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Abstract

This paper analyzes the bullwhip effect in decentralized, linear and time-invariant (LTI)

supply chains. It generalizes existing results by broadening the class of policies and customer

demand processes under consideration. The supply chain is modeled as a single-input, single-

output control system driven by arbitrary demands. The paper discusses the appropriateness of

various metrics for the bullwhip effect, and derives analytical conditions to predict its presence

independently of the demand process. The paper also gives a formula for the variance of the

order stream at any stage when the demand process is known and ergodic. Advance demand

information (ADI) is shown to mitigate the bullwhip effect for general ordering policies.

In the supply chain literature, the term “bullwhip effect” refers to a phenomenon where the

fluctuations in order sequence are usually greater upstream than downstream of the chain. Figure

1 shows an empirical example where the orders placed by a supplier are more variable than the

actual quantities sold. In multi-echelon chains, even very steady customer demand can generate

wildly fluctuating supplier orders several stages upstream. The upstream suppliers feel as if they

were at the end of a bullwhip, where small perturbations at the handle (customers) cause huge

movements at the tip (upstream suppliers). The phenomenon is also evident in macroeconomic

data [18, 2, 19, 26, 25].

The bullwhip effect is of much practical importance. The term was originally coined by the

Procter & Gamble Corporation to describe their empirical observations. It has also been described
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by Callioni1 as the “No.1 issue” faced by Supply Chain Services at Hewlett-Packard [4]. In business

schools, “beer games” are widely used to demonstrate its existence and pernicious effects [29, 16, 20].

The bullwhip effect is important because it results in huge operating costs for upstream suppli-

ers. These suppliers have to forecast demand, plan production and storage capacity, and control

inventory based on the orders they receive. But these activities become inefficient with high order

variability. With the bullwhip effect, a manufacturer would have to either: (i) set a high production

capacity to satisfy its peak demands, wasting capacity during non-peak periods; (ii) set capacity

at a lower level (e.g., slightly above the average demand rate), and either incur shortage in peak

periods or carry large inventories; or (iii) adjust the capacity over time, incurring set-up costs.

All these options imply either operating inefficiencies (high costs) or lack of responsiveness (poor

customer service and loss of customer goodwill). Empirically, the bullwhip effect is estimated to

inflate supply chain operating costs by 12.5− 25% [21, 22]. If the bullwhip effect is eliminated, the

U.S. grocery industry alone could save on the order of 30 billion dollars each year [8, 22].

1 Previous Work

Not surprisingly, the body of research on the bullwhip effect is extensive. The bullwhip effect was

first recognized in the 1950s [23, 14, 15, 24]. Later, simulations and games [29, 16] revealed that it

arises persistently, even if the games are unstructured. These reports attributed the causes of the

bullwhip effect to “players’ systematic irrational behavior”, or to “misperception of feedback”.

Lee et al. [21, 22] looked for more satisfying explanations. They identified several operational

causes and quantified their impacts for a single-echelon chain with an AR(1) customer demand

process. The bullwhip effect was analyzed parametrically by comparing the variances of the orders

placed by the supplier and the customer demand. Similar efforts, e.g. [1, 5, 6, 28], were later made to

study variants of the problem for specific families of stationary demand processes. All these studies

provide useful but, unfortunately, inconclusive insights because of their focus on single-echelons

and their specific demand assumptions.

More recently, [9, 10, 11] used harmonic analysis to obtain analytical results for multi-echelon
1Former director of Strategic Planning and Modeling (SPaM) at Hewlett-Packard
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chains with general non-stationary demand inputs. These references show that all operationally

efficient (rational) inventory control policies trigger the bullwhip effect, independently of the demand

process. This is the essential reason for its prevalence. The references also show that if advance

demand information and order commitments are allowed, the bullwhip effect can be eliminated

while retaining efficiency. A decentralized ordering policy that achieves this goal for multi-echelon

chains is presented.

In related but independent work, [12, 13] used the “transfer function” concept of control theory

to derive variance formulae for a generalized family of order-up-to policies and numerically illustrate

the bullwhip effect. This analysis did not include analytical results.

This paper uses the transfer function approach to generalize the results of [9, 10, 11, 12, 13]

to a broader set of policies. Section 2 below formulates the problem; section 3 discusses the

appropriateness of different metrics to measure the bullwhip effect; section 4 presents new analytical

tests; section 5 gives some numerical examples; and section 6 discusses the effects of advance demand

information.

2 Formulation

2.1 Basic notation

Figure 2 depicts a supply chain with I + 1 suppliers. Physical shipments arrive at the beginning of

every time period; suppliers inspect their inventories during the period; replenishment orders are

then placed at the end of the period and received by the upstream neighbors immediately.

Let t = 0, 1, 2, · · · index the time periods, and i = 1, 2, · · · , I + 1 index the suppliers starting

from the downstream end (i = 0 for the final customer). Define ui(t) as the quantity supplier i

orders at the end of period t, and Ni(t) := N0
i +

∑t−1
k=0 ui(k) as the cumulative number of items that

supplier i has ordered by the middle of period t, with N0
i being an initial value. Figure 3 shows a

plot of Ni(t). Note that its jumps equal the order quantities, and obviously

Ni(t + 1) = Ni(t) + ui(t), i = 0, 1, · · · , t = 0, 1, · · · . (1)
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For convenience, we assume that (1) is also true for t = −∞, · · · ,−1, and that N0
i =

∑−1
k=−∞ ui(k).

