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Distinct Phenotypic Clusters of 
Glioblastoma Growth and Response 
Kinetics Predict Survival

INTRODUCTION

Glioblastoma multiforme (GBM) is a highly 
aggressive and invasive primary brain tumor. 
With an annual incidence rate of 3.19/100,000, 
GBM remains the most common primary brain 
malignancy.1 The current standard of care dic-
tates that a patient with newly diagnosed GBM 
be treated with maximal safe resection, followed 
by a course of radiotherapy (RT) with concur-
rent and adjuvant temozolomide (TMZ).2 After 
this standard first-line treatment, the progres-
sion of the disease is highly heterogeneous with 
a median survival of 14.6 months,3 with 10% to 
15% living to 3 years during the current standard- 
of-care era.4,5

Although there is a vast literature on intratumoral6 
and intertumoral heterogeneity7 seen in GBM, 
there is little definitive data on the underlying 

cause of the differences in survival in patients 
with GBM. Acknowledging that cancer is a com-
plex evolving system of interacting populations of 
tumor cells and stroma, it is not surprising that 
molecular insights alone have failed to elucidate 
the full extent of the clinical heterogeneity we 
see across these patients. Recent studies have 
pointed to differences in tumor growth kinetics 
(TGK),8,9 response to therapy,9-11 genetic differ-
ences,12 and tumor location,13 along with the 
well-known predictors of age and Karnofsky per-
formance status (KPS)14 to explain some of the 
variance in outcomes. In addition, there have 
been some successes in connecting specific 
genotypic GBM variants and clinically relevant 
phenotypes. For example, patients with GBM 
who have a mutated isocitrate dehydrogenase 
1 (IDH1) allele are typically younger and have 
improved survival outcomes.15 One possible 

Purpose Despite the intra- and intertumoral heterogeneity seen in glioblastoma multiforme (GBM), 
there is little definitive data on the underlying cause of the differences in patient survivals. Serial 
imaging assessment of tumor growth allows quantification of tumor growth kinetics (TGK) mea-
sured in terms of changes in the velocity of radial expansion seen on imaging. Because a system-
atic study of this entire TGK phenotype—growth before treatment and during each treatment to 
recurrence —has never been coordinately studied in GBMs, we sought to identify whether patients 
cluster into discrete groups on the basis of their TGK.

Patients and Methods From our multi-institutional database, we identified 48 patients who under-
went maximally safe resection followed by radiotherapy with imaging follow-up through the time of 
recurrence. The patients were then clustered into two groups through a k-means algorithm taking 
as input only the TGK before and during treatment.

Results There was a significant survival difference between the clusters (P = .003). Paradoxical-
ly, patients among the long-lived cluster had significantly larger tumors at diagnosis (P = .027) 
and faster growth before treatment (P = .003) but demonstrated a better response to adjuvant 
chemotherapy (P = .048). A predictive model was built to identify which cluster patients would 
likely fall into on the basis of information that would be available to clinicians immediately after 
radiotherapy (accuracy, 90.3%).

Conclusion Dichotomizing the heterogeneity of GBMs into two populations—one faster growing yet 
more responsive with increased survival and one slower growing yet less responsive with shorter 
survival—suggests that many patients who receive standard-of-care treatments may get better 
benefit from select alternative treatments.
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mechanism for this survival advantage may be 
related to a differing pattern of growth domi-
nated by diffuse invasion of tumor cells with only 
modest proliferative capacity.16 Another possible 
mechanism could be related to an increased 
radiosensitization17 caused by increased sensi-
tivity to oxidative damage.18 Clinically, this has 
been shown to manifest itself through better RT 
response as determined by volumetric determi-
nations of growth in IDH1 mutants.19

In this study, we hypothesized that the molecular 
diversity within and across tumors manifests as 
different tumor phenotypes that can be quanti-
fied as different TGK as seen on serial clinical 
magnetic resonance imaging (MRI) scans before 
and throughout therapy. Thus, we focus on elu-
cidating the diversity in patient outcomes as it 
relates to this view of the dynamic imaging phe-
notype of each patient’s tumor. Specifically, we 
sought to identify patterns of tumor growth and 
response kinetics that are consequential to clin-
ical outcomes.

