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ABSTRACT OF THE DISSERTATION

Cubic Regularization Algorithms for Unconstrained and Constrained Optimization

by

Ziyan Zhu

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip E. Gill, Chair

This dissertation focuses on cubic regularization methods for the globalization of
Newton’s method, with applications in unconstrained and constrained optimization. In
recent years, cubic regularization algorithms have emerged as popular alternatives to
trust-region and line-search methods for unconstrained optimization. The goal of this
research is to tackle some of the challenges associated with cubic regularization and extend
the methods to solve constrained problems. The first part of the dissertation is dedicated
to enhancing the efficiency of cubic regularization methods for unconstrained optimization
without sacrificing their favorable convergence properties. A nonmonotone adaptive cubic

regularization approach is proposed that combines adaptive cubic regularization with a

xii



line search. In particular, a sufficient decrease in the objective function is obtained by
performing a nonmonotone line-search based on satisfying certain strong Wolfe conditions.
This is an alternative to repeatedly solving the cubic subproblem with varying regularization
parameters and requires lower computational cost and fewer iterations. In addition, two
hybrid algorithms are developed that substitute cubic regularization with Newton’s method
when the objective function is well-behaved or a sufficient descent direction is readily
obtainable from a conventional Newton method. By judiciously determining when to
utilize cubic regularization, the efficiency of Newton’s method can be balanced against the
robustness of cubic regularization. In the second part of the dissertation, a novel primal-
dual interior-point method for general nonlinear constrained optimization is proposed
that minimizes a sequence of shifted primal-dual penalty-barrier functions. The method
combines cubic regularization and a line-search to ensure global convergence. The proposed
method calculates the cubic regularized step by factoring a sequence of matrices with
diagonally-modified primal-dual structure, enabling the use of off-the-shelf linear equation
software. This approach allows the extension of the method to large-scale problems while
maintaining computational efficiency. Finally, the performance of the proposed algorithms
for both unconstrained and constrained optimization is illustrated by extensive numerical

results obtained from problems in the CUTESst test collection.
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Chapter 1

Introduction

1.1 Overview

Mathematical optimization is a crucial tool across various domains. It aims to find
the best values for variables that maximize or minimize a given function. Optimization
problems arise in a wide range of quantitative disciplines, such as computer science,
engineering, operations research, and economics. The development of solution techniques
has been a topic of interest in mathematics for centuries. In an optimization problem, there
are independent variables or parameters, often accompanied by constraints that impose
conditions or limitations on the values of the variables. Another crucial component of an
optimization problem is the objective function, which serves as a quantitative measurement
of the performance of the system under study and is dependent on the values of the
variables. The goal is to determine a collection of acceptable values for variables that
optimize, i.e., minimize or maximize, the objective function. As maximizing a function is
equivalent to minimizing its negative value, we can, without loss of generality, focus on
minimizing the objective function.

In its most general form, an optimization problem can be expressed as:

minimize f(x),



where x represents an n-dimensional vector with components 1, s, ..., x,, and €2 denotes
the set of allowed values for z. If there are no restrictions on the values of the variables x1,
To, ..., Tp, meaning 2 = R", these problems are considered as unconstrained optimization
problems. Unconstrained optimization problems are typically classified based on the
properties of the function f. In this thesis, our focus lies on methods for solving general
nonlinear unconstrained problems, assuming that f is twice-continuously differentiable.
Trust-region and line-search methods are two prevalent second-order approaches for
nonlinear unconstrained optimization. The use of a cubic overestimator of the objective
function as a regularization technique offers a third alternative. Cubic regularization has
gained attention over the past decade due to its appealing theoretical properties and robust
numerical performance (see Section 2.3 and Section 5.2). In Chapter 3, we propose and
analyze two modifications to the cubic regularization method with the aim of boosting its
numerical efficiency and robustness for solving unconstrained problems.

In other cases, the feasible region (2 is defined algebraically through a set of
functional equalities or inequalities. These problems are called constrained optimization
problems and can be written in the form

migei[ngLize f(x)

subject to z; <z <wx,, ¢ <c(zr)<ey,

where ¢ : R* — R™, f : R" — R, and 2y, z,, ¢ and ¢, are constant vectors of lower
and upper bounds. As in the unconstrained case, we assume f(z) and c(x) are twice
continuously differentiable. The class of primal-dual path-following interior-point methods
is considered one of the most successful approaches for solving constrained optimization
problems. These methods leverage the properties of both the primal and dual formulations
of the problem to achieve efficient and accurate solutions (see Section 2.4). In Chapter 4,

a primal-dual cubic regularization algorithm for constrained optimization is proposed that



is based on minimizing a shifted primal-dual penalty-barrier function.

1.2 Contributions of This Dissertation

The research presented in this dissertation is motivated by our interest in reg-
ularization methods for the globalization of Newton’s method. In recent years, cubic
regularization algorithms have emerged as alternatives to trust-region and line search
approaches. These algorithms employ a strategy that involves determining an approximate
global minimizer of a cubic overestimation of the objective function. The goal of this
thesis is to tackle the some of the challenges that arise in cubic regularization algorithms
and extend these algorithms to primal-dual interior-point methods for solving constrained
optimization problems.

In general, the primary computational expense of the cubic regularization framework
comes from solving the cubic regularized subproblem, which requires solving one or more
linear systems either exactly or through an iterative process. To address this issue, we
present a nonmonotone adaptive cubic regularization method that combines adaptive
cubic regularization with line-search techniques. In particular, the proposed algorithm
performs a nonmonotone line-search based on satisfying certain strong Wolfe conditions
along the direction of the rejected trial step to obtain a sufficient decrease step. This
strategy circumvents the need for repeatedly solving the cubic subproblem with varying
regularization parameters to acquire a trial step that satisfies the sufficient decrease
condition. As a result, the method leads to fewer iterations and ultimately decreases the
overall computational cost, especially when the function evaluation is not computationally
expensive.

Another proposed improvement to the cubic regularization method is a hybrid
approach that combines Newton’s method with the cubic regularization method. While

the Newton method has a fast rate of convergence, it can be impractical when the Hessian



is not positive definite or nearly singular. On the other hand, the cubic regularization
method can improve the robustness and efficiency of the optimization process by adding
a regularization term to the objective function, but it requires solving computationally
expensive cubic subproblems. To address these issues, we proposed two variants of a hybrid
algorithm that combines the benefits of Newton’s method and the cubic regularization
method. The first variant of the proposed hybrid algorithm replaces the cubic step with
a Newton step when the objective function is well-behaved and the Hessian is positive
definite. In this approach, cubic regularization is used when necessary — such as when the
objective function is non-convex or poorly conditioned at a given iteration. The second
variant of the hybrid algorithm relaxes the conditions for using the Newton direction to
replace the cubic regularized step. Specifically, if the directional derivative of the Newton
direction and the objective gradient at the current iterate is bounded away from zero, the
trial step is derived from the Newton direction and the sign of the directional derivative.
A Wolfe line-search is then applied to the trial step to ensure global convergence. Cubic
regularization is used only when the Newton direction is nearly orthogonal to the objective,
i.e., the corresponding directional derivative is close to zero. The hybrid approach takes
advantage of the strengths of both methods and reduces the number of linear systems that
need to be solved, resulting in a significant reduction in computational effort.

For general nonlinearly constrained optimization, we present a new primal-dual
interior-point method that is based on finding an approximate solution of a sequence of
unconstrained subproblems parameterized by some scalar parameters. Each subproblem
is solved using a second-derivative Newton-type method that employs a combined cubic
regularization and line-search strategy to ensure global convergence. One of the advantages
of the proposed method is that the cubic regularized step can be computed by factorizing
a sequence of matrices with diagonally-modified primal-dual structure, where the inertia
of these matrices can be determined without recourse to a special factorization method.

This allows the use of off-the-shelf linear system software, making it possible to extend the



method to large-scale problems.

This dissertation is organized as follows. Chapter 2 provides a comprehensive liter-
ature review and essential background information that forms the basis for all subsequent
chapters. In Chapter 3, we propose and investigate two modifications to the cubic regular-
ization method, nonmonotone adaptive cubic regularization method and hybrid approach
of cubic regularization and Newton” method, aimed at boosting numerical efficiency and
robustness for solving unconstrained problems. Chapter 4 explores the application of cubic
regularization method within the context of primal-dual interior-point methods to address
issues such as ill-conditioning and non-convexity in constrained optimization. Lastly, in
Chapter 5, we present an extensive analysis of the numerical results obtained through the
proposed algorithms evaluated using the CUTESst test collection for unconstrained and

constrained optimization.

1.3 Notation

The majority of the notation used in this dissertation is consistent with the
conventions of the standard optimization literature. The objective function is denoted
by f(x), with its gradient and Hessian represented as g(x) and H(x), respectively. The
constraint function is denoted by c¢(z), and its Jacobian matrix is represented as J(z).
The i-th row of the Jacobian matrix is defined by Ve;(z)T.

In this dissertation, subscripts serve to reference both vector indices and iterates,
with the specific meaning determined by the context. For instance, x; represents the
k-th iterate in the sequence {x\}, while f; denotes f(xj). Throughout, e; denotes the
i-th standard basis vector, corresponding to a vector in an n-dimensional Euclidean space
characterized by a one in the ¢-th position and zeros in all other positions.

Unless explicitly stated otherwise, the notation || - || represents the vector two-norm

or the corresponding induced matrix two-norm. The spectrum of a possibly unsymmetric



matrix A is denoted by eig(A). The inertia of a real symmetric matrix A, denoted by
In(A), is the integer triplet (n,,n_,ng) that indicates the number of positive, negative,
and zero eigenvalues of A. The i-th eigenvalue of a symmetric matrix A, with eigenvalues
arranged in descending order, is represented by \;, i.e., Ay < Ay < -+ < \,. Given vectors
x1 and xo, the column vector composed of the elements of x; augmented by the elements
of x5 is denoted by (x1,x2). The vector e denotes the vector of ones, with its dimension

determined by the context.



Chapter 2

Background

This chapter incorporates background information for the succeeding chapters.
Section 2.1 is dedicated to optimality conditions for unconstrained optimization prob-
lems and nonlinear mixed constrained optimization problems, where the proofs will be
omitted. Section 2.2 provides an introduction to a trust-region method for unconstrained
optimization problems, for comparison with the cubic regularization method. Section 2.3
contains background on adaptive cubic regularization methods on which this thesis is
based. Section 2.4 describes a shifted primal-dual penalty-barrier function that is a basis

of the proposed primal-dual cubic regularization method in Chapter 4.

2.1 Optimality Conditions
2.1.1 Unconstrained Optimization Problems

Unconstrained optimization focuses on the minimization of a scalar-valued function,
denoted by f, without constraints on its input values of x. This section reviews the
necessary and sufficient conditions for a point to be a local minimizer of f.

First, we provide a version of Definition 2.1.1 for different types of local uncon-

strained minimizer.

Definition 2.1.1 (Local unconstrained minimizer; strict unconstrained minimizer; weak

minimizer). Given f: D CR" +— R, z* is a local unconstrained minimizer if there exits



an open ball B(xz*,0) such that B(x*,8) C D and

f(x®) < f(x) for all x € B(z*,9).

If the inequality is strict for all x € B(x*,0) and © # x*, then x* is said to be a strict
minimizer. An unconstrained minimizer is a weak unconstrained minimizer if it is not
a strict unconstrained minimizer. If * is the only unconstrained minimizer in B(z*,0),

then x* is a isolated unconstrained minimizer.

A first-order necessary condition is provided in Theorem 2.1.1 that must hold if x*

is an unconstrained minimizer and f is differentiable at z*.

Theorem 2.1.1 (First-order necessary condition for an unconstrained minimizer). If

f:D CR™— R is differentiable at a local unconstrained minimizer x*, then Vf(z*) = 0.

Assuming that f has a second derivative near x*, Theorem 2.1.2 establishes second-

order necessary conditions for z* to be an unconstrained minimizer.

Theorem 2.1.2 (Second-order necessary condition for an unconstrained minimizer). If
f D C R" — R is tuice differentiable at a local unconstrained minimizer x*, then

Vf(z*) = 0 and the Hessian matriz V2f(x*) is positive semidefinite.

The next theorem shows that if z* is a stationary point where f has a second
derivative and the Hessian matrix V2f(z*) is positive definite, then z* must be an isolated

unconstrained minimizer.

Theorem 2.1.3 (Second-order sufficient condition for an unconstrained minimizer). Given
f:DCR"— R, let x* be an interior point of D and assume that f has a second derivative
at x*. If Vf(x*) = 0 and the Hessian matriz V*f(z*) is positive definite, then z* is an

isolated (and strict) unconstrained minimizer.



These optimality conditions not only can identify a solution, but also are helpful in
designing optimization algorithms. From Definition 2.1.1, if z is an interior point of D
that is not yet an unconstrained minimizer, every neighborhood of £ must contain points
whose values of f are strictly less than f(z). Thus there must exist at least one direction
along which one can move away from a non-minimizer and strictly reduce f. To make this
precise, the following definition describes a direction of decrease as a vector p with the
property that all sufficiently small steps along p away from a given point produce strictly

lower values of f.

Definition 2.1.2 (Direction of decrease). Let f : D C R"™ — R be continuous on a convex
set D. A vector p € R™ is a direction of decrease for f at an interior point x € D if there

ezists a positive @ such that x + ap € D and f(x + ap) < f(z) for all a € (0, Q).

The following definitions define two directions that are helpful for the detection of

directions of decrease.

Definition 2.1.3 (Descent direction). Let f : D C R"™ — R be continuously differentiable

at x, an interior point of D. The vector p is a descent direction for f at z if Vf(x)Tp < 0.

Definition 2.1.4 (Direction of negative curvature). Let f: D C R" — R have a second

derwative at x, an interior point of D. The vector p is a direction of negative curvature

for f at z if pTV3f(x)p < 0.

The next theorem states verifiable conditions for characterizing directions of decrease

in two scenarios: when f is continuously differentiable and when f has a second derivative.

Theorem 2.1.4 (Existence of a direction of decrease). Given f: D C R" — R on a
convex set D, assume that f is continuously differentiable on D, and let x be an interior

point of D.

o If the vector p satisfies Vf(x)Tp < 0, then p is a direction of decrease for f at x.



e If, additionally, f has a second derivative at x, then any P satisfying Vf(z)'p =0

and pTV2f(x)p < 0 is a direction of decrease for f at x.

2.1.2 Constrained Optimization Problems
This section reviews the constraint qualification and optimality conditions for a
nonlinear mixed-constraint optimization problem written in the form:

minimize f(z)

subject to ¢;(x) =0, 1 €& (2.1.1)

¢j(x) >0, jeTI,

where ¢;(z) and ¢;(z) are nonlinear constraint functions, and £ and Z are nonintersecting
index sets, representing the equality and inequality components of the nonlinear constraints
respectively. Let cg(x) denote the vector of components ¢;(x) with ¢ € £, and c¢z(x) denote
the vector of components ¢;(x) with j € Z. The following definition provides a definition

for a first-order Karush-Kuhn-Tucker (KKT) point of the problem (2.1.1).

Definition 2.1.5 (First-order KKT point). The first-order KKT conditions for problem

*

(2.1.1) hold at the point x*, or, equivalently, x* is a first-order KKT point, if there ezists a

Lagrange multiplier vector y* such that

ce(2*) =0 and cz(z*) > 0,0 (feasibility), (2.1.2)
Vf(z*) = J(x*) Ty, (stationarity), (2.1.3)

yr >0, (nonnegativity), and (2.1.4)
cz(x*) -y =0, (complementarity). (2.1.5)

The first-order KKT conditions may be written compactly as F(z,y) = 0, c¢z(z*) >

10



0, yr > 0, with
Vf(z) = T (x)y
F(z,y) = cr(x) « yz
Ce
The KKT conditions rely on the properties of the constraint linearizations, so they
are necessary optimality conditions only if certain constraint regularity conditions (i.e.,

constraint qualifications) are satisfied.

Definition 2.1.6 (Active, inactive, and violated constraints). For the inequality constraints
cz(x) > 0, the i-th constraint is said to be active at T if ¢;(Z) = 0, inactive if ¢;(z) > 0 and
violated if c;(x) < 0. For the equality constraints cg(x) = 0, the i-th constraint is satisfied
at T if ¢;(T) = 0 and violated at T if ¢;(Z) # 0. The set of active inequality constraints at

T is denoted by As(T), i.e., Ax(T) ={i €L :¢;(Z) =0}.

It is important to note that at any feasible point of the problem (2.1.1), all equality
constraints are satisfied, that is, ¢;(z) = 0 for i € £ U Ax(z). With this in mind, we
proceed to formulate the two main constraint qualifications to apply to problems with

mixed constraints.

Definition 2.1.7 (LICQ for mixed constraints). The linear independence constraint
qualification holds at the feasible point T of problem (2.1.1) if the constraint gradients

Ve (), i € EUA,(T) are linearly independent.

Definition 2.1.8 (MFCQ for mixed constraints). The Mangasarian—Fromovitz constraint
qualification holds at the feasible point T of problem (2.1.1) if the gradients of the equality
constraints at T , Ve;(T), i € &, are linearly independent and if there exists a vector p such

that Ve;(2)Tp > 0 for all i € Aa(x) and Ve;(2)Tp =0 for alli € E.

The following result presents the necessary conditions for optimality under the

assumption that a constraint qualification holds.

11



Theorem 2.1.5 (First-order necessary conditions for mixed constraints). If z* is a local

minimizer of problem (2.1.1) and the MFCQ holds at x*, then x* must be a KKT point.

Depending on the nature of z*, there may be an infinite number of multipliers
satisfying the stationarity condition (2.1.3). The set of multipliers that satisfy the KKT

conditions is defined as follows.

Definition 2.1.9. (Acceptable Lagrange multipliers for mized constraints). Given a KKT

point x* for problem (2.1.1), the set of acceptable multipliers is defined as
Y(z*) = {y cR™: Vf(z*) = J(2*) y,yz >0, and yz - cz(z*) =0 }

With the definition of Y(z*), second-order necessary conditions for optimality can

be stated when the LICQ holds.

Theorem 2.1.6 (Second-order necessary conditions). Suppose that =* is a local minimizer
of problem (2.1.1) at which the LICQ holds. Then there is a vector y* € Y(z*) and

pTH(z*,y*)p > 0 for all p satisfying Vf(z*)Tp =0, Je(x*)p =0 and Ja(z*)p > 0.

The following result demonstrates the second-order sufficient optimality conditions

for problem (2.1.1).

Theorem 2.1.7 (Second-order sufficient conditions). Let z* denote a KKT point of
problem (2.1.1). We say that second-order sufficient conditions hold at x* if for every
Lagrange multiplier y satisfying yr > 0, ¢& - yr = 0, and Vf(z*) = J(x*)Ty*, there
exists w > 0 such that pT H(x*,y*)p > wl|p||* for all nonzero p such that Vf(x*)Tp = 0,

Je(z*)p =0 and J4(z*)p > 0.

Theorem 2.1.7 is a useful tool for characterizing a local constrained minimizer
without the need for a constraint qualification. However, to establish that z* is an
isolated local constrained minimizer, a stronger result, the MFCQ constraint qualification

is required, as shown in the following theorem.
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Theorem 2.1.8 (Sufficient conditions for an isolated solution). The point x* is an isolated

local constrained minimizer of problem (2.1.1) if

o ¥ is a KKT point, i.e., ¢; > 0, cg = 0, and there exists a nonempty set Y of

multipliers y satisfying yr > 0, ¢& - yr = 0, and Vf(z*) = J(z*)Ty;

e the MFCQ holds at x*;

e for ally € Y and all nonzero p satisfying Vf(z*)Tp =0, Je(z*)p =0 and Ja(z*)p >

0, there exists w > 0 such that p™H(x*, y*)p > w||p|*.

The following result provides an alternative criterion for identifying an isolated

local constrained minimizer under the LICQ constraint qualification.

Theorem 2.1.9 (Sufficient conditions for an isolated solution). The point x* is an isolated

local constrained minimizer of problem (2.1.1) if

e z* is a KKT point and strict complementarity holds, i.e., the (necessarily unique)

multiplier y* has the property that [y%]; > 0 for all i € Aa(x*);
o ¥ is a feasible and LICQ holds at x*.

e for all nonzero p such that J4(x*)p > 0, there exists w > 0 such that p* H(z*, y*)p >

wllp]l*.

2.2 Trust-Region Methods

Trust-region methods are a popular class of algorithms for unconstrained optimiza-
tion and are effective for globalizing Newton-like iterations. These methods use a quadratic
model of the objective in a region around the current iterate, and solve a constrained sub-
problem to determine the next iterate. The trust-region subproblem involves minimizing

the local quadratic function subject to a trust-region constraint that restricts the length
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of the step. By controlling the step size, trust-region methods aim to balance the need for
making progress towards optimality with the need to stay within a region where the local
quadratic model is accurate. In this section, we provide a brief overview of trust-region
methods, which will serve as the baseline for evaluating and comparing the ARC methods
discussed in Section 5.2.

