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Margaret S. Torn5 , Daniel M. Ricciuto2 , Jitendra Kumar2 , Liyuan He1 ,
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Stan D. Wullschleger2 , Peter E. Thornton2 , and Xiaofeng Xu1

1Department of Biology, San Diego State University, San Diego, CA, USA, 2Environmental Sciences Division, Oak Ridge
National Laboratory, Oak Ridge, TN, USA, 3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang City,
China, 4Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA, 5Earth Sciences
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Abstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4

fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐

Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in
Utqiaġvik, Alaska: trough, low‐centered polygon (LCP) center, LCP transition, LCP rim, high‐centered
polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM‐Microbe model against
static‐chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and
LCP rim. Model application showed that low‐elevation and thus wetter landscape types (i.e., trough,
transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high‐
elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate
availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission,
and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem
respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features
were upscaled to the eddy covariance (EC) domain with an area‐weighted approach before validation
against EC‐measured CH4 fluxes. The model underestimated the EC‐measured CH4 flux by 20% and 25% at
daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong
microtopographic impacts on CO2 and CH4 fluxes call for a model‐data integration framework for better
understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.

1. Introduction

Spatial heterogeneity in land surface properties has been shown to be a key source of large variabilities and
uncertainties in CO2 and CH4 fluxes in the Arctic (Bridgham et al., 2013; Davidson et al., 2016; Sturtevant &
Oechel, 2013; Xu et al., 2014; Zona et al., 2011). Polygonal ground patterns create a complexmosaic of micro-
topographic features with poorly drained low‐centered polygons (LCPs) surrounded by high rims and well‐
drained high‐centered polygons (HCPs) surrounded by low trough as results of the annual freeze–thaw
cycles across the northern Alaskan coastal plain (Hinkel et al., 2005; Throckmorton et al., 2015; Zona
et al., 2011). Microtopography strongly affects soil water content and active layer depth (Atchley et al.,
2016; Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Grant, Mekonnen, Riley, Wainwright, et al., 2017b;
Lu & Zhuang, 2012), soil temperature and thermal conductivity (Abolt et al., 2018; Kumar et al., 2016), soil
pH and O2 availability (Lipson et al., 2012; Zona et al., 2011), soil chemistry (Lipson et al., 2013; Newman
et al., 2015; Semenchuk et al., 2015), vegetation types and canopy height (Davidson et al., 2016; von
Fischer et al., 2010), and microbial community structure (Tas et al., 2018; Wagner et al., 2017). Therefore,
the large spatial heterogeneities in microtopographic features are critically important for modeling and pre-
dicting the ecosystem carbon (C) exchange in Arctic tundra ecosystems.

Previous studies have found that Arctic tundra ecosystems have shifted from net CO2 sinks to sources
(Belshe et al., 2013; Oechel et al., 1993); whether they behave as sinks or sources of atmospheric CH4
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largely depends on local microtopography (Jørgensen et al., 2014; Nauta et al., 2015; Oh et al., 2016; Tan
et al., 2015). Minor changes in surface elevation might shift Arctic soils from sinks to sources of atmospheric
CH4 (Olivas et al., 2010; Zona et al., 2011). CH4 is produced in the poorly drained low‐elevation ground with
anoxic conditions, whereas atmospheric CH4 can be oxidized in well‐drained high‐elevation ground
(Atchley et al., 2016; Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Lipson et al., 2012; von Fischer et al.,
2010; Zona et al., 2011). Microtopography also affects the CO2 flux by altering the soil water content and
O2 concentration (Olivas et al., 2010). In addition, soil hydrological conditions affect vegetation growth
and substrate availability, further influencing ecosystem C input and microbial community structure and
altering the transport and production of CH4, root respiration, and microbial respiration (Davidson et al.,
2016; von Fischer et al., 2010; Wagner et al., 2017). Thus, accurate quantification of the strength of C sinks
or sources requires explicit consideration of the microtopographic effects on C cycling in Arctic tundra eco-
systems (Ebrahimi & Or, 2017).

To more accurately capture the fine‐scale variations in CH4 and CO2 fluxes in Arctic tundra, microtopo-
graphic effects need to be considered by ecosystem models as microbial functions such as fermentation, C
mineralization, methanogenesis, and methanotrophy dramatically differ between wet and dry polygons
(Tas et al., 2018). A number of mechanistic CH4 models have incorporated the mechanisms of CH4 produc-
tion, consumption, and transport pathways (Xu et al., 2016), such as the ecosys model (Grant, Mekonnen,
Riley, Arora, & Torn, 2017a), CLM‐Microbe (Xu et al., 2015), CLM4Me (Riley et al., 2011), LPJ‐WHyMe
(Wania et al., 2010), and NEST‐DNDC (Zhang et al., 2012). However, few CH4 models explicitly simulate
microtopography and are capable of investigating the microtopographic impacts on CO2 and CH4 fluxes
in Arctic tundra (Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Kaiser et al., 2017). For example, the ecosys
model indicates that microtopography determines CO2 and CH4 emissions by regulating soil water content,
active layer depth, and O2 availability (Grant, Mekonnen, Riley, Arora, & Torn, 2017a). The CLM‐Microbe
model simulates fine‐scale thermal and hydrological dynamics and microbial mechanisms for CH4 produc-
tion and oxidation (Xu et al., 2015), which allows investigation of Arctic CO2 and CH4 fluxes across multiple
scales from a microbial perspective.

In this study, we used the CLM‐Microbe model to simulate the microtopographic effects on CO2 and CH4

flux. We aimed to address three questions: (1) How do different microtopographic types affect CO2 and
CH4 fluxes in Arctic tundra ecosystems? (2) Which processes are more important in controlling CO2 and
CH4 fluxes among the microtopographic types? (3) How do annual estimates of CO2 and CH4 fluxes differ
under the microtopographic impacts in the Arctic? The field observational data from the U.S. Department
of Energy's Office of Science Next Generation Ecosystem Experiments (NGEE)‐Arctic project were inte-
grated with the CLM‐Microbe model to understand microtopographic impacts on land surface CO2 and
CH4 fluxes in an Arctic tundra landscape.