From now on t refers to a generic period between −∞ and ∞.

Suppose that the goods ordered by supplier i always arrive after a constant lead time li (e.g.,

when li = 0 the goods ordered at the end of period t arrive at the beginning of period t + 1). Then

by the middle of period t, the cumulative number of items received by supplier i is Vi(t) := Ni(t−li);

see the shifted curve in Figure 3. We define the inventory position of supplier i in period t, xi(t), as

the vertical separation between curves Ni(t) and Ni−1(t); i.e., the difference between the cumulative

orders placed and received:

xi(t) := Ni(t)−Ni−1(t), i = 1, 2, · · · . (2)

Similarly, the in-stock inventory, yi(t), is the vertical separation between Vi(t) and Ni−1(t); or

equivalently,

yi(t) := Ni(t− li)−Ni−1(t), i = 1, 2, · · · . (3)

2.2 The system dynamics

Equations (1) – (3) yield the following expressions for the inventories at t + 1 as a function of the

inventories at t and the current (and some previous) order quantities:

xi(t + 1) = xi(t) + ui(t)− ui−1(t), i = 1, 2, · · · , (4)

and

yi(t + 1) = yi(t) + ui(t− li)− ui−1(t), i = 1, 2, · · · . (5)

These equations define the system dynamics for the supply chain when complemented with the sup-

pliers’ reorder policies; i.e., the recipes for determining ui(t), ui−1(t) from the information available

to them.

We consider decentralized supply chains where information is not shared. Thus, we assume that

every supplier determines its order quantities with the demand and inventory information it has
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experienced, and nothing else. At time t, supplier i knows the inventory records xi, yi up to period

t, and orders ui−1, ui up to period t − 1. Thus, order ui(t) is based on the following information

set:

{xi(t), xi(t− 1), · · · , xi(−∞); yi(t), yi(t− 1), · · · , yi(−∞);ui(t− 1),

ui(t− 2), · · · , ui(−∞);ui−1(t− 1), ui−1(t− 2), · · · , ui−1(−∞)}.

It turns out that all the ui
′s in this set are redundant. To see this, note from (4) with k − 1

substituted for t that ui(k−1) = xi(k)−xi(k−1)+ui−1(k−1). Clearly, every ui in the information

set can be calculated with this formula from xi
′s and ui−1

′s that are also in the set. Thus the

following set is equivalent:

Ii(t) := {xi(t), xi(t− 1), · · · , xi(−∞); yi(t), yi(t− 1), · · · , yi(−∞);

ui−1(t− 1), ui−1(t− 2), · · · , ui−1(−∞)}.

We shall consider a broad family of policies based on Ii(t). This set enlarges the one in [9, 10, 11],

which consisted of the history of orders received, ui−1(t − 1), ui−1(t − 2), · · · , ui−1(−∞), and the

most recent inventory position, xi(t).

As in these references, we focus on ordering policies that are:

1. Proper ; i.e., for any steady demand the supplier inventories tend to a nominal equilibrium

independent of the initial conditions. Improper policies, which amplify perturbations over

time, usually entail unbounded costs; they would not be appealing to a rational supplier.

2. Linear and time-invariant (LTI); i.e., ui(t) is a time-independent linear function of the ele-

ments in Ii(t). Linear policies are important as they are often used in practice. Nonlinear

policies can also be studied in linearized form to reveal how a supply chain responds to small

perturbations from an equilibrium state.

To express LTI policies in a simple way, let P be the unit shift operator for a time series and

P k its k-fold application; i.e., P kxi(t) = xi(t − k),∀t and ∀k = 0, 1, · · · . The most general LTI
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expression based on Ii(t) is:

ui(t) = γi + Ai(P )xi(t) + Bi(P )yi(t) + Ci(P )ui−1(t− 1), i = 1, 2, · · · , (6)

where γi is a real number; and Ai(P ), Bi(P ) and Ci(P ) are polynomials with real coefficients:

Ai(P ) = ai
0 + ai

1P + ai
2P

2 + · · · , Bi(P ) = bi
0 + bi

1P + bi
2P

2 + · · · , Ci(P ) = ci
0 + ci

1P + ci
2P

2 + · · · .
Polynomials Ai(P ) and Bi(P ) indicate the influence of inventory history on ordering decisions,

and Ci(P ) the influence of orders received. For example, Ai(P ) = −1, Bi(P ) = 0, and Ci(P ) =

li
1
ri

(1 + P + · · · + P ri−1) denote an order-up-to policy, where the “up-to level” is forecasted by a

moving-average of orders received over ri periods.

We note that iterations of (4) – (6) may lead to negative orders and negative inventories.

Obviously, practical policies should avoid negativity, as well as the bullwhip effect. It is known,

however, that policies that avoid the bullwhip effect do not seriously suffer from the negativity

problem, and some do not have it at all [9, 10]. Numerical simulations had hinted at these facts

[6]. Thus, we do not screen for negativity in the analysis that follows.