Performing clustering analysis of the TGK before 
and throughout treatment of this cohort of 48 
similarly treated patients with GBM, we identified 
two discrete subgroups. We searched for under-
lying differences in the clinical presentation and 
response to early therapy that differentiates these 
subgroups and likely reflects an underlying bio-
logic difference within the tumors. Finally, we 
attempted to use these baseline clinical dif-
ferences to predict which subgroup a patient 
would fall into at the end of RT. To the best of 
our knowledge, this is the first time that TGK 
has been considered across the time course of 
patients from diagnosis through recurrence to 
detect clinically relevant phenotypic clusters that 
can explain a diversity of outcomes in GBM. In 
addition, this is the first study to attempt to con-
nect the TGK across multiple domains, before 
treatment, and during therapy to the underlying 
mutational status of the patient.

PATIENTS AND METHODS

Patient Selection

Forty-eight patients treated between 2002 and 
2011 from our multi-institutional, prospective, 
institutional review board–approved database 
met the inclusion criteria of surgical intervention 
with histologic confirmation of newly diagnosed 
GBM and adjuvant RT to 60 Gy and observation 

until radiographic progression such that all 
kinetic parameters could be calculated. This 
required that patients had at least two pretreat-
ment MRI scans (separated by at least 4 days) 
and two MRI scans during adjuvant treatment 
before progression. Clustering analysis was per-
formed on this group of 48 patients (referred to 
as the cluster cohort), and patients were then 
assigned to one of the two resultant clusters. 
To investigate phenotypic differences between 
cohorts, a smaller subcohort of 31 patients who 
received the current standard-of-care Stupp pro-
tocol (which includes maximal safe resection, 
RT concurrent with TMZ, and subsequent adju-
vant TMZ) was also identified (standard Stupp 
cohort). The other 17 patients did not receive 
concurrent TMZ with RT but instead received 
TMZ as an adjuvant therapy after RT.

Tumor Volume Delineation

Tumor volumes were measured on rate of lon-
gitudinal relaxation (T1)–weighted gadolinium- 
chelate–enhanced (T1Gd) and rate of trans-
verse relaxation (T2) or fluid attenuation image 
recovery (FLAIR) MRI scans by using semiauto-
mated threshold-based pixel intensity background 
subtraction software developed in MATLAB 
(Mathworks Software, Natick, MA). The range 
of acquisition parameters for the MRI scans are 
provided in the Appendix. The MRI tumor seg-
mentations were performed by expert measurers 
trained in the technique. Quality of the segmen-
tations was ensured by expert review by an addi-
tional reviewer. The accuracy and precision of this 
method has been shown to be comparable to or 
better than manual tumor delineation.20 Specifi-
cally, the tumor volume V (cm3) was calculated 
by summing the volumes of the voxels marked as 
being tumor associated with each MRI scan. Each 
volume was then converted to a spherically equiv-
alent radius which was then used to calculate the 
tumor kinetic parameters. Our focus on the use of 
spherically equivalent radius (extracted from the 
complex three-dimensional [3D] volume of the 
tumor) is a result of information from 20 years’ 
worth of literature on the application of proliferation- 
invasion–based models for predicting glioma 
dynamics on clinical imaging.9-11,16,21-26 These 
simple models incorporate a diffusion process 
for cellular migration and a logistic proliferative 
growth kinetic. Mathematically, this combination 
of diffusion and proliferation predicts, even within 
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the context of the complex brain architecture, that 
the tumor radius visible on MRI scans evolves lin-
early in time. The same is not true of the volume; 
the volume would grow in a cubic fashion in this 
case. This constant velocity of linear radial expan-
sion is termed a traveling wave, which means a 
wave that expands at a constant (traveling) rate. 
For this reason, several studies over the last 15 
or more years have studied human gliomas with 
regard to their linear radial expansion.9-11,16,21-26