2. Methodology
2.1. Site Information and Experimental Data
2.1.1. Site Description
Our study area is located within the Barrow Environmental Observatory (BEO), ~6 km east of Utqiaġvik
(formerly Barrow), Alaska (71.3°N, 156.5°W), operated by the NGEE‐Arctic project (https://ngee‐arctic.
ornl.gov/). It has a polar maritime climate with mean annual air temperature of −12.0 °C in winter and
3.3 °C in summer (June–August), and with mean annual precipitation of 173 mm and the majority of pre-
cipitation falling during summer months (Liljedahl et al., 2011). Snowmelt usually ends in early to mid‐
June and the wind direction is predominantly from east to west throughout the year (Wainwright et al.,
2017). The dominant plants are mosses (Dicranum elongatum, Sphagnum), lichens, and vascular plants
(such as Carex aquatilis); plant distribution is governed by surface moisture variability (Zona et al., 2011).

The landscapes are highly heterogeneous with polygonal landscape patterns. The NGEE‐Arctic project
established four 100 m × 100 m intensively sampled areas within the BEO (Langford et al., 2016). The
sampled areas are dominated by the LCPs and HCPs with internal features of center, rim, transition, and
trough (Figure 1a). Accordingly, seven landscape types were classified within the study area: trough
(35.0% of total area), LCP center (6.9%), LCP rim (12.2%), LCP transition (14.3%), HCP center (13.2%),
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HCP rim (12.2%), and HCP transition (6.2%). Soil organic matter density and plant cover used in model
simulations for each landscape type are shown in Figure 1.
2.1.2. Data Availability Statement
The CH4 and CO2 fluxes were monitored using the static chamber approach on several dates during June–
September 2012 and 2013 (Torn, 2016). Transparent and opaque surface chambers were placed within the
study area in the trough, LCP center, and LCP rim. The CO2 fluxes from the transparent chambers were con-
sidered to be the net ecosystem exchange of CO2 (NEE), and those from the opaque chambers were consid-
ered the ecosystem respiration (ER). NEE (i.e., ER−GPP) is negative when CO2 uptake via photosynthesis is
greater than CO2 release from ER. The concentrations of soil dissolved organic carbon (DOC), CH4, and CO2

were measured for the trough, LCP center, and LCP rim in 2013–2014 (Herndon et al., 2015a; Herndon et al.,
2015). An eddy covariance (EC) tower was installed in the center of the study area to measure CO2 and CH4

fluxes in 2012; those data are available from the NGEE Arctic project website (Raz‐Yaseef et al., 2013). It is
noted that this data set has been updated to 2012–2016 although we used the previous data set for 2012–2013.
Daily and hourly fluxes of CH4 and CO2 were calculated based on the half‐hourly EC data. Detailed informa-
tion about the measurement protocols is posted in the NGEE Arctic archives (http://ngee‐arctic.ornl.gov/).

2.2. Modeling Experiment
2.2.1. Model Description and Driving Data
The CLM‐Microbe model branches from the framework of default CLM 4.5 by developing a new representa-
tion of CH4 production and consumption (Xu et al., 2015), in association with the decomposition subrou-
tines in CLM4.5 (Koven et al., 2013; Thornton et al., 2007; Thornton & Rosenbloom, 2005). It incorporates
new mechanisms of DOC fermentation, hydrogenotrophic methanogenesis, acetoclastic methanogenesis,
aerobic methanotrophy, anaerobic methanotrophy, and H2 production based on known processes (Thauer
et al., 1989; Thauer et al., 2008) and adopted from previous modeling studies (Grant, 1998; Kettunen,
2003; Riley et al., 2011; Segers & Kengen, 1998; Tian et al., 2010; Walter & Heimann, 2000; Xu et al., 2010;
Zhuang et al., 2004). Detailed mathematical expressions for CH4 production and consumption processes
were organized in Xu et al. (2015). The code for the CLM‐Microbe model is archived at this site (https://
github.com/email‐clm/clm‐microbe). The model version used in this study was checked out from GitHub
on 18 June 2018.

Figure 1. (a) The landscape classification map for area C (100 m × 100 m). Red indicates high surface elevation and blue indicates low surface elevation. Values on
the legend are indexes used to identify different landscape types. Diagrams depict the landscape types for (b) low‐centered polygon and (c) high‐centered polygon
with internal polygonal feature: center, rim, transition, and trough (Yuan et al., 2017).
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In a previous study, the CH4 module in the CLM‐Microbe model was validated for simulating the dynamics
of CO2 and CH4 emissions from incubation experiments on Arctic soils with invariant soil temperature and
soil water content (Xu et al., 2015). In this study, we focused on the fully incorporated CLM‐Microbe model,
created separate model runs for each landscape type, and modified the soil hydrological setup according to
landscapes’ unique soil conditions. Three soil hydrological parameters, largely affected by microtopography,
were selected: soil water content (h2osoi_vol), surface runoff (qflx_surf), and the inundated fraction (finun-
dated). Because the low‐elevation polygonal features, such as trough, LCP center, LCP transition, and HCP
transition are poorly drained and oversaturated in summer, the parameters for soil water content were chan-
ged to amaximum of 1.0, and those for the inundated fraction and surface runoff were changed to 0.99 and 0,
respectively. In contrast, the high‐elevation features, such as LCP rim, HCP rim, and HCP center, are well‐
drained in summer. For these features, the parameters for soil water content were set at a maximum of 0.3,
which is the baseline allowing the gas transport in soil profiles due to model structures; and those for surface
runoff and inundated fraction were set in the default processes with dynamic changes.

The model driving data included meteorological, plant, and soil data. The meteorological data included
shortwave and longwave radiation, air temperature, relative humidity, wind speed, and precipitation from
1 January 1991 to 31 December 2014, derived by Xu and Yuan (2016) from the Utqiaġvik, AK, station of
NOAA/Earth System Laboratory, Global Monitoring Division (http://www.esrl. noaa.gov/gmd/obop/brw/
). The data set is gap‐filled and at a half‐hour time step. The observed plant and soil data for each landscape
type—including the composition of plant functional types, plant cover, and soil organic carbon density—
were supplied by the NGEE Arctic project.
2.2.2. Model Implementation
To identify the role of microbial functions in CH4 dynamics, we set up model simulations using the
default CLM4.5 and the CLM‐Microbe models separately for each landscape type. The model implemen-
tation was carried out in three stages. First, the accelerated model spin‐up was set up for 2,000 years to
allow the system to accumulate C. Then a final spin‐up for 50 years allowed the modeled system to
reach a relatively steady state. After the final spin‐up, the transient model simulation was set up to cover
the period of 1850–2014.

