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ABSTRACT OF THE DISSERTATION

Cubic Regularization Algorithms for Unconstrained and Constrained Optimization

by

Ziyan Zhu

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip E. Gill, Chair

This dissertation focuses on cubic regularization methods for the globalization of

Newton’s method, with applications in unconstrained and constrained optimization. In

recent years, cubic regularization algorithms have emerged as popular alternatives to

trust-region and line-search methods for unconstrained optimization. The goal of this

research is to tackle some of the challenges associated with cubic regularization and extend

the methods to solve constrained problems. The first part of the dissertation is dedicated

to enhancing the efficiency of cubic regularization methods for unconstrained optimization

without sacrificing their favorable convergence properties. A nonmonotone adaptive cubic

regularization approach is proposed that combines adaptive cubic regularization with a

xii



line search. In particular, a sufficient decrease in the objective function is obtained by

performing a nonmonotone line-search based on satisfying certain strong Wolfe conditions.

This is an alternative to repeatedly solving the cubic subproblem with varying regularization

parameters and requires lower computational cost and fewer iterations. In addition, two

hybrid algorithms are developed that substitute cubic regularization with Newton’s method

when the objective function is well-behaved or a sufficient descent direction is readily

obtainable from a conventional Newton method. By judiciously determining when to

utilize cubic regularization, the efficiency of Newton’s method can be balanced against the

robustness of cubic regularization. In the second part of the dissertation, a novel primal-

dual interior-point method for general nonlinear constrained optimization is proposed

that minimizes a sequence of shifted primal-dual penalty-barrier functions. The method

combines cubic regularization and a line-search to ensure global convergence. The proposed

method calculates the cubic regularized step by factoring a sequence of matrices with

diagonally-modified primal-dual structure, enabling the use of off-the-shelf linear equation

software. This approach allows the extension of the method to large-scale problems while

maintaining computational efficiency. Finally, the performance of the proposed algorithms

for both unconstrained and constrained optimization is illustrated by extensive numerical

results obtained from problems in the CUTEst test collection.

xiii



Chapter 1

Introduction

1.1 Overview

Mathematical optimization is a crucial tool across various domains. It aims to find

the best values for variables that maximize or minimize a given function. Optimization

problems arise in a wide range of quantitative disciplines, such as computer science,

engineering, operations research, and economics. The development of solution techniques

has been a topic of interest in mathematics for centuries. In an optimization problem, there

are independent variables or parameters, often accompanied by constraints that impose

conditions or limitations on the values of the variables. Another crucial component of an

optimization problem is the objective function, which serves as a quantitative measurement

of the performance of the system under study and is dependent on the values of the

variables. The goal is to determine a collection of acceptable values for variables that

optimize, i.e., minimize or maximize, the objective function. As maximizing a function is

equivalent to minimizing its negative value, we can, without loss of generality, focus on

minimizing the objective function.

In its most general form, an optimization problem can be expressed as:

minimize
x∈Ω

f(x),

1



where x represents an n-dimensional vector with components x1, x2, . . . , xn, and Ω denotes

the set of allowed values for x. If there are no restrictions on the values of the variables x1,

x2, . . . , xn, meaning Ω = Rn, these problems are considered as unconstrained optimization

problems. Unconstrained optimization problems are typically classified based on the

properties of the function f . In this thesis, our focus lies on methods for solving general

nonlinear unconstrained problems, assuming that f is twice-continuously differentiable.

Trust-region and line-search methods are two prevalent second-order approaches for

nonlinear unconstrained optimization. The use of a cubic overestimator of the objective

function as a regularization technique offers a third alternative. Cubic regularization has

gained attention over the past decade due to its appealing theoretical properties and robust

numerical performance (see Section 2.3 and Section 5.2). In Chapter 3, we propose and

analyze two modifications to the cubic regularization method with the aim of boosting its

numerical efficiency and robustness for solving unconstrained problems.

In other cases, the feasible region Ω is defined algebraically through a set of

functional equalities or inequalities. These problems are called constrained optimization

problems and can be written in the form

minimize
x∈Rn

f(x)

subject to xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu,

where c : Rn 7→ Rm, f : Rn 7→ R, and xl, xu, cl and cu are constant vectors of lower

and upper bounds. As in the unconstrained case, we assume f(x) and c(x) are twice

continuously differentiable. The class of primal-dual path-following interior-point methods

is considered one of the most successful approaches for solving constrained optimization

problems. These methods leverage the properties of both the primal and dual formulations

of the problem to achieve efficient and accurate solutions (see Section 2.4). In Chapter 4,

a primal-dual cubic regularization algorithm for constrained optimization is proposed that

2



is based on minimizing a shifted primal-dual penalty-barrier function.

1.2 Contributions of This Dissertation

The research presented in this dissertation is motivated by our interest in reg-

ularization methods for the globalization of Newton’s method. In recent years, cubic

regularization algorithms have emerged as alternatives to trust-region and line search

approaches. These algorithms employ a strategy that involves determining an approximate

global minimizer of a cubic overestimation of the objective function. The goal of this

thesis is to tackle the some of the challenges that arise in cubic regularization algorithms

and extend these algorithms to primal-dual interior-point methods for solving constrained

optimization problems.

In general, the primary computational expense of the cubic regularization framework

comes from solving the cubic regularized subproblem, which requires solving one or more

linear systems either exactly or through an iterative process. To address this issue, we

present a nonmonotone adaptive cubic regularization method that combines adaptive

cubic regularization with line-search techniques. In particular, the proposed algorithm

performs a nonmonotone line-search based on satisfying certain strong Wolfe conditions

along the direction of the rejected trial step to obtain a sufficient decrease step. This

strategy circumvents the need for repeatedly solving the cubic subproblem with varying

regularization parameters to acquire a trial step that satisfies the sufficient decrease

condition. As a result, the method leads to fewer iterations and ultimately decreases the

overall computational cost, especially when the function evaluation is not computationally

expensive.

Another proposed improvement to the cubic regularization method is a hybrid

approach that combines Newton’s method with the cubic regularization method. While

the Newton method has a fast rate of convergence, it can be impractical when the Hessian

3



is not positive definite or nearly singular. On the other hand, the cubic regularization

method can improve the robustness and efficiency of the optimization process by adding

a regularization term to the objective function, but it requires solving computationally

expensive cubic subproblems. To address these issues, we proposed two variants of a hybrid

algorithm that combines the benefits of Newton’s method and the cubic regularization

method. The first variant of the proposed hybrid algorithm replaces the cubic step with

a Newton step when the objective function is well-behaved and the Hessian is positive

definite. In this approach, cubic regularization is used when necessary — such as when the

objective function is non-convex or poorly conditioned at a given iteration. The second

variant of the hybrid algorithm relaxes the conditions for using the Newton direction to

replace the cubic regularized step. Specifically, if the directional derivative of the Newton

direction and the objective gradient at the current iterate is bounded away from zero, the

trial step is derived from the Newton direction and the sign of the directional derivative.

A Wolfe line-search is then applied to the trial step to ensure global convergence. Cubic

regularization is used only when the Newton direction is nearly orthogonal to the objective,

i.e., the corresponding directional derivative is close to zero. The hybrid approach takes

advantage of the strengths of both methods and reduces the number of linear systems that

need to be solved, resulting in a significant reduction in computational effort.

For general nonlinearly constrained optimization, we present a new primal-dual

interior-point method that is based on finding an approximate solution of a sequence of

unconstrained subproblems parameterized by some scalar parameters. Each subproblem

is solved using a second-derivative Newton-type method that employs a combined cubic

regularization and line-search strategy to ensure global convergence. One of the advantages

of the proposed method is that the cubic regularized step can be computed by factorizing

a sequence of matrices with diagonally-modified primal-dual structure, where the inertia

of these matrices can be determined without recourse to a special factorization method.

This allows the use of off-the-shelf linear system software, making it possible to extend the

4



method to large-scale problems.

This dissertation is organized as follows. Chapter 2 provides a comprehensive liter-

ature review and essential background information that forms the basis for all subsequent

chapters. In Chapter 3, we propose and investigate two modifications to the cubic regular-

ization method, nonmonotone adaptive cubic regularization method and hybrid approach

of cubic regularization and Newton’ method, aimed at boosting numerical efficiency and

robustness for solving unconstrained problems. Chapter 4 explores the application of cubic

regularization method within the context of primal-dual interior-point methods to address

issues such as ill-conditioning and non-convexity in constrained optimization. Lastly, in

Chapter 5, we present an extensive analysis of the numerical results obtained through the

proposed algorithms evaluated using the CUTEst test collection for unconstrained and

constrained optimization.

1.3 Notation

The majority of the notation used in this dissertation is consistent with the

conventions of the standard optimization literature. The objective function is denoted

by f(x), with its gradient and Hessian represented as g(x) and H(x), respectively. The

constraint function is denoted by c(x), and its Jacobian matrix is represented as J(x).

The i-th row of the Jacobian matrix is defined by ∇ci(x)T.

In this dissertation, subscripts serve to reference both vector indices and iterates,

with the specific meaning determined by the context. For instance, xk represents the

k-th iterate in the sequence {xk}, while fk denotes f(xk). Throughout, ei denotes the

i-th standard basis vector, corresponding to a vector in an n-dimensional Euclidean space

characterized by a one in the i-th position and zeros in all other positions.

Unless explicitly stated otherwise, the notation ∥ · ∥ represents the vector two-norm

or the corresponding induced matrix two-norm. The spectrum of a possibly unsymmetric

5



matrix A is denoted by eig(A). The inertia of a real symmetric matrix A, denoted by

In(A), is the integer triplet (n+, n−, n0) that indicates the number of positive, negative,

and zero eigenvalues of A. The i-th eigenvalue of a symmetric matrix A, with eigenvalues

arranged in descending order, is represented by λi, i.e., λ1 ≤ λ2 ≤ · · · ≤ λn. Given vectors

x1 and x2, the column vector composed of the elements of x1 augmented by the elements

of x2 is denoted by (x1, x2). The vector e denotes the vector of ones, with its dimension

determined by the context.

6



Chapter 2

Background

This chapter incorporates background information for the succeeding chapters.

Section 2.1 is dedicated to optimality conditions for unconstrained optimization prob-

lems and nonlinear mixed constrained optimization problems, where the proofs will be

omitted. Section 2.2 provides an introduction to a trust-region method for unconstrained

optimization problems, for comparison with the cubic regularization method. Section 2.3

contains background on adaptive cubic regularization methods on which this thesis is

based. Section 2.4 describes a shifted primal-dual penalty-barrier function that is a basis

of the proposed primal-dual cubic regularization method in Chapter 4.

2.1 Optimality Conditions

2.1.1 Unconstrained Optimization Problems

Unconstrained optimization focuses on the minimization of a scalar-valued function,

denoted by f , without constraints on its input values of x. This section reviews the

necessary and sufficient conditions for a point to be a local minimizer of f .

First, we provide a version of Definition 2.1.1 for different types of local uncon-

strained minimizer.

Definition 2.1.1 (Local unconstrained minimizer; strict unconstrained minimizer; weak

minimizer). Given f : D ⊆ Rn 7→ R, x∗ is a local unconstrained minimizer if there exits

7



an open ball B(x∗, δ) such that B(x∗, δ) ⊂ D and

f(x∗) ≤ f(x) for all x ∈ B(x∗, δ).

If the inequality is strict for all x ∈ B(x∗, δ) and x ̸= x∗, then x∗ is said to be a strict

minimizer. An unconstrained minimizer is a weak unconstrained minimizer if it is not

a strict unconstrained minimizer. If x∗ is the only unconstrained minimizer in B(x∗, δ),

then x∗ is a isolated unconstrained minimizer.

A first-order necessary condition is provided in Theorem 2.1.1 that must hold if x∗

is an unconstrained minimizer and f is differentiable at x∗.

Theorem 2.1.1 (First-order necessary condition for an unconstrained minimizer). If

f : D ⊆ Rn 7→ R is differentiable at a local unconstrained minimizer x∗, then ∇f(x∗) = 0.

Assuming that f has a second derivative near x∗, Theorem 2.1.2 establishes second-

order necessary conditions for x∗ to be an unconstrained minimizer.

Theorem 2.1.2 (Second-order necessary condition for an unconstrained minimizer). If

f : D ⊆ Rn 7→ R is twice differentiable at a local unconstrained minimizer x∗, then

∇f(x∗) = 0 and the Hessian matrix ∇2f(x∗) is positive semidefinite.

The next theorem shows that if x∗ is a stationary point where f has a second

derivative and the Hessian matrix ∇2f(x∗) is positive definite, then x∗ must be an isolated

unconstrained minimizer.

Theorem 2.1.3 (Second-order sufficient condition for an unconstrained minimizer). Given

f : D ⊆ Rn 7→ R, let x∗ be an interior point of D and assume that f has a second derivative

at x∗. If ∇f(x∗) = 0 and the Hessian matrix ∇2f(x∗) is positive definite, then x∗ is an

isolated (and strict) unconstrained minimizer.
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These optimality conditions not only can identify a solution, but also are helpful in

designing optimization algorithms. From Definition 2.1.1, if x̄ is an interior point of D

that is not yet an unconstrained minimizer, every neighborhood of x̄ must contain points

whose values of f are strictly less than f(x̄). Thus there must exist at least one direction

along which one can move away from a non-minimizer and strictly reduce f . To make this

precise, the following definition describes a direction of decrease as a vector p with the

property that all sufficiently small steps along p away from a given point produce strictly

lower values of f .

Definition 2.1.2 (Direction of decrease). Let f : D ⊆ Rn 7→ R be continuous on a convex

set D. A vector p ∈ Rn is a direction of decrease for f at an interior point x ∈ D if there

exists a positive α̂ such that x+ α̂p ∈ D and f(x+ αp) < f(x) for all α ∈ (0, α̂).

The following definitions define two directions that are helpful for the detection of

directions of decrease.

Definition 2.1.3 (Descent direction). Let f : D ⊆ Rn 7→ R be continuously differentiable

at x, an interior point of D. The vector p is a descent direction for f at x if ∇f(x)Tp < 0.

Definition 2.1.4 (Direction of negative curvature). Let f : D ⊆ Rn 7→ R have a second

derivative at x, an interior point of D. The vector p is a direction of negative curvature

for f at x if pT∇2f(x)p < 0.

The next theorem states verifiable conditions for characterizing directions of decrease

in two scenarios: when f is continuously differentiable and when f has a second derivative.

Theorem 2.1.4 (Existence of a direction of decrease). Given f : D ⊆ Rn 7→ R on a

convex set D, assume that f is continuously differentiable on D, and let x be an interior

point of D.

• If the vector p satisfies ∇f(x)Tp < 0, then p is a direction of decrease for f at x.

9



• If, additionally, f has a second derivative at x, then any p̂ satisfying ∇f(x)Tp̂ = 0

and p̂T∇2f(x)p̂ < 0 is a direction of decrease for f at x.

2.1.2 Constrained Optimization Problems

This section reviews the constraint qualification and optimality conditions for a

nonlinear mixed-constraint optimization problem written in the form:

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E

cj(x) ≥ 0, j ∈ I,

(2.1.1)

where ci(x) and cj(x) are nonlinear constraint functions, and E and I are nonintersecting

index sets, representing the equality and inequality components of the nonlinear constraints

respectively. Let cE(x) denote the vector of components ci(x) with i ∈ E , and cI(x) denote

the vector of components cj(x) with j ∈ I. The following definition provides a definition

for a first-order Karush-Kuhn-Tucker (KKT) point of the problem (2.1.1).

Definition 2.1.5 (First-order KKT point). The first-order KKT conditions for problem

(2.1.1) hold at the point x∗, or, equivalently, x∗ is a first-order KKT point, if there exists a

Lagrange multiplier vector y∗ such that

cE(x
∗) = 0 and cI(x

∗) ≥ 0, 0 (feasibility), (2.1.2)

∇f(x∗) = J(x∗)Ty∗, (stationarity), (2.1.3)

y∗I ≥ 0, (nonnegativity), and (2.1.4)

cI(x
∗) · y∗I = 0, (complementarity). (2.1.5)

The first-order KKT conditions may be written compactly as F (x, y) = 0, cI(x
∗) ≥
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0, yI ≥ 0, with

F (x, y) =


∇f(x)− JT(x)y

cI(x) · yI

cE

 .

The KKT conditions rely on the properties of the constraint linearizations, so they

are necessary optimality conditions only if certain constraint regularity conditions (i.e.,

constraint qualifications) are satisfied.

Definition 2.1.6 (Active, inactive, and violated constraints). For the inequality constraints

cI(x) ≥ 0, the i-th constraint is said to be active at x̄ if ci(x̄) = 0, inactive if ci(x̄) > 0 and

violated if ci(x̄) < 0. For the equality constraints cE(x) = 0, the i-th constraint is satisfied

at x̄ if ci(x̄) = 0 and violated at x̄ if ci(x̄) ̸= 0. The set of active inequality constraints at

x̄ is denoted by AA(x̄), i.e., AA(x̄) =
{
i ∈ I : ci(x̄) = 0

}
.

It is important to note that at any feasible point of the problem (2.1.1), all equality

constraints are satisfied, that is, ci(x̄) = 0 for i ∈ E ∪ AA(x̄). With this in mind, we

proceed to formulate the two main constraint qualifications to apply to problems with

mixed constraints.

Definition 2.1.7 (LICQ for mixed constraints). The linear independence constraint

qualification holds at the feasible point x̄ of problem (2.1.1) if the constraint gradients

∇ci(x̄), i ∈ E ∪ AA(x̄) are linearly independent.

Definition 2.1.8 (MFCQ for mixed constraints). The Mangasarian–Fromovitz constraint

qualification holds at the feasible point x̄ of problem (2.1.1) if the gradients of the equality

constraints at x̄ , ∇ci(x̄), i ∈ E , are linearly independent and if there exists a vector p such

that ∇ci(x̄)Tp > 0 for all i ∈ AA(x̄) and ∇ci(x̄)Tp = 0 for all i ∈ E.

The following result presents the necessary conditions for optimality under the

assumption that a constraint qualification holds.
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Theorem 2.1.5 (First-order necessary conditions for mixed constraints). If x∗ is a local

minimizer of problem (2.1.1) and the MFCQ holds at x∗, then x∗ must be a KKT point.

Depending on the nature of x∗, there may be an infinite number of multipliers

satisfying the stationarity condition (2.1.3). The set of multipliers that satisfy the KKT

conditions is defined as follows.

Definition 2.1.9. (Acceptable Lagrange multipliers for mixed constraints). Given a KKT

point x∗ for problem (2.1.1), the set of acceptable multipliers is defined as

Y(x∗) def
=
{
y ∈ Rm : ∇f(x∗) = J(x∗)Ty, yI ≥ 0, and yI · cI(x∗) = 0

}
.

With the definition of Y(x∗), second-order necessary conditions for optimality can

be stated when the LICQ holds.

Theorem 2.1.6 (Second-order necessary conditions). Suppose that x∗ is a local minimizer

of problem (2.1.1) at which the LICQ holds. Then there is a vector y∗ ∈ Y(x∗) and

pTH(x∗, y∗)p ≥ 0 for all p satisfying ∇f(x∗)Tp = 0, JE(x
∗)p = 0 and JA(x

∗)p ≥ 0.

The following result demonstrates the second-order sufficient optimality conditions

for problem (2.1.1).

Theorem 2.1.7 (Second-order sufficient conditions). Let x∗ denote a KKT point of

problem (2.1.1). We say that second-order sufficient conditions hold at x∗ if for every

Lagrange multiplier y satisfying yI ≥ 0, c∗I · yI = 0, and ∇f(x∗) = J(x∗)Ty∗, there

exists ω > 0 such that pTH(x∗, y∗)p ≥ ω∥p∥2 for all nonzero p such that ∇f(x∗)Tp = 0,

JE(x
∗)p = 0 and JA(x

∗)p ≥ 0.

Theorem 2.1.7 is a useful tool for characterizing a local constrained minimizer

without the need for a constraint qualification. However, to establish that x∗ is an

isolated local constrained minimizer, a stronger result, the MFCQ constraint qualification

is required, as shown in the following theorem.
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Theorem 2.1.8 (Sufficient conditions for an isolated solution). The point x∗ is an isolated

local constrained minimizer of problem (2.1.1) if

• x∗ is a KKT point, i.e., c∗I ≥ 0, c∗E = 0, and there exists a nonempty set Y of

multipliers y satisfying yI ≥ 0, c∗I · yI = 0, and ∇f(x∗) = J(x∗)Ty;

• the MFCQ holds at x∗;

• for all y ∈ Y and all nonzero p satisfying ∇f(x∗)Tp = 0, JE(x
∗)p = 0 and JA(x

∗)p ≥

0, there exists ω > 0 such that pTH(x∗, y∗)p ≥ ω∥p∥2.

The following result provides an alternative criterion for identifying an isolated

local constrained minimizer under the LICQ constraint qualification.

Theorem 2.1.9 (Sufficient conditions for an isolated solution). The point x∗ is an isolated

local constrained minimizer of problem (2.1.1) if

• x∗ is a KKT point and strict complementarity holds, i.e., the (necessarily unique)

multiplier y∗ has the property that [y∗A]i > 0 for all i ∈ AA(x
∗);

• x∗ is a feasible and LICQ holds at x∗.

• for all nonzero p such that JA(x
∗)p ≥ 0, there exists ω > 0 such that pTH(x∗, y∗)p ≥

ω∥p∥2.

2.2 Trust-Region Methods

Trust-region methods are a popular class of algorithms for unconstrained optimiza-

tion and are effective for globalizing Newton-like iterations. These methods use a quadratic

model of the objective in a region around the current iterate, and solve a constrained sub-

problem to determine the next iterate. The trust-region subproblem involves minimizing

the local quadratic function subject to a trust-region constraint that restricts the length
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of the step. By controlling the step size, trust-region methods aim to balance the need for

making progress towards optimality with the need to stay within a region where the local

quadratic model is accurate. In this section, we provide a brief overview of trust-region

methods, which will serve as the baseline for evaluating and comparing the ARC methods

discussed in Section 5.2.

Algorithm 2.1 outlines a basic trust-region algorithm that can be used to solve

unconstrained optimization problems with an objective function f . Trust-region methods

Algorithm 2.1. Schematic outline of basic trust-region algorithm.

1: function Trust Region Algorithm

2: Initialization: Given x0, γ2 > 1 > γ1 > 0, 1 > η2 > η1 > 0, k = 0, δk = 1.
3: while not converged do
4: Compute a step pk as an approximate solution of the subproblem (2.2.1).

5: Compute the ratio ρk =
f(xk + pk)− f(xk)
Q(pk)− f(xk)

.

6: if ρk ≥ η1 then
7: xk+1 = xk + pk.
8: if ρk ≥ η2 then
9: δk+1 = max

{
δk, γ2∥pk∥

}
.

10: else
11: δk+1 = δk.
12: end if
13: else
14: xk+1 = xk.
15: δk+1 = γ1∥pk∥.
16: end if
17: k = k + 1.
18: end while
19: end function

explicitly impose a constraint on the length of the step by defining pk as an approximate

solution of the constrained minimization problem

minimize
x∈Rn

Qk(s) = f(xk) +∇f(xk)Ts+ 1
2
sTBks subject to ∥s∥ ≤ δk, (2.2.1)

where δk > 0 is the trust-region radius and Bk is either the exact or an approximate
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Hessian evaluated at x = xk. After solving the subproblem (2.2.1) for the trust-region step

pk, the ratio of actual reduction to the predicted reduction in the objective function f is

computed as

ρk =
f(xk + pk)− f(xk)
Q(pk)− f(xk)

.

If the actual reduction is not less than a certain fraction η1 of the predicted reduction, i.e.,

ρk ≥ η1, then the new point xk+1 is set to xk + pk. However, if the test fails, i.e., ρk < η1,

then xk+1 = xk, the trust-region radius is decreased by a contraction factor γ2 and the

subproblem is solved again. This approach is motivated by the idea that the value of

Q(pk) for the next subproblem will provide a better estimate of f(xk + pk). In practice, it

may take several adjustments of the trust-region radius before the predicted and actual

reductions become comparable.

The main effort associated with the trust-region method is the calculation of an

approximate solution pk of the trust-region subproblem (2.2.1). The following lemma

given by Moré and Sorensen [34] provides the theoretical basis for solving trust-region

subproblem and measuring the quality of an approximate solution.

Lemma 2.2.1 (Lemma 4.1.1 [34]). Let δ be a given positive constant. A vector s∗ is a

global minimizer of the trust-region subproblem Qk(s) if and only if ∥s∗∥ ≤ δ and there

exists a unique λ∗ ≥ 0 such that

(Bk + λ∗I)s∗ = −∇f(xk), λ∗(δ − ∥s∗∥) = 0, (2.2.2)

with Bk + λ∗I positive semidefinite. Moreover, if B + λ∗I is positive definite, then the

global minimizer s∗ is unique.

Mor’e and Sorensen proposed an iterative method for solving the trust-region

subproblem (2.2.1) based on Lemma 2.2.1. The algorithm aims to find an approximate
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solution pk satisfying

Q(s) ≤ τQ∗,

where Q∗ is the optimal value of the trust-region subproblem and τ is a scalar such that

0 < τ < 1. To achieve this, a safeguarded Newton iteration is applied to find a root of

(2.2.2) and ensure that λ remains within the interval [0,∞). This approach is guaranteed

to find a nearly optimal solution in a finite number of iterations.

