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Abstract

Spatio-Temporal Connectome Data Analysis using Machine Learning and

Visualization

by

Ran Xu

Analysis and comparison of multiple time-varying connectomes is crucial for studying

brain diseases such as Depression and Alzheimer’s Disease. Recently, many visualiza-

tion techniques have been proposed to assist clinical psychiatrists in exploring complex

connectome datasets but majority of them are focused on static connectome features.

We develop two novel visualization applications: TempoCave and ConnectoVis, for ana-

lyzing dynamic brain networks, or connectomes. TempoCave and ConnectoVis provide

a range of functionality to explore metrics related to the activity patterns of different

regions in the brain. Analysis of temporal connectome is limited due to high dimension-

ality of the data. To address this problem, we introduce a new data analysis technique

that is specifically designed for dynamic functional connectomes by combining a novel

temporal graph neural network and a learnable mask mechanism. Our technique can

classify remitted depression group vs control group with 98% accuracy and the mask is

used to identify the significant brain regions that contribute to depression. Along with

our visualization tools, we have a spatio-temporal connectome analysis pipeline. We

demonstrate the effectiveness of our pipeline through three use cases.
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Chapter 1

Introduction

1.1 Overview

The human brain consists of billions of neurons and trillions of connections. In

order to study the activity patterns, researchers proposed using connectome to represent

the complex brain network as structural and functional connectivity between brain

regions. The term “connectome” was initially suggested by Sporns et al. [62] in 2005

and connectome can be mapped in different levels of scales: microscale, mesoscale, and

macroscale. Microscale is at the level of individual neurons and mesoscale is at the

level of local circuits that link hundreds or thousands of neurons. Both of them present

technical challenges and are avoided in the analysis process. Connectome in macroscale,

where neurons are grouped together forming a region, is widely being used for brain

studies.

The commonly used technologies for generating connectomes are diffusion

1



Figure 1.1: The flowchart of structural and functional connectome construction [61].

weighted magnetic resonance imaging (dMRI) and functional magnetic resonance imag-

ing (fMRI). dMRI assess the structure connectivity by measuring the white matter

structure of the human brain and reconstructing the major fiber bundles in the brain.

On the other hand, functional connectivity is statistical correlation between brain re-

gion’s blood oxygen level dependent (BOLD) signal from fMRI. The statistical corre-

lation often used is Pearson correlation, where the Pearson’s correlation coefficient are

calculated between pairwise brain regions time series signals. The process of generating

structural and functional connectome is usually combing the brain parcellation (different

brain regions) with the structural or functional network, as shown in Figure 1.1.

Functional Connectome studies have been widely conducted in clinical stud-

ies for finding functional abnormalities of brain disease. Initial studies for functional

connectivity (FC) was under the assumption that functional connections during resting
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state is static. Static functional connectivity (sFC) has already proven to be signif-

icantly related to disease such as depression, schizophrenia, and Alzheimer’s disease.

For instance, Yan et al. claimed reduced default mode network functional connectiv-

ity in depressed patients [76]. Alzheimer’s disease patients showed decrease positive

correlations between the prefrontal and parietal lobes from the experiments conducted

by Wang et al. [67]. Schizophrenia patients experience more diversity of brain func-

tional connectivity [47]. While studies based on static functional connectivities were

useful, recent studies show that dynamic functional connectivities (dFC) have hidden

correlations for these mental disorders [36, 69, 30].

Common way of getting dFC is from sliding window correlation. As shown in

Figure 1.2, on the left, we can see the process of generating static connectivity, where

only one correlation matrix is calculated for the whole time series fMRI scan. On the

right of the figure, we see the process of getting dynamic connectivity by sliding window

correlation, where one correlation matrix is from a small time window, and after sliding

the window by some distance, next correlation matrix of next time window is generated.

Thus dynamic functional connectivity contains time series of correlation matrix [5].

Allen et al. had developed an approach for analyzing dynamic functional

connectomes based on independent component analysis, sliding time window correlation,

and k-means clustering of windowed correlation matrices [5]. They cluster connectivity

dynamics into different states and based on the identifies states, they analyze a variety

of parameters such as mean dwell times, transition probabilities, and graph theoretic

measures that describe the observed FC patterns and brain dynamics. This has provided

3



Figure 1.2: Static Functional Connectivity (sFC) matrix generation using statistical

correlation (left) and dynamic Functional Connectivity (dFC) matrix generation using

sliding window correlation (right) [5].

the foundation for the analysis of dynamic functional connectomes and is commonly

used. Even though the clustering method explain the data well without predefined

biological assumptions, they are not able to provide detailed information about brain

region temporal connection patterns. Current assumption based approach is limited

to certain brain regions, and the result might differ based on different dataset, which

means the current research based on predefined hypotheses from prior static research

and test the dynamic of functional connections of certain brain regions.

The existing analysis tool includes graph theory for identifying the connectivity

patterns of human brain networks. To find patterns in high dimensional data, machine

learning technique such as SVMs and neural network are utilized. Although Convolution

Neural Network (CNN) shows promise in extracting features from images, it doesn’t

perform well with unstructured data such as brain networks. Graph Neural Network
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are well suited for processing connectome data. However most tools are limited in

extracting features from static connectome and ignore temporal features. There does

not exist a data driven method for deriving and verifying hypotheses for the entire

dynamic connectome.

Important features of connectomes include: structural information (brain re-

gion anatomical information), connectivity between regions, and brain regions modular-

ity classifications. For brain regions, other than anatomical information, neuroscientist

usually classify brain regions into different modules defined by their functional roles in

cognition. Both connectivity between brain regions and their modular affiliation vary

over time in functional connectomes. Due to the high density of regions and connections

between them, neuroscientists have been relying on visual analysis tools. Understanding

the structure and functionality of connectomes through visualization is important for

getting insights of the behavior of various brain conditions.

Several visualization techniques have been proposed to assist neuroscientists

in their analysis. The most basic visualization for representing the voxel functional

connectivity is a two dimensional matrix, such as Fig. 1.3a. Such visualization can’t

encode anatomical information. Bullmore et al. [12] suggested using graph theory ap-

proach to visualize the human brain, where the nodes represent brain regions, and edges

represent the gray matter morphological correlation or white matter fiber connections

in structural connectome or temporal correlation in functional connectome. Many vi-

sualization techniques and toolkits exist for extracting brain network topological and

connectivity properties, including Connectogram [35], BrainNet Viewer [72], eConnec-

5



tome [31] shown in Fig. 1.3b, 1.3d, 1.3c. These visualizations focus on either static or

2D representation, which lacks spatial information or dynamic features of Connectome.

To our best knowledge, there is only one visualization implementation, BrainX3 [6], to

visualize a single 3D dynamic connectome but is limited to a single connectome with no

comparative analysis. Visualizing multiple dynamic connectome in 3D representation

is a challenging problem and needs further investigation.

(a) (b)

(c) (d)

Figure 1.3: Existing Connectome Visualizations: a Allen et al. 2012; b Connectomegram

Irimia et al. 2012; c eConnectome He et al. 2011; d BrainNetViewer Xia et al. 2013.
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We have been working closely with clinical neuroscientists in the Department

of Psychiatry, University of Illinois at Chicago. Apart from visually inspecting dynamic

connectomes, an important feature they emphasize is comparison of different dynamic

networks. One aspect of their work with connectome involves studying the patterns

in activity of certain brain regions. Differences in such patterns stand out when com-

paring connectomes of patients and control groups. Another aspect is identifying the

effectiveness of certain cognitive psychotherapy treatments that involve comparing the

same patient’s pretreatment vs post-treatment connectomes, or patient vs control group

connectomes.

1.2 Research Issues

In order to analyze entire dynamic connectomes, we explore research in areas

of data visualization and machine learning, which will benefit clinical neuroscience. The

following research issues explored in this thesis relate to visualization, machine learning

and neuroscience.

• Research Issue 1: Visualization Research Visualizing densely interconnected

networks is one of the most challenging aspects of data visualization. As men-

tioned previously, neuroscientists rely on visual analysis and comparing different

connectomes are very important. However, very little research has been done to

address comparing dynamic interconnected networks. In order to preserve the

spatial relationship of brain regions and connections, we want to visually com-

7



pare connectomes in 3D representation, as well as observing dynamic connections

and modular affiliations. We address this issue by exploring different visual en-

codings and developing visualization applications with collaboration with clinical

neuroscientists. The details for the applications are described in Chapter 2 and 3.

• Research Issue 2: Machine Learning Research Visualization tools can help

researchers observing dynamic networks, however, the complexity of connections

increases exponentially when number of brain region increases. It is important

to highlight the important differences between two or more multiple dynamic

networks. However, there does not exist a data driven method for analyzing

based on comparing entire dynamic connectomes.

In order to find patterns and get feature representation of comparing high dimen-

sional dynamic connectomes, we explored machine learning classification model

to analyze. Machine learning techniques have proved to be able to classify two

groups of brain networks, but most of the work is limited to static functional con-

nectomes. Graph neural networks are a promising recent approach to discovering

meaningful patterns in connected network data. Current GNN models are not

suitable for temporal networks. In this thesis, we address this issue by modifying

the model of GNNs that enable their application to time-series network datasets.

A detailed description of the novel GNN model is provided in Chapter 4.

• Research Issue 3: Neuroscience Research Even though the machine learn-

ing model can provide feature representations for analyzing dynamic connectome

8



data, it is crucial for neuroscientist to understand the results. Explainability of

machine learning models is an ongoing research topic. After analyzing temporal

brain networks using machine learning, it is important to determine the how the

model makes decisions. To address this issue, we developed an explainable mask

mechanism, explained in Chapter 4.

1.3 Our Pipeline

In order to address these issues, we need to combine the visualization and

machine learning analysis components in order to provide comprehensive solution. In

this work, we develop visualization tools and extend graph neural network to extract

temporal features from a dynamic connectome. In addition, we introduce a explain-

able mechanism combined with interactive visualization tools to understand the learned

features. In summary, we propose a novel data analysis and visualization pipeline for

dynamic functional connectivity studies. Our pipeline consists of:

• Two interactive visualization tools, TempoCave and ConnectoVis, that can load

multiple dynamic connectomes for exploration, comparisons and for verifying the

findings from statistical studies. This part of the pipeline addresses research issue

1.

• A machine learning model using a novel temporal graph neural network, for ex-

tracting temporal features from dynamic connectomes. The features are used for

classifying disease group from healthy control group. This part of the pipeline
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addresses research issue 2.

• An explainable tool to understand and verify the decisions made by the model.

This tool can be used to find the most significant brain regions related to a disor-

der. This part of the pipeline addresses research issue 3.

1.3.1 Visualization Applications for dFC Connectome

In Chapter 2, we present TempoCave, a visualization application that facili-

tates exploration, analysis and comparison of time-varying connectomes. Although we

focus on connectomes, TempoCave is developed as a general-purpose visualization tool

for any 3D temporal network data. TempoCave introduced a novel 3D overlay com-

parison of two connectomes. For dynamic connectomes, a playback feature lets the

users scan through the timeline to see different network configurations at different time

steps. We developed TempoCave iteratively, adding relevant visualization features with

individual patients’ and group average connectomes for a range of disorders such as

autism spectrum disorder, anxiety disorder, and major depressive disorder. We show

the effectiveness of TempoCave with a clinical study on rumination, a mental disorder

characterized by repetitively and passively focusing on symptoms of distress and its

causes.

Although neuroscientists found TempoCave to be useful in their spatial com-

parison analysis, it had two main limitations with respect to temporal comparison anal-

ysis:
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• Difficulty in retaining information about a single network while scanning through

the timeline. This can cause problems in finding relationships between network

configurations at different time steps. For example, if the time interval between

two related network configurations is far apart, then the relationship between

them will be hidden by the network states in between.

• Since the temporal network data is represented in a linear fashion, the relationships

among multiple networks across different time steps are hard to comprehend.

To overcome these limitations, we extend TempoCave to a new platform called

ConnectVis, as described in Chapter 3, a visualization application that supports both

spatial and temporal comparative analysis across multiple connectomes. We provide

a side by side temporal and spatial view for exploration and analysis. Temporal view

summarizes variation of modular affiliation and connectivity over time while the spatial

view focuses on the detailed topological structure of multiple connectomes. We present

two use cases on real-world data for Rumination and Anxiety studies to illustrate the

effectiveness of our system. We conduct interviews with domain experts to evaluate the

applicability of our system in mental disorder studies.

ConnectoVis meets all the visualization requirement for our neuroscientist col-

laborators in the analysis of dynamic connectomes of mental disorder participants. The

analysis process is based on heuristics built using statistical algorithms, so they have a

rough idea about the regions of interest before looking at the visualization tools. Using

ConnectoVis they are able to verify their hypothesis and explore other brain regions.
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1.3.2 Temporal Graph Neural Network for dFC connectome

Machine Learning are now widely used for analyzing complex data and extract

features or correlations between unstructured data, including neuroscience domain. As

mentioned earlier, studies for functional connectivity were mainly focused on static

connections, so the application of machine learning for FC are also mainly focused on

static connectomes. SVM is the most commonly used model for connectome studies,

however it is not suitable for analyzing timeseries data. Connectomes can be considered

as graphs, where nodes represent brain regions and edges represent the connections

between brain regions. dFC can be considered as dynamic graphs with one connectivity

graph at each time frame.