2.3 Steady states

Since we assumed that policies are proper, a nominal equilibrium state must exist in which all

suppliers place orders of constant size u∞, while the inventory positions x∞i and the in-stock

inventories y∞i are steady. We assume for convenience that the system is in this equilibrium for all

t ≤ 0.

We now look at the properties of the steady state. The steady-state variables (u∞, x∞i , y∞i )

should obviously satisfy the system dynamics. They trivially satisfy (4) and (5), and must also

satisfy (6); i.e.,

u∞ = γi + Ai(P )x∞i + Bi(P )y∞i + Ci(P )u∞, i = 1, 2, · · · . (7)

Since (u∞, x∞i , y∞i ) are time-invariant, they are not changed by time shifts. Hence if we replace
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P k, ∀k by P 0 ≡ 1 in (7), the equality continues to hold. Thus, we have:

u∞ = γi + Ai(1)x∞i + Bi(1)y∞i + Ci(1)u∞, i = 1, 2, · · · . (8)

We also see from the geometry of Figure 3 that x∞i , y∞ and u∞ must satisfy Little’s formula:

x∞i − y∞i = liu
∞.

This, together with (8), implies that

[1−Ai(1)li − Ci(1)]u∞ = γi + [Ai(1) + Bi(1)]y∞i , i = 1, 2, · · · ,

[1 + Bi(1)li − Ci(1)]u∞ = γi + [Ai(1) + Bi(1)]x∞i , i = 1, 2, · · · ; (9)

i.e., there is a univocal relationship between each of the two inventories and the order quantity at

equilibrium.

Note that for a policy to be proper, Ai and Bi must satisfy Ai(1)+Bi(1) 6= 0; otherwise (9) does

not uniquely define x∞i and y∞i for every u∞. Thus, when a policy is proper, (9) can be inverted

and the equilibrium inventories can be expressed as a function of the order size:

y∞i =
−γi

Ai(1) + Bi(1)
+

1−Ai(1)li − Ci(1)
Ai(1) + Bi(1)

u∞, i = 1, 2, · · · ,

x∞i =
−γi

Ai(1) + Bi(1)
+

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

u∞, i = 1, 2, · · · . (10)

Equations (10) give the suppliers’ preferred in-stock inventory and inventory positions when

they receive and place steady orders of size u∞. The coefficient of u∞ in the second function,

d(x∞i )
d(u∞i )

=
1 + Bi(1)li − Ci(1)

Ai(1) + Bi(1)
, (11)

is the “inventory gain” of [9] — i.e., “the marginal change in the equilibrium inventory position

for a unit change in the equilibrium demand”. The intercept terms of (10) are the inventories kept
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with zero demand:

x∞i = y∞i =
−γi

Ai(1) + Bi(1)
, i = 1, 2, · · · .

2.4 Deviations from equilibrium

To facilitate analysis, we express the system dynamics in terms of deviations (errors) from an

equilibrium. (This is standard practice especially for nonlinear policies.) To this end, let x̄i(t) :=

xi(t)− x∞i , ȳi(t) := yi(t)− y∞i , and ūi(t) := ui(t)− u∞. Note that x̄i(t) = ȳi(t) = ūi(t) = 0 for all

t = −∞, · · · , 0 since the system is assumed to start from equilibrium.

The usual manipulations (e.g., subtracting (7) from (6), etc.) yield:

ūi(t) = Ai(P )x̄i(t) + Bi(P )ȳi(t) + Ci(P )ūi−1(t− 1), i = 1, 2, · · · , (12)

x̄i(t + 1) = x̄i(t) + ūi(t)− ūi−1(t), i = 0, 1, · · · , (13)

ȳi(t + 1) = ȳi(t) + ūi(t− li)− ūi−1(t), i = 0, 1, · · · . (14)

Note the similarity between (12) – (14) and (4) – (6), except for the absence of the intercept term.

The system dynamics equations are now homogeneous and ready for analysis.

3 Metrics for the Bullwhip Effect

3.1 A preferred metric

Note from (12) – (14) that any realization of customer demand {ū0(t)}∞t=0 defines a unique upstream

order sequence {ūI(t)}∞t=0. Thus, an easily understood bullwhip effect metric is the ratio of the

root mean square errors (RMSE) of (i) the order sequence received by the most upstream supplier,

{ūI(t)}∞t=0, and (ii) the customer demand, {ū0(t)}∞t=0. Since we have neither full knowledge nor

control over the realization of customer demand, we shall use the worst-case RMSE amplification

factor, WI , across all possible customer demand sequences:

Definition 1. Supplier I +1 (I > 0) in a supply chain described by (12) – (14) is said to experience
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no bullwhip effect if

WI := sup
∀{ū0(t)}6=0




(∑∞
t=0 ū2

I(t)
) 1

2

(∑∞
t=0 ū2

0(t)
) 1

2


 ≤ 1. (15)

The quantity WI is also called the L2 gain or root mean square gain in the control literature.2

By taking the worst-case amplification across every possible input sequence {ū0(t)}∞t=0, we ensure

that WI is an intrinsic property of the supply chain and does not depend on the customer demand

process.