For the default CLM4.5 model simulations, the parameters were set to be the default values for each
landscape type. For the CLM‐Microbe model simulations, the model parameterization was initialized
with the default parameters in Xu et al. (2015); it was performed within their ranges to determine the
optimal values of parameters in the microbial module for simulating the observational CO2 and CH4

fluxes for each landscape type. For the trough, LCP center, and LCP rim, the observed CO2 and CH4

fluxes in 2012 were used for model parameterization, and the fluxes in 2013 were used for model valida-
tion. Based on the current knowledge of mechanisms of CO2 and CH4 cycling, we primarily focused on
the parameters for decomposition and substrate availability for methanogenesis (e.g., k_bacteria, k_fungi,
KAce, and AceProdACmax) for the CH4 cycling. For CO2 cycling, we focused on the parameters for plant
growth respiration (grperc), maintenance respiration (br_mr), and C allocation within biogeochemical
cascade (e.g., fatm_f). According to the values of parameters reported in the previous studies, the para-
meters were calibrated empirically in the model parameterization (Table 1). Because of the lack of the
observational data, most of the parameters for LCP transition, HCP center, HCP rim, and HCP

Table 1
Key Parameters for Model Parameterization

Types KAce AceProdACmax k_dom k_bacteria k_fungi fatm_f Grperc

Default value 16 2.4e‐06 0.007 0.22 0.22 0.20 0.1652
Trough 12 6.4e‐06 0.014 0.05 0.05 0.15 0.0052
LCP center 12 1.8e‐06 0.007 0.01 0.01 0.12 0.0052
LCP rim 12 1.2e‐06 0.007 0.01 0.01 0.05 0.0052
LCP transition 16 6.4e‐06 0.007 0.22 0.22 0.20 0.0052
HCP transition 16 6.4e‐06 0.007 0.22 0.22 0.20 0.0052
HCP center 16 2.4e‐06 0.007 0.22 0.22 0.20 0.0052
HCP rim 16 2.4e‐06 0.007 0.22 0.22 0.20 0.0052

Note. LCP = low‐centered polygon; HCP = high‐centered polygon.
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transition, were set as the default values; and some parameters were modified according to the setup for
the trough, LCP center, and LCP rim (Table 1). The transient simulations of 1850–2014 produced output
at both daily and hourly time steps. Simple linear regression was conducted to evaluate the modeled CO2

and CH4 fluxes compared with measured fluxes. The error statistics were used to distinguish the
difference between the modeled and measured fluxes on the platform of R Studio platform (version
1.1.456), such as the coefficient of determination (R2).
2.2.3. Uncertainty Analysis
The uncertainties of the CO2 and CH4 fluxes for each landscape type were quantified using the Markov
Chain Monte Carlo method based on Bayesian statistics (Gilks et al., 1998) and were determined by a large
ensemble of model simulations with different parameter settings. In this study, a total of 100 model simula-
tions with different settings of 15 key parameters were set up for each landscape type, separately. These 15
key parameters determine the decomposition of organic carbon, methanogenesis, microbial growth, and
plant photosynthesis and respiration and therefore control the CO2 and CH4 fluxes (Table 2). They varied
within a range of 30% of their optimal values (Xu et al., 2015). Model simulations were conducted from
the transient simulation to cover 1850–2014 at a daily time step.
2.2.4. Area‐Weighted Upscaling
The modeled CO2 and CH4 fluxes in 2013 for each landscape type were further used for upscaling to the EC
tower domain based on an area‐weighted average approach. Because of the limitation of the landscape clas-
sification data, the EC domain was confined to an area of 100 m × 100 m. The area‐weighted average
approach includes information for landscape heterogeneity in the upscaling process. The upscaled flux
was calculated by the following equation:

F ¼ ∑n
i¼1f i×areai (1)

where F is the upscaled plot flux for the EC domain, fi is the plot‐level CH4 or CO2 fluxes for a given land-
scape type for a given time period, areai is the fraction of each major landscape type within the EC domain
(Davidson et al., 2016). In addition, the average fluxes were calculated based on the CH4 and CO2 fluxes from
the seven landscape types for comparison with the upscaled fluxes.
2.2.5. Sensitivity Analysis
To identify the most important process and the most sensitive parameters for CH4 and CO2 dynamics in
Arctic tundra, a global sensitivity analysis was conducted for each microtopographic type. It focused on
the 15 parameters related to plant and microbial processes that were used in the uncertainty analysis
(Table 2). For each parameter, we set up model simulations with +20% and − 20% changes and investigated
the responses of the modeled CH4 and CO2 fluxes in 2013. The index S, comparing the change in the model
output relative to the model response for a nominal set of parameters, was calculated based on the flowing
equation (Xu et al., 2015):

Table 2
Key Parameters for Uncertainty Analysis and Sensitivity Analysis.

Parameter Ecological meaning

KAce Half‐saturation coefficient of available carbon mineralization
ACminQ10 Temperature sensitivity of available carbon mineralization
AceProdACmax Maximum rate of acetate production from available carbon
H2ProdAcemax Maximum rate of H2 production from available acetate
KH2ProdAce Half‐saturation coefficient of conversion of H2 and CO2 to acetate
KCO2ProdAce Assuming it is half of that for H2 based on stoichiometry theory
KCO2ProdCH4 Half coefficient of CO2 for methane production from H2
GrowRAceMethanogens Growth rate of acetoclastic methanogens
YAceMethanogens Growth efficiency of acetoclastic methanogens
k_dom Decomposition rate constant dissolved organic matter
k_bacteria Decomposition rate constant biomass of bacteria
k_fungi Decomposition rate constant biomass of fungi
flnr Fraction of leaf N in the Rubisco enzyme
grperc Growth respiration parameter
br_mr Base rate of maintenance respiration
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S ¼ Ra−Rnð Þ=Rn
Pa−Pnð Þ=Pn (2)

where S is the ratio of the standardized change in model response to the standardized change in parameter
values. Ra and Rn are model responses for altered and nominal parameters, respectively, and Pa and Pn are
the altered and nominal parameters, respectively. S is negative if the direction of model response opposes the
direction of parameter change (Xu et al., 2015).