Graph Neural Networks (GNN) is a deep learning technique that designed for

graph network data and is now widely used in many domains such as transportation, so-

cial networks. Chapter 4, we introduce a novel temporal GNN model that is specifically

for dFC connectomes. Our model learns the disease connectome dFC features by com-

paring and classifying disease group and healthy controls. The model then outputs the

representation for the two groups dynamic FC features. However, the high dimensional

feature representation is difficult to interpret. In order to improve the explainability,

we apply a mask generation mechanism to the dFC data and apply it to the pre-trained

feature representations. The mask helps us to narrow down the brain regions responsi-

ble for the classification. Our model outputs the feature representation for every node.

Using distance metrics, we find brain regions that shows similar dynamics. This al-
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lows neuroscientists to identify similar brain regions within same connectome as well as

compare same brain regions similarity clusters across different connectomes.

1.4 Contribution

In this work, we propose a novel data analysis pipeline for dynamic functional

connectivity. We combine machine learning techniques and visualization for clinical

neuroscientists for exploring temporal brain connectome data and compare different

groups. Our contributions are:

• We develop visualization tools for exploration, comparison and analysis of dynamic

brain networks. Our tool helps clinical neuroscientist to form new hypothesis

about temporal connectivities in depression patients. Chapter 2 and 3 described

detailed applications and their use cases, addressing research issue 1.

• We introduce a novel temporal graph neural network for extracting temporal fea-

tures from dynamic connectomes, described in Chapter 4. The features are used

for classification of healthy vs mental disorder participants or pre vs post treat-

ments. Our network classifies remitted depression group from healthy control

group with an accuracy of 98%, described in Section 4.3. The network is also

trained to classify pre and post R-CBT treatment connectomes with 88% accu-

racy. Section 5.2 described the details. This contribution is related to research

issue 2.

• Using a mask generator we are able to explain the decisions made by our tem-
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poral GNN model. The mask is used to sort the brain regions based on the

difference between the two groups. We found that the top discriminative brain

region between remitted depression group and healthy control is right anterior

supramarginal gyrus. Our findings align closely with the recent depression and

R-CBT treatment studies conducted by neuroscientist based on functional con-

nectivity. Section 4.2.2 and 4.4.1 discussed the details of the process of mask

development. This contribution is related to research issue 3.

• We identify similar brain regions using a similarity metrics on the node feature

representation, enabling neuroscientist to compare similar region within connec-

tome or across multiple connectomes. Section 5.3 demonstrates a use case for

using the similarity metrics. This contribution is related to research issue 3.

• The mask generator can also highlight a sub network that shows difference between

two connectomes. Using visualization tool, researchers are able to compare the

detailed difference, as described in Section 5.1.
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Chapter 2

TempoCave: Visualizing Dynamic

Connectome Datasets

to Support Cognitive Behavioral

Therapy

2.1 Introduction

As stated in research issue 1, neuroscientists have been relying on visual anal-

ysis tools. Existed tools rarely focus on dynamic brain networks visualizations. We

introduceTempoCave, a visualization application that facilitates the exploration and

analysis of time-series connectome datasets. We worked closely with our neuroscience

collaborators to identify aspects of their analysis workflow not yet supported by exist-

ing tools, and to determine which tasks are most relevant for making sense of dynamic

15



connectomes in clinical contexts:

T1: Measuring the dwelling time of brain regions, defined as the length of time a

region spends in the dominant community.

T2: Measuring the flexibility or particular brain regions, defined as the number of

times a region changes modular affiliation.

T3: Analyzing the connectivity between brain regions that is used to define modular

affiliations, including edges that are defined by either a negative or positive correlation

between nodes.

T4: Understanding the overall dynamics, or “stickiness” of the connectome, in terms

of how dwelling, flexibility, and connectivity metrics change over time.

T5: Enabling the comparison of multiple dynamic connectomes, for example, compar-

ing a connectome to a group average, or comparing an individual patient’s connectome

pre- vs. post-treatment.

These tasks have broad relevance to psychiatry, as a wide range of neurological disor-

ders are linked to the disruption of normal brain connectivity. An important overarching

goal of clinical neuroscience is to find relationships between brain activity and neuro-

logical disorders, which can then be leveraged to make diagnoses, to guide treatment

plans, and to better understand the human brain. In this paper, we focus on connec-

tome datasets gathered during a clinical study on rumination, a mental disorder char-

acterized by repetitively and passively focusing on symptoms of distress and its causes.

The consequences of prolonged rumination include anxiety and depression [11, 42, 66].
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Rumination-focused cognitive behavior therapy, or R-CBT, assists individuals in realiz-

ing that their rumination about negative experience can be unhelpful, and coaches them

on how to shift to a more helpful style of thinking. For example, patients undergoing

R-CBT are asked to remember previous positive mental states, such as a time they

were completely absorbed in an activity— the opposite of ruminating [41, 68]. R-CBT

appears to be effective at supporting emotion regulation in patients suffering from de-

pression. A preliminary study (described in more detail in Sec. 2.4) finds that patients

who continued treatment remained in remission after 8 weeks, whereas patients who did

not continue treatment had a higher likelihood of relapse. TempoCave facilitates insight

into how R-CBT (and other clinical interventions) alters brain behavior. In order to

conduct these analyses, clinical neuroscientists make detailed measurements of the brain

activity of patients and compare the patients’ connectomes before treatment and after

treatment, and also compare them against baseline healthy connectomes. Visualizing

the dynamics of connections within and between brain regions, measured by dwelling

time and flexibility, helps clinical psychiatrists examine the “stickiness” of these con-

nections, where comparatively high measurements of stickiness can imply an unhealthy

connectome.

To our best knowledge, TempoCave is the first application to support comparison

tasks for multiple time-series connectome networks in order to better understand ru-

mination. Our contributions include: (a) a delineation of analysis tasks relevant to

reasoning about dynamic connectome datasets; (b) the introduction of a new visualiza-

tion tool to support connectome-based comparison tasks for both static and dynamic

17



Figure 2.1: A screenshot of the TempoCave application. Here, a user compares frames

from pre- and post-treatment dynamic connectomes for an individual patient with major

depression disorder. Using the option panels on either side of the application, a user

can choose different visual encodings to accentuate features useful for understanding the

activity of particular brain regions. The left and right coloring of the nodes indicates the

modular affinity of a brain region for a patient’s pre- and post-treatment connectome,

respectively. Likewise, the styling of the connections indicates either the connectome

they belong to or the strength of the correlation. A user can synchronize playback of

the frames of the connectomes or compare selected frames on demand to gain insight

into their dynamics, and during an analysis session a user can interactively toggle on or

off brain regions of interest, or switch to alternative representations of the connectome

defined using layouts based on dimensionality reduction techniques.
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networks; (c) techniques for observing and analyzing community affiliation of nodes in

a dynamic network; (d) an analysis pipeline that supports easy data loading of mul-

tiple connectomes, including those in alternative topological spaces [78] or generated

using different modularity identification algorithms [25, 79]; (e) a real-world use case

illustrating how TempoCave is used in a clinical setting to elucidate new insight into neu-

rological aspects of rumination. Fig. 2.1 presents an overview of TempoCave comparing

two dynamic connectomes.

2.2 Related Work

TempoCave is inspired by previous approaches for visualizing networks [10], compar-

ing graphs [29], and exploring connectome datasets [52]. Keiriz et al. [38] survey the

landscape of connectome visualization, focusing mainly on static datasets, and char-

acterizing them in terms of their main visualization modality (emphasizing volume,

surface, or graph representations), as well as identifying tools that include support for

virtual reality (VR) environments. TempoCave presents connectomes as 3D networks,

similar to approaches presented in Connectome Visualization Utility [43], BrainNet

Viewer [72], Connectome Viewer Toolkit [28], and the AlloBrain project [63]. How-

ever, TempoCave specifically focuses on visualizing nodes and edges to make it easier

to reason about metrics associated with modular affiliation and connectivity.

TempoCave provides features for dynamic data analysis, presenting a synchronized

playback mode that highlights differences between two connectomes at different points
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in time. A number of 2D visualizations have been used to explore dynamic connectome

data [34, 4, 49, 17], and Beck et al. [10] summarize approaches to visualize 2D dynamic

networks. Other tools instead utilize a 3D layout for investigating dynamic connectome

data [31, 44, 48]. For example, Xing et al.’s Thought Chart [73] presents distinct 3D tra-

jectories for different task conditions and provides a comparative analysis that generates

a summary view of how much one dynamic connectome differs in comparison to others.

Similar to our implementation, Arsiwalla et al. introduce BrainX3[7], an interactive

and immersive 3D visualization of dynamic connectomes, but which does not support

comparison tasks, a main feature of TempoCave.

Alper et al. [3] investigate visual encodings of edge weights within an adjacency matrix

to support comparisons of brain connectivity patterns. TempoCave further emphasizes

comparisons of modularity affiliation metrics that summarize the edge weights in the

network. Other recent brain visualization tools focus on neurobiological tasks, such

as Ganglberger et al.’s [26] BrainTrawler, which provides tools to conduct integrated

analyses of genomic data and mesoscale neuroscience datasets at the level of individual

neurons. TempoCave aims to support tasks T1-T5 relevant to diagnosing and treating

patients with neurological disorders, extending previous work that focused on static

connectomes [38], which also presents a 3D view and enables a user to explore data

immersively [16, 23].
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2.3 The TempoCave Application

TempoCave is an interactive tool that enables clinical psychiatrists to load, visual-

ize, and analyze dynamic connectomes, solving several technical challenges associated

with the analysis tasks described in Sec. 2.1. TempoCave supports the investigation of

multiple connectomes at once, superimposing connectomes to make comparisons, and

providing details about modular affiliation and edge dynamics that are needed in order

to understand some dynamic datasets.

Our clinical neuroscience collaborators capture connectome datasets using high-resolution

functional magnetic resonance imaging (fMRI) scans. The fMRI data is pre-processed

to extract node and edge information, such as connection strength, and to perform var-

ious dimensional reduction steps. Dynamic datasets are obtained using scans taken at

regular intervals over a short period of time. In the clinical study presented in Sec. 2.4,

200 frames are captured over the course of a ∼6 minute scanning session, and then

further processed using the PACE algorithm [79] to determine modular affiliations.

TempoCave consists of a selection interface (Fig. 2.2 left), and an interactive inspec-

tion interface (Fig. 2.2 middle and right). The selection interface displays show an

overview “carousel” of the available connectomes, along with a list of all the available

layouts (generated through different dimension reduction algorithms, such as Isomap or

t-SNE). The user can select two (in desktop mode) or more (in VR mode) connectomes

for analysis and comparison. The inspection interface shows the selected connectomes

with each connectome having their own settings panel, which provides options: to change
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Figure 2.2: Different views in the TempoCave interface. Upon starting the application,

a thumbnail of all connectomes in the data folder appear in a carousel view (left). Users

can add connectomes to the inspection view (middle), which provides a menu panel for

each of the selected connectomes and enables users to interactively investigate various

connectome features. Users can zoom into a single connectome (right) to more clearly

examine the modular affiliation of specific brain regions and to investigate the strength

of connections between these regions on demand. In the inspection view, as well as the

comparison view shown in Fig. 2.1, a user can also interactively rotate the connectome,

toggle edge bundling on or off, change the transparency of edges, increase the size of the

nodes, change the visual encodings for nodes and edges, and show or hide selected brain

regions or communities. If the connectome has associated alternative layouts, then the

user can switch between these views as well, and if the connectome is dynamic, then

user can play through the data, or jump to a specified time frame.

the representation of the connectomes, to update the classification of different brain re-

gions, to filter edges based on their connection strength, and to toggle edge bundling to

mitigate visual clutter.

Summarizing the modular affiliation or “stickiness” of the nodes in dynamic connec-

tomes is an important aspect of analyzing a patient’s connectome, as is investigating the
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amount of time that brain regions are associated with particular communities (dwelling

time) and the frequency that brain regions change affiliation (flexibility). Connectomes

demonstrating patterns of more rapid modular change are believed to indicate health-

ier connectomes. TempoCave automatically processes the summary statistics for each

dynamic connectome upon being loaded into the application. For each node in the

connectome, changes in the affiliation across the time steps are used to determine the

flexibility metric. Dwelling time is calculated by identifying the maximum time a node

is associated with a specific module. TempoCave uses color-coding to represent both

dwelling time and flexibility, supporting T1 and T2. Fig. 2.3 shows how TempoCave is

used to analyze flexibility in a rumination study.