Definition of Radial Velocities and Time to Nadir

For each patient, three possible TGK veloci-
ties were calculated: pretreatment, during RT, 
and during adjuvant chemotherapy (Fig 1). 
The tumor growth velocities were calculated by 
selecting two imaging events and performing lin-
ear regression according to: 

  Velocity =   
T1G  d  radius2   − T1G  d  radius1    ________________  t  2   −  t  1  

   

Pretreatment velocities were calculated from T1Gd 
MRI scans that were at least 4 days apart before 
surgery or biopsy. RT velocities were calculated 
from T1Gd MRI scans taken before the start of RT 
(after surgery) and at 1 month after RT. Adjuvant 
chemotherapy velocity was calculated from the 
first T1Gd MRI scan before starting second-line 
therapy and the first image after RT at 1 month 
after treatment. Time to nadir was calculated by 
subtracting the date of the last RT treatment from 
the date of the smallest T1Gd tumor radius.

Clustering Algorithm

The k-means algorithm was used to cluster 
patients according to inputs of T1Gd and T2 
pretreatment growth velocity, T1Gd and T2 RT 
velocity, T1Gd and T2 adjuvant chemother-
apy velocity, and T1Gd and T2 time to nadir. 
Time to nadir was the length of time that tumor 
growth was controlled on MRI scans. In short, 
the clustering algorithm finds patients with 
similar tumor kinetic parameters within this 
eight-dimensional space of the eight different 
measures of TGK considered as inputs.27 That 
is to say, clusters are found that minimize the 
within-cluster variation as calculated by the 
Euclidean distance between individual tumor 
growth kinetic observations. In this case, 
patients were assigned a cluster so that the 
variation in growth kinetics within that cluster 
was minimized.

    min  
C1,…, C  K  

    {    ∑  
k=1

  
K
     1 _ 
 |   C  K   |  

     ∑  
j=1

  
p

    ( x  ij   −  x   i   “ j  )   
2  }    

where   C  K   denotes the number of observations 
in the kth cluster, K indicates the number of 
clusters, and   x  ij   −  x   i   “ j   is the Euclidean distance 
between parameter observations.28 Before clus-
tering, TGK metrics were scaled by dividing each 
value by the standard deviation of all observa-
tions so that parameters with large variability 
would not dominate the distance calculations. 
No other information about the patients except 
for the TGK measures was included at the time 
of clustering to prevent bias.
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Fig 1. Visual represen-
tation of the tumor growth 
kinetics calculated for each 
patient in the 48-patient 
cohort. Velocities were cal-
culated according to a linear 
regression between two 
radii on rate of longitudinal 
relaxation–weighted  
gadolinium-chelate– 
enhanced and rate of trans-
verse relaxation (or fluid  
attenuation image recovery)  
magnetic resonance imag-
ing (MRI) scans. Time to 
nadir was calculated as the 
number of days between 
the end of radiation and the 
time at which the tumor  
radius was at its lowest point.
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Cluster Differences

Once clusters were defined, differences in clin-
ical and imaging parameters between clusters 
among the whole cohort and the standard Stupp 
cohort were investigated by using t test and χ2 
tests performed in R (version 3.1.1). A full list 
of the clinical and imaging characteristics inves-
tigated is provided in Figure 2 for the clustering 
cohort. Survival differences between the clusters 
were investigated via a Cox proportional hazards 
model. Multivariable survival statistics included 
race, age, and KPS in addition to the variables 
being explored. P values less than .05 were con-
sidered to be significant, and because of the 
large number of comparisons investigated, all 
significant relationships were further tested with 
a Benjamini-Hochberg29 procedure for multiple 
comparisons.