In a paper by Gertz [33], a line search based on satisfying the Wolfe conditions is

combined with a conventional trust-region method for unconstrained minimization. This

modification preserves the fast convergence and stability of trust-region methods while

reducing the average cost per iteration. Additionally, Gertz proposed a “biased” updating

strategy for the trust region radius δk based on the line-search step length, thereby avoiding

unnecessarily small choices of δk+1. Numerical experiments demonstrate that the biased

Wolfe trust-region method is both efficient and robust in practice, and, as far as we know,

exhibits the best numerical performance of any trust-region method. Consequently, this

algorithm will be used as a benchmark for comparing variants of the ARC algorithm (see

Section 5.2).

2.3 Cubic Regularization Methods

This section provides a comprehensive summary of the inspiration and latest

developments in the cubic regularization method. It serves as the fundamental context for

this thesis. Specifically, Section 2.3.1 examines the inspiration behind cubic regularization

and provides a survey of the relevant literature. Section 2.3.2 discusses an adaptive cubic

regularization approach and its theoretical properties. Finally, Section 2.3.3 outlines the

algorithm for solving the cubic subproblem.
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2.3.1 Introduction

Consider the unconstrained nonlinear programming problem

minimize
x∈Rn

f(x),

where f : Rn 7→ R is a smooth function. The well known globally convergent algorithms,

such as line-search and trust-region methods, are commonly used to solve unconstrained

optimization. Recently, cubic regularization methods have become alternatives to these

methods for globalizing Newton-like methods. The main idea of cubic regularization

algorithms is using a cubic over-estimator of the objective function at current iterate as a

regularization technique to compute the search direction for the next step. The method has

been shown to exhibit both excellent local and global convergence properties, which makes

it well-suited for solving a wide range of optimization problems. Specifically, suppose that

f(x) has gradient ∇f(x) and globally Lipschitz continuous Hessian ∇2f(x) with ℓ2 norm

Lipschitz constant 2L:

∥∇2f(x)−∇2f(y)∥ ≤ 2L∥x− y∥, ∀x, y ∈ Rn.

Then, by Taylor’s theorem, we get the following inequality:

f(x+ p) = f(x) +∇f(x)Tp+ 1
2p

T∇2f(x)p+

∫ 1

0
(1− t)pT(∇2f(x+ tp)−∇2f(x))p dt

≤ f(x) +∇f(x)Tp+ 1
2p

T∇2f(x)p+
1

3
L||p||3 def

= mC
k (p).

(2.3.1)

As long as pk minimizes the overestimation model mC
k (p), i.e.,

f(xk + pk) ≤ mC

k (pk) < mC

k (0) = f(xk),

the next iterate xk+1 = xk + pk reduces the objective value.
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Griewank [29] first considered computing the step by minimizing mC
k (p) in a

technical report. The Lipschitz constant 2L is replaced by a regularization parameter σk

that regularizes the Newton local quadratic model. In particular, Griewank proposed the

use of the local model

mG
k (p)

def
= f(xk) +∇f(xk)Tp+ 1

2
pT∇2f(xk)p+

1

3
σk∥p∥3G,

where σk∥ · ∥3G is chosen dynamically to ensure the overestimation property. Griewank also

established global convergence to a second-order stationary point for a method in which a

descent direction is generated by computing a second-order minimizer of mG
k (p).

Recently, Nesterov and Polyak [36] analyzed the iteration complexity for the

cubic regularization method in which the step is computed by a global minimizer of the

cubic model mC
k (p) and the Hessian is globally Lipschitz continuous. This assumption

allows the derivation of a global iteration-complexity bound of O(ϵ−3/2) for solving the

problem to within a certain level of optimality measured by the parameter ϵ ∈ (0, 1).

This result extends previous work because the method achieves a better global iteration

complexity than the steepest-descent method. Moreover, the method can solve nonlinear

optimization problems to arbitrary precision under weaker assumptions than other second-

order optimization methods such as Newton’s method. Global convergence and an

asymptotically quadratic rate of convergence were also established.

More recently, Cartis, Gould and Toint [8] proposed a numerically efficient adaptive

regularized framework using cubics (ARC) which preserves the good iteration complexity

bound analyzed by Nesterov and Polyak [36]. The global and asymptotic convergence

results were also proved under weaker assumptions. The specific assumptions that guarantee

the local and global convergence properties of the ARC method can vary depending on

the specific method. However, the most common assumption is that the objective function

is Lipschitz continuous and has a bounded Hessian. These are quite weak assumptions in
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the context of optimization. Cartis, Gould and Toint consider the model

mk(p)
def
= f(xk) +∇f(xk)Tp+ 1

2
pTBkp+

1

3
σk∥p∥3,

as an approximation to f at x = xk+p, where Bk is an approximation of the exact Hessian

at xk. Note that, in contrast to line-search methods, the approximated Hessian Bk need

not be positive definite. Moreover, the requirement that a global minimizer of the cubic

model must be found is relaxed to require only that the step pk be at least as good as a

suitable Cauchy step. This requirement makes the practical implementation of the ARC

method feasible. In terms of the complexity bound, Cartis, Gould and Toint [9] show that

the ACR method achieves the optimal complexity bound among second-order methods

for a class of nonconvex optimization problems known as “well-conditioned” problems.

Problems in this class have a curvature condition and a Lipschitz continuity condition on

the gradient.

2.3.2 Adaptive Cubic Regularization Methods

For brevity, we denote fk = f(xk), gk = ∇f(xk) and Hk = ∇2f(xk) throughout this

section. At each iteration, we define a local quadratic model of f at xk + p:

mQ

k (p)
def
= fk + gTk p+

1
2
pTBkp, (2.3.2)

where Bk is an approximates the objective Hessian at xk. The corresponding cubic

regularized model with an adaptive regularization parameter σk > 0 is given by

mk(p)
def
= mQ

k (p) +
1

3
σk∥p∥3 = fk + gTk p+

1
2
pTBkp+

1

3
σk∥p∥3, (2.3.3)

where ∥ · ∥ denotes the ℓ2 norm unless otherwise specified. The generic adaptive cu-

bic regularization scheme proposed by Cartis, Gould and Toint [8] is summarized in
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Algorithm 2.2.

Algorithm 2.2. Schematic outline of a regularization method using cubics.

1: function Adaptive Cubic Regularization

2: Initialization: Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, σ0 > 0, k = 0;
3: while not converged do
4: Trial step computation. Compute a step pk for which

mk(pk) ≤ mk(p
C

k ); (2.3.4)

where pC
k is the Cauchy step

pC

k = −αC

k gk and αC

k = argmin
α∈R+

mk(−αkgk); (2.3.5)

5: Ratio computation.

ρk =
fk − f(xk + pk)

fk −mk(pk)
; (2.3.6)

6: Step acceptance.

Update xk+1 =

{
xk + pk if ρ ≥ η1;

xk otherwise;
(2.3.7)

7: Regularization parameter update.

Update σk+1 ∈


(0, σk] if ρk > η2, [very successful iteration]

[σk, γ1σk] if η1 ≤ ρk ≤ η2, [successful iteration]

[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(2.3.8)

8: k = k + 1;
9: end while

10: end function

At the current iterate xk, a step satisfying the condition (2.3.4) is computed as

an approximate global minimizer of the cubic model mk(p) in (2.3.3). Calculating the

Cauchy step (2.3.5) is computationally inexpensive because it involves minimizing a cubic

polynomial along one dimension. It is worth noting that using a more accurate minimizer

for the cubic model mk(p) may result in improved numerical performance. A particular

method for solving the cubic regularized model will be discussed in the following section.
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The update for the regularization parameter σk is determined by the behavior of f

near the point xk along the step pk. Once the cubic regularized step pk has been found,

the ratio of the actual reduction to the predicted reduction in objective, using the formula

for ρk defined in (2.3.6), is computed. The step pk is accepted if the actual reduction in

objective, f(xk)− f(xk + pk), is “large enough” in magnitude compared to the predicted

reduction, f(xk) −mk(pk). In particular, given a fixed factor η1, satisfying 0 < η1 < 1,

the ratio ρk is required to be at least no smaller than η1, i.e., ρk ≥ η1. When the step is

accepted, the regularization parameter may be remain unchanged or decreased if good

enough agreement between model and objective are observed. By contrast, if the test fails,

i.e., ρk < η1, then the step is rejected and xk+1 = xk. The regularization parameter is

expected to be increased and the cubic subproblem is solved again. This strategy is based

on the observation that the regularization parameter σk plays a role in estimating the

local Lipschitz constant of objective Hessian, which can lead to a local overestimation of

f . Increasing the weight σk will implicitly decrease the step size as proved in Lemma 2.3.1

in the next section. It may be necessary to solve the subproblem multiple times before the

predicted and actual reductions are comparable.

As norms on Rn are equivalent, it is possible to use a more general norm ∥x∥M =

(xTMx)1/2, in place of the ℓ2 norm in the model mk(p). Moreover, the positive-definite

matrix M can vary with the iteration number k, as long as it is uniformly bounded and

positive definite for all k. The convergence properties of the ARC algorithm continue to

be valid in this more general setting.

Theoretical Results

The adaptive cubic regularization method exhibits excellent local and global conver-

gence properties under certain weak assumptions, and it achieves the optimal complexity

bound among second-order methods shown by Cartis, Gould and Toint [7]. The complexity

bound refers to the number of iterations required for the algorithm to converge to an
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approximate solution that is within a certain level of optimality. This section provides

a summary of some promising theoretical results for the adaptive cubic regularization

method. The following assumptions will be frequently used in this section.

Assumption 2.3.1. ∥Bk∥ ≤ κB, for all k ≤ 0, and some κB ≥ 0.

Assumption 2.3.2 (Dennis-Moré condition). The error in the matrix Bk as an approxi-

mation of the exact Hessian Hk satisfies:

∥(Bk −Hk)pk∥
∥pk∥

→ 0, whenever ∥gk∥ → 0, k →∞.

There are several methods for updating the matrix Bk using quasi-Newton tech-

niques that will satisfy the Dennis-Moré condition, as long as certain additional conditions

are satisfied [38].

Assumption 2.3.3. The approximate Hessian Bk approaches the exact Hessian Hk

whenever the iterates approach a first-order critical point, namely

∥Hk −Bk∥ → 0, whenever ∥gk∥ → 0, k →∞. (2.3.9)

Assumption 2.3.9 can be theoretically guaranteed when the matrix Bk is set to the

approximation of Hk obtained through finite differences [38]. This assumption also holds

when using a symmetric rank-one approximation method to update Bk, as long as the

steps taken are linearly independent [6, 13].

Assumption 2.3.4. The error of the approximate Hessian Bk satisfies:

∥(Bk −Hk)pk∥ ≤ C∥pk∥2, for all k ≥ 0, and some constant C > 0.

Assumption 2.3.5. The gradient g is uniformly continuous on the sequence of iterates

22



{
xk
}
, namely,

∥gli − gmi
∥ → 0, whenever ∥xli − xmi

∥ → 0, i→∞

where
{
xli
}
and

{
xli
}
are the subsequence of

{
xk
}
.

Assumption 2.3.5 holds true if g is uniformly continuous on Rn, or if g is globally

Lipschitz continuous on
{
xk
}
.

Assumption 2.3.6. The gradient g is Lipschitz continuous on an open convex set X

containing the sequence of iterates
{
xk
}
, namely,

∥gx − gy∥ ≤ κH∥x− y∥, for all x, y ∈ X, and some κH ≥ 0.

Assumption 2.3.6 is satisfied if the Hessian H(x) is bounded above on X.

Assumption 2.3.7. The Hessian H is locally Lipschitz continuous in a neighborhood of a

given point x∗, namely,

∥H(x)−H(y)∥ ≤ L∗∥x− y∥, for all x, y sufficiently close to x∗, and L∗ ≥ 0.

Assumption 2.3.8. The Hessian H is globally Lipschitz continuous, namely,

∥H(x)−H(y)∥ ≤ L∗∥x− y∥, for all x, y ∈ Rn, and L∗ ≥ 0.

The next lemma shows that, in contrast to the explicitly controlled step size by the

trust-region constraint in the trust-region algorithm, the step size is controlled implicitly

and nonlinearly in the ARC algorithm.

Lemma 2.3.1 (Lemma 2.2 [8]). Suppose that Assumption 2.3.1 holds and that the step pk
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satisfies (2.3.4). Then

||pk|| ≤ 3max

κB
σk
,

√
||gk||
σk

 , k ≥ 0.

The following theorem demonstrates the first-order convergence of the ARC algo-

rithm under relatively weak conditions.

Theorem 2.3.1 (Theorem 2.5 & Corollary 2.6 [8]). Let Assumption 2.3.1 hold. If{
f(xk)

}∞
k=1

is bounded below, then

lim inf
k→∞

∥gk∥ = 0.

In addition, suppose that Assumption 2.3.5 holds, then

lim
k→∞
∥gk∥ = 0.

The next theorem presents conditions that guarantee the limit points of the sequence

of iterates are second-order critical points, without requiring the model or the function f

to be globally or locally convex at the iterates or their limit points.

Theorem 2.3.2 (Theorem 5.4 [8]). Suppose that Assumptions 2.3.1, 2.3.3, 2.3.4, and 2.3.5

and 2.3.8 hold. Assume that
{
f(xk)

}
is bounded below, and that σ ≥ σmin > 0 for k ≥ 0.

Also, let pk be the global minimizer of the cubic model mk(p). Then any subsequence of

negative leftmost eigenvalues
{
λmin(Hk)

}
converges to zero as k →∞, and thus

lim inf
k→∞,k∈S

λmin(Hk) = 0.

Furthermore, any limit point of the sequence of iterates
{
xk
}
, if exists, is second-order

critical.
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The next result shows that if the solution of the cubic model at each iteration

is sufficiently accurate then, under certain assumptions, the ARC algorithm is at least

Q-superlinearly convergent.

Corollary 2.3.1 (Corollary 4.8 and Corollary 4.10 [8]). Assume that Assumptions 2.3.1,

2.3.2 and 2.3.5 hold, and that f has second-order derivatives. If the solution pk of cubic

model at each iteration satisfies

∥∇mk(pk)∥ ≤ min(κ, ∥∇mk(0)∥
1
2 )∥gk∥

for some 0 < κ≪ 1, then gk → 0, and xk → x∗ at a Q-superlinear rate as k →∞, i.e.,

lim
k→∞

∥gk+1∥
∥gk∥

= 0, and lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

Furthermore, if Assumptions 2.3.6, 2.3.7 and 2.3.4 hold, then gk → 0, and xk → x∗ at a

Q-quadratic rate as k →∞.

The ARC algorithm has a worst-case iteration complexity of O(ϵ−3/2) for first-order

optimality within a margin of error of ϵ, as stated in the next corollary.

Corollary 2.3.2 (Corollary 5.3 [9]). Suppose that Assumptions 2.3.4, 2.3.6 and 2.3.8 hold,

and that
{
f(xk)

}
is bounded below. Let σ is bounded below by some constant σmin > 0.

Given ϵ ∈ (0, 1), if the solution pk of cubic model at each iteration satisfies

∥∇mk(pk)∥ ≤ min(κ, ∥∇mk(0)∥
1
2 )∥gk∥

for some 0 < κ≪ 1, then there exists a constant c depending on x0 such that at most

⌈ c

ϵ3/2

⌉
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iterations of cubic regularization method are needed to obtain an iterate xk such that

∥gk∥ ≤ ϵ.

It is important to keep in mind that this is a worst-case complexity bound, and the

actual number of iterations required for the algorithm to converge may be much smaller

in practice. The actual time complexity of the algorithm depends on many factors, such

as the specific problem being solved, the properties of the data, and the implementation

details.

Updating the Regularization Parameter

The regularization parameter plays a crucial role in the performance of the ACR

algorithm, and an appropriate choice can lead to fast convergence and good solution

quality. The weight σk estimates the local Lipschitz constant of the objective’s Hessian,

and quantifies the discrepancy between the objective function and its second-order Taylor-

series approximation. In contrast to the trust-region algorithm, where the step size is

controlled explicitly and linearly by the trust-region constraint, the step size in the ARC

algorithm is controlled implicitly and non-linearly, as shown in Lemma 2.3.1. An efficient

parameter updating strategy was proposed by Gould, Porcelli and Toint [27] based on

interpolation techniques.

The ARC algorithm adjusts the step size based on the agreement between the

objective function and the local model at each iteration. When the agreement is poor in

an unsuccessful iteration, the step size is reduced by increasing σk, in order to increase

the chances of success in the next iteration. On the other hand, when there is a good

agreement between the objective function and the model in a very successful iteration,

it indicates that the model is overestimating the objective function value locally. In this

case, σk is decreased to reduce the gap between the two. This leads to the design of an

update strategy that makes use of the overestimation gap between the current objective

function f(xk + pk) and the current local model value mk(pk) to adjust the step size in
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order to improve the performance of the algorithm.

To avoid the need for additional function evaluations, a cubic function pf (α), α ≥ 0,

is used to interpolate f(xk + αpk). This function is defined such that it satisfies the

following conditions: pf(0) = fk, p
′
f(0) = gTk pk, p

′′
f(0) = pTk Bkpk and pf(1) = f(xk + pk).

This interpolation function is chosen to satisfy the following conditions:

• pf (0) = fk, the objective function value at the current point;

• p′f (0) = gTk pk, the the directional derivative of the objective function along the search

direction;

• p′′f (0) = pTk Bkpk, the curvature of the objective function at the current point;

• pf (1) = f(xk + pk), the objective function value at the next point.

A possible form of pf (α) is

pf (α) = fk + gTk pkα +
1

2
pTk Bkpkα

2 + pf3α
3,

where pf3 = f(xk + pk)−mQ

k (pk). The quadratic model (2.3.2) along the search direction

pk may be written as

q(α) = fk + gTk pkα +
1

2
pTk Bkpkα

2,

while its regularized cubic counterpart is

c(α, σ) = q(α) +
σ||pk||3

3
α3.

The current overestimation gap χf
k can be calculated by

χf
k = ck(pk)− f(xk + pk). (2.3.10)

Note that the model mk at pk overestimates f(xk + pk), i.e. χ
f
k ≥ 0, if and only if ρk ≥ 1.

27



In the case of a very successful iteration, where the local model overestimates the objective

function, the regularization parameter should be decreased. This will reduce the gap χf
k

by a factor β, where β ∈ (0, 1). Here, two cases are considered, f(xk + pk) ≥ mQ

k (pk) and

f(xk + pk) < mQ

k (pk).

In the case where f(xk+pk) ≥ mQ

k (pk), the objective lies between the local quadratic

model and the cubic model. We search for α and σ such that

d

dα
c(α, σ) = 0, (2.3.11)

c(α, σ)− pf (α) = βχf
k . (2.3.12)

Equation (2.3.11) is used to find the stationary point of the cubic model along the search

direction pk. At the same time, the gap χf
k between the objective function and the cubic

model is reduced by a factor β as imposed by equation (2.3.12). After some simplifications,

the required α satisfies the following cubic equation

3βχf
k + gTk pkα + pTk Bkpkα

2 + 3pf3α
3 = 0.

The algorithm seeks the root α, which exceeds 3
√
β by the least, if it exists. The value of

σ is updated by using equation (2.3.12), which can be rewritten as

σ = σk + 3
χf
k

∥pk∥3

(
β − α3

α3

)
.

If such a root does not exist or if the value of α is too large, the σ will be reduced by a

factor δ1 ∈ (0, 1).

When f(xk + pk) < mQ

k (pk), the objective lies below the local quadratic model. In

this case, reducing the gap between the cubic model and the objective function may result

in reducing it too much. Instead, the algorithm aims to reduce the gap between the cubic
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model and the quadratic model defined as follows

χq
k = ck(pk)− qk(pk), (2.3.13)

and searches for α and σ satisfying

d

dα
c(α, σ) = 0, (2.3.14)

c(α, σ)− q(α) = βχf
q . (2.3.15)

Equation (2.3.14) finds a stationary point of the cubic model with respect to α along the

search direction, and equation (2.3.15) reduces the gap between the cubic model and the

quadratic model by a factor β. After some simplifications, the required α satisfies the

following quadratic equation

3βχq
k + gTk pkα + pTk Bkpkα

2 = 0.

Provided it exists, the algorithm pursues the root α which exceeds 3
√
β by the least, and

recovers σ by (2.3.15), which can be rewritten as

σ =
β

α3
σk.

If such a root does not exist or if the value of α is too large, the algorithm will simply

decrease σ by a factor δ1 ∈ (0, 1).

In the case of a very unsuccessful iteration (ρk < 0), where the objective function

value at the next point is not much better than the current point, the regularization

parameter should be increased. The algorithm searches for αpk and σ such that the next

iteration is expected to be at least a successful iteration. This is done by finding α and σ
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that satisfy the following conditions:

d

dα
c(α, σ) = 0, (2.3.16)

f − pf (α) = η(f − c(α, σ)), (2.3.17)

for some η ∈ [η1, 1). Equation (2.3.16) finds α which is a stationary point of the cubic

model along the search direction, and equation (2.3.17) increases the gap between the

objective function and the cubic model by a factor η where η ∈ [η1, 1). After some

simplifications, the required α satisfies the following quadratic equation

2(3− 2η)gTk pk + (3− η)pTk Bkpkα + 6pf3α
2 = 0.

If it exists, the algorithm explores the positive root α, and recover σ by (2.3.17), which

can be rewritten as

σ =
−gTk pk − pTk Bkpkα

α2∥pk∥3
.

Otherwise, if the positive root α does not exists, the algorithm increases σ by a factor

δ3 > 1.

For other situations, the algorithm follows the usual updating rules as specified in

equation (2.3.8).

2.3.3 Solving the Cubic Regularized Subproblem

The practicality of adaptive cubic regularization algorithm depends on the efficiency

of solving the cubic regularization subproblem at each iteration. Because of the similarity

between the optimality conditions of trust-region subproblem and cubic regularization

subproblem, the strategy proposed by Moré and Sorensen [34] could be applied to find a

suitable approximate global minimizer of the cubic model. More recently, Gould, Robinson

and Thorne [28] proposed an enhancement to Moré-Sorensen algorithm using higher order
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polynomial approximations to achieve fast convergence rate. Throughout this section, the

(outer) iteration subscript k is dropped for simplicity.

Consider the cubic regularization subproblem defined by

minimize
s∈Rn

C(s) def
= gTs+ 1

2
sTBs+

1

3
σ∥s∥3M , (2.3.18)

where the M -norm of x is ∥x∥M =
√
xTMx. The following theorem provides the necessary

and sufficient optimality conditions for the subproblem (2.3.18) and measures the quality

of an approximate minimizer.

Theorem 2.3.3 (Theorem 2 [28]). Any s∗ is a global minimizer of the cubic model C(s)

over Rn if and only if there exists a unique λ∗ ≥ 0 such that

(B + λ∗M)s∗ = −g, λ∗

σ
= ∥s∗∥M ,

with B + λ∗M positive semidefinite. For any global minimizer s∗, the value of λ∗ is unique

and independent of s∗. If B + λ∗M is positive definite, s∗ is unique.

Suppose the matrix pencil (B,M) has generalized eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

and that U is a matrix of associated generalized eigenvectors ui, 1 ≤ i ≤ n, such that

UTMU = UMUT = I. For any scalar λ, let s(λ) be the solution to

(B + λM)s = −g, (2.3.19)

whenever the system is compatible. Zero-finding methods based on Theorem 2.3.3 attempt

to find a pair (s, λ) with λ ≥ max(−λ1, 0) for the secular equation

∥s(λ)∥βM =

(
λ

σ

)β

(2.3.20)

with some appropriately chosen parameter β. The solution of equation (2.3.20) always
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exits, with the exception of a ”hard case” as described in [34]. The hard case may

occur when g lies in the orthogonal complement of the eigenspace associated with the

smallest generalized eigenvalue λ1. In this case, as ||s(λ)||M has no pole at λ = −λ1,

||s(λ)||M approaches a finite value as λ→ −λ1. The system (2.3.19) is consistent when

λ = max(−λ1, 0), and has the least-length solution s†. However, if ||s†||M < λ
σ
, there is

no solution to the secular equation (2.3.20) for λ ≥ max(−λ1, 0) (see the right graph in

Figure 2.1). In this case, the required solution is s† + τu1, where u1 is a null vector of

B − λ1T of unit length and the scalar τ is chosen so that ||s† + τu1||M =
λ

σ
.

To demonstrate the algorithm, the real line is partitioned into three sets:

N def
=
{
λ | B + λM is not positive definite.

}
,

L def
=
{
λ | B + λM is positive definite and ∥s(λ)∥M ≥

λ

σ
.
}
,

G def
=
{
λ | B + λM is positive definite and ∥s(λ)∥M <

λ

σ
.
}
.

and denote F = L ∪ G for the set of λ such that B + λM is positive definite. For

convenience, define the secular function

ψ(λ; β)
def
= ∥s(λ)∥βM , (2.3.21)

and denote the right hand side of the secular equation (2.3.20) as

τ(λ; β)
def
=

(
λ

σ

)β

. (2.3.22)

The plots in Figure 2.1 illustrate examples of the function ψ(λ; β) for a special case

of β = 2, which show the behavior of the function with respect to the value of λ. These

plots can be useful to understand how the function behaves in the “easy” case and “hard”

case.

