
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Resource Efficient Frameworks for Network and Security Problems

Permalink
https://escholarship.org/uc/item/5qw8p8b8

Author
Aqil, Azeem

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5qw8p8b8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Resource Efficient Frameworks for Network and Security Problems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Azeem Aqil

December 2017

Dissertation Committee:

Srikanth V. Krishnamurthy, Chairperson
Zhiyun Qian
Evangelos Papalexakis
K. K. Ramakrishnan

Copyright by
Azeem Aqil

2017

The Dissertation of Azeem Aqil is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

There are a lot of people who deserve my gratitude. First, I am grateful to my advisor,

Srikanth Krishnamurthy, for everything he has done. For his faith in me, and for keeping

me focused, I will always be grateful.

Over the past 5 years, I have been privileged to work with some excellent collab-

orators and mentors and I want to thank them all.

I want to thank my committee members, Zhiyun Qian, K.K Ramakrishnan, and

Evangelos Papalexakis, for agreeing to serve. I want to thank K.K and Vagelis for all the

help and support with my last project. I especially want to thank Vagelis and Karim Khalil;

I cannot imagine finishing Jaal without you.

I want to thank all my friends, who made the struggle easier. A PhD is, as much

as anything can be, a synergistic effort.

Finally, for Maa, Abba and Rabea, gratitude is an understatement.

Published Works: Chapters 2, 3, 4 and 5 were publised at IEEE MILCOM

2015, IEEE CNS 2016, ACM CoNEXT 2017 and IEEE ICNP 2015 respectively. Chapter 6

was under submission at a conference when this thesis was submitted in Fall 2017

iv

For Maa and Abba.

v

ABSTRACT OF THE DISSERTATION

Resource Efficient Frameworks for Network and Security Problems

by

Azeem Aqil

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2017

Srikanth V. Krishnamurthy, Chairperson

In recent years we have witnessed an almost exponential growth in traffic that is transferred

over the Internet. This traffic growth is a result of various innovations in network technology.

However, this growth has also introduced various problems with regards to performance and

security in modern networks. In this thesis we develop various frameworks that address some

of those problems. The thesis is divided in two parts, the first deals with security issues

and the second deals with performance issues.

In the first part, we analyze how modern day IDS systems are unable to efficiently

cope with both the volume of traffic and the amount of information that can be collected

from modern day systems. To deal with information overload, we develop and automated

framework for feature selection that specifies the optimal set of features that a given system

should monitor. This allows the IDS to focus only on what is important. To address the

scalability problem in IDS systems, we develop Jaal, a framework that enables intrusion

detection at ISP scales. The key idea in Jaal is to monitor traffic and construct in-network

vi

packet summaries. The summaries are then processed centrally to detect attacks with high

accuracy.

In the second part, we first highlight how battery technology is often the perfor-

mance bottleneck in smartphones. Consequently we develop a mathematical framework

that accurately predicts how much energy a given high definition video will consume on

a mobile device. The predictive framework empowers user by pre-calculating energy con-

sumption and letting the user decide whether a certain video download is worth the energy

budget available. Finally, we develop NEST, a novel transport framework for delivering ex-

tractive summaries of a dataset distributed across multiple producers over NDN. The goal

is to exploit diversity in network conditions between a consumer and different producers

towards delivering the consumer-specified summary while minimizing latency.

vii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Detection of Stealthy TCP-based DoS Attacks 6
2.1 Background . 9

2.1.1 The TCP SYN Flood Attack . 9
2.1.2 The Slowloris Attack . 9

2.2 Related Work . 11
2.3 Stealthy DoS attacks: Impact and Key Characteristics 12
2.4 A framework for detecting stealthy DoS attacks: design and validation . . . 19

2.4.1 Design of our approach . 20
2.4.2 Evaluation of our approach . 22

3 Automated Cross Layer Feature Selection for Effective Intrusion Detec-
tion in Networked Systems 24
3.1 Introduction . 24
3.2 Evidence Collection . 29
3.3 Feature Selection . 32
3.4 Inference Engines . 36

3.4.1 Dempster-Shafer Theory of Evidence 36
3.4.2 Clustering Algorithm . 40

3.5 Experimental Setup . 41
3.6 Experimental Evaluations . 46
3.7 Related Work . 52

4 Jaal: Towards Network Intrusion Detection at ISP Scale 54
4.1 Introduction . 54
4.2 Synopsis . 56
4.3 System Overview . 62

viii

4.4 Packet Summarization . 64
4.4.1 Packet filtering and Normalization 65
4.4.2 Dimensionality reduction: fields mode 66
4.4.3 Dimensionality reduction: packets mode 68

4.5 Analysis and Inference . 70
4.5.1 Aggregating summaries . 71
4.5.2 Inference in Jaal . 72
4.5.3 Trading cost for accuracy . 75

4.6 Flow Assignment . 77
4.7 Implementation . 80
4.8 Evaluation . 82

4.8.1 Detection Accuracy and Overhead 85
4.8.2 Individual Module Performance . 91

4.9 Related Work . 93
4.10 Discussion . 94

5 Streaming Lower Quality Video over LTE : How Much Energy Can You
Save ? 96
5.1 Introduction . 96
5.2 Relevant Background . 101
5.3 Our Analytical Framework . 104

5.3.1 Video Input . 104
5.3.2 Modeling LTE effects . 107
5.3.3 Impact on the LTE RRC State Machine 115
5.3.4 Impact of LTE Scheduling . 117
5.3.5 Power consumption due to processing 119

5.4 Evaluations . 121
5.4.1 Configurations . 121
5.4.2 Results and Inferences . 123

5.5 Related Work . 128
5.6 Discussion . 130

6 Efficient Transport of Data Summaries over Named Data Networks 135
6.1 Introduction . 135
6.2 Background . 138
6.3 System Design . 140

6.3.1 Producer Synchronization . 140
6.3.2 Producer Diversity Summary Transport 144

6.4 Implementation . 152
6.5 Evaluation Results . 155

6.5.1 Producer Sync . 156
6.5.2 Latency Performance . 157

6.6 Related Work . 161

7 Conclusions 163

ix

Bibliography 166

x

List of Figures

2.1 Data received and sent data during (a) a full-scale SYN flood; (b) a full scale
Slowloris attack (c) a mixed attack . 14

2.2 Interrupts and context switches during (a) a full-scale SYN flood (b) a full
scale Slowloris attack (c) a mixed attack . 15

2.3 TCP Sockets during (a) a full-scale SYN flood; (b) a full scale Slowloris
attack (c) a mixed attack . 16

3.1 Overview of our approach . 28
3.2 Belief and plausibility during a Sockstress attack with features selected by

LFS . 43
3.3 Belief and plausibility during a Sockstress Attack with features selected by

SBS . 44
3.4 Belief and plausibility during a Sockstress Attack with features selected by

SGA . 45
3.5 Average Belief and plausibility for DoS and SQL Injection 46
3.6 Belief and plausibility during a Database Dump Attack with features selected

by LFS . 47
3.7 Belief and plausibility during a Database Dump Attack with features selected

by LBS . 48
3.8 Belief and plausibility during a Database Dump Attack with features selected

by SGA . 49
3.9 Plausibility for a mixed attack . 49
3.10 Change in plausibility for DoS . 49
3.11 Change in accuracy for DoS (K-means) . 50

4.1 Jaal architecture. 63
4.2 Inference Module. 70
4.3 Feedback loop in Jaal. 76
4.4 ROC curves for various attacks. Batch size = 1000, rank = 12, varying k,

Trace 1. 80
4.5 ROC curves for various attacks. Batch size = 2000, k = 500, varying rank,

Trace 1. 81

xi

4.6 The increase in TPR and communication overhead as the acceptable FPR is
increased. 83

4.7 Performance degradation as the percentage of traffic that is replicated increases. 83
4.8 Mirai Attack: Unchecked infections versus infected devices shut off upon

detected by Jaal. 83
4.9 The load across different monitor groups for topology 1. 83
4.10 The magnitude of the singular values for a packet matrix of n = 1000. . . . 84
4.11 Percentage savings vs. the batch size for fixed error rates. 84

5.1 Applicability of our framework. 97
5.2 A depiction of the system considered in our framework. Module A represents

the LTE scheduler and Module B represents the UE RRC machine. The
output of Module A, which is the probability of a packet being sent in a TTI,
p, is the input for Module B. 103

5.3 Pixel Density (Resolution) VS Bit rate . 106
5.4 Markov Chain representing a single process hybrid-arq. Each state i, i ∈

{1, 2...r} represents the transmission attempt and r is the maximum number
of transmissions allowed. 109

5.5 The state of the LTE HARQ processes . 111
5.6 Markov chain representing the LTE RRC state machine. State 0 corresponds

to the Idle state. States 1 through Tc represent the continuous reception state.
Dotted and solid arrows represent transitions with probability p and 1 − p,
respectively. 117

5.7 Bit Rate Vs CPU power . 118
5.8 Power consumption versus PER for slow motion, low resolution video . . . 118
5.9 Power consumption versus PER for slow motion, high Resolution video . . 119
5.10 Power consumption versus PER for fast motion, low resolution video 120
5.11 Power consumption versus PER for fast motion, high resolution video . . . 120
5.12 The probability of receiving a packet in a TTI (decodable or corrupted) for

low resolution videos . 124
5.13 The probability of receiving a packet in a TTI (decodable or corrupted) for

high resolution videos . 124
5.14 Power reduction from lowering resolution from highest to lowest level under

good channel conditions: Analytical and experimental results 124
5.15 Power reduction from lowering resolution from highest to lowest level in bad

channel conditions: Analytical and experimental results 124
5.16 Power consumption with different expected waiting times (E(W)). 125
5.17 The probability of receiving a packet in a TTI (decodable or corrupted) for

low resolution videos . 125
5.18 The change in state occupancy with λavg 126

6.1 Example network and tree with three producers (a,b,c) and a consumer. . . 149
6.2 A Network with three producers and a consumer running NEST. Each box

represents an application running on producers or consumers. 154
6.3 Latency performance for different link delay variance. 157

xii

6.4 Latency performance for different number of producers. 157
6.5 Per message latency. 158
6.6 Latency performance for different pipelining window sizes. 158
6.7 Latency performance for different sample size |P|. 160
6.8 Effect of caching on latency performance. 160

xiii

List of Tables

2.1 Experimental Parameters . 18
2.2 Algorithm Variable Description . 19
2.3 Results with our detection approach . 20
2.4 Results with scalar threshold detection . 20

3.1 Source of Evidence . 30
3.2 A subset of features selected by each algorithm 45
3.3 Accuracy of k-means classifier under DoS attacks 50
3.4 Accuracy of k-means classifier under SQL injection attack 50
3.5 Average completion time in minutes . 51

4.1 Comparing to reservoir sampling . 83

5.1 Key parameters in our mathematical framework 106
5.2 Experimental Setup . 117
5.3 Details of types of videos used . 117
5.4 The energy saved as resolution is changed from high to low with the corre-

sponding decrease in PSNR . 127

6.1 Example of PDST operation. 150
6.2 ProdSync convergence time. 156

xiv

Chapter 1

Introduction

The Internet is arguably the backbone of the modern digital era. The volume

of traffic that traverses the Internet has steadily been increasing . The traffic growth is

an almost direct consequence of and a testament to many of the technological strides in

networks in particular and the Internet in general.

This unprecedented traffic growth, unfortunately, has also resulted in several prob-

lems that only become visible at this scale. In this thesis, we examine some of those problems

and propose efficient frameworks for dealing with them. This thesis tackles two main ar-

eas. Chapters 2 through 4 address scalability problems in modern network based Intrusion

detection systems (IDS’s) while chapter 5 and 6 address performance issues.

Security: The main focus of this thesis is directed towards addressing problems of

scale in IDS’s. Increasing network capacities, large traffic volumes, and increasingly complex

systems are all moderns day phenomenons that have directly contributed to increasing

the available attack surface area. Consequently, we have witnessed a rise in both the

1

complexity, and the sheer number of network based attacks. Modern intrusion detection

systems, unfortunately, have not been able to adequately deal with this combination of

complexity and volume

In chapter 2 we begin by demonstrating the ease with which new attacks can be

constructed to target today’s network. Denial of service (DoS) attacks are among the most

crippling of network attacks because they are easy to orchestrate and usually cause an

immediate shutdown of whatever resource is targeted. Today’s intrusion detection systems

check if specific single scalar features exceed a threshold to determine if a specific TCP-

based DoS attack is underway. To defeat such systems we demonstrate that an attacker

can simply launch a combination of attack threads, each of which on its own does not break

a system down but together can be very potent. We demonstrate that such attacks cannot

be detected by simple threshold based statistical anomaly detection techniques that are

used in today’s intrusion detection systems. We argue that an effective way to detect such

attacks is by jointly considering multiple features that are affected by such attacks. We

demonstrate that this approach is extremely effective in detecting stealthy DoS attacks; the

true positive rate is close to 100

The detection approach however, while effective for the attack we constructed, does

not scale because it requires the manual identification of features that must be monitored

for detection to be successful. Specifying such a set of features for every possible attack is

too onerous.

In chapter 3, we present an effective solution for the above stated problem. We

note that one can traditionally gather a lot of data from different sources (packet contents,

2

application logs, OS behaviors, etc.) as evidence that could be used for intrusion detection.

However, it is not easy to determine which of these evidence vectors or features are useful

in facilitating highly accurate intrusion detection. In the second part of the proposal,

we undertake an in-depth experimental study to determine whether appropriately trained

search algorithms can help us find the right set of features for detecting a class of attacks

(e.g., denial of service). The output of such algorithms yields a set of features that should

potentially improve detection accuracy. Towards this we monitor 365 features across system

layers and compare the detection performance of 3 popular feature selection algorithms to

reduce the state space of the feature set for two classes of attacks. We find that the approach

can yield significantly improved detection accuracy in comparison to statically chosen single

features, sub or super sets of features of what the algorithms yield. Finally in chapter 4

we tackle the problem of Intrusion detection at scale.