Prediction Models

A flexible discriminate model was generated to 

predict which cluster prospective patients would 

likely fall into on the basis of information that 

would be available to the clinician immediately 

after RT: age, sex, KPS, hemisphere lateralization, 

T1Gd and T2 diagnostic radius, T1Gd and T2  

postsurgical radius, the change in T1Gd and  

T2 radii from diagnosis to postsurgery, T1Gd 

and T2 post-RT radii, T1Gd and T2 pretreatment 

velocity, and T1Gd and T2 RT velocity. A flexible 

discriminate analysis model is a nonlinear classifi-

cation model that, in this case, places new patients 

into the appropriate cluster on the basis of the 

probability of a patient with their given TGK being 

similar to the kinetic profile of the typical patient 

within that cluster.27 This model was validated by 

using leave-one-out cross validation, and the accu-

racy, sensitivity, specificity, and P value comparing 

the model’s prediction versus the no information 

rate (NIR) was reported. The NIR corresponded 

to the accuracy of prediction if all patients were 

assigned to the most prevalent cluster.

RESULTS

Cross Correlation of TGK Variables

First, correlations were sought that would indi-
cate that the imaging and kinetic dynamics have 
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Fig 2. Correlations  
between tumor growth  
kinetics, size, and age for 
the full cohort. The color  
scale to the right indicates 
strength of correlation. All 
relationships indicated by  
a colored correlation are  
statistically significant  
(P < .05). Tumor growth 
kinetics taken as markers of 
therapeutic response, such 
as time to nadir, adjuvant 
(adj) chemotherapy velocity, 
and radiotherapy (RT) veloc-
ity, show multiple significant 
correlations with tumor size 
and also with each other. 
For example, rate of longi-
tudinal relaxation–weighted 
gadolinium-chelate– 
enhanced (T1Gd) time to 
nadir is negatively correlated 
with T1Gd RT velocity.
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a significant relationship. As expected, tumor 
size on MRI scan (radius) at any time point 
was highly correlated with itself such that initial 
tumor size correlated with the size at recurrence. 
T2 pretreatment growth rate was inversely cor-
related with the initial tumor size at presentation 
on both T1Gd (R = –0.789; P < .001) and T2  
(R = –0.577; P = .001; Fig 2). The velocity 
during radiation seen on T2 MRI, but not T1Gd, 
was correlated with the size of the lesion on both 
T1Gd (R = 0.596; P = .008) and T2 after RT  
(R = 0.637; P = .004). All significant correlations 
(P < .05) between tumor characteristics are shown 
in Figure 2 for the cluster cohort and in Appendix 
Figure A1 for the standard Stupp cohort.

k-Means Clustering Identifies Two Phenotypically 
Distinct Cohorts

k-means clustering was performed on the whole 
cohort and visualized by using principal compo-
nent analysis (PCA; Fig 3). Two clusters were 
produced that had distinct TGK phenotypes 
visually separable according to the first two PCAs 
(Fig 3). The analogous PCA visualization for the 
standard Stupp subcohort (Appendix Figs A1 
and A2) revealed a consistent association of the 
clusters to similar PCAs.

Analysis of Clinical Parameters Between Clusters

Survival was significantly different between 
clusters for the Stupp patient cohort (P = .003; 

Fig 4). When considering the whole cohort, 
the significance of the survival difference was 
maintained (P < .001; Appendix Fig A3). This 
significance between patients in the standard 
Stupp cohort increased on multivariable analysis 
with age, sex, and KPS (standard Stupp cohort 
P = .007; whole cohort P < .001). Cluster 1 had 
a median survival of 17.5 months, and cluster 
2 had a median survival of 58.7 months for the 
standard Stupp cohort. Cluster 1 had 16 males 
and 6 females, and cluster 2 had 5 males and 
4 females.