The following lemma states the main properties of ψ(λ; β) for different values of β.
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Figure 2.1. Graphs for the problem min x21 − 2x22 + x1 + 5x2 +
σ

3
∥x∥3 with σ = 0.2 (the

“easy” case, left), and those for min x21 − 2x22 + x1 +
σ

3
∥x∥3 with σ = 0.2 (the “hard” case,

right). Here the x-axis denotes different values of λ, and the y-axis denotes the values of

π(λ)
def
= ψ(λ; 2).

Lemma 2.3.2. Suppose ψ(λ; β) is defined as in (2.3.21). Then for λ > max(λ1, 0), we

have

(i) ψ(λ; β) is twice-continuously differentiable;

(ii) ψ(λ; β) is strictly decreasing to zero and strictly convex when β > 0;

(iii) ψ(λ; β) is strictly increasing to infinity and concave when β ∈ [−1, 0).

Proof. As

ψ(λ; β) = ∥s(λ)∥βM = ∥ − (B + λM)−1g∥βM =

√√√√ n∑
i=1

(uT
i Mg)2

(λ+ λi)2

β

,

the results follow from Lemma 2.1 in [10].
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The uniqueness of the root, say λ∗ > λs, for the secular equation (2.3.20)

ψ(λ; β) = τ(λ; β),

is guaranteed by Lemma 2.3.2. In order to solve the secular equation (2.3.20) by safe-

guarded Newton-like method, the derivatives of ψ(λ; β) are needed. Let’s first consider

the derivatives for the special case β = 2. The derivatives for the general case in which

β ̸= 2 can be deduced by chain rule based on the derivatives of ψ(λ; 2). The derivatives of

the function ψ(λ; 2) with respect to λ can be evaluated recursively using the chain rule as

shown in the following result.

Theorem 2.3.4 (Theorem 3 [28]). Suppose that H + λM is positive definite, and s(λ) is

the solution to (2.3.19). Let s(0)
def
= s(λ) and α0

def
= 1. Then for k = 0, 1, . . . , the derivatives

of ψ(λ; 2) satisfy

ψ(2k+1)(λ; 2) = 2αks
(k)T (λ)Ms(k+1)(λ),

and ψ(2k+2)(λ; 2) = 2αk+1s
(k+1)T (λ)Ms(k+1)(λ)

where

(H + λM)s(k+1)(λ) = −(k + 1)Ms(k)(λ) and αk+1 =
2(2k + 3)

k + 1
αk.

For the general case where β ̸= 2, the derivatives of ψ(λ; β) are expressed in terms

of the derivatives of ψ(λ; 2), and only the derivatives with order less or equal to 3 are

considered due to the increasing computational cost for higher order derivatives. As

ψ(λ; β) = ∥s(λ)∥βM = [ψ(λ; 2)]β/2, by chain rule, the derivatives for ψ(λ; β) with respect to
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λ can be evaluated as

ψ(1)(λ; β) =
β

2
[ψ(λ; 2)]β/2−1ψ(1)(λ; 2),

ψ(2)(λ; β) =
β

2
[ψ(λ; 2)]β/2−1ψ(2)(λ; 2)

+
β

2

(
β

2
− 1

)
[ψ(λ; 2)]β/2−2

[
ψ(1)(λ; 2)

]2
,

ψ(3)(λ; β) =
β

2
[ψ(λ; 2)]β/2−1ψ(3)(λ; 2)

+
3β

2

(
β

2
− 1

)
[ψ(λ; 2)]β/2−2ψ(1)(λ; 2)ψ(2)(λ; 2)

+
β

2

(
β

2
− 1

)(
β

2
− 2

)
[ψ(λ; 2)]β/2−3

[
ψ(1)(λ; 2)

]3
.

(2.3.23)

Equipped with the derivatives, the following theorem compares the values of ψ(λ; β)

and its Taylor series approximations. This theorem allows us to determine when the Taylor

approximation overestimates or underestimates the function ψ(λ; β), and guides the choice

of β in Newton-like steps in the algorithm towards finding the root.

Theorem 2.3.5 (Theorem 6 [28]). Suppose that H + λM is positive definite, and s(λ) is

the solution to (2.3.19). Let λs
def
= max(−λ1, 0), and ψk(δ; β) be the k-th order Taylor-series

approximation to ψ(λ+ δ; β). Then for any λ ≥ λs, we have the following results.

(i) for β > 0, when δ > 0,

ψ(λ+ δ; β) ≤ ψ2(δ; β) and ψ(λ+ δ; β) ≥ ψk(δ; β) for k = 1, 3; (2.3.24)

while when λs − λ < δ < 0,

ψ(λ+ δ; β) ≥ ψ3(δ; β) ≥ ψ2(δ; β) ≥ ψ1(δ; β); (2.3.25)
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(ii) otherwise, when δ > 0,

ψ(λ+ δ; β) ≤ ψ1(δ; β) for β ∈ [−1, 0),

ψ(λ+ δ; β) ≥ ψ2(δ; β) for β ∈ [−2

3
, 0),

ψ(λ+ δ; β) ≤ ψ3(δ; β) for β ∈ [−2

3
, 0);

(2.3.26)

while when λs − λ < δ < 0,

ψ(λ+ δ; β) ≤ ψ1(δ; β) for β ∈ [−1, 0),

ψ(λ+ δ; β) ≤ ψ2(δ; β) ≤ ψ1(δ; β) for β ∈ [−2

3
, 0),

ψ(λ+ δ; β) ≤ ψ3(δ; β) ≤ ψ2(δ; β) ≤ ψ1(δ; β) for β ∈ [−2

5
, 0).

(2.3.27)

The inequalities in (2.3.24)-(2.3.27) are strict if λ ̸= λs.

At each iterate λi, the safeguarded Newton-like method uses a k-th order Taylor

approximation of the function ψ(λ, β), and solves a polynomial

ψk(δ; β) = τ(λi + δ; β), (2.3.28)

to obtain a correction δ to λi. Consider the case that the current iterate λi is in the

region G. For positive β, by inequalities (2.3.25) in Theorem 2.3.5, the largest positive

roots of the equation (2.3.28) for k ∈
{
1, 3

}
will provide underestimations of λ∗, and

for k = 2 any positive root of (2.3.28) will overestimate λ∗. Meanwhile, for β ∈ [−1,∞),

by inequalities (2.3.27), the least-negative roots of the equation (2.3.28) for k = 1 will

lead to guaranteed under-estimates of λ∗. When the current iterate λi lies in the range

G, for positive β, by inequalities (2.3.24) in Theorem 2.3.5, the least negative roots of

the equation (2.3.28) for k ∈
{
1, 2, 3

}
will give estimates to the left of λ∗, while, for

β ∈ [−1,∞), by inequalities (2.3.26), the least-negative roots of the equation (2.3.28)
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for k = 1 will lead to guaranteed under-estimates of λ∗. For a given β and degree k,

the best prediction, denoted as λk(β), is obtained by finding the root of (2.3.28), and

adding it to the current iterate λi. Unlike trust-region subproblem, where the linear Taylor

approximation with β = −1 is the preferred choice [10], it is not clear which values of β

and k are optimal for solving the cubic subproblem. The algorithm will select the best

λk(β) from a sample of permissible β and k in practice.

The algorithm for solving the cubic subproblem is summarized in Algorithm 2.3.

To start with, the algorithm is provided with an initial estimate λ0, typically obtained

from the previous cubic subproblem in the outer iteration. Then a lower bound of the

smallest eigenvalue of the Hessian matrix B is estimated from some numerical methods,

such as Rayleigh quotient or Gershgorin’s theorems [14]. Having a good estimate of the

smallest eigenvalue can make the algorithm converge faster, but it doesn’t change the

final outcome of the convergence. In the line 8, a routine chol(·) is used to compute a

Cholesky factorization of the matrix B+λiM and efficiently determine whether the matrix

is symmetric positive definite. If the Cholesky factorization of the matrix B + λiM fails,

indicating that the matrix is not positive definite, the routine chol(·) can determine the

index of the pivot position where the factorization failed and return it as Rtype. This

information can be used to find a direction of negative curvature, and thus an upper bound

on the smallest eigenvalue (see [20]). The value of the next iterate λi+1 is then determined

by using the lower and upper estimates as in the line 12. If the matrix B + λiM is found

to be positive definite, the solution s of (2.3.19) can be obtained by using the Cholesky

factorization computed earlier. If the current solution s satisfies the secular equation

(2.3.20) within the desired tolerance, or the gap between lower and upper bound of λ∗ is

small enough, the algorithm will terminate and the current s will be returned and used as

the search step in the outer loop. Note that other relaxed early termination conditions

can also be used [8, 34, 21]. If these termination conditions are not satisfied, the value of

λ will be updated based on the region that the current iterate λi lies in.
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The value of λ will be updated using safeguarded Newton-like method, ensuring

that each iterate λi remains within the region F . Suppose λi ∈ G, i.e. ∥s∥ >
λi
σ
. The

algorithm will check if a hard case is present by utilizing a routine, znull(·), to compute an

approximated null vector z of B + λiM . If this approximated null vector is good enough,

satisfying the conditions in the line 19, the solution is constructed as s+ τz where τ is

a properly chosen scalar such that ||s + τz||M =
λi
σ
. Otherwise, the value of λ will be

updated by selecting the maximum value from among λ1(−1), λ2(2), λ3(2), where the

derivatives are calculated using the recursive formula given in (2.3.23). Now suppose

λi ∈ L, i.e. ∥s∥ <
λi
σ
. The value of λ will be updated by choosing the maximum value

among λ1(−1), and λ3(2). It is worth noting that once the current iterate λi falls into the

region L, the subsequent iterates will be guaranteed to remain in the region L for any

n ≥ i. This is because the update rule for λ will always lead to a underestimation of λ∗ as

discussed before. However, when λi ∈ G, the next iterate may be located within N . In

this scenario, a safeguarding strategy is employed to move the next iterate back into the

feasible region F as outlined in the line 36.

38



Algorithm 2.3. Schematic outline of solving cubic subproblem.

1: function Cubic Subproblem
2: Initialization: Given λ0, 0 < λU , 0 < ϵ≪ 1, 0≪ θ < 1, i = 0;
3: Estimate the lower bound of the smallest eigenvalue of B as λ̄min;
4: Set λS ← max(0,−λ̄min) and λ0 ← max(λ0, λS);
5: Set [λL, λU ]← [λS , max(λ0, λU )];
6: converged ← false;
7: while not converged do
8: Compute Cholesky factorization of B + λM : [R,Rtype] = chol(B + λiM);
9: if Rtype > 0 then
10: Possibly compute an estimate λE ≥ λ1;
11: Update λL ← max(λL, λE);
12: λi+1 ← (1− θ) ∗ λL + θ ∗ λU ;
13: else
14: Compute a vector s by solving the linear systems

RTq = −g;RTs = q.

15: if
∣∣∣∥s∥ − λi

σ

∣∣∣ < ϵ or λU − λL < ϵ then

16: s∗ ← s; converged ← true;
17: else if λi ∈ G then
18: z ← znull(B, λi,M, s, σ);
19: if zT(B + λiM)z < ϵ(2− ϵ)(pT(B + λiM)p+ λk(λk/µ

C )2) then

20: Choose a τ such that ||s(λi) + τz||M =
λi

σ
;

21: s∗ ← s+ τz; converged ← true;
22: else
23: λS ← max(λS ,−zT(B + λiM)z);
24: [λL, λU ]← [max(λL, λS), min(λU , λi)];
25: end if
26: end if
27: if not converged then
28: if λi ∈ L then
29: λN ← max {λ1(−1), λ3(2)}
30: else
31: λN ← max {λ1(−1), λ2(2), λ3(2)}
32: end if
33: if λN > λL then
34: λi+1 ← λN ;
35: else
36: λi+1 ← (1− θ) ∗ λL + θ ∗ λU ;
37: end if
38: end if
39: end if
40: end while
41: end function
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2.4 Penalty and Barrier Functions

This section provides a brief survey of penalty and barrier functions used in interior

methods for solving nonlinear inequality problem:

minimize
x∈Rn

f(x) subject to c(x) ≥ 0. (2.4.1)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuous differentiable nonlinear functions.

2.4.1 Conventional Barrier Functions

The logarithmic barrier method is a conventional and popular technique for solving

problems with inequality constraints. It involves defining a sequence of nondecreasing

barrier parameters
{
µk

}
, with µk → 0, and constructing a logarithmic barrier function

B(x;µk) as follows:

B(x;µk) = f(x)− µk

m∑
i=1

ln ci(x).

The logarithmic terms are well defined only at points x for which c(x) > 0, and becomes

unbounded as x approaches points where the constraint is satisfied. The conventional

barrier method aims to minimize B(x;µk) subject to the constraint that c(x) > 0, and

the unconstrained local minimizer x(µk) of B(x;µk) defines a continuously differentiable

path known as the barrier trajectory or central path. The goal is to follow this trajectory

towards a local solution of the problem (2.4.1). It is important to note that the logarithmic

barrier method requires a feasible starting point, and that it converges to a solution under

certain updating strategies of the sequence of barrier parameters.

Directly minimizing B(x;µ) is not recommended because of poor convergence as

µ→ 0, as discussed by Forsgren, Gill, and Wright [19]. This is due to the fact that the

unconstrained minimizer x(µ) is a poor estimate of the unconstrained minimizer x(µ̄)

when the barrier parameter is decreased from µ to µ̄. As a result, a full Newton step
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cannot be taken immediately after the barrier parameter is reduced. This inefficiency

makes the classical logarithmic barrier method unsuitable for practical use.

2.4.2 Modified Barrier Functions

Modified barrier methods [12, 24, 37] are a class of optimization algorithms that

aim to overcome the difficulties associated with minimizing the logarithmic barrier function

B(x;µ) as µ→ 0 in the conventional barrier method. These methods define a sequence of

unconstrained problems in which the value of µ is kept bounded away from zero. By doing

so, they avoid the problem of dealing with an ill-conditioned Hessian, and can achieve

better convergence properties.

Modified barrier methods take advantage of the equivalence between the original

inequality constraints ci(x) ≥ 0 and the modified inequality constraints µ ln (1 + ci(x)/µ) ≥

0 for fixed positive µ. A KKT point for the original problem (2.4.1) is also a KKT point

for the modified problem

minimize
x∈Rn

f(x) subject to µ ln (1 + ci(x)/µ) ≥ 0, i = 1, 2, . . . ,m. (2.4.2)

The modified barrier functionM(x, λ) is defined as the conventional Lagrangian function

for the modified problem (2.4.2). It incorporates the logarithmic barrier terms, but with

the modified constraints µ ln (1 + ci(x)/µ) ≥ 0 instead of ci(x) > 0, which is written as

M(x;λ) = f(x)− µ
m∑
i=1

λi ln (1 + ci(x)/µ). (2.4.3)

The modified barrier function has an important property: if a KKT point x∗ has

an acceptable multiplier λ∗ in Y(x∗), then there exists a fixed µ∗ such that for any µ, the

corresponding x∗ is a local minimum ofM(x;λ∗). This suggests that ∇M(x∗;λ∗) = 0 and

∇2M(x∗;λ∗) = 0 is positive semidefinite. As a result, if an optimal multiplier is known,
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finding x∗ can be accomplished with a single unconstrained minimization.

In practical applications, both the optimal multiplier vector and an upper bound

on µ are typically unknown in advance. Therefore, a series of problems must be solved,

where each problem defines the merit function (2.4.3) using estimates of λ∗ and µ∗. The

multiplier estimate is then updated after each subproblem, and the barrier parameter

is decreased if ∇2M(x;λ) is not positively definite enough. To find further information,

please refer to the following sources [24, 35, 37].

Primal-dual methods have become the most popular class of interior-point methods

in recent years. However, if the merit function (2.4.3) is used as the merit function, these

methods need a separate safeguarded measurement for the dual variables after the primal

step since (2.4.3) does not involve any dual variables. However, since the merit function

(2.4.3) does not involve the dual variables, these methods require a separate safeguarded

measurement to the dual variables after the primal step, if (2.4.3) is used as the merit

function. Furthermore, when the problem is nonconvex, and the current primal-dual iterate

is far from the trajectory, there is no assurance that a solution exists for the primal-dual

system or condensed system.

An alternative approach is based on a merit function that incorporates both primal

and dual variables [18], which is defined as

Mµ(x, y) = f(x)− µ
m∑
i=1

ln ci(x)−
m∑
i=1

{
ln

(
yici(x)

µ

)
+

(
1− yici(x)

µ

)}
. (2.4.4)

The function (2.4.4) can be interpreted as the classical barrier function B(x;µ) augmented

by a weighted proximity term that measures the distance of (x, y) to the trajectory

(x(µ), y(µ)). The key property of this merit function is that it is minimized with respect

to both x and y at any point (x(µ), y(µ)) on the trajectory of minimizers, and a decrease

in the function (2.4.4) can be used to encourage progress toward a minimizer of B(x;µ).

Despite the advantages of the merit function (2.4.4), there are still some limitations.
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For example, it can be challenging to handle equality constraints within this scheme, and

finding a strictly feasible point can also be difficult in practice. Additionally, the merit

function approach still requires the barrier parameter µ to converge to zero, which means

that some of the numerical benefits of barrier methods are lost.

2.4.3 Primal-Dual Shifted Penalty-Barrier Functions

Gill, Kungurtsev, and Robinson [22] recently introduced a shifted primal-dual

penalty-barrier function that serves as a merit function for a primal-dual path-following

method. This method addresses issues with equality constraints and the need for a

strictly feasible point, which were discussed in the previous section. We adopt this shifted

primal-dual penalty-barrier function as a merit function used in the primal-dual cubic

regularization methods described in Chapter 4.

The shifted primal-dual problem associated with problem (2.4.1) is obtained by

including the constraints c(x) − s = 0 with the objective using a shifted primal-dual

augmented Lagrangian term, and using a shifted primal-dual penalty-barrier term for the

simple bounds s ≥ 0. This gives the problem

minimize
x,s,y,w

M(x, s, y, w ;µP , µB , yE , wE) subject to s+ µBe > 0, w > 0, (2.4.5)

whereM(x, s, y, w ;µP , µB , yE , wE) is the shifted primal-dual penalty-barrier function

M(x, s,w, y;wE , yE , µP , µB) = f(x)−
(
c(x)− s

)T
yE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2

−
m∑
i=1

µBwE

i ln
(
si + µB

)
−

m∑
i=1

µBwE

i ln
(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB).

(2.4.6)

which is well defined for all w and s such that w > 0 and s+ µBe > 0.

The search directions generated by a specific approximate Newton method for
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minimizing the merit function (2.4.6) can be shown to be identical to those of a variant of

the conventional path-following method in which the perturbation of the complementarity

condition does not need to go to zero. By updating the parameters appropriately, the

stationary points of the merit function (2.4.6) have properties that can be used in the

formulation of a globally convergent algorithm for the nonlinear programming problem

(2.4.1). For a more comprehensive explanation and analysis of the shifted primal-dual

penalty-barrier function and its associated algorithm, please refer to the work of Gill,

Kungurtsev and Robinson [22].
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Chapter 3

Cubic Regularization Algorithms for
Unconstrained Optimization

This chapter addresses the application of the cubic regularization method to

unconstrained optimization. Consider the unconstrained nonlinear programming problem

minimize
x∈Rn

f(x) (UC)

where f : Rn 7→ R is a smooth function. The primary objective of this study is to improve

the numerical efficiency of the ARC algorithm for solving problem (UC) while preserving

the convergence properties.

Two improvements to the ARC algorithm are proposed. The first involves the

use of a line search with the cubic trial step. The second emphasizes the employment

of Newton’s step when appropriate. In Section 3.1, we formulate and analyse a cubic

regularization algorithm in conjunction with a nonmonotone line search that employs

the strong Wolfe conditions, and investigate the convergence properties of the proposed

algorithm. Section 3.2 explores two hybrid methods that integrate cubic regularization

and Newton’s method, and examines their respective properties.
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3.1 Cubic Regularization Methods with Line Search

Techniques

3.1.1 Introduction and Motivations

This section introduces and examines a novel algorithm that combines cubic

regularization methods and line-search techniques. One of the well-known limitations

of cubic regularization frameworks is that solving the cubic regularized subproblem can

involve solving one or more linear systems or may execute an iterative process that

incurs significant computational cost to the method. In contrast, a line-search method,

despite possibly requiring a higher number of iterations and function evaluations to

determine a minimum of the objective function f , generally achieves greater efficiency per

iteration. Motivated by these observations, when evaluating the objective function is not

computationally intensive, performing a line search on the objective function along the

direction of the rejected trial step can eliminate the need to repeatedly solve the cubic

subproblem when the sufficient decrease condition is not satisfied. This approach leads to

a reduced number of iterations and ultimately reduces the overall computational cost.

Bianconcini and Sciandrone [4] proposed a modification to the ARC algorithm

that enhances its computational efficiency while preserving global convergence properties.

Their approach is based on a suitably combination of the Armijo-Goldstein line search

and the ARC method. The concept behind this approach is to leverage the computational

effort spent on minimizing the cubic model to compute the search direction and exploit the

potential desirable properties of this direction. Recently, Dehghan, Heydari and Hosseini

[15] presented two modified versions of the ARC method for the unconstrained optimization

problems, where the trial step is accepted by a nonmonotone Armijo-type line search

technique. The nonmonotone methods stand out for not enforcing a strict monotonicity in

the objective function values at successive iterations. Some studies have shown that the

use of nonmonotone techniques can improve the chances of finding the global optimum and
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accelerate the rate of convergence [30, 39]. These methods typically exhibit advantageous

numerical results, particularly when applied to highly nonlinear problems.

Although the Armijo-type line search on the cubic trial is a straightforward and

easy-to-implement method, an unsatisfactory feature of it is that the step size can only

be decreased during the line search process. The Armijo-type line search can result in a

step size that is too small, which can slow down convergence, especially in cases where the

function being optimized is not well-behaved or has flat regions. The proposed algorithm in

this section addresses this limitation by implementing a nonmonotone line search technique

with the strong Wolfe conditions on the cubic step. The Wolfe line search is a more

sophisticated line search method that provides both a sufficient decrease condition and a

curvature condition. It can result in a larger step size and converge faster, especially for

nonsmooth or ill-conditioned objective functions.

In Section 3.1.2, the design and implementation of the NMARC algorithm are

presented. The theoretical analysis of the convergence of the NMARC algorithm is provided

in Section 3.1.3. The numerical results of the NMARC algorithm on CUTEst unconstrained

test problems and ablation studies are reported in Section 5.2.

3.1.2 A Nonmonotone ARC algorithm

This section commences with the introduction of a nonmonotone approach in-

corporating the Wolfe conditions, followed by a description of our nonmonotonic ARC

line-search framework.

As suggested by Zhang and Hager [39], the strongest nonmonotone strategies yield

the best convergence results when the iterations are far from the optimal solution, and

weaker strategies perform better when closer to the minimizer. The nonmonotone term is

defined as

Qk+1 = βkQk + 1, Ck+1 =
βkQkCk + fk+1

Qk+1

, (3.1.1)
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α

f(xk + αpk)

Wolfe conditions

Figure 3.1. The red line denotes a linear function derived from the Armijo condition
lk(x) = fk + ηsαg

T
k pk, which ensures a sufficient reduction in the objective function value.

The blue line segments represent a set of α values that satisfy the strong Wolfe conditions.

where Q0 = f0, βk ∈ [βmin, βmax], βmin ∈ [0, 1), and βmax ∈ [βmin, 1). It can be seen that the

value of Ck+1 is a weighted average of Ck and fk+1, where the value of Ck at each iteration

is a convex combination of the function values at all previous iterations, f0, f1, . . . , fk.

The value of βk plays a crucial role in determining the level of nonmonotonicity in the

algorithm. When the value of βk is close to 1, it results in a stronger nonmonotone strategy

that puts equal weight on all the previous function values. On the other hand, a value

closer to 0 results in a weaker nonmonotone strategy which approximates a traditional

monotone line search by giving more importance to the recent function values. By adaptive

selecting βk, the influence of Ck can be increased when far from the optimal solution and

decreased when closer to it.

Drawing inspiration from the biased Wolfe trust-region algorithm introduced by

Gertz [33], the cubic regularization step can be augmented with a line search that locates a

point that adheres to the Wolfe conditions. Figure 3.1 depicts an example of a set of points

meeting the (monotone) strong Wolfe conditions. A rough approximation of an exact line
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search can be achieved by requiring the magnitude of g(xk + αpk)
Tpk to be sufficiently

reduced compared to gTk pk. Let ηw satisfy 0 ≤ ηw < 1. The first Wolfe condition on α can

be written as

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk|. (3.1.2)

This condition prevents the step length αk from being not too small. The second (non-

monotone) Wolfe condition serves the purpose of ensuring that the trial step is making

sufficient progress towards a decrease in function value, similar to the Armijo condition. It

is usually stated as:

f(xk + αkpk) ≤ Ck + ηsαkg
T
k pk, (3.1.3)

where ηs is a constant satisfying 0 < ηs <
1
2
. This criterion ensures that the trial step

is not too conservative, and that the function value is reducing by a sufficient amount.