Algorithm 2.1 outlines a basic trust-region algorithm that can be used to solve

unconstrained optimization problems with an objective function f. Trust-region methods

Algorithm 2.1. Schematic outline of basic trust-region algorithm.

1: function TRUST_REGION_ALGORITHM

2: Initialization: Given zg, 75 > 1> >0, 1>n>n >0, k=0, 0 = 1.
3: while not converged do
4: Compute a step pg as an approximate solution of the subproblem (2.2.1).

fla + pr) — flan)

5: Compute the ratio pp =
_ Qpe) — f(xx)
6: if pp > m then
T Tkl = Tk + Dk-
8: if pr > n, then
9: Op1r = max { &, v lpxll }-
10: else
11: 5k+1 = 0.
12: end if
13: else
14: Thy1 = Tk
15: Ort1 = 7lpell-
16: end if
17: k=k+1.

18: end while
19: end function

explicitly impose a constraint on the length of the step by defining p; as an approximate

solution of the constrained minimization problem

miniﬂrglize Qu(s) = f(zr) + Vf(zk) s+ 1s"Brs  subject to ||| < 8, (2.2.1)
zeR™

where 0, > 0 is the trust-region radius and By is either the exact or an approximate
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Hessian evaluated at x = . After solving the subproblem (2.2.1) for the trust-region step
Pr, the ratio of actual reduction to the predicted reduction in the objective function f is

computed as
P f(xy +pr) — flag)
Qpr) — flzr)

If the actual reduction is not less than a certain fraction n; of the predicted reduction, i.e.,

Pr = 11, then the new point xy,q is set to x; + pr. However, if the test fails, i.e., pp <y,
then z,.1 = xj, the trust-region radius is decreased by a contraction factor v, and the
subproblem is solved again. This approach is motivated by the idea that the value of
Q(py) for the next subproblem will provide a better estimate of f(xy + px). In practice, it
may take several adjustments of the trust-region radius before the predicted and actual
reductions become comparable.

The main effort associated with the trust-region method is the calculation of an
approximate solution pj of the trust-region subproblem (2.2.1). The following lemma
given by Moré and Sorensen [34] provides the theoretical basis for solving trust-region

subproblem and measuring the quality of an approximate solution.

Lemma 2.2.1 (Lemma 4.1.1 [34]). Let § be a given positive constant. A vector s* is a
global minimizer of the trust-region subproblem Qy(s) if and only if ||s*|| < § and there

exists a unique \* > 0 such that

(B + N I)s* = —Vf(zy,), N —|s*[)) =0, (2.2.2)

with By + X[ positive semidefinite. Moreover, if B + X*I is positive definite, then the

global minimizer s* is unique.

Mor’e and Sorensen proposed an iterative method for solving the trust-region

subproblem (2.2.1) based on Lemma 2.2.1. The algorithm aims to find an approximate
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solution p;. satisfying

Qs) <79,

where Q* is the optimal value of the trust-region subproblem and 7 is a scalar such that
0 < 7 < 1. To achieve this, a safeguarded Newton iteration is applied to find a root of
(2.2.2) and ensure that A remains within the interval [0, 00). This approach is guaranteed
to find a nearly optimal solution in a finite number of iterations.

In a paper by Gertz [33], a line search based on satisfying the Wolfe conditions is
combined with a conventional trust-region method for unconstrained minimization. This
modification preserves the fast convergence and stability of trust-region methods while
reducing the average cost per iteration. Additionally, Gertz proposed a “biased” updating
strategy for the trust region radius d; based on the line-search step length, thereby avoiding
unnecessarily small choices of d;;1. Numerical experiments demonstrate that the biased
Wolfe trust-region method is both efficient and robust in practice, and, as far as we know,
exhibits the best numerical performance of any trust-region method. Consequently, this
algorithm will be used as a benchmark for comparing variants of the ARC algorithm (see

Section 5.2).

2.3 Cubic Regularization Methods

This section provides a comprehensive summary of the inspiration and latest
developments in the cubic regularization method. It serves as the fundamental context for
this thesis. Specifically, Section 2.3.1 examines the inspiration behind cubic regularization
and provides a survey of the relevant literature. Section 2.3.2 discusses an adaptive cubic
regularization approach and its theoretical properties. Finally, Section 2.3.3 outlines the

algorithm for solving the cubic subproblem.
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2.3.1 Introduction

Consider the unconstrained nonlinear programming problem

minimize f(z),

where f : R" — R is a smooth function. The well known globally convergent algorithms,
such as line-search and trust-region methods, are commonly used to solve unconstrained
optimization. Recently, cubic regularization methods have become alternatives to these
methods for globalizing Newton-like methods. The main idea of cubic regularization
algorithms is using a cubic over-estimator of the objective function at current iterate as a
regularization technique to compute the search direction for the next step. The method has
been shown to exhibit both excellent local and global convergence properties, which makes
it well-suited for solving a wide range of optimization problems. Specifically, suppose that
f(x) has gradient Vf(z) and globally Lipschitz continuous Hessian VZf(x) with ¢, norm

Lipschitz constant 2L:
IV?f () = V)l < 2Lf|z —yll, Yo,y €R"

Then, by Taylor’s theorem, we get the following inequality:

1
fla+p) = fl2)+ V@) p+ 5p "V (@)p + /0 (L= p " (V?f (2 + tp) — V°f (2))pdt o)

< J@)+ Vi@ D+ W @ + S Ll £ mi ().

As long as py minimizes the overestimation model mf (p), i.e.,

fl@, + ) < mi(pe) < mi(0) = f(ay),

the next iterate xy1 = x) + pr reduces the objective value.
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Griewank [29] first considered computing the step by minimizing m{(p) in a
technical report. The Lipschitz constant 2L is replaced by a regularization parameter oy
that regularizes the Newton local quadratic model. In particular, Griewank proposed the

use of the local model

‘ 1
my (p) = f(xx) + Vf(wr)Tp + 50T Vf (zi)p + soxllplle:

where oy || - |2, is chosen dynamically to ensure the overestimation property. Griewank also
established global convergence to a second-order stationary point for a method in which a
descent direction is generated by computing a second-order minimizer of m$ (p).

Recently, Nesterov and Polyak [36] analyzed the iteration complexity for the
cubic regularization method in which the step is computed by a global minimizer of the
cubic model mf (p) and the Hessian is globally Lipschitz continuous. This assumption
allows the derivation of a global iteration-complexity bound of O(¢~%/2) for solving the
problem to within a certain level of optimality measured by the parameter € € (0,1).
This result extends previous work because the method achieves a better global iteration
complexity than the steepest-descent method. Moreover, the method can solve nonlinear
optimization problems to arbitrary precision under weaker assumptions than other second-
order optimization methods such as Newton’s method. Global convergence and an
asymptotically quadratic rate of convergence were also established.

More recently, Cartis, Gould and Toint [8] proposed a numerically efficient adaptive
regularized framework using cubics (ARC) which preserves the good iteration complexity
bound analyzed by Nesterov and Polyak [36]. The global and asymptotic convergence
results were also proved under weaker assumptions. The specific assumptions that guarantee
the local and global convergence properties of the ARC method can vary depending on
the specific method. However, the most common assumption is that the objective function

is Lipschitz continuous and has a bounded Hessian. These are quite weak assumptions in
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the context of optimization. Cartis, Gould and Toint consider the model

e 1
my(p) = fax) + VF(z) o+ 2p" Brp + §Uk||p||3;

as an approximation to f at x = x4+ p, where By, is an approximation of the exact Hessian
at x;. Note that, in contrast to line-search methods, the approximated Hessian By need
not be positive definite. Moreover, the requirement that a global minimizer of the cubic
model must be found is relaxed to require only that the step p, be at least as good as a
suitable Cauchy step. This requirement makes the practical implementation of the ARC
method feasible. In terms of the complexity bound, Cartis, Gould and Toint [9] show that
the ACR method achieves the optimal complexity bound among second-order methods
for a class of nonconvex optimization problems known as “well-conditioned” problems.
Problems in this class have a curvature condition and a Lipschitz continuity condition on

the gradient.

2.3.2 Adaptive Cubic Regularization Methods

For brevity, we denote fr = f(x), g = Vf(21) and Hy, = V?f(z;) throughout this

section. At each iteration, we define a local quadratic model of f at xp + p:

mi(p) = fu + 9¢p+ 50" B, (2.3.2)

where By is an approximates the objective Hessian at xj. The corresponding cubic

regularized model with an adaptive regularization parameter o, > 0 is given by

def

1 1
my(p) = mi(p) + 3oullpll® = fi+ g5 + 30" Bup + gorlpll’, (2.3.3)

where || - || denotes the ¢ norm unless otherwise specified. The generic adaptive cu-

bic regularization scheme proposed by Cartis, Gould and Toint [8] is summarized in
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Algorithm 2.2.

Algorithm 2.2. Schematic outline of a regularization method using cubics.

1: function ADAPTIVE_CUBIC_REGULARIZATION

2: Initialization: Given zg, 72 > v > 1,1 >mn>n >0,09 >0, k =0;
3: while not converged do

4: Trial step computation. Compute a step p; for which

my(pr) < my(py); (2.3.4)

where py is the Cauchy step

py = —ag g, and af = argminm, (—a,.g;); (2.3.5)
acRy
5: Ratio computation.
Je — Jak + py
Jr = mu(pr)
6: Step acceptance.
Ty + if p >
Update @ =14 Pr p= 7?1 (2.3.7)
Tk otherwise;
7 Regularization parameter update.
(0, ok] if pr > n9, [very successful iteration]
Update o441 € < [0k, V10%] if 1 < pr < M2, [successful iteration] (2.3.8)
[Y10%,¥20%]  otherwise. [unsuccessful iteration]
8: k=Fk+1;
9: end while

10: end function

At the current iterate xy, a step satisfying the condition (2.3.4) is computed as
an approximate global minimizer of the cubic model my(p) in (2.3.3). Calculating the
Cauchy step (2.3.5) is computationally inexpensive because it involves minimizing a cubic
polynomial along one dimension. It is worth noting that using a more accurate minimizer
for the cubic model my(p) may result in improved numerical performance. A particular

method for solving the cubic regularized model will be discussed in the following section.
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The update for the regularization parameter o is determined by the behavior of f
near the point x; along the step p,. Once the cubic regularized step py has been found,
the ratio of the actual reduction to the predicted reduction in objective, using the formula
for pj defined in (2.3.6), is computed. The step py, is accepted if the actual reduction in
objective, f(zg) — f(xk + pi), is “large enough” in magnitude compared to the predicted
reduction, f(xy) — my(px). In particular, given a fixed factor n;, satisfying 0 < n; < 1,
the ratio py is required to be at least no smaller than 7, i.e., pr > n;. When the step is
accepted, the regularization parameter may be remain unchanged or decreased if good
enough agreement between model and objective are observed. By contrast, if the test fails,
i.e., pr < np, then the step is rejected and zp.1 = x,. The regularization parameter is
expected to be increased and the cubic subproblem is solved again. This strategy is based
on the observation that the regularization parameter o, plays a role in estimating the
local Lipschitz constant of objective Hessian, which can lead to a local overestimation of
f. Increasing the weight o, will implicitly decrease the step size as proved in Lemma 2.3.1
in the next section. It may be necessary to solve the subproblem multiple times before the
predicted and actual reductions are comparable.

As norms on R"™ are equivalent, it is possible to use a more general norm ||x||y =
(xTMz)'/2, in place of the 5 norm in the model my(p). Moreover, the positive-definite
matrix M can vary with the iteration number k, as long as it is uniformly bounded and
positive definite for all k. The convergence properties of the ARC algorithm continue to

be valid in this more general setting.
Theoretical Results

The adaptive cubic regularization method exhibits excellent local and global conver-
gence properties under certain weak assumptions, and it achieves the optimal complexity
bound among second-order methods shown by Cartis, Gould and Toint [7]. The complexity

bound refers to the number of iterations required for the algorithm to converge to an
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approximate solution that is within a certain level of optimality. This section provides
a summary of some promising theoretical results for the adaptive cubic regularization

method. The following assumptions will be frequently used in this section.
Assumption 2.3.1. ||Bg|| < kg, for all k <0, and some kg > 0.

Assumption 2.3.2 (Dennis-Moré condition). The error in the matriz By as an approxi-

mation of the exact Hessian Hj satisfies:

|(Br — Hy)pr|
Hsz”

— 0,  whenever ||gx|]| = 0, k — oo.

There are several methods for updating the matrix By using quasi-Newton tech-
niques that will satisfy the Dennis-Moré condition, as long as certain additional conditions

are satisfied [38].

Assumption 2.3.3. The approximate Hessian Bj approaches the exact Hessian Hj,

whenever the iterates approach a first-order critical point, namely

|Hi — Bg|]| — 0,  whenever ||gk|]| — 0, k — oo. (2.3.9)

Assumption 2.3.9 can be theoretically guaranteed when the matrix B, is set to the
approximation of Hy obtained through finite differences [38]. This assumption also holds
when using a symmetric rank-one approximation method to update By, as long as the

steps taken are linearly independent [6, 13].

Assumption 2.3.4. The error of the approximate Hessian By satisfies:

I(Bx — H)pell < Clipell?>,  for all k > 0, and some constant C' > 0.

Assumption 2.3.5. The gradient g is uniformly continuous on the sequence of iterates
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{ Tk }, namely,
g1, — gm;l| = 0,  whenever ||z;, — || =0, @— o0

where {mli } and {ﬂi } are the subsequence of { Tk }

Assumption 2.3.5 holds true if g is uniformly continuous on R", or if g is globally

Lipschitz continuous on {xk }

Assumption 2.3.6. The gradient g is Lipschitz continuous on an open convex set X

containing the sequence of iterates {xk }, namely,

|9z — gyl < kullz —yll, forallz,y € X, and some ky > 0.

Assumption 2.3.6 is satisfied if the Hessian H(z) is bounded above on X.

Assumption 2.3.7. The Hessian H is locally Lipschitz continuous in a neighborhood of a

given point x,, namely,

|H(x) — H(y)|| < Li||lz —yl|, for all x,y sufficiently close to x*, and L, > 0.

Assumption 2.3.8. The Hessian H is globally Lipschitz continuous, namely,

I1H(x) = Hy)|| < Lullz —yll, for all z,y € R", and L. > 0.

The next lemma shows that, in contrast to the explicitly controlled step size by the
trust-region constraint in the trust-region algorithm, the step size is controlled implicitly

and nonlinearly in the ARC algorithm.

Lemma 2.3.1 (Lemma 2.2 [8]). Suppose that Assumption 2.3.1 holds and that the step py,
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satisfies (2.3.4). Then

lpall < 3mae [ 22, 1910} s g,
O O

The following theorem demonstrates the first-order convergence of the ARC algo-

rithm under relatively weak conditions.

Theorem 2.3.1 (Theorem 2.5 & Corollary 2.6 [8]). Let Assumption 2.3.1 hold. If
{ flzy) }20:1 is bounded below, then

lim inf ||gx|| = 0.
k—o0
In addition, suppose that Assumption 2.3.5 holds, then
lim ||gx|| = 0.
k—o0

The next theorem presents conditions that guarantee the limit points of the sequence
of iterates are second-order critical points, without requiring the model or the function f

to be globally or locally convex at the iterates or their limit points.

Theorem 2.3.2 (Theorem 5.4 [8]). Suppose that Assumptions 2.3.1, 2.3.3, 2.3.4, and 2.3.5
and 2.3.8 hold. Assume that {f(xk) } is bounded below, and that o > oy, > 0 for k> 0.
Also, let py, be the global minimizer of the cubic model my(p). Then any subsequence of
negative leftmost eigenvalues { Amin (H) } converges to zero as k — oo, and thus

lim inf )\mm(Hk) = 0.

k—00,kES

Furthermore, any limit point of the sequence of iterates {xk }, iof exists, is second-order

critical.
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The next result shows that if the solution of the cubic model at each iteration
is sufficiently accurate then, under certain assumptions, the ARC algorithm is at least

Q-superlinearly convergent.

Corollary 2.3.1 (Corollary 4.8 and Corollary 4.10 [8]). Assume that Assumptions 2.3.1,
2.3.2 and 2.3.5 hold, and that f has second-order derivatives. If the solution py of cubic

model at each iteration satisfies
. 1
IV (pi) | < min(s, [V (0)]2) || gl

for some 0 < k < 1, then g — 0, and x;, — x* at a Q-superlinear rate as k — oo, i.e.,

o *
lim lges ] =0, and lim M = 0.
koo ||gkl koo ||z — ||

Furthermore, if Assumptions 2.3.6, 2.3.7 and 2.3.4 hold, then g, — 0, and x — x* at a

Q-quadratic rate as k — 0o.

The ARC algorithm has a worst-case iteration complexity of O(e=3/2) for first-order

optimality within a margin of error of €, as stated in the next corollary.

Corollary 2.3.2 (Corollary 5.3 [9]). Suppose that Assumptions 2.3.4, 2.3.6 and 2.3.8 hold,
and that {f(xk) } 18 bounded below. Let o is bounded below by some constant o, > 0.

Given € € (0,1), if the solution py of cubic model at each iteration satisfies
IV (pi) || < min(x, [[Vm(0)[12)]]gx |

for some 0 < k <K 1, then there exists a constant ¢ depending on xy such that at most
c
ke
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iterations of cubic reqularization method are needed to obtain an iterate xj such that

gkl < €.

It is important to keep in mind that this is a worst-case complexity bound, and the
actual number of iterations required for the algorithm to converge may be much smaller
in practice. The actual time complexity of the algorithm depends on many factors, such
as the specific problem being solved, the properties of the data, and the implementation

details.
Updating the Regularization Parameter

The regularization parameter plays a crucial role in the performance of the ACR
algorithm, and an appropriate choice can lead to fast convergence and good solution
quality. The weight o, estimates the local Lipschitz constant of the objective’s Hessian,
and quantifies the discrepancy between the objective function and its second-order Taylor-
series approximation. In contrast to the trust-region algorithm, where the step size is
controlled explicitly and linearly by the trust-region constraint, the step size in the ARC
algorithm is controlled implicitly and non-linearly, as shown in Lemma 2.3.1. An efficient
parameter updating strategy was proposed by Gould, Porcelli and Toint [27] based on
interpolation techniques.

The ARC algorithm adjusts the step size based on the agreement between the
objective function and the local model at each iteration. When the agreement is poor in
an unsuccessful iteration, the step size is reduced by increasing oy, in order to increase
the chances of success in the next iteration. On the other hand, when there is a good
agreement between the objective function and the model in a very successful iteration,
it indicates that the model is overestimating the objective function value locally. In this
case, 0y, is decreased to reduce the gap between the two. This leads to the design of an
update strategy that makes use of the overestimation gap between the current objective

function f(xy + pxr) and the current local model value my(px) to adjust the step size in
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order to improve the performance of the algorithm.
To avoid the need for additional function evaluations, a cubic function ps(«), a > 0,
is used to interpolate f(xy + apg). This function is defined such that it satisfies the

following conditions: p;(0) = f., p’;(0) = 9r P p}(0) = pe Bypy, and pr(1) = f(z, + py)-

This interpolation function is chosen to satisfy the following conditions:

e ps(0) = f, the objective function value at the current point;

e p(0) = g p,, the the directional derivative of the objective function along the search

direction;
o p}(0) = pi Byp,, the curvature of the objective function at the current point;

e ps(1) = f(x) + px), the objective function value at the next point.

A possible form of ps(a) is

1
prla) = fr + gp ppoe + 52925 Byppa” + ppa,

where py, = f(zy + pr) — mi (pr). The quadratic model (2.3.2) along the search direction

pr Mmay be written as

1
Q(O‘) = fi+ ggpka + §pI;FkakO‘27

while its regularized cubic counterpart is

3
UHpkH ol

cla,0) = gla) + T

The current overestimation gap X/{ can be calculated by

Xt = ex(pr) = fx + pi). (2.3.10)

Note that the model my, at py overestimates f(xx + p), i.e. X£ > 0, if and only if p, > 1.
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In the case of a very successful iteration, where the local model overestimates the objective
function, the regularization parameter should be decreased. This will reduce the gap X£
by a factor 3, where 8 € (0,1). Here, two cases are considered, f(zx + px) > m}(pr) and
f(@e +pr) < mg (pe).

In the case where f(zx+pi) > mj(px), the objective lies between the local quadratic
model and the cubic model. We search for a and o such that

%c(a,a) =0, (2.3.11)

c(a,0) — pyla) = By (2.3.12)

Equation (2.3.11) is used to find the stationary point of the cubic model along the search
direction p,. At the same time, the gap X£ between the objective function and the cubic
model is reduced by a factor 5 as imposed by equation (2.3.12). After some simplifications,

the required « satisfies the following cubic equation
36Xt + 9% Prat + P Bup@” + 3pg,a® = 0.