Analysis of Imaging Characteristics Between 
Clusters

To investigate what made these patients in the 
standard Stupp clusters different, the patient’s 
clinical and imaging characteristics were consid-
ered. Patients in cluster 1 compared with those 
in cluster 2 demonstrated significant differences 
in their tumors before therapeutic intervention 
(Table 1). Tumors from patients in cluster 1 
were characterized as slow-growing nonrespon-
sive (SGNR) therapeutically speaking, whereas 
tumors in patients in cluster 2 were fast growing 
responsive (FGR).

Specifically, tumors from patients in cluster 1 
were marked by smaller tumor radii as mea-
sured on T1Gd and T2 MRI scans (13.68 v 
18.50 mm; P = .031 and 20.33 v 26.47 mm, 
respectively; P = .027) and by slower growth 
before surgical resection (7.97 v 108.7 mm/year; 
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Fig 3. Patient clusters  
are shown within a two- 
dimensional space repre-
sentative of the eight dimen-
sions of different tumor  
growth kinetics parameters  
considered for the full 
cohort. Principle component 
analysis was used to extract 
information and represent 
the differences between 
patients in a two-dimensional 
plot. As the y-axis increases,  
rate of longitudinal relaxation– 
weighted gadolinium- 
chelate–enhanced (T1Gd)/
rate of transverse relaxation 
(T2) pretreatment velocity 
and T1Gd/T2 time to nadir 
increase. Likewise, as the 
x-axis increases, the T1Gd/
T2 adjuvant chemotherapy  
velocity and T1Gd/T2 
radiotherapy (RT) velocity 
increase. Patients in this 
space seem closer than the 
actual distance function 
would calculate because 
the eight-dimensional space 
was shrunk to two dimen-
sions for visual representa-
tion. Patients who received 
the Stupp protocol are 
represented by a triangle; 
patients who received RT 
alone are represented by 
a circle. The color of the 
patient dot indicates the 
clustering group. FGR, 
fast-growing responsive; 
SGNR, slow-growing  
nonresponsive; TMZ,  
temozolomide.
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P = .003). In addition, cluster 1 patients had 
a lower response to chemotherapy as demon-
strated in a larger adjuvant chemotherapy 
velocity on T1Gd MRI scans (22.00 v –13.94 
mm/year; P = .048), and cluster 1 time to nadir 
was shorter on both T1Gd and T2 MRI scans 
(122 v 588 days; P = .011 and 73 v 248 days, 
respectively; P = .023). Additional differences, 
none of which rose to the level of significance, 
are delineated in Table 2.

Analysis of Pathologic Characteristics Between 
Clusters

Pathologic characteristics were compared to 
investigate the biologic basis that produced 
the apparent clustering phenotype on a limited 
cohort of patients with available tissue. None 
of the differences rose to the level of signifi-
cance (Table 2). For the entire cohort, several 
trends toward significance were noted, spe-
cifically the vascular endothelial growth factor 

(VEGF) staining extent and intensity (P = .15) 
and the intensity of the hypoxia-inducible fac-
tor 1-alpha (HIF1α) staining (P = .12; Appen-
dix Table A1).

Building a Predictive Model for Clusters

A flexible discriminant analysis predictive 
model,27 taking as inputs age, sex, KPS, hemi-
sphere lateralization, T1Gd and T2 diagnostic 
radius, T1Gd and T2 postsurgical radius, the 
change in T1Gd and T2 radii from diagnosis to 
postsurgery, T1Gd and T2 post-RT radii, T1Gd 
and T2 pretreatment velocity, and T1Gd and 
T2 RT velocity was then generated on the stan-
dard Stupp cohort. The model, when tested for 
overfitting on a validation cohort produced via 
leave-one-out cross validation, demonstrated 
an accuracy of 90.3% in predicting whether a 
patient would fall into cluster 1 or 2. The sen-
sitivity of this prediction was 90.9%, and the 
specificity was 88.9%. To test whether this pre-
diction model was better than randomly guess-
ing cluster group assignment, the accuracy was 
compared with the NIR (71.0%). The model was 
able to assign patients at a significantly better 
rate than the NIR (P = .010).