Note that if ηk−1 is set to 0 in (3.1.1), then Ck = fk and the condition (3.1.3) is the usual

Armijo condition. Together, theses two criteria (3.1.2) and (3.1.3) characterize a set of

acceptable step lengths that satisfy the strong Wolfe conditions.
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Algorithm 3.1. Schematic outline of NMARC.

1: function Nonmontone ARC

2: Initialization: Given x0, 0 < η1 ≤ η2 < 1, 1 < γ1 ≤ γ2, σ0 > 0.
3: k = 0; C0 = f0, Q0 = 1.
4: while not converged do
5: Compute a step pk for which

mk(pk) ≤ mk(p
C

k ), (3.1.4)

where the Cauchy step

pC

k = −αC

k gk and αC

k = argmin
α∈R+

mk(−αkgk). (3.1.5)

6: Compute

ρk =
Ck − f(xk + pk)

fk −mk(pk)
.

7: if ρk ≥ η1 then
8: Set xk+1 = xk + pk.

9: Set αk =

{
2 if ρk ≥ η2,

1 otherwise.

10: else
11: Set xk+1 = xk + αkpk where αk satisfies Wolfe conditions:

f(xk + αkpk) ≤ Ck + ηsαkg
T
k pk, ηs ∈ (0, 1

2
),

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk|, ηw ∈ (ηs, 1).

(3.1.6)

12: end if
13: Cost update: Choose βk ∈ [0, 1), and set

Qk+1 = βkQk + 1, Ck+1 =
βkQkCk + fk+1

Qk+1

.

14: Update

σk+1 ∈


(0, σk) if αk > 1,

[σk, γ1σk) if αk = 1,

[γ1σk, γ2σk) otherwise.

15: k = k + 1.
16: end while
17: end function

The proposed nonmonotone adaptive cubic regularization (NMARC) method is
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summarized in Algorithm 3.1. The algorithm starts by solving the cubic subproblem

mk(s)
def
= fk + gTk s+

1
2
sTBks+

1

3
σk∥s∥3

to compute the trial step pk. Then the ratio ρk of the actual reduction to the predicted

reduction in objective is computed as

ρk =
Ck − f(xk + pk)

fk −mk(pk)
. (3.1.7)

If the trial step pk is accepted by nonmonotone criteria, the step is considered to be

successful and the next iterate is set as xk+1 = xk + pk. Otherwise, the method performs a

nonmonotone line search in the direction of the rejected trial step pk instead of resolving the

cubic subproblem again. The step size αk that satisfies the nonmonotone Wolfe conditions

(3.1.6) always exists, as demonstrated in Lemma 3.1.3 in the following section, which

implies that the line search update is well-defined. Then, nonmonotone term is updated

using (3.1.1). Additionally, the weight σk will be updated properly according to the step

size αk. If the iteration is successful or αk is not reduced during the line search process

(i.e., αk ≥ 1), then σk may remain unchanged or be decreased. Conversely, if the step

length is reduced, the weight σk will be increased prior to the next iteration, with the aim

of reducing the step size.

3.1.3 Theoretical Discussion

In this section, the first-order convergence results of Algorithm 3.1 will be discussed.

Under certain mild assumptions, it can be shown that the sequence {xk} produced by

Algorithm 3.1 converges towards a solution with ∥gk∥ → 0 as k → ∞ Similarly to the

ARC algorithm, Algorithm 3.1 only requires an approximate solution that is no worse

than the Cauchy step for convergence.
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To prove the convergence of Algorithm 3.1, we first present a series of supporting

lemmas. The following lemma, which was previously proved in [8], provides useful properties

of the approximate solution of the cubic subproblem satisfying (3.1.4).

Lemma 3.1.1 (Properties of a Cauchy step). Suppose that pC
k is the Cauchy step, i.e. pC

k

is the solution of (3.1.5), and the step pk satisfies (3.1.4). Then for k ≥ 0, we have that

fk −mk(pk) ≥ fk −mk(p
C

k ) ≥
∥gk∥
6
√
2
min

 ∥gk∥
1 + ∥Bk∥

, 1
2

√
∥gk∥
σk

 . (3.1.8)

The next lemma shows a upper bound for the size of the approximate solution of

the cubic subproblem in terms of the regularization parameter σk. It was also proved

previously in [8].

Lemma 3.1.2. Assume ∥Bk∥ ≤ κB for all k ≥ 0 and for some constant κB > 0. Suppose

that I is an infinite index set such that αk > 0 and ∥gk∥ ≥ ϵ, for all k ∈ I and sine ϵ > 0,

and
√
∥gk∥/σk → 0, as k →∞, k ∈ I. Then

∥pk∥ ≤ 3

√
∥gk∥
σk

for all k ∈ I sufficiently large. (3.1.9)

Additionally, if xk → x∗, as k ∈ I, k →∞ for some x∗ ∈ Rn, then each iteration k ∈ I

that is sufficiently large is very successful, and

σk+1 ≤ σk, for all k ∈ I sufficiently large. (3.1.10)

To ensure that the nonmonotone line search update with strong Wolfe conditions

is well-defined, sufficient decrease conditions will be suitable for practical algorithms

only when points exist that satisfy them, i.e., it is necessary to guarantee that the

set of acceptable step lengths is not empty. The next result shows that, when f is

twice-continuously differentiable, an interval of positive steps satisfying the strong Wolfe
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conditions exists as long as ηw ≥ ηs.

Lemma 3.1.3. Consider a line-search algorithm with initial point x0, such that the level

set L(f0) is bounded, and assume that pk an approximate solution of the cubic subproblem

mk(s) satisfying (3.1.4) for all k ≥ 0. Then at every iteration k there exists αl > 0 and an

interval (αl, αu) such that the strong Wolfe conditions,

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk| and f(xk + αkpk) ≤ Ck + ηsαkg

T
k pk,

are satisfied for every α ∈ (αl, αu).

Proof. This proof is divided into two parts. In the first part, we will prove that there

exists a positive scalar ξ that satisfies the nonmonotone Armijo condition (3.1.3) and also

g(x+ ξpk)
Tpk = ηsg(xk)

Tpk. In the second part, we will demonstrate that such a ξ also

satisfies the condition in (3.1.2).

For simplicity, let M(α) denote the univariate function M(α) = f(xk + αpk), with

M(0) = fk, M
′(0) = gTk pk. The nonmonotone strong Wolfe conditions (3.1.2) and (3.1.3)

can be written as

|M ′(α)| ≤ ηw|M ′(0)| and M(α) ≤ Ck + αηsM
′(0).

Let s(α) denote the univariate function

s(α) = f(xk + αkpk)− Ck − αηsgTk pk =M(α)− Ck − αηsM ′(0).

Taking the derivative of s(α) with respect to α gives

s′(α) =M ′(α)− αηsM ′(0),

From Lemma 3.1.1, it can be shown that pk is a descent direction, so that M ′(0) < 0.
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Together with ηs < 1, we have

s′(0) =M ′(0)− ηsM ′(0) = (1− ηs)M ′(0) < 0.

The nonzero derivative theorem implies the existence of a positive scalar α̂ such that

s(α) < 0 for all α ∈ (0, α̂). As a result, there exists a scalar ξ1 ∈ (0, α̂) such that s(ξ1) < 0.

Since the level set is bounded, it is compact and M(α) is bounded below by some

constant L, i.e., M(α) ≥ L for all α ∈ [0,∞). Since Ck + αηsM
′(0)→ −∞ as α→ +∞,

there must exist a positive ξ2 such that

Ck + ξ2ηsM
′(0) = L,

and we have

s(ξ2) =M(α)− Ck − ξ2ηsM ′(0) ≥ L− Ck − ξ2ηsM ′(0) = 0.

Let ᾱ denote the smallest positive root of s(α) = 0. Since s(0) = 0, s(ᾱ) = 0, and

s(α) < 0 for all α ∈ (0, ᾱ), by mean value theorem, there must exist an ξ ∈ (0, ᾱ) such

that s′(ξ) = 0 and s(ξ) < 0, or, equivalently,

M ′(ξ) = ηsM
′(0) and M(ξ) < Ck + ξηsM

′(0).

Moreover, we know that M ′(0) < 0, so M ′(ξ) < 0. Additionally, the inequality ηs ≤ ηw

implies that

M ′(ξ) ≥ ηsM
′(0) ≥ −ηwM ′(0).

These inequalities lead to

ηwM
′(0) ≤M ′(ξ) < 0 ≤ −ηwM ′(0),
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which implies that ξ satisfies |M ′(ξ)| ≤ ηw|M ′(0)|.

We have demonstrated the existence of a positive scalar ξ that satisfies both the

nonmonotone Armijo condition (3.1.3) and the curvature condition (3.1.2), thus indicating

that the set of points satisfying the nonmonotone strong Wolfe conditions is non-empty.

The next auxiliary lemma shows the sequence {Ck} generated by Algorithm 3.1 is

monotonically decreasing.

Lemma 3.1.4. Let {xk} be the sequence generated by Algorithm 3.1. Then for any k ≥ 0,

we have

fk+1 ≤ Ck+1 ≤ Ck. (3.1.11)

Proof. In each iteration of the algorithm, there are two possibilities: either the search

direction pk is accepted when ρk ≥ η1, or a line search is initiated. If ρk ≥ η1, following

from (3.1.7) and Lemma 3.1.1, it can be deduced that

Ck − fk+1 ≥ η1 (fk −mk(pk)) ≥ 0.

If, on the other hand, by (3.1.4) and (3.1.3), we have

fk+1 ≤ Ck + ηsαkg
T
k pk ≤ Ck.

Thus, through the updating rule of Ck as defined in (3.1.1), it follows that result (3.1.11)

holds.

For simplicity, we denote the index set of all successful iterations of the NMARC

algorithm by

S = {k > 0 : Ck − f(xk + pk) ≤ η1 (fk −mk(pk))}.

Theorem 3.1.1. Assume f is continuously differentiable over Rn and ∥Bk∥ ≤ κB for all
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k ≥ 0 and for some constant κB > 0. If {fk} is bounded below, then

lim inf
k→∞

∥gk∥ = 0. (3.1.12)

Proof. We will prove this theorem by contradiction. Assume that the result in equation

(3.1.12) is not true, meaning that there exists some ϵ > 0 such that

|gk| ≥ ϵ, for all k ≥ 0. (3.1.13)

To show the contradiction, we will demonstrate that the following equation holds,

∞∑
k=1

√
∥gk∥
σk

< +∞. (3.1.14)

If k ∈ S, by the definition of ρ given in (3.1.7) and using Lemma 3.1.1, it follows that

Ck − fk+1 ≥ η1 (fk −mk(pk)) ≥ η1
∥gk∥
6
√
2
min

 ϵ

1 + κB
, 1
2

√
∥gk∥
σk

 . (3.1.15)

On the other hand, if k /∈ S, it can be proved from Lemma 3.1.1, Lemma 3.1.3, and the

construction of Algorithm 3.1 that

−gTk pk ≥ fk −mk(pk) ≥
∥gk∥
6
√
2
min

 ϵ

1 + κB
, 1
2

√
∥gk∥
σk

 ,

and hence

fk+1 ≤ Ck + ηsαlg
T
k pk ≤ Ck − ηsαl

∥gk∥
6
√
2
min

 ϵ

1 + κB
, 1
2

√
∥gk∥
σk

 . (3.1.16)

56



By combining (3.1.15) and (3.1.16), it can be deduced that

fk+1 ≤ Ck −
∥gk∥
6
√
2
min

 η1ϵ

1 + κB
,
η1
2

√
∥gk∥
σk

,
ηsαlϵ

1 + κB
,
ηsαl

2

√
∥gk∥
σk

 .

Together with the definition of Ck in (3.1.1) and Lemma 3.1.1, we can write

Ck − Ck+1 ≥
ϵ

6
√
2Qk+1

min

 η1ϵ

1 + κB
,
η1
2

√
∥gk∥
σk

,
ηsαlϵ

1 + κB
,
ηsαl

2

√
∥gk∥
σk

 .

Since βmax < 1 and Qk+1 ≤ 1 +
∑k

j=0 β
j+1
max ≤

1

1− βmax

, it follows that

Ck − Ck+1 ≥
ϵ

6
√
2(1− βmax)

min

 η1ϵ

1 + κB
,
η1
2

√
∥gk∥
σk

,
ηsαlϵ

1 + κB
,
ηsαl

2

√
∥gk∥
σk

 . (3.1.17)

Since {fk} is assumed to be bounded below and by utilizing Lemma 3.1.4 which states

that fk ≤ Ck ≤ Ck−1, {Ck} is monotonically decreasing and bounded below, and and thus

it is convergent. This implies that

∞∑
k=0

(Ck − Ck+1) ≤ C0 < +∞,

Therefore, it follows from (3.1.15) and (3.1.17) that (3.1.14) holds, and

lim
k→∞

√
∥gk∥
σk

= 0. (3.1.18)

Hence, as a result of Lemma 3.1.2 and the construction of Algorithm 3.1, we can conclude
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that for sufficiently large l ≥ 0 and r ≥ 0, we have

∥xl+r − xl∥ ≤
l+r−1∑
k=l

∥xk+1 − xk∥

=
l+r−1∑
k=l

αk∥pk∥

≤ 3αu

l+r−1∑
k=l

√
∥gk∥
σk

,

which implies that {xk} generated by Algorithm 3.1 is a Cauchy convergent sequence,

meaning there exists a point x∗ ∈ Rn such that xk → x∗ as k → ∞. By Lemma 3.1.2,

we know that {σk} is a bounded sequence, i.e., there exists a constant σ̂ > 0 such that

σk ≤ σ̂. This leads to √
∥gk∥
σk
≥
√
ϵ

σ̂
> 0,

which contradicts with (3.1.18). The proof of the theorem is completed.

The following corollary demonstrates that the implementation of the line-search

technique in Algorithm 3.1 will not compromise the first-order convergence properties of

the cubic regularization algorithm. Under the assumptions stated in Theorem 3.1.1 and

with the additional requirement of uniform continuity of the gradient g on the iterates

{xk}, it can be shown that Algorithm 3.1 will either reach a termination point where the

convergence criteria is satisfied, or limk→∞ ∥gk∥ = 0.

Corollary 3.1.1. Assume ∥Bk∥ ≤ κB for all k ≥ 0 and for some constant κB > 0. If

{fk} is bounded below and f and g are uniformly continuous on the sequence {xk}, then

lim
k→∞
∥gk∥ = 0. (3.1.19)

Proof. We shall prove this theorem by contradiction. To this end, suppose that the

conclusion in equation (3.1.19) does not hold, i.e., that there exists an infinite subsequence
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{ti} and a constant ϵ > 0 such that

∥gti∥ ≥ 2ϵ, for all i > 0. (3.1.20)

This implies that the gradient of the objective function is not converging to zero along

this subsequence. For all i > 0, let li denote the first iteration after ti such that ∥gli∥ ≤ ϵ,

and define the set K = {k ≥ 0 : ti ≤ k < li}. It follows that

∥gk∥ ≥ ϵ for all ti ≤ k < li, and ∥gli∥ < ϵ. (3.1.21)

for all i > 0. It is important to note that K is an infinite set. Subsequently, following the

same reasoning used in the proof of Theorem 3.1.1, we would obtain that

36
√
2

ϵmin{η1, ηsαl}
(Cti − Cli) ≥

li−1∑
k=ti

∥xk+1 − xk∥ ≥ ∥xli − xti∥, (3.1.22)

Additionally, the uniform continuity assumption of g on the sequence of iterates {xk}

implies that

∥gli − gti∥ → 0 as i→∞. (3.1.23)

However, the inequalities (3.1.21) and (3.1.21) lead to

∥gli − gli∥ ≥ ∥gti∥ − ∥gli∥ ≥ ϵ,

for all i ≥ 0, in contradiction with the result (3.1.23). As such, the proof of the theorem is

now complete.

59



3.2 Hybrid Approaches of Cubic Regularization

and Newton’s Method

3.2.1 Introduction and Motivations

The purpose of combining the cubic regularization method with Newton’s method

is to mitigate the computational cost associated with minimizing the cubic subproblem. In

general, the Newton method is a popular choice for its fast rate of convergence, however,

it can become impractical in certain situations where the Hessian is not positive definite

or is nearly singular. The cubic regularization method is particularly useful when the

objective function is not well-behaved, such as when it is non-convex, has many local

minima, or is poorly conditioned. In such cases, regularization can improve the robustness

and efficiency of the optimization process and prevent numerical instability by adding a

regularization term to the objective function that encourages the iterates to converge to a

local minimizer. The cubic regularization method works by adding a cubic regularization

term to overcome the non-convexity. This term serves to ensure the overestimation property

and the regularization parameter implicitly controls the step size.

As discussed in Section 2.3, the regularization parameter for the cubic term is

initialized at the start of the algorithm and subsequently updated at each iteration using

a scheme that is based on ensuring sufficient descent. This approach can significantly

influence the overall number of iterations performed by the algorithm. In each iteration, a

cubic subproblem

mk(s)
def
= fk + gTk s+

1
2
sTBks+

1

3
σk∥s∥3Mk

(3.2.1)

must be solved which requires additional computational cost for solving more than one

linear systems. This process can be computationally expensive, even when the objective

function is well-behaved and the Hessian is locally positive definite.

In a recent study, Benson and Shanno [2] demonstrated that the computation
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of the cubic step is equivalent to solving the linear system for a certain value of the

Levenberg-Marquardt perturbation parameter. This insight enables us to determine the

cubic regularization parameter in a problem-specific manner for each iteration, where it

is required. This selective utilization of cubic regularization permits us to benefit from

some of its theoretical properties, while avoiding the associated computational overhead.

The numerical results of this study offer a promising approach for improving the efficiency

of cubic regularization methods while maintaining their favorable theoretical results. By

utilizing the cubic regularization only when necessary, the computational cost can be

reduced, thereby making the overall method more efficient. Their algorithm highlights

the importance of considering the interplay between the cubic regularization and the

Levenberg-Marquardt perturbation in the optimization process.

Recently, the relationship between the step calculated using a Newton-like method

and the step computed using a cubic regularized model was studied by Bergou, Diouane and

Gratton [3]. They introduced and evaluated a line-search framework that uses an iteration

dependent ellipsoid norm in cubic regularization method. The implementation of this

adaptive ellipsoid norm results in a method that behaves as a quasi-Newton algorithm with

a special backtracking line search strategy. Under certain assumptions, their algorithms

achieve the same convergence properties and iteration complexity as ARC algorithm.

The incorporation of the cubic regularization method with Newton’s method is

motivated by the desire to reduce the computational complexity associated with the

minimization of the cubic subproblem. In cases where the objective function is well-

behaved and the Hessian is positive definite in a local neighborhood, the Newton direction

can provide robust and efficient performance without the need for regularization. Given

these considerations, it is beneficial to consider using cubic regularization only in iterations

where negative curvature is encountered or when there is no sufficient descent direction,

rather than using it in every iteration. By carefully choosing when to employ cubic

regularization, we can potentially achieve a balance between the efficiency of the Newton’s
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method and the robustness provided by regularization.

3.2.2 The Proposed Hybrid Approaches

In this section, two different hybrid approaches of the cubic regularization method

and Newton’s method will be described and discussed. These hybrid approaches aim to

utilize the strengths of both methods to achieve a more efficient and effective solution.

Throughout this section, the exact Hessian ∇2fk is used as Bk in each iteration.

Utilizing simple Newton’s steps in place of the cubic step is appealing as it avoids

the need to solve the cubic subproblem. As explained in Section 2.3, solving the cubic

subproblem typically requires computationally expensive matrix factorizations or iterative

procedures for solving a series of linear systems. When the Hessian matrix is sufficiently

positive definite, i.e. the smallest eigenvalue uniformly bounded away from zero, the

Newton’s direction computed from the Newton’s equation

Bkpk = −gk (3.2.2)

is known to be a descent direction and is the global minimizer of a local quadratic model

at xk. The Newton’s equation can be solved efficiently using various factorization methods,

such as Cholesky factorization, or using iterative methods for approximate solutions.

Additionally, Newton’s method has fast local convergence for well-behaved functions. By

replacing the cubic step with a Newton’s step when possible, the number of linear systems

that need to be solved can be reduced, leading to a significant reduction in computational

effort.
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Algorithm 3.2. Schematic outline of ARC-Newton1.

1: function ARC-Newton1

2: Initialization: Given x0, ϵd > 0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, σ0 > 0, k = 0.
3: while not converged do
4: Set cubic step = true.
5: if Bk is positive definite then
6: Compute an approximate solution pk of the linear system

Bkpk = −gk.

7: if |gTk p
Q

k | ≥ ϵd∥gk∥∥pQ

k ∥ then
8: Search for an αk satisfying the strong Wolfe conditions:

f(xk + αkpk) ≤ fk + ηsαkg
T
k pk, ηs ∈ (0, 1

2
),

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk|, ηw ∈ (ηs, 1).

9: if αk > 0 then
10: Update xk+1 = xk + αkpk.
11: Set cubic step = false.
12: end if
13: end if
14: end if
15: if cubic step is true then
16: Compute a step pk for which

mk(pk) ≤ mk(p
C

k ),

where the Cauchy step

pC

k = −αC

k gk and αC

k = argmin
α∈R+

mk(−αkgk).

17: Compute the ratio ρk =
fk − f(xk + pk)

fk −mk(pk)
.

18: Update

xk+1 =

{
xk + pk if ρ ≥ η1,

xk otherwise.

19: end if
20: Update σk properly.
21: k = k + 1.
22: end while
23: end function

The first variant of the ARC-Newton hybrid method is described in detail in
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Algorithm 3.2. To determine whether the the smallest eigenvalue of Hessian is uniformly

bounded away from zero, the algorithm uses a routine chol(·) to perform a Cholesky

factorization of the matrix Bk. If the Cholesky factorization yields a positive definite

matrix, the search direction can be calculated from Newton’s equation (3.2.2) using the

factorization, and then a line-search technique with strong Wolfe conditions can be applied

to this Newton step. The strong Wolfe conditions ensure that the step size satisfies both

the Armijo condition,

f(xk + αkpk) ≤ fk + ηsαkg
T
k pk, where ηs ∈ (0, 1

2
), (3.2.3)

which requires that the step satisfies a sufficient decrease condition in the objective function,

and the curvature condition,

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk|, where ηw ∈ (ηs, 1), (3.2.4)

which ensures a sufficient increase of the gradient and that the step length is not too short.

Since the Hessian matrix Bk is sufficiently positive definite in this scenario, the Wolfe line

search is guaranteed to give a positive step size αk and ensures convergence. On the other

hand, if the Hessian is not positive definite, it is necessary to regularize the Hessian Bk or

the local quadratic model mQ

k (p). In such cases, an approximated solution of the cubic

subproblem is calculated and used as the search direction.

After taking the cubic or Newton step with Wolfe line search in the ARC algorithm,

the regularization parameter σk is updated accordingly. For the cubic step, the update

is based on the agreement between the objective function and the local cubic model, as

explained in Section 2.3. In the context of the Newton step combined with Wolfe line

search, the approach for updating the regularization parameter is inspired by the biased

Wolfe trust-region method introduced by Gertz [33]. This update relies on the search step
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length, denoted as αk, and the ratio of actual to anticipated reductions, represented by ρk.

Specifically, the ratio ρk is computed as

ρk =
fk − f(xk + pk)

fk −mk(pk)
.

where pk represents the search step taken prior to the Wolfe line search, and mk denotes

the local model. It is noteworthy that mk can be chosen as either the local quadratic model

or the local cubic model. In our numerical experiments, we did not observe significant

differences between these two choices. If ρk exceeds a positive constant η2 and the step

length αk is greater than or equal to a small positive constant αmin, which is between 0

and 1, the regularization parameter is updated as

σk+1 = min
{σk
αk

, δ1σk
}
,

where δ1 is a parameter between 0 and 1. This update ensures that the regularization

parameter does not increase when a small step is taken with αk < 1. On the other hand, if

ρk is less than or equal to η2 or αk < αmin, the regularization parameter is simply updated

as

σk+1 =
σk
αk

Even when ρk ≤ η2, it is possible to find a step length αk greater than 1 through Wolfe line

search, and subsequently decrease the regularization parameter. Finally, the regularization

parameter is bounded by σmin and σmax to prevent it from becoming too small or too large.

Algorithm 3.3 outlines the second version of the ARC-Newton hybrid approach,

which avoids the need to compute a cubic step even in instances where the Hessian Bk is

not positive definite.
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Algorithm 3.3. Schematic outline of ARC-Newton2.

1: function ARC-Newton2

2: Initialization: Given x0, ϵd > 0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, σ0 > 0, k = 0.
3: while not converged do
4: Set cubic step = true

5: Compute an approximate solution pQ

k of the linear system

Bkpk = −gk.

6: if Bk is not ill-conditioned and |gTk p
Q

k | ≥ ϵd∥gk∥∥pQ

k ∥ then
7: Set

pk = − sign(gTk p
Q

k )p
Q

k .

