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Abstract

Objective—In functional electrophysiological imaging, signals are often contaminated by 

interference that can be of considerable magnitude compared to the signals of interest. This paper 

proposes a novel algorithm for removing such interferences that does not require separate noise 

measurements.

Approach—The algorithm is based on a dual definition of the signal subspace in the spatial- and 

time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace 

projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix 

onto the inside and outside of the spatial-domain signal subspace, creating a set of two 

preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as 

the time-domain interference subspace. The original data matrix is projected onto the subspace 

that is orthogonal to the interference subspace

Main results—The DSSP algorithm is validated first by using the computer generated data, and 

then by using two sets of real biomagnetic data: SCEF data measured from a healthy volunteer and 

MEG data from a patient with a vagus nerve stimulator.

Significance—The proposed DSSP algorithm is effective for removing overlapped interference 

in a wide variety of biomagnetic measurements.

1 Introduction

Functional electrophysiological imaging can be achieved using a variety of modalities 

including electroencephalography (EEG), magnetoencephalography (MEG) or 
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magnetospinography (MSG). In all of these modalities, measurement signals are often 

contaminated by interference that can be of considerable magnitude compared to the signals 

of interest. Although quite a few algorithms have been developed to deal with such 

interference, these algorithms often rely on availability of separate measurements that 

capture the statistical properties of the interference [1][2][3]. Therefore, if such separate 

measurements are not available, those existing algorithms would not be effective for 

removing overlapped interference. We present two examples of such cases in this paper: 

imaging of the spinal cord electrophisiological activitiy and magnetoencephalographic 

(MEG) imaging for epilepsy patients implanted with vagus nerve stimulators.

There has been growing interest in dynamic source imaging of spinal cord 

electrophysiological activity using its evoked magnetic field. In spite of the fact that spinal 

cord disorders are very common[4], there are no effective methods for accurate diagnosis of 

spinal cord lesions, primarily because spinal cord abnormalities found in a patient’s 

anatomical image (such as MRI or X-ray images) often do not correspond with the patient’s 

clinical symptoms. Thus, functional imaging of spinal cord nerve activity can be a promising 

diagnostic tool for spinal cord disorders.

Biomagnetometers optimized for measuring the spinal cord evoked magnetic field (SCEF) 

have been developed[5][6][7], along with efficient source reconstruction algorithms suited to 

functional spinal cord imaging[8][9]. However, one serious problem, the removal of large 

stimulus-induced artifacts1, remains to be solved. Such artifacts exist for 8–10 ms 

immediately after the stimulus onset. These artifacts overlie the SCEF signal, and can distort 

imaging results of spinal cord activity as shown in our experiments described in Sections 3.1 

and 4.

Similarly, in MEG measurements, extremely large artifacts sometimes contaminate the 

measured data and it can be quite difficult to visualize the underlying signal of interest 

within this artifact. One striking example is in MEG recordings obtained from epilepsy 

patients implanted with vagal nerve stimulators (VNS) where the artifact from the stimulator 

and the lead-wires can completely contaminate the recordings such that it is extremely 

difficult to see interictal epileptiform activity or stimulus evoked responses from patients’ 

primary sensory cortices.

This paper proposes a novel algorithm to remove these artifacts from biomagnetic 

measurements. The algorithm is based on the two kinds of definitions of the signal subspace, 

as the spatial-domain signal subspace and the time domain signal subspace. Since the 

algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP) 

algorithm. The DSSP algorithm first projects the columns of the measured data matrix onto 

the inside and outside of the spatial-domain signal subspace, creating two “projected” data 

matrices.

The intersection of the row spans of those two “projected” matrices is then taken to be an 

estimate of the time-domain interference subspace, and artifact removal is carried out on the 

1Although the exact causes of these artifacts are still unknown, we speculate that they are caused by combined effects of stimulus-
induced body electric currents and transient responses of receiver electronics.
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basis of this estimated interference subspace. In this paper, the theory behind the DSSP 

algorithm is provided in sufficient details to explain why the interference subspace can be 

estimated in such a manner. The proposed algorithm is first validated by using the computer 

generated data that simulates the SCEF measurements and by using the SCEF data taken 

from a healthy volunteer.

It should be mentioned that estimating the interference subspace as the intersection between 

two time-domain subspaces was first proposed in [10]. That method is called temporal signal 

space separation (tSSS). However, there is a key difference between tSSS and DSSP in that 

tSSS uses the vector spherical harmonics expansions, which are not used in DSSP. The 

application of the tSSS method, therefore, is limited to magnetoencephalography (MEG) 

applications in which the data is acquired by an array of sensors that are arranged on a 

surface of a sphere-like helmet. The tSSS method is, therefore, not applicable to our SCEF 

measurements, in which the sensors are arranged on a nearly-flat surface.

In contrast, the proposed DSSP algorithm is a versatile algorithm. Its application is not 

limited to the artifact removal in SCEF measurements, and it is applicable to a wide variety 

of biomagnetic data. To demonstrate this versatility, we present the results of applying the 

algorithm to MEG data acquired from a patient with a vagus nerve stimulator. Although the 

MEG data contained a large amount of interference generated from the stimulator, primary 

somatosensory cortices were successfully localized by interference removal using the 

proposed DSSP algorithm.

2 Dual signal subspace projection (DSSP)

2.1 Data Model

We assume that the biomagnetic measurements are conducted by using an array of M 
sensors. We denote the output of the mth sensor at time t by bm(t) and the column vector 

containing the outputs of all sensors is b(t): b(t) = [b1, …, bM(t)]T. The b(t) is called the data 

vector. We use a data model in which the measured data consists of the signal magnetic field 

generated from signal sources of interest, the interference magnetic field generated from 

interference sources, and the sensor noise. That is, the data vector is expressed as

b(t) = bs(t) + bI(t) + ε, (1)

where bs(t), the signal vector, represents the signal magnetic field, bI(t), the interference 

vector, represents the interference magnetic field, and ε, the noise vector, represents the 

sensor noise. The spatio-temporal data matrices of b(t), bs(t), and bI (t) are, respectively, 

denoted by B, BS, and Bj, such that

B = b t1 , …, b tK , (2)
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BS = bs t1 , …, bs tK , (3)

BI = bI t1 , …, bI tK , (4)

where the data acquisition takes place at t1, …, tK and M < K is assumed. The M × K spatio-

temporal data matrix B is modeled as

B = BS + BI + Bε (5)

where Bε is a matrix whose columns consist of the noise vectors ε at t1, …, tK. The spatio-

temporal data model in Eq. (5) is used in our analysis.

2.2 Sensor lead field and signal subspace

Let us assume that a unit-magnitude source exists at r. When the source is oriented in the x, 

y, and z directions, the corresponding outputs of the jth sensor are, respectively, denoted 

l j
x(r), l j

y(r), and l j
z(r). We define an M × 3 matrix L(r) in which the jth row is equal to the row 

vector [l j
x(r), l j

y(r), l j
z(r)]. This matrix L(r), which is called the lead field matrix, represents the 

sensitivity of the whole sensor array at the location of r.