To analyze changes in dwelling time, flexibility, and edge connectivity over time,

TempoCave provides controls to scrub through the time steps. Users can play and

pause, move forward or backward one or more time steps, adjust the playback speed,

and, if two connectomes are available for inspection, there is an option to synchronize

the playback settings. At each time step nodes are colored based on their modular

affiliation. The edges change their width based on the strength of the connectivity

between two nodes, and are colored with a gradient representing the regions they are

associated with. The edges can further be classified into positive connections if the

regions are correlated or negative connections if they are uncorrelated. TempoCave

supports an optional color-coding to show the negative and positive edges for each time

step, as shown in Fig. 2.1. The dynamic visualization features support tasks T3 and

T4. Fig. 2.4 shows an example of how the edge connectivity and modularity change
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over time in an analysis session using TempoCave.

TempoCave presents an overlay comparison mode supporting T5, where two connec-

tomes are juxtaposed to form an integrated layout. Each node in this superimposed

view is split into two halves, corresponding to left and right connectomes. As the user

moves through the different frames, each half of the node’s colors change separately

based on the modular affiliation of the associated connectome. The edges can be acti-

vated by clicking the corrresponding half of the node. To distinguish the connectivity

of two connectomes, we use a solid line for left connectome and a dashed line for the

right connectome. A comparison of a pre- vs post-treatment connectome is shown in

Fig. 2.1.

We developed TempoCave using the Unity Engine, which renders 3D data at real-

time frame rates and provides out-of-the-box solutions for immersive applications. We

evaluated a range of visual encodings and interaction modalities to determine useful

representations and interactions that supported the analysis of dynamic connectomes.

For example, we initially included animation as a primary encoding for dynamic net-

work features [57]. While our collaborators found the animation engaging, ultimately

it was distracting and introduced visual fatigue when they needed to scrub through

many time steps. Instead, we color-coded edges to represent both modular affiliation

and edge weights, giving the users the option to choose which encoding was most useful

for a particular analysis session. We also experimented with a wide range of shapes to

represent brain regions, hoping to more clearly distinguish nodes from different connec-

tomes in the comparison view. However, our users found that it was easier to interpret a
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node when rendered as a multi-colored sphere. Contrary to expectations, we discovered

that our users preferred to have fewer available encodings overall, but more options to

control which data elements these encodings represent.

2.4 Use Case: Investigating R-CBT Treatment

Figure 2.3: This figure shows a summary view of the flexibility of brain regions associated

with rumination (T2). The top images show the connectome of a MDD patient who

received R-CBT treatment, indicating higher flexibility (blue nodes) post-treatment

than pre-treatment (where the orange nodes indicate lower flexibility). The bottom

images show a relapsed patient who did not receive R-CBT, where there is substantially

decreased flexibility in brain regions associated with rumination. The red rectangle

highlights the two relevant brain regions: supramarginal gyrus (top) and angular gyrus

(bottom).

As an initial validation of TempoCave, we explored a dataset from an ongoing clin-

ical study that measures the effectiveness of rumination cognitive behavioral therapy

(R-CBT) for adolescent patients with at least one previous episode of major depression
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disorder (MDD) [13]. In this study, 27 patients were recruited for comparing 8 weeks

of R-CBT data against a control group of 15 healthy participants. The patients were

in remission at the start of the study, and the main goal of the study was to measure

the effectiveness of R-CBT at preventing a relapse of depression. Of the 27 patients

with MDD, 14 were administered a treatment of R-CBT, and none had a relapse during

that time. Of the 13 who were not administered R-CBT, 4 patients had an episode of

MDD, providing initial evidence of the efficacy of R-CBT. Using TempoCave, clinical

Figure 2.4: This figure presents the dynamic connectome of a patient with MDD who

received R-CBT. Here, the overlay comparison reveals differences in modular affiliation

and in connectivity patterns pre- vs. post-treatment across multiple time steps.

psychiatrists observed the modularity dynamics of individuals’ connectomes. Partici-

pants from a healthy control group were found to have a higher overall flexibility than

patients with MDD, and that on average there is no significant difference between the

pre- and post-treatment connectomes of MDD patients who received R-CBT. However,

as depicted in Fig. 2.3, the post-treatment connectome of MDD patients who did not

receive R-CBT (and relapsed) shows much less flexibility than was observed in their

pre-treatment connectome. Fig. 2.3 highlights the supramarginal gyrus and angular
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gyrus, two regions that are indicated in depression disorder. Fig. 2.4 shows an over-

lay comparison view of a patient’s pre- and post-treatment connectomes who received

R-CBT, where the angular gyrus is selected. Looking at the right half of the selected

node (from the post-treatment connectome), clinical psychiatrists found that the angu-

lar gyrus changed modularity three times (from t=2 to t=14), but that in left half of

the selected node (from the pre-treatment connectome) the modularity of angular gyrus

changed only once (from t=8 to t=14). This visual analysis corroborates the hypothesis

that R-CBT mitigates rumination, as indicated by the temporal dynamics of dwelling

time and flexibility metrics.

2.5 Conclusion & Future Work

Our initial use case already indicates that TempoCave helps clinical neuroscientists

form new hypotheses about dynamic connectome datasets, and in particular that the

comparison mode is useful for providing insight into patterns that emerge when in-

vestigating a patient’s response to treatment. Future work will explore a wider range

of use cases in various clinical contexts. Additional definitions of modularity could

generate network metrics that may be useful for understanding brain dynamics. For

instance, recent work by Kim and Lee [39] introduce an inconsistency metric which

can be used as an alternative definition of node centrality. Furthermore, while Tem-

poCave provides textual labelling of nodes and edges, our collaborators indicated the

need for including additional annotation options, which would make it easier to share
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results or hypotheses with other clinicians and to include as figures in presentations

and articles. We also plan to extend our approach to other (non-connectome) dy-

namic datasets, and to conduct user studies to determine the effectiveness of our visual

encodings as a more general approach for highlighting dynamic network features and

comparing networks. TempoCave is available via our open source GitHub code reposi-

tory at https://github.com/CreativeCodingLab/TempoCave, along with source code,

detailed instructions on how to load in custom datasets, and additional documentation.
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Chapter 3

ConnectoVis: Spatio-Temporal

Exploration of Dynamic Connectomes

3.1 Introduction

The structural and functional connectivity mapping of the human brain allows neu-

roscientists to acquire a deeper understanding of various brain conditions [62]. Maps

of these neurological connections are known as connectomes and are obtained by pro-

cessing functional magnetic resonance imaging (fMRI) scans of the brain. Connectome

datasets consist of nodes that represent brain regions and edges that represent the

strength of the connectivity between these regions. Additionally, each node can be

assigned a modular affiliation associated with a particular brain function, which can

vary over time in response to different tasks. The exploration and analysis of connec-

tomes is challenging in part due to the large amount of data, and the complexity of the
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data increases with temporal connectomes, created from fMRI captures taken in quick

succession. Many visualization techniques exist for exploring brain networks, such as

Connectogram [35], Connectome Visualization Utility [43], BrainNet Viewer [72], Con-

nectome Viewer Toolkit [28], and NeuroCave [38]. However, these tools focus on static

networks and do not facilitate the exploration or analysis of dynamic connectomes.

Furthermore, in psychopathological studies, making comparisons between healthy

control groups and patients plays a key role in gaining insight into mental disorders, such

as Alzheimer’s disease, schizophrenia, epilepsy, and major depressive disorder (MDD).

For instance, Ma et al. [51] examined dysfunctions in brain regions across patients with

schizophrenia, bipolar disorder (BD), and MDD by comparing 121 schizophrenia, 100

BD and 108 MDD patients with 183 healthy controls. Liao et al. [45] conducted a

study where they found that modular structures of brain networks vary across indi-

viduals by comparing temporal variation of modular affiliation. Burkhouse et al. [13]

studied the abnormal activity in regions within the DMN and in areas involved in vi-

sual, somatosensory, and emotion processing of remission from MDD patients using

comparative analysis. Xing et al. [74] studied the connectome features of social anxi-

ety disorders by comparing 20 healthy controls and 20 anxiety participants’ temporal

connectomes. In each of these studies, researchers compare different connectomes on

either an individual level or group average level in order to understand brain behavior

under particular diseases. Important features for comparison include both the modular

affiliation associated with and connectivity between brain regions as they change over

time. As articulated by Pfister et al. [55], it remains a challenge to design comparative
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visualizations of dynamic networks without losing spatial and temporal information.

To the best of our knowledge, no existing tool provides dedicated support for spatio-

temporal comparison of multiple connectomes. We introduce ConnectoVis, a visual-

ization tool that supports the analysis of dynamic connectomes. ConnectoVis includes

synchronized views enabling users to more effectively examine features of connectome

datasets, such as identifying similar modularity and connectivity patterns within the

same connectome or across multiple connectomes. Our temporal view summarizes vari-

ation in modular affiliation over time, while our spatial view focuses on the connectivity

patterns within the topological structure. Our tool supports the selection of multiple

connectomes, subnetworks, and brain regions, visually highlighting both positive and

negative connectivity between them [79]. To illustrate the effectiveness of ConnectoVis,

we present use cases exploring clinical datasets for studies on rumination, a mental dis-

order characterized by the persistent replaying of negative thoughts. A screen capture

that shows an overview of ConnectoVis is shown in Fig. 3.1.

Our previous work: TempoCave is a tool that provides a 3D overlay comparison

of two temporal brain networks. Clinical neuroscientists found TempoCave useful for

analyzing connectomes, however our collaborators later expressed a need for tools to

support additional analysis tasks. For example, TempoCave provides a playback feature,

but it can be difficult to retain contextual information while scanning through the

time steps, especially as the time interval between two related network configurations

increases. Moreover, it became apparent that it is important to provide a visual overview

of temporal statistics related to modular affiliation, which helps researchers to identify
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Figure 3.1: Overview of the ConnectoVis software tool. The temporal view (left) cur-

rently shows the modular affiliation changes for three regions per connectome. The 3D

spatial view (right) shows the detailed topological information related to these regions

for each of the four currently selected connectomes. Connectivity patterns and modu-

larity dynamics can be interactively investigated and compared by selecting one or more

nodes on the spatial view, or via the control panel. Connection strength and time range

filters enable nuanced exploration of the connectomes, and a playback feature supports

temporal navigation.
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potentially interesting patterns that can then be explored in more detail via a network

representation. Furthermore, the primary visual encoding in TempoCave juxtaposes two

networks with similar topological configurations, which makes it difficult, for example, to

analyze data from connectome studies involving multiple participants [13, 51]. Similarly,

task-based anxiety studies may require the simultaneous comparison of patients’ brain

dynamics across different tasks [74].

We developed a list of primary analysis tasks based both on this feedback and through

interviews with clinical neuroscientists from two different labs (University of Illinois at

Chicago’s Computational Neuroimaging and Connected Technologies Lab and Beijing

Normal University’s Institute for Brain Research) who perform dynamic connectome

analysis as part of their research. We summarize the main tasks supported by Connec-

toVis as follows:

T1: Comparing multiple dynamic connectomes. Clinical neuroscientists may make com-

parisons between a single patient’s pre-treatment and post-treatment connectomes, a

group average of patients with a particular disease and healthy controls, two patients

with a similar neurological issue who received different treatments, or connectomes from

the same patient but responding to different tasks.

T2: Identifying temporal patterns based on modular affiliation. Researchers need to

understand at-a-glance when modular affiliation changes rapidly across particular brain

regions, which could indicate a particular disorder.

T3: Visualizing topological structures in 3D space with respect to individual time-steps.
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Researchers are interested in understanding the dynamics of connectivity patterns at

particular time steps where there are changes in modular affiliation.

T4: Filtering data to focus on regions of interest. Clinical neuroscientists are often in-

terested in the activity of particular brain regions within particular time slices and above

or below thresholds of connectivity strength, and need to be able to select subnetworks

made up of nodes known to be associated with a particular disease.

Key to supporting these tasks is facilitating the ability to move between summary

views and more detailed comparison views in order to understand the temporal dynamics

of connectivity patterns and modular affiliation patterns within selected brain regions.

Additionally, our neuroscientist collaborators noted the importance of interacting with

multiple connectome datasets with high spatial and temporal resolutions in real-time.

Below, we describe the main features of ConnectoVis, a visualization tool that supports

T1-T4, incorporating both a 2D temporal view and a 3D spatial view to enable the

exploration of the temporal dynamics of multiple connectomes.

3.2 Related Works

Recent projects present visualization tools for investigating connectome datasets [2,

26, 48, 50, 38, 73, 16], some of which focus specifically on enabling graph comparison

tasks [70, 58]. For example, Yang et al. [77] propose a hybrid representation to sup-

port blockwise brain network visual comparison, and Fujiwara et al. [24] introduce a

visual analytics system to compare brain connectivity between individuals and groups.
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ConnectoVis also supports comparative analysis, enabling the comparison of multiple

dynamic connectomes.