The algorithm seeks the root «, which exceeds /B by the least, if it exists. The value of

o is updated by using equation (2.3.12), which can be rewritten as

f _ .3
J:Uk+3 Xk (ﬁ a).

el \ o

If such a root does not exist or if the value of « is too large, the o will be reduced by a
factor 0, € (0,1).

When f(z, + p,) < m¢(p,), the objective lies below the local quadratic model. In
this case, reducing the gap between the cubic model and the objective function may result

in reducing it too much. Instead, the algorithm aims to reduce the gap between the cubic
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model and the quadratic model defined as follows

X = ¢p(Pr) — @, (Pr) (2.3.13)

and searches for o and o satisfying

d
%c(a,a) =0, (2.3.14)
c(a,0) — q(a) = Bx). (2.3.15)

Equation (2.3.14) finds a stationary point of the cubic model with respect to o along the
search direction, and equation (2.3.15) reduces the gap between the cubic model and the
quadratic model by a factor 5. After some simplifications, the required « satisfies the

following quadratic equation

3BXE + g P + pp Bypa® = 0.

Provided it exists, the algorithm pursues the root a which exceeds /3 by the least, and

recovers o by (2.3.15), which can be rewritten as

If such a root does not exist or if the value of a is too large, the algorithm will simply
decrease o by a factor 6; € (0,1).

In the case of a very unsuccessful iteration (py < 0), where the objective function
value at the next point is not much better than the current point, the regularization
parameter should be increased. The algorithm searches for ap, and ¢ such that the next

iteration is expected to be at least a successful iteration. This is done by finding o and o
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that satisfy the following conditions:

d
Ec(a,a) =0, (2.3.16)
f=psle) =n(f - cla,0)), (2.3.17)

for some n € [m,1). Equation (2.3.16) finds « which is a stationary point of the cubic
model along the search direction, and equation (2.3.17) increases the gap between the
objective function and the cubic model by a factor n where n € [n,1). After some

simplifications, the required « satisfies the following quadratic equation

2(3 - 277)ngpk + (3 - n)prkpka + 6pf3042 =0.

If it exists, the algorithm explores the positive root a, and recover ¢ by (2.3.17), which
can be rewritten as
_ —9k Py — Pi Bipper
o?|lp]?

Otherwise, if the positive root o does not exists, the algorithm increases o by a factor
03 > 1.
For other situations, the algorithm follows the usual updating rules as specified in

equation (2.3.8).

2.3.3 Solving the Cubic Regularized Subproblem

The practicality of adaptive cubic regularization algorithm depends on the efficiency
of solving the cubic regularization subproblem at each iteration. Because of the similarity
between the optimality conditions of trust-region subproblem and cubic regularization
subproblem, the strategy proposed by Moré and Sorensen [34] could be applied to find a
suitable approximate global minimizer of the cubic model. More recently, Gould, Robinson

and Thorne [28] proposed an enhancement to Moré-Sorensen algorithm using higher order
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polynomial approximations to achieve fast convergence rate. Throughout this section, the
(outer) iteration subscript k is dropped for simplicity.

Consider the cubic regularization subproblem defined by

. 1
minimize C(s) Zg"s+1sTBs + gaHs||§4, (2.3.18)
scR™

where the M-norm of x is ||z||,y = VaTMz. The following theorem provides the necessary
and sufficient optimality conditions for the subproblem (2.3.18) and measures the quality

of an approximate minimizer.

Theorem 2.3.3 (Theorem 2 [28]). Any s* is a global minimizer of the cubic model C(s)

over R" if and only if there exists a unique \* > 0 such that

* * A* *
(B+XM)s"=—g, = =l

with B + X*M positive semidefinite. For any global minimizer s*, the value of \* is unique

and independent of s*. If B+ \*M s positive definite, s* is unique.

Suppose the matrix pencil (B, M) has generalized eigenvalues \; < Ay < -+ <\,
and that U is a matrix of associated generalized eigenvectors u;, 1 < i < n, such that

UTMU = UMU™ = I. For any scalar A, let s()\) be the solution to
(B+AM)s = —g, (2.3.19)

whenever the system is compatible. Zero-finding methods based on Theorem 2.3.3 attempt

to find a pair (s, A) with A > max(—X\1,0) for the secular equation

sV, = (5)ﬁ (2.3.20)

o
with some appropriately chosen parameter 3. The solution of equation (2.3.20) always
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exits, with the exception of a "hard case” as described in [34]. The hard case may
occur when g lies in the orthogonal complement of the eigenspace associated with the
smallest generalized eigenvalue \;. In this case, as ||s(A)|[as has no pole at A = —\y,
||s(A\)||ar approaches a finite value as A — —\;. The system (2.3.19) is consistent when
A = max(—Ay,0), and has the least-length solution s'. However, if ||s'|| < 2, there is
no solution to the secular equation (2.3.20) for A > max(—A;,0) (see the right graph in
Figure 2.1). In this case, the required solution is s" + 7u;, where u; is a null vector of
B — M\ T of unit length and the scalar 7 is chosen so that ||s" + Tuy||yy = 2‘

To demonstrate the algorithm, the real line is partitioned into three sets:

N Z{\| B+ AM is not positive definite. },

L= {XN| B+ AM is positive definite and [[s(\)|r >

Q> >
j/—’

—

¢ {)\ | B+ AM is positive definite and [|s(\)||y <

and denote F = L UG for the set of A\ such that B + AM is positive definite. For

convenience, define the secular function

V(A B) = sy (2.3.21)

and denote the right hand side of the secular equation (2.3.20) as

(A ) (_)B. (2.3.22)

The plots in Figure 2.1 illustrate examples of the function ¥ (\; §) for a special case
of B = 2, which show the behavior of the function with respect to the value of A\. These
plots can be useful to understand how the function behaves in the “easy” case and “hard”
case.

The following lemma states the main properties of ¥(A; 8) for different values of f.
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Figure 2.1. Graphs for the problem min z3 — 223 + x + 5z + %Haz|]3 with o = 0.2 (the

o
“easy” case, left), and those for min z? — 222 + z; + §Hx||3 with o = 0.2 (the “hard” case,
right). Here the z-axis denotes different values of A\, and the y-axis denotes the values of

() £ (2.

Lemma 2.3.2. Suppose ¢(X; B) is defined as in (2.3.21). Then for A > max(A,0), we

have

(1) ¥(X; B) is twice-continuously differentiable;

(i1) (X; B) is strictly decreasing to zero and strictly convexr when > 0;
(111) P(X; B) is strictly increasing to infinity and concave when B € [—1,0).

Proof. As

. _ B _ 1,18 _ i
BO8) = sl = 11— (B + A alfy = | | SR |

the results follow from Lemma 2.1 in [10]. (]
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The uniqueness of the root, say A* > A, for the secular equation (2.3.20)

is guaranteed by Lemma 2.3.2. In order to solve the secular equation (2.3.20) by safe-
guarded Newton-like method, the derivatives of 1()\; 3) are needed. Let’s first consider
the derivatives for the special case f = 2. The derivatives for the general case in which
B # 2 can be deduced by chain rule based on the derivatives of 1(\;2). The derivatives of
the function ¢ (\; 2) with respect to A can be evaluated recursively using the chain rule as

shown in the following result.

Theorem 2.3.4 (Theorem 3 [28]). Suppose that H + A\M is positive definite, and s(\) is

the solution to (2.3.19). Let s = s(\) and ag = 1. Then for k=0,1,..., the derivatives

of ¥(X; 2) satisfy

DX 2) = 205 sMT (A MsFHI (),

and PP (X;2) = 20551 sFTIT(N) MsEHD())

where

2(2k + 3)

(H 4+ AM)s* D(\) = —(k+ DMs®(N\) and oyyy = 1

Q.

For the general case where  # 2, the derivatives of ¥(\; §) are expressed in terms
of the derivatives of ¥(A;2), and only the derivatives with order less or equal to 3 are
considered due to the increasing computational cost for higher order derivatives. As

YN B) = |Is(V12, = [(A;2)]P/2, by chain rule, the derivatives for ¢(\; ) with respect to
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A can be evaluated as

YO B) =
YA B) =

<=
=
D
=

(N B) =

[W(A;2))72 1D () 2),
[W(X;2)]72 1@ (X 2)

o N

+ g (§ - 1) (A 277272 [ (3;2))°,

; (2.3.23)
S22 (1, 2)

#2751 o0 )

- g (§ - 1) (§ - 2) 2127 [ (x5 2)]

Equipped with the derivatives, the following theorem compares the values of ¢ (\; 3)

and its Taylor series approximations. This theorem allows us to determine when the Taylor

approximation overestimates or underestimates the function ¢ (\; 8), and guides the choice

of # in Newton-like steps in the algorithm towards finding the root.

Theorem 2.3.5 (Theorem 6 [28]). Suppose that H + AM is positive definite, and s(\) is

def

the solution to (2.3.19). Let Ay = max(—Ay,0), and g (5; ) be the k-th order Taylor-series

approzimation to (A + §; 3). Then for any A > As, we have the following results.

(i) for B >0, when § > 0,

PN+ 8;8) < ¢a(6;8) and $(A+5;8) = (6 8) for k=1,3;  (2.3.24)

while when As — X < <0,

V(A +0;8) = ¥3(6; 8) = 12(0; B) = ¢1(6; B); (2.3.25)

35



(ii) otherwise, when § > 0,

YA +6;8) <u(d;8) for B €[-1,0),
2

YO+ 5:8) 2 al5:B) for B € [0, (2:3.20)
V(A+5:8) <65 6) for B [2,0);
while when Ay — X\ < § <0,
YA+ 6;8) < u(6;8) for B € [-1,0),
YA +0;8) < 9a(6; 8) < ¥i(6;8) for B € [—270)7 (2.3.27)

3
U+ 8:6) < (01 8) < a(0:8) < i (0:5) for B € [~2.0)

The inequalities in (2.8.24)-(2.3.27) are strict if X # ;.

At each iterate \;, the safeguarded Newton-like method uses a k-th order Taylor

approximation of the function ¥ (A, ), and solves a polynomial

Ur(0; ) = T(Xi + 6 8), (2.3.28)

to obtain a correction 0 to A\;. Consider the case that the current iterate A; is in the
region G. For positive /3, by inequalities (2.3.25) in Theorem 2.3.5, the largest positive
roots of the equation (2.3.28) for k € { 1, 3} will provide underestimations of \*, and
for k = 2 any positive root of (2.3.28) will overestimate \*. Meanwhile, for § € [—1, ),
by inequalities (2.3.27), the least-negative roots of the equation (2.3.28) for £ = 1 will
lead to guaranteed under-estimates of \*. When the current iterate \; lies in the range
G, for positive §, by inequalities (2.3.24) in Theorem 2.3.5, the least negative roots of
the equation (2.3.28) for k € {1, 2,3} will give estimates to the left of \*, while, for

B € [—1,00), by inequalities (2.3.26), the least-negative roots of the equation (2.3.28)
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for k = 1 will lead to guaranteed under-estimates of A*. For a given § and degree k,
the best prediction, denoted as A\x(f3), is obtained by finding the root of (2.3.28), and
adding it to the current iterate \;. Unlike trust-region subproblem, where the linear Taylor
approximation with § = —1 is the preferred choice [10], it is not clear which values of
and k are optimal for solving the cubic subproblem. The algorithm will select the best
Ak(B) from a sample of permissible 8 and k in practice.

The algorithm for solving the cubic subproblem is summarized in Algorithm 2.3.
To start with, the algorithm is provided with an initial estimate \q, typically obtained
from the previous cubic subproblem in the outer iteration. Then a lower bound of the
smallest eigenvalue of the Hessian matrix B is estimated from some numerical methods,
such as Rayleigh quotient or Gershgorin’s theorems [14]. Having a good estimate of the
smallest eigenvalue can make the algorithm converge faster, but it doesn’t change the
final outcome of the convergence. In the line 8, a routine chol(-) is used to compute a
Cholesky factorization of the matrix B+ A\;M and efficiently determine whether the matrix
is symmetric positive definite. If the Cholesky factorization of the matrix B + \;M fails,
indicating that the matrix is not positive definite, the routine chol(-) can determine the
index of the pivot position where the factorization failed and return it as Rtype. This
information can be used to find a direction of negative curvature, and thus an upper bound
on the smallest eigenvalue (see [20]). The value of the next iterate A\;;; is then determined
by using the lower and upper estimates as in the line 12. If the matrix B + \; M is found
to be positive definite, the solution s of (2.3.19) can be obtained by using the Cholesky
factorization computed earlier. If the current solution s satisfies the secular equation
(2.3.20) within the desired tolerance, or the gap between lower and upper bound of \* is
small enough, the algorithm will terminate and the current s will be returned and used as
the search step in the outer loop. Note that other relaxed early termination conditions
can also be used [8, 34, 21]. If these termination conditions are not satisfied, the value of

A will be updated based on the region that the current iterate A; lies in.
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The value of A will be updated using safeguarded Newton-like method, ensuring
that each iterate \; remains within the region F. Suppose \; € G, i.e. |s| > %. The
algorithm will check if a hard case is present by utilizing a routine, z,,;(+), to compute an
approximated null vector z of B + \; M. If this approximated null vector is good enough,
satisfying the conditions in the line 19, the solution is constructed as s + 7z where 7 is
a properly chosen scalar such that ||s 4+ 7z||y = %. Otherwise, the value of A will be
updated by selecting the maximum value from among A;(—1), A2(2), A3(2), where the
derivatives are calculated using the recursive formula given in (2.3.23). Now suppose
N € Ly ie. |s]] < %. The value of A will be updated by choosing the maximum value
among A;(—1), and A3(2). It is worth noting that once the current iterate \; falls into the
region L, the subsequent iterates will be guaranteed to remain in the region £ for any
n > 1. This is because the update rule for A will always lead to a underestimation of \* as
discussed before. However, when \; € G, the next iterate may be located within . In
this scenario, a safeguarding strategy is employed to move the next iterate back into the

feasible region F as outlined in the line 36.
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Algorithm 2.3. Schematic outline of solving cubic subproblem.

1: function CuBIC_SUBPROBLEM

2 Initialization: Given X\, 0 < Ay, 0<e <1, 00 < 1,1 =0;

3 Estimate the lower bound of the smallest eigenvalue of B as A\pin;

4: Set Ag + max(0, —Amin) and Ag < max(Ag, As);

5: Set [)\L, )\U] — [)\5, max()\g,/\U)];

6: converged < false;

7 while not converged do

8 Compute Cholesky factorization of B + AM: [R, Rtype| = chol(B + \;M);
9 if Rtype > 0 then

10: Possibly compute an estimate Ag > Aq;

11: Update A\, < max(Ap, A\g);

12: )\H_l%(l—e)*)\[/-i-@*)\cf;

13: else

14: Compute a vector s by solving the linear systems

R'q=-g;R's=q.

15: if‘HsH—% <eor \y — A < € then

16: s* < s; converged < true;

17: else if \; € G then

18: 2 Znut (B, Ni, M, s,0);

19: if 2T(B+ M)z < e(2— )Y (B + A\M)p+ A\e(Ax/p°)?) then
20: Choose a 7 such that ||s(\;) + 72||y = =
21: s* <~ s + 7z; converged < true; 7
22: else

23: Ag max()\s, —ZT(B + )\Z‘M)Z);

24: [)\L, >\U] — [max()\L, )\S), min(AU, )\1)],
25: end if

26: end if

27: if not converged then

28: if \; € L then

29: Ay max {A\1(—1),A3(2)}

30: else

31: AN — max{)\l(—l),)\g(Q),)\g@)}

32: end if

33: if Ay > Ar then

34: Aitl < AN

35: else

36: )\i+1%(1—9)*/\L+9*)\U;

37: end if

38: end if

39: end if

40: end while

41: end function
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2.4 Penalty and Barrier Functions

This section provides a brief survey of penalty and barrier functions used in interior
methods for solving nonlinear inequality problem:

minimize f(z) subject to c¢(z) > 0. (2.4.1)

zeR”
where ¢ : R"” +— R™ and f : R” — R are twice-continuous differentiable nonlinear functions.

2.4.1 Conventional Barrier Functions

The logarithmic barrier method is a conventional and popular technique for solving
problems with inequality constraints. It involves defining a sequence of nondecreasing
barrier parameters { [k }, with g — 0, and constructing a logarithmic barrier function

B(x; ) as follows:
B(w; ) = f(x) = e y_ Iney(x).
i=1

The logarithmic terms are well defined only at points x for which ¢(z) > 0, and becomes
unbounded as x approaches points where the constraint is satisfied. The conventional
barrier method aims to minimize B(z;py) subject to the constraint that ¢(z) > 0, and
the unconstrained local minimizer z(uy) of B(z; ux) defines a continuously differentiable
path known as the barrier trajectory or central path. The goal is to follow this trajectory
towards a local solution of the problem (2.4.1). It is important to note that the logarithmic
barrier method requires a feasible starting point, and that it converges to a solution under
certain updating strategies of the sequence of barrier parameters.

Directly minimizing B(x; ) is not recommended because of poor convergence as
i — 0, as discussed by Forsgren, Gill, and Wright [19]. This is due to the fact that the
unconstrained minimizer z(u) is a poor estimate of the unconstrained minimizer (i)

when the barrier parameter is decreased from p to fi. As a result, a full Newton step
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cannot be taken immediately after the barrier parameter is reduced. This inefficiency

makes the classical logarithmic barrier method unsuitable for practical use.

2.4.2 Modified Barrier Functions

Modified barrier methods [12, 24, 37] are a class of optimization algorithms that
aim to overcome the difficulties associated with minimizing the logarithmic barrier function
B(x; ) as pp — 0 in the conventional barrier method. These methods define a sequence of
unconstrained problems in which the value of 1 is kept bounded away from zero. By doing
so, they avoid the problem of dealing with an ill-conditioned Hessian, and can achieve
better convergence properties.

Modified barrier methods take advantage of the equivalence between the original
inequality constraints ¢;(z) > 0 and the modified inequality constraints pIn (1 + ¢;(x)/p) >
0 for fixed positive p. A KKT point for the original problem (2.4.1) is also a KKT point
for the modified problem

minigize f(x) subject to pln(1+c¢(x)/p)>0,i=1,2,...,m. (2.4.2)
zeR™

The modified barrier function M(z, A) is defined as the conventional Lagrangian function
for the modified problem (2.4.2). It incorporates the logarithmic barrier terms, but with

the modified constraints pln (1 + ¢;(z)/u) > 0 instead of ¢;(x) > 0, which is written as
M(a; ) = flo) = p Y Nl (1+ci(z)/p). (2.4.3)
i=1

The modified barrier function has an important property: if a KK'T point z* has
an acceptable multiplier A* in Y(z*), then there exists a fixed p* such that for any p, the
corresponding z* is a local minimum of M (z; A*). This suggests that VM (z*; \*) = 0 and

V2M(z*; \*) = 0 is positive semidefinite. As a result, if an optimal multiplier is known,
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finding x* can be accomplished with a single unconstrained minimization.

In practical applications, both the optimal multiplier vector and an upper bound
on p are typically unknown in advance. Therefore, a series of problems must be solved,
where each problem defines the merit function (2.4.3) using estimates of A* and p*. The
multiplier estimate is then updated after each subproblem, and the barrier parameter
is decreased if V2M(x; \) is not positively definite enough. To find further information,
please refer to the following sources [24, 35, 37].

Primal-dual methods have become the most popular class of interior-point methods
in recent years. However, if the merit function (2.4.3) is used as the merit function, these
methods need a separate safeguarded measurement for the dual variables after the primal
step since (2.4.3) does not involve any dual variables. However, since the merit function
(2.4.3) does not involve the dual variables, these methods require a separate safeguarded
measurement to the dual variables after the primal step, if (2.4.3) is used as the merit
function. Furthermore, when the problem is nonconvex, and the current primal-dual iterate
is far from the trajectory, there is no assurance that a solution exists for the primal-dual
system or condensed system.

An alternative approach is based on a merit function that incorporates both primal

and dual variables [18], which is defined as

M (z,y) = f(z) — Miln ci(z) — ml {m (yici(‘”)) + (1 . yici(x)) } (2.4.4)

I ft

=1 1=

The function (2.4.4) can be interpreted as the classical barrier function B(z; 1) augmented
by a weighted proximity term that measures the distance of (z,y) to the trajectory
(x(p),y(w)). The key property of this merit function is that it is minimized with respect
to both  and y at any point (x(u),y(u)) on the trajectory of minimizers, and a decrease
in the function (2.4.4) can be used to encourage progress toward a minimizer of B(x; u).

Despite the advantages of the merit function (2.4.4), there are still some limitations.
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For example, it can be challenging to handle equality constraints within this scheme, and
finding a strictly feasible point can also be difficult in practice. Additionally, the merit
function approach still requires the barrier parameter p to converge to zero, which means

that some of the numerical benefits of barrier methods are lost.