8: Search for an αk satisfying the strong Wolfe conditions:

f(xk + αkpk) ≤ fk + ηsαkg
T
k pk, ηs ∈ (0, 1

2
),

|g(xk + αkpk)
Tpk| ≤ ηw|gTk pk|, ηw ∈ (ηs, 1).

(3.2.5)

9: if αk > 0 then
10: Update xk+1 = xk + αkpk.
11: Set cubic step = false.
12: end if
13: end if
14: if cubic step is true then
15: Compute a step pk for which

mk(pk) ≤ mk(p
C

k ),

where the Cauchy step

pC

k = −αC

k gk and αC

k = argmin
α∈R+

mk(−αkgk).

16: Compute the ratio ρk =
fk − f(xk + pk)

fk −mk(pk)
.

17: Update

xk+1 =

{
xk + pk if ρ ≥ η1,

xk otherwise.

18: end if
19: Update σk properly.
20: k = k + 1.
21: end while
22: end function
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In contrast to Algorithm 3.2, in Algorithm 3.3, a trial step pQ

k is always computed

using the Newton’s equation (3.2.2), irrespective of the behavior of the local Hessian matrix

Bk. If the absolute value of the directional derivative of trial step pQ

k and the gradient

gk is bounded away from zero, the search direction is determined by either setting it to

the trial step pQ

k or the negated trial step −pQ

k , depending on the sign of the directional

derivative. To ensure convergence, a line search method with strong Wolfe conditions, as

specified by (3.2.5), is applied on the search direction to acquire a step size αk. Conversely,

if a sufficient descent direction cannot be obtained from the solution pQ

k of Newton’s

equation, the search direction is instead set to an approximated solution of the cubic

subproblem. The acceptance of the search step hinges on the agreement between the

objective function and the local cubic model, as defined in ρk. Upon finding a satisfactory

agreement, the search step is accepted. The regularization parameter σk is subsequently

adjusted accordingly, as discussed in Section 2.3 and Algorithm 3.2.

3.2.3 Theoretical Discussion

This section examines the relationship between the Newton direction and the cubic

step, and presents a convergence analysis of the ARC-Newton hybrid algorithms.

The subsequent finding demonstrates that, provided the quasi-Newton direction

is not orthogonal to the gradient of the objective function at the current iteration, the

Newton direction is collinear with the solution of a certain cubic model determined by a

specific selection of the ellipsoid norm.

Theorem 3.2.1. Suppose the exact solution pQ

k of Newton’s equation (3.2.2) is not orthog-

onal to the gradient of the objective function at xk, i.e.,

|gTk p
Q

k | ≥ ϵd∥gk∥∥pQ

k ∥, (3.2.6)
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with ϵd being a predetermined positive constant. Then, a positive scalar δk exists such that

pQ

k = δkp
C

k , (3.2.7)

where pC
k represents a global minimizer of a certain cubic model defined by (3.2.1).

Proof. Given that pQ

k fulfills (3.2.6), according to Theorem 4.1 in [3], a symmetric positive

definite matrix Mk exists such that

Mkp
Q

k =
∥pQ

k ∥Mk

gTk p
Q

k

gk.

By employing the ellipsoid norm ∥ · ∥Mk
in the cubic model mk definition, as defined in

(3.2.1), in conjunction with Theorem 3.3 from [3], we can deduce that an approximate

optimal point of subproblem (3.2.1) takes the form

pC

k =
1

δk
pQ

k , where δk =
1

2

1− sign(gTk p
Q

k )

√
1 + 4

σk∥pQ

k ∥3Mk

|gTk p
Q

k |

 .

Next, we examine the step taken on the Wolfe line search. The following lemma

establishes that any step that satisfies the strong Wolfe conditions is a step of sufficient

decrease.

Lemma 3.2.1. Let f be a scalar-valued, twice-continuously differentiable function defined

on an open convex set D ⊂ Rn. Suppose x0 ∈ D is selected such that the level set L(f0)

is closed and bounded. Assume that pk is a search direction satisfying g(xk)
Tpk < 0 and

∥pk∥ ≤ γ, where γ is a constant independent of k. Then, the search step pk that meets the

strong Wolfe conditions, (3.2.3) and (3.2.4), is a step length of sufficient decrease, i.e.,

lim
k→∞
|gTk pk| = 0. (3.2.8)
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Proof. To prove this theorem, we employ a proof by contradiction. Assume there exists

a constant ϵ > 0 such that |gTk pk| ≥ ϵ for infinitely often. Note that the backtracking

condition (3.2.3) infers that

fk − fk+1 ≥ ηsαk|gTk pk|.

This relationship suggests that xk is well-defined and persists within L(f0). The assumption

of f being bounded below on L(f0) leads to the conclusion that fk represents a bounded,

strictly decreasing sequence, which consequently converges.

Let K = {k : |gTk pk| ≥ ϵ}. The first Wolfe condition (3.2.3) yields

fk − fk+1 ≥ ηsαkϵ, for all k ∈ K. (3.2.9)

Given that {fk} is a converging sequence, the left-hand side of (3.2.9) approaches zero

for k ∈ K. The definitions of ηs and ϵ imply that αk → 0 for k ∈ K, and the uniform

boundedness of the sequence {pk} establishes αkpk → 0 for k ∈ K.

By rearranging the second Wolfe condition (3.2.4) and given that |gTk pk| = −gTk pk,

we can deduce that

g(xk + αkpk)
Tpk − gTk pk ≥ (1− ηw)|gTk pk| ≥ (1− ηw)ϵ, for all k ∈ K. (3.2.10)

Utilizing standard norm inequalities, we derive

g(xk + αkpk)
Tpk − gTk pk ≤ ∥g(xk + αkpk)− gk∥D∥pk∥. (3.2.11)

where ∥ · ∥D represents the norm dual to ∥ · ∥. Inequalities (3.2.10) and (3.2.11) imply that

∥g(xk + αkpk)− gk∥D∥pk∥ ≥ (1− ηw)ϵ > 0, for all k ∈ K. (3.2.12)
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Since 1− ηw and ϵ are bounded away from zero, this inequality indicates that the vector

difference within the norm on the left side is bounded away from zero. However, we

recognize that αkpk → 0 for all k ∈ K, and the continuity of g(x) along with the

boundedness of pk imply that the left-hand side of (3.2.12) converges to zero. This leads

to the intended contradiction, demonstrating that |gTk pk| → 0.

Now, we are ready to prove the first-order convergence result of Algorithm 3.2. The

convergence results of Algorithm 3.3 can be derived analogously.

Theorem 3.2.2. Let {xk} be the sequence generated by Algorithm 3.2. Suppose x0 ∈ D

is selected such that the level set L(f0) is closed and bounded. If {fk} is bounded below

and f and g are uniformly continuous on the sequence {xk}, then either there is a finite k

such that gk = 0, or

lim
k→∞
∥gk∥ = 0. (3.2.13)

Proof. Let us begin by assuming that only finitely many Newton steps are taken. In this

case, Theorem 2.3.1 implies that the result (3.2.13) holds. Now, suppose that infinitely

many Newton steps are taken. If gk = 0 for some finite index k, then the theorem holds

trivially. Therefore, we may assume that gk ̸= 0 for all k.

If xk ∈ L(f0), the Hessian Bk being positive-definite ensures that the Newton

direction is always a direction of descent. Lemma 3.1.3 then guarantees the existence

of a suitable αk satisfying the Wolfe conditions (3.2.3) and (3.2.4), which implies that

xk+1 ∈ L(f0). This shows that the iterates are well-defined.

From Lemma 3.2.1, we have demonstrated that the Newton’s step generated by

Algorithm 3.2 satisfying the strong Wolfe conditions has the property that

lim
k→0
|gTk pk| = 0. (3.2.14)

To achieve convergence, it is necessary to guarantee that |gTk pk| approaches zero only when
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gk tends to zero.

Because of the Newton’s equation (3.2.2), we can obtain that

|gTk pk| = |pTk Bkpk| ≥ λmin∥pk∥2. (3.2.15)

Applying standard norm inequalities to (3.2.2) yields

∥pk∥ ≥
∥gk∥
∥Bk∥

. (3.2.16)

Using the relation ∥Bk∥ = λmax, we can combine (3.2.15) and (3.2.16) as follows:

|gTk pk| ≥
λmin

λmax

∥pk∥∥gk∥ ≥
λmin

λ2max

∥gk∥2. (3.2.17)

By the construction of the algorithm, the smallest eigenvalue λmin of Bk has a lower bound.

Meanwhile, the continuity of the Hessian and the compactness of L(f0) together imply that

∥Bk∥ is bounded, which means the largest eigenvalue λmax has an upper bound. Therefore,

using (3.2.17), together with (3.2.14), we obtain gk → 0.
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Chapter 4

Cubic Regularization Algorithms for
Constrained Optimization

4.1 Introduction

In this chapter, we consider a primal-dual adaptive cubic regularization algorithm

(PDARC) for solving the inequality-constrained nonlinear programming problem:

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (NIP)

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable nonlinear

functions. Interior methods are a family of algorithms that solve (NIP) by transforming

the constrained problem into a parameterized unconstrained problem using penalty and

barrier functions.

The proposed method is based on minimizing a shifted primal-dual penalty-barrier

merit function introduced by Gill, Kungurtsev and Robinson [22]. This method has a

two-level structure of inner and outer iterations. The inner iterations are those of a method

for unconstrained minimization used to find an approximate minimizer of a merit function

that represents a compromise between minimizing the objective function and satisfying the

constraints. The merit function is the sum of three terms: the objective function, a penalty

term for the equality constraints, and a barrier term for the inequality constraints. For a
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given unconstrained minimization, the merit function is defined in terms of fixed values

of a penalty parameter, a barrier parameter and estimates of the Lagrange multipliers.

The outer iterations measure and ensure progress toward a solution by adjusting the

penalty-barrier parameters and Lagrange multiplier estimates.

In this chapter, we propose an efficient convergent cubic regularization method for

generating the inner iterates. A cubic regularization technique combined with a line-search

method is applied to handle local nonconvexity and ensure global convergence. Moreover,

we show that the solution of the cubic regularized subproblem can be obtained by solving

an equivalent system that has the same structure as the conventional primal-dual system,

which implies that the corresponding linear systems can be solved by efficient off-the-shelf

linear system-solvers. Hence the proposed method can be scaled directly to large-scale

problems.

Section 4.2 is devoted to a brief overview and the motivation for the application of

primal-dual cubic regularization to constrained nonlinear optimization. In Section 4.3, we

present a cubic regularization method that finds an approximate minimizer of the shifted

penalty-barrier merit function in the inner iteration, and show that the cubic regularized

subproblem can be solved by factoring matrices with the same structure as conventional

primal-dual matrices. In Section 4.4, we describe an adaptive cubic regularization method

that uses a practical Armijo-type line search and its variants. The method maintains

feasibility of primal and dual variables, and utilizes the trial step computed from the cubic

subproblem to improve a primal-dual merit function at each iteration. In Section 4.5, the

convergence results of the proposed algorithm are established under certain assumptions.

In Section 4.6, a practical algorithm based on a modified version of the Moré-Sorensen

method [34] is proposed for the solution of the primal-dual cubic subproblem. Section 4.7

concerns the application of the proposed method for solving constrained optimization

problems in the general form, and additional information regarding the derivation of the

relevant equations and solutions is available in Appendix A.
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4.2 Algorithm Overview and Background

The problem (NIP) can be reformulated by introducing non-negative slack variables

for the nonlinear inequality constraints. This gives the equivalent problem

minimize
x∈Rn,s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0. (4.2.1)

The vector (x∗, s∗, y∗, w∗) is called a first-order KKT point for problem (4.2.1) if the

following KKT conditions hold

∇f(x∗)− J(x∗)Ty∗ = 0,

y∗ − w∗ = 0, w∗ ≥ 0,

c(x∗)− s∗ = 0, s∗ ≥ 0,

w∗ · s∗ = 0.


(4.2.2)

Under certain regularity conditions, the KKT conditions are first-order conditions for

an optimal solution of problem (4.2.1). The vectors y∗ and w∗ constitute the Lagrange

multiplier vectors for, respectively, the equality constraints c(x)− s = 0 and the inequality

constraints s ≥ 0. Let the vector (x, s, y, w) denote the k-th primal-dual iterate. The

outer iteration of PDARC aims to ensure that the sequence {xk, sk, yk, wk} approximately

follows a continuous primal-dual trajectory and converges to a point that satisfies the KKT

conditions (4.2.2). To design an efficient algorithm, the conditions (4.2.2) are perturbed

as follows:

∇f(x)− J(x)Ty = 0,

y − w = 0, w ≥ 0,

c(x)− s = µP(yE − y), s ≥ 0,

w · s = µB(wE − w),


(4.2.3)
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where yE ∈ Rm is an estimate of a Lagrange multiplier vector for the constraints c(x)−s = 0,

wE ∈ Rm is an estimate of a Lagrange multiplier for the constraints s ≥ 0, and the scalars

µP and µB are positive penalty and barrier parameters, respectively. The perturbed

conditions (4.2.3) motivate the following merit function for a path-following interior

method. The shifted primal-dual problem associated with problem (4.2.1) is obtained

by including the constraints c(x)− s = 0 with the objective using a shifted primal-dual

augmented Lagrangian term. A shifted primal-dual penalty-barrier term is used for the

simple bounds. This gives the problem

minimize
x,s,y,w

M(x, s, y, w ;µP , µB , yE , wE) subject to s+ µBe > 0, w > 0, (4.2.4)

whereM(x, s, y, w ;µP , µB , yE , wE) is the shifted primal-dual penalty-barrier function

M(x, s, y, w ;µP , µB , yE , wE) = f(x)−
(
c(x)− s

)T
yE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2

−
m∑
i=1

µBwE

i ln
(
si + µB

)
−

m∑
i=1

µBwE

i ln
(
wi(si + µB)

)
+

m∑
i=1

wi(si + µB),

which is well defined for all w and s such that w > 0 and s + µBe > 0. It can be

shown that the Newton equations for finding a zero of the perturbed conditions (4.2.3)

are equivalent to certain approximate Newton equations for finding a minimizer of M

in the neighborhood of a second-order minimizer of the problem (4.2.1). Under certain

assumptions, the primal-dual iteration attempts to follow a differentiable trajectory that

converges to a limit point that is either an infeasible stationary point or a complementary

approximate KKT point. For further details see Gill, Kungurtsev and Robinson [22].

To handle nonconvexity, Gill, Kungurtsev and Robinson [22] apply an inertia-

controlling symmetric indefinite factorization (for more details, see Forsgren [17]). However,

this inertia-controlling factorization interchanges certain rows and columns, which interferes
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with the row and column ordering used to maintain sparsity in the factors. This hinders

the application of state-of-the-art software, or software developed for specific types of

advanced architectures. To overcome this issue, the cubic regularization method is used to

minimizeM(x, s, y, w ;µP , µB , yE , wE), and is discussed in the following sections.

4.3 Primal-Dual Cubic Regularization Methods

In this section, we focus on an inner iteration and discuss how the cubic regulariza-

tion method can be used to find an approximate minimizer of the shifted penalty-barrier

merit functionM(x, s, y, w;µP , µB , yE , wE) for fixed (µP , µB , yE , wE). Let c, g and J denote

the quantities c(x), ∇f(x) and J(x). For clarity, the dependence ofM on the parameters

µP , µB , yE and wE , will be suppressed when appropriate, withM orM(x, s, y, w) being

used to denoteM(x, s, y, w ;µP , µB , yE , wE). Let Sµ and W denote diagonal matrices with

diagonal entries si + µB and w (i.e., Sµ = diag(s + µB) and W = diag(w)) such that

si + µB > 0 and wi > 0. It is convenient to define the positive-definite matrices

DY = µPIm and DW = SµW−1,

and auxiliary vectors

πY = πY (x, s) = yE − 1

µP
(c− s) and πW = πW (s) = µB(Sµ)−1wE .

In order to facilitate global convergence, we apply a cubic regularization method

based on finding an approximate solution of the primal-dual cubic subproblem

minimize
∆v∈Rn+3m

C(∆v) =M(v) +∇M(v)T∆v +
1

2
∆vTB(v)∆v +

1

3
µC∥∆v∥3T , (4.3.1)

where v = (x, s, y, w), ∆v = (∆x, ∆s, ∆y, ∆w), ∇M is the gradient of the merit function,
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and B is an approximation of the Hessian of the merit function. The cubic term involves

the elliptic norm ∥∆v∥T = (∆vTT∆v)1/2, and the nonnegative regularization parameter

µC ≥ 0. The matrix T is a positive-definite diagonal of the form T = diag(T x, T s, T y, Tw).

The matrix B = B(v) and vector ∇M = ∇M(v) are given by

B =



H + 2JTD−1
Y J −2JTD−1

Y JT 0

−2D−1
Y J 2

(
D−1

Y +D−1
W

)
−Im Im

J −Im DY 0

0 Im 0 DW


and

∇M =



g − JT
(
πY + (πY − y)

)
(2πY − y)− (2πW − w)

−DY (π
Y − y)

−DW (πW − w)


,

where H = H(x, y), g = ∇f(x), and J = J(x).

The following theorem provides the theoretical basis for finding an approximate

global solution of the cubic regularized subproblem under some predefined positive-definite

diagonal matrix T .

Theorem 4.3.1 (Optimality Conditions for the Cubic Model). Any ∆v∗ is a global

minimizer of the cubic subproblem (4.3.1) over Rn+3m if and only if there exists a unique

σ ≥ 0 such that

(B + σT )∆v∗ = −∇M,
σ

µC
= ∥∆v∗∥T ,

with B + σT positive semidefinite. For any global minimizer ∆v∗, the value of σ is unique

and independent of ∆v∗. Moreover, if B + σI is positive definite, ∆v∗ is unique.

The application of the method of Moré and Sorensen [34] to solve the subproblem
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(4.3.1) requires seeking an optimal σ by calculating the Cholesky factorization of B + σT

for various values of σ. Instead of factorizing B + σT directly, with appropriate choices of

T , the solution of (B + σT )∆v = −∇M can be obtained by solving an equivalent system

that has the same primal-dual structure. The equivalence can be established as follows.

Let’s write the gradient and Hessian of the merit function in terms of the vector x̄ = (x, s)

and ȳ = (w, y). Let ḡ, H̄, J̄ and D̄ denote the quantities

ḡ =

g
0

 , H̄ =

H 0

0 0

 , J̄ =

J −Im

0 Im

 , and D̄ =

DY 0

0 DW

 .

Similarly, let T̄x = diag(Tx, Ts) and T̄y = diag(Ty, Tw). The equations (B + σT )p = −∇M

may be written in the form

H̄ + 2J̄TD̄−1J̄ + σT̄x J̄T

J̄ D̄ + σT̄y


∆x̄

∆ȳ

 = −

ḡ − J̄Tπ̄ − J̄T(π̄ − ȳ)

−D̄(π̄ − ȳ)

 , (4.3.2)

where

π̄ =

πY

πW

 , ∆x̄ =

∆x

∆s

 , and ∆ȳ =

∆y

∆w

 .

Applying the nonsingular matrix

I −2J̄TD̄−1

0 I


to both sides of equation (4.3.2) gives the system

H̄ + σT̄x −J̄T(I + 2σD̄−1T̄y)

J̄ D̄ + σT̄y


∆x̄

∆ȳ

 = −

 ḡ − J̄Tȳ

D̄(ȳ − π̄)

 .
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With the substitutions T̄x = I and T̄y = D̄ and some simplification, the quantities ∆x̄ and

∆ȳ may be obtained by solving the equations

H̄ + σI −J̄T

J̄ σ̄D̄


 ∆x̄

(1 + 2σ)∆ȳ

 = −

 ḡ − J̄Tȳ

D̄(ȳ − π̄)

 , (4.3.3)

where σ̄ = (1 + σ)/(1 + 2σ). In terms of the original variables, the unsymmetric equations

(4.3.3) may be written as



H + σIn 0 −JT 0

0 σIm Im −Im

J −Im σ̄DY 0

0 Im 0 σ̄DW





∆x

∆s

(1 + 2σ)∆y

(1 + 2σ)∆w


= −



g − JTy

y − w

DY (y − πY )

DW (w − πW )


. (4.3.4)

With our choice of T , the matrix in (4.3.4) has the same sparsity pattern as the matrix

in primal-dual equations. Equation (4.3.4) can be symmetrized by collecting the factor

−(1 + 2σ) into ∆y and ∆w, which gives the equivalent symmetric system



H + σIn 0 JT 0

0 σIm −Im Im

J −Im σ̄DY 0

0 Im 0 σ̄DW





∆x

∆s

∆ỹ

∆w̃


= −



g − JTy

y − w

DY (y − πY )

DW (w − πW )


, (4.3.5)

with ∆ỹ = −(1 + 2σ)∆y and ∆w̃ = −(1 + 2σ)∆w. The linear equation (4.3.5) is a

symmetric and well-scaled system in which σ̄DY and σ̄DW have the role of regularizing

the KKT matrix. After the application of block elimination and the collection of terms,

the solution of the equations (4.3.5) can be obtained from an equivalent linear system of
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smaller size. Let D̆W denote the m×m diagonal matrix

D̆W = (D−1
W + σσ̄Im)

−1.

The solution of (4.3.5) can be written as

∆s = −σ̄D̆W

(
y −∆ỹ − w +

1

σ̄
(w − πW )

)
,

∆w̃ = −D−1
W D̆W

(
y −∆ỹ − w − σDW (w − πW )

)
,

where ∆x and ∆ỹ satisfy the KKT equations

H + σIn JT

J −σ̄(DY + D̆W )


∆x
∆ỹ


= −

 g − JTy

DY (y − πY ) + D̆W

(
w − πW + σ̄(y − w)

)
 .

(4.3.6)

The vectors ∆y and ∆w are computed from the equations

∆y = − 1

(1 + 2σ)
∆ỹ and ∆w = − 1

(1 + 2σ)
∆w̃.

Note that the symmetric system (4.3.6) is of order n+m and does not involve the slack

variables. The major cost of an iteration for finding an approximate solution of the cubic

subproblem (4.3.1) is the cost of solving this system. The only extra computational costs

associated with this reformulation are from updating the slack variables.

The generic equations. For generic equations of the form (B + σT )p = b, the equations
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are 

H + σIn 0 JT 0

0 σIm −Im Im

J −Im σ̄DY 0

0 Im 0 σ̄DW





p1

p2

p3

p4


=



b1

b2

b3

b4


. (4.3.7)

Using block elimination, the solution of these equations is given by

p4 = (I + σσ̄DW )−1 (p3 − b2 + σb4) and p2 = b4 − σ̄DWp4,

where the vectors p1 and p4 satisfy the equations

H + σIn JT

J −σ̄(DY + D̆W )


p1
p3

 =

 b1

σD̆W (b2 − σb4) + b3 + b4

 .

In order to satisfy the optimality conditions of Theorem 4.3.1, we are interested in

values of σ such that B + σT is positive semidefinite. Instead of checking B + σT directly,

the following lemma indicates that the inertia of B + σT can be deduced from the inertia

of K(σ). For simplicity, let the matrix B + σT be denoted by B(σ), i.e.,

B(σ) =



H + 2JTD−1
Y J + σIn −2JTD−1

Y JT 0

−2D−1
Y J 2

(
D−1

Y +D−1
W

)
+ σIm −Im Im

J −Im (1 + σ)DY 0

0 Im 0 (1 + σ)DW


,

and let the condensed matrix in equation (4.3.6) be denoted by K(σ), i.e.,

K(σ) =

H + σIn JT

J −σ̄(DY + D̆W )

 .
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Lemma 4.3.1. The inertia of B(σ) and K(σ) satisfies the identities:

In(B(σ)) = In(H + σI +
1

σ
JT(DY + D̆W )−1J) + (3m, 0, 0),

In(K(σ)) = In(H + σI +
1

σ
JT(DY + D̆W )−1J) + (0,m, 0).

Proof. We will follow the result from Lemma 4.1 in Forsgren and Gill [18] to prove these

relations. Consider a symmetric block-partitioned matrix X of the form

X =

A BT

B C

 .

The inertia of X satisfies In(X) = In(C) + In(A − BTC−1B). Both B(σ) and K(σ)

are symmetric block-partitioned matrices. As DY and DW are diagonal positive definite

matrices, the inertia property implies that

In(B(σ)) = In

H + σIn +
1
σ
JTD−1

Y J − 1
σ
JTD−1

Y

− 1
σ
D−1

Y J σIn +
1
σ
(DY +DW )

+ (2m, 0, 0)

= In(H + σI +
1

σ
JT(DY + D̆W )−1J) + (m, 0, 0) + (2m, 0, 0)

= In(H + σI +
1

σ
JT(DY + D̆W )−1J) + (3m, 0, 0).

Similarly,

In(K(σ)) = In(H + σI +
1

σ
JT(DY + D̆W )−1J) + (m, 0, 0).