Geniesse et al. developed dynamic brain neuroimaging data visualization by dimen-

sional reduction which studies the relationship between each time frames. The approach

didn’t consider the connectivities features between brain regions, and it’s also hard to do

comparison. [27]. In order to represent large time series datasets, Time Curves [9] pro-

vides a approach for visualizing temporal dynamics, utilizing a dimensionality reduction

step to embed time points in 2D space. For connectome datasets, it can be easier, and

more familiar for our clinical neuroscientist users, to explore connectivity patterns via

a 3D network representation. ConnectoVis displays multiple dynamic networks along

with a temporal overview summarizing modular affiliation for selected nodes.

A range of works, including GraphDiaries [8], DMNEVis [54], TempoVis [1], describe

techniques involving combined timeline and network views. ConnectoVis also features

a timeline view to provide temporal context for brain connectivity patterns. Similar

to other projects that feature multiple brain network representations side-by-side [21,

24, 49], the ConnectoVis layout makes it easy to integrate different perspectives of the

data, facilitating a richer analysis of connectome dynamics.

3.3 The ConnectoVis Application

As illustrated in Fig. 3.1, ConnectoVis consists of two views and associated control

panels, a temporal view and a spatial view. The temporal view displays changes in
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modular affiliation over time for user-selected brain regions on a 2D timeline. The spa-

tial view provides an interactive network layout showing the 3D topological structure of

user-selected connectomes. These two views are synchronized, and selecting or filtering

the data in one view updates the data in the other. Together, these two views pro-

vide insight into the spatio-temporal dynamics of in connectome datasets. ConnectoVis

includes a control panel to load in datasets and to select particular connectomes and

brain regions of interest. It also includes range sliders to filter positive and negative

connections above or below particular thresholds, or to focus on particular time ranges.

Additionally, a playback feature lets users navigate the network representation across

time. ConnectoVis enables neuroscientists to upload any number of static and dynamic

connectomes. (A static connectome is treated as a connectome with a single time-step.)

In addition to anatomical representations of brain networks, ConnectoVis supports 2D

or 3D representations resulting from various dimensionality reduction techniques, such

MDS, t-SNE and Isomap [78]. Once the connectomes are loaded, using the list view,

users can select multiple connectomes and multiple brain regions for comparative analy-

sis. Moving between the synchronized temporal view and spatial view facilitates identi-

fication of modularity affiliation patterns over time and the corresponding connectivity

patterns for particular brain regions. By showing information for multiple connectomes

simultaneously, neuroscientists can quickly compare different brain regions, either within

the same connectome, or between different connectomes, supporting task T1.

The temporal view consists of a timeline for each selected connectome, highlighting

dynamics in modular affiliation, as shown in Fig. 3.1 (left). By default, we limit the
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selection to 5 brain regions per connectome to avoid visual clutter. When a region or a

node is selected from the control panel or from the spatial view, the modular affiliation of

the selected region is shown as a color encoded horizontal bar graph across the currently

selected range of time steps, supporting task T2. Color is mapped to module, indicating

which module the selected node is associated with at each time step.

The spatial view displays selected connectomes in a 3D node-link representation.

Each node or region is encoded as a sphere with a spatial location, by default mapped

to anatomical position. The nodes are shaded based on modular affiliation, matching

the colors used in the temporal view. The edges between nodes are represented using

3D cylinders, and their thickness indicates connection strength, supporting task T3.

By default, the spatial view displays four 3D network structures simultaneously, with

individual support for zoom, pan, and rotation. Users can select one or more regions

from any of the node-link diagrams, which immediately updates the display in the

temporal view. To reduce visual clutter, deselected regions are faded out, but still

slightly visible to provide spatial context. Users can adjust the time range slider to

focus on time steps with interesting connectivity patterns. Further, users can also

select an option to only show the connections between currently selected brain regions,

hiding all other edges in the network. Some connectome datasets define both a positive

and negative connectivity strength, and in some situations, users may want to focus

only on strong connections above a particular threshold, and two sliders are provided to

support filtering on positive or negative connectivity. The controls and visual encodings

provided for the spatial view support task T4. The spatial view is shown in the Fig. 3.1
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(right).

Here, we outline a typical ConnectoVis workflow. First, after loading the connectome

dataset, users can select up to four individual connectomes from the list view to be

examined at the same time. These connectomes’ 3D network representation will be

displayed in the spatial view. A user can then select nodes of interest (mapped to

particular brain regions) either from the spatial view, by clicking on the nodes in the

network, or from the temporal view, by clicking on the names of brain regions listed in

the control panel. The connectivity of the selected brain region is shown in the spatial

view, and the modular affiliations of the selected brain region will be displayed in the

temporal view. For instance, in many studies exploring major depression disorder,

neuroscientists are interested in examining the angular gyrus (AG) brain region, as

it is known to be an indicator of unhealthy brain activity. Upon selecting a node

representing AG in the spatial view, a summary of AG modular affiliation over time for

the currently selected time range is added to each connectome in the temporal view,

and the connectivities from AG to other regions are shown for every connectome in the

spatial view. In the temporal view, a neuroscientist can get an at-a-glance overview of

the “stickiness” of AG modularity, and can quickly identifying interesting time ranges

where modular affiliation changes rapidly. The neuroscientist can then examine the

spatial view for more details about the connectivity and modularity of the brain regions

that are directly connected to AG. Mental disorder studies often involve examination of

multiple brain regions. Using ConnectoVis, neuroscientists can iteratively select regions

related to AG for further examination, such as the posterior cingulate cortex (PCC)
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brain region. The modular affiliation of PCC will then be displayed below AG in the

temporal view, supporting temporal comparison between brain regions within the same

connectome or across mmultiple connectomes.

ConnectoVis is designed to render multiple connectomes simultaneously with high

spatial and temporal resolution in real-time. ConnectoVis was developed using Unity

Engine v2018.3, enabling us to render different views of multiple dynamic connectome

at real time rates on 4K displays, including the 3D spatial view and the 2D tempo-

ral view. Each dynamic connectome datasets can typically be between 1-20 MBs in

size, depending on the number of time steps and the resolution of the fMRI scans.

Connectome datasets are comprised of various CSV files, and normally include connec-

tivity and modularity matrices for every time step, along with the spatial coordinates

for each node. In addition to standard anatomical layouts, some connectome datasets

also provide alternative topological representations resulting from processing the data

using dimensionality reduction algorithms. ConnectoVis pre-loads all the connectome

datasets, and we use geometric instancing to reduce the render call for identical mesh

data and level-of-details (LOD) to reduce the mesh resolution for regions not in focus.

(We have used ConnectoVis to display 9 high resolution connectomes simultaneously

at real time rates, but our neuroscientist collaborators suggested that a default of 4 is

sufficient for comparative analysis and helps to to reduce visual clutter.)
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Figure 3.2: ConnectoVis displaying selected connectomes from the rumination relapse

study. Top two connectomes in the temporal and spatial view represent subject #27

pre and post R-CBT treatment. After receiving R-CBT, subject #27 shows improved

flexibility in brain region right angular gyrus and right posterior supramarginal gyrus,

compared to pre-treatment, as indicated by the modular affiliation dynamics. A con-

nectome from the control group (control #15) is also selected for reference.

3.4 Use Cases

Working with our neuroscientist collaborators, we evaluated ConnectoVis by analyz-

ing connectome datasets derived from fMRI scans to investigate the relationship between

rumination and major depression disorder (MDD).

First, we ran ConnectoVis using a dataset from a clinical study on “rumination re-

lapse”. The dataset consists of temporal connectomes derived from fMRI images, and
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then processed using PACE algorithm to detect modular affiliation [79]. The clinical

study had 42 participants, 27 of who were diagnosed with rumination, 15 of them are

healthy controls. Of the 27 rumination patients, 14 received rumination-focused cog-

nitive behavior therapy (R-CBT) treatment during an 8 week period, and none had

a relapse during that time. Of the 13 who were not administered R-CBT, 4 patients

had an episode of MDD, providing initial evidence of the efficacy of R-CBT to prevent

relapse. Using ConnectoVis to investigate temporal features across the time range for

multiple brain regions helped neuroscientists reason about changes in modular affiliation

and to hypothesize about whether the “stickiness” of certain brain regions is a factor

in MDD. Fig. 3.2 shows data for three selected dynamic connectomes from this study.

Here the pre- and post- treatment connectome for subject #27 is being investigated,

with a healthy control #15 shown for comparison. Two regions, the right posterior

supramarginal gyrus (pSMG r) and the right angular gyrus (AG r), are thought to be

indicated in rumination disorders, and are visible in the temporal view (Fig. 3.2, left).

We can see that pSMG r in the pre-treatment connectome for subject #27 is asso-

ciated with a single module (orange) from T1 through T12. However this subject’s

post-treatment connectome shows modularity shifts 4 times on the same region during

the same length of time. The AG r region shows a similar pattern. This provides ini-

tial evidence that after receiving R-CBT treatment for a 8 week period, subject #27’s

tendency toward rumination has decreased. Researchers can also load in additional con-

nectomes to make sense of temporal patterns. Here, control #15 is used as a benchmark

to compare subject #27 to a healthy patient. Using the threshold sliders to highlight
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strong connections, researchers can identify more subtle differences between the brain

activity in healthy and depressed patients, as shown in the spatial view (Fig. 3.2, right).

Second, we ran ConnectoVis using an open source dataset available from the Nathan

Kline Institute (NKI) [53] containing 32 nodes and 900 time steps (see Fig. 3.3) in order

to investigate the relationship between temporal dynamics and Ruminative Responses

Scale (RRS) scores [64], where higher RRS scores indicates that a patient is more likely

to suffer from depression and to engage in rumination. From this dataset, our neuro-

scientist collaborator collected 68 subjects showing evidence of rumination. Previous

analysis indicates that the right lateral parietal (LP r) is significantly correlated with

rumination [13], and ConnectoVis was used to interactively explore modular affiliation

and connectivity dynamics in the LP r region for these subjects. Fig. 3.3 shows an

example from this analysis session, with subjects #1, #25, #27, and #42 currently

selected. Their associated RRS scores are listed in Table 3.1. We can see that subject

#25, whose RRS score is relatively low, shows higher flexibility in the LP r region,

especially during time range 700 through 800. The other subjects, with higher RRS

scores, show less flexibility in this region, especially during this time range. As shown

in the spatial view, subject #25 also demonstrates weaker connectivity from LP r to

other brain regions than the other subjects do. That is, ConnectoVis provides initial

validation for the hypothesis that the RRS score is positively correlated with increased

overall connectivity in the LP r region.

These analysis sessions demonstrate that ConnectoVis is effective in supporting tasks

T1-T4 to explore temporal patterns in connectome datasets, and that it is a useful
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Figure 3.3: ConnectoVis displaying selected connectomes from the Nathan Kline Insti-

tute’s rumination dataset. Here, we can see that subject #25 (with a lower RRS score)

shows more flexibility in modularity dynamics and weaker overall connectivity than the

other three subjects in the right lateral parietal brain region, indicating that the brain

region is positively correlated with rumination.

tool for researchers comparing pre- vs post-treatment connectomes in a single subject,

comparing individual subjects across different tasks, and for comparing multiple subjects

with the same disorder.

3.5 Conclusion and Future Work

We presented ConnectoVis, a novel visualization tool for the spatio-temporal compar-

ison of multiple dynamic networks. Our tool focuses on identifying changes in modular
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Subject RRS
Depression

Score
(Max 48)

RRS Brooding
Score

(Max 20)

RRS
Rumination

Score
(Max 20)

RRS Total
Score

(Max 88)

1 24 8 12 44

25 13 8 5 26

27 44 18 12 74

42 45 18 14 77

Table 3.1: Ruminative Responses Scale (RRS) scores [64] for selected subjects from

the NKI datasets. The higher score suggests more depressive, brooding, or ruminative

behavior.

affiliation and connectivity patterns using integrated temporal and spatial views, and

was useful for investigating rumination in connectome datasets. In addition the use

cases presented above, we gathered expert feedback on ConnectoVis from neuroscien-

tists at two different labs, each of who appreciated the summary view of subjects’ brain

activity made available in the temporal view. They also found the coordinated views

to be useful, with one neuroscientist telling us that it made it easier to identify the

brain regions of subjects that were mainly affiliated with a particular module, and that

the temporal view was a good starting place for exploration before investigating con-

nectivity patterns in the spatial view, which is necessary for comparing, for example,

differences in pre- vs. post-treatment for different subjects. Clinical neuroscientists an-

alyze their data by performing various statistical methods on the connectome datasets.

However, due to the sheer amount of data, it can become tedious to examine the ac-

tivity in particular brain region manually, especially for dynamic networks. Using our

44



tool, they can interactively select the region of interest and investigate and compare the

activity within or between connectomes, greatly speeding up their investigation of the

data. Moreover, one neuroscientist noted that a limitation to their statistical approach

is that it is performed on nodal averages or time range averages, which can obscure

the detailed modularity and connectivity dynamics of an specific regions. ConnectoVis

introduces useful features that enable neuroscientists to find and examine nodes with

similar modularity and connectivity patterns within the same connectome or across

multiple connectomes. Future work will investigate automated approaches to identify

and highlight meaningful patterns within connectome datasets.