2.4.3 Primal-Dual Shifted Penalty-Barrier Functions

Gill, Kungurtsev, and Robinson [22] recently introduced a shifted primal-dual
penalty-barrier function that serves as a merit function for a primal-dual path-following
method. This method addresses issues with equality constraints and the need for a
strictly feasible point, which were discussed in the previous section. We adopt this shifted
primal-dual penalty-barrier function as a merit function used in the primal-dual cubic
regularization methods described in Chapter 4.

The shifted primal-dual problem associated with problem (2.4.1) is obtained by
including the constraints ¢(z) — s = 0 with the objective using a shifted primal-dual
augmented Lagrangian term, and using a shifted primal-dual penalty-barrier term for the
simple bounds s > 0. This gives the problem

minimize M(z,s,y,w;pu”, n®,y", w") subject to s+ p’e >0, w >0, (2.4.5)

'Z,7S7y7w

where M(z, s, y,w; pu”, u?,y”, w”) is the shifted primal-dual penalty-barrier function

M, s, y;w", y" 1", 1) = fz) = (c(x) — ) y*
1

1 2
Flle@) = sl + 5

3,

le(z) — s+ u"(y — y*)|? (2.4.6)

- ZﬂBwiE In (s; + ") — ZNBU%E In (w;(s; + ) + Zwi(si + 1?).
i=1

i=1 i=1

which is well defined for all w and s such that w > 0 and s + u®e > 0.

The search directions generated by a specific approximate Newton method for
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minimizing the merit function (2.4.6) can be shown to be identical to those of a variant of
the conventional path-following method in which the perturbation of the complementarity
condition does not need to go to zero. By updating the parameters appropriately, the
stationary points of the merit function (2.4.6) have properties that can be used in the
formulation of a globally convergent algorithm for the nonlinear programming problem
(2.4.1). For a more comprehensive explanation and analysis of the shifted primal-dual
penalty-barrier function and its associated algorithm, please refer to the work of Gill,

Kungurtsev and Robinson [22].

44



Chapter 3

Cubic Regularization Algorithms for
Unconstrained Optimization

This chapter addresses the application of the cubic regularization method to
unconstrained optimization. Consider the unconstrained nonlinear programming problem

minimize f(x) (UC)

reR™

where f : R" — R is a smooth function. The primary objective of this study is to improve
the numerical efficiency of the ARC algorithm for solving problem (UC) while preserving
the convergence properties.

Two improvements to the ARC algorithm are proposed. The first involves the
use of a line search with the cubic trial step. The second emphasizes the employment
of Newton’s step when appropriate. In Section 3.1, we formulate and analyse a cubic
regularization algorithm in conjunction with a nonmonotone line search that employs
the strong Wolfe conditions, and investigate the convergence properties of the proposed
algorithm. Section 3.2 explores two hybrid methods that integrate cubic regularization

and Newton’s method, and examines their respective properties.
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3.1 Cubic Regularization Methods with Line Search
Techniques

3.1.1 Introduction and Motivations

This section introduces and examines a novel algorithm that combines cubic
regularization methods and line-search techniques. One of the well-known limitations
of cubic regularization frameworks is that solving the cubic regularized subproblem can
involve solving one or more linear systems or may execute an iterative process that
incurs significant computational cost to the method. In contrast, a line-search method,
despite possibly requiring a higher number of iterations and function evaluations to
determine a minimum of the objective function f, generally achieves greater efficiency per
iteration. Motivated by these observations, when evaluating the objective function is not
computationally intensive, performing a line search on the objective function along the
direction of the rejected trial step can eliminate the need to repeatedly solve the cubic
subproblem when the sufficient decrease condition is not satisfied. This approach leads to
a reduced number of iterations and ultimately reduces the overall computational cost.

Bianconcini and Sciandrone [4] proposed a modification to the ARC algorithm
that enhances its computational efficiency while preserving global convergence properties.
Their approach is based on a suitably combination of the Armijo-Goldstein line search
and the ARC method. The concept behind this approach is to leverage the computational
effort spent on minimizing the cubic model to compute the search direction and exploit the
potential desirable properties of this direction. Recently, Dehghan, Heydari and Hosseini
[15] presented two modified versions of the ARC method for the unconstrained optimization
problems, where the trial step is accepted by a nonmonotone Armijo-type line search
technique. The nonmonotone methods stand out for not enforcing a strict monotonicity in
the objective function values at successive iterations. Some studies have shown that the

use of nonmonotone techniques can improve the chances of finding the global optimum and
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accelerate the rate of convergence [30, 39]. These methods typically exhibit advantageous
numerical results, particularly when applied to highly nonlinear problems.

Although the Armijo-type line search on the cubic trial is a straightforward and
easy-to-implement method, an unsatisfactory feature of it is that the step size can only
be decreased during the line search process. The Armijo-type line search can result in a
step size that is too small, which can slow down convergence, especially in cases where the
function being optimized is not well-behaved or has flat regions. The proposed algorithm in
this section addresses this limitation by implementing a nonmonotone line search technique
with the strong Wolfe conditions on the cubic step. The Wolfe line search is a more
sophisticated line search method that provides both a sufficient decrease condition and a
curvature condition. It can result in a larger step size and converge faster, especially for
nonsmooth or ill-conditioned objective functions.

In Section 3.1.2, the design and implementation of the NMARC algorithm are
presented. The theoretical analysis of the convergence of the NMARC algorithm is provided
in Section 3.1.3. The numerical results of the NMARC algorithm on CUTEst unconstrained

test problems and ablation studies are reported in Section 5.2.

3.1.2 A Nonmonotone ARC algorithm

This section commences with the introduction of a nonmonotone approach in-
corporating the Wolfe conditions, followed by a description of our nonmonotonic ARC
line-search framework.

As suggested by Zhang and Hager [39], the strongest nonmonotone strategies yield
the best convergence results when the iterations are far from the optimal solution, and

weaker strategies perform better when closer to the minimizer. The nonmonotone term is

defined as

Cr +
Qs = Bk + 1, Cpyy = Gt Jins (3.1.1)
Qkr1
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f(zr + apy)

Wolfe conditions

Ry

Figure 3.1. The red line denotes a linear function derived from the Armijo condition
I(z) = fir. + nsagl pr, which ensures a sufficient reduction in the objective function value.
The blue line segments represent a set of o values that satisfy the strong Wolfe conditions.

where Qo = fo, Bk € [Pmin, Bmax)s Pmin € [0,1), and Brax € [Bmin, 1). It can be seen that the
value of Cl1 is a weighted average of Cy and fy.1, where the value of C}, at each iteration
is a convex combination of the function values at all previous iterations, fo, fi, ..., f&-
The value of Sy plays a crucial role in determining the level of nonmonotonicity in the
algorithm. When the value of ;. is close to 1, it results in a stronger nonmonotone strategy
that puts equal weight on all the previous function values. On the other hand, a value
closer to 0 results in a weaker nonmonotone strategy which approximates a traditional
monotone line search by giving more importance to the recent function values. By adaptive
selecting [y, the influence of C} can be increased when far from the optimal solution and
decreased when closer to it.

Drawing inspiration from the biased Wolfe trust-region algorithm introduced by
Gertz [33], the cubic regularization step can be augmented with a line search that locates a
point that adheres to the Wolfe conditions. Figure 3.1 depicts an example of a set of points

meeting the (monotone) strong Wolfe conditions. A rough approximation of an exact line
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search can be achieved by requiring the magnitude of g(zx + apy)Tpr to be sufficiently
reduced compared to gl px. Let 1, satisfy 0 < n,, < 1. The first Wolfe condition on o can

be written as

|g(s, + cwpr) Pl < 1wl prl- (3.1.2)

This condition prevents the step length a4, from being not too small. The second (non-
monotone) Wolfe condition serves the purpose of ensuring that the trial step is making
sufficient progress towards a decrease in function value, similar to the Armijo condition. It

is usually stated as:

F@r, + owpr) < Ch + 1509y i, (3.1.3)

where 7, is a constant satisfying 0 < n, < % This criterion ensures that the trial step
is not too conservative, and that the function value is reducing by a sufficient amount.
Note that if 7,1 is set to 0 in (3.1.1), then Cj = f; and the condition (3.1.3) is the usual
Armijo condition. Together, theses two criteria (3.1.2) and (3.1.3) characterize a set of

acceptable step lengths that satisfy the strong Wolfe conditions.
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Algorithm 3.1. Schematic outline of NMARC.

1: function NonMONTONE_ARC

2 Initialization: Given zg, 0 <n; <1y < 1,1 <y <9, 09 > 0.
3: kZO;COZfO,QOZ]_.

4: while not converged do

5 Compute a step p, for which

my(pr) < mu(py), (3.1.4)
where the Cauchy step
Pp = —ag g, and o = argmin my(—aggr). (3.1.5)
OLER+
6: Compute
P Cy — f(xx + pr)
fe — m(pr)
7: if pr > n then
8: Set xp11 = xp + pr.
2 if pp >
9: Set oy = Pk _,772’
1 otherwise.
10: else
11: Set zr11 = x + agpr Where oy, satisfies Wolfe conditions:
f(xk + Oékpk:) < Ck + nsakgk;Tpk’a Ns € (07 %)7 (3 1 6)
|9 (2x + arpr) " Pel < Nwlgg Pl T € (1, 1).
12: end if
13: Cost update: Choose [ € [0,1), and set
BrQrCr +
Qri1 = BrQr +1, Cry1 = ks Lk ka-
Qry1
14: Update
(0,0'k> if ap, > 1,
Oks1 € § [0k V10%) if ap =1,
[V10%, 720%)  otherwise.
15: k=Fk+1.

16: end while
17: end function

The proposed nonmonotone adaptive cubic regularization (NMARC) method is
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summarized in Algorithm 3.1. The algorithm starts by solving the cubic subproblem

def

1
mi(s) = fr+gp s+ 35" Brs + §0k||8||3

to compute the trial step pr. Then the ratio p; of the actual reduction to the predicted

reduction in objective is computed as

B Ck:_f(l‘k‘f'pk).

o ) (3.17)

If the trial step pi is accepted by nonmonotone criteria, the step is considered to be
successful and the next iterate is set as xxy 1 = ) + pr. Otherwise, the method performs a
nonmonotone line search in the direction of the rejected trial step pj instead of resolving the
cubic subproblem again. The step size a4, that satisfies the nonmonotone Wolfe conditions
(3.1.6) always exists, as demonstrated in Lemma 3.1.3 in the following section, which
implies that the line search update is well-defined. Then, nonmonotone term is updated
using (3.1.1). Additionally, the weight o4 will be updated properly according to the step
size ay. If the iteration is successful or oy is not reduced during the line search process
(i.e., o > 1), then o may remain unchanged or be decreased. Conversely, if the step
length is reduced, the weight o, will be increased prior to the next iteration, with the aim

of reducing the step size.

3.1.3 Theoretical Discussion

In this section, the first-order convergence results of Algorithm 3.1 will be discussed.
Under certain mild assumptions, it can be shown that the sequence {x;} produced by
Algorithm 3.1 converges towards a solution with ||gx|| — 0 as & — oo Similarly to the
ARC algorithm, Algorithm 3.1 only requires an approximate solution that is no worse

than the Cauchy step for convergence.
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To prove the convergence of Algorithm 3.1, we first present a series of supporting
lemmas. The following lemma, which was previously proved in [8], provides useful properties

of the approximate solution of the cubic subproblem satisfying (3.1.4).

Lemma 3.1.1 (Properties of a Cauchy step). Suppose that py is the Cauchy step, i.e. pj

is the solution of (3.1.5), and the step py satisfies (3.1.4). Then for k > 0, we have that

fio— mulon) 2 fi — (o) = A2 gy | el gl

min L 3.1.8
= oy THIBT 2 o S

The next lemma shows a upper bound for the size of the approximate solution of
the cubic subproblem in terms of the regularization parameter o,. It was also proved

previously in [8].

Lemma 3.1.2. Assume ||B|| < kg for all k > 0 and for some constant kg > 0. Suppose

that T is an infinite index set such that ay > 0 and ||gk|| > €, for all k € Z and sine € > 0,

and /||gkl|/ox — 0, as k — oo, k € Z. Then

llpell <3 gl for all k € T sufficiently large. (3.1.9)

Ok

Additionally, if xp — x*, as k € I, k — oo for some x* € R", then each iteration k € T

that is sufficiently large is very successful, and
Opr1 < o, for all k € T sufficiently large. (3.1.10)

To ensure that the nonmonotone line search update with strong Wolfe conditions
is well-defined, sufficient decrease conditions will be suitable for practical algorithms
only when points exist that satisfy them, i.e., it is necessary to guarantee that the
set of acceptable step lengths is not empty. The next result shows that, when f is

twice-continuously differentiable, an interval of positive steps satisfying the strong Wolfe
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conditions exists as long as 7, > 7;.

Lemma 3.1.3. Consider a line-search algorithm with initial point xo, such that the level
set L(fo) is bounded, and assume that py an approximate solution of the cubic subproblem
my(s) satisfying (3.1.4) for all k > 0. Then at every iteration k there exists oy > 0 and an

interval (oy, an,) such that the strong Wolfe conditions,

\g(zr + awpr) "ok < nwlgipel  and  f(zy + arpr) < Cr + ns0kgy D,

are satisfied for every o € (o, ay,).

Proof. This proof is divided into two parts. In the first part, we will prove that there
exists a positive scalar ¢ that satisfies the nonmonotone Armijo condition (3.1.3) and also
g(z + €pr) Tpe = nsg(zx) 'pr. In the second part, we will demonstrate that such a ¢ also
satisfies the condition in (3.1.2).

For simplicity, let M («) denote the univariate function M(«) = f(x) + apy), with
M(0) = fx, M'(0) = g pr. The nonmonotone strong Wolfe conditions (3.1.2) and (3.1.3)

can be written as

IM'(a)] < np|M'(0)] and M(«) < Cy, + an,M'(0).

Let s(«) denote the univariate function

s(a) = f(zp + arpi) — Cx — ansgi pr = M(a) — C — anyM’(0).

Taking the derivative of s(a) with respect to « gives

s'(a) = M'(a) — an,M’(0),

From Lemma 3.1.1, it can be shown that p; is a descent direction, so that M'(0) < 0.
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Together with 1, < 1, we have
s'(0) = M'(0) — n,M'(0) = (1 —n,)M'(0) < 0.

The nonzero derivative theorem implies the existence of a positive scalar & such that
s(a) < 0 for all a € (0, &). As a result, there exists a scalar &; € (0, &) such that s(&;) < 0.

Since the level set is bounded, it is compact and M («) is bounded below by some
constant L, i.e., M(a) > L for all a € [0, 00). Since Cy + ansM'(0) - —oo as a — +00,

there must exist a positive & such that
C, + &EnM'(0) = L,
and we have
s(&) = M(a) — Cy, — &nsM'(0) > L — Cy — &ansM'(0) = 0.

Let a denote the smallest positive root of s(a) = 0. Since s(0) =0, s(@) = 0, and
s(a) < 0 for all @ € (0, @), by mean value theorem, there must exist an £ € (0, &) such

that s'(¢) = 0 and s(¢) < 0, or, equivalently,
M'(§) =nsM'(0) and M (&) < Cy + EnsM'(0).

Moreover, we know that M'(0) < 0, so M'(§) < 0. Additionally, the inequality ns < n,

implies that
M/(g) 2 nsM/(O) 2 _an/<O)'

These inequalities lead to
neM'(0) < M'(§) <0 < —nyM'(0),
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which implies that £ satisfies |M'(€)] < n,|M'(0)].
We have demonstrated the existence of a positive scalar £ that satisfies both the
nonmonotone Armijo condition (3.1.3) and the curvature condition (3.1.2), thus indicating

that the set of points satisfying the nonmonotone strong Wolfe conditions is non-empty. [

The next auxiliary lemma shows the sequence {C}} generated by Algorithm 3.1 is

monotonically decreasing.

Lemma 3.1.4. Let {x} be the sequence generated by Algorithm 3.1. Then for any k > 0,

we have

fer1 < Crsr < Ch. (3.1.11)

Proof. In each iteration of the algorithm, there are two possibilities: either the search
direction p;, is accepted when pp > 1y, or a line search is initiated. If p, > n;, following

from (3.1.7) and Lemma 3.1.1, it can be deduced that

Cr = fes1 = m (fe — me(pr)) > 0.

If, on the other hand, by (3.1.4) and (3.1.3), we have

fer1 < Cp + nsakgl;rpk < Cy.

Thus, through the updating rule of Cy as defined in (3.1.1), it follows that result (3.1.11)
holds. O]

For simplicity, we denote the index set of all successful iterations of the NMARC
algorithm by

S={k>0:Cy — f(zp+pr) <m (fr —mu(pr))}

Theorem 3.1.1. Assume f is continuously differentiable over R™ and ||By| < kp for all
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k >0 and for some constant kg > 0. If {fr} is bounded below, then
lim inf || gx|| = 0. (3.1.12)
k—o0

Proof. We will prove this theorem by contradiction. Assume that the result in equation

(3.1.12) is not true, meaning that there exists some ¢ > 0 such that
lgr] > €, for all k> 0. (3.1.13)

To show the contradiction, we will demonstrate that the following equation holds,

i ”g’“” . (3.1.14)

k=1

If k € S, by the definition of p given in (3.1.7) and using Lemma 3.1.1, it follows that

Hg I € 1 | g ||
Cp— f > f n = . 3.1.15
k w1 > (fe —mu(pr)) > m 6\/_ mi 1+rp 2 o ( )

On the other hand, if k£ ¢ S, it can be proved from Lemma 3.1.1, Lemma 3.1.3, and the

construction of Algorithm 3.1 that

lgwll . € 1 (gl
— > fk—m > ———min S5 ),
gkpk: Ji k(pr) > 62 1+ rs 2\ o
and hence
, €
frrr < Cr+ nscugg pr < Cr, — msey !% min 1 el { (3.1.16)
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By combining (3.1.15) and (3.1.16), it can be deduced that

Hng e ”gk NsQqe 1Ny Hng
< () — min
Ji = G 6v/2 1+ kg’ 2 "14+ kg 2 oL

Together with the definition of Cj in (3.1.1) and Lemma 3.1.1, we can write

€ : e gl neoue nsaz ||gk
Ch—Chiy > —— min
T 620 1+ kg 2 S T

1
Since Bupax < 1 and Qpi1 < 1+ Z] o Bt < it follows that

e 1 Bmax

€ . e ||9k NsQue  1NsQ ||9k||
C,—C > \/ ,/ . (3.1.17
F = 6\/5(1 - ﬁmax) e 1 + KB 2 1 + RB 2 Tk ( )

Since { fi} is assumed to be bounded below and by utilizing Lemma 3.1.4 which states

that fr, < Cy < Cx_1, {Ck} is monotonically decreasing and bounded below, and and thus

it is convergent. This implies that
Z(Ck — Cry1) £ Cp < H00,
k=0
Therefore, it follows from (3.1.15) and (3.1.17) that (3.1.14) holds, and

lim (/20 = 0. (3.1.18)

k—o0 Ot

Hence, as a result of Lemma 3.1.2 and the construction of Algorithm 3.1, we can conclude
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that for sufficiently large [ > 0 and r > 0, we have

I+r—1
|21 — 2| < Z [T
k=l
I+r—1
= > allnl
k=l
I+r—1

P>

||gk

which implies that {z;} generated by Algorithm 3.1 is a Cauchy convergent sequence,
meaning there exists a point #* € R" such that x;, — 2* as £ — oco. By Lemma 3.1.2,

we know that {0} is a bounded sequence, i.e., there exists a constant ¢ > 0 such that

P

which contradicts with (3.1.18). The proof of the theorem is completed. O

o, < 0. This leads to

The following corollary demonstrates that the implementation of the line-search
technique in Algorithm 3.1 will not compromise the first-order convergence properties of
the cubic regularization algorithm. Under the assumptions stated in Theorem 3.1.1 and
with the additional requirement of uniform continuity of the gradient g on the iterates
{zx}, it can be shown that Algorithm 3.1 will either reach a termination point where the

convergence criteria is satisfied, or limy_, ||gx|| = 0.

