent on an accurate
initial knowledge of the edge locations. If an edge is reported to
lie several pixels away from the actual location of the sharpest
gradient in image intensity, the value of, taken as the differ-
ence between the image intensities on both sides of the reported
edge, will not be equal to the true height of the edge. As a re-
sult, the benefit of subtracting and addingduring the trans-
form will be lost or reduced. Recall that the lossy edge coding
method employed by FPIC allows the encoder to trade off cost
and accuracy of the edges. To allow for lossy edges, FPIC in-
corporates an edge adjustment step prior to the wavelet trans-
form. This step successively interpolates pixel values near each
reported edge using values farther from the edge. The edge ad-
justment step functions as follows. A list of all image pixels that
are within a distance pixels of any edge is created, and sorted
in order of decreasing distance from the nearest edge. In most of
our tests, was chosen to be 3. For each pixelin the list, an ad-
justed intensity value is computed, where is the average of
’s eight-neighbors (weighted by distance from) that are both

farther away from any edge than, and are not separated from
by an edge. If differs from the original pixel intensity by

more than a threshold (which we set at 15), the original value
is replaced by . The effect of this adjustment is to shift the
locations of sharp intensity gradients spatially by a few pixels,

to match the lossy edge locations as encoded. In this way the
benefit of the edge removal process for texture coding can be
achieved, with little loss in overall image quality.

The edge adjustment step is useful at the lowest bit rates (for
example, 0.05 to 0.2 bpp) which are the recognition bit rates for
which FPIC is intended. If the edge adjustment is not done, FPIC
still provides some advantage at these low rates. At higher rates
(for example, greater than 0.3 bpp), the adjustment step does not
provide an advantage, and can ultimately prevent the algorithm
from converging on lossless or perceptually lossless quality as
the bit rate increases. Thus, FPIC should be used with the edge
adjustment step if recognition at low rates is the main goal, and
progression all the way to lossless quality is not important. FPIC
can be used without edge adjustment if recognition at low rates
is desirable and ultimately convergence on lossless quality is
also desired. This would somewhat reduce the effectiveness of
FPIC at low rates. Alternatively, FPIC can be used with edge ad-
justment, and a residual coding step can be used at high rates, to
keep the low-rate benefit of FPIC while converging on lossless
quality. This would require a greater lossless file size than with
the previous option.

C. Edge-Associated Detail

At each level of the forward transform, the current map of
edge locations is subsampled to correspond with the current
low-low (LL) band of the transform, using a procedure like that
employed in [19]. When edges in the original image are close to-
gether, a situation may occur after one or more transform levels
where an LL-band pixel is surrounded on each side by an edge.
If such a pixel lies at an even-numbered position, it is encoun-
tered by the lowpass filter, and so is placed in the low band after
filtering. If it lies at an odd-numbered position, however, it is
encountered by the highpass filter, and would have to be rep-
resented as an isolated, orsingle, coefficient in the high band.
Its statistics do not match those of the high-band coefficients,
though. These single coefficients contain the information about
image pixel intensity near closely spaced edges, which we call
edge-associated detail.

It is desirable to employ a separate coding method for singles.
This is simplified by the fact that both the encoder and decoder
possess the same information about edge locations, and there-
fore know the location of each single, and when it arises during
the transform. The only information that need be transmitted is
the magnitude of the single. FPIC encodes this information pro-
gressively. Singles from each transform level are scaled to the
same dynamic range, and bitplane encoded using adaptive arith-
metic coding. For progressive coding, individual bitplanes of the
edge-associated detail can be interspersed between bitplanes of
the texture information and information about edges sorted by
length.