ConnectoVis is available via our open source GitHub code repository at https:

//github.com/CreativeCodingLab/ConnectoVis, along with source code, detailed in-

structions on how to load in custom datasets, and additional documentation.
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Chapter 4

Dynamic Connectome Classification

using Graph Neural Network

4.1 Introduction

Over 300 million people worldwide suffer from depression, and over 700,000 people die

due to suicide every year, according to the World Health Organization (WHO). Several

large-scale studies have been conducted to determine how the depressive brain functions

differently from a normal brain and whether psychological treatments are effective.

Understanding the functional activities of the human brain is crucial for understanding

cognition and behavior patterns. A common way to study functional brain activity

is to use non-invasive brain imaging techniques such as functional magnetic resonance

imaging (fMRI).

fMRI measures brain blood oxygenation levels by detecting changes associated with

46



blood flow. The result from the fMRI scan is used to derive the functional connectiv-

ity (FC) between brain regions. There are two major types of FC: static Functional

Connectivity (sFC) and dynamic Functional Connectivity (dFC). Initially, researchers

assumed no change in functional connections during resting state [33]. A majority of the

studies used statistical characteristics of time series reading to detect anomalies in the

brain pattern. By folding the temporal dimension of dFC, the manually selected fea-

tures overlooked time-varying patterns during the analysis. Recent studies have found

that analysing temporal functional activities reveals hidden insights of various brain

disorders such as Alzheimer’s Disease [30], Depression [36], Schizophrenia [69].

The inclusion of temporal information adds an additional layer of complexity to this

analysis since it is difficult to manually keep track of the changes in the connectiv-

ity between nodes per time step. Visualization tools can help researchers see dynamic

connections between brain regions, however, as the number of time step increases it

is difficult to track the long-range trends making the process of identifying unhealthy

brains tedious. Moreover, the complexity increase exponentially when observing con-

nectivities between multiple brain regions over time.

In recent years, machine learning has proved useful in analyzing complex data in a

wide range of fields, including neuroscience. In computational neuroscience, machine

learning is mainly used for classifying a healthy brain from an unhealthy one by look-

ing at the representative features of the experiment groups. The majority of machine

learning models for depression analysis, however, relies on static functional connectivity

(sFC) obtained from correlation analysis of fMRI time series activities and ignores tem-
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Figure 4.1: Example of different adjacency matrix representing the same graph [60]

poral characteristics. The commonly used model for classifying mental disorder group

and health controls is support vector machine (SVM). SVM is a supervised learning

techniques that works by constructing a decision boundary separating the data into two

groups by reducing a cost function. SVM is not directly suitable with timeseries data

and require several data transformation steps resulting in loss of features. Yan et al.

used SVM to classify dynamic functional connectomes and highlighted 28 functional

connections which are distributed in different time window. This model fails to provide

insights of dynamic fluctuation of connectivity from the result [75]. Neural network

models are now experimented in static connectivity analysis [37] but rarely used for dy-

namic brain networks. To the best of our knowledge, only one work has been done based

on dynamic functional connectivity (dFC) for classifying gender, where they combine a

convolutional neural network (CNN) with a long short term memory (LSTM) in order

to capture the temporal features [18]. CNNs are the state of art neural network for an-

alyzing patterns in images. However, dynamic functional connectivity consists of series
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of nodes and edges forming a chain of graphs. This connection graph is represented as

an adjacency matrix with row and column representing vertex and value represent the

edge weight. There are two main disadvantages when using adjacency matrix as the

input to a CNN model. CNNs are inherently not permutation invariant which means

that each adjacency matrix input looks different to the model. The same functional

connectivity data can be represented using a number of adjacency matrix as shown in

Figure 4.1 but the model fails recognize it as the same graph representation. Training

such a network on adjacency matrix data makes it hard to converge and leads to poor

generalizability of the model on test data [60].

Graph Neural Networks (GNNs) are permutation invariant model that learns feature

vectors for nodes, edges, or the entire graph. GNNs are used in graph analysis for social

network [19], transportation data [14] and drug discovery [15]. GNN take a graph as the

input (adjacency matrix) consist of several node and edges that connects the nodes and

output a new graph. The nodes and edges can carry features which is then transformed

into a learned embedding for the output graph. The output graph can be then used

for node classification, edge prediction or classification of an entire graph. The core

idea of GNN is to use a series multi-layer perceptron (MLP) or fully connected network

on each node (or edges) to extract the features. The same MLP is applied to all the

nodes and the features are combined in a message passing step. In message passing

the connected nodes share features which are aggregated using a permutation invariant

operation such as sum or average. If the GNN have multiple layers i.e. multiple MLPs

chained together then with message passing each node receives features from far away
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nodes through mutually connected node. For this reason, GNN with message passing are

also called Graph Convolution Networks (GCNs) [56]. GNNs are a good fit to analyzing

brain functional connectivities since FC can be described as graphs that are composed of

nodes (vertices) denoting brain regions that are linked by edges representing functional

connections [12].

Since we are working with medical data, we need to validate the model by under-

standing the working of the classifier, in our case, it means we want to understand

which nodes are responsible for the decisions made by the classifier. Mask has been

used successfully in explaining GNN model. There were different types of masks: edge

mask, feature mask, and node mask. In our model, we used edge connectivity in the

node feature, so in order to highlight the significant brain regions for classifier, we ap-

plied a learnable node mask. However, message passing aggregated the node features

with their neighboring nodes at every layer. So the mask for each node won’t represent

for individual node. Hu et al. showed that message passing in GNN is not necessary

for classification. Instead, they encode the graph structure information into the node

features[32]. Motivated by their work, we removed the message passing part in GNN

and designed a new recurrent graph network for temporal connectome.

Using the designed GNN model for dFC with graph recurrent connections, we will

show its capability to classify a remitted depression group from healthy control group.

In summary, We introduce a new data analysis pipeline that is specifically designed for

dFC data. Our contributions are:

• A novel Temporal GNN model classifying remitted depression vs healthy dynamic
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connectomes.

• To improve the explainability of our model, a mask is generated per connectome

to identify the regions responsible for the classification.

• Support for visualizing the results from the model in Tempocave for analysis or

verification by a domain expert.

4.2 Spatio-Temporal Network Analysis using GNNs

4.2.1 Dataset

The dataset is from an ongoing clinical study that measures the effectiveness of rumi-

nation cognitive behavioral therapy (R-CBT) for adolescent patients with at least one

previous episode of major depression disorder (MDD) [13]. In this study, 27 patients

were recruited for comparing 8 weeks of R-CBT data against a control group of 15

healthy participants. The patients were in remission at the start of the study, and the

main goal of the study was to measure the effectiveness of R-CBT at preventing a re-

lapse of depression. 27 patients that have previously diagnosed as MDD had all relapsed

of depression in the beginning of the experiment. We used the baseline for our model by

classifying 15 health control with 26 MDD remission (We have deleted one connectome

due to corrupted data). Each connectome was partitioned into 105 brain regions. Each

brain region is treated as a node. The connectivity between brain regions are treated as

edges, and the connections are the edge weight. 16 time steps were processed by sliding

window Pearson correlation, and each time step is a 105*105 connectivity matrix. We
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also included the spatial location into the node features. The dataset was then sepa-

rated into node features and edge features as input of GNN model. Figure 4.2 shows an

example of node features of one time step in one of the temporal connectomes. Each

row represents the features of one brain regions during one time step. The columns

highlighted in green are the node positions, and the symmetric matrix on the right side

is the functional connectivity of each node in one time step.

4.2.2 Model

Our model, as shown in Figure 4.3, is composed of a 2 layer GNN, a graph recurrent

connection and a fully connected classifier. The input to the GNN is the dynamic

connectome graph and the model outputs a transformed graph with learned temporal

features for each node. The temporal features of each node are concatenated and send

to a fully connected network for classification.

The input graph consist of 105 nodes and each node carries a feature vector of size

108 containing the 3D spatial location of the node and the edge weights to every other

nodes at each time step. For a time step of 16, we will have the input graph of size

105x108x16.

Our graph neural network (GNN) consist of two layers that are shared among all the

input nodes. Each GNN layer is a 2-layer MLP with ReLU as the activation function.

After each layer a message passing step will aggregate the feature from the immediate

neighbor node. Although our experiments with message passing have been successful, we

dropped the message passing mechanism in our GNN in favor of model explainability as
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Figure 4.2: Example of node attribute: one time step of one of the connectome node

attribute input. The first three columns (in green) are the node positions, and the

symmetric matrix on the right side is the functional connectivity of each node in one

time step.

53



Figure 4.3: Overview of our model consisting of a GNN, graph recurrent connection

and a classifier

Figure 4.4: Mask generation pipeline
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described in Section 4.4.1. Recent studies have indicated that GNN can achieve similar

accuracy without a message passing technique [32, 71]. The modified GNN looks similar

to a standard MLP except that the same layers are applied across all the nodes. There

are 3 reasons why we prefer a GNN over a bigger single MLP:

• With shareable weights GNN scans for same features over all nodes (similar to a

kernel in CNN) which allows preserving graph symmetry and this is not guaranteed

with a single MLP where the input is reduced into a single vector.

• With MLP the node features across the timesteps are flattened and given the

input to the network requiring a very large number of weights to be trained which

is expensive to compute and difficult to converge while our GNN model learns

temporal features for each node iteratively with less number of parameters.

• The standard MLP expects a fixed input size which means that if the number of

time-step increases a new MLP need to be trained from scratch. With our graph

recurrent connections, the GNN model can process connectomes with a variable

timestep.

For getting temporal features, we considered using recurrent neural networks (RNN),

long short term memory (LSTM). RNNs suffer from a vanishing gradient problem where

the gradients are multiplied by values close to 0 after learning long sequences, which

make it not scalable to long time steps. LSTM models avoid vanishing gradients, but

their interpretation capability remains unclear, which makes the model difficult to ex-

plain [18]. We propose a graph level recurrent network where the node feature from
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the previous timesteps are concatenated with the input node feature of the current

timestep. The temporal features improve iteratively after each timestep. An advantage

of using graph recurrent networks is that they do not store temporal states like RNNs

or LSTMs, which affect explainability. Similar recurrent connections are used in video

processing networks that motivated us to adapt it to a graph network [59, 20].

Finally, the learned temporal features of all the nodes are concatenated into a single

feature vector and send to a fully connected network for classification. The classification

network consist of 3 layers with ReLU as the activation function. The output is a single

value determining whether the input is an healthy connectome or not. The network is

trained using a binary cross entropy loss with a learning rate of 0.0001 for 1000 epochs.

Once the training is finished, a mask generation techniques is used to find the nodes

responsible for the classification. The mask generation algorithm (shown in Figure 4.4)

works as follows:

1. Set the GNN to inference mode, i.e. weights are not trainable.

2. Initialize a mask per node with random weights clipped to 0 (off state) or +-1 (on

state) based on a threshold.

3. Multiply the mask with the node features.

4. Run the model with the masked graph.

5. Calculate the L1 loss between the prediction and ground-truth.

6. Update the mask by back propagating through the network.
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Figure 4.5: Original mask weights for control and remitted depression group

7. Repeat the process until the loss is minimized.

4.3 Results

We split the data (26 remitted depression patients and 15 healthy controls) into train-

ing (22 remitted depression patients and 11 control group) and test group (4 remitted

depression patients and 4 healthy controls). The accuracy of our model is 98% after

around 100 epochs of training. Precision recall curve is shown in Figure 4.7 with Area

Under Curve (AUC) value 0.96. Using the trained classifier, we generate the mask and

apply it on the node features to get the weight for each brain region. The weight for each

brain region represents the contribution of that region for the classification. We exper-
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imented with a range of mask activation functions to get distinctive patterns. Initially,

we used a sigmoid function to get mask range of [0,1] but in our experiments we found

this range hard to distinguish the contribution of brain regions. Using tanh activation

function we increase the range of the mask produced to [-1, 1], showing clear difference

between depressive connectome and healthy control connectome. As shown in Figure

4.5, participants number 1-15 are from control group and they are located on the left

side of the chart, and participants on the right side are remitted from depression. The

mask value are color coded and the mask value of healthy control and depressive group

has a clear division shown in the figure 4.5. By subtracting the mask value between the

two groups, we get an average mask difference for each node. The mask difference can

be considered as the discriminative power for the classification of the two group. Using

our mask mechanism, we narrow down the 105 brain regions to 42 that is contributing

to the classification. The mask difference is in the range of [0, 1.21], with aSMG r

demonstrate the highest value. Following aSMG r, other brain regions that have high

mask difference are: iLOC l, CO l, IFG oper r, CO r. Our findings are supported by

various depression studies done by different neuroscience research groups. For instance,

supramarginal gyrus (SMG) showed increased amplitude of low-frequency fluctuation

(ALFF) in depression groups [46]. Right central opercular cortex was found increased

activities in depression patient [40].