A solution of the cubic subproblem (4.3.1) can be obtained by repeatedly factorizing

the matrix K(σ) and solving the system (4.3.6) for different values of σ. However, we are

particularly interested in values of σ for which B(σ) is positive semidefinite, as stated in

Theorem 4.3.1. The relationship between the inertia of B(σ) and the inertia of K(σ) in
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Lemma 4.3.1 may be used to find values σ for which B(σ) is positive definite. In particular,

we can count the number of negative eigenvalues of K(σ) using the symmetric indefinite

factorization P TK(σ)P = LDLT, where the number of negative eigenvalues of K(σ) is

the number of 2× 2 blocks and negative 1× 1 blocks of D (see Bunch and Parlett [5]). If

the number of negative eigenvalues of K(σ) is larger than m, then σ must be increased

and K(σ) is refactorized. This procedure is repeated until B(σ) is positive semidefinite.

In the case of primal-dual interior-point methods, the function being minimized

includes a logarithmic barrier term that is undefined outside of the feasible region. We may

expect that the cubic regularized subproblem (4.3.1) may need to be solved repeatedly in

order to obtain a feasible step.

4.4 Statement of the Algorithm

This section provides the formal descriptions of the proposed primal-dual cubic

regularization algorithm. Cubic regularization methods have both favorable theoretical

properties and excellent numerical results in practice. However, a significant cost of

cubic regularization is the need to find an approximate minimizer of the cubic regularized

subproblem, which may require the solution of the system (4.3.6) several times with

different values of σ. Performing a line search along the search direction takes advantage

of the computational effort involved in minimizing the cubic model and attempts to make

use of the possible good properties of the cubic step.

For primal-dual interior methods there is an even more compelling reason to combine

a line search with cubic regularization. The properties of the barrier function imply that

the merit function is undefined outside the feasible region. Because of this, it is common

for the trial step to be rejected simply because it generates an iterate that is infeasible

for the inequality constraints. In terms of additional matrix factorizations, it can be

very expensive to search for a feasible step by repeatedly solving the cubic regularized
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subproblem for different values of the regularization parameter. Thus, it seems appropriate

to use a line search to find a step that remains feasible.

Algorithm 4.1 describes the inner iteration of cubic regularized shifted primal-dual

interior-point method combined with Armijo backtracking line-search algorithm.

Algorithm 4.1. Schematic outline of PDARC.

1: function Primal-Dual Interior-Point with Cubic Regularization

2: Initialization: Given v0, µ
B , µP , γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, µC

0 > 0, 1 > γ > 0;
3: while not converged do
4: Compute a search direction ∆vk from (4.3.1) for which Ck(∆vk) ≤ Ck(∆vC

k )
where the Cauchy point ∆vC

k = −γC
k∇Mk and γC

k = argminγ>0 Ck(−γ∇Mk);
5: Set the initial step αk ← 1;
6: if not (sk + αk∆sk + µBe > 0 and wk + αk∆wk > 0) then
7: Find the largest αk > 0 such that sk+αk∆sk+µ

Be > 0 and wk+αk∆wk > 0;
8: end if

9: Set ρk ←
M(vk + αk∆vk)−M(vk)

Ck(αk∆vk)−M(vk)
;

10: if ρk ≥ η1 then
11: Successful iteration: vk+1 ← vk + αk∆vk;
12: if ρk ≥ η2 then
13: Set µC

k+1 ∈ (0, µC
k ); [very successful iteration]

14: else
15: Set µC

k+1 ∈ [µC
k , γ1µ

C
k ]; [successful iteration]

16: end if
17: else
18: whileM(vk + αk∆vk)−M(vk) > η1(Ck(αk∆vk)−M(vk)) do
19: αk ← γαk;
20: end while
21: vk+1 ← vk + αk∆vk;
22: Set µC

k+1 ∈ (γ1µ
C
k , γ2µ

C
k ]; [unsuccessful iteration]

23: end if
24: Perform a slack reset sk+1 ← max{sk+1, c(xk+1)− µP(yE + 1

2
(wk+1 − yk+1))};

25: Set vk+1 ← (xk+1, sk+1, wk+1, yk+1);
26: end while
27: end function

In Algorithm 4.1, at the current estimate vk = (xk, sk, yk, wk), a step ∆vk =

(∆xk,∆sk,∆yk,∆wk) is computed as an approximate minimizer that is only required

to be at least as good as a suitable Cauchy step of the cubic regularized subproblem
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(4.3.1) as described in line 4. Although the Cauchy step is enough for the algorithm

to converge, additional conditions on ∆vk may be necessary in order to improve the

theoretical properties and performance.

A practical Armijo-type line-search is applied on the search direction ∆vk to

maintain the feasibility of important quantities and ensure a sufficient decrease on the

merit function. In line 7, a step length αk is computed to keep perturbed slack variables

and dual variables positive. Note that compared with the original constraints c(x) ≥ 0

without slack variables, the steps to the boundary of the constraints sk +αk∆sk +µBe > 0

and wk + αk∆wk > 0 can be calculated exactly so that many unnecessary infeasible

constraint evaluations can be avoided. In line 9, a ratio ρk is computed that measures

the agreement between the actual decrease in the objective value of the merit function,

M(vk + αk∆vk)−M(vk), and the predicted model decrease, Ck(αk∆vk). If ρk is larger

than a threshold η1, the step is accepted and the next iterate vk+1 is set to vk + αk∆vk.

Otherwise, a backtracking line search is performed to find a step length αk such that the

Armijo-type accepting criterion is satisfied in the line 18.

The weight µC
k may be viewed as the reciprocal of the trust-region radius. Increasing

µC
k will result in reducing the size of the search step. If the current weight has produced

a good agreement between the actual and the predicted decreases, i.e., a successfully

iteration, µC
k should be reduced or left unchanged depending on the value of the ratio

ρk as stated in lines 12–16. If the reduction in merit function is not sufficient, i.e., an

unsuccessful iteration, the current weight µC
k is increased (see line 22).

The slack-variable reset in the line 24 is designed for efficiency and to handle

problems that are locally infeasible, which is analogous to slack-variable resets used in

Gill, Murray and Saunders [23], and Gill, Kungurtsev and Robinson [22]. In particular,
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after reset, the slack variable sk+1 satisfies

sk+1 ≥ c(xk+1)− µP

(
yE +

1

2
(wk+1 − yk+1)

)
,

which implies, after rearrangement, that

c(xk+1)− sk+1 ≤ µP

(
yE +

1

2
(wk+1 − yk+1)

)
. (4.4.1)

The inequality (4.4.1) above guarantees that any limit point (x∗, s∗) of the sequence

{(xk, sk)} has the property that c(x∗)− s∗ ≤ 0 if yE and wk+1 − yk+1 are bounded and µP

converges to zero. This is necessary to handle problems that are locally infeasible, which

is a challenge for nonconvex optimization. Moreover, the slack-variable reset never causes

the merit function to increase, which implies that the value of the merit function decreases

monotonically.

Moreover, we also implement a hybrid approach that uses PDARC and Newton’s

method. Similar to the algorithm in the section 3.2, we use cubic regularization only on

those iterations where we encounter negative curvature. The Newton step is taken when

the approximate Hessian Bk is positive definite. As the Newton direction with a suitable

step length α is guaranteed to give a sufficient decrease of the merit function, we can

simply conduct a line search and find such an α. The details of the hybrid PDARC are

summarized in the following Algorithm 4.2.
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Algorithm 4.2. Schematic outline of Hybrid PDARC.

1: function Primal-Dual Interior-Point with Hybrid ARC

2: Initialization: Given v0, µ
B , µP , γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, µC

0 > 0, 1 > γ > 0;
3: while not converged do
4: Set cubic step = true;
5: if B(vk) is positive definite then
6: Compute an approximate solution ∆vk of the linear system

B(vk)∆vk = −∇M(vk);

7: Set cubic step = false;
8: else
9: Compute a search direction ∆vk from (4.3.1) for which Ck(∆vk) ≤ Ck(∆vC

k )
where the Cauchy point ∆vC

k = −γC
k∇Mk and γC

k = argminγ>0 Ck(−γ∇Mk);
10: end if
11: Set the initial step αk ← 1;
12: if not (sk + αk∆sk + µBe > 0 and wk + αk∆wk > 0) then
13: Find the largest αk > 0 such that sk+αk∆sk+µ

Be > 0 and wk+αk∆wk > 0;
14: end if

15: Set ρk ←
M(vk + αk∆vk)−M(vk)

Ck(αk∆vk)−M(vk)
;

16: if ρk ≥ η1 then
17: Successful iteration: vk+1 ← vk + αk∆vk;
18: else
19: whileM(vk + αk∆vk)−M(vk) > η1(Ck(αk∆vk)−M(vk)) do
20: αk ← γαk;
21: end while
22: vk+1 ← vk + αk∆vk;
23: end if
24: if cubic step then
25: Update regularization parameter:

µC

k+1 ∈


(0, µC

k ] if ρk > η2, [very successful iteration]

[µC
k , γ1µ

C
k ] if η1 ≤ ρk ≤ η2, [successful iteration]

[γ1µ
C
k , γ2µ

C
k ] otherwise. [unsuccessful iteration]

26: end if
27: Perform a slack reset sk+1 ← max{sk+1, c(xk+1)− µP(yE + 1

2
(wk+1 − yk+1))};

28: Set vk+1 ← (xk+1, sk+1, wk+1, yk+1);
29: end while
30: end function
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4.5 Theoretical Discussion

In this section, convergence properties of the proposed algorithm are discussed. To

prove the convergence of Algorithm 4.1, we first prove some necessary lemmas.

The first result shows that the merit functionM is monotonically decreasing. It is

assumed throughout this section that Algorithm 4.1 generates an infinite sequence, i.e.,

∇M(vk) ̸= 0 for all k ≥ 0.

Lemma 4.5.1. The sequence of iterates {vk} computed by Algorithm 4.1 is bounded above

and satisfiesM(vk+1) <M(vk) for all k.

Proof. From the proof of Lemma 2 in [36] and the assumption that ∇M(vk) is nonzero for

all k ≥ 1, the search direction ∆vk computed from cubic subproblem is a descent direction

for M at vk, i.e., ∇M∆vk < 0. This property implies that the line search performed

in Algorithm 4.1 produces an αk such that the new point vk+1 = vk + αk∆vk satisfies

M(vk+1) <M(vk). If follows that the only way the desired result cannot hold is if the

slack-reset procedure of step 16 of Algorithm causesM to increase. The proof is complete

if it can be shown that this cannot happen.

It follows that the only way the desired result cannot hold is if the slack-reset

procedure of line 24 of Algorithm 4.1 causesM to increase. The proof is complete if it

can be shown that this cannot happen. Let ŝk denote the vector

ŝk = c(xk+1)− µP(yE +
1

2
(wk+1 − yk+1)).

The first term of the merit function, f(x), is independent of s, so this term

does not change. As the slack-reset procedure has the effect of possibly increasing the

value of some of its components, the log barrier terms, −
∑m

i=1 µ
BwE

i ln
(
si + µB

)
and

-
∑m

i=1 µ
BwE

i ln
(
wi(si + µB)

)
, can only decrease. We will show the vector ŝk used in the

slack reset is the unique minimizer of the sum of the rest of terms in the functionM, so
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that the sum of these terms can not increase. Denote the rest part ofM by M̂ as

M̂(x, s, y, w) = −
(
c(x)− s

)T
yE

+
1

2µP
∥c(x)− s∥2 + 1

2µP
∥c(x)− s+ µP(y − yE)∥2 +

m∑
i=1

wi(si + µB).

A simple calculation gives

∇sM̂(x, s, y, w) = yE + w +
2

µP
(s− c(x)− µP

2
(y − yE)),

∇ssM̂(x, s, y, w) =
2

µP
I.

Setting ∇sM̂(x, s, y, w) = 0 gives

ŝk = c(x)− µP(yE +
1

2
(w − y)).

AsM is strictly convex with respect to s, it must hold that ŝk is the unique minimizer of

M̂. It follows that the slack reset can never increase the value ofM, which completes the

proof.

Note that the subproblem (4.3.1) may be converted equivalently to a cubic model

with ℓ2 norm as follows

minimize
∆v∈Rn+3m

M(v) +∇M̂(v)∆v̂ + 1
2
∆v̂TB̂(v)∆v̂ +

1

3
µC∥∆v̂∥2, (4.5.1)

where ∇M̂(v) = T−1/2∇M(v), B̂(v) = T−1/2B(v)T−1/2 and ∆v̂ = T 1/2∆v. This equiva-

lence allows us to use some useful lemmas established in Section 2.3.

Let S denote the set of indices of the successful iterations, i.e.,

S = {k > 0 :M(vk +∆vk)−M(vk) ≤ η1 (Ck(∆vk)−M(vk))}.
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The following two useful lemmas are proved in [8]. Lemma 4.5.2 provides a guaranteed

lower bound on the decrease in the merit function predicted from the cubic model.

Lemma 4.5.2. Suppose that the step ∆vk satisfies the Cauchy-point condition, i.e.,

Ck(∆vk) ≤ Ck(∆vC
k ). Then for all k ≥ 0 we have that

M(vk)− Ck(∆vk) ≥
∥∇M(vk)∥

6
√
2

min

{
∥∇M(vk)∥
1 + ∥B(vk)∥

, 1
2

√
∥∇M(vk)∥

µC
k

}
.

The next lemma yields a useful bound on the step.

Lemma 4.5.3. Suppose that {B(vk)} is bounded, i.e., ∥B(vk)∥ ≤ κB for all k ≥ 0 and

for some constant κB > 0, and that the step ∆vk satisfies the Cauchy-point condition, i.e.,

Ck(∆vk) ≤ Ck(∆vC
k ). Then

∥∆vk∥ ≤ 3max

(
κB
µC
k

,

√
∥∇M(vk)∥

µC
k

)
, k ≥ 0.

Now, we are ready to prove an auxiliary lemma.

Lemma 4.5.4. Assume ∥B(vk)∥ ≤ κB for all k ≥ 0 and for some constant κB > 0.

Suppose that I is an infinite index set such that αk > 0 and ∥∇M(vk)∥ ≥ ϵ, for all k ∈ I

and sine ϵ > 0, and

√
∥∇M(vk)∥

µC
k

→ 0, as k →∞, k ∈ I. Then

∥∆vk∥ ≤ 3

√
∥∇M(vk)∥

µC
k

for all k ∈ I sufficiently large. (4.5.2)

Additionally, if vk → v∗, as k ∈ I, k →∞ for some v∗ ∈ Rn+3m, then each iteration k ∈ I

that is sufficiently large is very successful, and

µC

k+1 ≤ µC

k , for all k ∈ I sufficiently large. (4.5.3)

90



Proof. As

√
∥∇M(vk)∥

µC
k

→ 0, as k →∞, k ∈ I, we have

√
µC
k ∥∇M(vk)∥ = ∥∇M(vk)∥

√
µC
k

∥∇M(vk)∥
≥ ϵ

√
µC
k

∥∇M(vk)∥
→ ∞,

for k ∈ I, k →∞. By Lemma 4.5.3 and the above inequality, the bound (4.5.2) can be

obtained. To prove (4.5.3), we observe that

ρk ≥
M(vk + αk∆vk)−M(vk)

Ck(∆vk)−M(vk)
.

Then, we have the inequality ρk ≥ η2 if

rk
def
=M(vk + αk∆vk)− Ck(∆vk) + (1− η2)[Ck(∆vk)−M(vk)] ≤ 0. (4.5.4)

By a Taylor expansion ofM(vk + αk∆vk) centered at vk, we have for each k

M(vk + αk∆vk)− Ck(∆vk) = αk(∇M(ξk)−∇M(vk))
T∆vk

−(1− αk)∇M(vk)
T∆vk −

1

2
∆vTk B(vk)∆vk −

µC
k

3
∥∆v∥3

≤ αk(∇M(ξk)−∇M(vk))
T∆vk − (1− αk)∇M(vk)

T∆vk −
1

2
∆vTk B(vk)∆vk,

(4.5.5)

for some ξk ∈ (vk, vk + αk∆vk). From (4.5.5) and ∇M(vk)
T∆vk < 0, we can obtain

M(vk + αk∆vk)− Ck(∆vk) ≤ αk(∇M(ξk)−∇M(xk))
T∆vk − 1

2
∆vTk B(vk)∆vk. (4.5.6)
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By equation (4.5.2), using (4.5.6) and the assumption ∥B(vk)∥ ≤ κB, we obtain

M(vk + αk∆vk)− Ck(∆vk)

≤ 3

√
∥∇M(vk)∥

µC
k

(
αk∥∇M(ξk)−∇M(vk)∥+

3κB
2

√
∥∇M(vk)∥

µC
k

)
,

(4.5.7)

for all k ∈ I sufficiently large. Moreover, by Lemma 4.5.2, together with the assumption

∥∇M(vk)∥ ≥ ϵ and the limit

√
∥∇M(vk)∥

µC
k

→ 0, we can bound the remaining term in

(4.5.4) as

Ck(∆vk)−M(vk) ≤ −
ϵ

12
√
2

√
∥∇M(vk)∥

µC
k

(4.5.8)

for all k ∈ I sufficiently large. Then, from equations (4.5.4), (4.5.7) and (4.5.8), it follows

rk ≤ 3

√
∥∇M(vk)∥

µC
k

(
αk∥∇M(ξk)−∇M(vk)∥+

3κB
2

√
∥∇M(vk)∥

µC
k

− ϵ1− η2
12
√
2

)
, (4.5.9)

for all k ∈ I sufficiently large. From the assumption vk → v∗ that ξk → v∗, as k → ∞,

k ∈ I, and as ∇M is continuous, we can conclude that

∥∇M(ξk)−∇M(vk)∥ → 0, k ∈ I, k →∞.

As αk ≤ 1 and the limit in (4.5.9) imply that rk < 0 for all k ∈ I sufficiently large.

Therefore, the inequality (4.5.3) follows from the updating strategy for the weight µC
k from

the line 12 to the line 16 in Algorithm 4.1.

We state below the first convergence result for PDARC algorithm. In the following

theorem, we show that provided M is bounded from below, there is a subsequence of

{∇M(vk)} converging to zero.

Theorem 4.5.1. Assume ∥B(vk)∥ ≤ κB for all k ≥ 0 and for some constant κB > 0. If
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{M(vk)} is bounded below andM is uniformly continuous on the sequence {vk}, then

lim inf
k→∞

∥∇M(vk)∥ = 0. (4.5.10)

Proof. We will prove this theorem by contradiction. Assume that the result (4.5.10) does

not hold, i.e.,

∥∇M(vk)∥ ≥ ϵ, for some ϵ > 0 and k ≥ 0. (4.5.11)

First, suppose there are only finitely many successful iterations. Denote the index of the

last successful iteration as k0. As all iterations k ≥ k0 + 1 are unsuccessful, the weight µC
k

increases by at least a fraction γ1 so that

µC

k →∞ as k →∞. (4.5.12)

By Lemma 4.5.3, we can conclude that vk → v∗ for sufficiently large k, which together

with (4.5.11), the second part of Lemma 4.5.4 holds. However, this contradicts with the

assumption that all iterations k ≥ k0 + 1 are unsuccessful. Therefore ∥∇M(vk)∥ → 0 as

k →∞.

Now suppose that there are infinite number of successful iterations. In fact, from

the proof of Theorem 2.5 in [8], all sufficiently large iterations belong to S. It follows from

Lemma 4.5.2, the assumption (4.5.11) and the construction of the Algorithm 4.1 that

M(vk)−M(vk+1) ≥ η1[M(vk)− Ck(∆vk)]

≥ η1ϵ

6
√
2
min

{
ϵ

1 + κB
, 1
2

√
∥∇M(vk)∥

µC
k

}

≥ η1ϵ

12
√
2

√
∥∇M(vk)∥

µC
k

,

(4.5.13)

for all k ∈ S sufficiently large, where the last inequality is attained because {M(vk)} is
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monotonically decreasing by Lemma 4.5.1 and assumed to be bounded below. For some

iteration index k0 sufficiently large and for any j ∈ S, j ≥ k0, using (4.5.13) and summing

up over all sufficiently large iteration gives

M(vk0)−M(vj+1) =

j∑
k=k0,k∈S

[M(vk)−M(vk+1)] ≥
η1ϵ

12
√
2

j∑
k=k0,k∈S

√
∥∇M(vk)∥

µC
k

. (4.5.14)

As {M(vj+1)} converges, by letting j →∞ in (4.5.14), we obtain

∑
k∈S

√
∥∇M(vk)∥

µC
k

< +∞,

which further implies

√
∥∇M(vk)∥

µC
k

→ 0, as k →∞, for k ∈ S, (4.5.15)

and

µC

k →∞ as k →∞. (4.5.16)

Hence the first part of Lemma 4.5.4 is established. Then, a simple calculation gives

∥vl+r − vl∥ ≤
l+r−1∑
k=l

∥vk+1 − vk∥ =
l+r−1∑
k=l

αk∥∆vk∥ ≤ 3
l+r−1∑
k=l

√
∥∇M(vk)∥

µC
k

,

for l ≥ 0 sufficiently large and r ≥ 0, whose right-hand side tends to zero by taking the

limit l→∞ due to (4.5.15), which yields that {vk} is a Cauchy sequence. and

vk → v∗, k →∞, for some v∗ ∈ Rn+3m. (4.5.17)

From (4.5.11), (4.5.15) and (4.5.17), by Lemma 4.5.4, if all k ∈ S sufficiently large are very

successful, i.e., there are no unsuccessful iteration for k sufficiently large, µC
k+1 ≤ µC

k and
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{µC
k } is bounded above. This, however, contradicts (4.5.16). Therefore (4.5.11) cannot

hold. The proof of the theorem is completed.

With some additional assumptions, we prove that whole sequence of gradients

{∇M(vk)} converges to zero in the following theorem.

Theorem 4.5.2. Assume ∥B(vk)∥ ≤ κB for all k ≥ 0 and for some constant κB > 0. If

{M(vk)} is bounded below and M and ∇M are uniformly continuous on the sequence

{vk}, then

lim
k→∞
∥∇M(vk)∥ = 0. (4.5.18)

Proof. If there are only finitely many successful iterations, then the result (4.5.18) follows

from the first part of the proof of Theorem 4.5.10. Now suppose that there are an

infinite number of successful iterations, i.e., S is infinite. Assume that there is an infinite

subsequence {ti} ⊆ S such that

∥∇M(vti)∥ ≥ 2ϵ, for some ϵ > 0 and for all i. (4.5.19)

Theorem 4.5.1 implies that for each ti, there is a first successful iteration li > ti such that

∥∇M(vli)∥ < ϵ. Thus {li} ⊆ S and for all i, we have

∥∇M(vk)∥ ≥ ϵ, for all k with ti ≤ k < li, and ∥∇M(vli)∥ < ϵ. (4.5.20)

Let K def
= {k ∈ S : ti ≤ k < li}, where the subsequences {ti} and {li} are defined above; note

that K is also infinite. It follows from Lemma 4.5.2, the construction of the Algorithm 4.1
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and (4.5.20) that

M(vk)−M(vk+1) ≥ η1[M(vk)− Ck(∆vk)]

≥ η1ϵ

6
√
2
min

{
ϵ

1 + κB
, 1
2

√
∥∇M(vk)∥

µC
k

}

≥ η1ϵ

12
√
2

√
∥∇M(vk)∥

µC
k

,

(4.5.21)

for all k ∈ K sufficiently large, where the last inequality is attained because {M(vk)}

is monotonically decreasing by Lemma 4.5.1 and assumed to be bounded below. By

Lemma 4.5.3, together with (4.5.21) and the definition of K, we can derive the following

bound

M(vk)−M(vk+1) ≥
η1ϵ

36
√
2
∥∆vk∥, (4.5.22)

for all ti ≤ k < li, i sufficiently large. Summing up (4.5.22) over all sufficiently large

iteration gives

36
√
2

η1ϵ
[M(vti)−M(vli)] ≥

li−1∑
k=ti,k∈S

∥vk+1 − vk∥ ≥ ∥vti − vli∥, (4.5.23)

for i sufficiently large. As {M(vk)} is monotonically decreasing by Lemma 4.5.1 and

assumed to be bounded below, the left had side of (4.5.23) converges to zero as i → 0,

which implies that ∥vti − vli∥ converges to zero as i → 0. As ∇M is assumed to be

uniformly continuous on the sequence {vk}, we have ∥∇M(vti) − ∇M(vli)∥ converges

to zero. This, however, contradicts (4.5.19) and (4.5.20). The proof of the theorem is

complete.

4.6 Solving the Cubic Regularized Subproblem

The Algorithm 4.3 for the cubic regularized subproblem (4.3.1) is based on an

algorithm of Gertz and Gill [21], which is in turn a modification of the method of Moré and
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Sorensen [34] as described in the Section 2.3.3. In this subsection, we omit the subscript k

when considering the details associated with a single cubic regularized subproblem.

Recalling the necessary and sufficient conditions in Theorem 4.3.1, we seek for a

unique non-negative scalar σ∗ such that

(B + σ∗T )s = −∇M, ∥s∥T −
σ∗

µC
= 0,

with (B + σT ) positive semidefinite. Let ψ(σ) denote the univariate function

ψ(σ) = ∥pσ∥T −
σ

µC
, where pσ satisfies (B + σT )pσ = −∇M.