Any realization of {ū0(t)}∞t=0 can be decomposed by a discrete Fourier transform into a set of

pure harmonic components, A0(w)e−jwt (where j =
√−1), each with an angular frequency w ∈

[0, 2π) and a complex amplitude A0(w) ∈ C. Because (12) – (14) are linear and time-invariant, the

following two things hold: (i) For any harmonic component, the output from each supplier stage of

the linear chain is also harmonic with the same frequency but a different amplitude, Ai(w)e−jwt, i =

1, 2, · · · , I; (ii) the combined output, {ūI(t)}∞t=0, is the superposition of the harmonic outputs at

the final stage, AI(w)e−jwt.

We define a “transfer function”, TI(·), such that

TI(ejw) =
AI(w)
A0(w)

=
AI(w)
AI−1(w)

· · · Ai(w)
Ai−1(w)

· · · A1(w)
A0(w)

.

If we additionally define the “stage-i transfer function” Ti−1,i(·), by Ti−1,i(ejw) = Ai(w)/Ai−1(w),

then

TI(ejw) :=
I∏

i=1

Ti−1,i(ejw). (16)

Section 4 presents a standard procedure to derive the transfer functions.

The modulus of the transfer function |TI(ejw)| is the amplification factor for harmonic compo-

nent w. Its maximum across all w ∈ [0, 2π) (the H∞ norm in the frequency domain) is obviously

the worst-case amplification across the superposition of all possible inputs. Thus,

WI = sup
∀w∈[0,2π)

|TI(ejw)|. (17)

2This is unrelated to the inventory gain defined earlier.
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The equivalence of (15) and (17) is well known.

3.2 Homogeneous chains

In homogeneous chains, all suppliers are alike. Thus, the behavior of the chain can be inferred from

the behavior of one stage. Let the worst-case RMSE amplification for one stage be:

W1 := sup
∀w∈[0,2π)

|T0,1(ejw)|.

Then we have:

Theorem 1. If a chain is homogeneous and W1 ≤ 1, then WI ≤ 1 for all I.

Proof. For homogeneous chains, (16) reduces to |TI(ejw)| = |T0,1(ejw)|I . Since supw{|T0,1(ejw)|I} =

{supw |T0,1(ejw)|}I , it follows that WI = (W1)I .

This shows that if a policy avoids the bullwhip effect for one stage, it avoids it for many.

3.3 Problems with other metrics

Theorem 1 does not hold if the bullwhip effect is defined by any other metric; e.g. those proposed

in the literature [22, 5, 6, 28, 12, 13]. This is important because most of these works study single-

echelon chains (i.e., I = 1). The conclusions drawn with these metrics cannot be generalized to the

multi-echelon case.

3.3.1 Other metrics

One school of research [22, 5, 6, 28] studies single-echelon chains in the time domain with an

“order variance amplification” metric. These works always assume specific demand processes (e.g.,

stationary AR(1)) and then obtain closed-form formulae. Unfortunately, results for cases where

the demand process is not known a priori have not yet been developed. Furthermore, multi-echelon

work by this school is sparse and even more specific. Only [5] reports some results, but does so for

a very specific policy and demand process with the introduction of lower bounds.
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Other researchers [12, 13] worked in the frequency domain with the H2 norm. (This is the

un-weighted average of squared amplitude amplification across the frequency spectrum.) Unfortu-

nately, as the example in Section 3.3.2 shows, this metric will sometimes predict no bullwhip effect

when the variances are really being amplified.

3.3.2 Example

Suppose the suppliers in a homogeneous chain use the “general replenishment rule”3 in [12], and the

customer demand exhibits both seasonal and short-term variations. The customer demand error

has two sinusoidal components: one with amplitude 1.0 and angular frequency 0.05π, and another

with amplitude 2.0 and angular frequency 0.88π; see Figure 4(a).

A simple simulation with this demand yields the results shown in Figures 4(b)–(d). Note how

the variance of the order sequences decreases for a few suppliers, and then increases. The reason is

that the policy dampens the initially larger short-term fluctuations but amplifies the initially smaller

seasonal fluctuations. This example clearly illustrates that variance amplification predictions ob-

tained for single-echelon chains, e.g. as in [22, 5, 6, 28], cannot be extrapolated to multi-echelon

chains. It also illustrates the inadequacy of the H2 norm, since the general replenishment rule in

[12] amplifies variances, even though its H2 norm is less than 1.

The example is not contrived. The problem arises with any customer demand process whose

spectrum is heavily weighted toward the frequencies that are damped but includes at least one

frequency w with |TI(ejw)| > 1. Clearly, in multi-echelon chains, the only metric that correctly

diagnoses the bullwhip effect for any demand process is the worst-case RMSE amplification WI .