We note that recently we have seen an increasing number of attacks that are

distributed, and span an entire wide area network (WAN). Today, typically, intrusion de-

tection systems (IDSs) are deployed at enterprise scale and cannot handle attacks that cover

a WAN. Moreover, such IDSs are implemented at a single entity that expects to look at all

packets to determine an intrusion. Transferring copies of raw packets to centralized engines

for analysis in a WAN can significantly impact both network performance and detection

accuracy. In chapter 6, we propose Jaal, a framework for achieving accurate network intru-

sion detection at scale. The key idea in Jaal is to monitor traffic and construct in-network

packet summaries. The summaries are then processed centrally to detect attacks with high

accuracy. The main challenges that we address are (a) creating summaries that are concise,

3

but sufficient to draw highly accurate inferences and (b) transforming traditional IDS rules

to handle summaries instead of raw packets. We implement Jaal on a large scale SDN

testbed. We show that on average Jaal yields a detection accuracy of about 98%, which is

the highest reported for ISP scale network intrusion detection. At the same time, the over-

head associated with transferring summaries to the central inference engine is only about

35% of what is consumed if raw packets are transferred.

Performance: The second part of the thesis focuses on performance issues that

arise due to the expectations placed on modern networks. In chapter 5 we argue that

streaming video content over cellular connectivity impacts the battery consumption of a

client (e.g., a smartphone). The problem is exacerbated when the channel quality is poor

because of a large number of retransmissions; moreover, streaming high quality video in

such cases can negatively impact user experience (e.g., due to stalling). In chapter 5, we

develop an analytical framework which can provide the user with an estimate of “how much”

energy she can save by choosing to view a lower quality stream of the video she wishes to

view. The framework takes as input the network conditions (in terms of packet error rate

or PER) and a coarse characterization of the video to be viewed (slow versus fast motion,

resolution), and yields as output the energy savings with different resolutions of the video

to be viewed. Thus empowered, the user can then make a quick, educated decision on

the version of the video to view. We validate that our framework is extremely accurate in

estimating the energy consumption via both simulations, and experiments on smartphones

(within ≈ 5% of real measurements). We find that switching to a lower resolution video

can potentially lead to ≈ 418 mW (23.2%) decrease in the consumed power for slow motion

4

video, and ≈ 480 mW (26%) for fast motion video in bad channel conditions. This translates

to an energy savings of 376.2 J and 432 J respectively, for video clips that are 15 minutes

long. Finally, in chapter 6 we tackle the problem of efficiently transferring content over

the internet. In many emerging data retrieval applications, consumers are interested in

getting a summarized version of content quickly rather than retrieving all available data,

in response to a query. Recently, Named Data Networks (NDN) have been considered

for efficient transfer of summarized information, but the research is still in its infancy.

In chapter 6, we propose NEST, a novel transport framework for delivering extractive

summaries of a dataset distributed across multiple producers over NDN. The goal is to

exploit diversity in network conditions between a consumer and different producers towards

delivering the consumer-specified summary while minimizing latency. NEST first creates

a unified hierarchical representation of the available distributed content using state-of-the-

art distributed clustering. Then, using this representation of the dataset, the protocol

creates interest messages that enable consumers to opportunistically retrieve data objects

from the best producer according to the dynamic network conditions, capitalizing on the

flexibility offered by the NDN infrastructure. We implement NEST on the Mini-NDN

network emulator and evaluate it’s performance using datasets collected from Twitter. Our

experimental results show that NEST takes advantage of producer diversity achieving large

latency reduction gains of up to 100% compared to baseline protocols.

5

Chapter 2

Detection of Stealthy TCP-based

DoS Attacks

Denial of service (DoS) attacks are among the most common of all network attacks

[38]. Despite being well studied and several detection/preventive measures in place, DoS

attacks continue to be prevalent today. The inherent ease with which DoS attacks can be

initiated makes them attractive. Most attacks require minimal resources but can induce

potentially crippling effects on the target.

Traditional detection engines for such attacks are of two types. Anomaly detection

systems try to flag statistically significant deviations from normal behavior ([158] [111])

but such systems are limited by their choice of features and by the definition of normal

behavior. Signature based systems essentially look at single scalar features for the purposes

of detecting anomalies. For example, a high number of open but relatively unused ports

6

would suggest that a TCP SYN flood attack is possibly occurring. Signature based schemes

see much greater practical deployment[18]

In this chapter, we argue that an attacker can simply undermine the efficiency

of such practically deployed systems by combining a plurality of TCP-based DoS attacks.

Essentially, he would use multiple different attack threads, each of which by itself would not

overwhelm the system; however, jointly the threads would have the potency of a powerful

DoS attack. More importantly, such an attack strategy defeats traditional intrusion detec-

tion systems that look for a single scalar threshold to be exceeded to issue an alert with

regards to a TCP-based DoS attack; since the aggressiveness of each thread is moderate

(controlled), these scalar thresholds are never exceeded causing the detection to fail. Thus,

it is essential for a detection system to identify the effects caused by each attack individually

and carefully assess the joint occurrence of such effects. If the evidence suggests that this

to be the case, the detection engine can issue an alert.

We argue in this chapter that an effective way to detect such attacks is by jointly

considering a plurality of features (as opposed to a single scalar feature). We identify a

basis set of such features and show that these are all affected in different ways by different

TCP-based DoS attacks. Our experiments also help us design and implement a detection

approach that jointly considers whether each of these features is (a) above a high threshold

or (b) below a low threshold. This examination facilitates the identification of stealthy

combinations of TCP-based DoS attacks while maintaining a relatively low false positive

rate. In brief, we make the following contributions in this chapter.

7

• Via extensive experiments we demonstrate the potency of a stealthy DoS attack and

its ability to defeat traditional threshold based intrusion detection systems.

• Using an experimental approach, we identify features that are affected by each type of

considered DoS attack at multiple layers. A combined examination of these features

can yield a better assessment of whether or not the system is under attack.

• We propose an approach to combine the considered features in an effective way. Via

experiments, we show that our approach is extremely effective (True positive ≈ 98%

and false positive ≈ 20%) in detecting both the stealthy DoS attack and traditional

DoS attacks.

Scope: While our approach is generic and can account for stealthy attacks that

combine a large number of different TCP-based DoS attacks, for clarity and tractability,

we only consider a stealthy attack that combines two popular TCP-based DoS attacks viz.,

the TCP SYN flood and the Slowloris attacks. To account for other possible attacks, an

offline study to understand the effects of such attacks, and features that may be effective

in identifying them is needed. However, we believe that the generic approach that we use

to jointly consider the TCP SYN flood and Slowloris attacks can be applied in such cases.

Roadmap: The rest of the chapter is organized as follows. In Section 6.2, we

present brief overviews of the TCP SYN flood and Slowloris attacks. In Section 3.7 we

provide a summary of related work. In Section 2.3, we showcase the stealthy DoS attack,

and identify features that can be used as a basis set for detecting such attacks. In Section

2.4, we discuss the key insights drawn from our experiments ; these lead to guidelines for

design of detection approaches; experimental evaluation of such a design is then presented.

8

2.1 Background

We provide a brief background on the DoS attacks we consider in our study.

Specifically, to demonstrate the effectiveness of a stealthy DoS attack, we combine a SYN

Flood attack[107] and a Slowloris attack [30].

2.1.1 The TCP SYN Flood Attack

The TCP SYN flood attack is a TCP-based DoS attack and has been known to

the community for a long time. The attack takes advantage of the traditional TCP three

way handshake mechanism. Most implementations of TCP establish some system state

when a TCP connection is initiated through a SYN packet. Since there are practical limits

on how much state can be maintained, attackers send a high volume of TCP SYN packets

until the combined effect of all the half open connections saturates some system resource.

This attack can be launched with minimal resources by an attacker since he is not required

to maintain any state. In fact, most SYN flood attacks are launched using spoofed IP

addresses. There are numerous approaches to defending against SYN floods but the most

widely used approach is Syncookies[107].

2.1.2 The Slowloris Attack

Slowloris is a TCP-based DoS attack that exploits HTTP. The attack establishes

multiple connections to a HTTP server and keeps them alive by regularly sending incomplete

HTTP headers. The attack is maintained by sending partial, incomplete HTTP requests to

the server and this continues to hog the connection as the headers are received regularly by

9

the server. The idea is to cause a single server machine to maintain multiple connections

until it runs out of all allocatable sockets and is thus, subject to DoS.

Slowloris is a different DoS attack as compared to the TCP SYN flood attack;

it has different attacker and victim semantics. The attack requires much more attacker

resources because it requires a single (powerful) machine that maintains multiple connec-

tions. However, the resource requirements are not too limiting because typically one could

instrument the machine such that the attack program only wakes up periodically to send

HTTP headers and then goes back to sleep. Application layer attacks like Slowloris are

considered stealthy attacks because it’s very hard to discriminate between legitimate traffic

and attacks like Slowloris.

The attack semantics on the victim are also different. Instead of a traditional DoS

attack like SYN floods where the victim machine is flooded with traffic, Slowloris attacks

are characterized by bursts of traffic at regular intervals. This, potentially, makes this

attack much more stealthy than high volume DoS attacks. The Slowloris attack can be

further optimized if the server’s connection timeout is known. This allows the Slowloris to

minimize the number of times it has to send incomplete HTTP requests. There are various

techniques, like load balancing and reverse proxies, that can be used to diminish the effect

of Slowloris, but some versions of Apache, one of the most widely deployed servers, is still

susceptible.

10

2.2 Related Work

In this section, we discuss existing detection schemes for DoS attacks. We also

describe work relevant to mixed DoS and stealthy DOS attacks.

There are several efforts that target the detection of TCP SYN flood attacks. In

[201], the authors use sequential change point detection to flag SYN floods. They analyze

TCP behavior by looking at the number SYN and RST packets. However their approach

is applicable only at leaf routers. The most prevalent detection and defense mechanism

against SYN flood is the use of SYN cookies [107]. This approach detects attacks if the

SYN buffer fills up. This is essentially a single threshold based technique and fails when a

low intensity SYN flood is being employed with other attacks. Approaches such as the above,

or popular signature based detectors such as those employed in Snort [31] and Bro [7] do

not work against mixed DoS attacks because they do not collect and use adequate evidence

information. In [202] the authors present a statistical approach to compute the correlation

between requests and acknowledgments to detect anomalous behaviors; such an approach

is reliant on some definition of normal traffic which can be tricky to characterize.There are

other anomaly based detectors (such as [158] [111]) but they all face the problem of trying

to accurately model or define normal behavior.

Slowloris is already considered a stealthy DoS attack. This is because it is very

hard to differentiate between Slowloris traffic and normal traffic. It is also a relatively new

attack.

There is little work on emerging application layer, TCP-based DoS attacks. In

[105] the authors explore several application layer attacks but fail to provide any substantial

11

defense mechanisms. In [209], an approach to detect application layer flooding attacks is

presented. The approach however, only focuses on the application layer and will miss any

mixed attacks that target the network layer. In [112], the authors model HTTP traffic

with the aim of flagging anomalous behavior but it too suffers from being limited to the

application layer.

There have been various Internet reports of attackers using multiple kinds of DoS

attacks to achieve their goals ([14], [33]) but to the best of our knowledge, our work is the

first to analyze the affects of a joint network and application layer TCP-based DoS attack.

2.3 Stealthy DoS attacks: Impact and Key Characteristics

In this section, we conduct an experimental study to demonstrate the potency

of a mixed or stealthy DoS attack and how such attacks can easily slip under the radar

with respect to today’s DoS detectors. We also identify key features that should be jointly

considered for detecting such attacks.

Experimental Setup: All our experiments are conducted on the DeterLab test

bed [13], a state of the art scientific computing facility for cyber security research. Our net-

work topology consists of one victim machine, and two attacker machines that are connected

to the victim machine. The links between the machines can be tuned to incorporate varying

delays and different degrees of reliability (packet success). We also have a legitimate ma-

chine that issues requests and measures response times to the victim. The victim machine

is running Ubuntu server version 14.04 and apache web server[6] version 2.2. The attacker

machines are both running Kali Linux[19], a Linux based penetration testing distribution.

12

Designing a stealthy attack: As discussed in Sec 6.2, traditional DoS attacks

can be detected by simple statistical scalar measures. SYN floods are typically detected

by examining if the rate at which SYN packets are received exceeds a certain threshold

[107]. A Slowloris alert is issued if the number of incomplete HTTP headers is higher than

a threshold. Our goal here is to experimentally determine the optimum detection threshold

for our server by launching full scale Slowloris and SYN flood attacks and measuring the

change in response as measured by the observer machine. The stealthy attack would then

combine a mix of the two attacks, but each individually below the threshold determined as

above. Full scale SYN flood is the maximum number of packets our SYN Flood program

is able to generate (100 SYN Packets/Second). Full Scale Slowloris, is the max number of

malicious connections our program can maintain (500 simultaneous connections).

To determine detection thresholds we launched each individual attack, starting

from the highest possible frequency, and reducing this gradually, while measuring response

time (with respect to a benign scenario) from the observer machine. We set the detection

threshold to the point where the attacks were completely imperceptible from the point of

view of the observer machine. We set our stealthy attack rates to be below this threshold;

this results in our mixed attack evading the single threshold detection mechanisms. The

detection thresholds are presented in table 2.1. Determining Key Features: What

are the features that facilitate the effective detection of both full scale and stealthy mixed

attacks? This is the question we seek to answer here. Given how these attacks function,

we chose a set of 6 performance metrics as features which can potentially characterize these

13

recv
send By

te
s

0

5

10×106

Time(s)
0 10 20 30 40 50 60

(a) SYN flood

recv
send Sudden Peak

D
at

a
(B

yt
es

)

0

50000

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Slowloris

recv
send

Slowloris starts

SYN flood startsD
at

a
(B

yt
es

)

0

20000

40000

Time (S)
0 10 20 30 40 50 60

(c) Mixed attack

Figure 2.1: Data received and sent data during (a) a full-scale SYN flood; (b) a full scale
Slowloris attack (c) a mixed attack

attacks. The first two features are (i) the volume of data sent and (ii) the volume of data

received. These two metrics are applicable for the following reasons. Attacks like SYN floods

are characterized by a disproportionate amount of traffic received versus traffic sent. For

high volume SYN flood DoS attacks, this single feature is often enough to identify attacks.