We convert the mask with continuous weights to a discrete value using a threshold.

Through our experiments we found applying +-0.7 threshold on the mask to work the

best without influencing the accuracy. Figure 4.6 shows the mask after applying thresh-
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old. Note that participants number 1 -15 are control group, and they are located on the

left side of the chart, and participants on the right side are remitted from depression. If

the mask value is 0 for a brain region, then it is not used in classification. If the mask

value is 1 or -1, then the brain regions are important for the model for classification.

As shown in the Figure 4.6, each connectome produces a different mask vector (105x1)

to be classified correctly showing that our model can extract features from different

brain region and not overfitting to one region for the classification. Interestingly, for

all depressive connectomes the mask vectors suggest that the model is focusing on the

same brain regions. We firstly focus on group level difference by labeling the different

brain region mask between health control and remitted depression patients. Based on

our analysis of network outputs and mask weights for 105 brain regions, 33 brain regions

show strong differences between the two groups.

4.3.1 Visualizing the Results in ConnectoVis

We will demonstrate the connectivity and modularity dynamics using ConnectoVis

for the top brain regions identified using our model and mask mechanism. As shown in

Figure 4.8, aSMG r more positive connections comparing control and depressive group

on average. We will focus on positive connections using ConnectoVis. We randomly

select subject 5 and 9 from control group, and 18, 26 from remitted depression group,

with brain region aSMG r selected. The figure 4.10 shows the positive connections from

aSMG r to other regions at t = 1, 4, 8, 15. Overall, subject 5 and 9 shows lower positive

connections from aSMG r to other regions and less fluctuations as well. However, subject
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Figure 4.6: Discrete mask weights in the range [-1,1] for control and remitted depression

group
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Figure 4.7: Healthy control and remitted depression group classification Precision Recall

Curve, AUC is 0.96.
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Figure 4.8: aSMG r connectivity strength over time in control vs remitted depression

group

18 adn 26 shows more positive connections overall and more fluctuations over time.

When looking at the modularity changes over time, we see more flexibility in subject

5 and 9 compare to subject from remitted depression group in the region aSMG r, as

shown in Figure 4.9.

4.4 Discussion

4.4.1 GNNs Explainability

Message passing is a powerful mechanism to aggregate features from the neighboring

nodes using permutation invariant operators. In our initial model, we used message

passing to generate a graph level representation for each time step without using re-

current connections. The graph representation across all time steps are concatenated

and send to the fully connected network for the classification, as shown in Figure 4.11.
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Figure 4.9: ConnectoVis: aSMG r modularity change over 16 time steps for subject 10

(control group), 18, 30, 31 (remitted depression)
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Figure 4.10: ConnectoVis shows aSMG r connectivities over 16 time steps for subject

10 (control group), 18, 30, 31 (remitted depression)

Figure 4.11: GNN model with message passing

The model achieved high accuracy similar to our current technique but its features has

poor explainability. In our experiments with the mask generation pipeline, we found

that the mask weights are only active for few selected nodes that are fixed across all

the connectomes. On further investigation with the features, we found that the reason

is message passing blended the information from multiple nodes and aggregated to a

couple of master nodes. Those master nodes are enough to classify, so we won’t get

distinct features for each node.
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4.4.2 HCP Gender Classification using Our Model

To validate our model, we used our network on a larger publicly available dataset from

Human Connectome Project (HCP) for gender classification [65]. This dataset consists

of participants between the ages of 22 and 35 without a history of mental illness or

neurological dysfunction. The dataset provides pre processed static connectivity matrix

for individual subjects and individual subject’s resting state fMRI timeseries data. For

each subject’s fMRI timeseries data, participant connectome is partitioned into varies

number of brain regions with 4800 time points for each region. We chose 100 number of

nodes for our experiment. For extracting the temporal connectivity matrix we used the

time series signal of 812 participants and applied a sliding window Pearson correlation.

Out of 812 subjects, there are 410 female and 402 male.

Our model achieves an accuracy of 93% for gender classification on the temporal

connectivity matrix similar to the CNN+LSTM model [18] while SVM classifies with an

accuracy of 75.1%. We also performed training on the preprocessed static connectome

data by removing the graph recurrent connection. Our model achieves an accuracy

of 95% for gender classification task. In comparison to dynamic connectomes, static

connectomes perform better due to limitation in our data processing which affects the

quality of the temporal connectivity matrix since we used reduced temporal resolution

of 17 time steps for a faster training time.
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4.4.3 Comparison with BrainNetCNN for Classifying Temporal Con-

nectomes

BrainnetCNN provides alternative custom convolutional layers designed to process

brain network data [37]. The edge-to-edge layer compute the weighted activation over

the neighboring edge for a given edge. The edge-to-node layer similarly computes a

weighted activation over neighboring edges for a given node. Classification is completed

by connecting all of these activations to a fully connected network. While BrainnetCNN

is developed for static connectome classification, for validating it’s performance with

temporal data, we extend the custom layers to process 3D data by adding an additional

dimension which contains the time-varying data. The network failed to converge on our

rumination dataset as shown in. Our finding suggests that the custom layers are not

suited for processing temporal information.

4.5 Conclusion

In this work, we have proposed a novel temporal connectome data analysis pipeline

using Graph Neural Network. Our model supports explainability providing the list of

nodes responsible for the classification. We use a mask generation technique to assign

weights on the important nodes. Using our model, we show the difference between re-

mitted depression patients and healthy controls that align with the various neuroscience

studies. The results can be visualized on our ConnectVis platform by a neuroscientist to

verify the network outputs. Our tool has many applications ranging from auto-labeling
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to discovering new regions related to brain disorders.

4.5.1 Limitations and Risks

Our model can be used in a wide range of applications in neuroscience and non medical

domains, such as social media studies and transportation networks. However, there are

some limitations and risks associated with our model due to bias and black box nature

of deep learning techniques. In neuroscience application, this can lead misdiagnose

of diseases. We provide tools such as the model explainable mask and visualization

applications for the neuroscientist to verify the predictions. There will be some bias

in the model depending on gender, race, age of the training data. Collecting a large

amount of data from wider population help reduce the bias in the system. Training on

large dataset will require higher energy usage increasing the cost of training. An option

to reduce the cost is to do fine tuning the model instead of training from scratch when

new data is collected.
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Chapter 5

Use Cases

In this section, we will demonstrate three detailed use cases in the neuroscience do-

main for analyzing and visualizing dynamic connectivities between brain regions. In all

three use cases that are discussed here in this section, we follow the steps:

• We train our temporal GNN model on a dynamic connectome dataset for extract-

ing temporal features. The features are used to classify disease group from control

group.

• After the model training is complete, for each connectome we run the differentiable

mask generator to find the regions of interest.

• Using our visualization platform, we verify or explore the findings from the model

for disease vs control group, or for pre vs post treatment using the overlap com-

parison feature.
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5.1 Use Case 1: Cross Network Connectivity Comparison

Between Healthy Control and Remitted Depression

Patients

We train our model on the dynamic connectomes from 26 remitted depression patients

and 15 healthy controls and applied our mask generator. Each connectome consists of

16 time steps and 105 brain regions. Using this dataset, our temporal GNN model

successfully trained to classify healthy control and depression group with an accuracy

of 98%. After setting GNN to inference mode, a mask in the range of [-1, 1] is then

generated for each node. The mask is now based on individual level, i.e. each brain

region of every connectome has a unique decimal mask in the range [-1, 1] assigned to

it. In order to get the relevant brain regions for classification, we get a group average

mask for each brain region and rank the average difference of the two groups, and the

results is shown in table 5.1. The mask average difference can be considered as the

discriminative level for the classification of two groups. The top brain region aSMG r is

right anterior supramarginal gyrus, and the mask difference between two group is 1.21.

This difference is the subtraction of the group average mask for control group (0.55) and

the group average mask for depression group (-0.66). This result is consistent with study

from Zhu et al. where they stated: ”supramarginal gyrus exhibited high discriminative

power in classification” [80].

In Zhu et al.’s study, cross network connections (connections across different brain

networks) among the default mode network (DMN), salience network (SN), central exec-
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utive network (CEN) and visual cortical network (VN) showed higher connection weight

for depression patients. From our results in Table 5.1, brain regions from above net-

works have been narrowed down to MedFC, PC, aPaHC l, pPaHC r, and pPaHC l from

DMN, IC l, Amygdale r, pSTG l, and aSTG l from SN, LG l, LG r, OFusG l, OFusG r,

TOFusG l, and TOFusG r from VN. The overall absolute sum of the connections within

those regions have higher value for depression group than healthy control. Over 16 time

steps, the average brain connections among healthy control and depression group are

shown in Figure 5.1. From the figure, both positive and negative connections increased

dramatically towards the end of the time step for depression group. And overall, de-

pression group has higher negative connections than healthy control on majority of the

time points. In order to find out the details of cross network connections over time,

neuroscientists use ConnectoVis to observe the modularity and connection dynamics.

For instance, when observing negative connection with node modularity dynamics, we

set the threshold of edge connections to negative with the brain region above selected,

and show connections in between the selected regions, as shown in Figure 5.2. From

the figure, subject 6 and 8 are healthy control and subject 38 and 40 are depression

patients, navigating through different time steps, depression patients shows increased

negative connections between regions selected. At the same time, with the node color

representing the module, we see that negative connections increase among both same

module and different modules in depression connectomes. Also, left panel in Figure 5.2

is the modular dynamics of MedFC, Amygdale l, and LG r. Brain regions within the

same network mostly belong to the same module, for instance, the MedFC, PC from
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Figure 5.1: Use Case 1: Connections cross network of DMN, SN, VN for healthy control

and remitted depression group. The left image is the absolute average of both positive

and negative connections for the two groups over time, middle image is positive connec-

tions only, and right image is the absolute negative connections.

DMN has same module on majority of time steps. So we choose one region from each

network: i.e. MedFC from DMN, Amygdale l from SN, and LG r from VN, to compare

modular dynamics. The red rectangle highlights the time ranges that those brain region

belong to same module. From the figure, depression patients share longer time of same

modules among different networks.

Brain Regions

Abbr.

Region Full Name Mask Average

Difference

Between Two

Groups

aSMG r Supramarginal gyrus, anterior division right 1.21

iLOC l Lateral occipital cortex, inferior division left 1.15

CO l Central opercular cortex left 1.14

IFG oper r Inferior frontal gyrus, pars opercularis right 1.13
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Brain Regions

Abbr.

Region Full Name Mask Average

Difference

Between Two

Groups

CO r Central opercular cortex right 1.12

sLOC r Lateral occipital cortex, superior division right 1.09

toITG l Inferior temporal gyrus, temporooccipital part left 1.07

LG r Lingual gyrus right 1.03

FO r Frontal operculum cortex right 1.01

PT r Planum temporale right 0.99

FOrb l Frontal orbital cortex left 0.98

FOrb r Frontal orbital cortex right 0.96

Amygdala r Amygdala right 0.95

pPaHC r Parahippocampal gyrus, posterior division right 0.94

PC Cingulate gyrus, posterior division 0.90

OFusG r Occipital fusiform gyrus right 0.88

pSTG l Superior temporal gyrus, posterior division left 0.87

sLOC l Lateral occipital cortex, superior division left 0.87

MidFG r Middle frontal gyrus right 0.87

OP r Occipital pole right 0.85

TOFusC l Temporal occipital fusiform cortex left 0.84

OFusG l Occipital fusiform gyrus left 0.84

IFG tri r Inferior frontal gyrus, pars triangularis right 0.81
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Brain Regions

Abbr.

Region Full Name Mask Average

Difference

Between Two

Groups

PaCiG r Paracingulate gyrus right 0.79

pITG r Inferior temporal gyrus, posterior division right 0.76

MedFC Frontal medial cortex 0.74

aSTG l Superior temporal gyrus, anterior division right 0.70

PP r Planum polare right 0.65

SubCalC Subcallosal cortex 0.64

SPL r Superior parietal lobule right 0.64

aMTG r Middle temporal gyrus, anterior division right 0.64

aPaHC l Parahippocampal gyrus, anterior division left 0.64

SFG r Superior frontal gyrus right 0.63

pPaHC l Parahippocampal gyrus, posterior division left 0.61

IC l Insular cortex left 0.60

PT l Planum temporale left 0.59

FP l Frontal pole left 0.56

TOFusC r Temporal occipital fusiform cortex right 0.55

Thalamus r Thalamus right 0.54

pITG l Inferior temporal gyrus, posterior division left 0.52

SCC r Supracalcarine cortex right 0.51

LG l Lingual gyrus left 0.50
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Brain Regions

Abbr.

Region Full Name Mask Average

Difference

Between Two

Groups

Table 5.1: Use Case 1: List of brain regions with mask difference between remitted

depression and healthy control associated with each region. (Only > 0.5 difference are

shown in this table).