This metric has other advantages. For example, the single-stage RSME amplification factor arising

from any stochastic process with a full spectrum4 must converge to W1 as I increases, for all

realizations. We now present formulae for TI(·) and WI , and a simple sufficient condition for

existence of the bullwhip effect .
3For more details see [12], page 584.
4Processes without a full spectrum are idealizations that do not arise in practice.
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4 Formulae and Tests

As is conventional, we derive the transfer function TI(·) by applying the z-transform5 to (12) –

(14). Denote the z-transforms of the error sequences by Xi(z) := Z{x̄i(t)}, Yi(z) := Z{ȳi(t)},
and Ui(z) := Z{ūi(t)}. Recall that the z-transform is a linear operator, and Z{P kx̄i(t)} =

Z{x̄i(t−k)} = z−kXi(z). Therefore Z{Ai(P )x̄i(t)} = Ai(z−1)Xi(z) and similarly Z{Bi(P )ȳi(t)} =

Bi(z−1)Yi(z), Z{Ci(P )ūi−1(t − 1)} = Ci(z−1)z−1Ui−1(z). Thus, if we now apply the z-transform

to both sides of (12) – (14), we obtain:

Ui(z) = Ai(z−1)Xi(z) + Bi(z−1)Yi(z) +
Ci(z−1)

z
Ui−1(z), ∀i,

(z − 1)Xi(z) = Ui(z)− Ui−1(z) + zx̄i(0), ∀i,

(z − 1)Yi(z) = z−liUi(z)− Ui−1(z) + zȳi(0), ∀i.

We have assumed that the system starts from the equilibrium state at t = 0, and thus x̄i(0) =

ȳi(0) = ūi(0) = 0. Simple manipulations of these equations reveal that:

Ui(z) = Ti−1,i(z)Ui−1(z), i = 1, 2, · · · , (18)

where

Ti−1,i(z) =
z−1Ci(z−1)− (z − 1)−1[Ai(z−1) + Bi(z−1)]

1− (z − 1)−1[Ai(z−1) + z−liBi(z−1)]
. (19)

Equation (18) shows how supplier i transforms its input into an output. By assumption, the policy

of supplier i is stable in time (it is proper). This happens if all the poles of Ti−1,i(z) are within the

unit circle of the complex plane, {z : |z| < 1, z ∈ C}.
Equations (18) and (19) also yield a formula for the variance of the orders placed by any supplier

in chains with ergodic demand. Since variance equals mean square error for an ergodic sequence,

and since the mean square error of Ui(z) is 1
2π

∫ π
−π Ui(ejw) · Ui(e−jw) dw, we have

5The z-transform of a given discrete sequence {f(t)}∞−∞ is given by Z{f(t)} :=
P∞
−∞ f(t)z−t. It is essentially the

discrete Fourier transform after the substitution z = ejw.
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Theorem 2. If the customer demand is ergodic, the variance of orders placed by supplier I is

1
2π

∫ π

−π
UI(ejw) · UI(e−jw) dw. (20)

This formula depends on the character of the input process, U0, as can be seen from (18) and (19).

When the input demand is not known, we can still test for the bullwhip effect. As indicated by

Definition 1, (16) and (17), the bullwhip effect arises if and only if

sup
w∈[0,2π)

∣∣TI(ejw)
∣∣ = sup

w∈[0,2π)

I∏

i=1

∣∣Ti−1,i(ejw)
∣∣ > 1. (21)

This test is rigorous but tedious and qualitatively obscure. Therefore, simpler but still demand-

independent tests have been sought.

It was shown in [9, 10, 11] from the perspective of conservation laws that any homogeneous

chain with positive inventory gain must experience the bullwhip effect. We conclude this section

with a generalization of this statement.

Theorem 3. Supplier I+1 in an LTI supply chain described by (12) – (14) experiences the bullwhip

effect if
I∑

i=1

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

> 0. (22)

Proof. The proof is similar to the proof for Theorem 4.1 in [7] and Theorem 3.1 in [27]. Let

z = eσ, σ ∈ C, then Re(σ) > 0 ⇔ |z| > 1. The assumption on properness and time stability of the

system implies that any σ that is on the right half of the complex plane cannot be a pole of TI(eσ).

Thus, |TI(eσ)| is bounded from above in {σ : Re(σ) > 0, σ ∈ C}. Boyd and Desoer [3] showed

that with such boundedness property log |TI(eσ)| is subharmonic with regard to σ and satisfies the

Poisson Inequality:

log |TI(es)| ≤ 1
π

∫ +∞

−∞
log |TI(ejw)| sdw

s2 + w2
, ∀s ∈ (0,∞). (23)
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Divide both sides by the positive real number s, and let s → 0+, (23) gives the inequality below:

lim
s→0+

1
s

log |TI(es)| ≤ lim
s→0+

1
π

∫ +∞

−∞
log |TI(ejw)| dw

s2 + w2

=
1
π

∫ +∞

−∞
log |TI(ejw)|dw

w2
(24)

Note that |TI(es)| = ∏I
i=1 |Ti−1,i(es)| ; therefore

log |TI(es)| =
I∑

i=1

log |Ti−1,i(es)|,

and

lim
s→0+

1
s

log |TI(es)| =
I∑

i=1

lim
s→0+

1
s

log |Ti−1,i(es)|. (25)

It is easy to verify that for i = 1, 2, ..., I,

Ti−1,i(es)|s=0 = 1, [Ti−1,i(es)]′s
∣∣
s=0

=
1 + Bi(1)li − Ci(1)

Ai(1) + Bi(1)
.