To investigate what clinical parameters deter-
mined the predictive model clustering assign-
ment, the relative variable importance was 
computed for each of the parameters within 
the model. The model was able to accurately 
differentiate patient clustering groups by using 
the pretreatment T1Gd velocity, T2 postsurgery 
radius, and the velocity during RT.
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Fig 4. Kaplan-Meier 
curve showing the survival 
differences between clusters 
for the 31 patients in the 
standard Stupp cohort. 
Patients with tumors in the 
slow-growing nonresponsive 
(SGNR) cluster exhibited 
slower growth and minimal 
response to therapy whereas 
patients with tumors in the 
fast-growing responder 
(FGR) cluster demonstrated 
faster growth but a robust 
response to therapy. There 
was a significant difference 
in survival between the two 
clusters.

Table 1. Clinical Characteristics of Patients

Characteristic No. %

No. of patients 48

Median age, years (range) 54 (20-76)

Sex

Male 29 60.4

Female 19 39.6

Median KPS at diagnosis (range) 90 (50-100)

Resection treatment

Gross total resection 25 52

Subtotal resection 14 29

Biopsy 9 19

Abbreviation: KPS, Karnofsky performance status.

http://ascopubs.org/journal/cci


DISCUSSION

To the best of our knowledge, this research 
represents the first time that the dynamics 
of TGK have been considered from diagno-
sis through recurrence in GBM. In this study, 
we have shown that patients can be clustered 
into two distinct clinical phenotypes. These two 
clusters of patients have a different outcome 
profile and differ in their tumor size and TGK. 
Specifically, those patients (SGNR cluster 1) 
who have a lower median survival demonstrate 
smaller tumors with less aggressive growth 
kinetics, but they show a very poor response to 
therapy. Patients in the other cluster (FGR clus-
ter 2) showed opposite characteristics. These 
patients had faster growing tumors and had a 
larger edematous lesion on diagnosis but had an 
excellent response to therapy as demonstrated 

by their negative T1Gd adjuvant chemotherapy 
velocity and longer T1Gd and T2 time to nadir.

Our results indicate that patients with tumors 
that exhibit brisk growth before intervention are 
the same patients that demonstrate a significant 
response to adjuvant chemotherapy. Interest-
ingly, the more aggressive yet more responsive 
FGR cluster portended for better survival than 
the intrinsically less aggressive but unrespon-
sive SGNR cluster. This suggests that the long 
tail apparent on the survival curves in the Stupp 
era3 may be dominated by patients with aggres-
sive tumors before treatment with unusually sig-
nificant response kinetics to TMZ (FGR group). 
Although O(6)-methylguanine-DNA methyltrans-
ferase (MGMT) methylation status was not avail-
able for all the patients in our cohort, it is notable 
that MGMT methylation status did not seem to 
differentiate these clusters, which suggests that 
alternative biologic mechanisms may be at play. 
Thus, these results further suggest that TGK may 
serve as an important tool for discovery of pre-
viously unknown biologic, cellular, and molec-
ular drivers of this enhanced response among 
patients that fit the FGR phenotype.

Our results further reiterate the need for strong 
response metrics that can identify effective 
treatment response early in treatment. Other 
recent research has shown the importance of 
considering TGK in the evaluation of treatment 
response.10,11 Data from phase I clinical trials 
have shown that the TGK can be an early prog-
nostic indicator of chemotherapy effectiveness 
and that the comparison of pretreatment to 
therapeutic growth kinetics is a more sensitive 
indicator of efficacy than the standard Response 
Assessment in Neuro-Oncology Criteria.30-32 Sim-
ilarly, data from patients treated with epidermal 
growth factor receptor (EGFR) tyrosine kinase 
inhibitors demonstrated that the TGK during 
the treatment period were highly correlated with 
both overall survival and time to progression.33 In 
renal cell carcinomas, the rate of tumor growth 
has been used to successfully determine can-
didates for salvage therapy versus active sur-
veillance after percutaneous thermal ablation.34 
All of these studies underscore the need for 
more dynamic insight into treatment response 
that incorporates knowledge of the underlying 
untreated/pretreatment tumor behavior.