Corollary 3.1.1. Assume ||Bg|| < kp for all k > 0 and for some constant kg > 0. If

{fx} is bounded below and f and g are uniformly continuous on the sequence {xy}, then
lim [|gx|| = 0. (3.1.19)
k—o00

Proof. We shall prove this theorem by contradiction. To this end, suppose that the

conclusion in equation (3.1.19) does not hold, i.e., that there exists an infinite subsequence
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{t;} and a constant ¢ > 0 such that
llge,|| > 2¢, for all i > 0. (3.1.20)

This implies that the gradient of the objective function is not converging to zero along
this subsequence. For all i > 0, let I; denote the first iteration after ¢; such that ||g;, || <,

and define the set  ={k >0:¢t; <k <[;}. It follows that
llg|| > e for all t; <k < l;, and ||g;, || <e. (3.1.21)

for all ¢ > 0. It is important to note that I is an infinite set. Subsequently, following the
same reasoning used in the proof of Theorem 3.1.1, we would obtain that
li—1
36v/2 :
C, —Cp) > — > |z — x4 3.1.22

k=t;

Additionally, the uniform continuity assumption of g on the sequence of iterates {x;}

implies that

g1 — gl = 0 as i — oo. (3.1.23)

However, the inequalities (3.1.21) and (3.1.21) lead to

> €,

g, — gull > llge |l — N,

for all @ > 0, in contradiction with the result (3.1.23). As such, the proof of the theorem is

now complete. O
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3.2 Hybrid Approaches of Cubic Regularization
and Newton’s Method

3.2.1 Introduction and Motivations

The purpose of combining the cubic regularization method with Newton’s method
is to mitigate the computational cost associated with minimizing the cubic subproblem. In
general, the Newton method is a popular choice for its fast rate of convergence, however,
it can become impractical in certain situations where the Hessian is not positive definite
or is nearly singular. The cubic regularization method is particularly useful when the
objective function is not well-behaved, such as when it is non-convex, has many local
minima, or is poorly conditioned. In such cases, regularization can improve the robustness
and efficiency of the optimization process and prevent numerical instability by adding a
regularization term to the objective function that encourages the iterates to converge to a
local minimizer. The cubic regularization method works by adding a cubic regularization
term to overcome the non-convexity. This term serves to ensure the overestimation property
and the regularization parameter implicitly controls the step size.

As discussed in Section 2.3, the regularization parameter for the cubic term is
initialized at the start of the algorithm and subsequently updated at each iteration using
a scheme that is based on ensuring sufficient descent. This approach can significantly
influence the overall number of iterations performed by the algorithm. In each iteration, a

cubic subproblem

def

1
mi(s) = fr +gprs+ %STB}CS + gakHsH?wk (3.2.1)

must be solved which requires additional computational cost for solving more than one
linear systems. This process can be computationally expensive, even when the objective
function is well-behaved and the Hessian is locally positive definite.

In a recent study, Benson and Shanno [2] demonstrated that the computation
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of the cubic step is equivalent to solving the linear system for a certain value of the
Levenberg-Marquardt perturbation parameter. This insight enables us to determine the
cubic regularization parameter in a problem-specific manner for each iteration, where it
is required. This selective utilization of cubic regularization permits us to benefit from
some of its theoretical properties, while avoiding the associated computational overhead.
The numerical results of this study offer a promising approach for improving the efficiency
of cubic regularization methods while maintaining their favorable theoretical results. By
utilizing the cubic regularization only when necessary, the computational cost can be
reduced, thereby making the overall method more efficient. Their algorithm highlights
the importance of considering the interplay between the cubic regularization and the
Levenberg-Marquardt perturbation in the optimization process.

Recently, the relationship between the step calculated using a Newton-like method
and the step computed using a cubic regularized model was studied by Bergou, Diouane and
Gratton [3]. They introduced and evaluated a line-search framework that uses an iteration
dependent ellipsoid norm in cubic regularization method. The implementation of this
adaptive ellipsoid norm results in a method that behaves as a quasi-Newton algorithm with
a special backtracking line search strategy. Under certain assumptions, their algorithms
achieve the same convergence properties and iteration complexity as ARC algorithm.

The incorporation of the cubic regularization method with Newton’s method is
motivated by the desire to reduce the computational complexity associated with the
minimization of the cubic subproblem. In cases where the objective function is well-
behaved and the Hessian is positive definite in a local neighborhood, the Newton direction
can provide robust and efficient performance without the need for regularization. Given
these considerations, it is beneficial to consider using cubic regularization only in iterations
where negative curvature is encountered or when there is no sufficient descent direction,
rather than using it in every iteration. By carefully choosing when to employ cubic

regularization, we can potentially achieve a balance between the efficiency of the Newton’s
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method and the robustness provided by regularization.

3.2.2 The Proposed Hybrid Approaches

In this section, two different hybrid approaches of the cubic regularization method
and Newton’s method will be described and discussed. These hybrid approaches aim to
utilize the strengths of both methods to achieve a more efficient and effective solution.
Throughout this section, the exact Hessian V2 f; is used as By, in each iteration.

Utilizing simple Newton’s steps in place of the cubic step is appealing as it avoids
the need to solve the cubic subproblem. As explained in Section 2.3, solving the cubic
subproblem typically requires computationally expensive matrix factorizations or iterative
procedures for solving a series of linear systems. When the Hessian matrix is sufficiently
positive definite, i.e. the smallest eigenvalue uniformly bounded away from zero, the

Newton’s direction computed from the Newton’s equation

kak = —0k (322)

is known to be a descent direction and is the global minimizer of a local quadratic model
at xp. The Newton’s equation can be solved efficiently using various factorization methods,
such as Cholesky factorization, or using iterative methods for approximate solutions.
Additionally, Newton’s method has fast local convergence for well-behaved functions. By
replacing the cubic step with a Newton’s step when possible, the number of linear systems
that need to be solved can be reduced, leading to a significant reduction in computational

effort.
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Algorithm 3.2. Schematic outline of ARC-Newtonl.

1: function ARC-NEwTON1

2 Initialization: Given zg, €4 >0, %2> >1,1>n>n >0,00 >0, k =0.
3 while not converged do

4: Set cubic_step = true.
5.
6

if By is positive definite then
Compute an approximate solution py of the linear system

Bipr = —gr.-

£ if g, | > eallgellllpi || then
Search for an oy, satisfying the strong Wolfe conditions:

f(@y 4+ arpr) < fi + nsowgy v, s € (0, %)7

|g(zk + cpr) " Pel < Nwlgi prl, M € (Ms,1)-
9: if o, > 0 then
10: Update 11 = T + agpr.
11: Set cubic_step = false.
12: end if
13: end if
14: end if
15: if cubic_step is true then
16: Compute a step p, for which

mg(pr) < me(py),

where the Cauchy step

py = —ay gr, and «f = argmin my(—agy).
OCER+
. — flar+
17: Compute the ratio pp = fie = F (@ pk).
fe — mi(pr)
18: Update
zp+pr i p >,
Tpt1 = .
Ty otherwise.
19: end if
20: Update oy properly.
21: k=Fk+ 1.
22: end while

23: end function

The first variant of the ARC-Newton hybrid method is described in detail in
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Algorithm 3.2. To determine whether the the smallest eigenvalue of Hessian is uniformly
bounded away from zero, the algorithm uses a routine chol(-) to perform a Cholesky
factorization of the matrix By. If the Cholesky factorization yields a positive definite
matrix, the search direction can be calculated from Newton’s equation (3.2.2) using the
factorization, and then a line-search technique with strong Wolfe conditions can be applied
to this Newton step. The strong Wolfe conditions ensure that the step size satisfies both

the Armijo condition,

fxy + arpr) < fe + nsarglpr, where n, € (0, %), (3.2.3)

which requires that the step satisfies a sufficient decrease condition in the objective function,

and the curvature condition,

|9(xx + cwpi) "pel < mulgipel,  where n, € (s, 1), (3:2.4)

which ensures a sufficient increase of the gradient and that the step length is not too short.
Since the Hessian matrix By, is sufficiently positive definite in this scenario, the Wolfe line
search is guaranteed to give a positive step size oy and ensures convergence. On the other
hand, if the Hessian is not positive definite, it is necessary to regularize the Hessian By or
the local quadratic model m{(p). In such cases, an approximated solution of the cubic
subproblem is calculated and used as the search direction.

After taking the cubic or Newton step with Wolfe line search in the ARC algorithm,
the regularization parameter o is updated accordingly. For the cubic step, the update
is based on the agreement between the objective function and the local cubic model, as
explained in Section 2.3. In the context of the Newton step combined with Wolfe line
search, the approach for updating the regularization parameter is inspired by the biased

Wolfe trust-region method introduced by Gertz [33]. This update relies on the search step
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length, denoted as ay, and the ratio of actual to anticipated reductions, represented by py.

Specifically, the ratio p; is computed as

e Al 20)
P Je —mi(pe)

where py represents the search step taken prior to the Wolfe line search, and m; denotes
the local model. It is noteworthy that m; can be chosen as either the local quadratic model
or the local cubic model. In our numerical experiments, we did not observe significant
differences between these two choices. If p, exceeds a positive constant 7y and the step
length oy is greater than or equal to a small positive constant au,;,, which is between 0

and 1, the regularization parameter is updated as
. O
Of+1 =— 1IN {—, 510k}7
Qg

where §; is a parameter between 0 and 1. This update ensures that the regularization
parameter does not increase when a small step is taken with a; < 1. On the other hand, if
pr is less than or equal to 1y or oy < au,, the regularization parameter is simply updated
as

Ok
Ok4+1 — —
677

Even when p;, < 9, it is possible to find a step length ay, greater than 1 through Wolfe line
search, and subsequently decrease the regularization parameter. Finally, the regularization
parameter is bounded by o,;, and o, to prevent it from becoming too small or too large.

Algorithm 3.3 outlines the second version of the ARC-Newton hybrid approach,
which avoids the need to compute a cubic step even in instances where the Hessian By, is

not positive definite.
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Algorithm 3.3. Schematic outline of ARC-Newton2.

1:
2
3:
4
5

10:
11:
12:
13:
14:
15:

16:

17:

18:
19:
20:
21:

function ARC-NEWTON2
Initialization: Given zg, €4 >0, %2> >1,1>n>n >0,00 >0, k =0.
while not converged do

Set cubic_step = true
Compute an approximate solution py of the linear system

Bypr, = —gx.-

if By is not ill-conditioned and |gf p?| > eallg|l|[pf |l then
Set
P = —sign(g; pi)py-

Search for an oy, satisfying the strong Wolfe conditions:

f(@y 4+ arpr) < fio 4+ nsowge v, 15 € (0,3),

lg(zr + Oékpk)Tpk| < T]w‘gz;rpkL Nw € (s, 1).

if o > 0 then
Update xp11 = xp + agpg-
Set cubic_step = false.
end if
end if
if cubic_step is true then
Compute a step p, for which

mu(pe) < mu(pk),
where the Cauchy step

C C C :
Py = —ay gr and o = argmin my(—ogx)-
OCER+

Je — fop +pk)'

Compute the ratio p, =

Je — my(pr)
Update
T +pe if p >,
Tr41 = .
T otherwise.
end if
Update oy properly.
k=Fk+1.
end while

22: end function

(3.2.5)
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In contrast to Algorithm 3.2, in Algorithm 3.3, a trial step p; is always computed
using the Newton’s equation (3.2.2), irrespective of the behavior of the local Hessian matrix
By. If the absolute value of the directional derivative of trial step p; and the gradient
gi is bounded away from zero, the search direction is determined by either setting it to
the trial step py or the negated trial step —p;, depending on the sign of the directional
derivative. To ensure convergence, a line search method with strong Wolfe conditions, as
specified by (3.2.5), is applied on the search direction to acquire a step size ay. Conversely,
if a sufficient descent direction cannot be obtained from the solution p; of Newton’s
equation, the search direction is instead set to an approximated solution of the cubic
subproblem. The acceptance of the search step hinges on the agreement between the
objective function and the local cubic model, as defined in p;. Upon finding a satisfactory
agreement, the search step is accepted. The regularization parameter o is subsequently

adjusted accordingly, as discussed in Section 2.3 and Algorithm 3.2.

3.2.3 Theoretical Discussion

This section examines the relationship between the Newton direction and the cubic
step, and presents a convergence analysis of the ARC-Newton hybrid algorithms.

The subsequent finding demonstrates that, provided the quasi-Newton direction
is not orthogonal to the gradient of the objective function at the current iteration, the
Newton direction is collinear with the solution of a certain cubic model determined by a

specific selection of the ellipsoid norm.

Theorem 3.2.1. Suppose the exact solution py of Newton’s equation (3.2.2) is not orthog-

onal to the gradient of the objective function at xy, i.e.,

|9 P ] > eallgalllIpz I, (3.2.6)
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with €4 being a predetermined positive constant. Then, a positive scalar 6y exists such that

Py = 0kpy, (3.2.7)

where pf represents a global minimizer of a certain cubic model defined by (3.2.1).

Proof. Given that p fulfills (3.2.6), according to Theorem 4.1 in [3], a symmetric positive

definite matrix M} exists such that

I 1| M
Mkp]? = kT Q 9k
k P
By employing the ellipsoid norm || - |5, in the cubic model my definition, as defined in

(3.2.1), in conjunction with Theorem 3.3 from [3], we can deduce that an approximate

optimal point of subproblem (3.2.1) takes the form

1

. 0 1 . T o O-k:Hp](j”?Wk
Py = apk, where ¢, = 5 11— Slgn(gk pk) I+ 44—

|9 ¢
0

Next, we examine the step taken on the Wolfe line search. The following lemma
establishes that any step that satisfies the strong Wolfe conditions is a step of sufficient

decrease.

Lemma 3.2.1. Let f be a scalar-valued, twice-continuously differentiable function defined
on an open conver set D C R™. Suppose xy € D is selected such that the level set L( fy)
is closed and bounded. Assume that py, is a search direction satisfying g(zx)Tpr < 0 and
|kl < 7, where 7 is a constant independent of k. Then, the search step py that meets the

strong Wolfe conditions, (3.2.3) and (3.2.4), is a step length of sufficient decrease, i.e.,

lim |gpx| = 0. (3.2.8)
k—o0
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Proof. To prove this theorem, we employ a proof by contradiction. Assume there exists
a constant € > 0 such that |glpr| > € for infinitely often. Note that the backtracking

condition (3.2.3) infers that

fe = forr > nsaunlgn il

This relationship suggests that ;. is well-defined and persists within £( f). The assumption
of f being bounded below on L( fy) leads to the conclusion that fy represents a bounded,
strictly decreasing sequence, which consequently converges.

Let K = {k: |glpi| > €}. The first Wolfe condition (3.2.3) yields

fe — fre1 > nsage, forall k € K. (3.2.9)

Given that {fx} is a converging sequence, the left-hand side of (3.2.9) approaches zero
for k € K. The definitions of ns and € imply that a;, — 0 for k£ € K, and the uniform
boundedness of the sequence {p;} establishes aypr — 0 for k € K.

By rearranging the second Wolfe condition (3.2.4) and given that |glpx| = — g ps,

we can deduce that

g 4 apr) ok — gipe > (1 —nw)|gipr] > (1 —nw)e, forall k € K. (3.2.10)

Utilizing standard norm inequalities, we derive

gk + awp) P — g5k < [lg(zk + awpr) — gellollpell- (3.2.11)
where || - || p represents the norm dual to || - ||. Inequalities (3.2.10) and (3.2.11) imply that
lg(zx + axpr) — grllollpel] = (1 —nyw)e >0, for all k € K. (3.2.12)
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Since 1 — n,, and € are bounded away from zero, this inequality indicates that the vector
difference within the norm on the left side is bounded away from zero. However, we
recognize that appr, — 0 for all k& € K, and the continuity of g(z) along with the
boundedness of py imply that the left-hand side of (3.2.12) converges to zero. This leads

to the intended contradiction, demonstrating that |g px| — 0. O

Now, we are ready to prove the first-order convergence result of Algorithm 3.2. The

convergence results of Algorithm 3.3 can be derived analogously.

Theorem 3.2.2. Let {x} be the sequence generated by Algorithm 3.2. Suppose xo € D
is selected such that the level set L(fy) is closed and bounded. If {fx} is bounded below
and f and g are uniformly continuous on the sequence {xy}, then either there is a finite k

such that g, = 0, or
lim [|gx]| = 0. (3.2.13)
k—o0

Proof. Let us begin by assuming that only finitely many Newton steps are taken. In this
case, Theorem 2.3.1 implies that the result (3.2.13) holds. Now, suppose that infinitely
many Newton steps are taken. If g = 0 for some finite index k, then the theorem holds
trivially. Therefore, we may assume that g, # 0 for all £.

If 2, € L(fo), the Hessian By being positive-definite ensures that the Newton
direction is always a direction of descent. Lemma 3.1.3 then guarantees the existence
of a suitable oy satisfying the Wolfe conditions (3.2.3) and (3.2.4), which implies that
Tre1 € L(fo). This shows that the iterates are well-defined.

From Lemma 3.2.1, we have demonstrated that the Newton’s step generated by

Algorithm 3.2 satisfying the strong Wolfe conditions has the property that
lim |gi p,| = 0. (3.2.14)
k—0

To achieve convergence, it is necessary to guarantee that |g, p,| approaches zero only when
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gi tends to zero.

Because of the Newton’s equation (3.2.2), we can obtain that

|95 Pk| = [P Bipre| > Auinllpr |- (3.2.15)

Applying standard norm inequalities to (3.2.2) yields

g

1Pkl = . (3.2.16)
| Bl
Using the relation ||Bg|| = Amax, we can combine (3.2.15) and (3.2.16) as follows:
)\min >\min
|9 pk| > ;) [Pl gl > e gkl (3.2.17)

By the construction of the algorithm, the smallest eigenvalue A, of By has a lower bound.
Meanwhile, the continuity of the Hessian and the compactness of L( fy) together imply that
|| By || is bounded, which means the largest eigenvalue Ap.x has an upper bound. Therefore,

using (3.2.17), together with (3.2.14), we obtain gy — 0. O
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Chapter 4

Cubic Regularization Algorithms for
Constrained Optimization

4.1 Introduction

In this chapter, we consider a primal-dual adaptive cubic regularization algorithm
(PDARC) for solving the inequality-constrained nonlinear programming problem:

minimize f(z) subject to c¢(z) >0, (NIP)

z€R™

where ¢ : R — R™ and f : R"” — R are twice-continuously differentiable nonlinear
functions. Interior methods are a family of algorithms that solve (NIP) by transforming
the constrained problem into a parameterized unconstrained problem using penalty and
barrier functions.

The proposed method is based on minimizing a shifted primal-dual penalty-barrier
merit function introduced by Gill, Kungurtsev and Robinson [22]. This method has a
two-level structure of inner and outer iterations. The inner iterations are those of a method
for unconstrained minimization used to find an approximate minimizer of a merit function
that represents a compromise between minimizing the objective function and satisfying the
constraints. The merit function is the sum of three terms: the objective function, a penalty

term for the equality constraints, and a barrier term for the inequality constraints. For a
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given unconstrained minimization, the merit function is defined in terms of fixed values
of a penalty parameter, a barrier parameter and estimates of the Lagrange multipliers.
The outer iterations measure and ensure progress toward a solution by adjusting the
penalty-barrier parameters and Lagrange multiplier estimates.

In this chapter, we propose an efficient convergent cubic regularization method for
generating the inner iterates. A cubic regularization technique combined with a line-search
method is applied to handle local nonconvexity and ensure global convergence. Moreover,
we show that the solution of the cubic regularized subproblem can be obtained by solving
an equivalent system that has the same structure as the conventional primal-dual system,
which implies that the corresponding linear systems can be solved by efficient off-the-shelf
linear system-solvers. Hence the proposed method can be scaled directly to large-scale
problems.

Section 4.2 is devoted to a brief overview and the motivation for the application of
primal-dual cubic regularization to constrained nonlinear optimization. In Section 4.3, we
present a cubic regularization method that finds an approximate minimizer of the shifted
penalty-barrier merit function in the inner iteration, and show that the cubic regularized
subproblem can be solved by factoring matrices with the same structure as conventional
primal-dual matrices. In Section 4.4, we describe an adaptive cubic regularization method
that uses a practical Armijo-type line search and its variants. The method maintains
feasibility of primal and dual variables, and utilizes the trial step computed from the cubic
subproblem to improve a primal-dual merit function at each iteration. In Section 4.5, the
convergence results of the proposed algorithm are established under certain assumptions.
In Section 4.6, a practical algorithm based on a modified version of the Moré-Sorensen
method [34] is proposed for the solution of the primal-dual cubic subproblem. Section 4.7
concerns the application of the proposed method for solving constrained optimization
problems in the general form, and additional information regarding the derivation of the

relevant equations and solutions is available in Appendix A.
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4.2 Algorithm Overview and Background

The problem (NIP) can be reformulated by introducing non-negative slack variables

for the nonlinear inequality constraints. This gives the equivalent problem

L . e > 0. 5
minimize f(z) subject to c¢(z)—s=0, s>0 (4.2.1)

The vector (z*,s*,y*, w*) is called a first-order KKT point for problem (4.2.1) if the

following KK'T conditions hold

Vf(z*) = J(z") Ty =0,
Yy —w* =0, w* >0,
(4.2.2)
c(x*) — s =0, s* >0,
w* . s =0

Under certain regularity conditions, the KKT conditions are first-order conditions for
an optimal solution of problem (4.2.1). The vectors y* and w* constitute the Lagrange
multiplier vectors for, respectively, the equality constraints ¢(z) — s = 0 and the inequality
constraints s > 0. Let the vector (z,s,y,w) denote the k-th primal-dual iterate. The
outer iteration of PDARC aims to ensure that the sequence {xy, sk, yx, Wi} approximately
follows a continuous primal-dual trajectory and converges to a point that satisfies the KKT
conditions (4.2.2). To design an efficient algorithm, the conditions (4.2.2) are perturbed

as follows:

(4.2.3)
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where y” € R™ is an estimate of a Lagrange multiplier vector for the constraints ¢(x)—s = 0,
w® € R™ is an estimate of a Lagrange multiplier for the constraints s > 0, and the scalars

" and p” are positive penalty and barrier parameters, respectively. The perturbed

I
conditions (4.2.3) motivate the following merit function for a path-following interior
method. The shifted primal-dual problem associated with problem (4.2.1) is obtained
by including the constraints c¢(x) — s = 0 with the objective using a shifted primal-dual
augmented Lagrangian term. A shifted primal-dual penalty-barrier term is used for the
simple bounds. This gives the problem

minimize M(z,s,y,w;pu”, pn”,y?, w”) subject to s+ p’e >0, w >0, (4.2.4)

x?'s?y’w

where M(z, s, y,w; u”, u?,y”, w”) is the shifted primal-dual penalty-barrier function

Mz, s,y,w; 1" 1”7 w") = f(a) — (c(x) — )y

le(z) = slI* + 5—lle(@) — s + 1" (y — y*)|I”

+2P

—Z,u wf In (s; 4 p”) Z,qu In (w;(s; + p”) +Zwi(si—l—u3)

=1

2P

which is well defined for all w and s such that w > 0 and s + p”e > 0. It can be
shown that the Newton equations for finding a zero of the perturbed conditions (4.2.3)
are equivalent to certain approximate Newton equations for finding a minimizer of M
in the neighborhood of a second-order minimizer of the problem (4.2.1). Under certain
assumptions, the primal-dual iteration attempts to follow a differentiable trajectory that
converges to a limit point that is either an infeasible stationary point or a complementary
approximate KKT point. For further details see Gill, Kungurtsev and Robinson [22].