By Taylor expansion in the neighborhood of s = 0+,

Ti−1,i(es) = Ti−1,i(es)|s=0 + [Ti−1,i(es)]′s|s=0 · s + o(s)

= 1 +
1 + Bi(1)li − Ci(1)

Ai(1) + Bi(1)
· s + o(s).

As s → 0+,
∣∣∣1+Bi(1)li−Ci(1)

Ai(1)+Bi(1) · s + o(s)
∣∣∣ ¿ 1, therefore

|Ti−1,i(es)| =
∣∣∣∣1 +

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

· s + o(s)
∣∣∣∣

= 1 +
1 + Bi(1)li − Ci(1)

Ai(1) + Bi(1)
· s + o(s).
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By l’Hôpital’s Rule,

lim
s→0+

1
s

log |Ti−1,i(es)| = lim
s→0+

|Ti−1,i(es)|′s
|Ti−1,i(es)|

= lim
s→0+

1+Bi(1)li−Ci(1)
Ai(1)+Bi(1) + O(s)

1 + 1+Bi(1)li−Ci(1)
Ai(1)+Bi(1) · s + o(s)

=
1 + Bi(1)li − Ci(1)

Ai(1) + Bi(1)
. (26)

Substituting (26) into (25) then (24), we have

I∑

i=1

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

≤ 1
π

∫ +∞

−∞
log |TI(ejw)|dw

w2
. (27)

When
∑I

i=1
1+Bi(1)li−Ci(1)

Ai(1)+Bi(1) > 0, (27) yields
∫ +∞
−∞ log |TI(ejw)|dw

w2 > 0. There must exist a frequency,

w̄ ∈ (−∞,∞), that satisfies log |TI(ejw̄)| > 0 (or equivalently |TI(ejw̄)| > 1). Since |TI(ejw)| as a

function of w has a period of 2π, there must exist a frequency w∗ ∈ [0, 2π) such that |TI(ejw∗)| > 1.

This completes the proof.

The following corollary is the result in [9, 10].

Corollary 1. When the supply chain is homogeneous, the bullwhip effect exists if

1 + B(1)l − C(1)
A(1) + B(1)

> 0. (28)

5 Numerical Examples

This section presents numerical results for three types of policies: (i) “order-up-to” with the “level”

adjusted based on a 2-period moving-average of orders received (as in Section 2); (ii) “Kanban”

with in-stock inventories (like the “general rule” in [12]); and (iii) “order-based” (like some of the

rules in [9]). For simplicity we only consider multi-echelon homogeneous chains with lead time l = 2

at every stage.
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5.1 Policies

5.1.1 Order-up-to

We consider the following special case (with ri = 2) of the policy examined at the end of Section

2.2. In terms of errors, the policy is:

ūi(t) = −x̄i(t) + ūi−1(t− 1) + ūi−1(t− 2), ∀i, t.

Its polynomials are: A(P ) = −1, B(P ) = 0, and C(P ) = 1 + P . Thus, (28) reduces to:

1 + B(1)l − C(1)
A(1) + B(1)

=
1 + 0− 2
−1 + 0

= 1 > 0,

and we see immediately that the bullwhip effect exists.

Since the chain is homogeneous, we can also apply Theorem 1. Thus, W1 determines the

bullwhip effect. To find W1, we write from (19) the transfer function for one stage:

T0,1(z) =
2z2 − 1

z3
, (29)

Obviously, the policy is proper since all its poles are 0. Then, we can plot |T0,1(ejw)| over w ∈ [0, 2π)

to find its maximum; see Figure 5(a). The result is W1 = 3.0 > 1, confirming that the bullwhip

effect arises.

5.1.2 Kanban

We consider here a case where orders are partly based on in-stock inventory:

ūi(t) = −x̄i(t)/8− ȳi(t)/8 + ūi−1(t− 1)/2 + ūi−1(t− 2)/2, ∀i, t.

Now, A(P ) = −1/8, B(P ) = −1/8, and C(P ) = (1 + P )/2, and the inventory gain (28) is

1 + B(1)l − C(1)
A(1) + B(1)

=
1− 1/4− 1
−1/8− 1/8

= 1 > 0.
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Therefore, the bullwhip effect exists.

The transfer function for one stage (19) reduces to

T0,1(z) =
6z2 − 4

8z3 − 7z2 + 1
,

which is again proper. A plot of |T0,1(ejw)| over w ∈ [0, 2π) is shown in Figure 5(b). Note that

W1 = 1.68 > 1, as expected.

5.1.3 Order-based

A simple policy of this type is:

ūi(t) = 0.5ūi(t− 1) + 0.3ūi−1(t− 1) + 0.2ūi−1(t− 2), ∀i, t.

The polynomials of this policy are A(P ) = −1/2, B(P ) = 0 and C(P ) = −1/5. The inventory gain

satisfies:
1 + B(1)l − C(1)

A(1) + B(1)
=

1 + 0 + 1/5
−1/2 + 0

= −12/5 < 0.

Therefore, we cannot judge from this inequality whether the bullwhip effect arises.

The definitive answer is found from Theorem 1. The transfer function for one stage is now:

T0,1(z) =
3z + 2

10z2 − 5z
.