IV. RESULTS AND DISCUSSION

In this work we are primarily interested in the low end of the
bit rate progression, where recognition is likely to take place,
rather than the high-rate, high-quality end. Our work in [20],
[21] showed that human observers can recognize and respond
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Fig. 8. Comparison of SPIHT, EEIC and FPIC. (a) original 256� 201 image, (b) SPIHT-coded image at 0.05 bpp, (c) EEIC-coded image at 0.05 bpp. There
were 67 original edge points. The wavelet coding uses 0.034 bpp and the arithmetically encoded edge data requires 0.016 bpp. (d) FPIC-coded image at 0.05 bpp.
Edge data uses 0.019 bpp, singles 0.001 bpp and texture 0.03 bpp.

to image content at bit rates of 0.05 to 0.1 bpp, using the SPIHT
algorithm, for many natural image classes. These results sug-
gest that it is important for algorithm designers to consider very
low bit rates when designing compression algorithms for fast
browsing tasks and wireless Internet access. The bit rates chosen
for the following comparisons reflect this focus.

Examples of the output of EEIC and FPIC are shown in
Figs. 8–11. The 256 201 input image in Fig. 8(a) is char-
acterized by a simple, sharply defined object superimposed
on a smoothly varying background. This situation is found in
many images containing symbols and graphics. Fig. 8(b) shows
the image compressed by SPIHT to 0.05 bpp, or 160:1. The
EEIC-coded image at the same bit rate is shown in Fig. 8(c).
The edge information transmitted by EEIC contained 67 edge
points costing 840 bits, or 33% of the total bit budget at this
compression ratio. The object’s edges in the SPIHT image
suffer from the artifacts typical of standard wavelet coders,

while the edges in the EEIC-coded image are noticeably
improved. For the FPIC-compressed image shown in Fig. 8(d),
37% of the bit budget was spent on edges, 3% on singles, and
the remainder on texture. This image provides the closest visual
similarity to the original image.

Fig. 9 illustrates the comparison for an image containing
both natural objects and text. The original 512512 image
(Fig. 9(a)) was composed of text superimposed on the “pep-
pers” image. Edge detection was restricted to a 512110 pixel
region surrounding the text, under the assumption that a region
classifier such as [22] could provide the text’s location. The
compressed images in this example are all shown at 0.04 bpp,
or 200:1. The SPIHT-compressed image is shown in Fig. 9(b).
Fig. 9(c) shows the EEIC-coded image, for which the 290 edge
points consumed 3035 bits, or 29% of the total bit rate. For the
FPIC-compressed image (Fig. 9(d)), 30% of the bit budget was
spent on edges, 5% on singles, and the remainder on texture.
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Fig. 9. Comparison using Peppers with added text. (a) original 512� 512 image, (b) SPIHT-coded image at 0.04 bpp, (c) EEIC-coded image at 0.04 bpp. There
were 290 edge points. The wavelet coding uses 0.028 bpp and the edge data requires 0.012 bpp. (d) FPIC-coded image at 0.04 bpp. Edge data uses 0.012 bpp,
singles 0.002 bpp and texture 0.026 bpp.

Enlargements of the text region, and of the lossily encoded
edges, are shown in Fig. 10. Again, EEIC provides improved
clarity over SPIHT, and FPIC yields further improvement.
Note that, since EEIC and FPIC are progressive, and the edge
information packet is fixed in size, the percentage of the bit
budget consumed by the edge information decreases as the
progression continues. At high bit rates—corresponding to high

image fidelity—the size of the edge packet becomes negligible
in comparison to the overall file size.

Both the accuracy of the edge map, and the efficiency with
which it can be encoded, are strongly dependent on the edge
detection and line extraction steps. The output of these steps
varies significantly with the choice of several thresholds and
parameters. In some applications, however,a priori knowledge
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Fig. 10. Enlargement of the Peppers comparison at 0.04 bpp. (a) SPIHT-coded image, (b) EEIC-coded image, (c) Lossily encoded edges used by both EEIC and
FPIC. (d) FPIC-coded image.

Fig. 11. Enlargement of compressed image with manually defined edges. (a) Edges after lossy encoding, requiring 0.0095 bpp. (b) FPIC-coded image at 0.04
bpp.

may be available of the text characters’ locations and fonts. By
manually defining the edges input to FPIC, we can approximate
the best result obtainable by the algorithm, given that the text
edge locations are known. Fig. 11 shows the manually-defined
input edges for the Peppers image (after lossy encoding), and
the FPIC-compressed result at 0.04 bpp. The edges in this case
required only 0.0095 bpp (23.7%) versus 0.0122 bpp (30.4%)

for the automatically-detected case. The visual appearance of
the text is improved due to the more accurately defined edges,
and the bit rate savings can be deployed toward coding the image
texture.