Let us assume that, in total, Q sources exist. Their locations are denoted by r1, …, rQ, their 

orientations by η1, …, ηQ
2, and their intensities by s1(t), …, SQ(t). Then, the signal vector 

bs(t) is expressed as

bs(t) = ∑
p = 1

Q
sp(t)L rp ηp = ∑

p = 1

Q
sp(t)lp, (6)

where lp = L(rp)ηp, and lp is called the lead field vector of the pth source. The equation 

above indicates that the signal vector bs(t) is expressed as a linear combination of the lead 

field vectors. In other words, the vector bs(t) lies within the span of the lead field vectors, l1, 

…, lQ, i.e.,

bs(t) ∈ span l1, …, lQ . (7)

This subspace, span{l1, …, lq}, is referred to as the (spatial-domain) signal subspace[11].

2The orientation ηj is a 3 × 1 column vector consisting of its x, y, and z components
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In general, the signal subspace is unknown because the source locations and the source 

orientations are unknown. However, a subspace that approximates the signal subspace can be 

obtained from an augmented lead field over the source space, which is the region where a 

source may exist. To derive the augmented lead field, we define voxels over a source space. 

Denoting the locations of the voxels by r1, …, rN, the augmented lead field matrix over all 

voxel locations is defined as

F = L r1 , …, L rN . (8)

It is clear that (ignoring the voxel discretization error) the column span of F includes the 

signal subspace, that is,

column span of F ⊇ span l1, …, lQ . (9)

The column span of F is called the pseudo signal subspace in this paper, and the projector 

onto the pseudo signal subspace can be derived by applying eigenvalue decomposition to 

FFT, such that3

FFT = e1, …, eM

γ1 0 ⋯ 0
0 γ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ γM

e1
T

⋮
eM

T
. (10)

We assume that the eigenvalues γ1, …, γζ are distinctively larger than the other eigenvalues. 

Then, the set of eigenvectors {e1, …, eζ} is an orthonormal basis of the column span of the 

augmented lead field. Accordingly, the pseudo signal subspace projector P is derived as

P = e1, …, eζ e1, …, eζ
T, (11)

and the following relationship holds:

Pbs(t) = bs(t) (12)

2.3 Time-domain signal and interference subspaces

Now we define the time-domain signal subspace, which is different from the spatial domain 

signal subspace defined in Section 2.2. For the arguments on the time-domain signal 

subspace, we denote row vectors consisting of the signal-source time courses by sp: sp = 

3The matrix FFT is called the Gram matrix.
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[sp(t1), …, sp(tK)] (p = 1, …, Q). We assume that Q is smaller than the number of sensors M. 

This assumption is called the low-rank signal assumption. Also, the vectors s1, …, sQ are 

assumed to be linearly independent. Using Eqs. (3) and (6), we have the following relation

BS = ∑
p = 1

Q
sp t1 lp, …, ∑

p = 1

Q
sp tK lp

=
∑p = 1

Q sp t1 , …, sp tK l1
p

⋮

∑p = 1
Q sp t1 , …, sp tK lM

p

=
∑p = 1

Q spl1
p

⋮

∑p = 1
Q splM

p

.
(13)

Here, l1
p, …, lM

p  are the elements of the lead field vector lp: lp = l1
p, …, lM

p .

The row vector whose elements form the jth row of the matrix BS is denoted β j
S. Equation 

(13) then implies the relation,

β j
S = ∑

p = 1

Q
l j
psp . (14)

Namely, β j
S is expressed as a linear combination of the vectors s1, …, sQ. The row vector β j

S

thus lies within the span of these vectors. That is,

β j
S ∈ span s1, …, sQ . (15)

This subspace, span{s1, …, sQ}, is defined as the time-domain signal subspace, and denoted 

𝒦S:

𝒦S = span s1, …, sQ . (16)

It can be shown under the low-rank signal assumption that 𝒦S is equal to the row span of 

BS, i.e.,

𝒦S = span β1
S, …, βM

S . (17)

The proof is presented in Section 8.1 in the Appendix.

Let us define the time-domain interference subspace, which plays a key role in the proposed 

algorithm. We express the interference vector as
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bI(t) = ∑
j = 1

P
σ j(t)ξ j, (18)

where P is the number of interference sources. Their intensities are denoted by σj(t) (j = 1, 

…, P), and their lead field vectors by ξj (j = 1, …, P). We define row vectors consisting of 

the interference-source time courses as σp: σp = [σp(t1), …, σp(tK)] (p = 1, …, P). The 

vectors σ1, …, σP are assumed to be linearly independent. The span of σ1, …, σP is defined 

to be the time domain interference subspace, and is denoted by 𝒦I, i.e. 

𝒦I = span σ1, …, σP . The row vector whose elements form the jth row of the matrix BI is 

denoted by β j
I. Using the same arguments used to derive Eq. (14), we can derive the relation,

β j
I = ∑

p = 1

P
ξ j

pσp, (19)

where ξ1
p, …, ξM

p  are the elements of the lead field vector ξp:ξp = ξ1
p, …, ξM

p . It is clear that β j
I

is expressed as a linear combination of the vectors σ1, …,σP and that the vector β j
I lies 

within the interference subspace (i.e., β j
I ∈ 𝒦I). Under the low-rank signal assumption (P + 

Q < M), it can be shown that span β1
I , …, βM

I  is also equal to 𝒦I.

2.4 Finding the time-domain interference subspace

In the proposed DSSP algorithm, the sensor measurements B are first projected onto the 

inside and the outside of the pseudo signal subspace. Let us define Bin and Bout as the 

projections of B onto the inside and the outside of the pseudo signal subspace,

Bin = PB, (20)

Bout = (I − P)B, (21)

where I is the identity matrix. Using Eqs. (5) and (12), we have,

Bin = PB = P BS + BI + Bε = BS + PBI + PBε, (22)

Bout = (I − P)B = (I − P)BI + (I − P)Bε . (23)
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Note here that, due to the “dull” cut-off property4 of the projector P, neither PBI nor (I − 

P)BI becomes negligibly small.

We now analyze the subspace spanned by the row vectors of Bin. We can write

PbI(t) = ∑
j = 1

P
σ j(t)Pξ j = ∑

j = 1

P
σ j(t)ξ j, (24)

where ξ j = Pξ j. The equation above indicates that although the projector P modifies the lead 

field vectors, it never changes the time courses of the inter-ference sources. Therefore, 

defining β j
I to be the jth row vector of the matrix PBI, we can show

β j
I = ∑

p = 1

P
ξ j

pσp, (25)

where ξ1
p, …, ξM

p  are the elements of the modified lead field vector ξ p. This equation 

indicates that the row vector of the matrix PBI lies within the time-domain interference 

subspace, i.e., β j
I ∈ 𝒦I( j = 1, …, M). We denote a row vector of Bin by β j

in and the span of 

β1
in, …, βM

in  by 𝒦in. Then, taking the relations β j
S ∈ 𝒦in and β j

I ∈ 𝒦I into consideration, 

Equation (22) implies that

𝒦in = 𝒦S ∪ 𝒦I ∪ 𝒦ε, (26)

where the span of the row vectors of PBε is denoted by 𝒦ε. The proof of (26) is presented in 

Section 8.3 in the Appendix.