We do not expect stealthy DoS attacks like Slowloris to display the same disproportionate

traffic levels, they do however cause the volume of traffic sent to almost zero out. This

feature by itself is not enough to identify an attack but does warrant suspicion.

The next two features in our set are system interrupts and context switches. In-

terrupts and context switches exhibit similar behaviors but are semantically different. A

context switch occurs when the OS switches from the currently running execution thread.

The kernel saves the state of the running execution thread and loads in a new one. An inter-

rupt, however, occurs when the executing process receives an asynchronous signal requiring

14

int
csw

N
um

be
r

0

20000

Time
0 10 20 30 40 50 60

(a) SYN flood

int
csw

N
um

be
r

0

500

Time (S)
0 10 20 30 40 50 60

(b) Slowloris

int
csw

N
um

be
r

0

500

1000

Time (S)
0 10 20 30 40 50 60

(c) Mixed attack

Figure 2.2: Interrupts and context switches during (a) a full-scale SYN flood (b) a full scale
Slowloris attack (c) a mixed attack

attention. Interrupt routines do not change context; they return to the same execution

thread after the interrupt is handled. Examining context switches indicate how much, or

how little, work is being done by the server. Interrupts are important indicators of unex-

pected events. Every new TCP connection request (SYN packet) will trigger an interrupt.

Too many interrupts, coupled with too few context switches (a normal functional server has

to serve multiple requests which results in an inevitably larger number of context switches)

can be a possible indication that the server is not performing useful work. In other words, a

high number of interrupts, coupled with few context switches and a high data reception rate

can effectively identify a SYN flood. Slow loris is also likely to exhibit few context switches.

The number is likely to be higher than that with SYN floods because actual connections

are established here; however, it will still be low because these connections just wait rather

than performing useful work.

15

act
syn

So
ck

et
s

0

200

Time
0 10 20 30 40 50 60

(a) SYN flood

act
syn

N
um

be
r o

f S
oc

ke
ts

0

200

Time (s)
0 10 20 30 40 50 60

(b) Slowloris

act
syn

N
um

be
r

0

200

Time (s)
0 10 20 30 40 50 60

(c) Mixed attack

Figure 2.3: TCP Sockets during (a) a full-scale SYN flood; (b) a full scale Slowloris attack
(c) a mixed attack

The final two features that we consider are the number of TCP sockets that are

in the SYN state and in the established state (ACT sockets), respectively. Keeping track

of sockets in the SYN state is useful because SYN flood attacks try and exhaust the SYN

buffer. The number of sockets in the established state will include those connections that

are induced by a Slowloris attacker. A slowloris attack will result in many sockets in being

in the established state. High socket occupancy coupled with low data volumes and low

system interrupt rates could allow us to identify a Slowloris attack.

From everything we have learned, we expect mixed attacks to exhibit the following

characteristics (i) A large combined number of SYN and ACT sockets (ii) a relatively high

interrupt rate (depending on the intensity of SYN floods), (iii) low volumes of sent data

sent and (iv) few context switches.

16

Discussion: The above features are readily obtained by reading certain hardware

registers. However, we point out that these features are by no means exhaustive. By

including additional features, the accuracy of detection of stealthy attacks can possibly

increase significantly. Our objective here is to showcase the potential of the approach,

rather than find an exhaustive set of such features.

Experimental validation of our feature set: Next, we seek to demonstrate

experimentally, that our chosen feature set can lead to an effective detection approach.

We launched full scale SYN Flood and Slowloris attacks (characterized in table

2.1) against our server to analyze the effectiveness and behaviors of our chosen features.

Panels a,b of Figs 2.1 to 2.2 depict the results of those experiments. By combining the

previously described DoS attacks in stealthy modes (note that each component by itself

in such mixed attacks do not cause a performance degradation), we launched our mixed

(stealthy) attack. The effects of the stealthy attack on the considered features, are shown

in Figures 2.1c, 2.2c and 2.3c.

We analyze the behavior of these features, and this is the lynchpin of our detection

approach.

Figs. 2.1a and 2.1b depict the volume of traffic during full fledged (or full scale)

attacks while the same feature is presented in Fig. 2.1c for the mixed attack. As expected,

SYN floods are characterized by a very high volume of traffic received and disproportion-

ately low volume that is sent. Slowloris (fig 2.1b) is characterized by a spike in traffic

volume (when the connections are established) but the volume of data tapers off. The key

observation is that in all three cases (SYN Flood, Slowloris and the mixed attack) the data

17

SYN Flood (SYN Packets/S) Slowloris (Connections)
Full Scale Attack 100 500
Stealthy Attack 7 100
Detection Threshold 10 120

Table 2.1: Experimental Parameters

sent is always below 800 bytes. For full scale SYN flood, our experiments show that the

data received is always above 70,000 bytes. However, for the mixed attack the volume of

data is much lower.

Figs. 2.2a and 2.2b demonstrate the behaviors in terms of interrupts and context

switches with full scale attacks. For SYN floods we see that interrupts consistently dominate

context switches (every new connection request triggers an interrupt) while for Slowloris

we only see a spike that correlates with network data and then, few context switches and

interrupts. For the mixed attack (Fig 2.2c), we observe relatively high values for Interrupts

(corresponding to SYN Flood) and few context switches. For both full scale SYN flood and

mixed attacks, the number of Interrupts (in a short span of time) is greater than 200 and

the number of context switches is less than 100.

Finally, Figs. 2.3a and 2.3b capture the behavior of TCP Sockets for full scale

attacks while Fig. 2.3c does the same for mixed attacks. As expected, we see that a full

scale SYN flood results in a large number of SYN sockets and Slowloris results in many

established sockets. Mixed attacks on the other hand, yield a high number when the two

are combined.

18

Feature High Threshold Low Threshold
Context switches 600 100
Interrupts 200 N/A
Data Received 70,000 450
Data Sent N/A 800
TCP SYN sockets 200 9
TCP ACT sockets 95 9

Table 2.2: Algorithm Variable Description

Data: Set of features S aggregated over 3 seconds
Result: Attack Classification
if Any feature in S above its high threshold then

θ = All feautures above their high thresholds;
Θ = S − θ ;
if All features in Θ below their low thresholds then

OUTPUT ”attack”;
end
else

OUTPUT ”no attack” ;
end

end
Algorithm 1: Attack Classification

The experiments demonstrate that the behaviors of the key features that we choose

are as expected. We leverage these behaviors to design an effective detection approach as

will be described in the following section.

2.4 A framework for detecting stealthy DoS attacks: design

and validation

In this section we leverage the take aways from the previous section to design our

detection framework and experimentally demonstrate its effectiveness.

19

True Positives False Positives
SYN Flood-Full 100 N/A
Slowloris-Full 95 NA
Mix - 1 100 N/A
Mix - 2 100 N/A
Mix - 3 100 N/A
Normal Traffic N/A 20

Table 2.3: Results with our detection approach

True Positives False Positives
SYN Flood-Full 100 N/A
Slowloris-Full 100 NA
Mix - 1 0 N/A
Mix - 2 0 N/A
Mix - 3 60 N/A
Normal Traffic N/A 60

Table 2.4: Results with scalar threshold detection

2.4.1 Design of our approach

Key Insights: As discussed in section 2.3, in order to detect both full scale

attacks and mixed (stealthy) attacks we propose to use a combination of features. When

under attack, some of these features exhibit high values while others tend have low values. In

essence, since DoS targets the consumption of specific resources, those will be over utilized

while certain other resources will be left under utilized. Legitimate web requests on the

other hand, usually utilize (and thereby affect) a majority of the system, each having a

part to play in servicing requests. This observation is the cornerstone of our detection

framework.

Based on the understanding we gained with respect to our features in Section 2.3

we set two thresholds for each feature viz., a high threshold and a low threshold. Whenever

any of the features crosses it’s respective high thresholds (a sign of DoS), our detection

20

approach examines the other features to check if they are below their low thresholds. It

is important to realize that this is fundamentally different from single threshold based

approaches; the use of multiple features and two thresholds (low and high) help’s reduce

both false positives and false negatives.

Determining Optimal Thresholds: To determine it’s high and low thresholds,

we recall results from Section 2.3. As determined earlier, Slowloris (both full scale and

stealthy) attacks result in (a) a high number of sockets in the ACT state, (b) few interrupts,

(c) few context switches, (d) few SYN sockets and (e) low volume of data transfered. SYN

floods have (i) high interrupt rates, (ii) high volume of data received (SYNs) and (iii) high

number of sockets in SYN sate. From the results of our mixed attack we observe that

together, they result in high number of interrupts (true for both SYN flood and Slowloris),

and a high total number of sockets that are in ACT and SYN states. Thus, we must look

for the crossing of high thresholds for these features.

We get our high threshold value for interrupts from the mixed attack empirically

from Fig 2.2c (a more sophisticated machine learning approach can be potentially used

but we leave this for future work). We obtain our threshold for high received data volume

from Fig. 2.1a for full scale SYN floods since, high data volume is only a feature that is

manifested with full scale SYN floods. High thresholds for sockets together in SYN and

ACT state are both extracted from the results in Fig. 2.3c.

Low thresholds for ACT and SYN sockets (important in identifying full scale

Slowloris and SYN Flood) are empirically obtained from Figs. 2.3b and 2.3a. The low

threshold for data sent (characteristic of mixed attacks, full scale SYN flood as well as a full

21

scale Slowloris) is obtained from the results in Fig 2.1c. Table 2.2 summarizes the values of

these thresholds.

Detection Algorithm: Our detection algorithm (Algo 1) is executed once every

3 seconds. It checks if any of the considered features are above their high thresholds; if

there are such features, it checks to see if all other features are below their low thresholds.

If this is true then, the algorithm flags an attack. It is easy to verify that when any of

the DoS attacks is in progress (full scale or stealthy), there are certain resources that are

heavily used (e.g., high received data volume), but inevitably, there are other parameters

that indicate low usage of certain other resources (e.g., number of context switches). In

other words, there is a serious imbalance in the way in which resources are utilized in a

system. This in essence, is the lynchpin of the algorithm. By using two thresholds, the

algorithm is effective in all cases (again, because any attack cannot saturate all resources).

2.4.2 Evaluation of our approach

Next, we conduct experiments on the Deter testbed to showcase the effectiveness of

our detection framework. In order to evaluate how well our approach works in a real world

setting, we need to generate realistic “normal” web traffic. To do so we used the extensive

set of traffic traces detailed in [158] and available at [11]. The trace set contains network

traffic collected at the edge router at a major university. We translated each incoming

request (TCP packets with destination port set to 80) to a HTTP request for our server.

We used a set of 10 traces. We consider multiple attack scenarios (full scale TCP, full scale

Slowloris and 3 different mixed attacks). Our metrics of interest are the false positive and

false negative rates. The 3 different kinds of mixed attacks represent different intensities of

22

the individual attack. Mix-1 is the initial mixed attack described in Section 2.3 from Table

2.1. Mix-2 incorporates a higher intensity Slowloris attack and a lower intensity SYN flood

attack (Slowloris:110 connections, SYN:7 Packets/sec). Mix-3 includes a higher intensity

SYN flood attack but a lower intensity Slowloris attack (Slowloris:100 connections, SYN:8.5

Packets/sec).

We compare our detection framework with traditional detection approaches that

use a single scalar feature to determine if an attack is under way. Tables 2.1 and 2.2 describe

the set up. Tables III and IV present our results. As evident from the results, our detection

approach outperforms traditional approaches with respect to detecting mixed, stealthy at-

tacks. The stealthy attacks Mix-1 and Mix-2 are completely undetected by the traditional

schemes employing single thresholds. Mix-3 (which has a higher intensity of SYN Floods)

was detected 60% of the time. This is because the combined SYN messages from the flood

and those from the Slowloris component sometimes crossed the scalar detection threshold.

Traditional approaches also do poorly in classifying normal traffic. In our experiments,

traditional approaches erroneously issued alerts 60% of the time with normal traffic; these

false alerts typically occurred during periods of high activity (i.e., sudden spikes of high

volume but normal traffic). In contrast, the false alerts with our approach only occurred

20% of the time.

23

Chapter 3

Automated Cross Layer Feature

Selection for Effective Intrusion

Detection in Networked Systems

3.1 Introduction

There has been a recent increase in both the frequency and impact of cyber threats

[5]. With network based attacks expected to rise [10], it is critical that highly efficient

evidence collection and intrusion detection techniques be designed and deployed. Anomaly

detection and signature based detection are the two most popular detection approaches

(e.g., [71] [89]). The effectiveness of these approaches however, is tightly dependent on the

underlying features (feature set of evidence) that are chosen.

24

There are multiple distinct sources of data that one can use to collect evidence.

Features can be selected from the network, operating system, hardware or network lay-

ers. However, selecting the optimal subset of features to enable highly accurate intrusion

detection is not easy. The quality of the eventual feature set is dependent both on the

actual features, and the number of features. A set that is too small lacks the information to

correctly reason about mutated or unknown attacks, while a set that is too large contains

frivolous features that introduce noise and increase misclassification. Features are typically

selected by studying the behavior of known attacks. This further complicates the problem

for unknown or unseen attacks. Most detection approaches use features that have been care-

fully selected by domain experts. Such approaches, by definition, require precise knowledge

about network threat semantics while also being prone to human judgment errors. Modern

detection approaches also generally only use features from the network layer. Recent work

has demonstrated the utility in considering features across different layers [68].