To handle nonconvexity, Gill, Kungurtsev and Robinson [22] apply an inertia-
controlling symmetric indefinite factorization (for more details, see Forsgren [17]). However,

this inertia-controlling factorization interchanges certain rows and columns, which interferes
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with the row and column ordering used to maintain sparsity in the factors. This hinders
the application of state-of-the-art software, or software developed for specific types of
advanced architectures. To overcome this issue, the cubic regularization method is used to

minimize M (x, s,y,w ; u”, u”?,y”, w”), and is discussed in the following sections.

4.3 Primal-Dual Cubic Regularization Methods

In this section, we focus on an inner iteration and discuss how the cubic regulariza-
tion method can be used to find an approximate minimizer of the shifted penalty-barrier
merit function M(x, s, y, w; pu”, u?, y*, w”) for fixed (u”, u”,y”, w"). Let ¢, g and J denote
the quantities ¢(x), Vf(z) and J(z). For clarity, the dependence of M on the parameters
w”, 1 y” and w”; will be suppressed when appropriate, with M or M(x, s,y,w) being
used to denote M(x, s, y,w; u”, u”?,y” w”). Let S* and W denote diagonal matrices with
diagonal entries s; + u” and w (i.e., S* = diag(s + p”) and W = diag(w)) such that

s; + p? >0 and w; > 0. It is convenient to define the positive-definite matrices
Dy = u”I,, and Dy, = SFW

and auxiliary vectors

1
' =n"(z,s) =y" — E(C —s) and 7" =7"(s) = /LB(SH)ile'

In order to facilitate global convergence, we apply a cubic regularization method

based on finding an approximate solution of the primal-dual cubic subproblem

minimize C(Av) = M(v) + VM (v)" Av + %AUTB(U)AU + é/LCHAUH%«, (4.3.1)

AveRn+3m

where v = (z, s, y, w), Av = (Ax, As, Ay, Aw), VM is the gradient of the merit function,
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and B is an approximation of the Hessian of the merit function. The cubic term involves
the elliptic norm [|Av||; = (AvTT Av)'/2, and the nonnegative regularization parameter
1€ > 0. The matrix T is a positive-definite diagonal of the form T = diag(T*,T*,TY,T").

The matrix B = B(v) and vector VM = VM (v) are given by

H+2J'™D;'J  —2JTD;! JT 0
-2D;'J  2(DyY+ DY) I, Iy

J —1p, Dy, O

and
g—JT (" + (7" —y))

. 2rY —y)— (27" —w) |
—Dy (¥ —y)

—Dy (7" —w)

where H = H(x,y), g = Vf(z), and J = J(z).
The following theorem provides the theoretical basis for finding an approximate
global solution of the cubic regularized subproblem under some predefined positive-definite

diagonal matrix 7.

Theorem 4.3.1 (Optimality Conditions for the Cubic Model). Any Av* is a global
minimizer of the cubic subproblem (4.3.1) over R"™™ if and only if there exists a unique
o > 0 such that

(B +oT)Av* = —VM, % = || Av*||,

with B + oT positive semidefinite. For any global minimizer Av*, the value of o is unique

and independent of Av*. Moreover, if B + ol is positive definite, Av* is unique.

The application of the method of Moré and Sorensen [34] to solve the subproblem
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(4.3.1) requires seeking an optimal o by calculating the Cholesky factorization of B + oT
for various values of ¢. Instead of factorizing B + ¢T" directly, with appropriate choices of
T, the solution of (B + ¢T)Av = —VM can be obtained by solving an equivalent system
that has the same primal-dual structure. The equivalence can be established as follows.
Let’s write the gradient and Hessian of the merit function in terms of the vector = (x, )

and § = (w,y). Let g, H, J and D denote the quantities

Similarly, let T, = diag(7T}, 1) and T, = diag(T}, T,,). The equations (B + ¢T)p = —V.M

may be written in the form

H+2J"D'J + 0T, JT AT Gg—J ' —J7—7g
_ _ _ = - ~ ( ) . (4.3.2)
J D+ 0T, Ay —D(7t — g)
where
Y Ax Ay
T = , Az = , and Ay =
i As Aw

Applying the nonsingular matrix

I —2JTD!

to both sides of equation (4.3.2) gives the system

H+oT, —JY(I+20D7'T,))\ [ Az g—JTy

J D + o7, Ay D(yj—7)
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With the substitutions T, = I and 7, y = D and some simplification, the quantities AZ and

Ay may be obtained by solving the equations

H+ol —J7T Az g—J7T
S : (4.3.3)

N

J D (1+20)Ay

]
<
|
)

where ¢ = (14 0)/(1 + 20). In terms of the original variables, the unsymmetric equations

(4.3.3) may be written as

H+ol, 0 —J* 0 Ax g—JTy
0 ol, I, —I, As y—w
— . (434)
J —I,, oD, 0 (14 20)Ay Dy(y —7")
0 I 0 oDy (14 20)Aw Dy (w—m")

With our choice of T, the matrix in (4.3.4) has the same sparsity pattern as the matrix
in primal-dual equations. Equation (4.3.4) can be symmetrized by collecting the factor

—(1+ 20) into Ay and Aw, which gives the equivalent symmetric system

H+ol, 0 J°T 0 Ax g—Jy
0 oln, —ILn, In As y—w
_— : (4.3.5)
J -1, D, o0 || a5 Dyly — )
0 I, 0 oDy Aw Dy (w—7m")

with Ay = —(1 4+ 20)Ay and Aw = —(1 + 20)Aw. The linear equation (4.3.5) is a
symmetric and well-scaled system in which 6D, and gD, have the role of regularizing
the KKT matrix. After the application of block elimination and the collection of terms,

the solution of the equations (4.3.5) can be obtained from an equivalent linear system of
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smaller size. Let Dy, denote the m x m diagonal matrix
D, = (D} +061,)" .
The solution of (4.3.5) can be written as

As = —alv)W(y—Agj—ij%(w—ﬂW)),

AW =—D;'D,, <y — Ay —w — oDy (w — 7TW)>,
where Az and Ay satisfy the KKT equations
H+ol, JT Az

(4.3.6)
g—Jty

Dy(y—n")+ lu)W(w — 7" + 6y — w))
The vectors Ay and Aw are computed from the equations

1 1

Ay =- (1+20)

Note that the symmetric system (4.3.6) is of order n 4+ m and does not involve the slack
variables. The major cost of an iteration for finding an approximate solution of the cubic
subproblem (4.3.1) is the cost of solving this system. The only extra computational costs
associated with this reformulation are from updating the slack variables.

The generic equations. For generic equations of the form (B + o7 )p = b, the equations
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are

H+ol, 0 JT 0\ (m by

0 ol, —I, I, P b
“1=171. (4.3.7)

J ~In oDy 0 P3 bs

0 Im 0 5DW Pa b4

Using block elimination, the solution of these equations is given by

pa=(I+06Dy) " (p3s—by+0by) and py =by— G Dypy,

where the vectors p; and p4 satisfy the equations

H"—O'In JT D1 bl

J —a(Dy + Dy) D3 Ubw(bz — oby) + bs + by
In order to satisfy the optimality conditions of Theorem 4.3.1, we are interested in
values of o such that B + ¢T is positive semidefinite. Instead of checking B 4 ¢T directly,

the following lemma indicates that the inertia of B + ¢7' can be deduced from the inertia

of K(o). For simplicity, let the matrix B + o7 be denoted by B(o), i.e.,

H—I—QJTD;lJ—{—UIn —2JTD;1 JT 0
—2D;1J 2(D7 + DY) + ol —1, I,
B(o) = ,
0 I, 0 (1+0)Dy

and let the condensed matrix in equation (4.3.6) be denoted by K (o), i.e.,

H+ol, JT
K(o) =
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Lemma 4.3.1. The inertia of B(o) and K (o) satisfies the identities:

1 o
In(B(0)) =In(H + ol + =J"(Dy + Dy) " J) + (3m,0,0),

g

In(K (o)) =In(H + ol + %JT(DY + Dy)71T) + (0,m, 0).

Proof. We will follow the result from Lemma 4.1 in Forsgren and Gill [18] to prove these

relations. Consider a symmetric block-partitioned matrix X of the form

A BT
B C

The inertia of X satisfies In(X) = In(C) + In(A — BYC~'B). Both B(c) and K(0)
are symmetric block-partitioned matrices. As D, and Dy, are diagonal positive definite
matrices, the inertia property implies that
H+ol,+ XJTDJ —1JTD!
In(B(o)) =1In + (2m, 0,0)
—<1D;MT ol, + 2(Dy + Dy,)
1 .
=In(H 4ol + =J"(Dy + Dy)7'J) 4+ (m,0,0) + (2m,0,0)
o

1 o
=In(H + 0l +=J%Dy + Dy)"J) + (3m,0,0).
g

Similarly,
1 o
In(K(0)) =In(H + ol + =J"(Dy + Dy)"'J) + (m,0,0).
g

]

A solution of the cubic subproblem (4.3.1) can be obtained by repeatedly factorizing
the matrix K (o) and solving the system (4.3.6) for different values of 0. However, we are
particularly interested in values of o for which B(co) is positive semidefinite, as stated in

Theorem 4.3.1. The relationship between the inertia of B(¢) and the inertia of K (o) in
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Lemma 4.3.1 may be used to find values o for which B(o) is positive definite. In particular,
we can count the number of negative eigenvalues of K (o) using the symmetric indefinite
factorization PTK (c)P = LDL™, where the number of negative eigenvalues of K (o) is
the number of 2 x 2 blocks and negative 1 x 1 blocks of D (see Bunch and Parlett [5]). If
the number of negative eigenvalues of K (o) is larger than m, then o must be increased
and K (o) is refactorized. This procedure is repeated until B(o) is positive semidefinite.
In the case of primal-dual interior-point methods, the function being minimized
includes a logarithmic barrier term that is undefined outside of the feasible region. We may
expect that the cubic regularized subproblem (4.3.1) may need to be solved repeatedly in

order to obtain a feasible step.

4.4 Statement of the Algorithm

This section provides the formal descriptions of the proposed primal-dual cubic
regularization algorithm. Cubic regularization methods have both favorable theoretical
properties and excellent numerical results in practice. However, a significant cost of
cubic regularization is the need to find an approximate minimizer of the cubic regularized
subproblem, which may require the solution of the system (4.3.6) several times with
different values of . Performing a line search along the search direction takes advantage
of the computational effort involved in minimizing the cubic model and attempts to make
use of the possible good properties of the cubic step.

For primal-dual interior methods there is an even more compelling reason to combine
a line search with cubic regularization. The properties of the barrier function imply that
the merit function is undefined outside the feasible region. Because of this, it is common
for the trial step to be rejected simply because it generates an iterate that is infeasible
for the inequality constraints. In terms of additional matrix factorizations, it can be

very expensive to search for a feasible step by repeatedly solving the cubic regularized
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subproblem for different values of the regularization parameter. Thus, it seems appropriate
to use a line search to find a step that remains feasible.
Algorithm 4.1 describes the inner iteration of cubic regularized shifted primal-dual

interior-point method combined with Armijo backtracking line-search algorithm.

Algorithm 4.1. Schematic outline of PDARC.

1: function PRIMAL-DUAL_INTERIOR-POINT WITH CUBIC_REGULARIZATION

2: Initialization: Given vg, p”, pu”, 2>y >1,1>n>m >0, 45 >0,1 >~ > 0;

3: while not converged do

4: Compute a search direction Avy, from (4.3.1) for which Cy(Avy) < Cr(Avy)
where the Cauchy point Avy = —v/V M, and v = argmin, .o Cp(—yV My);

5: Set the initial step ay < 1;

6: if not (s, + apAsy + pe > 0 and wy + apAwy, > 0) then

7 Find the largest ay, > 0 such that sy +a,Asi+p%e > 0 and wy + o Awyg > 0;
8: end if

9: Set py, M(ve + o) = M{ve).

Ck(akAvk) — M(Uk)

10: if pr > n1 then

11: Successful iteration: vy 1 < v + apAvy;

12: if pp > ny then

13: Set i, € (0, pg); [very successful iteration]

14: else

15: Set pgyq € [y ipgl; [successful iteration]

16: end if

17: else

18: while M (vi, + axAvy) — M(vg) > m(Cr(arAvy) — M(vy)) do
19: A < YO,
20: end while
21: Vg1 < Vg + OékA’Uk;
22: Set pp € (vt Yehty ; [unsuccessful iteration]
23: end if
24: Perform a slack reset spi1 < max{spy1, c(zps1) — 1 (Y" + 5(Wet1 — Yus1)) };
25: Set Vi1 <= (Thi1, Ska1, Whit, Yht1);
26: end while

27: end function

In Algorithm 4.1, at the current estimate vy = (xg, Sk, Yg, Wk), a step Av, =
(Axy, Asy, Ayg, Awy) is computed as an approximate minimizer that is only required

to be at least as good as a suitable Cauchy step of the cubic regularized subproblem
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(4.3.1) as described in line 4. Although the Cauchy step is enough for the algorithm
to converge, additional conditions on Aw, may be necessary in order to improve the
theoretical properties and performance.

A practical Armijo-type line-search is applied on the search direction Avy to
maintain the feasibility of important quantities and ensure a sufficient decrease on the
merit function. In line 7, a step length ay is computed to keep perturbed slack variables
and dual variables positive. Note that compared with the original constraints c¢(z) > 0
without slack variables, the steps to the boundary of the constraints sy + axAsg + pe > 0
and wy + apAwg > 0 can be calculated exactly so that many unnecessary infeasible
constraint evaluations can be avoided. In line 9, a ratio p; is computed that measures
the agreement between the actual decrease in the objective value of the merit function,
M(v, + apAvyg) — M(vg), and the predicted model decrease, Cy(ayAvy). If py is larger
than a threshold 7, the step is accepted and the next iterate vy, is set to vg + ag Awg.
Otherwise, a backtracking line search is performed to find a step length ay such that the
Armijo-type accepting criterion is satisfied in the line 18.

The weight p;, may be viewed as the reciprocal of the trust-region radius. Increasing
iy, will result in reducing the size of the search step. If the current weight has produced
a good agreement between the actual and the predicted decreases, i.e., a successfully
iteration, pf should be reduced or left unchanged depending on the value of the ratio
pr as stated in lines 12-16. If the reduction in merit function is not sufficient, i.e., an
unsuccessful iteration, the current weight pf is increased (see line 22).

The slack-variable reset in the line 24 is designed for efficiency and to handle
problems that are locally infeasible, which is analogous to slack-variable resets used in

Gill, Murray and Saunders [23], and Gill, Kungurtsev and Robinson [22]. In particular,
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after reset, the slack variable s;; satisfies

1
k1 > C(Tpy1) — p” (?JE + §(wk+1 — ?/k—i—l)) ,

which implies, after rearrangement, that

1
c(Trt1) — Spgpr < p” (?JE + §(wk+1 — yk-i—l)) . (4.4.1)

The inequality (4.4.1) above guarantees that any limit point (z*,s*) of the sequence
{(z, sk)} has the property that c(x*) — s* < 0 if y” and w41 — yr+1 are bounded and p”
converges to zero. This is necessary to handle problems that are locally infeasible, which
is a challenge for nonconvex optimization. Moreover, the slack-variable reset never causes
the merit function to increase, which implies that the value of the merit function decreases
monotonically.

Moreover, we also implement a hybrid approach that uses PDARC and Newton’s
method. Similar to the algorithm in the section 3.2, we use cubic regularization only on
those iterations where we encounter negative curvature. The Newton step is taken when
the approximate Hessian Bj, is positive definite. As the Newton direction with a suitable
step length « is guaranteed to give a sufficient decrease of the merit function, we can
simply conduct a line search and find such an «. The details of the hybrid PDARC are

summarized in the following Algorithm 4.2.
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Algorithm 4.2. Schematic outline of Hybrid PDARC.

1:
2
3
4:
5.
6

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

function PRIMAL-DUAL_INTERIOR-POINT_WITH_HYBRID_ARC
Initialization: Given vy, p”, ", 2 >m >1,1>m>m >0, p45 >0,1>v>0;
while not converged do

Set cubic_step = true;
if B(vy) is positive definite then
Compute an approximate solution Avy of the linear system

B(Uk)AUk = —VM (Uk>;

Set cubic_step = false;
else
Compute a search direction Avy, from (4.3.1) for which Ci(Avy) < Crp(Avf)
where the Cauchy point Avy = —y VM, and v = argmin, ., Cp(—yV My);
end if
Set the initial step oy < 1;
if not (s, + apAsy + pe > 0 and wy + apAwy, > 0) then
Find the largest o > 0 such that s +apAs,+pe > 0 and wy, + apAwy > 0;

end if
Set i M(Uk + OékAUk> - M(Uk);
Ck(OékAUk) - M(’l}k>
if pp > n then
Successful iteration: vy < Vg + apAvg;
else
while M(v; + arAvg) — M(vg) > 1 (Cr(apAvg) — M(vg)) do
Q< YO;
end while
Vg1 < U + g Avy;
end if
if cubic_step then
Update regularization parameter:

(0, ps] if  pr > o, [very successful iteration]
L1 € S s, vps] it m < pr <mg, [successful iteration]
[yig, Y21s]  otherwise. [unsuccessful iteration]

end if
Perform a slack reset syy1 <— max{sgi1, c(zx+1) — p°(y” + %(wkﬂ — Yk+1)) };
Set Vkt1 < (Tht1,s Skt Wht 1, Yht1);

end while

30: end function
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4.5 Theoretical Discussion

In this section, convergence properties of the proposed algorithm are discussed. To
prove the convergence of Algorithm 4.1, we first prove some necessary lemmas.

The first result shows that the merit function M is monotonically decreasing. It is
assumed throughout this section that Algorithm 4.1 generates an infinite sequence, i.e.,

VM(vy) # 0 for all k > 0.

Lemma 4.5.1. The sequence of iterates {vy} computed by Algorithm 4.1 is bounded above
and satisfies M(vgy1) < M(vg) for all k.

Proof. From the proof of Lemma 2 in [36] and the assumption that V.M (vy) is nonzero for
all k > 1, the search direction Av, computed from cubic subproblem is a descent direction
for M at vy, i.e., VMAv, < 0. This property implies that the line search performed
in Algorithm 4.1 produces an «4 such that the new point vy, = v + apAvy satisfies
M(vgy1) < M(vy). If follows that the only way the desired result cannot hold is if the
slack-reset procedure of step 16 of Algorithm causes M to increase. The proof is complete
if it can be shown that this cannot happen.