We next analyze the subspace spanned by the row vectors of Bout. We can write

(I − P)bI(t) = ∑
j = 1

P
σ j(t)(I − P)ξ j = ∑

j = 1

P
σ j(t)ξ j, (27)

where ξ j = (I − P)ξ j. Using the same arguments employed to derive Eq. (25) and denoting 

the jth row vector of the matrix (I − P)BI by β j
I, we can show

4An example of the cut-off property of P computed assuming the source-sensor geometry used in our computer simulation is shown in 
Section 8.2 in the Appendix.
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β j
I = ∑

p = 1

P
σpξ j

p, (28)

where ξ1
p, …, ξM

p  are the elements of the modified lead field vector ξ p. This equation 

indicates that the relation β j
I ∈ 𝒦I holds, and the row span of PBI is equal to 𝒦I.

Thus, denoting the jth row vector of Bout by β j
out and the span of β1

out, …, βM
out by 𝒦out, 

Equation (23) implies that 𝒦out is given by

𝒦out = 𝒦I ∪ 𝒦ε, (29)

where 𝒦ε is the subspace spanned by the row vectors of (I − P)Bε. Equations (26) and (29) 

imply that the intersection of the two subspaces 𝒦in and 𝒦out is the time-domain 

interference subspace 𝒦I:

𝒦I = 𝒦in ∩ 𝒦out, (30)

if 𝒦ε ∩ 𝒦ε = ∅ holds5 where ∅ indicates the empty set. It is actually straight-forward to 

show 𝒦ε ∩ 𝒦ε = ∅, because the relationship

PBε (I − P)Bε
T = PBεBε

T(I − P) = ρ2P(I − P) = 0,

holds. This means that the rows of PBε are orthogonal to the rows of (I−P)Bε. In the 

equation above, we assume that BεBε
T = ρ2I where ρ2 is the power of the sensor noise.

2.5 Derivation of interference-subspace projector and removal of interference

In this subsection, we present an algorithm to derive an orthonormal basis of 𝒦I. We first 

extract 𝒦in and 𝒦out from Bin and Bout, respectively by applying singular value 

decomposition:

5If 𝒦ε ∩ 𝒦ε ≠ ∅, denoting 𝒟ε = 𝒦ε ∩ 𝒦ε, we have 𝒦in ∩ 𝒦out = 𝒦I ∪ 𝒟ε and the intersection contains an additional 

noise-related space.
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Bin = f 1, …, f M

φ1 0 ⋯ 0
0 φ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … φM

u1
T

⋮
uM

T
, (31)

and

Bout = g1, …, gM

ϕ1 0 ⋯ 0
0 ϕ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ϕM

v1
T

⋮
vM

T
. (32)

For the two sets of singular values, distinctively large singular values are denoted by φ1, 

…,φμ and ϕ1, …,ϕv. We can then derive the subspaces 𝒦in and 𝒦out such that

𝒦in ≈ span u1, …, uμ , (33)

𝒦out ≈ span v1, …, vν . (34)

Additional arguments, presented in Section 6, lead to the conclusion that the interference 

subspace 𝒦I is equal to the intersection of span{u1, …, uμ} and span{v1, …, vv}, That is, 

𝒦I = span u1, …, uμ ∩ span v1, …, vν .

The procedure used to find the intersection is described below. According to [12], an 

orthonormal basis of the intersection is obtained as a set of the principal vectors whose 

principal angles are equal to zero. To find those principal vectors, we first define

U = u1, …, uμ , (35)

V = v1, …, vν . (36)

Singular-value decomposition of a matrix UTV is then performed, and the results are 

expressed as
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UTV = Y

cos θ1 ⋯ 0
⋮ ⋱ ⋮
0 … cos θν

ZT, (37)

where Y and Z are matrices whose columns consist of singular vectors. In the equation 

above, we use the fact that μ > v. Equation (37) indicates that the singular values of the 

matrix UTV are equal to the cosines of the principal angles between span{u1, …, uμ} and 

span{v1, …, vv}. The intersection 𝒦I has the property that the principal angles are equal to 

zero. Thus, by observing the relation,

cos θ1 = cos θ2 = ⋯ = cos θr ≈ 1,

the dimension of 𝒦I is determined to be r.

The principal vectors are then obtained either as the first r columns of the matrix UY or the 

first r columns of the matrix VZ. Defining the first r columns of UY as ψ1, …, ψr, the 

relation

𝒦I = span ψ1, …, ψr (38)

holds and the vectors ψ1, …, ψr form an orthonormal basis for 𝒦I. The interference 

removal is thus carried out by projecting the measured data B onto the subspace orthogonal 

to the interference subspace. Defining a matrix G by

G = ψ1, …, ψr , (39)

the interference removal can be accomplished by right multiplying B by (I − GGT). That is, 

the interference-removed measurements BS are obtained as

BS = B I − GGT . (40)

3 Computer Simulation

3.1 Spinal cord evoked field (SCEF) measurements distorted by large artifacts

Computer simulations were carried out to investigate the validity of the proposed algorithm. 

We first simulated spinal cord evoked field (SCEF) measurements distorted by large 

stimulus-induced artifacts. For data generation, we assumed the sensor array of a 120-

channel biomagnetometer [5][7], which has been specifically developed for SCEF 
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measurements. The biomagnetometer is equipped with 40 vector sensors6, which are 

arranged at 8 × 5 measurement locations covering a 14 cm×9 cm area.

In this computer simulation, we used a source model consisting of four equal-intensity 

current vectors; such a source model has been found to be physiologically plausible in our 

previous studies [8]. The model is shown in Fig. 1(a). In this model, the two sources aligned 

along the y axis are intercellular sources propagating in the nerve axon, representing two 

anti-directional current dipoles [14], called the leading and the trailing dipoles [15][16]. The 

other two sources aligned along the x axis represent the volume current. The volume current 

flows from the extracellular milieu to the site between the two dipole sources in the nerve 

axon. In this computer simulation, the distance between the two dipole sources, as well as 

that between the two volume current sources, was set to 3 cm.

The SCEF sources move with a speed of 40–80 cm/s. In this computer simulation, we 

assumed that four sources traveled along the y direction (from −y to +y) with a speed of 60 

cm/s. The source-sensor geometry used in the computer simulation is shown in Fig. 1 (b). 