In this chapter, we seek to design a unified systematic framework to collect mean-

ingful cross-layer features that are applicable to multiple classes of network attacks. Our

framework must automate and sequentialize the process of feature selection and thereby

enable the effective handling of high-volume data for highly accurate intrusion detection.

Futher, we want our evidence collection to be general, in that the approach does not require

deep knowledge about network behavior.

A high level depiction of our framework is shown in Figure 3.1. First, the system

consists of an offline phase wherein it is trained with attack and normal behaviors. A

large volume of evidence is collected offline from multiple layers and for each case (different

25

attacks, normal), an appropriate feature selection algorithm is then used to downselect the

number of features. During runtime, only these downselected set of features are actively

monitored. These are then fed to an inference engine which then provides an assessment of

whether or not the networked system is under attack.

Challenges: There are a number of challenges that we need to address while

building our framework. First, while some features are readily available, the networked

system must be instrumented to collect other forms of evidence that are not exposed (e.g.,

create hooks in the OS). Second, one has to choose the right feature selection algorithm

to achieve the right trade-off between accuracy and complexity. Towards understanding

this trade-off we compare and contrast three algorithms, namely Linear Forward Selection

(LFS), Sequential Backward Selection (SBS) and Simple Genetic Algorithm (SGA) on a

large feature set that is collected. While one can expect the genetic algorithm to yield the

highest accuracy it also is complex and takes a long time to run even on powerful servers;

the others could potentially yield lower accuracy but run faster and on desktop computers.

We seek to understand the tradeoffs between accuracy, complexity, and computation time

for these three classes of algorithms.

To evaluate the effectiveness of automated cross-layer feature selection, we use the

features selected with two detection (inference) engines viz., Dempster-Shafer Theory based

inference and K-Means classification. The former outputs measures of likelihood (referred

to as belief and plausibility) with respect to normal and different attack behaviors and is

thus able to better differentiate between attacks and properly classify mutated attacks. The

latter is arguably the most popular classification approach and allows us to reason about

26

the presence or absence of an attack, in more traditional terms. We point out here that

the automated feature selection process is independent of the inference engine (i.e., any

inference engine can be used to classify behaviors).

Our work in perspective: There have not been many attempts at addressing

the problem we seek to solve. Attempts at applying feature selection algorithms to detect

network based threats ([138], [164], [195] [128]) have considered only relatively small feature

sets (less than 50) which are often chosen manually themselves. They are also specific to one

particular kind of network attack. We consider feature sets that are much larger (> 300),

and could reveal features that are better suited for specific attacks while covering large

classes of attacks. We also seek to automate the entire feature selection process with little

or no need for domain expertise about network threats. Virtually all attempts at detecting

network threats, along with any attempts at feature selection, only consider network layer

features. This is a problem because as new threats emerge, experts are forced to come up

with increasingly novel ways to use network based features. We argue that contemporary

approaches fail to capitalize on information that is present in features captured at other

layers (OS, hardware, application). Further, prior approaches do not address the inherent

uncertainty and noise that any selected features are bound to have. We point out that our

work seeks to determine ”what features to consider” while making an inference with regards

to whether or not the networked system is under attack. It is agnostic to how those features

are used in a detection engine. In our evaluations we show the effectiveness of our features

with two different types of inference engines.

27

Collect All
Possible
Evidence

Run Feature
Selection

Algorithms

Downsized
Subset

Run
Inference
Engine

Classification

Offline:

Monitor
Downsized

SubsetRuntime: Features

Figure 3.1: Overview of our approach

Contributions: To the best of our knowledge, this work is the first attempt at a

unified approach (from collecting the initial set of features to downselecting to the eventual

subset) at extensive cross layer feature selection for intrusion detection.

Specifically, we make the following contributions:

• We design a framework that sequentializes and automates the process of cross layer

feature collection and downselection and eventual use of the downselected features for

intrusion detection.

• Our framework incorporates a novel, evidence collection module that captures a rel-

evant set of initial features by placing numerous monitors that are spread across the

hardware, network, OS and application layers. We demonstrate this via a set of mon-

itors that collect extensive cross-layer features for 3 DoS attacks, 2 SQL injection

attacks, and normal behavior.

• Via extensive experiments, we test the feature selection capabilities of three popular

search algorithms (LFS, SBS, SGA) and provide an analysis of their respective accu-

racy versus cost trade-offs. We find that LFS and SGA have similar results, in terms

28

of detection accuracy, for DoS attacks. This is very surprising since SGA performs a

much more exhaustive search; LFS finishes in a fraction of the time it takes SGA to

complete. SGA produces slightly better results (detection accuracy) for SQL injec-

tion and SBS selection lags behind the other two for both kinds of attacks. Given the

significantly higher runtime associated with SGA, one has to carefully assess if the

slightly increased accuracy (< 10 %) warrants the significant increase in complexity

• We build a complete system and show that feature selection algorithms lead to good

detection accuracy not only in detecting known attacks but also a previously unseen

attack that we construct. Our system decouples the feature selection process from

the inference engine of an intrusion detection system, and is thus readily deployable.

• We show that selecting too few or too many features can actually hurt detection

accuracy.

Scope: Our evidence collection approach is generic and we expect it to be ap-

plicable to other network based threats where features manifest at different layers. For

tractability, we only test two different kinds of attacks. While our initial set of features is

large (365 features), it is by no means an exhaustive set. However, other sources of evidence,

when available, can be added to the initial set and our approach would still be applicable.

3.2 Evidence Collection

The first step in our framework is to collect a very large set of of features that is

potentially relevant for intrusion detection. Evidence collection is generally a hard problem.

29

System Layer Source of Evidence
Hardware Hardware Counters, Perf Events
Network Raw Stream Data, Packet Headers, Socket Statistics
Operating System /proc Filesystem
Application Log Files

Table 3.1: Source of Evidence

Modern systems are so complex that they present a seemingly limitless supply of features.

This is one of the primary reasons why traditional anomaly detection systems rely so heavily

on features selected by domain experts. However, not only is it hard to do this for all types

of attacks, this may result in some key evidence features being left out from consideration.

Our approach is to place monitors or sensors at multiple system layers. This is because the

effects of attacks on networked systems are not felt in isolation at a single layer; their effects

manifest themselves at different system layers. Some system based diagnostics are readily

available (e.g., application logs), while for others we place hooks (e.g., in the OS) to collect

the evidence. The rest of this section describes our monitoring of four system layers.

Hardware Layer: Typical Unix based systems export hardware statistics via

hardware counters. These counters are intended for diagnostics purposes since they are

indicators of the overall system health. They are extremely optimized with little sampling

overhead. The values in these counters can be easily accessed via system API calls. We

use all available hardware counters (on our test system) as features that can be sampled

as a function of time. Examples of such features include CPU operating frequency, CPU

utilization, memory consumption, cache hits, cache misses, core temperature, etc. The

actual set of hardware level features that can be used is ultimately a function of the system

under consideration.

30

OS Layer: The OS layer is the source of a wealth of information, not all of which,

unlike hardware counters, can be easily accessible. However, the OS can be instrumented

to provide information. We use the linux /proc file system as our primary source of OS

level features in this work. The /proc is a virtual file system that exports information about

OS state in the form of parsable text files (the files usually take the form Variable: Value).

It is important to realize however, that the /proc file system contains thousands of files

(each process has its own set of files cataloging behaviors) the active monitoring of which,

together can typically overwhelm a single server. For now, we only consider files in the top

level directory and even this results in a large volume of evidence; in heavy duty custom

systems, the sub-directories can be parsed also. We developed a file parser that periodically

pings all top level files and records the value of each variable. We use a sampling frequency

of one lookup per second so as to not overwhelm the server. Examples of features that can

be obtained using this methodology include the number of system calls, the kernel load, the

number of filesystem lookups and the number of system interrupts.

Application Layer: Primary sources of application layer information are log

files. To detect DoS attacks we look at all log files produced by the Apache web server

and to detect SQL injection attacks we look at all available MySQL and Wordpress logs.

The methodology is similar to the one we described above but instead of /proc files we

parse application layer log files. We have developed a log file parser that checks log files

periodically and records the value of each variable that is present. Examples of features

that are extracted from log files include web server accesses, the number of requests that

are being served, number of requests queued, database lookups and SQL errors.

31

Network Layer: At the network layer, examine the raw packet stream plus

raw network statistics exported by the OS. We only consider packet header information as

features. Packet analysis allows us to collect information such as the number of packets plus

the kind of packet (TCP SYNs, TCP ACKs, etc). We primarily use the netstat tool which

gives various network layer diagnostic information that we use as features. Examples include

SYN packets, Sockets in ESTABLISHED state, sockets in CLOSED state and network

bandwidth.

Table 3.1 summarizes the sources of the features we collect.The methodology out-

lined above allows us to collect a set of 365 features. This list is by no means exhaustive.

For example, one potential source of evidence for SQL injection might be obtained by look-

ing at the SQL queries themselves. This requires deep packet inspection, which we do not

consider due to its computational overhead. Other evidence sources, however, can be added

to our framework as desired.

In essence, the relevant features are selected by launching normal behavior and

attacks. A large set of features is collected, and passed on to the feature selection algorithms.

The algorithms each output a subset of features that they think are optimal. During

runtime, these can then be sampled with higher frequencies to facilitate highly accurate

detection.

3.3 Feature Selection

Our evidence collection module yields a large number of features (in our proto-

type we collect 365 features in total). The features are collected to classify each attack

32

and normal behaviors. Feature Selection (or choosing the best subset of features from a

large set) involves two components. The first is an objective function and the second is a

search algorithm. The objective function evaluates candidate subsets and returns a quan-

tification of their “usefulness”. This is then used by the search algorithms to select new

candidate subsets. We want to select features that have high correlation with attacks and

low cross-correlation across features (the latter identifies redundant and therefore unneces-

sary features.) We consider three search algorithms, viz., Linear Forward Selection (LFS),

Sequential Backward Selection (SBS) and a Simple Genetic Algorithm (SGA).

Objective Function: We use the correlation based subset evaluator detailed in

[116] as our objective function. This evaluation function has been shown to have good

performance and it also ties in nicely with our search goal. It evaluates the usefulness of

a subset by computing the correlation between the features and the classification classes

(attacks and normal behavior.) It also tries to minimize the redundancy between features.

Two features that are highly correlated (regardless of the labeled classes) are considered

redundant and only one is selected. In simple terms, subsets of features that have low cross

correlation and high correlation with the labeled classes (attacks and normal behavior) are

preferred.

Linear Forward Selection: Linear Forward Selection [115] is an optimization

of the popular search algorithm, Sequential Forward Selection [118] (SFS). In its simplest

form, SFS starts with an empty set and sequentially adds features (i) such that at each

step, F (Y, i) is maximized, where Y is the set of previously selected features and F is a

function that calculates the usefulness of a subset of fearures. SFS is essentially a simple

33

hill-climb search; it evaluates all possible single feature expansions of the current set. The

feature that results in the highest score is added permanently and the algorithm terminates

when no single feature expansion improves the current score. The problem with SFS is

that the number of subset evaluations that must be performed grow quadratically with the

number of features. This is not a big problem when the search space is small but becomes a

concern for large sets. LFS improves on SFS by limiting the number of features that must

be considered at each step to 1. This means that LFS has an upper bound on the running

time given by N(N+1)
2 where N is the total number of features under consideration.

A forward selection algorithm however, cannot remove a priori added features

that become redundant with the addition of new features. However, forward selection

algorithms in general are known to perform well when the optimal subset of features is

small. In addition, LFS has low computational overhead.

Sequential Backward Selection: Sequential Backward Selection [118] is the

logical reverse of SFS. It starts with the full set of features and sequentially eliminates the

feature i that “least” reduces the total value of the set under consideration (as measured

by the objective function).

The main weakness of SBS is that it cannot re-examine the usefulness of a feature

after it has been eliminated. SBS works best (in terms of the usefulness of its output) when

the optimal feature subset is large because SBS, due to the fact that it starts with the full

set, spends most of its time evaluating larger subsets.

Genetic Algorithm: Genetic Algorithms [75] are a class of search algorithm

that try to emulate the process of Darwinian natural selection. A more detailed description

34

can be found in [75]. All genetic algorithms can be thought of as 5 stage processes. Initial

population selection, fitness function application, selection, crossover and mutation. Genetic

algorithms have been shown to produce very good results in a variety of domains [75].

However, they are also known to be computationally expensive.

A genetic algorithm begins with an initial population that consists of random

subsets of solutions (which correspond to features in our context). The fitness function

(synonymous with previously discussed objective function) evaluates the fitness of each

member of this population. The genetic algorithm ranks each subset according to its fitness.

Then, some of the fittest subsets are chosen to ’reproduce’ to create a new generation of

subsets. This process continues until a terminating condition is met. The question then

is how this reproduction takes place. The reproduction of two pairs involves randomly

selecting crossover points in the two pairs and combining them. As an example, consider

two feature subsets that have been chosen to reproduce. The crossover process involves

splitting both subsets at random points and combining the split of one subset with that of

the other subset to come up with two new subsets. Each set of features is then subjected

to a random mutation where elements in the set can randomly change (this probability is

usually very low). The steps from selection to mutation are then repeated until a terminating

condition is met or the algorithm is stopped. We use the Simple Genetic Algorithm [113]

in our experiments.

The feature selection algorithms are given as input, the initial labeled set of fea-

tures and they output subsets that they think are optimal. In Section 3.6, we provide a

35

detailed comparison of how the three algorithms described here perform with an evidence

feature set for detecting DoS and SQL injection attacks.