3. Results
3.1. Model‐Simulated CH4 and CO2 Fluxes

The CLM‐Microbe model was more accurate than the default CLM4.5 in simulating the CH4 and CO2 fluxes
during the summer of 2013 (Figure 2). The dynamics of CH4 was captured well by the CLM‐Microbe model
for the trough, LCP center, and LCP rim, but those sites were simulated as a small CH4 sink in summer by
the default CLM4.5 (Figures 2a–2c and Table 3). NEE and ER were used to represent the dynamics of CO2

flux. In the summermonths, NEE and ER had the similar patterns for the trough and LCP center but showed
significant differences for LCP rim in the default CLM4.5 and CLM‐Microbe models (Figures 2d–2i). For the
trough and LCP center, the CLM‐Microbe model simulated the NEE well, whereas the default model under-
estimated it by 47–50%; however, both of them overestimated the ER by 28–47% (Figure 3 and Table 3). The
variations of NEE and ER were not captured by either the default or the CLM‐Microbe models for LCP rim,
but the CLM‐microbe model performed slightly better than the default model (Figure 3 and Table 3).

Figure 2. Simulated (a–c) CH4 fluxes, (d–f) net ecosystem carbon exchange (NEE), and (g–i) ecosystem respiration (ER) for trough, low‐centered polygon (LCP)
center, and LCP rim compared with observational fluxes from static chambers (red circles with error bars) from May to September 2013 (Torn, 2016). The black
lines indicate the modeled fluxes simulated by the CLM‐microbe model, and the blue lines indicate the default fluxes simulated by the default CLM4.5. The
blue lines are not smooth for CH4 fluxes; the fluxes are negative and are too small to show.
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For the simulations of the CLM‐Microbe model, larger CH4 fluxes with
greater variations were observed for the trough than that for the LCP cen-
ter and LCP rim (Figures 2a–2c). Additionally, modeled CH4 fluxes were
more consistent with the observational fluxes for the trough
(R2 = 0.7381, p = 0.0001) than for the LCP center (R2 = 0.2820,
p = 0.0507) and LCP rim (R2 = 0.3432, p = 0.0277; Table 3). For the
dynamics of CO2 fluxes, similar patterns of NEE and ER were simulated
for the trough and LCP center (Figures 2d and 2e). Modeled NEE was
highly consistent with the observed data for the trough (R2 = 0.9569,
p = 0.0007) and LCP center (R2 = 0.9194, p = 0.0025); whereas ER was
overestimated by 47.3% for the trough (R2 = 0.8316, p < 0.0001) and
39.2% for the LCP center (R2 = 0.9188, p < 0.0001; Table 3). Compared
with the trough and LCP center, a slightly higher NEE (lower CO2 uptake)
was modeled for the LCP rim and it was underestimated by 78.4%
(R2 = 0.4080, p= 0.1757; Table 3). However, ER for the LCP rim was over-
estimated by 64.5% (R2 = 0.88, p < 0.0001; Table 3).

3.2. Variability and Seasonality of CH4 and CO2 Fluxes Across the
Arctic Landscape Types

Modeled CH4 and CO2 fluxes exhibited large variabilities among all seven
landscape types. In the summer months, high CH4 emissions were gener-
ally simulated, associated with low NEE (i.e., high CO2 uptake) and high

Table 3
Linear Regression Analysis for CH4 flux, Net Ecosystem Carbon Exchange
(NEE), and Ecosystem Respiration (ER) for Model Validation of the CLM‐

Microbe Model and the Default CLM4.5

Site Variable Estimate Std. error P value R2

Trough Modeled CH4 1.0626 0.1827 0.0001* 0.7381
Default CH4 −0.0027 0.0003 0.0000* 0.8388

LCP center Modeled CH4 1.0167 0.4683 0.0507 0.2820
Default CH4 −0.0090 0.0038 0.0341 0.3226

LCP rim Modeled CH4 1.0925 0.4363 0.0277 0.3432
Default CH4 −0.0309 0.0093 0.0060* 0.4802

Trough Modeled NEE 0.9961 0.1057 0.0007* 0.9569
Default NEE 0.4957 0.0650 0.0016* 0.9356

LCP center Modeled NEE 1.0572 0.1565 0.0025* 0.9194
Default NEE 0.4711 0.1216 0.0179 0.7895

LCP rim Modeled NEE 0.2160 0.2339 0.4080 0.1757
Default NEE −5.1333 0.7907 0.0029* 0.9133

Trough Modeled ER 1.4729 0.1913 0.0000* 0.8316
Default ER 1.2800 0.2028 0.0000* 0.7685

LCP center Modeled ER 1.3922 0.1195 0.0000* 0.9188
Default ER 1.4301 0.1456 0.0000* 0.8893

LCP rim Modeled ER 1.6449 0.1753 0.0000* 0.8800
Default ER 6.4249 0.9320 0.0000* 0.7984

Note. LCP = low‐centered polygon.
*The significant level < 0.01.

Figure 3. Scatter plots of observed versus simulated (a–c) CH4 fluxes, (d–f) net ecosystem carbon exchange (NEE), and (g–
i) ecosystem respiration (ER) for trough, low‐centered polygon (LCP) center, and LCP rim, with linear lines of best fit (no
interception) and 95% confidence interval for regression line shaded gray. The black lines and points indicate the rela-
tionship between observed fluxes and modeled fluxes simulated by the CLM‐microbe model. The blue lines and points
indicate the relationship between observed fluxes and the default fluxes simulated by the default CLM4.5.
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ER for all the landscape types (Figure 4). Low‐elevation landscape types, such as trough, LCP transition, and
HCP transition, had higher CH4 emissions with greater variation compared with high‐elevation types, such
as LCP rim, HCP rim, and HCP center (Figure 4a). However, low‐elevation types, including trough, LCP
transition, and LCP center showed lower NEE (i.e., higher CO2 uptake) than high‐elevation types, including
LCP rim and HCP rim (Figure 4b). ER was roughly higher in the HCP center and lower in the trough and
LCP center in the summer months (Figure 4c).