The magnetic field generated from the four moving sources was computed, and a plot of the 

simulated measurements of all 120 sensors is shown in Fig. 2(a). Here, we used no 

conductor models, and the forward solution was computed using the well-known Biot-Savart 

law, which is derived based on the quasi-static approximation of Maxwell’s equations. The 

time was set at zero when the y coordinate of the leading dipole was equal to −30 cm. The 

field contour map at a latency of 5 ms is shown in Fig. 3(a).

The artifact data was obtained from artifact-only measurements, in which we applied exactly 

the same stimulus as used in measuring the SCEF, with a stimulus electrode positioned a few 

centimeters away from the median nerve of a subject [17]. Since the location of the electrode 

was not on the nerve, stimuli did not induce the nerve activity but elicited only the artifacts. 

The artifact-only data is shown in the lower-left panel of Fig. 2(b).

The results of adding the artifact data onto the computer-generated signal are shown in Fig. 

2(c), and the field contour map of the artifact-contaminated data at a latency of 5 ms is 

shown in Fig. 3(b). Here, the interference-to-signal ratio (ISR) was set at 12. The ISR is 

defined as the ratio of ǁBIǁF/ǁBSǁF where ǁXǁF indicates the Frobenius norm of a matrix X. 

Both the sensor time courses and the contour map show that a significant amount of 

distortion arises due to contamination by the artifacts.

We then applied the DSSP algorithm to this artifact-contaminated data. Here, a two-

dimensional region (−8 ≤ x ≤ 8 cm, −6 ≤ y ≤ 6 cm), which is located 7 cm below the sensor 

plane, was defined as the source space. The augmented lead field was computed with a 0.5-

cm voxel grid over this source space. A plot of the singular values cos(θj) in Eq. (37) is 

shown in Fig. 4. The plot shows that the first six singular values are very close to 1. Thus, 

the dimension of the intersection, r, was determined to be six by thresholding the singular 

values at 0.99. The artifact-removed sensor time courses are shown in Fig. 2(d). A field 

contour map of the artifact-removed data at a latency of 5 ms is shown in Fig. 3(c). 

6A vector sensor can measure the radial component and two tangential components of the magnetic field. The details of the sensor are 
reported in [13].
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Comparing between Figs. 2 and 3, we can see that the distortion from the artifacts is 

significantly reduced.

We next assessed the effectiveness of the DSSP algorithm on the basis of source 

reconstruction results. Time-point by time-point source reconstruction is essential for 

imaging spinal cord activity because of the rapid movements of the sources. We therefore 

used the recursively applied null-steering (RENS) beamformer algorithm [9][18] because of 

its applicability to single time-point data. A snapshot of the source image at 5 ms latency is 

shown in Fig. 5. In this figure, the results in (a) are obtained by using the artifact-free sensor 

data in Fig. 3(a). The results from the artifact-contaminated sensor data in Fig. 3(b) are 

shown in Fig. 5(b). Due to the presence of the interference, the reconstruction results are 

significantly distorted. The results from the artifact-removed sensor data in Fig. 3(c) are 

shown in Fig. 5(c). In these results, the four sources are clearly reconstructed and the results 

are very close to the artifact-free case in Fig. 5(a), demonstrating the effectiveness of the 

proposed method.

3.2 MEG measurement overlapped with large interference magnetic field

We next present a computer simulation on MEG measurements in which the data was 

overlapped with a large interference caused near the source space. A sensor alignment of the 

275-channel whole-head sensor array from the Omega™ (VMS Medtech, Coquitlam, 

Canada) neuromagnetometer was used. The coordinate system and source-sensor 

configuration used in the computer simulation are depicted in Fig. 6(a). A vertical plane (x = 

0 cm) was assumed at the middle of the sensor array, and three sources were assumed to 

exist on this plane. The coordinates of the sources are (0, −2,10.3), (0, 2.5,10.3), and (0,1, 

7.3) cm. The time courses assigned to the three sources are shown in the top three panels in 

Fig. 6(b).

We put a single interference source shown as a filled circle with the label “interference 

(location A)” in Fig. 6(a). As shown in this figure, the interference source was fairly close to 

the signal sources and it was located just outside the head near the head surface. The 

coordinate of the interference source was (−1, −1, −6) cm. This interference simulated the 

noise caused from some types of brain stimulator. In Section 5, we actually present 

experiments in which the MEG data was contaminated by the noise from patient’s vagus 

nerve stimulator (VNS). The time course of the interference source is presented in the 

bottom panel of Fig. 6(b). We generated interference magnetic field with the interference-to-

signal ratio (ISR) equal to 100 where the ISR is defined as ǁBIǁ/||BSǁ The interference 

magnetic field was computed and overlapped onto the signal magnetic field computed from 

the activities of the three signal sources.

To generate the magnetic fields, source activities were projected to the sensor time courses 

through the lead field, which is obtained using the homogeneous spherical head model [19] 

with the center of the sphere set to (0, 0, 4) cm. The spatio-temporal data with 1200 time 

points was generated. In Fig. 7, the time courses of the signal magnetic field (plus sensor 

noise) are shown in the top panel. The time courses of interference-overlapped magnetic 

field are shown in the middle panel. Since the interference magnetic field is 100 times 
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stronger than the signal magnetic field, the sensor time courses in the bottom panel are 

dominated by the interference magnetic field.

We set the source space to a region of −4.5 ≤ x ≤ 4.5 cm, −5 ≤ x ≤ 5 cm and 5 ≤ z ≤ 13 cm. 

This region approximately covers the whole brain and includes the locations of the three 

sources, but it does not include the location of the interference source. The augmented lead 

field was computed using a 0.5 cm voxel grid over this region. We then applied the DSSP 

algorithm for removing the interference. The dimension of the interference subspace r was 

determined to be 1 by thresholding the cosine of the principal angle (Eq. (37)) by the value 

of 0.99. The interference-removed sensor time courses are shown in the bottom panel in Fig. 

7, which shows that the interference is nearly completely removed.

We next evaluate the effect of interference removal based on the quality of reconstructed 

source images. The adaptive beamformer algorithm[11] was applied for source 

reconstruction from the sensor data shown in Fig. 7. The results are shown in Fig. 8. In Fig. 

8(a), the source reconstruction results obtained from the interference-free magnetic field (the 

top panel of Fig. 7) are shown. Three sources can clearly be observed. The reconstruction 

results obtained using the interference-overlapped magnetic field (the middle panel of Fig. 7) 

are shown in Fig. 8(b). Due to the overlap of the large interference, the results contain 

significant distortion. The reconstruction results obtained using the artifact-removed sensor 

data (the bottom panel of Fig. 7) are shown in Fig. 8(c) in which the distortion is nearly 

completely removed, demonstrating the effectiveness of the proposed method.

As shown in the computer simulation above, the DSSP algorithm allows interference sources 

to be fairly close to the source space. However the prerequisite exists that the interference 

sources are located outside the source space. We performed computer simulation in which 

this prerequisite was not fulfilled. We here put a single interference source at (−1, −1,5), 

exactly on the border of the source space. This location is indicated by a filled circle with the 

label “interference (location B)” in Fig. 6(a). The results of source reconstruction are shown 

in Fig. 9 where the results without interference removal are shown in (a) and the results with 

the removal in (b). These results clearly indicate that the DSSP algorithm can still remove 

the influence of interference but the removal is achieved at the sacrifice of significant 

amount of signal source intensity.