3.4 Inference Engines

In this section we will describe the two inference engines we consider for detection

viz, Dempster-Shafer Theory of evidence, and K-Means classification. In terms of tradi-

tional detection engines, DST is closest to supervised learning. However, it provides some

advantages discussed later. K-means, on the other hand, is an unsupervised learning algo-

rithm for classification. Our expectation is that the optimal set of features should be usable

with any inference engine to accurately detect the presence or absence of attacks.

3.4.1 Dempster-Shafer Theory of Evidence

The Dempster-Shafer theory of evidence (DST) [187] is a theory for combining

evidence and reasoning about uncertainty. We use it in our framework to reason about the

quality of the feature subsets that are output by the feature selection algorithms in terms

of detection accuracy. Every hypothesis is assigned a belief ranging from 0 to 1 where 0

means that there is no evidence to support a hypothesis and 1 means absolute certainty

with regards to the hypothesis. DST is fundamentally different from Bayesian reasoning

because belief in a hypotheiss and its negation need not sum to 1; in fact, both values can

be 0 (meaning that there is no evidence either for or against the hypothesis).

Let Θ = {θ1, θ2, ..θn} be the set of possible conclusions to be drawn, then the

θis are mutually exclusive and Θ is exhaustive. The goal of DST in our context is to

36

predict the state of the system as a function of time. More precisely, let the set of known

system states, for a particular class of attacks (e.g., DoS or SQL injection), be SS =

{sa1, sa2, sa3...san, sn} where the state sai, 1 ≤ i ≤ n represents the state of the system

when it is under attack ai and state sn represents the state of system when it is operating

normally. DST assumes that the current state of the system at time t , CS(t), is unknown

but must be one of the values from the Frame of Discernment, SS. Note that each state in

SS is observable.

CS(t) is determined by providing and combining Basic Belief Assignments (BBAs).

If SS is the frame of discernment then a function m : 2SS → [0, 1] is called basic belief

assignment if the following conditions hold:

m(∅) = 0,
∑

A⊂2SS
m(A) = 1.

The term m(A) is called A’s BBA and is a measure of the belief that is committed to exactly

A. In DST, the notions of belief and plausibility are used to reason about the certainty (or

lack of) in the system being in a particular state. The belief function, Bel, is a mapping

Bel : 2SS → [0, 1] and is given by:

Bel(A) =
∑
B⊂A

m(B).

The Plausibility Pl is a mapping Pl : 2SS → [0, 1] and is given by:

Pl(A) =
∑

B∩A 6=0
m(B).

37

As should be evident, the belief and plausibility with DST serve as upper and lower bounds

on the degree of certainty of the system being in a particular state. The rest of this section

will describe how we use system wide features (or observables) and DST to compute belief

and plausibility about system states.

Observables: An observable in our context is simply anything that can be sam-

pled or monitored to produce a time series. Relevant examples of observables are the

number of total bytes received over a network interface and CPU consumption expressed as

a percentage. We use the terms observables and features interchangeably. The observables

might be important indicators of the presence or the absence of an attack. For example,

one might expect the total number of bytes received over a network interface to be very

high when the system is under a flooding based DoS attack. More specifically, the set

O = {o1, o2, o3...on} is the set of observables (or features) used to detect attacks. A better

O will result in higher detection rates.

An observable, depending on its current value, provides a belief over SS that

provides a hypothesis on the CS. As an example, consider the number of SYN packets

received in a given time window, denoted by A. As is well established, a large number of

TCP SYN packets in a small time frame is highly indicative of a SYN flood attack[107].

When the value of A crosses a predefined threshold, it provides a belief in a SYN flood

attack denoted by BA(SY N) = 0.8 (say). The remainder of A’s belief is always allocated

to the frame of discernment specified as BA(SS) = 0.2.

Combining Evidence from different sources: A core feature of DST is com-

bining beliefs from independent sources of evidence. In our particular context, this can be

38

thought of as observing two different features (or observables), say A and B. When A and

B exceed their pre-defined thresholds they provide beliefs in attack x given by BA(x) and

BB(x) respectively. Combining different features results in a unified belief over a particular

state in SS. Because we have evidence from multiple sources, our case is not as simple as us-

ing a single fusion operator (fusion operators are designed to work on exclusively dependent

or exclusively independent beliefs). Thus, we use the averaging and the cumulative fusion

operators (details in [134] and [185], respectively). The averaging operator is intended to

be used with dependent beliefs and the cumulative operator is intended to be used with

independent beliefs. We first use the averaging operator to combine subsets of dependent

beliefs and then use the cumulative operator to combine the resulting independent beliefs.

(dependent beliefs can be thought of as those belonging to the same sensor).

The Averaging function is given by:

AV G(x) = BA(x)BB(SS) +BB(x)BA(SS)
BA(ss) +BB(SS)

AV G(SS) = 2BA(SS)BB(SS)
BA(SS) +BB(SS)

(3.1)

The cumulative function is given by:

CUM(x) = BA(x)BB(SS) +BB(x)BA(SS)
BA(SS) +BB(SS)−BA(SS)BB(SS)

CUM(SS) = 2BA(SS)BB(SS)
BA(SS) +BB(SS)−BA(SS)BB(SS)

(3.2)

Belief and Plausibility: The application of the Dempster-Shafer framework

results in belief and plausibility values for each attack. These allow us to reason about the

usefulness of a particular subset of features in terms of providing high detection accuracy.

39

3.4.2 Clustering Algorithm

Clustering algorithms are one of the most popular classes of machine learning (ML)

algorithms that are used for anomaly detection [108] [71]. Generally speaking, clustering is a

technique for finding patterns in unlabeled data. We use the K-Means clustering algorithm

because it is one of the simplest and relatively efficient of clustering algorithms which has

been successfully used for anomaly detection.

It works by grouping similar objects into K disjoint clusters. We will only provide

a high level overview of how the algorithm works here. Details can be found in [162] which

demonstrates how to apply the algorithm for intrusion detection. Fundamentally however,

the algorithm is built around the notion of a centroid.The centroid of a cluster is a point in

the feature space that can be thought of as the most representative point for that cluster.

Once the centroid for each of the K clusters is known, the algorithm simply compares

each new instance to each of the K centroids to determine which one it is closest to. The

algorithm has two phases, an offline clustering (training) phase, and an online classification

phase.

Clustering: During clustering the goal is to train the system. Put another way,

the goal is to determine the optimal centroids. The algorithm is fed a set of instances (which

in our case are defined by the output of the feature selection algorithms). Clustering then

is a five step process.

1. Initiate the number of clusters, K to some user defined value. In our case, K is the

number of elements in SS, which corresponds to the number of attacks and normal

behavior.

40

2. Initiate the K cluster centroids. This is typically done by arbitrarily choosing K data

points from the set of training data.

3. Iterate over all training objects and compute the distance of each object to the cen-

troids. Assign each object to the cluster with the nearest centroid.

4. recalculate centroids (ensuring that a previously chosen point is not chosen again)

5. Repeat step 3 until assignment of objects is static. i.e, between two different iteration

with different centroids, the assignment of objects to clusters remains the same

For the distance measure, we use the Euclidean distance. Its effectiveness was

demonstrated in[162]. At the end of the clustering phase we get K centroids that will be

used as future references.

Classification: During classification (done online) each new data point is simply

compared against all the previously computed K centroids and assigned to the one it is

closest to. As in the case of our DST approach„ we perform this entire process seperately

for DoS and SQL injection.

3.5 Experimental Setup

Testbed: We perform our experiments on the The Cyber Virtual Assured Network

(CyberVAN) testbed [171]. The CyberVAN is a state of the art cyber security testbed that

was designed to support experimentation in a virtual cyberspace. CyberVAN models hosts

as full fledged virtual machines and models the underlying network using discrete event

network simulation. The testbed can be used to model a realistic cyber network environment

41

with high fidelity. Virtual machines that act as end hosts are time synchronized with the

discrete event network simulator. This enables CyberVAN to slow down VM time if the

simulated network cannot keep up with real time such as in the case of high volume traffic.

Network Topology: Our network topology consists of one server machine, client

machines from 50 different subnets with IP addresses widely distributed across the public

Internet, and one attacker machine. The server has CentOS server version 6.6 and Apache

version 2.2. The server hosts 20 different websites, each with a complex navigational struc-

ture. The client machines are all running Ubuntu version 14.04. Each client machine has a

synthetic user that interacts with the server using a FireFox web browser. The clients run

in one of two different modes, web-only or database-only.

The normal traffic (which keeps flowing regardless of whether or not an attack is

under way) is generated based on the patterns of real users on the Internet as discussed in

[104]. The synthetic users are emulated to use actual applications. For web-only applications

the users interact with static web content using a Firefox web browser and for database-

only, they interact with a Wordpress blog. The eventual traffic contains realistic short and

long term HTTP and TCP connections.

Methodology: We consider two classes of attacks to validate our framework, viz..

Denial of Service (DoS) and SQL injection. Since we expect these two classes of attacks

to manifest different (and often disjoint) kinds of symptoms, we experiment with only one

class of attack at a time. Specifically, we first collect features explicitly for DoS attacks via

42

Belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = sockstress / Pluasibility = sockstress

(a) sockstress

Belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

belief
Plausibility

0.5

1.0

Time (S)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Traffic

Figure 3.2: Belief and plausibility during a Sockstress attack with features selected by LFS

the data collection approach outlined above. We test out three different TCP based DoS

attacks. SYN Floods [107], Sockstress [32] and Slowloris [30].

For SQL injection we test two different attacks. The first attack exploits a Word-

press vulnerability wherein a specially crafted SQL query results in the entire database

being returned as the response. The second attacks exploits another vulnerability wherein

a specially crafted string opens up a shell and gives the attacker root access. SYN flooding

is one of the oldest forms of DoS attacks and operates by flooding a victim with TCP SYN

packets. Sockstress, is more complicated in that it actually completes the TCP handshake

in an attempt to exhaust all sockets. Slowloris is an HTTP attack that opens numerous

HTTP connections within a time and then periodically sends keep alive messages to hold

them.

To test our approach against a previously unobserved attack, we build such an

attack. Specifically, we employ the methodology described in [68] to intelligently combine a

43

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Sockstress

(a) sockstress

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Traffic

Figure 3.3: Belief and plausibility during a Sockstress Attack with features selected by SBS

SYN Flood and Slowloris attack. Each component of the attack, by itself, does no discernible

damage and thus, cannot be detected by traditional detection approaches; but together the

components consume ports and thus, constitute a powerful but stealthy DoS attack.

We monitor a total of 365 features for each state in SS. Each state is monitored

for a minute after which we are left with a time series of each feature. This data is then

labeled according to the state it belongs to and is then fed into our feature selection en-

gine. Figure 3.1 depicts how the entire process works to produce a set of features. Once

those features are selected they are fed into each inference engine seperately. For DST,

we examine the generated time series and assign thresholds which, when triggered, output

a pre-assigned belief in an attack. Taken as such these observables are just binary belief

functions. For example, one obvious feature for detecting SYN floods is the number of SYN

packets received. We assign equal beliefs to all features regardless of perceived importance.

A better assignment of these beliefs can yield better detection accuracy but is out of the

scope of this work. For K-Means, we train the system as described above setting the value

44

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress/ Plausibility = Sockstress

(a) sockstress

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = SYN Flood

(b) Syn Flood

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Slowloris

(c) Slowloris

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = Sockstress / Plausibility = Normal

(d) Normal Traffic

Figure 3.4: Belief and plausibility during a Sockstress Attack with features selected by SGA

DoS SQL Injection
LFS Context Switches, Sys calls, Free Memory, HTTP Connections Established Connections, DB Errors, Bytes Sent
SGE Sys Interrupts, Sys Calls, Used Memory, HTTP Connections DB Errors, Bytes Sent, DB lookups
SBS Page Faults, CPU1 Utilization, Established TCP connections, Swap Space CPU1 Utilization, Bytes Sent, Page Faults

Table 3.2: A subset of features selected by each algorithm

of K to the cardinality of SS (the number of clusters is equal to the number of attacks plus

one for normal behavior)

During runtime, the set of features that were output by the different algorithms

(via offline training) are monitored. The attacks that were previously described are launched

in real time. For DST, the observations (of the features monitored) are input into equations

(3.1) and (3.2), and we obtain measures of the belief and the plausibility for each candidate

scenario (different attacks and normal behavior). For K-means we simply monitor whether

each attack (or normal behavior) is correctly classified.

45

Plausibility Belief

0.6

0.8

1.0

LFS SBS SGE

(a) DoS: Current State is the correct
one

Plausibility Belief

0.2

0.3

0.4

0.5

LFS SBS SGE

(b) DoS: Current State is the wrong
one

Plausibility Belief

0.4

0.6

0.8

LFS SBS SGE

(c) SQL Injection: Current State is
the correct one

Plausibility Belief

0.3

0.4

0.5

LFS SBS SGE

(d) SQL Injection: Current State is
the wrong one

Figure 3.5: Average Belief and plausibility for DoS and SQL Injection

3.6 Experimental Evaluations

In this section we discuss the results from our experiments. For each algorithm,

we are interested in evaluating how well the features that it selects are able to differentiate

between the different kinds of attacks and normal behavior. Table 3.2 lists a small subset of

the features (due to space constraints) that were selected by each algorithm. The selected

features, due to the nature of modern systems, will be highly dependent on the execution

environment. The table highlights the fact that LFS and SGE tend to select similar features

while SBS does not. We will first present results using the DST inference engine, and later

using the K-Means inference engine.

Detection using DST: Figures 3.2, 3.3, and 3.4 show how well the features

chosen by LFS, SBS, and SGA, respectively, perform when a Sockstress attack is initiated.