Larger seasonal variations of CH4 dynamics were modeled in low‐elevation landscape types (e.g., trough and
transitions) than high‐elevation types (e.g., rim; Figure 4a). In the early spring, most of the landscape types
showed a burst release of CH4 flux, corresponding to the early Spring thaw. During the growing seasons, the
lower ground of the trough and LCP transition had similar seasonality of CH4 and CO2 fluxes, with the high-
est CH4 emission and highest CO2 uptake (Figure 4). The higher ground of rims tended to have smaller var-
iations of CH4 and NEE fluxes (Figure 4). A sudden rise was simulated in NEE for the trough, LCP
transition, LCP center and HCP center, during the late growing seasons; a similar rise simultaneously was
simulated in ER (Figure 4).

3.3. Annual Estimates of CH4 and CO2 Fluxes Across the Landscape Types

Annual CH4 fluxes were estimated for all landscape types, resulting in a range of 0.66 to 3.97 g Cm−2

(Table 4). The HCP transition, as the largest CH4 source, has released 5.06 times more annual CH4 fluxes
more than the smallest CH4 sources (i.e., LCP rim). Low‐elevation types, including trough and transition,
contributed a larger proportion of CH4 emissions than high‐elevation types in Arctic tundra ecosystems.
Based on the areal fractions, the HCPs and LCPs were estimated to have comparable annual CH4 fluxes
of 2.12 and 2.19 g C m−2 year−1, respectively, both of which were smaller than the annual CH4 fluxes of
3.63 g C m−2 year−1 from the trough (Table 4).

The landscape types were found to be net sources of CO2, except for the trough, in which
21.08 g C·m−2·year−1 of CO2 was sequestered (Table 4). Large variations existed in the annual NEE,
which ranged from −21.08 to 248.22 g C·m−2·year−1 (Table 4). The HCP transition was the largest CO2

source to the atmosphere among the landscape types. All the landscape types had comparable ERs—

Figure 4. Modeled (a) CH4 fluxes, (b) net ecosystem carbon exchange (NEE), and (c) ecosystem respiration (ER) for all seven landscapes types in 2013. The black
lines indicate the high‐elevation types, and blue lines indicate the low‐elevation types. LCP = low‐centered polygon; HCP = high‐centered polygon.
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ranging from 582.72 to 776.31 g C·m−2·year−1—except the HCP center, which exhibited the greatest ER
of 927.98 g C·m−2·year−1. The trough, LCP center, and LCP rim with smaller NEE estimates were also
estimated to have smallest ER budget.

3.4. Upscaling CH4 and CO2 Fluxes to the EC Domain

Modeled CH4 and CO2 fluxes were upscaled to the EC domain based on the area fraction of each landscape
type. High consistency was shown between the upscaled fluxes and ECmeasurements (Figures 5 and 6). The
regression analysis showed that more accurate simulations of CH4 and NEE fluxes for the EC domain were
obtained at daily time steps than at hourly time steps (Figure 6). CH4 fluxes were underestimated at daily
(R2 = 0.7931, p < 0.0001) and hourly (R2 = 0.6135, p < 0.0001) time steps by 20.08% and 24.95%, respectively.
NEE was underestimated at the daily time steps by 21.44% (R2 = 0.2843, p < 0.0001), but was overestimated
at the hourly time steps by 30.01% (R2 = 0.3464, p < 0.0001; Table 5).

Annual CH4 and CO2 fluxes were estimated for the EC domain using the arithmetic average and area‐
weighted average approaches. When the proportions of different landscape types were not considered,
the annual CH4 flux was underestimated at 2.39 g C·m−2·year−1, compared with an annual estimate of

Table 4
Annual Estimates of CH4 Flux, Net Ecosystem Carbon Exchange (NEE) and Ecosystem Respiration (ER) (g C·m−2·year−1)
With the Uncertainties for All Seven Landscape Types, the Average and the Area‐Weighted Average (AWA) for the EC
Domain Based on Modeled Daily Fluxes in 2013

Type CH4 flux NEE ER

Trough 3.632 (3.403–3.887) −21.083 (−26.187 to −16.546) 582.715 (581.149–584.086)
LCPcenter 1.145 (1.117–1.175) 3.056 (−8.265–10.780) 598.520 (586.288–606.655)
LCPrim 0.656 (0.575–0.678) 19.579 (11.464–22.378) 617.660 (613.992–625.929)
LCPtransition 3.835 (3.714–3.971) 160.928 (157.811–165.165) 754.986 (752.519–755.857)
HCPcenter 2.384 (2.296–2.461) 137.940 (130.614–145.714) 927.981 (923.071–930.792)
HCPrim 1.075 (1.029–1.130) 180.277 (177.880–181.020) 776.309 (774.682–782.879)
HCPtransition 3.974 (3.839–4.121) 248.219 (246.895–251.471) 759.463 (758.276–761.238)
Average 2.386 104.131 716.805
AWA 2.671 73.825 692.855

Note. LCP = low‐centered polygon; HCP = high‐centered polygon.

Figure 5. Upscaled (a, b) CH4 fluxes and (c, d) net ecosystem carbon exchange (NEE) comparing with measured fluxes
from an eddy covariance tower centered in the study area at the daily (a, c) and hourly (b, d) time steps in 2013. Black
lines indicate the gas fluxes and red points with/without error bars indicate measured fluxes. DOY = day of year.
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2.67 g C·m−2·year−1 based on the areal fractions. However, NEE and ER were overestimated at
104.13 g C·m−2·year−1 and 716.81 g C·m−2·year−1, respectively, compared with the annual estimates of
73.83 g C·m−2·year−1 and 692.86 g C·m−2·year−1 for NEE and ER, respectively, that considered the hetero-
geneity of landscapes (Table 4).

3.5. Sensitivity Analysis

CH4 and CO2 fluxes were sensitive to a portion of the key parameters that are related to available carbon
mineralization, CH4 production, growth of methanogens, decomposition, photosynthesis, plant growth
respiration, and maintenance respiration. Specifically, the CH4 flux was strongly sensitive to the parameters
of AceProdAcemax and ACMinQ10, followed by YAceMethanogens, GrowRAceMethanogens, KAce, and
k_dom for all landscape types (Figure 7a), which suggested that acetate production and available C miner-
alization were the key controls on CH4 dynamics in Arctic tundra ecosystems. Growth of methanogens also

regulated CH4 flux by influencing CH4 production. Changes in the
decomposition rate of the dissolved organic matter (DOM) had a positive
influence on CH4 flux for all the landscapes except the LCP rim
(Figure 7a). In the high‐elevation features LCP rim, HCP rim, and HCP
center, the CH4 flux was sensitive to the fraction of leaf nitrogen in the
Rubisco enzyme functioning in photosynthesis (flnr). In the HCP rim,
CH4 dynamics also responded to changes in the decomposition rate of
fungi biomass (k_fungi) and plant growth respiration (grcep; Figure 7a).
Autotrophic respiration (e.g., plant growth respiration and maintenance
respiration) and the flnr were also the key controlling factors for CH4 flux
in low‐elevation features but exhibited opposite effects (Figure 7a).