4 Experiments using SCEF measurements from a healthy volunteer

4.1 SCEF measurements

A 120-channel biomagnetometer[5][7] was used for measuring a human SCEF7. The subject 

was a healthy male volunteer. The experiment was approved by the ethics committee of 

Tokyo Medical and Dental University.

The experimental setup is schematically shown in Fig. 10. As depicted here, the cryostat of 

the biomagnetometer has a cylindrical body with a protrusion, and this protrusion contains 

sensors directed upward. The subject lies down in the supine position, and the subject’s 

7The sensor array of this biomagnetometer was used for the data generation in our computer simulation.
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lower neck is positioned on the upper surface of the protrusion of the cryostat. A stimulus 

current was applied to the subject’s median nerve near his elbow. The stimulus with an 

intensity of 10 mA and a duration of 0.3 ms was repeated 2000 times at a repetition rate of 4 

Hz. The data acquisition was performed with a sampling frequency of 40 kHz. An analog 

bandpass filter with a bandwidth of 100–5000 Hz was applied. The signal was averaged 

across all 2000 measured trials.

An X-ray image covering the subject’s neck and the sensors of the biomagnetometer was 

obtained to identify the location of the spinal cord. The reconstruction region was 

determined to be a curved plane containing the spinal cord. An X-ray image with the 

extracted 2-D reconstruction region is shown in Fig. 11.

The measured SCEF, averaged over 2000 trials, is shown in Fig. 12(a). The electric stimulus 

was given at a latency of 0 ms. Large artifacts are observed particularly in the data before 4 

ms, although the peaks between 4 and 8 ms, which are caused by the spinal cord nerve 

activity, can still be observed. We applied the proposed DSSP algorithm to remove these 

artifacts. The 2-D reconstruction region was used as the source space over which the 

augmented lead field matrix was computed. The results are shown in Fig. 12(b). Here, the 

artifacts are significantly reduced and the SCEF signal, consisting of peaks between 4 and 8 

ms, is clearly observed.

4.2 Validation based on reconstruction of spinal cord nerve activity

The spinal cord source activity was reconstructed by using the RENS beam-former. 

Schematic illustration in Fig. 13 shows relative positions of the subject’s neck and median 

nerve with respect to the reconstruction region, which had an area of 16 × 12 cm with voxel 

dimensions of 0.5 cm in the x and y directions. The reconstructed source images at a latency 

of 5.8 ms are shown in Fig. 14. In this figure, the source image from the original artifact-

contaminated sensor data is shown in (a). The image from the artifact-removed data is 

shown in (b). Both images show the leading dipoles but their directions (indicated by the 

white arrows) are significantly different.

To determine which results are physiologically more plausible, we used a source image 

obtained with the stimulus applied at the median nerve near the subject’s wrist; the image is 

shown in Fig. 14(c). The signal obtained with wrist stimulation is known to be less affected 

by artifacts. This is because, with the stimulation near the subject’s wrist, it takes 4–5 ms 

more for the nerve activation to reach the neck region, and thus the spinal cord signal is 

much less contaminated by stimulus-induced artifacts due to their rapid decay. Therefore, 

the results from the wrist stimulation should serve as the physiological”ground truth” for the 

comparison. The leading dipoles have transverse (the negative x) components in Figs. 14(b) 

and (c), while the direction is almost upward in (a), i.e., the current vector has almost no x 
component in (a).

Since the subject’s left median nerve is stimulated, the nerve activity is known to propagate 

from the left median nerve into the spinal cord near the fourth vertebra (c4). Thus, it should 

be more plausible that the current vector has a transverse, negative x component, as depicted 

in Fig. 13. Accordingly, considering the fact that the leading dipoles in (b) and (c) have such 

Sekihara et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative x components, we can draw the conclusion that the results in Fig. 14(b) are 

physiologically more plausible than those in Fig. 14(a).

We have conducted measurements exactly the same as the ones described above but with 

right median nerve stimulation. The source images from these measurements are shown in 

Fig. 15. Here, the source image from the original artifact-contaminated sensor data is shown 

in (a). The image from the artifact-removed data is shown in (b). Both results show the 

leading dipole but the direction of the leading dipole (indicated by the white arrow) is again 

different between these two images. The source image obtained with the stimulus applied at 

the right median nerve near subject’s wrist is shown in (c). In this figure, the current vector 

should have a transverse, positive x component since the x component of the source should 

be opposite to that in the left median nerve stimulation. The images in Fig. 15(b) and (c) 

show that the dipoles have the expected positive x components. Therefore, we can again 

conclude that the results in (b) are physiologically more plausible than those in (a), which 

show the source vector with an almost upward direction. It should be noted that the DSSP 

algorithm can be used with any type of source reconstruction methods. In these experiments, 

the RENS beamformer was used for reconstructing the spinal cord activity, primarily 

because it gives the spatial resolution better than other existing methods8 applicable to single 

time point data.

5 Experiments using MEG data measured from a patient with a vagus 

nerve stimulator

The application of the DSSP algorithm is not limited to artifact removal in SCEF 

measurements, and the algorithm can be applied to a wide variety of biomagnetic 

measurements. To demonstrate the versatility of the algorithm, we present results from 

applying the DSSP algorithm to MEG data obtained from a patient with a vagus nerve 

stimulator (VNS). Generally, MEG data from VNS patients contains a large amount of 

interference generated from the stimulator located near the patient’s chest area. The 

measurements were conducted using the 275-channel whole-head sensor array of the 

Omega™ (VMS Medtech, Coquitlam, Canada) neuromagnetometer.

In the upper panel of Fig. 16(a), the somatosensory MEG data measured with tactile 

stimulation applied to the patient’s left index finger is shown. Since the tactile stimulation 

was used, a large peak should be observed around the latency of 50 ms. However, such a 

peak is not observed due to the presence of interference from the VNS stimulator.

The sensor time course with the interference removed by the proposed DSSP method is 

shown in the lower panel of Fig. 16(a). Here, a peak around the latency of 50 ms is clearly 

observed. The MEG data taken from the same patient with the tactile stimulation applied to 

the patient’s right index finger is shown in Figure 16(b). The upper panel shows the original 

sensor time courses and the lower panel shows the sensor time courses processed with the 

DSSP algorithm. Again, the sensor time courses processed by the DSSP algorithm show a 

8Such existing methods include the minimum-norm[20][21] and sLORETA methods[22].
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peak around the latency of 50 ms, but such a peak is not observed in the original sensor time 

courses.