It is proper, and the plot of |T0,1(ejw)| over w ∈ [0, 2π) is shown in Figure 5(c). Note that W1 = 1.00.

Thus, the bullwhip effect does not arise with this policy. The bullwhip effect does not arise for any

realization of demand, and for chains with any number of stages.

If the customer demand, i.e. U0(z), is known in any of these examples, we can also find Ui(z)

with (18) and (19). Then we can apply Theorem 2, and obtain an exact expression for the variance

of the order stream at any stage. For the example of Section 5.1.1, if the customer demand follows

17



a standard i.i.d. Gaussian process, i.e. where U0(z) = 1, ∀|z| = 1, then Ui(z) = (2z2−1
z3 )i, and

Var (ūi) =
1
2π

∫ π

−π
Ui(ejw) · Ui(e−jw) dw

=
1
2π

∫ π

−π
[5− 4 cos(2w)]idw.

The results of this formula for i = 1 to 5 are depicted by the square markers in Figure 6. Similar

formulae can be developed for all our policies.

5.2 Simulations

Simulations are now used to illustrate the bullwhip effect for these policies. We consider the

following four demand processes:

1. a family of three stationary AR(1) processes:

u0(t + 1) = ρ · u0(t) + (1− ρ) · ε(t), ∀t,

for ρ = 0, 0.4, 0.8, with i.i.d. Gaussian error terms ε(t) of mean 0 and variance 1.

2. a time-dependent process obtained by superposing our AR(1) process with ρ = 0.4 and a

sinusoidal wave:

u0(t + 1) = 0.4 · u0(t) + 0.6 · ε(t) + 7 · sin(0.95πt), ∀t.

Customer order sequences were generated from these demand processes, and the resulting sup-

plier orders simulated with (12) – (14). These simulations match the prediction of (20) to within the

statistical tolerance of the simulation as expected — the solid line in Figure 6 represents simulated

values. Figure 7 gives the exact/simulated amplification factors for the RMSE at each supplier

stage. Each diagram corresponds to a policy, and each curve to a demand process.

We observe the following:

1. In all cases, the RMSE amplification factor at stage i converges from below to W1 as i →∞.
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This is expected, as pointed out earlier, because W1 is the worst-case amplification and

bounds from above the result for all possible inputs. As discussed in Section 3, the frequency

component corresponding to W1 becomes dominant.

2. For every policy, the curves are far apart for the first several stages (i ≤ 5). But, as i increases,

the curves converge. Thus, customer demand influences the RMSE amplification factor, but

mostly in the stages just upstream of the customer. Farther upstream, where the bullwhip

effect is most significant, the critical contributing factor is the policy.

3. Reference [5] (Theorem 3.2) provided a variance amplification lower bound for multi-echelon

chains and a class of order-up-to policies with i.i.d. customer demands. This result only

applies to our first policy, with ρ = 0. It is expressed in RMSE terms as the dotted line in

Figure 6. The bound is also plotted on Figure 7(a), which also includes curves for processes

with correlated orders.

6 Advance Demand Information

Theorem 3 (Section 4) established a relationship between the bullwhip effect and positive inventory

gain. To eliminate the former, we must restrict the latter. It is known, however, that this restriction

on inventory gain does not have to be as severe for policies with advance demand information (ADI)

[9]. Indeed, [9] proposed a family of ADI policies that avoid the bullwhip effect with any desired

inventory gain. This section generalizes these results. It examines the effect of ADI on, both,

inventory gain and the bullwhip effect, for general policies. ADI has also been shown to have the

same beneficial effect as a reduction in lead time [17].

6.1 Formulation

To provide advance demand information (ADI), suppliers inform their immediate upstream neigh-

bors the orders they will place in some future periods; this information is then integrated into the

ordering policies.
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Consider a generic stage i. With hi = 1, 2, · · · periods of ADI (i.e., ui−1(t), · · · , ui−1(t+hi−1)),

supplier i places order ui(t) based on the following set of available information:

Ii(t) := {xi(t), xi(t− 1), · · · , xi(−∞); yi(t), yi(t− 1), · · · , yi(−∞);

ui−1(t + hi − 1), · · · , ui−1(t), · · · , ui−1(−∞)},

This information is marked as the thick dashed line in Figure 8(a). The most general policy based

on this information is:

ui(t) = γi + Ai(P )xi(t) + Bi(P )yi(t) + Ci(P )ui−1(t + hi − 1), ∀i, t. (30)

Note this is the same as (6) except that committed future orders have been incorporated into the

policy.

It is easy to see that the steady states of (6) and (30) are the same. Thus, the inventory gain

of this policy is still given by (11). It is also shown in the appendix that the single-stage transfer

function formula (19) now becomes

T̃i−1,i(z, hi) =
z−1Ci(z−1)− z−hi(z − 1)−1[Ai(z−1) + Bi(z−1)]

1− (z − 1)−1[Ai(z−1) + z−liBi(z−1)]
.

Note that the introduction of ADI does not change the poles of the transfer function; it preserves

“properness”.