Figure 6. Scatter plots of measured versus upscaled CH4 (a, b) and net ecosystem carbon exchange (NEE) (c, d) at daily (a,
c) and hourly (b, d) time steps for the eddy covariance domain of the study area in 2013, with linear lines of best fit (no
interception) and 95% confidence interval for regression line shaded gray.

Table 5
Linear Regression Analysis for CH4 Flux and Net Ecosystem Carbon
Exchange (NEE) Modeled and Measured From the Eddy Covariance (EC)
Tower at Daily and Hourly Time Steps

Variable Time step Estimate Std. error P value R2

CH4 flux Daily 0.7992 0.0440 0.0000a 0.7931
Hourly 0.7505 0.0204 0.0000a 0.6135

NEE Daily 0.7856 0.1242 0.0000a 0.2943
Hourly 1.3001 0.0546 0.0000a 0.3464

aThe significant level < 0.01
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The most important processes of CO2 dynamics are related to photosynthesis and respiration, which control
CO2 uptake and release across the Arctic landscape types. The flnr was identified as the primary factor for
NEE and ER (Figure 7b and 7c). An increase in the flnr lead to a rise in NEE in the trough, LCP rim, and
HCP rim but a NEE reduction in the LCP center, LCP transition, HCP transition, and HCP center. There
was a significant decrease in ER for all landscapes with increased flnr (Figure 7b and 7c). For high‐elevation
features, including LCP rim, HCP rim, and HCP center, NEE dynamics showed negative responses to
ACMinQ10 and positive responses to AceProdACmax, suggesting that acetate production is also important
for CO2 uptake from the atmosphere (Figure 7b). In the trough, NEEwas sensitive tomany other parameters
related to acetate production, decomposition, and respiration (Figure 7b). Beside the flnr, ER dynamics was
sensible to maintenance respiration (br_mr) in both high‐elevation and low‐elevation landscape types
(Figure 7c). Additionally, changes in the decomposition rates of bacteria and fungi biomass for the LCP cen-
ter could also result in changes in ER (Figure 7c).

4. Discussions
4.1. Microtopographic Impacts on CH4 and CO2 Fluxes

Microtopography determines CH4 and CO2 dynamics in Arctic polygonal tundra by affecting the hydrologi-
cal processes and thereby the soil water content, active layer depth, vegetation, and microbial functional
groups in ecosystem C exchange (Davidson et al., 2016; Grant, Mekonnen, Riley, Arora, & Torn, 2017a;
Lipson et al., 2012; Throckmorton et al., 2015; D. Zona et al., 2011). Soil water content was greater in the
low‐elevation ground of trough, LCP transition, LCP center, and HCP transition than in the high‐elevation
ground of the LCP rim, HCP rim, and HCP center; this discrepancy largely explained the variability in CH4

fluxes among the heterogeneous landscape types in the Arctic (Grant, Mekonnen, Riley, Wainwright, et al.,
2017b; Lu& Zhuang, 2012). In summer, larger CH4 emissions were observed andmodeled in the trough than
in higher‐elevation rims and centers because of the trough's higher soil water content and oversaturated
soils, which is consistent with previous studies (Grant, Mekonnen, Riley, Arora, & Torn, 2017a; Schrier‐
Uijl et al., 2010). Saturated and oversaturated soils create an anoxic condition facilitating methanogenesis
to produce CH4 (von Fischer et al., 2010; Von Fischer & Hedin, 2007). Higher CH4 emissions were also mod-
eled for other low‐elevation types, including LCP center, LCP transition, and HCP transition, a finding that
supported the promotion effects of high soil water content on CH4 production.

CH4 flux is strictly produced by methanogens at very low O2 concentration in soils, mainly converted from
acetate and CO2 +H2 (Nazaries et al., 2013). The sensitivity analysis suggested that the substrate availability
for methanogenesis resulting from acetate production and DOM decomposition was the key constraint for
CH4 dynamics in Arctic polygonal landscapes (Xu et al., 2015). In summer months, higher CO2 uptake
(i.e., lower NEE) and stronger photosynthesis (i.e., increased flnr) were modeled associated with the higher
CH4 emissions in the low‐elevation ground. The results implied that a positive correlation existed between
the CO2 uptake and CH4 emission. Stronger CO2 uptake refers to a higher amount of plant biomass, which

Figure 7. Sensitivity analysis for model response of (a) CH4 fluxes, (b) net ecosystem carbon exchange (NEE), and (c) eco-
system respiration (ER) to15 parameters (KAce, ACMinQ10, AceProdACmax, H2ProdAcemax, KH2ProdAce,
KCO2ProdAce, KCO2ProdCH4, GrowRAceMethanogens, YAceMethanogens, k_dom, k_bacteria, k_fungi, flnr, grperc, and
br_mr) for trough (tg), LCP transition (lt), LCP center (lc), HCP transition (ht), LCP rim (lr), HCP rim (hr), andHCP center
(hc). The symbols “+” and “‐” indicate a 20% increase or 20% decrease of parameter values. Darker red and darker blue
indicate a stronger positive or negative model response to parameter change. S is negative if the direction of model
response opposes the direction of parameter change. LCP = low‐centered polygon; HCP = high‐centered polygon.
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facilitates the emission of large CH4 fluxes emitting to the atmosphere via plant‐mediated transport (von
Fischer et al., 2010). Additionally, high CO2 uptake can provide abundant C input into soils as litter formicro-
bial decomposition, which in turn produces a high amount of available C for methanogenesis. However, the
field study reported that no relationshipwas observed between instantaneousGPP (i.e., CO2 uptake) andCH4

fluxes (Davidson et al., 2016), suggesting that the processes from decomposition of organic matter to sub-
strates for methanogenesis are very complicated and need to be considered cautiously in CH4 models.