The source localization results are shown in Fig. 17. The results for the case of the left index 

finger stimulation are shown in Fig. 17(a), and those for the right index finger stimulation 

are shown in Fig. 17(b). In both cases, the source activity is successfully localized near the 

primary somatosensory area in the contra-lateral hemisphere. These reconstruction results 

show that the DSSP algorithm removes the influence of the VNS stimulator and enables the 

mapping of the primary somatosensory cortices, demonstrating that the DSSP algorithm can 

be used for the interference removal in MEG. It should be mentioned that, without 

interference removal, a single strong fake source was detected near the center of the head for 

the both cases of left- and right-index finger stimulations, although these results are not 

shown.

6 Discussion and summary

Since equations (33) and (34) are important in the derivation of the proposed method, we 

should further clarify the meaning of these equations. Theoretically, if Q and P are known 

and μ and v are respectively set to Q + P and P, the following relationships hold:

𝒦S ∪ 𝒦I = span u1, …, uQ + P , (41)

𝒦I = span v1, …, vP . (42)

The proof can be found, for example, in [23] or [11]9. Therefore, we could directly derive 

the interference subspace 𝒦I using Eq. (42) if we knew the number of interference sources 

P.

However, information on the number of sources is difficult to obtain in real-life applications. 

In addition, the singular values in Eqs. (31) and (32) may not have sharp cutoffs due to a low 

signal-to-noise ratio (SNR) condition or an insufficient number of time points. Accordingly, 

there is always considerable ambiguity in determining μ and v, the threshold values of the 

singular value spectra. A general strategy for such cases is to overestimate μ and v. However, 

span{u1, …, uμ} and span{v1, …, vv} then unavoidably contain a part of the noise subspace. 

Thus, to be exact with overestimated μ and v, Eqs. (33) and (34) should be rewritten as

𝒦S ∪ 𝒦I ∪ 𝒦ε′ = span u1, …, uμ , (43)

9Equation (41) can be proved, for example, by replacing B in Section 13.1 of [11] with Bin
T  and by following the same arguments in 

that section.

Sekihara et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



𝒦I ∪ 𝒦′ε = span v1, …, vν . (44)

where 𝒦′ε is the part of 𝒦ε that is contained in span{u1, …, uμ} and 𝒦′ε the part of 𝒦ε that 

is contained in span{v1, …, vv}.

The arguments above indicate that the choices of the parameters μ and v are not crucial for 

implementing the algorithm, because the excess dimensions of span{u1, …, uμ} and 

span{v1, …, vv} do not affect the extraction of the interference subspace, since the 

intersection between span{u1, …, uμ} and span{v1, …, vv} is computed. In all the 

experiments described in previous sections, the parameters μ and v were always set at 20. In 

the computer simulation in Section 3.1, the field map and the reconstructed source image 

were recomputed with μ and v set to 40. The results are shown in Fig. 18(a) and (b), which 

are almost the same as the results obtained with μ and v set at 20 (shown in Fig. 3(c) and 

Fig. 5(c)).

Unlike μ and v, the choice of the dimension of the interference subspace, r, can be crucial in 

the implementation of the algorithm. The influence of overestimating r is analyzed as 

follows. Even when the parameter r is overestimated, since the interference time-course 

vectors σp
T(p = 1, …, P) still lie within the column span of G, the orthogonal projector (I − 

GGT) suppresses the interference BI. Therefore, only when the projector (I − GGT) also 

suppresses the signal of interest, the overestimation becomes problematic. This scenario 

happens if the excess dimensions of the interference subspace include a part of the signal 

subspace.

Part of the signal subspace may be included in the estimated interference subspace when the 

distance between the signal subspace, span{s1, …, sQ}, and the interference subspace, 

span{σ1, …, σP}, is small, i.e., when the two subspaces are close. The distance between the 

two subspaces can be defined using the subspace angles between the two subspaces [24], 

and if all the inner products between the basis vectors si
Tσ j(i = 1, …, Q; j = 1, …, P) are small, 

the distance between the two subspaces is large. If some of these inner products have large 

values, the distance between the two subspaces can be small.

Therefore, when the time courses of the signal sources sp (p = 1, …,Q) and those of the 

interference sources σp (p = 1, …, P) are very different and the correlations between them 

are small, the distance between the signal and interference subspaces is large. In such cases, 

the overestimation of r may not be problematic, because the excess columns of G are nearly 

orthogonal to the signal time-course vector sp (p = 1, …, Q), so the projector (I − GGT) 

hardly affects BS. The results of overestimating r at 12 in our computer simulation are shown 

in Fig. 18(c) and (d). Comparison of these results with the results with r = 6 (Fig. 3(c) and 

Fig. 5(c)) shows that overestimation of r causes no serious problems. This result can be 

explained by the arguments above, because in our computer simulation, sp and σp were very 

different.
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Many algorithms have been proposed by our group and others for removing artifacts and 

interferences from sensor measurements. One method, called common-mode subspace 

projection (CSP), was reported by our group as a conference proceedings paper [17]. The 

CSP algorithm uses a part of the DSSP algorithm, and estimates the interference subspace as 

an intersection between the row spans of two spatio-temporal data matrices. It is, however, 

different from the DSSP algorithm in that the CSP algorithm requires the artifact-only 

measurements to be conducted separately from the signal measurements. The proposed 

DSSP algorithm does not require such separate, additional measurements, and thus the total 

measurement time for the DSSP algorithm is half of that for the CSP method, which is 

advantageous in clinical environments, because the burden for a patient is nearly 

proportional to the total time for measurements.

Signal space projection (SSP) is a well-known method for interference removal in MEG and 

EEG measurements[25][26]. In the SSP method, the (spatial-domain) interference subspace 

projector PI is first computed, and the sensor data b(t) is then projected onto the subspace 

orthogonal to the interference subspace by computing (I − PI)b(t). In order to derive PI, the 

SSP method requires the information on the locations of interference sources. Therefore, the 

method cannot be applied to the artifact removal problem in the spinal cord imaging, 

because the spatial locations of the artifacts cannot be determined. The proposed DSSP 

algorithm, in contrast, does not require such information, and this fact, in general, makes the 

DSSP algorithm much more useful than the SSP method, because such information is 

unavailable in many real-life applications.

For interferences from brain stimulators such as the VNS interference, the location of the 

interference source may be predetermined. However, even in this case, a very accurate 

determination is needed to implement SSP when the interference is much stronger than the 

signal. This fact can be seen using our computer simulation in Section 3.2. We applied SSP 

to the interference-overlapped data shown in the top panel of Fig. 7. The results are shown in 

Fig. 19. In this figure, the top panel shows the results obtained when the exact location of the 

interference source is used. The middle and bottom panels, respectively, show the results 

obtained when the location of the interference source has 1 mm and 3 mm errors. These 

results show that even a 1 mm localization error affects results of interference removal, 

suggesting that SSP requires a very accurate localization of an interference source. This fact 

may make the application of SSP to removing large artifacts (such as the VNS interference) 

somewhat impractical.