Consider the entire chain, its transfer function is now:

T̃I(z,h) :=
I∏

i=1

T̃i−1,i(z, hi),

where h := {h1, h2, · · · , hI}; the L2 gain is:

W̃I(h) := sup
w∈[0,2π)

|T̃I(ejw,h)|. (31)

Theorem 3 now becomes:
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Theorem 4. Supplier I + 1 in an LTI supply chain with ADI policy (30) experiences the bullwhip

effect if
I∑

i=1

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

>

I∑

i=1

hi. (32)

Proof. See appendix.

Note that the first term is the summation of inventory gains at each supplier stage. Thus,

hi periods of ADI committed at stage i − 1 (∀i = 1, 2, · · · , I) increases the instability barrier by
∑I

i=1 hi. The advantage of ADI is that it raises this barrier, while allowing suppliers to operate

with the same inventory gain as before.

6.2 Examples

We investigate the two policies of Section 5 that exhibit the bullwhip effect. We show that ADI

eliminates the bullwhip effect in both cases.

For the order-up-to policy, A(P ) = −1, B(P ) = 0, and C(P ) = 1 + P ; from (31) the one-stage

transfer function becomes

T̃0,1(z, h) =
z2 + z2−h − 1

z3
.

From (31), we find that W̃1(2) = 1.0, which now satisfies Theorem 1. Thus, introducing ADI with

h = 2 eliminates the bullwhip effect.

For the Kanban policy, A(P ) = −1/8, B(P ) = −1/8, and C(P ) = (1 + P )/2. The one-stage

transfer function is

T̃0,1(z, h) =
4z2 + 2z2−h − 4
8z3 − 7z2 + 1

.

From (31), we find that W̃1(3) = 1.0 which, again, satisfies Theorem 1. Thus, in this case too, ADI

(with h = 3) eliminates the bullwhip effect.

These examples suggest but do not prove that ADI can eliminate the bullwhip effect for any

decentralized LTI policy.
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7 Conclusions and Future Research

This paper has presented a system control framework for analyzing the bullwhip effect in decen-

tralized, linear, time-invariant, and multi-echelon supply chains. The formulation can be easily

extended to general supply networks. By modeling the supply chain as a single-input, single-

output system, we proposed appropriate metrics for the bullwhip effect, and derived analytical

conditions that predict its presence. These conditions generalize previous findings. We also showed

the beneficial effect of advance demand information for general ordering policies.

A natural extension of this work would relax its deterministic, linear, and time-invariant as-

sumptions. It would allow for stochastic system operations such as transportation losses, random

lead times, and policy alternations. Our findings also open the door for the development of decen-

tralized contracting schemes that could drive an entire supply network toward optimality.
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Appendix

We first express policy (30) into a form similar to (6) by redefining the inventory and order variables.

First, define Di(P ) := 1 + P + · · ·+ P hi−1 so that the total advance orders committed by supplier

i − 1 at time t equals D(P )ui−1(t + hi − 1) = ui−1(t + hi − 1) + · · · + ui−1(t). Then, define the

following variables:

u′i(t) := ui(t), ∀t,

u′i−1(t− 1) := ui−1(t + hi − 1), ∀t,

x′i(t) := xi(t)−D(P )ui−1(t + hi − 1) = xi(t)−D(P )u′i−1(t− 1), ∀t,

y′i(t) := yi(t)−D(P )ui−1(t + hi − 1) = yi(t)−D(P )u′i−1(t− 1), ∀t.

By substituting these new variables in (30), we find:

u′i(t) = γi + Ai(P )[x′i(t) + Di(P )u′i−1(t− 1)]

+Bi(P )[y′i(t) + Di(P )u′i−1(t− 1)] + Ci(P )u′i−1(t− 1)

= γi + Ai(P )x′i(t) + Bi(P )y′i(t) + C ′
i(P )u′i−1(t− 1), (33)

where

C ′
i(P ) := Ci(P ) + Ai(P ) ·Di(P ) + Bi(P ) ·Di(P ). (34)

These equations are based on an information set that does not include terms from the future:

I ′i(t) := {x′i(t), x
′
i(t− 1), · · · , x′i(−∞); y′i(t), y

′
i(t− 1), · · · , y′i(−∞);

u′i−1(t− 1), · · · , u′i−1(t− hi), · · · , ui−1(−∞)}.

Note that (33) and the new information set I ′i(t) have the same structure as (6) and its in-

formation set Ii(t). Therefore the new variables satisfy Theorem 3; i.e., the bullwhip effect exists
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if

0 <
I∑

i=1

1 + Bi(1)li − C ′
i(1)

Ai(1) + Bi(1)
=

I∑

i=1

1 + Bi(1)li − [Ci(1) + hiAi(1) + hiBi(1)]
Ai(1) + Bi(1)

=
I∑

i=1

1 + Bi(1)li − Ci(1)
Ai(1) + Bi(1)

−
I∑

i=1

hi.

The first equality holds because (as we can see from (34)) Di(1) = hi and

C ′
i(1) = Ci(1) + hiAi(1) + hiBi(1), ∀i.

This proves Theorem 4.

27



Figure 1: Amplification of order variability for one stage (Lee et al. [22])
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Figure 2: A supply chain representation
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policy; (c) Order-based policy.
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Figure 8: Effect of h-period ADI; (a) original system; (b) shifted system.
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