Microtopographic effects on CO2 dynamics are caused primarily by changes in soil hydrological conditions
and hence O2 diffusion (Davidson et al., 2016; Olivas et al., 2010). Low‐elevation landscape types, especially
the trough and LCP center, were shown by modeling to have the largest CO2 uptake in summer.
Additionally, the ER via roots and microbial communities was suppressed by the low dissolved O2 concen-
tration in the saturated soils (Olivas et al., 2010; Zona et al., 2011). These results suggested that high soil
moisture in Arctic tundra promotes the plant growth and suppresses the ER, eventually increasing the
strength of the CO2 sink in low‐elevation landscapes. In contrast, lower CO2 uptake and greater ER in sum-
mer were simulated for the rims and HCP center, confirming that the high‐elevation ground in the Arctic
acts as a smaller CO2 sink (Zona et al., 2011). The ER variations in low‐elevation and high‐elevation land-
scape types in the summer months were caused largely by the difference in the availability of soil O2 for
microbial respiration. The strength of the CO2 sink in Arctic tundra can be biased by the effects of microto-
pography on soil water and O2 conditions. However, most landscape models have not incorporated microto-
pographic effects in simulating CO2 fluxes. Not considering those effects might cause large biases; therefore,
better simulation of microtopographic impacts is critical for model applications to C cycling in the Arctic.

4.2. NEE and CH4 Flux at Daily and Hourly Time Steps

Biological processes occur instantaneously, on a time scale inconsistent with field measurements normally
undertaken at hourly or daily scales. Ecosystem functions are more apparent at the hourly, daily, monthly,
and annual scales, at which the CLM‐Microbe performs. The model performance was more consistent with
observed CH4 and CO2 fluxes for the EC domain on the daily than on the hourly scale, indicating that the
model did not perform well in capturing some pulse fluxes on an hourly scale. Since the “CH4 pulse” in
the spring season has been widely recognized as an important component for ecosystem models in recent
decades (Lu & Zhuang, 2012; Song et al., 2012; Tokida et al., 2007), an improvement of the CLM‐Microbe
model for better simulation of these outbreak events is needed.

In general, upscaled CH4 and CO2 fluxes based on modeled plot‐level fluxes were able to capture most var-
iations of measured EC fluxes at both daily and hourly time steps. We conclude that the CLM‐Microbemodel
can be used to estimate CO2 and CH4 fluxes at landscape scale if fluxes are scaled by different landscape
types (Schrier‐Uijl et al., 2010). Moreover, the dynamics of CH4 and CO2 fluxes wasmodeledmore accurately
at daily than at hourly time steps. This is probably because the key factors or processes controlling CH4 and
CO2 dynamics are slightly different across the temporal scales; but they are well defined with stable priorities
in the model according to the extant knowledge, usually from observations at long time scales. Another rea-
son for the underestimation of CO2 flux might be the unexplained CO2 uptake during the nongrowing sea-
son (i.e., October) in the Alaska tundra ecosystem (Figures 5b and 5d). Until confirmed mechanisms are
found for the underestimation, it has no clear implications for the model performance.

4.3. Model Implications

This study has three implications for model development and scientific understanding of the C dynamic in
the Arctic. First, the CLM‐Microbe model performed well in capturing the variabilities in CH4 and CO2

fluxes among primary polygonal landscapes in Arctic tundra, which emphasizes the importance of spatial
heterogeneity in simulating CO2 and CH4 fluxes in ecosystem CH4 models. The model simulations indicate
that the trough and transitions had estimated CH4 emissions of 3.6–4.0 g C·m−2·year−1 annually, and the
rims had a smaller annual CH4 emissions of 0.7–1.1 g C·m−2·year−1. Differences in the annual estimates
were likely due to the saturated and anoxic conditions in low‐elevation ground that promote anaerobic
methanogenesis, leading to a higher CH4 emission. However, the annual CH4 fluxes for the seven landscape
types may be greatly underestimated because of the low estimates for the cold season in model simulations.
Many studies have reported that >50% of annual CH4 emissions occur during the cold season in Alaskan
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tundra (September to May; Kittler et al., 2017; Zona et al., 2016). Moreover, our estimate of annual CH4

fluxes for the entire study area was smaller compared with similar studies in Arctic tundra (Reeburgh
et al., 1998; Wille et al., 2008). This discrepancy might be explained by the lower organic matter density or
less plant cover in our study area. For example, the less abundant plant cover reduces the plant‐mediated
transport of CH4 and therefore lowers CH4 emissions (Bhullar et al., 2013). The variations in our estimates
for seven landscape types were potentially biased because they ignored the lateral surface hydrologic and
thermal processes. The spatial variability in soil moisture and soil temperature can be overpredicted if the
lateral subsurface hydrologic and thermal processes are excluded (Bisht et al., 2018), and the same is true
for the spatial variability in CH4 emissions in Arctic polygonal landscapes. By incorporating these surface
processes, the CH4 models can improve the representation of lateral hydrologic and thermal transport,
and thereby improve the accuracy of estimations (Aas et al., 2019).

Second, the potential shifts in Arctic tundra ecosystems as C sinks or sources is valuable information for cli-
mate projections. This study showed that the trough is the only net CO2 sink among all landscape types and
plays a key role in ecosystem C storage because of its 35% areal share of the entire study area. CO2 dynamics
in the trough were very sensitive to many processes related to photosynthesis, plant and soil respiration, and
C mineralization and distribution. It is possible for trough shifting to being net C sources from net C sinks,
even with a tiny change in CO2 processes under climate changes. Annual estimates indicated that the HCPs
were 310% greater CO2 sources than the LCPs. Additionally, greater ER was estimated in the HCPs than in
the LCPs. The HCP center, in particular, had an ER of 928.0 g C·m−2, the highest among the landscape types.
Because LCPs may eventually subside into HCPs, CO2 emissions from Arctic soils tend to increase rapidly
not only because of the effects of climate changes but also because of the changes in landscape patterns.