5.2 Use Case 2: R-CBT Treatment Comparison

In this use case, we will demonstrate the effectiveness of our tool for analyzing R-CBT

treatment. The dataset consists of 14 connectomes of pre R-CBT treatment remitted

depression adolescents and 14 connectomes post R-CBT treatment the same adolescents

after 8 weeks of treatment. Each connectome consists of 105 brain regions and 16 time

steps. By applying our temporal GNN classification model (accuracy 88%, precision

recall curve AUC is 0.84, shown in Figure 5.3) and mask generator, we get a list of

brain region with mask difference between the two groups, shown in table 5.2. From the

result, brain region pMTG l have the top mask difference (1.10) and it demonstrates

highest discriminative power in distinguishing the two groups. This indicate that the

brain region shows different dynamic activities for the two groups. This result is aligned

with study from Burkhouse et al., where they studied neural correlates of rumination in

adolescents with remitted major depressive disorder and healthy controls by comparing
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Figure 5.2: Use Case 1: ConnectoVis: Connections among brain regions: MedFC, PC,

aPaHC l, pPaHC r, and pPaHC l from DMN, IC l, Amygdale r, pSTG l, and aSTG l

from SN, LG l, LG r, OFusG l, OFusG r, TOFusG l, and TOFusG r from VN for sub-

ject 6, 8 (healthy control) and 38, 40 (remitted depression group). The left part is

the modular dynamics from MedFC, Amygdale l, and LG r, and the right part is the

connections between the brain regions above with only negative threshold selected at

time step 5.
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Figure 5.3: Use Case 2: Pre vs Post R-CBT treatment classification precision recall

curve, AUC is 0.84.

26 adolescents and 15 healthy controls [13]. In the study, they found that MTG showed

increased activation during rumination and the activation is positively correlated with

the self reported rumination score.

Similar to use case 1, by selecting different brain regions from table 5.2 in ConnectoVis,

neuroscientists will be able to check the different activities comparing patients from

pre vs post R-CBT treatment. From Figure 5.4, on the left chart, you can see that

on average, the negative connections are less for post treatment patients, whereas on
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Figure 5.4: Use Case 2: pMTG l group average connectivity difference between pre vs

post R-CBT treatment

the right chart, it shows positive connections increased for post treatment patients.

By using Connectovis, neuroscientists can check the detailed connections from middle

temporal gyrus, shown in Figure 5.5. In this example, we have subject 33 pre treatment

and post treatment selected, and the top three images shows positive connections at

t = 12, 13, 14, and the bottom three images shows negative connections at t = 7, 8,

9. By choosing different connectivity threshold, neuroscientists can identify the exact

decreased negative connections or increased positive connections between pre vs post

treatment connectomes.

From the result of the mask, each individual patients demonstrate different set of

brain regions that are discriminative between their pre and post treatment. Table 5.3

is an example of different results for subject 18 and 33. Studies found that functional

connectivities can be seen as fingerprint for individuals [22]. Even though certain mental
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Figure 5.5: Use Case 2: ConnectoVis: pMTG l connectivity for subject 33 pre and post

R-CBT treatment connectome

disease patients show common brain activity deficit, individuals can show variations

from group activity patterns. From table 5.3, by comparing subject 18 pre treatment vs

post treatment, the brain regions pMTG l, Hoppocampis r, OFusG l, and TP r showed

obvious difference from mask, whereas for subject 33, IFG oper r, Thalamus l, iLOC r

show obvious difference on mask for pre vs post treatment connectomes. Figure 5.6

shows the connections from IFG oper r, Thalamus l, iLOC r for subject 18 and 33,

both positive and negative connections from the three regions have obvious difference

in subject 33 than 18. Using ConnectoVis, we can compare the detailed connections

through time. As shown in Figure 5.7, with IFG oper r, Thalamus l, iLOC r selected

and connection strength set to >1, subject 33 post treatment showed higher level of

positive connections from the three regions especially from iLOC r, highlighted in red

rectangle.
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Figure 5.6: Use Case 2: Brain regions IFG oper r, Thalamus l, iLOC r from patients

18 and 33 of Pre vs Post R-CBT treatment.
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Figure 5.7: Use Case 2: ConnectoVis: Brain regions IFG oper r, Thalamus l, iLOC r

from patients 18 and 33 of Pre vs Post R-CBT treatment at time step 3, 8, 10, 12. The

red rectangle highlights iLOC r.

80



Brain Regions

Abbr.

Region Full Name Mask Average

Difference

Between Pre

Post R-CBT

pMTG l Middle temporal gyrus, posterior division right 1.10

aMTG l Middle temporal gyrus, anterior division left 0.96

pPaHC l Parahippocampal gyrus, posterior division left 0.88

aMTG r Middle temporal gyrus, anterior division left 0.85

OP l Occipital pole left 0.85

aITG l Inferior temporal gyrus, anterior division left 0.84

Cuneal l Cuneal cortex left 0.80

Amygdala l Amygdala left 0.70

PO r Parietal operculum cortex right 0.69

pITG r Inferior temporal gyrus, posterior division right 0.68

pITG l Inferior temporal gyrus, posterior division left 0.67

HG r Heschl’s gyrus right 0.65

pMTG r Middle temporal gyrus, posterior division right 0.64

CO l Central opercular cortex right 0.64

MedFC Frontal medial cortex 0.63

OFusG r Occipital fusiform gyrus right 0.56
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aITG r Inferior temporal gyrus, anterior division right 0.56

PC Cingulate gyrus, posterior division 0.55

PT r Planum temporale right 0.53

aPaHC l Parahippocampal gyrus, anterior division left 0.53

TP l Temporal pole left 0.52

Table 5.2: Use Case 2: List of brain regions with mask difference between pre and post

R-CBT treatment groups (Only > 0.5 difference are shown in this table).

Subject 18 Subject 33

Brain Region Abbr. Mask Average

Difference

Between Pre Post

R-CBT

Brain Region Abbr. Mask Average

Difference

Between Pre Post

R-CBT

pMTG l 1.19 IFG oper r 1.19

Hippocampus r 1.15 Thalamus l 1.19

OFusG l 1.14 iLOC r 1.17

TP r 1.12 pMTG l 1.17

TP l 1.12 aMTG l 1.14

PO r 1.10 aPaHC l 1.13

aMTG l 1.09 FO r 1.12

pPaHC l 1.07 aMTG r 1.11

aITG l 1.01 pPaHC l 1.09

82



AG r 1.01 OP l 1.07

pITG r 1.00 IFG oper l 1.04

AG l 0.98 CO l 1.03

Thalamus r 0.95 PT r 1.01

OP l 0.94 HG l 0.99

PreCG r 0.91 Thalamus r 0.99

Cuneal l 0.90 aITG l 0.97

Amygdala l 0.89 FP r 0.94

MidFG l 0.85 pITG r 0.94

pTFusC r 0.85 Cuneal l 0.88

Accumbens r 0.83 pTFusC r 0.87

HG r 0.82 Pallidum r 0.86

LG r 0.81 aSTG r 0.85

SMA l 0.80 aTFusC l 0.85

toMTG l 0.76 SFG r 0.84

pMTG r 0.74 HG r 0.84

Cuneal r 0.74 aITG r 0.82

pSMG r 0.72 OFusG r 0.80

sLOC l 0.68 toMTG r 0.75

PO l 0.68 pMTG r 0.66

Pallidum r 0.66 MedFC 0.66

HG l 0.65 SPL l 0.66

CO l 0.63 pITG l 0.66
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pITG l 0.63 IC r 0.63

PostCG r 0.62 FP l 0.58

PP r 0.61 TP r 0.57

Putamen l 0.61 pSMG r 0.56

toMTG r 0.59 SFG l 0.56

CO r 0.55 FOrb l 0.53

MedFC 0.54

Table 5.3: Use Case 2: List of brain regions with mask difference between pre and post

R-CBT treatment for subject 18 and 33 (Only > 0.5 difference are shown in this table).

5.3 Use Case 3: Finding Similar Brain Regions from Node

Embeddings

The pre-trained GNN model provides feature representation for each node. The

feature representation includes the temporal features and can be used to find the brain

regions that have similar temporal features with a target brain region within the same

connectome. We used the pre trained network from depression vs control classification

(Use Case 1) and output the feature representation of each brain region. L1 norm is

applied to the feature vectors to get the distance between each node representing the

similarity of brain region features. Appendix A table contains the full list of brain

regions and their top one region with closest dynamic feature for both control and

depression group. For instance, region LG r have most similar region with LG l in
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control group whereas ICC r in depression group. Figure 5.8 shows average group

dynamics for LG r and ICC r. From the figure, LG r and ICC l demonstrate more

similar dynamic fluctuations for both negative and positive connections in depression

patients than in healthy control.

To get the detailed difference, we use TempoCave to check compare the negative

connections difference of LG r and ICC l. When comparing two brain regions, depressive

patients show very similar connections, whereas in healthy control, the two regions show

slightly different connections. Figure 5.9 is an example of healthy control subject 8 with

two brain regions and their negative connections selected. Navigating over different time

steps, subject 8 region ICC l has more various negative connections with iLOC l, iLoc r,

and OP r, whereas LG r doesn’t show negative connections with them. This use case

demonstrates how neuroscientists can use the brain region similarity result from our

machine learning model combining with TempoCave to check the similar or dissimilar

connectivity dynamics within same connectome between control group and depression

patients.
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Figure 5.8: Use Case 3: Healthy control vs Depression LG l and ICC r dynamics.

86



Figure 5.9: Use Case 3: Healthy Control Subject 8 LG l and ICC r negative connections

dynamics at t = 1, 5, 13.
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Chapter 6

Conclusion

We developed a pipeline to address the three research issues mentioned in the Intro-

duction Chapter. In summary, the research issues are:

• Research Issue 1: Visualization Research Visualization applications devel-

opment for comparing multiple dynamic connectomes.

• Research Issue 2: Machine Learning Research Modifying GNNs model to

enable their application for time-series network datasets.

• Research Issue 3: Neuroscience Research Explain the machine learning

model using a mask mechanism.

The pipeline consists of two visualization tools, a novel temporal graph neural network

model and a mask mechanism for analyzing temporal connectome data. Our pipeline

can not only yield new hypotheses for various temporal connectomes, but also enable

neuroscientists for hypotheses verification. We demonstrate three use cases to show the

88



effectiveness of our pipeline.

Our visualization tools are designed for exploration, comparison and analysis of dy-

namic brain networks. The two visualization tools are described in Chapter 2 and

Chapter 3, addressing research issue 1. Our tool helps clinical neuroscientists to form

new hypothesis about temporal connectivities in depression patients. We introduce a

novel temporal graph neural network for extracting temporal features from dynamic

connectomes. This contribution is related to research issue 2 addressed in Chapter 4.

The features are used for classification of healthy vs mental disorder participants or

pre vs post treatments. Our network classifies remitted depression group from healthy

control group with an accuracy of 98%. The network is also trained to classify pre and

post R-CBT treatment connectomes with 88% accuracy. Using a mask generator, we

are able to explain the decisions made by our temporal GNN model. This contribution

is related to research issue 3 addressed in Chapter 4. The mask is used to sort the brain

regions based on the difference between the two groups. Our findings align closely with

the recent depression and R-CBT treatment studies conducted by neuroscientists based

on functional connectome. Section 5.1 and 5.2 in Chapter 5 show examples of using our

pipeline to analyze the remitted depression patients brain dynamics comparing with

control group and analyze the effectiveness of R-CBT treatment. We identify similar

brain regions using a similarity metrics on the node feature representation, enabling

neuroscientists to compare similar region within connectome or across multiple connec-

tomes. Section 5.3 showed an example of using brain region similarity features to check

the different dynamic connectivities between regions.
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6.1 Future Work

Our machine learning model and explainable mask can be used beyond depression

studies to highlight the differences in brain regions. Our model can also act as dimen-

sional reduction techniques extracting feature representation for dynamic connectomes.

Our contributions such as graph level recurrent connection and encoding of graph struc-

tures into node features are useful in other domains such as social network and trans-

portation analysis where explainable mechanism of model is crucial in deploying the

system in real-world scenarios. Our visualization platform can also potentially supports

non medical temporal network data such as geometric structure of word embeddings.