If σmin is the smallest eigenvalue of T−1/2BT 1/2, then for any σ > max(0,−σmin) the

matrix B + σT is positive definite and ψ(σ) is well-defined. When σ is a positive zero of

ψ(σ), then s = pσ is a global solution the the cubic subproblem. Moré and Sorensen [34]

suggests an safeguarded Newton’s method to find an approximate zero of ψ(σ). To avoid

difficulties associated with the singularities of ψ(σ), Gould, Robinson and Thorne [28] uses

an alternative approach based on finding a zero of

ϕ(σ; β) = ∥pσ∥βT −
(
σ

µC

)β

, where β ∈ [−1,∞) \ {0}.

As in the case of the Moré-Sorensen method, a safeguarded Newton iteration N (σ) is

applied with carefully chosen β to generate a nonnegative sequence {σi} and an associated

sequence of vectors {pi} such that B+σT is positive definite and (B+σT )s = −∇M. The

quantity |ψ(σ)| is used to measure the accuracy of σ as an approximate zero of ϕ(σ; β).

The Algorithm 4.3 uses the LDL factorization of K(σ) to compute the inertia

of B(σ) with Lemma 4.3.1 in the line 8. This is different from using the Cholesky

factorization to check positive-definiteness as proposed by Moré and Sorensen. As K(σ) is

an (n+m)×(n+m) symmetric matrix, Algorithm 4.3 has roughly the same computational
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costs as the algorithm for solving the problem without using any shifts, which is more

efficient than factorizing B(σ) directly. However, the major drawback is that it is hard to

determine a good bound on σmin when B + σT is indefinite. Unlike Cholesky factorization

where a direction of negative curvature can be derived in a straightforward way. It is not

clear how to obtain such an estimate from the LDL factorization of K(σ). However, this

does not affect the convergence result.

Another departure from the Moré-Sorensen algorithm is the routine for computing

the null vector, znull(·). The routine znull(·) implemented in Moré-Sorensen algorithm

is based on the Cholesky factorization of T−1/2BT 1/2 + σI and the condition number

estimator suggested by Cline, Moler, Stewart and Wilkinson [11]. We used a routine

that computes an approximate null vector by using Higham’s [32] modification of Hager’s

algorithm [31] supplied with LAPACK in the line 16. This routine is based on estimating

the the inverse of the one-norm condition number of the square matrix, where only matrix-

vector products with (T−1/2BT 1/2 + σI)−1 are used, rather than matrix factorization. We

prefer this routine for practical reason that Hager’s algorithm uses inexact arithmetic and

avoids the instability associated with the Cholesky factorization of a near-singular matrix.
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Algorithm 4.3. Schematic outline of primal-dual cubic subproblem.

1: function Primal-Dual Cubic Subproblem

2: Initialization: Given σ0, 0 < σU , 0 < ϵ≪ 1, 0≪ θ < 1;
3: Estimate the lower bound of the smallest eigenvalue of B as σ̄min;
4: Set σS ← max(0,−σ̄min) and σ0 ← max(σ0, σS);
5: Set [σL, σU ]← [σS, max(σ0, σU)];
6: converged ← false

7: while not converged do
8: Compute Inertia of K(σ) by LDL factorization: (σ+, σ−, σ0)← In(K(σi));
9: if σ+ < n then
10: σi+1 ← (1− θ) ∗ σL + θ ∗ σU ;
11: else
12: Compute a vector p by solving the linear system

B(σk)p = −∇M;

13: if |ψ(σi)| ≥ ϵ or σU − σL < ϵ then
14: s← p; converged ← true;
15: else if ψ(σi) ≤ −ϵ then
16: z ← znull(B, σi, T, p, µ

C);
17: if zTB(σi)z < ϵ(2− ϵ)(pTB(σi)p+ σk(σk/µ

C)2) then
18: s← p+ z; converged ← true;
19: else
20: σS = max(σS,−zTB(σi)z);
21: [σL, σU ] = [max(σL, σS), min(σU , σi)];
22: end if
23: end if
24: if not converged then
25: σN ← N (σi);
26: if σN > σL then
27: σi+1 ← σN ;
28: else
29: σi+1 ← (1− θ) ∗ σL + θ ∗ σU ;
30: end if
31: end if
32: end if
33: end while
34: end function
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4.7 Practical Considerations for General Case

This section concerns that derivation of the cubic regularization equations for a

shifted primal-dual penalty-barrier merit method for constrained optimization. The method

are intended for the minimization of a twice-continuously differentiable function subject

to both equality and inequality constraints that may include a set of twice-continuously

differentiable constraint functions, written in the general form:

minimize
x∈Rn,s∈Rm

f(x) subject to


c(x)− s = 0, LXs = hX, ℓS ≤ LLs, LUs ≤ uS ,

Ax− b = 0, EXx = bX, ℓX ≤ ELx, EUx ≤ uX ,

(4.7.1)

where A denotes a constant mA × n matrix, LX and LF denote matrices of dimension

mF ×m and mX ×m, respectively, with m = mF +mX, EX and EF are fixed matrices of

dimension nF × n and nX × n, respectively, with n = nF + nX . Throughout the discussion,

the functions c : Rn 7→ Rm and f : Rn 7→ R are assumed to be twice-continuously

differentiable. The components of s may be interpreted as slack variables associated with

the nonlinear constraints. In addition, it is assumed that a subset of the components of x

and s are fixed and that a subset of the other components are subject to upper and lower

bounds.

The quantity EX denotes an nX × n matrix formed from nX independent rows of

In, the identity matrix of order n. This implies that the equality constraints EXx = bX fix

nX components of x at the corresponding values of bX . Similarly, EL and EU denote nL×n

and nU × n matrices formed from subsets of rows of In such that ET
XEL = 0, ET

XEU = 0,

i.e., a variable is either fixed or free to move, possibly bounded by an upper or lower

bound. Note that an xj may be an unrestricted variable in the sense that it is neither

fixed nor subject to an upper or lower bound, in which case eTj is not a row of EX, EL

or EU . Analogous definitions hold for LX, LL and LU as subsets of rows of Im. However,
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we impose the restriction that a given sj must be either fixed or restricted by an upper

or lower bound, i.e., there are no unrestricted slacks1. Let EF and LF denote rows of In

and Im such that

(
ET

X ET
F

)
and

(
LT

X LT
F

)
are column permutations of In and Im. It

follows that the rows of EL and EU are a subset of the rows of EF , and that LF is formed

from the rows of LL and LU . These definitions imply that there are n × n and m ×m

permutation matrices Px and Ps such that

Px =

EF

EX

 and Ps =

LF

LX

 ,

with EFE
T
F = IxF , EXE

T
X = IxX, and EFE

T
X = 0, and LFL

T
F = IsF , LXL

T
X = IsX, and

LFL
T
X = 0.

All general inequality constraints are imposed indirectly through a shifted primal-

dual barrier function. The general equality constraints c(x) − s = 0 and Ax = b are

enforced using an primal-dual augmented Lagrangian algorithm, which implies that the

equalities are satisfied in the limit. The exception to this is when the constraints EXx = bX ,

and LXs = hX are used to fix a subset of the variables and slacks. These bounds are

enforced at every iterate. This is intended to allow for the possibility of a variable or slack

becoming infeasible with respect to its shifted bound during process of reducing the value

of µB .

An infeasible slack variable is handled by temporarily fixing it on its bound. An

infeasible variable is treated by indirectly enforcing the bound through the use of the

primal-dual augmented Lagrangian. Suppose that µB
i and µ̄B

i denote a shift before and

after it is reduced, with si + µB
i > 0 and si + µ̄B

i ≤ 0. The variable si can be restored

to feasibility by imposing a temporary equality constraint si = 0. This constraint is

1This is not a significant restriction because a “free” slack is equivalent to an unrestricted nonlinear
constraint, which may be discarded from the problem. The shifted primal-dual penalty-barrier equations
can be derived without this restriction, but the derivation is beyond the scope of this note.
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enforced through the primal-dual augmented Lagrangian term until the magnitude of

ci(x) is sufficiently small such that ci(x) > −µ̄B
i , at which point si is set to si = ci(x) and

allowed to vary. If xj is infeasible with respect to ℓXj − µB
j , the constraint xj − ℓXj = 0 is

included as a temporary penalty term inM, i.e.,

−vEj (xj − ℓXj ) +
1

2µA
j

(xj − ℓXj )2 +
1

2µA
j

(
xj − ℓXj + µA

j (vj − vEj )
)2
,

where vEj is an estimate of the multiplier for the constraint xj = ℓXj , and µ
A
j is a penalty

parameter chosen so that µA
j < µ̄B

j . The initial values of vj and v
E
j are vj = zj and v

E
j = zE

j ,

where zj > 0 is the dual variable associated with the constraint xj ≥ ℓXj . These quantities

appear in the perturbed primal-dual optimality conditions associated with problem format

(4.7.1). While xj is infeasible, its associated barrier term is omitted from the shifted

primal-dual merit function. Once xj returns to feasibility for the shifted bound, the shifted

barrier term replaces the temporary penalty term in the definition ofM with zj and z
E
j

initialized from vj and v
E
j . For the purposes of deriving the KKT equations, this scheme

implies that additional constraints Ax − b = 0 are imposed as in (4.7.1), where A is a

matrix of positive and negative rows of In and bj is either ℓ
X
j or −uX

j .

Let x and s be given primal variables and slack variables such that EXx = bX,

LXs = hX with ℓX − µB < ELx, EUx < uX + µB , ℓS − µB < LLs, LUs < uS + µB . Similarly,

let z1, z2, w1, w2 and y denotes dual variables such that w1 > 0, w2 > 0, z1 > 0, and

z2 > 0. The partition of x into free and fixed variables induces a partition of H, A, J ,

EL and EU . We use HF to denote the nF × nF symmetric matrix of rows and columns

of H associated with the free variables and AF , AX, JF , JX to denote the free and fixed

columns of A and J . In particular,

HF = EFHE
T
F , AF = AET

F , AX = AET
X , JF = JET

F , and JX = JET
X ,
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Similarly, the nL × nF matrix ELF and nU × nF matrix EUF comprise the free columns of

EL and EU , with

ELF = ELE
T
F , and EUF = EUE

T
F .

It follows that the components of ELFxF are the values of the free variables that are subject

to lower bounds. A similar interpretation applied for EUFxF . Analogous definitions apply

for the mL ×mF matrix LLF and mU ×mF matrix LUF . Consider the diagonal matrices

Xµ
1 = diag(ELx− ℓX + µBe), Xµ

2 = diag(uX − EUx+ µBe), Z1 = diag(z1), Z2 = diag(z2),

W1 = diag(w1), W2 = diag(w2), S
µ
1 = diag(LLs− ℓS +µBe) and Sµ

2 = diag(uS−LUs+µ
Be).

Given the quantities

DY = µPIm, πY = yE − 1

µP
(c− s),

DA = µAIA, πV = vE − 1

µA
(Ax− b),

(DZ

1 )
−1 = (Xµ

1 )
−1Z1, πZ

1 = µB(Xµ
1 )

−1zE

1 ,

(DZ

2 )
−1 = (Xµ

2 )
−1Z2, πZ

2 = µB(Xµ
2 )

−1zE

2 ,

DZ =
(
ET

L (D
Z

1 )
−1EL + ET

U (D
Z

2 )
−1EU

)†
, πZ = ET

L π
Z

1 − ET
U π

Z

2 ,

(DW

1 )−1 = (Sµ
1 )

−1W1, πW

1 = µB(Sµ
1 )

−1wE
1 ,

(DW

2 )−1 = (Sµ
2 )

−1W2, πW

2 = µB(Sµ
2 )

−1wE
2 ,

DW =
(
LT

L (D
W

1 )−1LL + LT
U (D

W

2 )−1LU

) †, πW = LT
L π

W

1 − LT
U π

W

2 ,

D̆W =
(
D†

W + σσ̄IsF
) †,
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the KKT system for problem 4.7.1 can be written as follows

HF (x, y) + σIxF +
1

σ̄
AT

FD
−1
A AF +

1

σ̄
EFD

†
ZE

T
F −JF(x)

T

JF(x) σ̄
(
DY + D̆W

)

∆xF

∆ỹ


= −

EF

(
g − JTy − ATv − z + 1

σ̄

[
AT(v − πV ) + z − πZ

])
DY

(
y − πY

)
+ D̆W

(
σ̄(y − w) + w − πW

)
 .

Then, the solutions of the cubic regularization equations for problem 4.7.1 can be obtained

by the following equations

∆x = ET
F ∆xF , ∆z1 = −

1

1 + σ
(Xµ

1 )
−1
(
z1 · (ELx̂− ℓX + µBe)− µBzE

1

)
,

x̂ = x+∆x, ∆z2 = −
1

1 + σ
(Xµ

2 )
−1
(
z2 · (uX − EU x̂+ µBe)− µBzE

2

)
,

∆y = ∆ỹ/(1 + 2σ), ∆s = −σ̄D̆W

(
y + (1 + 2σ)∆y − w +

1

σ̄

[
w − πW

])
,

ŷ = y +∆y, ∆w1 = −
1

1 + σ
(Sµ

1 )
−1
(
w1 · (LLŝ− ℓS + µBe)− µBwE1

)
,

ŝ = s+∆s, ∆w2 = −
1

1 + σ
(Sµ

2 )
−1
(
w2 · (uS − LU ŝ+ µBe)− µBwE2

)
,

π̂V = vE − 1

µA
(Ax̂− b), ∆v = − 1

1 + σ

(
v − π̂V

)
,

w = LT
XwX + LT

L w1 − LT
Uw2, z = ET

X zX + ET
L z1 − ET

U z2,

v̂ = v +∆v, ∆wX = [ŷ − w]X ,

∆zX = [g +H∆x− JTŷ − z]X .

For further information on the derivation, see Appendix A.
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Chapter 5

Numerical Results

In this chapter, we present the numerical results obtained by the algorithms proposed

in Chapter 3 for unconstrained optimization and Chapter 4 for constrained optimization. The

implementation of these algorithms was done in MATLAB R2019a and all of our experiments

were performed on run on a 2018 MacBook Pro with a 2.2 GHz Intel Core i7 and 32 GB

of RAM. The numerical performance of the proposed algorithms was evaluated on a set of

optimization problems drawn from the Constrained and Unconstrained Testing Environment

(CUTEst). The CUTEst test collection is widely used in the optimization community as a

standard benchmark for comparing the performance of optimization algorithms. It includes

a diverse range of problems, including those from industrial applications, standard academic

problems, and problems specifically designed to expose the weaknesses of optimization algorithms.

A more detailed description of the CUTEst test collection can be found in the works of Gould et

al. [25, 26]. The performance of each algorithm was evaluated based on the number of function

evaluations and the number of iterations required to reach a solution within a pre-specified

tolerance.

5.1 Performance Profiling

Performance profiling is a useful tool for analyzing the results of numerical experiments

on optimization software. The merits of using performance profiles to benchmark optimization

software are discussed by Dolan and Moré [16].
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The method provides a way to compare the performance of a set of solvers applied to a

test set of problems. The main advantage of using performance profiles is that it is intended to

standardize the significance of each problem in a set of tests in comparison to the others, and to

incorporate data from problems, including those in which one or more solvers were unsuccessful

in converging. This is unlike using a basic sum over all converging problems.

The performance profile provides an overview of the performance of a set S of ns solvers

applied to a test set P of np problems. For each solver s ∈ S and problem p ∈ P in a profile, the

number tp,s, which represents the time (or some other measure such as the number of iterations)

needed to solve problem p using solver s, is recorded. In order to compare the performance of a

problem p across different solvers, the performance ratio rp,s for each successfully solved problem

and solver is defined as follows

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The performance ratio for problems that failed is defined as some value greater than the

maximum time needed over all successfully solved problems, denoted by rM . Note that a solver

s is considered to be the best for solving problem p among all solvers in S if and only if rp,s = 1,

which means that the solver s has solved the problem p in the shortest amount of time compared

to other solvers.

Given the set of performance ratios, Dolan and Moré define a performance profile for

each solver s as a function

ρs(α) =
1

np

∣∣{ p ∈ P : rp,s ≤ α
}∣∣ ,

where α ∈ [1, rM ]. If a solver s has the performance profile ρs(α), then ρs(α) represents the

fraction of problems that solver s solves within α times the best solver’s performance. The

performance profile ρs(α) is a monotonically increasing function that is piecewise constant and

right continuous. The quantity ρs(1) denotes the percentage of problems for which solver s was

the most efficient solver among all solvers in the test set. Additionally, ρs(rM ) is equal to 1, and

limα→r−M
ρs(α) denotes the fraction of problems solved successfully by solver s.
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The presented performance profiles are defined as the function

πs(τ) =
1

np

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

with τ = log2(α), which is log-scaled along the horizontal axis to capture behavior near α = 1

and α = rM . Specifically, the quantity πs(τ) can be interpreted as the fraction of problems in

the test set that were solved within 2τ of the best solving time by solver s. In general, the higher

and more left the graph y = πs(τ) is, the better the solver s performs.

5.2 Numerical Results for Unconstrained Optimiza-

tion

This section compares the numerical performance of the original ARC algorithm [8] and

various variants of cubic regularization methods applied to unconstrained optimization problems.

The algorithms were implemented using the exact Hessian Hk as Bk in each iteration, along

with the exact cubic subproblem solver described in Section 2.3.3. As a benchmark, we also

implemented a biased Wolfe trust-region method proposed by Gertz [33].

The numerical experiments were conducted on the unconstrained problems from the

CUTEst collection. To ensure computational feasibility within the Matlab environment, we

selected testing problems with fewer than 1000 variables, and for those problems whose dimensions

could be adjusted, we chose smaller variants. In total, 237 unconstrained problems were included

in the test suite.

The stopping criterion for the algorithms was set to be either the gradient norm ∥gk∥

less than 10−6 or the objective function value fk less than −109. Additionally, the algorithms

were allowed to run for a maximum of 3000 iterations or one hour, and any runs exceeding these

limits were flagged as failures.

Section 5.2.1 conducts an ablation study and presents performance profiles for the

nonmonotone adaptive cubic regularization algorithm (NMARC) introduced in Section 3.1.

Section 5.2.2 compares the performance of two variants of the ARC-Newton hybrid method
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against the vanilla ARC algorithm, NMARC, and the biased Wolfe trust-region method. The

performance of the methods is compared using the iteration count and function evaluation count

performance profile as the metric. Although it would have been ideal to include a similar figure for

CPU times, it was not feasible to do so using the Matlab CPU timer due to its inaccuracy. A more

precise comparison of CPU times will be conducted in the future with a carefully implemented

version of the methods in FORTRAN or C++, and tested on larger examples in a controlled

computing environment.

5.2.1 Numerical Results for Cubic Regularization Methods
with Line Search Techniques

In this section, we present a comprehensive numerical comparison of various versions

of the nonmonotone adaptive cubic regularization method (NMARC) proposed in Section 3.1,

with the vanilla adaptive cubic regularization (ARC) algorithm, and examine the trade-offs

between the number of iterations and function evaluations for these algorithms. Specifically, we

implemented and evaluated the following five algorithms:

• ARC: The vanilla ARC algorithm as stated in Algorithm 2.2 proposed by Cartis, Gould

and Toint [8].

• NMARC-fixed: The NMARC algorithm as stated in Algorithm 3.1 with a fixed value of

0.8 for the nonmonotonicity parameter βk.

• NMARC-adaptive: The NMARC algorithm as stated in Algorithm 3.1 with an dynamic

βk that depends on the norm of the gradient ∥gk∥. The value of βk is closer to 1 when the

iterates are far from the optimum, and closer to 0 when the iterates are near an optimum,

which yields better convergence results. Specifically, we define βk = min{0.9, 1− e−∥gk∥/2}.

• ARC-Wolfe: The ARC algorithm combined with monotone Wolfe line search, which is

equivalent to the NMARC algorithm with βk = 0.

• ARC-Armijo: The ARC algorithm combined with Armijo-type backtracking line search.
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Table 5.1. Default parameters used in NMARC

Parameter Value Parameter Value

x0 prob.x η1 0.01

σ0 1 η2 0.9

γ1 1.05 ηs 0.01

γ2 3 ηw 0.9
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Figure 5.1. Performance profiles of ARC with line search techniques on 237 CUTEst
unconstrained problems with respect to the number of iterations.

The MATLAB implementations of the algorithms were initialized with parameter values

given in Table 5.2. These values were selected based on their empirical performance on the entire

set of problems.

Figure 5.1 and Figure 5.2 give the performance profiles for the total number of iterations

and function evaluations. As shown in Figure 5.1, the NMARC algorithms with the Wolfe line

search technique generally require fewer iterations than the vanilla ARC algorithm and the ARC

algorithm combined with Armijo-type line search. On the other hand, Figure 5.2 suggests that

the NMARC algorithm with line search methods typically requires more function evaluations

to converge to an optimal solution, which is in line with our expectations. Moreover, based on
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Figure 5.2. Performance profiles of ARC with line search techniques on 237 CUTEst
unconstrained problems with respect to the number of function evaluations.

the results presented in Figure 5.1, it can be observed that the NMARC algorithm with both

fixed and dynamic nonmonotonicity parameter βk, as well as the ARC algorithm with Wolfe line

search, show similar performance profiles for the number of iterations, which are superior to the

performance of the vanilla ARC algorithm and ARC with Armijo-type line search. Regarding the

number of function evaluations, the performance profiles in Figure 5.2 indicate that the NMARC

algorithm with dynamic nonmonotonicity parameter performs better than NMARC with fixed

nonmonotonicity parameter, and has similar performance to the ARC algorithm with monotone

Wolfe line search. In terms of the total number of problems solved successfully, out of the 237

test problems, Algorithm ARC achieved optimality on 224 (94.5%) problems. NMARC-fixed and

ARC-Wolfe solved 222 (93.7%) problems, while NMARC-adaptive solved 223 (94.1%) problems,

and NMARC-Armijo solved 221 (93.2%) problems.

In summary, the numerical results presented in this study support the discussion in

Section 3.1 and suggest that NMARC with (monotone or nonmonotone) Wolfe line search is a

preferable method when the evaluation of the objective function is not computationally intensive.
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5.2.2 Numerical Results for Hybrid Approaches of Cubic
Regularization and Newton’s Method

Table 5.2. Default parameters used in ARC-Newton

Parameter Value Parameter Value

x0 prob.x η1 0.01

σ0 1 η2 0.9

γ1 1.05 ηs 0.01

γ2 3 ηw 0.9

ϵd 10−4
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ARC-Newton1
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Figure 5.3. Performance profiles of cubic regularization methods on 237 CUTEst
unconstrained problems with respect to the number of iterations.

This section presents a performance comparison of hybrid approaches that combine the

cubic regularization method with Newton’s method, as discussed in Section 3.2, to ARC, NMARC

and a biased Wolfe trust-region method. The numerical results demonstrate that the hybrid

approach of ARC and Newton’s method is a promising strategy for solving nonlinear optimization

problems. Specifically, we implemented and evaluated the following five algorithms:
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Figure 5.4. Performance profiles of cubic regularization methods on 237 CUTEst
unconstrained problems with respect to the number of function evaluations.

• ARC: The vanilla ARC algorithm as stated in Algorithm 2.2 proposed by Cartis, Gould

and Toint [8].

• NMARC: The NMARC algorithm as stated in Algorithm 3.1 with an dynamic βk that

depends on the norm of the gradient ∥gk∥. The value of βk is closer to 1 when the iterates

are far from the optimum, and closer to 0 when the iterates are near an optimum, which

yields better convergence results. Specifically, we define βk = min{0.9, 1− e−∥gk∥/2}.

• ARC-Newton1: The first hybrid approach of the cubic regularization method and

Newton’s method outlined in Algorithm 3.2.

• ARC-Newton2: The second hybrid approach of the cubic regularization method and

Newton’s method outlined in Algorithm 3.3.

• TR: A trust-region method with a biased Wolfe line search technique proposed by Gertz [33].

To the best of our knowledge this algorithm provides the best numerical performance

among trust-region algorithms.

The MATLAB implementations were initialized with parameter values given in Table 5.2.

112



These parameter values were chosen based on the empirical performance on the entire collection

of problems.

Our numerical experiment’s performance profiles for the total number of iterations and

function evaluations are shown in Figure 5.3 and Figure 5.4, respectively. The performance

profiles indicate that while the TR method initially performs well, the hybrid approaches (ARC-

Newton1 and ARC-Newton2) eventually outperform the TR method and other variants of

cubic regularization algorithm in terms of the total number of problems solved. In particular,

problem-by-problem comparisons of the performance profiles indicate that ARC-Newton1 gives

the same or fewer number of iterations required for convergence than the vanilla ARC on

85.1% of the problems, and the same or fewer number of function evaluations on 74.3% of the

problems. Additionally, it can be observed that ARC-Newton1 and ARC-Newton2 are competitive

alternatives to each other. Specifically, while ARC-Newton2 has superior performance in terms

of the total number of iterations, ARC-Newton1 outperforms ARC-Newton2 with respect to the

total number of function evaluations. Regarding the number of problems solved successfully, out

of the 237 test problems, ARC algorithm achieved optimality on 224 (94.5%) problems. NMMAR

was successful on 223 (94.1%) problems, while TR solved 214 (90.3%) problems. ARC-Newton1

and ARC-Newton2 achieved even higher success rates, solving 225 (94.9%) and 226 (95.5%)

problems, respectively. These results suggest that the hybrid approach of ARC and Newton’s

method is a significant improvement over vanilla ARC and has the potential to be an effective

solution strategy for a wide range of nonlinear optimization problems.