The figures shows how the belief and the plausibility vary over the time period of the

46

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Normal

(c) Normal Traffic

Figure 3.6: Belief and plausibility during a Database Dump Attack with features selected
by LFS

attack. The attack is initiated at time 6 seconds. Figures 3.2a, 3.3a and 3.4a show how

both the plausibility and the belief increase, indicating a strong conviction in the present

state (sockstress). The other figures show that there are low values of belief and plausibility

with respect to the other possible scenarios (e.g., normal behavior) indicating that DST

has very little conviction that the current state corresponds to one of these. Figures 3.2d,

3.3d and 3.4d show how the belief and the plausibility in the current state being ”normal”

plummets once the attack is launched. The slight increase in belief and plausibility exhibited

in Figures 3.2b, 3.3b, and 3.4b is due to the fact that SYN Flood and sockstress are similar

kinds of attacks. For example, both involve large volumes of traffic and thus, sometimes

trigger the same sensors. The interesting observation from these figures is that the detection

accuracy (belief and plausibility) with LFS is comparable to that of SBS (they are within

2% of each other); however, SBS lags visibly. The belief and the plausibility results with

all the algorithms, for each state, exhibit the same behaviors observed in Fig 3.2. For the

47

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump/ Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Normal

(c) Normal Traffic

Figure 3.7: Belief and plausibility during a Database Dump Attack with features selected
by LBS

current “true” state these metrics increase and generally decrease otherwise. We omit the

results for the SYN flood attack due to space limitations but they exhibit similar patterns

of results.

In Figures 3.5a and 3.5b, we summarize the plausibility and belief results for DoS

with the different algorithms. Specifically, we show the average value of these metrics

observed (over all cases) with regards to the true or “correct” state (e.g., the belief and

plausibility with Sockstress when it is actually in effect) and the “wrong” state (e.g., the

belief and plausibility with Sockstress when Slowloris is in effect). We see that the values

of these metrics are much higher with the correct case (low values are exhibited for wrong

cases).

SQL injection results for the database dump attack, are detailed in Figures 3.6, 3.7

and 3.8. They exhibit behaviors similar to what was observed with DoS. However, across

all the three algorithms, the difference is that the belief and the plausibility results are not

48

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = DB Dump

(a) Database Dump

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Dump / Plausibility = Root Access

(b) Root Access

Belief
Plausability

0.5

1.0

Time (s)
0 10 20 30 40 50 60

CS = DB Access / Plausibility = Normal

(c) Normal Traffic

Figure 3.8: Belief and plausibility during a Database Dump Attack with features selected
by SGA

SBS
LFS
SGA

0.4

0.6

0.8

Time (s)
0 10 20 30 40 50 60

Plausibility - Mixed Attack

Figure 3.9: Plausibility for a mixed attack

0.5

1.0

Number of Features
0 5 10 15 20 25 30 35 40 45

Figure 3.10: Change in plausibility for
DoS

as high (compared to DoS) in the “correct” state, and not as low with the wrong “state”.

We believe this is because a lot of good features for SQL injection are in fact embedded in

SQL queries which we do not consider in this work (this is left for the future).

The results with SQL injection are summarized in Figures 3.5c and 3.5d. Again, we

see that the performance with SGA and that with LFS are still close (always within 10 % of

each other). However, here SGA gives an approximately 6 % performance improvement over

49

20

40

60

80

Number of Features
0 5 10 15 20 25 30 35 40 45

Figure 3.11: Change in accuracy for DoS (K-means)

SYN Sock Slowloris Normal
LFS 86 88 83 85
SGE 86 87 85 83
SBS 75 72 70 77

Table 3.3: Accuracy of k-means
classifier under DoS attacks

Root DB Dump Normal
LFS 74 77 75
SGE 75 78 74
SBS 62 65 66

Table 3.4: Accuracy of k-
means classifier under SQL
injection attack

LFS consistently, thus demonstrating that higher complexity could yield better accuracy.

Both LFS and SGE outperform SBS again.

Detection using K-Means clustering:

To evaluate the features when K-Means is used for inference we use accuracy

(percentage of samples that are correctly classified) as our metric. Tables 3.3 and 3.4

detail the results. For both SQL injection and DoS we see that the performance of LFS

is comparable to SGE. As with DST we observe that we get better accuracy in detecting

DoS attacks. This is due to the fact that a lot of good features for SQL injection are in

the actual query accessible via DPI which we do not consider. We also observe that the

performance of SBS lags similarly to the other two. However with K-Means, the discrepancy

is much greater. This is greater testament to how completely SBS is outperformed. Some

50

LFS SBS SGA
2.9 10.8 65

Table 3.5: Average completion time in minutes

of the weaknesses inherent in SBS (for e.g. it cannot reexamine features that have been

eliminated) are masked by DST because DST deals very well with noisy features.

Comparing algorithms: A comparison of performance across the different algo-

rithms yields some interesting insights. First both LFS and SGE yield consistently better

results than SBS. The fact that LFS outperforms SBS so consistently indicates that the

ideal subset of features is small. SBS is known to underperform in such cases. LFS is also

much quicker than SBS.

As mentioned previously, we expect SGA to perform well because of its resistance

to getting caught in local maxima and minima. It also takes the most time to finish.

However, in some cases we find that LFS does slightly better than SGA (e.g., see Figures

3.2a and 3.4a). The difference however, is always small (results are always within 6 % of

each other) . These results suggest that local maxima and minima are unlikely and the use

of LFS (much faster) can suffice for highly accurate detection.

Using more or less features than what is recommended by the algo-

rithms: Using too few or too many features can hurt detection performance. To demon-

strate this, we configured LFS to output multiple sized feature subsets. (i.e., the best 2,

the best 4 the best 6 and so on). We then tested these feature sets with all the three DoS

attacks considered and computed the average plausibility of predicting the correct state

with DST and the average classification accuracy with K-means. The results are shown in

Figures 3.10 and 3.11. We see that with DoS, the optimal number of features is somewhere

51

between 15-20 for DST and between 11-16 for K-means. A higher set could lead to wrong

conclusions; a smaller set could reduce detection accuracy.

Mutated attack: Finally, we are interested in evaluating how well the chosen

features hold up to an unknown attack. To do this, we launch the mixed attack that was

described previously in Section 3.5. Figure 3.9 shows how the plausibility that the current

state is normal drops in the presence of a mixed attack (signifying a high likelihood of an

attack). LFS again outperforms the other two (SGA is still very close). K-means classifies

the mixed attack as either one of the two mixes (depending on the dominant attack)

3.7 Related Work

There has been a lot of work done on feature selection in the domain of anomaly

detection. However, most prior efforts (unlike ours) are tied to specific classification ap-

proaches [138], [164], [195]) They are also typically only concerned with network layer

features. In [197], the authors evaluate various selection techniques, including genetic algo-

rithms in the context of intrusion detection. However they are only concerned with features

that originate from the network layer. Their approach is limited because their initial fea-

ture set (on which they apply feature selection) is itself manually selected. In [192] the

authors develop a decision tree based genetic algorithm. They use decision trees to guage

the performance of their algorithm which is not immune to noise or uncertainty. In [91]

the authors compare and contrast two well known feature selection algorithms. They em-

ploy the DARPA intrusion detection data set [12] which only contains network; cross layer

52

features are not considered. [160], [170] and [195] are other examples which only consider

network layer features for intrusion detection.

Other approaches such as [160] are concerned with extracting features so that

classification accuracy is not hurt. This is fundamentally different from what we are trying

to do because we are concerned with large data sets with potentially frivolous features.

53

Chapter 4

Jaal: Towards Network Intrusion

Detection at ISP Scale

4.1 Introduction

Incorporating cybersecurity capabilities has become integral to networked system

design today. However, there are continuing challenges having to deal with very large scale

and complex attacks, and the ever-changing nature of attacks. In the recent past, we have

seen an alarming increase in network based high-profile security breaches [39, 43, 86].

Today, ISPs predominantly focus on volumetric (e.g., DDoS) attacks by gathering

traffic at ingress gateways and analyzing it at centralized scrubbers [37]. These services are

delivered to an enterprise by an ISP on demand, i.e., a customer requests the services when

it determines that its network is under attack or suspects an attack. The process is to copy

packets to and from the enterprise at gateways, and forwarding these to a central Network

54

Intrusion Detection System (NIDS). Unfortunately, the approach of transferring copies of

raw packets continuously towards detecting attacks suffers from scalability problems.

In this chapter, our goal is to design an efficient ISP-scale NIDS, that has the

following properties: (a) it should detect a wide variety of attacks as with smaller scale

IDSs such as Snort or Bro and, (b) it should not require the copy and transfer of raw

packets to a central inference engine.

The key design principle that we follow is to ”extract” the requisite information

from a packet stream at monitoring points spread through out the network. Specifically, the

monitors, (could be co-located with routers/gateways or placed at IXPs) process packets

and create lightweight in-network packet summaries of drastically smaller volume compared

to raw packets. These summaries can be used to draw inferences using rules similar to those

used in smaller scale NIDS (e.g., Snort). They are sent by monitors to a central inference

engine which processes them and issues alerts when attacks are detected. In rare cases

when a highly accurate inference cannot be made with the summaries, the inference engine

queries appropriate monitors (which store packets for short periods) for either finer grained

summaries or associated raw packet traces for a time window of interest.

In designing an ISP-scale NIDS based on the above principle, we will need to ad-

dress the following challenges. (a) How do we construct lightweight packet summaries while

still achieving high detection accuracy? (b) How do we transform typical NIDS rules (e.g.,

that of a system like Snort) to find attack patterns/signatures using these summaries in lieu

of raw packets? and, (c) Under what conditions should the system retrieve finer-grained

summaries or raw packet traces to ensure a high accuracy of detection while keeping the

55

overhead low? In this chapter we design and implement an ISP-scale NIDS, Jaal, that

addresses these challenges. Specifically, in designing Jaal, we make the following contribu-

tions:

• We design a novel algorithm that uses dimensionality reduction techniques to con-

struct concise packet summaries that lend themselves to highly accurate network

intrusion detection.

• We design an approach to transform a large set of IDS rules (specifically from Snort)

to a new equivalent representation that can be applied to the generated summaries

in lieu of the actual packets. We propose simple new, equivalent rules for those that

cannot be automatically transformed.

• We implement Jaal, on a large scale SDN testbed that allows us to create complicated

ISP-scale topologies, using network function virtualization (NFV).

• We evaluate the performance of Jaal using realistic ISP traces [52] and with a wide

range of popular attacks. Our results show that with about 65% reduction in com-

munication overhead, Jaal can achieve a detection accuracy of ≈98% with respect to

these attacks which, we believe is the highest reported at these scales.

4.2 Synopsis

There are many recent alarming reports of large-scale distributed attacks targeting

multiple data centers or enterprise networks simultaneously [40, 42, 47]. Unfortunately,

56

today such attacks are only detected much after the fact, and the targeted entities report

them individually.

The Mirai botnet example: To exemplify the problem, consider the example

of the DDoS attack caused by the Mirai botnet, which targeted Dyn’s DNS infrastruc-

ture [40]. The attackers used compromised IoT devices (e.g., printers, cameras and home

routers) spread across the Internet to launch one of the largest known DDoS attacks crip-

pling various services across the Internet including Twitter, Airbnb, Github and Amazon,

among others. In brief, a post-attack analysis revealed that the IoT devices were infected

using a simple two-step process [46, 45]. First, such devices were discovered by continuously

scanning IP addresses across the Internet for open ports. Second, once an open port was

found the associated device was compromised, if it was vulnerable, using a short list of

hard coded passwords (most devices were still using default username/password combina-

tions), to gain root access. We analyzed the source code for Mirai (available publicly at

[41]) and found that the scanning was primarily directed at destination ports 23 and 2323

(File: mirai/bot/scanner.c Lines: 117, 219, 223 [41]). A device, once subsumed into the

Mirai botnet repeated the exact scanning activity mentioned above [45]. Note here that

this scanning was only discovered after the attack had been launched and researchers had

analyzed the source code publicly dumped by the attackers.

Need for ISP Scale detection. Such scanning, while simple to carry out, is

inherently difficult to detect using current detection capabilities for two reasons. First, most

IoT devices are used in homes where consumers typically do not use IDS systems. So both

the incoming scan that is looking for open ports and the outgoing scan launched by the

57

device once it is infected, are missed. Second, and perhaps more importantly, even if we

consider networks with some intrusion detection capability, the global scope of this scanning

activity is only observable via a holistic view of a wide area (ISP-scale) network. This is

because, from the perspective of a smaller scale (e.g., enterprise) network with detection

capabilities such as those of Snort, a simple scan directed at two TCP ports for a small

range of IP addresses (that are observed) is not a serious concern and would not likely

trigger port scan alerts. Port scan alerts are only issued if a large volume of packets with a

large set of different incoming ports are seen [58]; this was not the case with the Mirai scan

which only scanned for two ports but across a large set of devices that were spread across

a large number of administrative domains.

One could argue that a scan that targets the same two port numbers across an ex-

tremely large gamut of IP addresses (almost the entire IPv4 address range [45]) is concerning

and should trigger alerts; however, this characteristic is only evident if the ISP-level traffic

is analyzed at a detection engine. With such holistic visibility, a detection system could

have identified infected devices long before the DDoS attack was launched (such scanning

activity can be potentially detected in seconds as we show later in § 6.5).

The need for holistic ISP-scale detection capabilities have recently been widely

advocated. For example, in response to the attack on Dyn, the security expert Bruce

Schneier says that ”DDoS prevention works best deep in the network, where the pipes are

the largest and the capability to identify and block the attacks is the most evident” [44].

The fact that current detection frameworks and techniques lack the capabilities to detect

coordinated attacks distributed across multiple organizations (such as the Mirai attack)

58

has also been highlighted by DARPA [50], which exemplifies the urgent need for NIDS that

address this shortcoming.