With our novel overlay comparison view, we could see how the context of words change

over time based on its neighboring words.
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Appendix A

Brain Similarity on Group Level for

Healthy Control and Remitted

Depression Patients

Healthy Control Similar Brain Regions Depression Patients Similar Brain Regions

Regions Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

FP r SFG r MidFG r PaCiG r sLOC r MidFG r SPL l

FP l SFG l pMTG l PaCiG l SFG l pMTG l aITG l

IC r PT l FO r PO l IC l FO r FO l

IC l PP r PP l HG l IC r Putamen l FO l

SFG r FP r PaCiG r toMTG r SFG l pSTG l aITG r

SFG l FP l pMTG l PaCiG l SFG r FP l aITG r

MidFG r FP r SFG l pITG l SPL l sLOC r FP r

MidFG l SFG l Caudate r AG r toITG l pITG l SPL l

IFG tri r TP r IFG oper r aSTG l IFG oper r Putamen r pSTG r

IFG tri l pITG l IFG oper l pITG r toMTG l pSMG l MidFG l

IFG oper r IFG tri r toITG r SPL r IFG tri r toMTG r IFG oper l

IFG oper l IFG tri l toMTG r aSTG r toMTG r pSTG l FOrb l

PreCG r PostCG r PreCG l PostCG l PreCG l PostCG r PostCG l

PreCG l PreCG r PostCG r PostCG l PreCG r PostCG r PostCG l

TP r IFG tri r FOrb l aSTG l pSTG r Amygdala r PaCiG l
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Table A.1 continued from previous page

TP l FOrb r FOrb l Amygdala r Hippocampus l aSTG l Amygdala l

aSTG r pSTG r toMTG r IFG oper l PP l SubCalC Accumbens r

aSTG l TP r Amygdala r IFG tri r Amygdala l TP l pSTG l

pSTG r aSTG r HG r pSTG l TP r Amygdala r HG r

pSTG l IFG tri l pSTG r TP l aSTG l SFG r aITG l

aMTG r MedFC aPaHC l pMTG l aPaHC l Hippocampus l aITG r

aMTG l SubCalC aITG r aITG l aITG l Precuneous pMTG l

pMTG r FP l pITG r MedFC toMTG r aITG r Amygdala l

pMTG l SFG l FP l PaCiG l aITG l AG l FP l

toMTG r IFG oper l aSTG r aTFusC l IFG oper l Amygdala l pMTG r

toMTG l FO l aITG l MidFG l pSMG l IFG tri l AG l

aITG r pPaHC r pPaHC l aMTG l aPaHC l SFG r SFG l

aITG l SubCalC AG l aMTG l pMTG l pSTG l aITG r

pITG r FOrb r pITG l IFG tri l pTFusC r AG r pTFusC l

pITG l IFG tri l toITG l pITG r toITG l MidFG l SPL l

toITG r pTFusC r SPL l IFG oper r sLOC l pITG l FP r

toITG l pITG l IFG tri l aTFusC l MidFG l pITG l SPL l

PostCG r PreCG r PostCG l PreCG l PostCG l PreCG l PreCG r

PostCG l PostCG r PreCG r PreCG l PostCG r PreCG l PreCG r

SPL r iLOC l iLOC r IFG oper r aSMG r aSMG l pTFusC l

SPL l toITG r pTFusC r aSTG l MidFG r toITG l pITG l

aSMG r PO r IFG oper r PT r aSMG l SPL r IFG oper r

aSMG l pSMG r aSMG r PO r aSMG r SPL r pSMG r

pSMG r aSMG l toMTG r aSMG r pSMG l toMTG l AG l

pSMG l MidFG l AG r Caudate l toMTG l pSMG r IFG tri l

AG r MidFG l aITG r AG l aTFusC l pITG r aTFusC r

AG l aITG l AG r MidFG l pMTG l toMTG l pSMG l

sLOC r aTFusC r pTFusC r aTFusC l MidFG r FP r pTFusC l

sLOC l MidFG l pPaHC r pPaHC l pITG l toITG r toITG l

iLOC r iLOC l pTFusC l TOFusC l TOFusC r iLOC l OFusG r

iLOC l iLOC r pTFusC l SPL r TOFusC l iLOC r aITG r

ICC r Cuneal r SCC l Cuneal l SCC r ICC l SCC l

ICC l SCC r Cuneal r SCC l ICC r LG r SCC r

MedFC aPaHC l Hippocampus l aMTG r pPaHC r pPaHC l aPaHC r

SMA r SMA l PostCG l PostCG r SMA l PO r PostCG l

SMA l CO r SMA r PT r SMA r CO l PaCiG r

SubCalC aITG l pPaHC r aMTG l PP l aSTG r Accumbens r

PaCiG r FOrb r FOrb l SFG r PaCiG l MedFC SMA l

PaCiG l SFG l pMTG l FP l Amygdala r aSTG l TP l
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Table A.1 continued from previous page

AC Caudate r Amygdala l Putamen r Accumbens l PP l Accumbens r

PC Precuneous AG l SubCalC Precuneous aMTG l SubCalC

Precuneous PC SubCalC Cuneal l PC SubCalC aMTG l

Cuneal r SCC l Cuneal l ICC r LG r ICC l Cuneal l

Cuneal l SCC l Cuneal r ICC r ICC r Cuneal r SCC r

FOrb r Amygdala r PaCiG r FOrb l Accumbens l FO l PP r

FOrb l FOrb r PaCiG r TP r Thalamus l PP r Pallidum l

aPaHC r Hippocampus r Amygdala r pTFusC r aPaHC l pPaHC r pPaHC l

aPaHC l Hippocampus l MedFC pITG r Hippocampus l aMTG r aITG r

pPaHC r pPaHC l Caudate r SubCalC pPaHC l aPaHC r MedFC

pPaHC l pPaHC r aITG r pMTG l pPaHC r aPaHC r MedFC

LG r LG l OP r OP l ICC l ICC r Cuneal r

LG l LG r OP r OP l LG r Cuneal r ICC l

aTFusC r aTFusC l aPaHC r pTFusC r aTFusC l pITG r AG r

aTFusC l aTFusC r aPaHC r pTFusC r aTFusC r AG r SPL l

pTFusC r aPaHC r aTFusC r toITG r pITG r pTFusC l FP l

pTFusC l iLOC r iLOC l SPL r pTFusC r sLOC r pITG r

TOFusC r TOFusC l iLOC r OFusG l iLOC r OFusG r TOFusC l

TOFusC l TOFusC r iLOC r OFusG l iLOC l iLOC r TOFusC r

OFusG r OFusG l TOFusC l TOFusC r OFusG l OP r iLOC r

OFusG l OFusG r TOFusC l TOFusC r OFusG r OP r LG l

FO r IC r aSTG r IFG oper l Putamen r FO l CO l

FO l Putamen r AC HG l FOrb r Putamen l Pallidum r

CO r SMA l PT r PO r PO r pSTG r PostCG l

CO l PO r PT r CO r Putamen r HG l FO r

PO r PT r CO l CO r CO r PT r pSTG r

PO l PT l IC r CO l PT l HG r PT r

PP r PP l IC l Thalamus r Pallidum l Thalamus r Thalamus l

PP l PP r IC l Pallidum l aSTG r Accumbens r SubCalC

HG r HG l Putamen r pSTG r PT r PT l PO l

HG l HG r Putamen r FO l PT l Pallidum l PO l

PT r PO r CO l CO r HG r PT l PO l

PT l PO l IC r HG l PO l HG r HG l

SCC r ICC l Cuneal r SCC l ICC r SCC l ICC l

SCC l Cuneal r Cuneal l ICC r SCC r ICC r ICC l

OP r OP l LG r LG l OP l OFusG r OFusG l

OP l OP r LG r LG l OP r AC Cuneal r

Thalamus r Caudate r PP r AC Pallidum l PP r Caudate r

Thalamus l Accumbens l Pallidum l Accumbens r Caudate r Caudate l PP r
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Table A.1 continued from previous page

Caudate r AC Amygdala l pPaHC r Caudate l Thalamus l Pallidum l

Caudate l Thalamus l Accumbens l Thalamus r Caudate r Thalamus l Pallidum r

Putamen r FO l HG r AC FO r PO l CO l

Putamen l Pallidum l Pallidum r Accumbens l Pallidum r FO l PP l

Pallidum r Putamen l Pallidum l Accumbens l Putamen l Caudate l PP l

Pallidum l Putamen l Thalamus l Accumbens l PP r Caudate r Thalamus r

Hippocampus r aPaHC r Amygdala r TP r aPaHC l TP l Amygdala r

Hippocampus l aPaHC l MedFC TP l TP l aPaHC l aMTG r

Amygdala r FOrb r aPaHC r Hippocampus r Amygdala l PaCiG l TP r

Amygdala l AC Caudate r Putamen r aSTG l Amygdala r TP l

Accumbens r Accumbens l Thalamus l Putamen l PP l AC aSTG r

Accumbens l Accumbens r Thalamus l Pallidum l FOrb r AC PP l

Table A.1: Top 3 Brain regions that have similar dynamic features based on feature

representation on group level from the healthy control group and depressive group

109



Appendix B

Table: Anatomical Labels of Brain

Regions

Brain Region Abbr. Brain Region Name

FP r Frontal pole right

FP l Frontal pole left

IC r Insular cortex right

IC l Insular cortex left

SFG r Superior frontal gyrus right

SFG l Superior frontal gyrus left

MidFG r Middle frontal gyrus right

MidFG l Middle frontal gyrus left

IFG tri r Inferior frontal gyrus, pars triangularis right

IFG tri l Inferior frontal gyrus, pars triangularis left

IFG oper r Inferior frontal gyrus, pars opercularis right
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Brain Region Abbr. Brain Region Name

IFG oper l Inferior frontal gyrus, pars opercularis left

PreCG r Precentral gyrus right

PreCG l Precentral gyrus left

TP r Temporal pole right

TP l Temporal pole left

aSTG r Superior temporal gyrus, anterior division right

aSTG l Superior temporal gyrus, anterior division left

pSTG r Superior temporal gyrus, posterior division right

pSTG l Superior temporal gyrus, posterior division left

aMTG r Middle temporal gyrus, anterior division right

aMTG l Middle temporal gyrus, anterior division left

pMTG r Middle temporal gyrus, posterior division right

pMTG l Middle temporal gyrus, posterior division left

toMTG r Middle temporal gyrus, temporooccipital part right

toMTG l Middle temporal gyrus, temporooccipital part left

aITG r Inferior temporal gyrus, anterior division right

aITG l Inferior temporal gyrus, anterior division left

pITG r Inferior temporal gyrus, posterior division right

pITG l Inferior temporal gyrus, posterior division left

toITG r Inferior temporal gyrus, temporooccipital part right

toITG l Inferior temporal gyrus, temporooccipital part left

PostCG r Postcentral gyrus right

PostCG l Postcentral gyrus left
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SPL r Superior parietal lobule right

SPL l Superior parietal lobule left

aSMG r Supramarginal gyrus, anterior division right

aSMG l Supramarginal gyrus, anterior division left

pSMG r Supramarginal gyrus, posterior division right

pSMG l Supramarginal gyrus, posterior division left

AG r Angular gyrus right

AG l Angular gyrus left

sLOC r Lateral occipital cortex, superior division right

sLOC l Lateral occipital cortex, superior division left

iLOC r Lateral occipital cortex, inferior division right

iLOC l Lateral occipital cortex, inferior division left

ICC r Intracalcarine cortex right

ICC l Intracalcarine cortex left

MedFC Frontal medial cortex

SMA r
Juxtapositional lobule cortex

(formerly supplementary motor cortex right)

SMA l
Juxtapositional lobule cortex

(formerly supplementary motor cortex left)

SubCalC Subcallosal cortex

PaCiG r Paracingulate gyrus right

PaCiG l Paracingulate gyrus left

AC Cingulate gyrus, anterior division
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PC Cingulate gyrus, posterior division

Precuneus Precuneus cortex

Cuneal r Cuneal cortex right

Cuneal l Cuneal cortex left

FOrb r Frontal orbital cortex right

FOrb l Frontal orbital cortex left

aPaHC r Parahippocampal gyrus, anterior division right

aPaHC l Parahippocampal gyrus, anterior division left

pPaHC r Parahippocampal gyrus, posterior division right

pPaHC l Parahippocampal gyrus, posterior division left

LG r Lingual gyrus right

LG l Lingual gyrus left

aTFusC r Temporal fusiform cortex, anterior division right

aTFusC l Temporal fusiform cortex, anterior division left

pTFusC r Temporal fusiform cortex, posterior division right

pTFusC l Temporal fusiform cortex, posterior division left

TOFusC r Temporal occipital fusiform cortex right

TOFusC l Temporal occipital fusiform cortex left

OFusG r Occipital fusiform gyrus right

OFusG l Occipital fusiform gyrus left

FO r Frontal operculum cortex right

FO l Frontal operculum cortex left

CO r Central opercular cortex right
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CO l Central opercular cortex left

PO r Parietal operculum cortex right

PO l Parietal operculum cortex left

PP r Planum polare right

PP l Planum polare left

HG r Heschl’s gyrus right

HG l Heschl’s gyrus left

PT r Planum temporale right

PT l Planum temporale left

SCC r Supracalcarine cortex right

SCC l Supracalcarine cortex left

OP r Occipital pole right

OP l Occipital pole left

Thalamus r Thalamus right

Thalamus l Thalamus left

Caudate r Caudate right

Caudate l Caudate left

Putamen r Putamen right

Putamen l Putamen left

Pallidum r Pallidum right

Pallidum l Pallidum left

Hippocampus r Hippocampus right

Hippocampus l Hippocampus left
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Amygdala r Amygdala right

Amygdala l Amygdala left

Accumbens r Accumbens right

Accumbens l Accumbens left

Table B.1: Anatomical Labels of Brain Regions
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