It follows that the only way the desired result cannot hold is if the slack-reset
procedure of line 24 of Algorithm 4.1 causes M to increase. The proof is complete if it
can be shown that this cannot happen. Let 5;, denote the vector

~ 1
Sk = c(@pp1) — " (y" + §(wk+1 — Ykt1))-

The first term of the merit function, f(z), is independent of s, so this term
does not change. As the slack-reset procedure has the effect of possibly increasing the
value of some of its components, the log barrier terms, —» ", pw’ In (si + ,uB) and
ST pPwf In (wi(si + u” )), can only decrease. We will show the vector S5 used in the

slack reset is the unique minimizer of the sum of the rest of terms in the function M, so

88



that the sum of these terms can not increase. Denote the rest part of M by M as

—

Mz, s,y,w) = —(c(z) — S)TyE

1
2ur

le(a) = s+ u"(y = y")1* + D w,(s; + ).
=1

1
Flle(@) — s +

3,

A simple calculation gives

A E 2 i E
VoM, s,y w) =y s = ela) = Sy — v))

—

2
VisM (2, 8,y,w) = E[.
Setting VSM\(LI?, s,y,w) = 0 gives

= ela) — 1 (" + 5w — ).

As M is strictly convex with respect to s, it must hold that s, is the unique minimizer of
M. Tt follows that the slack reset can never increase the value of M, which completes the

proof. n

Note that the subproblem (4.3.1) may be converted equivalently to a cubic model

with /5 norm as follows

_ . 1
minimize M(v) + VM (v)AT + LAGT B(v) AT + gHCHAﬂ!z, (4.5.1)

AveRn+3m

where VM(v) = T-12VYM(v), B(v) = T-V2B(v)T~Y2 and AT = T2 Av. This equiva-
lence allows us to use some useful lemmas established in Section 2.3.

Let S denote the set of indices of the successful iterations, i.e.,

8 = {k >0: M(Uk + Avk) — M(Uk) S m (Ck(AUk) — M(Uk)>}
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The following two useful lemmas are proved in [8]. Lemma 4.5.2 provides a guaranteed

lower bound on the decrease in the merit function predicted from the cubic model.

Lemma 4.5.2. Suppose that the step Awvy satisfies the Cauchy-point condition, i.e.,
Cr(Avg) < C.(Avf). Then for all k > 0 we have that

[VM (i)l (VM (o)l [ [VM ()|
M(vg) — Cr.(Avg) > o/ min { > } .

1+ [[B(ve)l| " 1
The next lemma yields a useful bound on the step.

Lemma 4.5.3. Suppose that {B(vy)} is bounded, i.e., ||B(v)|| < kp for all k > 0 and
for some constant kg > 0, and that the step Awvy, satisfies the Cauchy-point condition, i.e.,

Cr(Avg) < Cr(Avf). Then

C

|| Avg| <3max< [ VM (v )H> k> 0.
py Ho

Now, we are ready to prove an auxiliary lemma.

Lemma 4.5.4. Assume ||B(vg)|| < kp for all k > 0 and for some constant kg > 0.

Suppose that T is an infinite index set such that oy, > 0 and |[VM(vg)|| > €, for all k € T
VM (ug) |

C

25

and sine € > 0, and — 0, ask — o0, k€Z. Then

VM (1) |

k

|| Avgl] <3 for all keI sufficiently large. (4.5.2)

Additionally, if vi, — v*, as k € I, k — oo for some v* € R"™™  then each iteration k € T

that is sufficiently large is very successful, and

P < py, forall k€T sufficiently large. (4.5.3)
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VM (wr) |

C

J25%

Proof. As — 0, as k — o0, k € Z, we have

MO = I9MOI e = ) Tt

for k € Z, k — co. By Lemma 4.5.3 and the above inequality, the bound (4.5.2) can be

obtained. To prove (4.5.3), we observe that

M(Uk + OékAUk) — M(Uk)
P e (B — Moy

Then, we have the inequality py > 1 if
T d:ef /\/l(vk + ozkAvk) - Ck<AUk) + (1 - UQ)[Ck(AUk) - M(Uk)] S 0. (454)

By a Taylor expansion of M (v + axAvy) centered at vy, we have for each k

M(Uk + OCkAUk) — Ck(AUk) = ak(VM (fk) — VM(Uk))TAUk

C
—(1- ak)VM(vk)TAvk — %AvaB(vk)Avk — %”AUHS

< ap(VM(&) — VM ()t Ay, — (1 — o) VM (vp) T Avy, — %AUEB(Uk)AUk,

(4.5.5)

for some & € (vg, vy, + . Avy,). From (4.5.5) and VM (v)T Avy, < 0, we can obtain

M(Uk + ozkAvk) - Ck(AUk) S ak(VM(ﬁk) - VM(ﬁk))TAUk — %AUkTB(Uk)AUk (456)
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By equation (4.5.2), using (4.5.6) and the assumption ||B(vg)|| < kg, we obtain

M(Uk + OékAUk) - Ck(AUk)

< ”Wf ”‘( JIVM(E) — TM (o) + 2

k

me)u) e

2 03

for all k € 7 sufficiently large. Moreover, by Lemma 4.5.2, together with the assumption
[[VM (1)

VM (vp)|l > € and the limit >
H

— 0, we can bound the remaining term in

(4.5.4) as
e [IVM(uy)]]
12¢/2

for all k& € 7 sufficiently large. Then, from equations (4.5.4), (4.5.7) and (4.5.8), it follows

VM (wi)l]

wr

Tk§3

DIl VM)l 1—mn,
(akHVM(ﬁk) M) + 2 s —612\@)7 (4.5.9)

for all k € Z sufficiently large. From the assumption vy — v* that § — v*, as k — oo,

k € Z, and as VM is continuous, we can conclude that
IVM (&) — VYM(v)|| = 0,k € T,k — c.

As ai < 1 and the limit in (4.5.9) imply that r, < 0 for all £ € Z sufficiently large.
Therefore, the inequality (4.5.3) follows from the updating strategy for the weight pf from
the line 12 to the line 16 in Algorithm 4.1. O

We state below the first convergence result for PDARC algorithm. In the following
theorem, we show that provided M is bounded from below, there is a subsequence of

{VM(vy)} converging to zero.

Theorem 4.5.1. Assume ||B(vg)| < kp for all k > 0 and for some constant kg > 0. If
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{M((vy)} is bounded below and M is uniformly continuous on the sequence {vy}, then
lign inf || VM (uvg)|| = 0. (4.5.10)
—00

Proof. We will prove this theorem by contradiction. Assume that the result (4.5.10) does
not hold, i.e.,

|IVM(vi)|| > €, for some e >0 and k > 0. (4.5.11)

First, suppose there are only finitely many successful iterations. Denote the index of the
last successful iteration as ky. As all iterations & > ko + 1 are unsuccessful, the weight puy

increases by at least a fraction ~; so that
py — o0 as k — oo. (4.5.12)

By Lemma 4.5.3, we can conclude that vy — v* for sufficiently large k, which together
with (4.5.11), the second part of Lemma 4.5.4 holds. However, this contradicts with the
assumption that all iterations k > ko + 1 are unsuccessful. Therefore |[VM (vg)|| — 0 as
k — oo.

Now suppose that there are infinite number of successful iterations. In fact, from
the proof of Theorem 2.5 in [8], all sufficiently large iterations belong to S. It follows from

Lemma 4.5.2, the assumption (4.5.11) and the construction of the Algorithm 4.1 that

M(vg) = M(vpg1) = m[M(vg) — Cp(Avy)]

S e €y [IIVM(u)ll

2 5/3 Trrg 2\l a0 (4.5.13)
me  [|[VM(v)||

T 12V2 pg

for all k € S sufficiently large, where the last inequality is attained because {M(uv;)} is
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monotonically decreasing by Lemma 4.5.1 and assumed to be bounded below. For some
iteration index kq sufficiently large and for any j € S, j > ko, using (4.5.13) and summing

up over all sufficiently large iteration gives

J
€ |V M (v
M)~ M) = Y [IM(vg) = M(vgr)] ”if INMEIL - 514
k=ko,k€S C12v2, s i
As {M(vj41)} converges, by letting j — oo in (4.5.14), we obtain
HVM
Z < +00,
kesS
which further implies
W — 0, as k—> o0, for k€S, (4.5.15)
k
and
pp — o0 as k — oo. (4.5.16)

Hence the first part of Lemma 4.5.4 is established. Then, a simple calculation gives
I+r—1 I4r—1 I+r—1
IVM
lorr — ol € Y Nogsr —will = S anllAul] < 3 Z VMol

k=l k=l Mk

for [ > 0 sufficiently large and r > 0, whose right-hand side tends to zero by taking the

limit [ — oo due to (4.5.15), which yields that {v;} is a Cauchy sequence. and
v — v*, k — oo, for some v* € R"™™, (4.5.17)

From (4.5.11), (4.5.15) and (4.5.17), by Lemma 4.5.4, if all k£ € S sufficiently large are very

successful, i.e., there are no unsuccessful iteration for & sufficiently large, u;,, < p and
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{ng} is bounded above. This, however, contradicts (4.5.16). Therefore (4.5.11) cannot

hold. The proof of the theorem is completed. O]

With some additional assumptions, we prove that whole sequence of gradients

{VM(uv;)} converges to zero in the following theorem.

Theorem 4.5.2. Assume ||B(vg)|| < kg for all k > 0 and for some constant kg > 0. If
{M(vp)} is bounded below and M and VM are uniformly continuous on the sequence
{vk}, then

]}1_>I£10 | VM (vi,)|| = 0. (4.5.18)

Proof. 1f there are only finitely many successful iterations, then the result (4.5.18) follows
from the first part of the proof of Theorem 4.5.10. Now suppose that there are an
infinite number of successful iterations, i.e., S is infinite. Assume that there is an infinite

subsequence {t;} C S such that
VM (vy,)|| > 2¢, for some e >0 and for all i. (4.5.19)

Theorem 4.5.1 implies that for each ¢;, there is a first successful iteration [; > t; such that

IVM(vy,)|| < e. Thus {l;} C S and for all i, we have
IVM(vg)|| > €, forall k with ¢, <k <, and |VM(v,)| <e. (4.5.20)

Let K= {k €S :t; < k < I;}, where the subsequences {t;} and {I;} are defined above; note

that IC is also infinite. It follows from Lemma 4.5.2, the construction of the Algorithm 4.1
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and (4.5.20) that

M(vg) — M(vpg1) = m[M(vg) — Cu(Auy)]

S me e 1 [ IVM(u)ll
me  [|[VM(w) ||
T 12V2 pg

for all k£ € K sufficiently large, where the last inequality is attained because {M(uv)}
is monotonically decreasing by Lemma 4.5.1 and assumed to be bounded below. By
Lemma 4.5.3, together with (4.5.21) and the definition of IC, we can derive the following

bound

€
M(vg) = M(vgsr) > Bglﬂnmkn, (4.5.22)

for all t; < k < I;, i sufficiently large. Summing up (4.5.22) over all sufficiently large

iteration gives

li—1
362 .
\/_[M(/Utz) - M<vl1)] > Z ||Ul€+1 - Uk” > Hvti - vli”? (4523)

€
771 k=t; k€S

for 7 sufficiently large. As {M(v;)} is monotonically decreasing by Lemma 4.5.1 and

assumed to be bounded below, the left had side of (4.5.23) converges to zero as i — 0,

which implies that ||v;, — v, || converges to zero as i — 0. As VM is assumed to be

uniformly continuous on the sequence {v;}, we have ||[VM(vy,) — VM(vy,)|| converges
to zero. This, however, contradicts (4.5.19) and (4.5.20). The proof of the theorem is

complete. n

4.6 Solving the Cubic Regularized Subproblem

The Algorithm 4.3 for the cubic regularized subproblem (4.3.1) is based on an

algorithm of Gertz and Gill [21], which is in turn a modification of the method of Moré and
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Sorensen [34] as described in the Section 2.3.3. In this subsection, we omit the subscript k
when considering the details associated with a single cubic regularized subproblem.
Recalling the necessary and sufficient conditions in Theorem 4.3.1, we seek for a

unique non-negative scalar ¢* such that

*

. o
(B+0"T)s =—=VM, |s|r— e =0,

with (B + oT') positive semidefinite. Let ¢)(0) denote the univariate function
V(o) = ||psllT — %, where p, satisfies (B + oT)p, = —VM.
o

If G, is the smallest eigenvalue of T-Y/2BT'/?  then for any o > max (0, —0,,i,) the
matrix B + o7 is positive definite and ¢ (o) is well-defined. When o is a positive zero of
(o), then s = p, is a global solution the the cubic subproblem. Moré and Sorensen [34]
suggests an safeguarded Newton’s method to find an approximate zero of ¥ (o). To avoid
difficulties associated with the singularities of ¥)(o), Gould, Robinson and Thorne [28] uses

an alternative approach based on finding a zero of

o B8
cb(a;ﬁ):IIpallg—(F)  where 8 € [~1,00)\ {0}.

As in the case of the Moré-Sorensen method, a safeguarded Newton iteration N (o) is
applied with carefully chosen 3 to generate a nonnegative sequence {o;} and an associated
sequence of vectors {p;} such that B+ o7 is positive definite and (B+0T)s = —VM. The
quantity |¢(o)| is used to measure the accuracy of o as an approximate zero of ¢(o; [3).
The Algorithm 4.3 uses the LDL factorization of K (o) to compute the inertia
of B(o) with Lemma 4.3.1 in the line 8. This is different from using the Cholesky
factorization to check positive-definiteness as proposed by Moré and Sorensen. As K (o) is

an (n+m) x (n+m) symmetric matrix, Algorithm 4.3 has roughly the same computational
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costs as the algorithm for solving the problem without using any shifts, which is more
efficient than factorizing B(o) directly. However, the major drawback is that it is hard to
determine a good bound on ¢,,;, when B + ¢T is indefinite. Unlike Cholesky factorization
where a direction of negative curvature can be derived in a straightforward way. It is not
clear how to obtain such an estimate from the LDL factorization of K (o). However, this
does not affect the convergence result.

Another departure from the Moré-Sorensen algorithm is the routine for computing
the null vector, zp,;(-). The routine z,,;(-) implemented in Moré-Sorensen algorithm
is based on the Cholesky factorization of T=/2BT'/? + oI and the condition number
estimator suggested by Cline, Moler, Stewart and Wilkinson [11]. We used a routine
that computes an approximate null vector by using Higham’s [32] modification of Hager’s
algorithm [31] supplied with LAPACK in the line 16. This routine is based on estimating
the the inverse of the one-norm condition number of the square matrix, where only matrix-
vector products with (T~Y/2BT'2 4 ¢I)~! are used, rather than matrix factorization. We
prefer this routine for practical reason that Hager’s algorithm uses inexact arithmetic and

avoids the instability associated with the Cholesky factorization of a near-singular matrix.
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Algorithm 4.3. Schematic outline of primal-dual cubic subproblem.

1: function PRIMAL-DUAL_CUBIC_SUBPROBLEM

2 Initialization: Given 0g, 0 <oy, 0<e <1, 0 K6 < 1;

3 Estimate the lower bound of the smallest eigenvalue of B as ,,in;

4 Set 0g < max(0, —F,in) and og < max(og, 0g);

5: Set [or, oy] < [og, max(og, op)];

6 converged <— false

7 while not converged do

8 Compute Inertia of K (o) by LDL factorization: (6,07, 0%) < In(K(0;));
9 if o7 < n then

10: oi1 < (1=0) %o + 0 xoy;

11: else

12: Compute a vector p by solving the linear system
B(or)p = =VM,;

13: if |¢(0;)| > € or oy — 0, < € then

14: s < p; converged <— true;

15: else if ¢(o;) < —e then

16: Z <= Znull(B70i7T7p7,uc);

17: if 2TB(0;)z <€(2—¢€)(p*B(o;)p + ox(or/1°)?) then

18: § <= p + z; converged <— true;

19: else

20: o5 = max(og, —2 T B(0;)z2);

21: oL, oy| = [max(oyp,0g), min(oy, 0;)];

22: end if

23: end if

24: if not converged then

25: on + N(o;);

26: if oy > o, then

27: Oi+1 < ON;

28: else

29: oi1+ (1 —=0) %o+ 0 % oy;

30: end if

31: end if

32: end if

33: end while

34: end function
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4.7 Practical Considerations for General Case

This section concerns that derivation of the cubic regularization equations for a
shifted primal-dual penalty-barrier merit method for constrained optimization. The method
are intended for the minimization of a twice-continuously differentiable function subject
to both equality and inequality constraints that may include a set of twice-continuously

differentiable constraint functions, written in the general form:

c(x)—s=0, Lys=hy, (°<Lys, Lys<u®,
minimize f(x) subject to

TR seR Ar —b=0, Exx =by, (*<E,xz, E,x <u”,
(4.7.1)
where A denotes a constant m, x n matrix, Ly and L, denote matrices of dimension
my X m and my X m, respectively, with m = m. + my, Ex and F, are fixed matrices of
dimension n, X n and ny X n, respectively, with n = n, + ny. Throughout the discussion,
the functions ¢ : R” — R™ and f : R" — R are assumed to be twice-continuously
differentiable. The components of s may be interpreted as slack variables associated with
the nonlinear constraints. In addition, it is assumed that a subset of the components of x
and s are fixed and that a subset of the other components are subject to upper and lower
bounds.
The quantity Fx denotes an ny x n matrix formed from ny independent rows of
I,,, the identity matrix of order n. This implies that the equality constraints Fyx = by fix
nyx components of x at the corresponding values of by. Similarly, F;, and E, denote n, X n
and ny X n matrices formed from subsets of rows of I,, such that ETE, =0, ELE, =0,

i.e., a variable is either fixed or free to move, possibly bounded by an upper or lower

bound. Note that an z; may be an unrestricted variable in the sense that it is neither

T

fixed nor subject to an upper or lower bound, in which case e; is not a row of Ey, F,

or F,. Analogous definitions hold for Ly, L, and L, as subsets of rows of I,,,. However,
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we impose the restriction that a given s; must be either fixed or restricted by an upper
or lower bound, i.e., there are no unrestricted slacks!. Let £, and L, denote rows of I,
and I, such that ( ET EFT) and ( LT LE) are column permutations of [,, and [,,. It
follows that the rows of £, and E, are a subset of the rows of Iy, and that L, is formed
from the rows of L, and L,. These definitions imply that there are n x n and m x m

permutation matrices P, and P such that

with E,EFY = 1*, E,.EY = 1% and E,EY = 0, and L, L} = I3, L .LT = I3, and
L,LT=0.

All general inequality constraints are imposed indirectly through a shifted primal-
dual barrier function. The general equality constraints c¢(z) —s = 0 and Az = b are
enforced using an primal-dual augmented Lagrangian algorithm, which implies that the
equalities are satisfied in the limit. The exception to this is when the constraints Eyx = by,
and Lys = hy are used to fix a subset of the variables and slacks. These bounds are
enforced at every iterate. This is intended to allow for the possibility of a variable or slack
becoming infeasible with respect to its shifted bound during process of reducing the value
of u”.

An infeasible slack variable is handled by temporarily fixing it on its bound. An
infeasible variable is treated by indirectly enforcing the bound through the use of the
primal-dual augmented Lagrangian. Suppose that ;7 and ji; denote a shift before and
after it is reduced, with s; + 7 > 0 and s; + 17 < 0. The variable s; can be restored

to feasibility by imposing a temporary equality constraint s; = 0. This constraint is

IThis is not a significant restriction because a “free” slack is equivalent to an unrestricted nonlinear
constraint, which may be discarded from the problem. The shifted primal-dual penalty-barrier equations
can be derived without this restriction, but the derivation is beyond the scope of this note.
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enforced through the primal-dual augmented Lagrangian term until the magnitude of
¢;(x) is sufficiently small such that ¢;(x) > —fa7, at which point s; is set to s; = ¢;(z) and
allowed to vary. If z; is infeasible with respect to {7 — u7, the constraint z; — £7 = 0 is

included as a temporary penalty term in M, i.e.,

—v¥(z, —07) +

2
i \Z; (z; — ) + (2 — € + 1 (v; = v7)),

244 J

215 )

where UjE is an estimate of the multiplier for the constraint z; = £, and p} is a penalty

parameter chosen so that pj < /7. The initial values of v; and UJE are v; = z; and vf = 27,
where z; >01is the dual variable associated with the constraint T; > Ef. These quantities
appear in the perturbed primal-dual optimality conditions associated with problem format
(4.7.1). While z; is infeasible, its associated barrier term is omitted from the shifted
primal-dual merit function. Once x; returns to feasibility for the shifted bound, the shifted
barrier term replaces the temporary penalty term in the definition of M with z; and z;

initialized from v; and "U]E . For the purposes of deriving the KKT equations, this scheme

implies that additional constraints Az — b = 0 are imposed as in (4.7.1), where A is a

X
i

matrix of positive and negative rows of I,, and b; is either {7 or —u

Let x and s be given primal variables and slack variables such that Eyx = by,
Lys = hy with (* — pu? < Ex, Eye <u* 4+ p”, 0° —p”? < Lys, Lys < u® + p”. Similarly,
let zy, 29, wy, wy and y denotes dual variables such that w; > 0, wy > 0, z; > 0, and
z9 > 0. The partition of z into free and fixed variables induces a partition of H, A, J,
E, and E,. We use Hy to denote the ny X n, symmetric matrix of rows and columns

of H associated with the free variables and A,, Ay, J., Jyx to denote the free and fixed

columns of A and J. In particular,

H,=FE,HE!, A,=AE} Ay=AE;, J.=JE} and J,=JEy,
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Similarly, the n, X n, matrix E,, and n, X n, matrix E,, comprise the free columns of
FE, and E, with
E,=FEFE' and E, =FE/E;.