FPIC is similar to an edge-based compression algorithm pre-
sented by Mertins in [19], however there are several signifi-
cant differences. First, FPIC allows edges to be coded lossily,
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Fig. 12. (a) Original 256� 256 “cameraman” image, (b) compressed by SPIHT to 0.10 bpp,PSNR = 24:37 dB; (c) as reported in [19], 0.10 bpp,PSNR =

22:39 dB; (d) compressed by FPIC, using edges identical to those in (c) and assuming the same edge bit rate, 0.052 bpp, for those edges. Overall bit rate is 0.10
bpp,PSNR = 22:39 dB.

by adjusting the image texture to match the lossily encoded
edges prior to performing the wavelet transform. Second, the
transform filters are not boundary filters, as in Mertins’ ap-
proach, but pass across the edges, incorporating texture infor-
mation from both sides of an edge in the resulting transform
coefficients—while ignoring the edge itself. Third, single coef-
ficients are not placed into the transform’s high bands, as they

are with Mertins’ method. Single coefficients possess the statis-
tical characteristics of low-band coefficients, so placing them in
the high bands is inefficient. Further, by the nature of SPIHT’s
zerotree coding, the locations of significant coefficients are en-
coded together with their magnitudes. If singles are encoded this
way, however, their locations are effectively being transmitted
twice—both in the edge information and in the coefficient in-
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formation. Instead, FPIC separates the single coefficients from
the others, and then transmits only their magnitudes. The sav-
ings achieved by this technique is dependent on the detail in
the input image: an image with only a few important edges will
also have few singles, while an image with many edges may
have hundreds of singles, making the separate coding of these
singles worthwhile.

Note that each component of FPIC could be swapped in
a modular way with that employed by Mertins: i.e., lossy
segment-based vs. lossless pixel-based edge coding, the two
edge-based wavelet transforms, and the differing methods of
encoding singles.

An objective comparison of FPIC with Mertins’ entire algo-
rithm, as well as with its individual components, is difficult,
since PSNR is not a good measure of the effectiveness of edge-
based coders. In order to provide a reasonable visual compar-
ison while excluding the effect of the differing edge-coding ap-
proaches, a test was performed with FPIC using edges identical
to those reported in [19], and assuming the same edge cost of
0.052 bpp.

Fig. 12(a) shows the input “cameraman” image. The image
compressed by SPIHT is shown in Fig. 12(b), Mertins’ approach
in Fig. 12(c) and FPIC in Fig. 12(d), all at 0.10 bpp. Both edge-
based methods provide significantly improved sharpness over
the SPIHT image, though at lower PSNR. The FPIC image pro-
vides more detail than the Mertins image. Since the edge coding
is fixed to be the same, the improvement can be attributed to a
combination of the different filtering method employed by FPIC
in its wavelet transform, the use of SPIHT instead of EPWIC
[23] for texture coding, and the separate coding of edge-associ-
ated detail (singles).

V. CONCLUSIONS

We have presented two progressive image coders intended for
use with applications such as fast browsing, or low-bandwidth
Internet access, in which users benefit from being able to un-
derstand the images early in the progressive bit stream. In fast
browsing, for example, if a user is receiving an image, but deter-
mines it is not the one she wants, she can terminate the transmis-
sion and move on to the next image, saving time. In wireless ap-
plications, the transmitter may have knowledge of the available
bandwidth, and decide to transmit only the early, low-quality
portion of the image. In this case the user may not receive the
higher quality image at all, and therefore relies on being able to
understand the lower quality version. Both EEIC and FPIC yield
images in which, at low bit rates, important edges are clearer
than with traditional wavelet-based coders. The improvement is
most pronounced for images containing simple, sharply defined
objects, large text characters or graphics. For images of these
types, the proposed coders may allow improved understanding
of image content at low bit rates.
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