5.3 Numerical Results for Constrained Optimiza-

tion

This section is devoted to the numerical results of the primal-dual adaptive cubic

regularization methods proposed in Chapter 4. We compare the performance of PDARC with

that of the benchmark algorithm, a shifted primal-dual penalty-barrier method (PDB) proposed

by Gill, Kungurtsev, and Robinson [22]. Specifically, we implemented and evaluated the following

three algorithms:
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• PDARC: The primal-dual adaptive cubic regularization method with Armijo line search

technique as described in Algorithm 4.1.

• PDARC-Hybrid: The hybrid approach of PDARC algorithm and Newton’s method

outlined in Algorithm 4.2.

• PDB: The shifted primal-dual penalty-barrier method with a specific modified Newton

method proposed by Gill, Kungurtsev, and Robinson [22]. This algorithm serves as a

benchmark for comparison.

Results were obtained for 349 nonlinear constrained optimization problems from the

CUTEst test collection. In order to ensure computational feasibility in the Matlab environment,

we limited our test problems to those with a combined total of variables and constraints not

exceeding 1000. All the problems selected have at least one constraint (not including any simple

upper or lower bounds on variables).

5.3.1 Implementation Details

Each CUTEst problem may be written in the form

minimize
x

f(x)

subject to

ℓX

ℓS

 ≤
 x

c(x)

 ≤
uX

uS

 ,

where c : Rn 7→ Rm, f : Rn 7→ R, and (ℓX , ℓS) and (uX , uS) are constant vectors of lower and

upper bounds. In this format, a fixed variable or an equality constraint has the same value for

its upper and lower bound. A variable or constraint with no upper or lower limit is indicated by

a bound of ±1020. In our implementation, each problem was converted to the equivalent form

minimize
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0, LXs = hX , ℓS ≤ LLs, LUs ≤ uS ,

EXx = bX , ℓX ≤ ELx, EUx ≤ uX ,

(5.3.1)
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where s is a vector of slack variables. The quantity EX denotes an nX × n matrix formed from

nX independent rows of In. Similarly, EL and EU denote matrices formed from subsets of In

such that ET
X EL = 0, ET

X EU = 0, i.e., a variable is either fixed or free to move, possibly bounded

by an upper or lower bound. Note that a variable xj need not be subject to a lower or upper

bound, or may be bounded below and above, in which case ej is not a row of EX , EL or EU .

Analogous definitions hold for LX , LL and LU as subsets of rows of Im although a given sj must

be either fixed or restricted by an upper or lower bound, i.e., there are no unrestricted slacks.

The bound constraints involving EX and LX are enforced explicitly. The problem format (5.3.1)

can be extended easily to allow for the possibility of a variable or slack becoming infeasible with

respect to its shifted bound. An infeasible slack variable is treated as in the previous section

by temporarily fixing it on its bound. An infeasible variable is treated by imposing the bound

indirectly using the primal-dual augmented Lagrangian. More details on this can be found in

Section 4.7 and Appendix A.

5.3.2 Algorithm Parameters and Termination Conditions

The parameter values used in the MATLAB implementations of PDARC were initialized

based on empirical performance on the entire collection of problems. Specifically, the parameter

values were chosen according to the tables given in Table 5.3. The primal-dual vector (x0, y0)

was initialized with default values provided by CUTEst. However, the code immediately projects

x0 onto the feasible region to ensure that it satisfies the bounds on x and is feasible.

Table 5.3. Control parameters and initial values for PDARC and PDARC-Hybrid

Parameter Value Parameter Value

µC
0 1.0 η1 0.01

γ1 1.05 η2 0.9

γ2 3.0 ϵd 10−6

ymax/wmax 106 µP
0 1.0

τstop 10−4 µB
0 10−3

τ0 0.5 χmax
0 103
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The iterates were terminated at a point satisfying the condition

∥χ(vk)∥∞ < τstop, (5.3.2)

where χ(v) is the optimality measure defined in terms of problem (5.3.1) (see (A.2.1) in Ap-

pendix A), or the number of iteration reaches 500. Additionally, if the function value at current

iteration is less than −109, we consider this problem is unbounded below and terminate the

algorithm.

5.3.3 Numerical Results
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Figure 5.5. Performance profiles on 349 CUTEst constrained problems with respect to
the number of iterations.

This section aims to compare the numerical performance of the PDARC, PDARC-Hybrid,

and PDB methods. To this end, we present in Figure 5.5 and Figure 5.6 the performance

profiles of these algorithms in terms of the total number of iterations and function evaluations.

The numerical experiments reveal that the PDARC-Hybrid algorithm provides a competitive

alternative to the PDB method. In particular, the performance profile curves of PDARC-Hybrid

and PDB exhibit an alternating pattern, with the PDARC-Hybrid curve initially above the PDB
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Figure 5.6. Performance profiles on 349 CUTEst constrained problems with respect to
the number of function evaluations.

curve, followed by the PDB curve rising above, and ultimately the PDARC-Hybrid curve finishing

above the PDB curve. Moreover, problem-by-problem comparisons of the performance profiles

indicate that PDARC-Hybrid requires the same or fewer iterations to converge than PDB on

70.2% of the tested problems, and the same or fewer function evaluations on 68.2% of the tested

problems. Additionally, it can be observed that PDARC-Hybrid exhibits superior efficiency and

reliability compared to PDARC, which is in line with the findings reported for unconstrained

problems. Out of the 349 constrained test problems, PDARC was successful on 298 (85.4%)

problems, while PDARC-Hybrid achieved optimality on 308 (88.3%) problems, and PDB solved

301 (86.2%) problems. The findings suggest that cubic regularization can be a viable alternative

to modified Newton’s method when the KKT matrix does not have the correct inertia.
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ri
tt
en

in
th
e
ge
n
er
al

fo
rm

:

m
in
im

iz
e

x
∈
R
n
,s
∈
R
m

f
(x
)

su
b
je
ct

to

    c(
x
)
−
s
=

0,
L

X
s
=

h
X
,

ℓS
≤

L
L
s,

L
U
s
≤

u
S
,

A
x
−
b
=

0,
E

X
x
=

b X
,

ℓX
≤

E
L
x
,

E
U
x
≤

u
X
,

(A
.1
.1
)

w
h
er
e
A

d
en

o
te
s
a
co
n
st
a
n
t
m

A
×

n
m
a
tr
ix
,
L

X
a
n
d
L

F
d
en

o
te

m
a
tr
ic
es

o
f
d
im

en
si
o
n
m

F
×

m
a
n
d
m

X
×

m
,
re
sp
ec
ti
v
el
y,

w
it
h

m
=

m
F
+

m
X
,
E

X
a
n
d
E

F
a
re

fi
x
ed

m
a
tr
ic
es

o
f
d
im

en
si
o
n
n

F
×

n
a
n
d
n

X
×

n
,
re
sp
ec
ti
v
el
y,

w
it
h
n
=

n
F
+

n
X
.
T
h
ro
u
g
h
o
u
t
th
e
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d
is
cu
ss
io
n
,
th
e
fu
n
ct
io
n
s
c
:
R
n
7→

R
m

an
d
f
:
R
n
7→

R
ar
e
as
su
m
ed

to
b
e
tw

ic
e-
co
n
ti
n
u
ou

sl
y
d
iff
er
en
ti
ab

le
.
T
h
e
co
m
p
on

en
ts

of
s
m
ay

b
e
in
te
rp
re
te
d
as

sl
ac
k
va
ri
ab

le
s
as
so
ci
at
ed

w
it
h
th
e
n
on

li
n
ea
r
co
n
st
ra
in
ts
.
In

ad
d
it
io
n
,
it

is
as
su
m
ed

th
at

a
su
b
se
t
of

th
e
co
m
p
on

en
ts

of
x
an

d
s
ar
e
fi
x
ed

an
d
th
at

a
su
b
se
t
of

th
e
ot
h
er

co
m
p
on

en
ts

ar
e
su
b
je
ct

to
u
p
p
er

an
d
lo
w
er

b
ou

n
d
s.

T
h
e
q
u
an

ti
ty

E
X
d
en
ot
es

an
n

X
×
n
m
at
ri
x
fo
rm

ed
fr
om

n
X
in
d
ep

en
d
en
t
ro
w
s
of

I n
,
th
e
id
en
ti
ty

m
at
ri
x
of

or
d
er

n
.
T
h
is
im

p
li
es

th
at

th
e
eq
u
al
it
y
co
n
st
ra
in
ts

E
X
x
=

b X
fi
x
n

X
co
m
p
on

en
ts

of
x
at

th
e
co
rr
es
p
on

d
in
g
va
lu
es

of
b X

.
S
im

il
ar
ly
,
E

L
an

d
E

U
d
en
ot
e
n

L
×

n

an
d
n

U
×

n
m
at
ri
ce
s
fo
rm

ed
fr
om

su
b
se
ts

of
ro
w
s
of

I n
su
ch

th
at

E
T X
E

L
=

0,
E

T X
E

U
=

0,
i.
e.
,
a
va
ri
ab

le
is

ei
th
er

fi
x
ed

or
fr
ee

to
m
ov
e,

p
os
si
b
ly

b
ou

n
d
ed

b
y
an

u
p
p
er

or
lo
w
er

b
ou

n
d
.
N
ot
e
th
at

an
x
j
m
ay

b
e
an

u
n
re
st
ri
ct
ed

va
ri
ab

le
in

th
e
se
n
se

th
at

it
is

n
ei
th
er

fi
x
ed

n
or

su
b
je
ct

to
a
n
u
p
p
er

o
r
lo
w
er

b
o
u
n
d
,
in

w
h
ic
h
ca
se

eT j
is

n
o
t
a
ro
w

o
f
E

X
,
E

L
o
r
E

U
.
A
n
a
lo
g
o
u
s
d
efi

n
it
io
n
s
h
o
ld

fo
r
L

X
,
L

L
a
n
d
L

U

a
s
su
b
se
ts

o
f
ro
w
s
o
f
I m

.
H
ow

ev
er
,
w
e
im

p
o
se

th
e
re
st
ri
ct
io
n
th
a
t
a
g
iv
en

s j
m
u
st

b
e
ei
th
er

fi
x
ed

o
r
re
st
ri
ct
ed

b
y
a
n
u
p
p
er

o
r
lo
w
er

b
o
u
n
d
,
i.
e.
,
th
er
e
a
re

n
o
u
n
re
st
ri
ct
ed

sl
a
ck
s1
.
L
et

E
F
a
n
d
L

F
d
en

o
te

ro
w
s
o
f
I n

a
n
d
I m

su
ch

th
a
t

( E
T X

E
T F

) a
n
d

( L
T X

L
T F

) a
re

co
lu
m
n
p
er
m
u
ta
ti
on

s
of

I n
an

d
I m

.
It

fo
ll
ow

s
th
at

th
e
ro
w
s
of

E
L
an

d
E

U
ar
e
a
su
b
se
t
of

th
e
ro
w
s
of

E
F
,
an

d
th
at

L
F
is

fo
rm

ed
fr
om

th
e
ro
w
s
of

L
L
an

d
L

U
.
T
h
es
e
d
efi

n
it
io
n
s
im

p
ly

th
at

th
er
e
ar
e
n
×
n
an

d
m
×
m

p
er
m
u
ta
ti
on

m
at
ri
ce
s
P
x
a
n
d
P
s
su
ch

th
a
t

P
x
=

  E
F

E
X

  
an

d
P
s
=

  L
F

L
X

  ,
(A

.1
.2
)

w
it
h
E

F
E

T F
=

I
x F
,
E

X
E

T X
=

I
x X
,
an

d
E

F
E

T X
=

0,
an

d
L

F
L
T F
=

I
s F
,
L

X
L
T X
=

I
s X
,
an

d
L

F
L
T X
=

0.

A
ll
g
en

er
a
l
in
eq
u
a
li
ty

co
n
st
ra
in
ts

a
re

im
p
o
se
d
in
d
ir
ec
tl
y
u
si
n
g
a
sh
if
te
d
p
ri
m
a
l-
d
u
a
l
b
a
rr
ie
r
fu
n
ct
io
n
.
T
h
e
g
en

er
a
l
eq
u
a
li
ty

co
n
st
ra
in
ts

c(
x
)
−

s
=

0
a
n
d
A
x
=

b
a
re

en
fo
rc
ed

u
si
n
g
a
n
p
ri
m
a
l-
d
u
a
l
a
u
g
m
en
te
d
L
a
g
ra
n
g
ia
n
a
lg
o
ri
th
m
,
w
h
ic
h
im

p
li
es

th
a
t
th
e

1
T
h
is

is
n
ot

a
si
gn

ifi
ca
n
t
re
st
ri
ct
io
n
b
ec
au

se
a
“f
re
e”

sl
ac
k
is

eq
u
iv
al
en
t
to

a
u
n
re
st
ri
ct
ed

n
on

li
n
ea
r
co
n
st
ra
in
t,

w
h
ic
h
m
ay

b
e
d
is
ca
rd
ed

fr
om

th
e

p
ro
b
le
m
.
T
h
e
sh
if
te
d
p
ri
m
al
-d
u
al

p
en
al
ty
-b
ar
ri
er

eq
u
at
io
n
s
ca
n
b
e
d
er
iv
ed

w
it
h
ou

t
th
is

re
st
ri
ct
io
n
,
b
u
t
th
e
d
er
iv
at
io
n
is

b
ey
on

d
th
e
sc
op

e
of

th
is

n
ot
e.
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eq
u
al
it
ie
s
ar
e
sa
ti
sfi
ed

in
th
e
li
m
it
.
T
h
e
ex
ce
p
ti
on

to
th
is

is
w
h
en

th
e
co
n
st
ra
in
ts

E
X
x
=

b X
,
an

d
L

X
s
=

h
X
ar
e
u
se
d
to

fi
x
a
su
b
se
t
of

th
e
va
ri
ab

le
s
an

d
sl
ac
k
s.

T
h
es
e
b
ou

n
d
s
ar
e
en

fo
rc
ed

at
ev
er
y
it
er
at
e.

A
n
eq
u
a
li
ty

co
n
st
ra
in
t
c i
(x
)
=

0
m
ay

b
e
h
a
n
d
le
d
b
y
in
tr
o
d
u
ci
n
g
th
e
sl
a
ck

va
ri
a
b
le

s i
a
n
d
w
ri
ti
n
g
th
e
co
n
st
ra
in
t
a
s
th
e
tw

o

co
n
st
ra
in
ts

c i
(x
)
−

s i
=

0
a
n
d
s i

=
0
.
In

th
is

ca
se

th
e
it
h
co
o
rd
in
a
te

v
ec
to
r
e i

ca
n
b
e
in
cl
u
d
ed

a
s
a
ro
w

o
f
L

X
.
L
in
ea
r
in
eq
u
a
li
ty

co
n
st
ra
in
ts

m
u
st

b
e
in
cl
u
d
ed

as
p
ar
t
of

c.
A

li
n
ea
r
eq
u
al
it
y
co
n
st
ra
in
t
ca
n
b
e
ei
th
er

in
cl
u
d
ed

w
it
h
th
e
n
on

li
n
ea
r
eq
u
al
it
y
co
n
st
ra
in
ts

or

th
e
m
a
tr
ix

A
.
T
h
e
co
n
st
ra
in
ts

in
v
o
lv
in
g
A

m
ay

b
e
u
se
d
to

te
m
p
o
ra
ri
ly

fi
x
a
su
b
se
t
o
f
th
e
va
ri
a
b
le
s
a
t
th
ei
r
b
o
u
n
d
s
w
it
h
o
u
t
a
lt
er
in
g

th
e
u
n
d
er
ly
in
g
st
ru
ct
u
re

of
th
e
ap

p
ro
x
im

at
e
N
ew

to
n
eq
u
at
io
n
s.

In
th
is

ca
se
,
th
e
as
so
ci
at
ed

ro
w
s
of

A
ar
e
ro
w
s
of

th
e
id
en
ti
ty

m
at
ri
x
.

T
h
e
op

ti
m
al
it
y
co
n
d
it
io
n
s
fo
r
p
ro
b
le
m

(A
.1
.1
)
ar
e
gi
ve
n
in

S
ec
ti
on

A
.2
.
T
h
e
sh
if
te
d
p
at
h
-f
ol
lo
w
in
g
eq
u
at
io
n
s
ar
e
fo
rm

u
la
te
d
in

S
ec
ti
on

A
.3
.
T
h
e
sh
if
te
d
p
ri
m
al
-d
u
al

p
en
al
ty
-b
ar
ri
er

fu
n
ct
io
n
as
so
ci
at
ed

w
it
h
p
ro
b
le
m

is
d
is
cu
ss
ed

in
S
ec
ti
on

A
.4
.
T
h
is

fu
n
ct
io
n
se
rv
es

as
a
m
er
it

fu
n
ct
io
n
fo
r
b
ot
h
th
e
cu

b
ic

re
gu

la
ri
za
ti
on

m
et
h
o
d
.
T
h
e
eq
u
at
io
n
s
fo
r
a
cu

b
ic

re
gu

la
ri
ze
d
N
ew

to
n
m
et
h
o
d
ar
e
fo
rm

u
la
te
d
in

S
ec
ti
on

s
A
.6
,
an

d
su
m
m
ar
iz
ed

in
S
ec
ti
on

A
.7
.

N
o
ta
ti
o
n
.

G
iv
en

ve
ct
or
s
x
an

d
y
,
th
e
ve
ct
or

co
n
si
st
in
g
of

x
au

gm
en
te
d
b
y
y
is
d
en
ot
ed

b
y
(x
,y
).

T
h
e
su
b
sc
ri
p
t
i
is
ap

p
en
d
ed

to
ve
ct
or
s
to

d
en
ot
e
th
e
it
h
co
m
p
on

en
t
of

th
at

ve
ct
or
,
w
h
er
ea
s
th
e
su
b
sc
ri
p
t
k
is

ap
p
en
d
ed

to
a
ve
ct
or

to
d
en
ot
e
it
s
va
lu
e
d
u
ri
n
g
th
e
k
th

it
er
at
io
n

of
an

al
go
ri
th
m
,
e.
g.
,
x
k
re
p
re
se
n
ts

th
e
va
lu
e
fo
r
x
d
u
ri
n
g
th
e
k
th

it
er
at
io
n
,
w
h
er
ea
s
[x

k
] i
d
en
ot
es

th
e
it
h
co
m
p
on

en
t
of

th
e
ve
ct
or

x
k
.

G
iv
en

ve
ct
or
s
a
an

d
b
w
it
h
th
e
sa
m
e
d
im

en
si
on

,
th
e
ve
ct
or

w
it
h
it
h
co
m
p
on

en
t
a
ib

i
is

d
en
ot
ed

b
y
a
·b

.
S
im

il
ar
ly
,
m
in
(a
,b
)
is

a
ve
ct
or

w
it
h
co
m
p
on

en
ts

m
in
(a

i,
b i
).

T
h
e
ve
ct
or

e
d
en
ot
es

th
e
co
lu
m
n
ve
ct
or

of
on

es
,
an

d
I
d
en
ot
es

th
e
id
en
ti
ty

m
at
ri
x
.
T
h
e
d
im

en
si
on

s
of

e

an
d
I
ar
e
d
efi

n
ed

b
y
th
e
co
n
te
x
t.

T
h
e
ve
ct
or

tw
o-
n
or
m

or
it
s
in
d
u
ce
d
m
at
ri
x
n
or
m

ar
e
d
en

ot
ed

b
y
∥
·∥

.
T
h
e
ve
ct
or
∇f

(x
)
is

u
se
d
to

d
en

ot
e
th
e
gr
ad

ie
n
t
of

f
(x
).

T
h
e
m
at
ri
x
J
(x
)
d
en

ot
es

th
e
m
×
n
co
n
st
ra
in
t
J
ac
ob

ia
n
,
w
h
ic
h
h
as

it
h
ro
w
∇c

i(
x
)T

.
G
iv
en

a
L
ag

ra
n
gi
an

fu
n
ct
io
n
L
(x
,y
)
=

f
(x
)
−
c(
x
)T

y
w
it
h
y
a
m
-v
ec
to
r
o
f
d
u
a
l
va
ri
a
b
le
s,

th
e
H
es
si
a
n
o
f
th
e
L
a
g
ra
n
g
ia
n
w
it
h
re
sp
ec
t
to

x
is

d
en

o
te
d
b
y
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H
(x
,y
)
=
∇

2 f
(x
)
−
∑ m i=

1
y i
∇

2
c i
(x
).

T
h
e
cu

b
ic

re
gu

la
ri
za
ti
on

eq
u
at
io
n
s
u
ti
li
ze

th
e
M
o
or
e-
P
en

ro
se

p
se
u
d
oi
n
ve
rs
e
of

a
d
ia
go

n
al

m
at
ri
x
.

In
p
ar
ti
cu

la
r,

if
D

=
d
ia
g
(d

1
,
d
2
,
..
.,

d
n
),
th
en

th
e
p
se
u
d
oi
n
ve
rs
e
D

†
is

d
ia
go

n
al

w
it
h
D

† ii
=

0
fo
r
d
i
=

0
a
n
d
D

† ii
=

1/
d
i
fo
r
d
i
̸=

0
.

A
.2

O
p
ti
m
a
li
ty

co
n
d
it
io
n
s

T
h
e
fi
rs
t-
or
d
er

K
K
T

co
n
d
it
io
n
s
fo
r
p
ro
b
le
m

(A
.1
.1
)
ar
e

∇f
(x

∗ )
−
J
(x

∗ )
T
y
∗
−
A

T
v
∗
−
E

T X
z
∗ X
−
E

T L
z
∗ 1
+
E

T U
z
∗ 2
=

0,
z
∗ 1
≥

0
,

z
∗ 2
≥

0
,

y
∗
−
L
T X
w

∗ X
−
L
T L
w

∗ 1
+
L
T U
w

∗ 2
=

0,
w

∗ 1
≥

0
,

w
∗ 2
≥

0
,

c(
x
∗ )
−
s∗

=
0,

E
X
x
∗
−
b X

=
0,

L
X
s∗
−

h
X
=

0,

A
x
∗
−
b
=

0,

E
L
x
∗
−
ℓX
≥

0
,

u
X
−
E

U
x
∗
≥

0
,

L
L
s∗
−
ℓS
≥

0
,

u
S
−
L

U
s∗
≥

0
,

z
∗ 1
·(
E

L
x
∗
−
ℓX

)
=

0,
z
∗ 2
·(
u

X
−
E

U
x
∗ )

=
0,

w
∗ 1
·(
L

L
s∗
−
ℓS
)
=

0,
w

∗ 2
·(
u

S
−
L

U
s∗
)
=

0,

                                                  

(A
.2
.1
)

w
h
er
e
y
∗ ,

w
∗ X
,
a
n
d
z
∗ X
a
re

th
e
m
u
lt
ip
li
er
s
fo
r
th
e
eq
u
a
li
ty

co
n
st
ra
in
ts

c(
x
)
−

s
=

0
,
L

X
s∗

=
h

X
a
n
d
E

X
x
∗
=

b X
,
a
n
d
w

∗ 1
,
w

∗ 2
,
z
∗ 1
a
n
d

z
∗ 2
,
a
n
d
m
ay

b
e
in
te
rp
re
te
d
a
s
th
e
L
a
g
ra
n
g
e
m
u
lt
ip
li
er
s
fo
r
th
e
in
eq
u
a
li
ty

co
n
st
ra
in
ts

L
L
s
−
ℓS
≥

0
,
u

S
−
L

U
s
≥

0
,
E

L
x
−
ℓX
≥

0
a
n
d

u
X
−

E
U
x
≥

0
re
sp
ec
ti
v
el
y.

T
h
e
co
m
p
o
n
en
ts

o
f
v
∗
a
re

th
e
m
u
lt
ip
li
er
s
fo
r
th
e
li
n
ea
r
eq
u
a
li
ty

co
n
st
ra
in
ts

A
x
=

b.
If

x
1
=

E
L
x
−

ℓX
,

x
2
=

u
X
−

E
U
x
,
s 1

=
L

L
s
−
ℓS
,
an

d
s 2

=
u

S
−

L
U
s,

th
en

z
∗ 1
,
z
∗ 2
,
w

∗ 1
,
an

d
w

∗ 2
ar
e
th
e
L
ag
ra
n
ge

m
u
lt
ip
li
er
s
fo
r
th
e
in
eq
u
al
it
y
co
n
st
ra
in
ts
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x
1
≥

0,
x
2
≥

0,
s 1
≥

0,
an

d
s 2
≥

0,
re
sp
ec
ti
ve
ly
.
In

th
e
d
er
iv
at
io
n
s
th
at

fo
ll
ow

,
th
e
ve
ct
or
s
z
an

d
w

ar
e
d
efi

n
ed

a
s

z
=

E
T X
z X

+
E

T L
z 1
−
E

T U
z 2
,

an
d

w
=

L
T X
w

X
+
L
T L
w
1
−
L
T U
w
2
.

(A
.2
.2
)

A
.3

T
h
e
p
a
th

-f
o
ll
o
w
in
g
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