While ISP networks have the global visibility required to detect such attacks, the

technical challenges in realizing WAN-scale detection are yet to be overcome. The popularity

of open source IDS’s like Snort and Bro has proven how effective pattern matching is in

detecting network-based attacks. However, using such methods directly in WANs is hard

(as discussed later). While enterprises typically have a single entry point where an IDS such

as Snort or Bro can be employed, WANs usually have multiple points of entry and egress.

This means that no single location in the network can view (monitor) all the traffic. Given

that multiple vantage points (or monitors) are needed to completely cover all traffic, the

information collected (or generated) by these monitors needs to be “aggregated” to create

a global view for analysis.

Challenges: There are various approaches that one could take to create such a

global view. The first and possibly the most obvious approach would be for each monitor1

in the network to forward copies of traversing packets to a central analysis engine. We

tested the feasibility of this approach (details in § 6.5; see Fig. 4.7) and found that it causes

a 70% loss in throughput (average rate at which packets that belong to normal traffic are

proceesed at each router) and a 75% loss in detection accuracy (the fraction of correctly

classified attacks out of all attacks).

We point out here that it is well known that modern open source DPI-based IDSs

cannot cope well with high traffic volumes [85, 137]. In fact, they do not fail gracefully and
1The monitors can be realized in several ways. They could be implemented using a core router function-

ality (like Cisco’s NetFlow [109]). The monitors can also be dedicated machines deployed at IXPs.

59

with traffic rates greater than 20 Gbps, packet losses of over 50% are experienced regularly;

this can seriously affect the accuracy in detecting attacks (can result in approximately a

50% loss in detection accuracy). The only way around the loss in accuracy is to provision

IDS clusters for peak load which can result very high costs and even with that, a large

wastage of computation resources at off-peak times.

Current methods such as sampling/sketching are inadequate. One may

argue that the heavy workloads due to copying raw packets, can be overcome by using state

of the art packet sampling techniques [83]. In fact, ISP’s typically employ rudimentary sam-

pling techniques like NetFlow [109] to obtain a coarse view of network dynamics. However,

while sampling can help in heavy-hitter detection, it results in poor accuracy with respect

to fine-grained features needed for detecting a wide variety of attacks [173, 152], especially

in cases where a information with respect to a large number of successive packets is required

(e.g., DDoS). In particular, sampling fails to capture correlations across packets.

An alternative technique to sampling is sketching [141]. While sketching provides

strong resource/accuracy guarantees, it is inherently a targeted measurement scheme in

which one needs to construct a sketch for every measurement task (e.g., counting the number

of unique IP addresses or measuring the entropy of IP addresses in a batch of packets).

Unlike the summarization techniques we develop in Jaal, modern sketching techniques are

also restricted to single dimensional measurements [148]. This lack of generality implies

that sketching does not scale. The sketching technique in [148], which is arguably the most

general sketch possible today, allows a single sketch to be used for multiple measurement

tasks. However, it is still limited to a single dimension.

60

More concretely, consider the source IP address as the dimension of interest. By

using the technique in [148], one can create a sketch that captures the number of unique

addresses seen. This sketch can be used to detect heavy hitters, membership testing and

entropy estimation [148]. However, even this sketch will only be able to answer queries about

the source IP address. Intrusion detection signatures require correlations across packet

dimensions. A simple example is a distributed SYN flood attack. To keep track of the

source IP and the SYN flag, one would need a sketch that tracks these two fields. However,

such a sketch can now no longer be used to answer queries about the IP or SYN flag alone.

There is no way to decouple those two header fields in the sketch. Thus, to create sketches

to detect attacks based on any combination of TCP/IP headers (18 header fields), a need

a total of 218 individual count-min sketches at every monitor. Assuming each count-min

sketch to be 500KB [148], this would translate to 128GB of information being transferred

by each monitor to a central location per measurement epoch, leading to a prohibitively

large communication cost. In addition, such a brute-force combinatorial sketching method

would not leverage correlations between header fields which may not be known to us a-priori

and would only emerge through the actual traffic generated. Our proposed summarization

scheme is able to identify and leverage those correlations automatically, by virtue of low-

rank approximation.

Key idea: We envision that by extracting lightweight in-network “packet sum-

maries” that retain the information needed by a NIDS, from traffic that flows through

monitors, we can solve the challenge of scale while retaining performance and accuracy.

This is in essence the key idea in building our framework Jaal.

61

Threat Model: While Jaal can handle all attacks that a NIDS like Snort can

handle, we limit the scope of our evaluations to only transport layer attacks. This is because,

together they constitute the most widely seen attacks in the wild [39]. We omit attacks that

will require us to examine the payload given that these days payloads are often encrypted.

An IDS such as Snort also handles signatures relating to lower-layer attacks such

as ARP scans. Since such attacks are local (link level and thus do not require global

knowledge), we argue that they can be detected using a local ”lower layer attack detector”

in each local area network (LAN) independently. Thus, we do not try to detect these with

Jaal.

We assume that monitors have already been placed in the network and their loca-

tions are static. Flexible monitor placement and management is beyond the scope of this

work.

4.3 System Overview

Our goal is to build a NIDS at ISP scale, with capabilities similar to that of today’s

modern NIDS (e.g., Snort [175] and Bro [168]) deployed in enterprises, based on the key

idea described in § 4.2. Evidence collected in the network and transferred to a detection

engine must consist of concise yet informative summaries (instead of raw packets), and the

detection engine must be able to process these summaries and provide inferences just as

with Snort. One of the driving principles behind designing Jaal was generality. We aim

for the techniques we develop to be equally amenable to detecting all attacks. Therefore,

we make no assumption on the utility of any packet header field and treat all header fields

62

Packet Filtering
Summatization

Flow Assign.

Inference

NIDS

Summaries

Assignments

Decision

Load

Monitor

Packet Filtering
Summatization

Monitor

Info.
Load
Info.

Rules

Summaries

Assignments

Figure 4.1: Jaal architecture.

as equally important. We follow modern IDS systems design which provide pipelines for

querying any header field. We choose Snort as our baseline since it is the most popular IDS

used today [31].

We meet this goal by designing a modular ISP scale NIDS Jaal, which comprises

three modules viz., summarization, inference, and flow assignment (see Fig. 4.1).

Summarization module: This module runs on monitors in the network. Each

monitor extracts headers of traversing packets and constructs a “summary” of these headers

using a lower dimensional representation. The summary is then forwarded to the analysis

and inference module.

Inference module: Jaal contains a centrally located inference module which,

given a set of Snort-like, signature-based rules, transforms the rules into a format suitable

for use with the summaries. Equivalent rules are proposed (again applied on summaries) for

detecting attacks that cannot be be detected via simple comparisons with packet signatures.

Packet summaries collected from monitors are compared with these new rules to detect

threats.

63

Flow assignment module: The flow assignment module seeks to assign flows

to monitors such that each flow is monitored only once and the maximum load across the

monitors is minimized. This is important both for correct operation of the NIDS as well as

for saving bandwidth. The problem is mapped onto a constrained load balancing problem

and solved using a simple yet effective approximation algorithm.

A detailed description of each module in Jaal follows in each of the next three

sections.

4.4 Packet Summarization

The goal of packet summarization is to produce a representative summary of a

batch of packets that: (a) enables the analysis and detection of a wide class of attacks, and

(b) allows Jaal to achieve high detection accuracy with low communication overhead.

Henceforth, we refer to the packets and the packet fields as the different modes

of the data that we are summarizing. The number of dimensions in those modes (i.e., the

number of packets that have passed through a monitor and the number of fields in each

packet) is large; thus our goal is to reduce the dimension of both modes while preserving

correlations between the dimensions of both modalities.

To support our goal, we employ dimensionality reduction, a family of techniques

that approximate a dataset with high-dimensional modes, using a modified dataset with

significantly reduced dimensions, while minimizing the approximation error. This reduction

results in a more compact, yet high fidelity data representation which respects correlations

in both modes of the data. We propose a practical two-step approach where each step

64

focuses on efficiently reducing the dimensionality of one of the two modes of the data.

At the end of the process, we create what we call in-network packet summaries. One may

envision a single-step approach to reduce both modes simultaneously; however this objective

is computationally hard from an optimization point of view. Our approach can achieve any

desired accuracy, by trading off communication cost. Specifically, the design parameters,

determining the level of reduction, control the tradeoffs between the costs (i.e., the size of

summaries sent to the inference module) and the detection accuracy.

4.4.1 Packet filtering and Normalization

We assume that there are monitors in the network to aid intrusion detection. Each

such monitor filters and processes packets from flows (specified by a four tuple viz., source

and destination IP addresses and port numbers) that are assigned to it (assignment of flows

to monitors is done by a central engine; this is discussed in § 4.6). Transport and network

layer headers are then buffered until the number of packets in the buffer, regardless of which

flows they belong to, is equal to some pre-determined threshold n. We call this a batch of

size n. Each batch of packet headers is organized in a matrix X with dimensions n × p.

Each row represents the p fields in the (TCP and IP) headers of a given packet.

Before we construct packet-summaries, we create a normalized version of X de-

noted by X̄. In Jaal, packet header fields are processed as vectors, and each header field

is mapped to an entry in the vector. A measure of distance is used to decide whether two

packets are similar. Since the raw magnitudes of the header fields values vary greatly, nor-

malization of these values is needed to ensure that there is no bias towards fields that vary

over a larger range. For example, consider a vector with only the TCP SYN flag and the

65

source IP address fields. Without normalization, the distance computations will be heavily

dominated by variations in the IP address field. Thus, for any header field with value x ≥ 0,

we apply the transformation x̄ = x
max(x) , where max(x) is the maximum possible value for

that header field (x). Thus, we have 0 ≤ x̄ ≤ 1, ∀x.

4.4.2 Dimensionality reduction: fields mode

We first apply Singular Value Decomposition (SVD), a dimensionality reduction

technique, on the packet fields in X̄ to reduce its rank. By reducing the rank, we form a

smaller-size representation of X̄ which provably approximates the original matrix well [133].

First, X̄ is decomposed to

X̄ = UΣVT , (4.1)

where the columns of U are the left singular values of X̄, columns of V are the principle

axes (or directions) of data in X̄, and VT is the transpose of V. Σ is a diagonal matrix with

the singular values σi of X in descending order. The number of non-zero singular values is

the rank of X̄, and the sum of squares of σi represents the amount of data variation in X.

In practice, many data matrices exhibit a latent rank much lower than the actual

rank measured by the number of non-zero singular values, or rather, by the number of

linearly independent columns in the matrix. Intuitively, the reason is that, in practice, many

columns (i.e., header fields of the packets we store in the matrix) are not exactly linearly

dependent but they may be highly correlated and thus, approximately linearly dependent.

66

When this happens, we can reduce the size of the data by approximating the matrix using

its latent rank, which is smaller than the observed rank.

Thus, in order to reduce the size of data sent for analysis and inference, while

minimizing the approximation error (in the least squares sense), a lower rank representation

of X̄ is produced by keeping only the largest r ≤ p singular values σi of X̄ and setting the

remaining ones to zero, to get

X̄p = UΣpVT . (4.2)

It is provable that X̄p is the optimal rank-r approximation of X̄, in the sense of minimizing

the Frobenius norm of (X̄− X̄p) [106]. Here, multiple σis may have small values, indicating

that the latent rank of the matrix is smaller than the observed one. In that case, the

dimensionality of X̄ can be reduced, while still retaining a high percentage of the information

in the data by, for example, removing the smallest σis such that the sum of the squares of

the retained singular values is at least 90% of the sum of the squares of all singular values.

In (4.2), all matrices have similar dimensionality as their counterparts in (4.1).

However, since the last p−r of singular values are set to zero, the corresponding columns in

U and V can now be removed. This new representation is the truncated SVD representation

of X̄ and is equivalent to X̄p. It can be written as follows:

X̄r = UrΣrVT
r , (4.3)

67

where the dimensions of Ur,Σr,Vr are now (n × r), (r × r) and (p × r), respectively. In

our system, the design parameters help decide which representation, i.e., X̄r or X̄p, is more

efficient as discussed at the end of § 4.4.3.

4.4.3 Dimensionality reduction: packets mode

Next, we seek to further reduce the size of the summary produced by each monitor

via an even more compact representation of the packets in the reduced rank space. To do

so, we seek to reduce the dimensionality across packets. We pose the problem to one

similar to signal quantization, where the goal is to identify a set of representative values of

a digitized signal which minimizes the approximation error. Thus, we seek to find a set of

representative packets R that can approximate X̄p (or X̄r). Ideally, R is constructed such

that packets that are similar are mapped to the same representation. Let the size of the set

of representative packets be |R| = k. Formally, our problem can be posed as:

min
R,B∈{0,1}n×k

⋂
RS
‖X̄T

r −RBT ‖2F , (4.4)

where the RS constraint requires each row of B to sum up to 1, and the columns of matrix

R are “centroids”, effectively containing the packets R, and matrix B is an assignment of

each packet to a centroid. We use the Frobenius norm (i.e., Euclidean distance between a

packet and its centroid) because (i) we have no prior knowledge about the distribution of

packet vectors and, (ii) the problem admits very efficient approximations under this norm.

The above problem is known as Vector Quantization or K-means clustering and it

is NP-hard in the above form [64]. However, there exist very efficient approximations when

68

using the Frobenius norm as the loss function, with the most widely used being Lloyd’s

algorithm [149]. In Jaal, we employ the “k-means++ algorithm” [70], an improvement

upon Lloyd’s algorithm that seeks to find a good initialization for the algorithm to converge

faster on a good local minimum. We use this clustering algorithm since it is guaranteed to

find a solution that is O(log k)-competitive to the optimal clustering solution, and is known

for fast convergence.

Note that R has k packet representatives; each represents a group (i.e., cluster) of

similar rows in X̄p. Increasing k increases resolution (more representatives) but increases

the communication cost as well. We study how varying k affects detection accuracy for

different attacks in § 6.5.