Finally, this study advocates the mechanistic modeling of C cycling to better estimate CO2 and CH4 fluxes
across the Arctic tundra ecosystems. It is well known that differences in CH4 and CO2 emissions across
the Arctic landscapes are directly led by the mechanisms and dynamics of microbial activities in relation
to C mineralization, decomposition, respiration, methanogenesis, and methanotrophy. By including these
microbial processes, the CLM‐Microbe model allows us to understand the mechanisms of Arctic C cycling
according to the production and consumption processes of CO2 and CH4. Soil DOC, CH4, and CO2 concen-
trations were modeled and compared with the measured concentrations for the landscape types and soil
depths for a few data points (Table 6). Modeled DOC concentrations were ~1.6 times the measurements at
the middle layer of soils in the trough on day of year (DOY) 183 and DOY 240 of 2013; these results suggested
that the model could be useful for simulating the concentrations of C compounds. In Arctic ecosystems, high
CH4 emissions in saturated soils were modeled with high CH4 production, which was consistent with the
large amount of modeled acetoclastic methanogens. CH4 oxidation was strengthened by high O2 availability
in the topsoil of the rims and HCP center compared with saturated trough and transitions. Moreover, differ-
ences in CH4 transport via diffusion, ebullition, and plant‐mediated transport were modeled with seasonal

Table 6
The Comparison Between Modeled and Observed Concentrations of Belowground Dissolved Organic Carbon (DOC), CO2,
and CH4 (g C·m

−3) Along Soil Profiles for the Trough, LCP Center and LCP Rim in 2013–2014

DOY Site
Sample

depth (cm)
Soil layer

(CLM‐microbe)

DOC CO2 CH4

Modeled Observed Modeled Observed Modeled Observed

183 Trough 28 6 448.11 282.84 16.08 156.60 0.55 0.11
240 Trough 22 5 478.20 283.92 0.00 33.00 0.08 0.14
240 Trough 29 6 458.43 222.84 16.15 NA 0.59 NA
606 Trough 20 5 483.29 118.08 0.00 48.84 0.01 0.50
606 Trough 37 6 462.32 184.80 16.25 35.16 0.57 2.06
183 Center 26 5 1419.74 30.60 0.00 NA 0.04 NA
240 Center 49 6 1422.88 1015.32 13.33 NA 0.28 NA
606 Center 10 4 1674.68 25.68 0.00 NA 0.02 NA
183 Rim 29 6 1064.58 NA 4.13 NA 0.09 NA
183 Rim 7 3 1120.60 29.16 618.30 NA 0.05 NA
240 Rim 7 3 1178.37 30.72 618.34 NA 0.14 NA
240 Rim 37 6 1073.85 66.72 4.20 NA 0.20 NA
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variations. Large CH4 fluxes emitted from soils were associated with the fast plant growth in summer.
Furthermore, soil microbial structure and biomass were simulated to understand the CO2 and CH4

dynamics, which suggested the importance of belowground microbial mechanisms in modeling surface
CO2 and CH4 fluxes.

4.4. The Way Forward

The CLM‐Microbe model can simulate the belowground microbial processes for surface CO2 and CH4

fluxes. Although promising results proved the robustness of the CLM‐Microbe model in simulating surface
CO2 and CH4 fluxes, a number of tasks were identified as follow‐up efforts to this study. First, although the
upscaling results with an area‐weighted approach seems promising, the dominant roles of landscape types
weakened the variations in C flux. Upscaling with a mechanistic model should provide more accurate quan-
tification of the C flux on a regional scale, as well as a finer‐resolution C flux at both the spatial and the tem-
poral scales (Watts et al., 2014). Second, belowground C dynamics—for example, DOC, acetate, CO2, and
CH4 concentrations—are important variables and precursors for observed surface gas fluxes. We call for a
data‐model integration approach to better integrate the observational data and better simulate belowground
processes and surface flux. Third, hydrological dynamics is the key control for biogeochemical processes,
particularly for the changing Arctic. Improving themodel's ability to simulate hydrology is an important cor-
nerstone for simulating soil biogeochemistry. Fourth, microbial genomic information is the most accurate
information for microbial functions, yet it has not been well utilized for model parameterization. The
CLM‐Microbe model is capable of simulating the relative abundance of methanogenesis; thus, it is worth-
while to improve the model to better simulate the microbial functional groups responsible for CH4 produc-
tion and consumption. Fifth, although C flux data, particularly the CH4 flux, have been scarce across the
Arctic tundra ecosystem, recent projects and technical improvements have allowed year‐round measure-
ments. Those data can serve as a good constraint for the CLM‐Microbe model at multiple scales; a multiscale
“MODEX” (model‐observation‐experiment) framework to better integrate multiple observational data to
quantify gas flux and understand its mechanisms in the Arctic is much needed.

5. Conclusions

This study reported the application of the CLM‐Microbe model to seven microtopographic landscape types
in the Arctic tundra near Utqiagvik, AK. The model results were promising and consistent with the observa-
tional gas fluxes. The modeled results showed that low‐elevation landscape types (e.g. trough, transitions,
and LCP center) have higher CH4 emission with greater seasonal variations than high‐elevation landscape
types (e.g. rims and HCP center), as a result of the greater soil saturation in the low‐elevation landscape
types. Model sensitivity analysis determined that the substrate (e.g. acetate, CO2 + H2) availability for
methanogens was the most important factor in controlling CH4 emissions in Arctic ecosystems, and plant
photosynthesis greatly affected the NEE and ER. The model performed more accurately in simulating the
daily EC fluxes than hourly fluxes, indicating the importance of the time scale in simulating gas fluxes.

The large spatial heterogeneity in CO2 and CH4 fluxes across the Arctic landscape requires explicit consid-
eration and modeling of microtopography, as well as of the mechanisms controlling C biogeochemistry in
response to hydrology dynamics. As the climate continues to warm rapidly in the Arctic, large variations
at both the spatial and the temporal scales are anticipated across the Arctic landscape. Dramatic changes
in land surface CO2 and CH4 fluxes might alter the land–atmosphere feedback in the Arctic. An insightful
regional‐scale investigation of the thermal conditions, hydrology, and biogeochemistry across the pan‐
Arctic is urgently needed and will benefit the entire scientific community and the public.

Data Availability Statement

The data used in this study have been archived at the NGEE‐Arctic data repository, including gas flux data
(DOI: 10.5440/1362279), and meteorological data (https://ngee‐arctic.ornl.gov/data/).
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