In summary, this paper has proposed a novel algorithm to remove large interferences 

overlapped on biomagnetic data. Since the algorithm makes use of the duality in defining the 

signal subspace, it is named dual signal subspace projection (DSSP). We have presented a 

detailed mathematical description of the proposed DSSP algorithm, which we have validated 

by computer simulation and two kinds of biomagnetic data: spinal cord data obtained from a 

healthy volunteer and MEG data taken from a patient with a vagus nerve stimulator. The 

proposed DSSP algorithm is suited to remove interferences from sources located fairly close 

to the boundary of the source space. The eye-blink and cardiac artifacts encountered in MEG 

measurements are also such interferences. The investigation on applying the DSSP 

algorithm to the removal of these artifacts is planned and results will be published.

Sekihara et al. Page 19

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This work has been supported by grants from the Japanese Ministry of Education, Science, Culture and Sports 
(26282149, 26462231) and by a grant from SECOM Science and Technology Foundation.

8: Appendix

8.1 The row span of BS is equal to 𝒦S

Here, we prove that, under the low-rank signal assumption (Q < M), 𝒦S is equal to the row 

span of BS. That is,

𝒦S = span β1
S, …, βM

S . (45)

Equation (45) is equivalent to claiming that any row vector x x ∈ 𝒦S  can be expressed as a 

linear combination of the row vectors, β1
S, …, βM

S . The claim is proved as follows. Since 

x ∈ 𝒦S, x can be expressed as a linear combination of sp:

x = ∑
p = 1

Q
γpsp . (46)

If this vector x is also expressed as a linear combination of β j
S, we have

x = ∑
j = 1

M
α jβ j

S . (47)

Substituting Eq. (14) into (47) and using Eq. (46), we get

∑
j = 1

M
α j ∑

p = 1

Q
lp
j sp = ∑

p = 1

Q
γpsp . (48)

Comparing the coefficients of the vector sp in the left- and right-hand sides of the equation 

above, we have a set of Q linear equations:

α1l1
1 + ⋯ + αMl1

M = γ1
α1l2

1 + ⋯ + αMl2
M = γ2

⋮ ⋮

α1lQ
1 + ⋯ + αMlQ

M = γQ
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Under the low-rank signal assumption M > Q, for any arbitrary set of γ1, … γQ, we have a 

set of α1, …, αM that fulfills the above equations. Therefore, Eq. (47) always holds for any 

x x ∈ 𝒦S , and thus span β1
S, …, βM

S  is equal to 𝒦S.

Using the same arguments, it can be shown that the row span of BI, span β1
I , …, βM

I , is equal 

to the interference subspace 𝒦I. Also, both the row span of PBI, span β1
I , …, βM

I , and the 

row span of (I − P)BI, span β1
I , …, βM

I , are equal to 𝒦I.

8.2 Cutoff property of the pseudo signal subspace projector

Here, we present an example of the cutoff property of the pseudo signal subspace projector. 

The example was derived assuming the source-sensor geometry used in our computer 

simulation where the augmented lead field was computed over the two-dimensional source 

space defined by −8 ≤ x ≤ 8 cm, −6 ≤ y ≤ 6 cm, and z = 0 cm. The sensors are arranged on a 

plane of z = 7 cm. Assuming that a source generating interference signal existed at r. the 

ratio R = ǁPlI(r)||2/||lI(r)||2 was computed where lI(r) indicates the lead field vector of the 

interference source. The ratio R expresses the decrease of the total power of the interference 

after processing by the projector P. In this example, the source is located on the y axis (i.e., r 
= (0, y, 0)), and the configuration of the source space and the interference source is shown in 

the upper panel of Fig. 20. The power decrease ratio R versus the y coordinate, which is the 

distance of the interference source from the origin, is shown in the lower part of Fig. 20.

The plot shows that the cutoff property of the pseudo signal subspace projector P is not 

sharp. It passes almost 100% of the signal power if the interference source is located within 

the source space (y ≤ 6 cm) and attenuates only 5–20 % of the signal power when the source 

is located in the vicinity of the source space (10 ≤ y ≤ 50 cm). The proposed DSSP 

algorithm first applies the pseudo subspace projector P to create Bin and I − P to create Bout. 

Both Bin and Bout should contain significant amount of the interference, because of this 

“dull” cutoff of the pseudo signal subspace projector P. The DSSP algorithm makes use of 

this property of P and detects the interference subspace by finding common components in 

the row spans of Bin and Bout.

8.3 Proof of Eq. (26)

Here, we present a proof of Eq. (26) in its general form. That is, we define two subspaces, 𝒳
and 𝒴, with basis vectors x1, …, xD and y1, …, yD′, respectively. We show that, if 

x ∈ 𝒳 = span x1, …, xD  and y ∈ 𝒴 = span y1, …, yD′ , the relationship

z = x + y ∈ 𝒳 ∪ 𝒴

holds. The proof is straightforward. Since x ∈ span{x1, …, xD} and y ∈ span{y1, …, iD′}, 

we can write
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z = x + y = ∑
j = 1

D
c jx j + ∑

j = 1

D′
d jy j . (49)

Therefore, we get

z ∈ span x1, …, xD, y1, …, yD′
= span x1, …, xD ∪ span y1, …, yD′ = 𝒳 ∪ 𝒴 .

(50)
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Figure 1: 
(a) The source model used in the computer simulation. The model consists of four sources in 

which each pair of sources is 3 cm apart. (b) Schematic drawing of the source-sensor 

geometry used in the computer simulation. The four sources, depicted by the four solid 

arrows, travel along the y axis with a speed of 60 cm/s in the direction indicated by the white 

arrow. The source space is a two-dimensional plane (−8 ≤ x ≤ 8 cm, −6 ≤ y ≤ 6 cm), which is 

located 7 cm below the sensor array.
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Figure 2: 
(a) The sensor time courses of the signal magnetic field, computed assuming that four 

sources travel along the y axis with the speed of 60 cm/s. (b) The sensor time courses of the 

artifact-only measurement, which was taken with the stimulus electrode positioned a few 

centimeters away from the median nerve of the subject. (c) The sensor time courses of the 

combined (signal plus artifact) results. (d) The sensor time courses of the artifact-removed 

results. The ordinates of these plots show relative values of field intensity. (The values are 

common for all four plots.)
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Figure 3: 
The field contour maps at the latency of 5 ms for (a) the signal-only sensor time courses, (b) 

the combined (signal plus artifact) sensor time courses, and (c) the artifact-removed sensor 

time courses. The upper-left, upper-right, and the lower-right panels in each figure show, 

respectively, the plots of the x, y, and z components of the magnetic field (denoted Bx, By, 

and Bz). (Note that the x and y components are the tangential components. The z component 

is the normal component.) The color of the contours indicates the relative intensity of the 

magnetic field according to the color bar. The small filled circles indicate the 40 locations of 

the sensors.
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Figure 4: 
The singular values cos(θj) in Eq. (37) versus their order j.
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Figure 5: 
The source reconstruction results obtained using the field maps at 5 ms, which are shown in 