It follows that the components of E,.x are the values of the free variables that are subject
to lower bounds. A similar interpretation applied for E,.z,. Analogous definitions apply
for the m, x my matrix L, and m; X my matrix L,,. Consider the diagonal matrices
X{' = diag(Ex — X + pPe), X4 = diag(u* — Eyx + pPe), Zy = diag(z1), Z, = diag(zz),
W, = diag(wy), W = diag(w,), S} = diag(L,s —¢°+ u”e) and S§ = diag(u® — Lys+ p”e).

Given the quantities

1
Dy = p" I, T =y’ ——(c—s),
1
1
D, = p'ly, " =v" — —(Ar —b),
0
(DY)~ = (X1) "' 21, T =t (XY)
(D3)~! = (X§) "' 2s, Ty = (X5) e,

D, = (END?)'E,+ END;)'E,)", 7 =E'l - E'x},

(DY)~ = (81) "W, m’ = p’(SY) " wy,

(Dy") ™ = (85) "W, my =’ (Sy) " hwy,
Dyw = (Ly (D) 'L+ LI(Dy) ' Ly) b, 7" = Lim" — Limy',
DW = (D‘T,V + 00[;2) f
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the KKT system for problem 4.7.1 can be written as follows

1 1
HF(xay) +UI§+EAED;1AF+EEFD;EE _‘]F(x)T A‘TF
J.(x) &(Dy +Dyw) | \ Ay

Er(g— JTy—ATU—Z—l-é[AT(U—’iTV) + z — 7))

Dy (y—7") + Dy (6(y — w) +w—7")

Then, the solutions of the cubic regularization equations for problem 4.7.1 can be obtained

by the following equations

Az = ET As,, Az = Jlr (X0 o - (BLF — O ) = i),
T=uz+ Ax, Azg = 1 —11- U(Xé’“)_l(zg (u = By 4 ple) — pP2y),
Ay = Ay/(1 + 20), As =—aD,, <y+ (14+20)Ay —w+ é[w - WW]>,
G=y+ Ay, Ay = (S (wn (L5 00 4 %) — g 1),
§=s+ As, Awy = 1 —11- U(Sg)*l(wg - (u® — Ly§+ p’e) — pw”2),
ﬁv—vE—MlA(Aa?—b), Av ——hlLU(v—%V),
w=LYw, + LTw — LYTwy, 2= EYz,+Elz — Elz,
U=+ Av, Awy = [y — w]x,

Azy = [g+ HAz — IV — 2].

For further information on the derivation, see Appendix A.
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Chapter 5

Numerical Results

In this chapter, we present the numerical results obtained by the algorithms proposed
in Chapter 3 for unconstrained optimization and Chapter 4 for constrained optimization. The
implementation of these algorithms was done in MATLAB R2019a and all of our experiments
were performed on run on a 2018 MacBook Pro with a 2.2 GHz Intel Core i7 and 32 GB
of RAM. The numerical performance of the proposed algorithms was evaluated on a set of
optimization problems drawn from the Constrained and Unconstrained Testing Environment
(CUTEst). The CUTEst test collection is widely used in the optimization community as a
standard benchmark for comparing the performance of optimization algorithms. It includes
a diverse range of problems, including those from industrial applications, standard academic
problems, and problems specifically designed to expose the weaknesses of optimization algorithms.
A more detailed description of the CUTESst test collection can be found in the works of Gould et
al. [25, 26]. The performance of each algorithm was evaluated based on the number of function
evaluations and the number of iterations required to reach a solution within a pre-specified

tolerance.

5.1 Performance Profiling

Performance profiling is a useful tool for analyzing the results of numerical experiments
on optimization software. The merits of using performance profiles to benchmark optimization

software are discussed by Dolan and Moré [16].
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The method provides a way to compare the performance of a set of solvers applied to a
test set of problems. The main advantage of using performance profiles is that it is intended to
standardize the significance of each problem in a set of tests in comparison to the others, and to
incorporate data from problems, including those in which one or more solvers were unsuccessful
in converging. This is unlike using a basic sum over all converging problems.

The performance profile provides an overview of the performance of a set S of ns solvers
applied to a test set P of n, problems. For each solver s € S and problem p € P in a profile, the
number ¢, s, which represents the time (or some other measure such as the number of iterations)
needed to solve problem p using solver s, is recorded. In order to compare the performance of a
problem p across different solvers, the performance ratio 7, s for each successfully solved problem

and solver is defined as follows

T — tp78
P2 min{t,s:s €S}

The performance ratio for problems that failed is defined as some value greater than the
maximum time needed over all successfully solved problems, denoted by r;;. Note that a solver
s is considered to be the best for solving problem p among all solvers in S if and only if r, s = 1,
which means that the solver s has solved the problem p in the shortest amount of time compared
to other solvers.

Given the set of performance ratios, Dolan and Moré define a performance profile for

each solver s as a function

1
ps(a):n—‘{pep:rpjsga}},
p

where o € [1,rp]. If a solver s has the performance profile ps(«), then ps(a) represents the
fraction of problems that solver s solves within « times the best solver’s performance. The
performance profile ps(«) is a monotonically increasing function that is piecewise constant and
right continuous. The quantity ps(1) denotes the percentage of problems for which solver s was
the most efficient solver among all solvers in the test set. Additionally, ps(ras) is equal to 1, and

lim Sy ps(a) denotes the fraction of problems solved successfully by solver s.
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The presented performance profiles are defined as the function

)

me(T) = nlp [{pePlogy(rps) <7}

with 7 = logy (), which is log-scaled along the horizontal axis to capture behavior near v = 1
and « = rjs. Specifically, the quantity 7s(7) can be interpreted as the fraction of problems in
the test set that were solved within 27 of the best solving time by solver s. In general, the higher

and more left the graph y = 75(7) is, the better the solver s performs.

5.2 Numerical Results for Unconstrained Optimiza-
tion

This section compares the numerical performance of the original ARC algorithm [8] and
various variants of cubic regularization methods applied to unconstrained optimization problems.
The algorithms were implemented using the exact Hessian Hj as Bj in each iteration, along
with the exact cubic subproblem solver described in Section 2.3.3. As a benchmark, we also
implemented a biased Wolfe trust-region method proposed by Gertz [33].

The numerical experiments were conducted on the unconstrained problems from the
CUTEst collection. To ensure computational feasibility within the Matlab environment, we
selected testing problems with fewer than 1000 variables, and for those problems whose dimensions
could be adjusted, we chose smaller variants. In total, 237 unconstrained problems were included
in the test suite.

The stopping criterion for the algorithms was set to be either the gradient norm ||gx||
less than 1076 or the objective function value f;, less than —10°. Additionally, the algorithms
were allowed to run for a maximum of 3000 iterations or one hour, and any runs exceeding these
limits were flagged as failures.

Section 5.2.1 conducts an ablation study and presents performance profiles for the
nonmonotone adaptive cubic regularization algorithm (NMARC) introduced in Section 3.1.

Section 5.2.2 compares the performance of two variants of the ARC-Newton hybrid method
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against the vanilla ARC algorithm, NMARC, and the biased Wolfe trust-region method. The
performance of the methods is compared using the iteration count and function evaluation count
performance profile as the metric. Although it would have been ideal to include a similar figure for
CPU times, it was not feasible to do so using the Matlab CPU timer due to its inaccuracy. A more
precise comparison of CPU times will be conducted in the future with a carefully implemented
version of the methods in FORTRAN or C++, and tested on larger examples in a controlled

computing environment.

5.2.1 Numerical Results for Cubic Regularization Methods
with Line Search Techniques

In this section, we present a comprehensive numerical comparison of various versions
of the nonmonotone adaptive cubic regularization method (NMARC) proposed in Section 3.1,
with the vanilla adaptive cubic regularization (ARC) algorithm, and examine the trade-offs
between the number of iterations and function evaluations for these algorithms. Specifically, we

implemented and evaluated the following five algorithms:

e ARC: The vanilla ARC algorithm as stated in Algorithm 2.2 proposed by Cartis, Gould

and Toint [8].

e NMARC-fixed: The NMARC algorithm as stated in Algorithm 3.1 with a fixed value of

0.8 for the nonmonotonicity parameter S.

e NMARC-adaptive: The NMARC algorithm as stated in Algorithm 3.1 with an dynamic
B that depends on the norm of the gradient ||gx||. The value of S is closer to 1 when the
iterates are far from the optimum, and closer to 0 when the iterates are near an optimum,

which yields better convergence results. Specifically, we define 8 = min{0.9,1 — e~ llgkll/ 2}.

e ARC-Wolfe: The ARC algorithm combined with monotone Wolfe line search, which is

equivalent to the NMARC algorithm with 5, = 0.

¢ ARC-Armijo: The ARC algorithm combined with Armijo-type backtracking line search.
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Table 5.1. Default parameters used in NMARC

Parameter | Value Parameter | Value
T prob.x m 0.01
0o 1 2 0.9
Y1 1.05 7Ns 0.01
Y2 3 Nw 0.9

ARC

NMARC-fixed

01k NMARG-adaptive | _|

ARC-Wolfe

ARC-Armijo
|

. . . . | |
(0] 0.5 1 1.5 2 2.5 3 3.5

Figure 5.1. Performance profiles of ARC with line search techniques on 237 CUTEst
unconstrained problems with respect to the number of iterations.

The MATLAB implementations of the algorithms were initialized with parameter values
given in Table 5.2. These values were selected based on their empirical performance on the entire
set of problems.

Figure 5.1 and Figure 5.2 give the performance profiles for the total number of iterations
and function evaluations. As shown in Figure 5.1, the NMARC algorithms with the Wolfe line
search technique generally require fewer iterations than the vanilla ARC algorithm and the ARC
algorithm combined with Armijo-type line search. On the other hand, Figure 5.2 suggests that
the NMARC algorithm with line search methods typically requires more function evaluations

to converge to an optimal solution, which is in line with our expectations. Moreover, based on
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ARC
NMARC-fixed

01} NMARC-adaptive | _|
. ARC-Wolfe
ARC-Armijo
0 . . . . . . | | |
(0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 5.2. Performance profiles of ARC with line search techniques on 237 CUTEst
unconstrained problems with respect to the number of function evaluations.

the results presented in Figure 5.1, it can be observed that the NMARC algorithm with both
fixed and dynamic nonmonotonicity parameter S, as well as the ARC algorithm with Wolfe line
search, show similar performance profiles for the number of iterations, which are superior to the
performance of the vanilla ARC algorithm and ARC with Armijo-type line search. Regarding the
number of function evaluations, the performance profiles in Figure 5.2 indicate that the NMARC
algorithm with dynamic nonmonotonicity parameter performs better than NMARC with fixed
nonmonotonicity parameter, and has similar performance to the ARC algorithm with monotone
Wolfe line search. In terms of the total number of problems solved successfully, out of the 237
test problems, Algorithm ARC achieved optimality on 224 (94.5%) problems. NMARC-fixed and
ARC-Wolfe solved 222 (93.7%) problems, while NMARC-adaptive solved 223 (94.1%) problems,
and NMARC-Armijo solved 221 (93.2%) problems.

In summary, the numerical results presented in this study support the discussion in
Section 3.1 and suggest that NMARC with (monotone or nonmonotone) Wolfe line search is a

preferable method when the evaluation of the objective function is not computationally intensive.
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5.2.2 Numerical Results for Hybrid Approaches of Cubic
Regularization and Newton’s Method

Table 5.2. Default parameters used in ARC-Newton

Parameter | Value | Parameter | Value
x prob.x T 0.01
00 1 p) 0.9
T 1.05 MNs 0.01
Y2 3 Nw 0.9
€4 1074

ARC

NMARC
o1k ARC-Newton1 | |
ARC-Newton2

TR

I I I N |
(0] 1 2 3 4 5

Figure 5.3. Performance profiles of cubic regularization methods on 237 CUTEst
unconstrained problems with respect to the number of iterations.

This section presents a performance comparison of hybrid approaches that combine the
cubic regularization method with Newton’s method, as discussed in Section 3.2, to ARC, NMARC
and a biased Wolfe trust-region method. The numerical results demonstrate that the hybrid
approach of ARC and Newton’s method is a promising strategy for solving nonlinear optimization

problems. Specifically, we implemented and evaluated the following five algorithms:
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ARC

01k NMARC
ARC-Newton1
ARC-Newton2

TR

L L L L L L L
[o] 1 2 3 4 5 6 7

Figure 5.4. Performance profiles of cubic regularization methods on 237 CUTEst
unconstrained problems with respect to the number of function evaluations.

e ARC: The vanilla ARC algorithm as stated in Algorithm 2.2 proposed by Cartis, Gould

and Toint [8].

¢ NMARC: The NMARC algorithm as stated in Algorithm 3.1 with an dynamic S that
depends on the norm of the gradient ||gx||. The value of f is closer to 1 when the iterates
are far from the optimum, and closer to 0 when the iterates are near an optimum, which

yields better convergence results. Specifically, we define S = min{0.9,1 — e—Hng/z}.

¢ ARC-Newtonl: The first hybrid approach of the cubic regularization method and

Newton’s method outlined in Algorithm 3.2.

¢ ARC-Newton2: The second hybrid approach of the cubic regularization method and

Newton’s method outlined in Algorithm 3.3.

e TR: A trust-region method with a biased Wolfe line search technique proposed by Gertz [33].
To the best of our knowledge this algorithm provides the best numerical performance

among trust-region algorithms.

The MATLAB implementations were initialized with parameter values given in Table 5.2.
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These parameter values were chosen based on the empirical performance on the entire collection
of problems.

Our numerical experiment’s performance profiles for the total number of iterations and
function evaluations are shown in Figure 5.3 and Figure 5.4, respectively. The performance
profiles indicate that while the TR method initially performs well, the hybrid approaches (ARC-
Newtonl and ARC-Newton2) eventually outperform the TR method and other variants of
cubic regularization algorithm in terms of the total number of problems solved. In particular,
problem-by-problem comparisons of the performance profiles indicate that ARC-Newtonl gives
the same or fewer number of iterations required for convergence than the vanilla ARC on
85.1% of the problems, and the same or fewer number of function evaluations on 74.3% of the
problems. Additionally, it can be observed that ARC-Newtonl and ARC-Newton2 are competitive
alternatives to each other. Specifically, while ARC-Newton2 has superior performance in terms
of the total number of iterations, ARC-Newtonl outperforms ARC-Newton2 with respect to the
total number of function evaluations. Regarding the number of problems solved successfully, out
of the 237 test problems, ARC algorithm achieved optimality on 224 (94.5%) problems. NMMAR
was successful on 223 (94.1%) problems, while TR solved 214 (90.3%) problems. ARC-Newtonl
and ARC-Newton2 achieved even higher success rates, solving 225 (94.9%) and 226 (95.5%)
problems, respectively. These results suggest that the hybrid approach of ARC and Newton’s
method is a significant improvement over vanilla ARC and has the potential to be an effective

solution strategy for a wide range of nonlinear optimization problems.

5.3 Numerical Results for Constrained Optimiza-
tion

This section is devoted to the numerical results of the primal-dual adaptive cubic
regularization methods proposed in Chapter 4. We compare the performance of PDARC with
that of the benchmark algorithm, a shifted primal-dual penalty-barrier method (PDB) proposed
by Gill, Kungurtsev, and Robinson [22]. Specifically, we implemented and evaluated the following

three algorithms:

113



¢ PDARC: The primal-dual adaptive cubic regularization method with Armijo line search

technique as described in Algorithm 4.1.

¢ PDARC-Hybrid: The hybrid approach of PDARC algorithm and Newton’s method

outlined in Algorithm 4.2.

e PDB: The shifted primal-dual penalty-barrier method with a specific modified Newton
method proposed by Gill, Kungurtsev, and Robinson [22]. This algorithm serves as a

benchmark for comparison.

Results were obtained for 349 nonlinear constrained optimization problems from the
CUTEst test collection. In order to ensure computational feasibility in the Matlab environment,
we limited our test problems to those with a combined total of variables and constraints not
exceeding 1000. All the problems selected have at least one constraint (not including any simple

upper or lower bounds on variables).

5.3.1 Implementation Details

Each CUTEst problem may be written in the form

minimize f(x)
x

x T u
subject to < <
03 c(x) u®
where ¢ : R” — R™, f : R" — R, and (¢*,¢%) and (u*,u®) are constant vectors of lower and
upper bounds. In this format, a fixed variable or an equality constraint has the same value for

its upper and lower bound. A variable or constraint with no upper or lower limit is indicated by

a bound of £10%°. In our implementation, each problem was converted to the equivalent form

e 1@
subject to c(z) —s =0, Lxs= hx, 05 < Lys, Lys <u®, (5.3.1)

Exx:bx7 gX SELI', EUZ'SUX,
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where s is a vector of slack variables. The quantity Ey denotes an ny X n matrix formed from
ny independent rows of I,. Similarly, £, and E, denote matrices formed from subsets of I,
such that EYE, =0, ELYE, =0, i.e., a variable is either fixed or free to move, possibly bounded
by an upper or lower bound. Note that a variable z; need not be subject to a lower or upper
bound, or may be bounded below and above, in which case e; is not a row of Ey, E, or Ey.
Analogous definitions hold for Ly, L; and L, as subsets of rows of I,,, although a given s; must
be either fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks.
The bound constraints involving Ex and Ly are enforced explicitly. The problem format (5.3.1)
can be extended easily to allow for the possibility of a variable or slack becoming infeasible with
respect to its shifted bound. An infeasible slack variable is treated as in the previous section
by temporarily fixing it on its bound. An infeasible variable is treated by imposing the bound
indirectly using the primal-dual augmented Lagrangian. More details on this can be found in

Section 4.7 and Appendix A.

5.3.2 Algorithm Parameters and Termination Conditions

The parameter values used in the MATLAB implementations of PDARC were initialized
based on empirical performance on the entire collection of problems. Specifically, the parameter
values were chosen according to the tables given in Table 5.3. The primal-dual vector (xg,yo)
was initialized with default values provided by CUTEst. However, the code immediately projects

o onto the feasible region to ensure that it satisfies the bounds on x and is feasible.

Table 5.3. Control parameters and initial values for PDARC and PDARC-Hybrid

Parameter | Value || Parameter | Value
us 1.0 m 0.01
" 1.05 72 0.9
Yo 3.0 €d 10-¢
Yumax/Wmax | 10° 1o 1.0
Tstop 10~ ,ug 1073
To 0.5 Xo 103
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The iterates were terminated at a point satisfying the condition

HX(vk)”oo < Tstops (5.3.2)

where x(v) is the optimality measure defined in terms of problem (5.3.1) (see (A.2.1) in Ap-
pendix A), or the number of iteration reaches 500. Additionally, if the function value at current
iteration is less than —10°, we consider this problem is unbounded below and terminate the

algorithm.

5.3.3 Numerical Results

01k PDB 1

PDARC

PDARC-Hybrid
‘

. . . . . |
(0] 0.5 1 1.5 2 2.5 3 3.5

Figure 5.5. Performance profiles on 349 CUTEst constrained problems with respect to
the number of iterations.

This section aims to compare the numerical performance of the PDARC, PDARC-Hybrid,
and PDB methods. To this end, we present in Figure 5.5 and Figure 5.6 the performance
profiles of these algorithms in terms of the total number of iterations and function evaluations.
The numerical experiments reveal that the PDARC-Hybrid algorithm provides a competitive
alternative to the PDB method. In particular, the performance profile curves of PDARC-Hybrid

and PDB exhibit an alternating pattern, with the PDARC-Hybrid curve initially above the PDB
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01l PDB

PDARC

PDARC-Hybrid
! !

I I I I I I |
(0] 0.5 1 1.5 2 25 3 3.5 4 4.5

Figure 5.6. Performance profiles on 349 CUTESst constrained problems with respect to
the number of function evaluations.

curve, followed by the PDB curve rising above, and ultimately the PDARC-Hybrid curve finishing
above the PDB curve. Moreover, problem-by-problem comparisons of the performance profiles
indicate that PDARC-Hybrid requires the same or fewer iterations to converge than PDB on
70.2% of the tested problems, and the same or fewer function evaluations on 68.2% of the tested
problems. Additionally, it can be observed that PDARC-Hybrid exhibits superior efficiency and
reliability compared to PDARC, which is in line with the findings reported for unconstrained
problems. Out of the 349 constrained test problems, PDARC was successful on 298 (85.4%)
problems, while PDARC-Hybrid achieved optimality on 308 (88.3%) problems, and PDB solved
301 (86.2%) problems. The findings suggest that cubic regularization can be a viable alternative

to modified Newton’s method when the KKT matrix does not have the correct inertia.
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