Significant progress has been made to delin-
eate the genetic heterogeneity that GBM tumors 
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Table 2. Differences Between Parameters for the 31 Patients in the SGNR and FGR 
Clusters for the Standard Care Stupp Cohort

Parameter
Median 
SGNR

Median FGR

Pmm/Year mm Days

T1Gd pretreatment velocity 7.97 108.70 .00

T1Gd time to nadir 122 588 .01

T2 time to nadir 73 248 .02

T2 diagnostic radius 20.33 26.47 .03

T1Gd diagnostic radius 13.68 18.50 .03

T1Gd adjuvant chemotherapy 
velocity

22.00 −13.94 .05

T1Gd postsurgical radius 12.34 15.38 .14

T2 postsurgical radius 20.28 22.24 .33

T1Gd radial change 
postsurgery

1.33 3.11 .35

T2 radial change postsurgery 1.96 3.51 .36

T1Gd postradiation radius 12.10 14.11 .37

T2 RT velocity −0.143 −8.14 .46

T2 post-RT radius 17.54 19.75 .54

Extent of surgery NA NA NA .78

T2 pretreatment velocity −36.06 −17.27 .80

Hemisphere lateralization NA NA NA .80

T2 adjuvant chemotherapy 
velocity

25.23 21.35 .88

T1Gd RT velocity −10.97 −10.87 .99

NOTE. Patients with FGR tumors with significantly longer survival had significant differences 
among rate of longitudinal relaxation–weighted gadolinium-chelate–enhanced (T1Gd)  
pretreatment velocity (P = .00), T1Gd time to nadir (P = .01), rate of transverse relaxation  
(T2) time to nadir (P = .02), T2 diagnostic radius (P = .03), and T1Gd adjuvant chemotherapy 
velocity (P = .05). These significant differences were those that remained on correction for 
multiple comparisons.
Abbreviations: FGR, fast-growing responsive; NA, not applicable; RT, radiotherapy; SGNR, 
slow-growing nonresponsive.

http://ascopubs.org/journal/cci


exhibit. Genome-wide methylation profiling has 
shown that within IDH-mutant GBM tumors, 
different subtypes exist and that the clinical 
outcome among subtypes is also significantly dif-
ferent.35 In addition, large-scale genomic char-
acterization of data from The Cancer Genome 
Atlas has shown that at least four subtypes of 
GBM tumors exist: proneural, neural, classic, 
and mesenchymal.36 Only one of these subtypes 
(proneural) distinguishes itself as having a differ-
ent median survival.7 These studies have greatly 
advanced our understanding of the mutations 
that drive GBM tumor growth, but the connec-
tion of these mutations to TGK and particularly to 
individualized treatment response is still missing.

Although every effort has been made to ensure 
accurate data collection and analysis, there are 
several potential limitations in this study. Velocity 
measurements are subject to small but measure-
able interobserver variability that could affect the 
classification of TGK. In addition, pseudopro-
gression was controlled for within the postadju-
vant chemotherapy velocity by selecting the last 
MRI before a change in systemic therapy to a 
second-line agent, re-irradiation, or resection. 
There are also concerns about whether the T2/
FLAIR sequence correlates with tumor activity 
after chemoradiation because of the inflamma-
tory response these treatments induce. We have 
studied the variability among measurements for 
our group, and we find that the average variation 
is within 0.3 mm. The greatest degree of uncer-
tainty comes from the pretreatment velocity 
measurements because of the minimal separa-
tion between imaging events. To reduce the error 
as much as possible, we limit inclusion to only 
those that are separated by 4 or more days. In 
addition, comparisons of pathologic characteris-
tics were limited by the number of patients who 