Fig. 3. (a) The source image from the signal-only data in Fig. 3(a). (b) The source image 

from the signal-plus-artifact data in Fig. 3(b). (c) The source image from the artifact-

removed data in Fig. 3(c).
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Figure 6: 
(a) The coordinate system and source-sensor configuration used in the computer simulation 

in Section 3.2. Small three circles show the locations of the signal sources. The filled circles 

with the labels of”interference (location A)” and “interference (location B)” indicate the two 

locations of the interference source. The square indicates the y-z cross section of the source 

space. The large circle indicates the sphere used for the forward calculation. (b) The 

assumed time courses of the first, the second, and the third sources are shown respectively in 

the first, the second and the third panels from the top. The bottom panel shows the assumed 

time course of the interference source. The ordinate indicates the normalized, relative 

intensity and the abscissa indicates the time points.
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Figure 7: 
The sensor data corresponding to the signal magnetic field plus sensor noise (top). The 

interference-added sensor data (middle). The interference-to-signal ratio was set equal to 

100 in which the ISR is defined by the ratio ǁBIǁ/ǁBSǁ. (The time courses of the sensor data 

in this panel is dominated by the interference-source time course, due to the large ISR.) The 

interference-removed sensor time courses (bottom).
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Figure 8: 
Results of source reconstruction obtained using the sensor data in Fig. 7. (a) Results 

obtained from the interference-free magnetic field (the top panel of Fig. 7). (b) Results using 

the interference-overlapped magnetic field (the middle panel of Fig. 7). (c) Results obtained 

using the interference-removed sensor data (the bottom panel of Fig. 7). The reconstruction 

region was set equal to the source space −4.5 ≤ x ≤ 4.5 cm, −5 ≤ x ≤ 5 cm, and 5 ≤ z ≤ 13 

cm. The source distribution on the plane x = 0 cm is shown. The filled circle with the 

label”interference (location A)” in Fig. 6(a) indicates the location of the interference source 

in this simulation.
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Figure 9: 
Results of source reconstruction when the interference source put at (−1,−1,5), which is just 

on the border of the source space. (a) Results obtained without the interference removal. (b) 

Results obtained with the DSSP interference removal. The reconstruction region (the source 

space) was set equal to the source space −4.5 ≤ x ≤ 4.5 cm, −5 ≤ x ≤ 5 cm, and 5 ≤ z ≤ 13 

cm. The source distribution on the plane x = 0 cm is shown. The filled circle with the 

label”interference (location B)” in Fig. 6(a) indicates the location of the interference source 

in this simulation.
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Figure 10: 
Schematic illustration of the experimental setup for measuring a spinal cord evoked field. 

The subject lies down in the supine position with the lower neck placed on the upper surface 

of the protrusion of the cryostat; the protrusion contains 40 vector sensors directed upward, 

covering a 14 × 9 cm area. The sensors are arranged at 8 × 5 measurement locations. A 

stimulus current is applied to the subject’s median nerve near the elbow
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Figure 11: 
X-ray image covering the subject neck and the sensors, used for determining a plane 

containing the spinal cord. This 2D plane is defined as the source space and the source 

reconstruction is performed on this plane.

Sekihara et al. Page 34

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: 
(a) The original sensor time courses. The results averaged across 2000 trials are shown, (b) 

Artifact-removed sensor time courses. The reconstruction plane shown in Fig. 11 was used 

as the source space over which the augmented lead field matrix was computed. The 

dimension of the intersection, r, was set at three, which was determined by applying the 0.99 

thresholding criterion. The fairly sharp peak near 2.5 ms is due to a hardware problem, and 

should be disregarded.
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Figure 13: 
Schematic illustration of the reconstruction region, which is indicated by the square. 

Relative positions of the subject’s neck and median nerve are shown. The arrow indicates a 

typical orientation of the current vector of the leading dipole flowing from the peripheral 

nerve into the spinal cord when subject’s left median nerve is stimulated.
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Figure 14: 
Results of source reconstruction when a stimulus applied to the subject’s left median nerve. 

(a) Source image at the latency of 5.8 ms obtained from the original sensor data in Fig. 

12(a). (b) Source image at the latency of 5.8 ms from the artifact-removed data in Fig. 12(b). 

(c) Source image at 9.85 ms obtained with the stimulus applied to the median nerve near the 

subject’s wrist. (This image was obtained without using DSSP artifact removal.) The white 

arrows indicate the directions of the leading dipoles. The relative intensity of the 

reconstructed source is color-coded according to the color bar. The sketch of the spine was 

drawn from the overlaid X-ray image used for aligning the sensor coordinates to the 

subject’s neck position.
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Figure 15: 
Results of source reconstruction when a stimulus applied to the subject’s right median nerve. 

(a) Source image at the latency of 5.8 ms obtained from the original sensor data in Fig. 

12(a). (b) Source image at the latency of 5.8 ms from the artifact-removed data in Fig. 12(b). 

(c) Source image at 9.85 ms obtained with the stimulus applied to the median nerve near the 

subject’s wrist. See Fig. 14 for legend.
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Figure 16: 
Somatosensory MEG data obtained from a patient with a vagus nerve stimulator (VNS). (a) 

Sensor time courses when the tactile stimulus was applied to the subject’s left index finger. 

(b) Sensor time courses when the tactile stimulus was applied to the subject’s right index 

finger. Original sensor time courses are shown in the upper panels, and sensor time courses 

processed by the proposed DSSP algorithm for interference removal are shown in the lower 

panels.
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Figure 17: 
Results of source localization using the interference-removed sensor time courses shown in 

the bottom panels of Fig. 16. The relative voxel intensity is color-coded according to the 

color-bar, and overlaid onto the patient’s MRI. The cross hair indicates the point with the 

maximum reconstruction intensity, and three cross sectional MR images at this point are 

shown. (a) Results from the data taken with left index finger stimulation. (b) Results from 

the data taken with right index finger stimulation.
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Figure 18: 
(a) The field contour maps at the latency of 5 ms for the artifact-removed results when μ and 

v are set at 40. (b) The source reconstruction results using the field maps shown in (a). (c) 

The field contour maps at the latency of 5 ms for the artifact-removed results when r was set 

at 12 (μ and v were set at 20). (d) The source reconstruction results using the field maps 

shown in (c).
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Figure 19: 
Results of applying the signal space projection (SSP) to the interference-overlapped data 

shown in the top panel of Fig. 7. Top panel shows the results obtained when the accurate 

location of the interference source is available. The moddle and the bottom panels, 

respectively, show results obtained when the location has 1 mm and 3 mm errors.
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Figure 20: 
Cutoff property of the pseudo signal subspace projector P computed using the geometry in 

our computer simulation. The ratio R = ǁPlI(r)ǁ2/ǁlI(r)ǁ2 is plotted with respect to y, the 

distance from the center of the source space. The upper panel shows the relative locations of 

the source space and the interference source.
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