had available tissue. Ideally, MGMT status would 
be known for a larger proportion of the patients, 
but because of the time at which these patients 
were treated, this was not a standard investiga-
tion. Although this study moves our understand-
ing of TGK in GBM forward, there is still much 
work to be done. Likely because of the limited 
availability of patient tissue, we were unable 
to find differences in the staining for common 
genetic variants between the clusters. It will be 
necessary to correlate these TGK phenotypes 
with further molecular and histologic character-
ization.

To the best of our knowledge, the systemic study 
of the entire TGK phenotype—growth before treat-
ment and during each treatment to recurrence—
has never been studied in a coordinated 
way in GBM. In this study, we revealed two  
important TGK phenotypes, one more aggres-
sive but benefiting strongly from treatment and 
another that has a more benign natural history 
with minimal treatment response. This provides 
insight into the interpatient heterogeneity we 
see in patient outcomes. Furthermore, the pro-
posed preliminary predictive models support 
the possibility of identifying, before or early in 
treatment, the patients who are likely to receive 
durable response and thus improved survival. 
These results strongly support the value of 
insightful response metrics that meaningfully 
connect early measures of degree of response 
with those patient-specific outcomes. We con-
clude that a dynamic view of GBM growth and 
response kinetics is essential to progress in 
delivering successful patient-individualized pre-
cision medicine strategies.
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Work Flow

Patients were selected from a retrospective database if they met the following criteria: pathologic diagnosis of glioblasto-
ma; received surgical intervention, radiotherapy (RT), and adjuvant chemotherapy; and had enough imaging time points 
that all eight tumor growth kinetics could be calculated. The tumor growth kinetics were calculated by taking the slope of 
the line connecting the imaging points which corresponded to pretreatment, during RT, or during adjuvant chemotherapy.

Patients were clustered according to their tumor growth kinetics. The specific clustering algorithm used was a k-means al-
gorithm implemented in the R statistical programming language (Package stats version 3.4.0; R version 3.4.1). Clustering 
was performed only on the following eight variables: among rate of longitudinal relaxation–weighted gadolinium-chelate–
enhanced (T1Gd) and rate of transverse relaxation (T2) pretreatment growth velocity, T1Gd and T2 RT velocity, T1Gd and 
T2 adjuvant chemotherapy velocity, and T1Gd and T2 time to nadir.

Once clustered, any significant differences between the clusters were investigated for all available clinical and imaging 
parameters (see Table 1 for a complete list) among the whole cohort. This analysis was again performed for only those 
patients who received concurrent temozolomide along with RT.

A prediction model was generated by using a flexible discriminant analysis implemented in the R statistical programming 
language (Package caret version 6.0-77, R version 3.4.1) to test whether a prospective patients cluster could be predict-
ed on the basis of information available immediately after the conclusion of RT.
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Table A1. Differences in Immunohistochemistry Staining for SGNR Versus FGR  
Patients in the Standard Care Stupp Cohort

Pathology Parameter No. of Patients P

Staining extent

PDGFRa 11 .49

VEGF 11 .59

HIF1a 11 .59

Staining intensity

VEGF 11 .50

HIF1a 11 .50

PDGFRa 11 .66

MGMT 5 .82

NOTE. No parameters examined exhibited statistically significant differences.
Abbreviations: FGR, fast-growing responsive; HIF1α, hypoxia-inducible factor 1-alpha; MGMT, 
O(6)-methylguanine-DNA methyltransferase; PDGFRa, platelet-derived growth factor receptor a; 
SGNR, slow-growing nonresponsive; VEGF, vascular endothelial growth factor.
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