We propose two methods for processing and sending summaries to the inference

engine. In the first, we build a combined summary, by applying the clustering algorithm

on X̄p. The output consists of k centroids X̃p, one for each cluster, as well as clustering

metadata. The latter contains a membership counts vector c, and is appended to X̃p to

form Sm1 , which is then sent to the analysis and inference module. It is easy to see that the

number of elements of Sm1 is thus k(p+ 1), for each update from monitor m.

In the second method, we create what we call a split summary. Here, we apply

the clustering algorithm on Ur. The output consists of the k centroids Ũr as well as

the corresponding metadata c and e. The summary in this case is the collection Sm2 =

{Ũr,ΣrVT
r , c}. From (4.3), and since Σr is diagonal and can be sent as a vector of size r,

the number of elements in Sm2 is r(k + p+ 1) + k.

69

Translator
NIDS

question

Similarity

Summary
Sm
1 or Sm

2 Config.
τd, τc

Alert,
Q

Postprocessor

Alert

h, τv
Config.

Q
Estimator

Aggregator Sa

Rules

vectors
q

Inference Engine

Feedback

Figure 4.2: Inference Module.

Note that the information compiled in Sm1 is equivalent to that in Sm2 , but is

represented in a different format. More importantly, as discussed above the communication

cost is different with each method depending on the design parameters r and k. In particular,

when r(k+ p+ 1) + k < k(p+ 1), our system employs the split summary method and sends

Sm2 to the analysis and inference engine; otherwise, Sm1 is sent.

4.5 Analysis and Inference

Jaal includes a centralized inference module. While this notion of central inference

is similar to that with Snort or Bro, the inferences are based on summaries instead of raw

packets. In brief, the inference module contains a translator that converts traditional IDS

rules (specifically Snort rules) to a format that can be used with summaries. The inputs

to this translator are “aggregated summaries” that are single consolidated representations

of the summaries received from all monitors; they characterize all flows traversing the

network in a given period of time. Then, the consolidated summary is checked against each

transformed rule to detect attacks. Fig. 4.2 shows the different blocks in the inference

module.

70

4.5.1 Aggregating summaries

Summaries generated by the different monitors need to be aggregated to get a

global view. There are two ways to fetch summaries from monitors. In the first, monitors

periodically send summaries to the controller. In the second, when a monitor accumulates a

batch size (n) of packets, it constructs and ships the summary of this batch to the controller.

At this point, the controller requests every other monitor to send its summary. In response,

all monitors except those with fewer than nmin packets, send their summaries. Summarizing

information using less than nmin packets incurs accuracy penalties because clustering and

SVD generally do not perform well when data dimensionality is small. However, as shown

in § 6.5, nmin is very small and not of concern in high speed networks.

Let the number of available monitors in the network be M . The aggregated sum-

mary, Sa =
[
X̃a | ca

]
, with centroids X̃a and membership counts ca, is composed by con-

catenating the summaries collected from all monitors in a tall matrix format. In particular,

when monitor m sends its summary in the form Sm1 , it is appended directly to Sa. When

Sm2 is sent, the previously removed p − r zero-vectors in Ũr,Σr and Vr are first restored,

and the matrices are multiplied to reconstruct X̃p. Then, the corresponding vector c is

appended to X̃p to create the same form as Sm1 ; this is appended to Sa.

The number of rows in Sa reflects the total number of representative packets

collected from all the monitors, and is thus at most Mk. Our results in § 6.5 show that this

simple aggregation method is enough to achieve high detection accuracy with respect to a

wide range of attacks.

71

4.5.2 Inference in Jaal

For ease of deployment, we seek to automatically translate Snort rules (since it is

the most popular NIDS in use) to handle packet summaries. Snort has two main modules

for detecting attacks. First, it contains a signature matching module that matches every

signature against every packet, using pattern matching algorithms [54]. In Jaal, we trans-

late such rules automatically to handle summaries. Second, Snort contains attack-specific

preprocessors, to detect attacks that cannot be handled using signatures (e.g., port scan-

ning). In Jaal, we design a module called the “postprocessor” that has a functionality that

is equivalent to that of Snort’s preprocessor.

Translator: This block takes as input a packet signature g (i.e., a Snort rule),

and automatically translates it into what we call a question vector q of length p as follows.

The value of an entry in q is the normalized value of the corresponding header field in

g, and −1 in the absence of a corresponding header field in g (i.e., the field is irrelevant

to g). Jaal measures the similarity of the rules captured in a question vector q to packet

representatives (X̃a) in the summaries Sa, using a simple distance measure as described

later.

As an example, consider the translation of a specific Snort rule viz., a rule that re-

lates to the SSH brute force attack [56]: ”alert tcp $EXTERNAL NET any -¿ $HOME NET

22 (msg: ”INDICATORSCAN SSH brute force login attempt”; flow: to server, established;

content: ”SSH-”; depth: 4; detection filter: track by src, count 5, seconds 60; metadata:

service ssh; classtype: misc-activity; sid: 19559; rev:5;).”

72

The rule postulates that an alert must be generated if 5 packets destined for the

home network were received within the last 60s, with port number 22. To translate this

rule into a question vector, Jaal initializes a vector of size 18 with −1 set for every position.

Then, the position corresponding to the IP address is set to the normalized home network

IP address and the position corresponding to port number is set to 22 (normalized version).

This question vector is then used to make inferences as discussed below.

Similarity Estimator: Upon being provided with an aggregated summary, Sa,

this block measures the similarity between each question q in the transformed rule set, and

every x ∈ X̃a in the summary. The distance function used is:

dq(x) =
∑
j:qj 6=−1 |qj − xj |∑

j:qj 6=−1 1 . (4.5)

The denominator in Eq. 4.5 normalizes the distance measure to account for questions with

different lengths. If the distance is below a threshold τd, a match is declared and hence an

alert is raised for the corresponding threat signature.

For questions that require a minimum number of matches (e.g, SYN floods), the

similarity estimator sums all the counts ci ∈ ca corresponding to xi with dq(xi) ≤ τd, and

only raises an alarm if this sum is larger than τc. Here τd and τc are per attack parameters

to be configured by a system administrator (τc may be directly carried over from Snort).

In addition, the packet representatives in X̃a matching q are collected in Q.

73

Algorithm 1 Similarity Estimation
Input: question vector: q, distance threshold: τd, centroids X̃a, counts ca, minimum count τc

Output: Binary Attack Classification
sum = 0,Q = {} for xi in X̃a do

end
dq(xi) ≤ τd

sum← sum+ ci

Q ← Q∪ xi

if sum ≥ τc then
end
OUTPUT: Alert, Q

In some cases when more accurate analysis is required at the expense of higher

bandwidth cost, feedback is sent to monitors for a raw batch of packets. We discuss this in

§ 4.5.3.

Postprocessor: As mentioned earlier, Snort employs preprocessors to handle

distributed attacks that cannot be handled using signature-matching. In Jaal, we craft

rules equivalent to those in the preprocessor, that can be used with summaries. Note here

that in typical Snort implementations, these correspond to a small subset of the total attacks

handled [58].

In crafting these rules, we observe that a common feature of such attacks (handled

by Snort’s preprocessor) is that the variance (i.e., the spread in the range of values) in a

specific packet header field is large. Consider, for example, port scans, which are charac-

terized by a large number of incoming packets, all with different port numbers. A large

variance in port numbers indicates that a large number of distinct port numbers was seen

and thus, warrants an alert. Similarly, distributed attacks, such as DDoS, are characterized

by a large number of different source IP addresses.

Jaal uses a “postprocessor” to handle attacks exhibiting large variance across a

subset of header fields. This postprocessor first processes packet representatives Q, provided

74

Algorithm 2 Postprocessing
Input: Header field index h, variance threshold τv , centroids X̃a, counts ca

Output: Decentralized attack alert
Initialize Empty array Z for xi in X̃a do

end
add xi(h) ci times to Z

if var(A) ≥ τv then
end
OUTPUT: Alert

by the distance estimator block, that match a given signature q. Next it applies Algorithm

2, to measure the variance in a header field of interest h. It issues an alert for an attack if

the variance is larger than a predetermined threshold τv. This threshold is to be configured

as with Snort [58].

Example: To illustrate how the inference engine operates, consider the example

of a distributed SYN flood attack. The q corresponding to this attack will have the SYN

flag entry set and all other fields set to −1. The similarity estimator, using Algorithm 1 will

declare a SYN flood attack if the number of packets matching this signature is greater than

the threshold required to issue an alert with regards to this attack (τc). It also outputs the

list of packet representatives Q that match the signature q. To classify whether this attack

is distributed, the postprocessor applies Algorithm 2 to every element in Q, measuring the

variance in the source IP header field. The attack is classified as distributed if the variance

is above the predetermined threshold τv.

4.5.3 Trading cost for accuracy

Since Jaal uses packet summaries to infer patterns in packets, it is expected that

the detection performance will be lower than that achieved if the raw packets were available.

75

τd1?

Attack based on

Alert
Low FPR

N

NY

Y
Request raw packets

τd2?

Attack based on

No alert
High TPR

Figure 4.3: Feedback loop in Jaal.

Despite this, Jaal achieves reasonably high accuracy with low communication overhead as

shown in § 6.5. To improve the detection performance further (with additional commu-

nication costs), we design a feedback loop that enables Jaal to realize multiple operating

points on the detection accuracy-communication overhead tradeoff. In brief, based on the

output of the inference engine, Jaal’s controller sends explicit feedback to certain monitors

(discussed below) requesting finer granularity summaries or even raw packets for specific

batches.

With the feedback loop, the inference in Jaal is logically performed in two stages

using two threshold values τd1 and τd2 as shown in Fig. 4.3. To explain the rationale for this,

recall from § 4.5.2 that τd is used to determine whether a specific centroid in the summary

matches a given question vector. A large value for τd will successfully catch most attacks

(high true positive rate or TPR) but may also result in a high false positive rate (FPR). On

the flip side, a small value of τd will result in low FPR, but also misses attacks more often.

Thus, we choose the first threshold τd1 such that the FPR is small, and choose τd2 > τd1

such that the miss-detection rate is even smaller than that with τd1 .

Let the binary result of the threshold-based analysis using τd1 and τd2 be t1 and

t2, respectively. Thus, we have four different output cases. When t1 is positive and t2 is

positive (case 1), the system has high confidence that there is an attack and an alert is

76

raised. This because using τd1 results in low FPR. If t1 is negative and t2 is negative (case

2), no alert is raised. Here, the system relies on the high confidence with regards to the

TPR when τd2 is used. If t1 is negative and t2 is positive (case 3), the controller asks the

local monitors with the associated (uncertain) centroids in Q to send the actual packets

corresponding to those centroids. The analysis is then done by pattern matching using

traditional Snort rules and these raw packets. Requesting raw packets will decrease the

overall FPR of the system, but will naturally increase the overhead. However, as we will

show in § 6.5, this overhead is minimal and the feedback results in much improved detection

accuracy. Finally, we note that the scenario where t1 is positive while t2 is negative (case

4) is unlikely (we never observed these in our experiments), since both analyses are done

using the same summary Sa and thus it is expected that what is not missed in t1 will also

not be missed in t2 (as t2 guarantees higher TPR).

4.6 Flow Assignment

The flow assignment module seeks to assign flows to active monitors. In doing

so, we have multiple goals. First, all flows passing through at least one monitor must

be covered. Second, we require that a flow must be monitored by exactly one monitor.

Duplicate monitoring of flows incurs unnecessary processing and bandwidth costs and more

importantly, might lead to incorrect detection results. This is because Jaal uses summaries

which do not retain information that could allow accounting for duplicate packet counts

(same packet from multiple monitors) during inference. Third, in order to ensure that

no monitor gets overloaded, we seek to ensure that the traffic monitored by the different

77

monitors is balanced, to the extent possible. Finally, flow assignment has to be very efficient

and scalable (algorithm must be of low complexity).

This problem is challenging due to multiple reasons. First, each flow may only

traverse a specific subset of monitors. Second, a flow can last for an unknown amount of

time before it terminates. Moreover, flows can vary drastically in terms of “packet rate,”

i.e., the rate at which packets belonging to that flow are seen at an assigned monitor. This

packet rate is used as a weight to represent the relative workload generated by the flow, in

the assignment problem. Since a priori forecasts of flow arrival times, termination times,

or weights is not possible, the system has to make its flow assignment decisions that satisfy

the objectives above, in real time.

The flow assignment problem can be mapped to the online optimization problem

[62], where the flows are the jobs to be assigned to M machines (monitors) upon their

arrival, such that the maximum load across all monitors is minimized (i.e., load balancing).

Upon the assignment of a flow to a monitor, the load on the monitor is increased by an

amount equal to the weight of the flow. This increase is valid for the duration of the flow.

The assignment will have to be non-preemptive, since it is impractical to reassign the other

flows when a new flow arrives. We assume that monitors are homogeneous.

The metric used to evaluate online algorithms is the competitive ratio [80], the

supremum, over all possible input sequences, of the maximum (over time and over monitors)

load achieved by the on-line algorithm to the maximum load achieved by the optimal offline

algorithm. One online algorithm performs better than another if it has a lower competitive

ratio. For load balancing problems, the performance here is measured in terms of the

78

maximum load. Robin-Hood algorithm [74] has been shown to be optimal in solving online

load-balancing of unknown duration tasks with assignment restrictions. In particular, it

achieves a competitive ratio of O(
√
M), which is the lower bound for this class of problems.

However, applying the Robin-Hood algorithm in practice is challenging because it requires

the knowledge of incoming flow weights before an assignment decision is made. This is hard

to do since the packet rates of a flow are not known a priori; estimates could be made (e.g.,

using machine learning) but it adds to the complexity. We omit the details of this algorithm

in the interest of space (details are found in [74]).

Given the above challenges, We choose a simple greedy algorithm, which has been

shown to achieve a competitive ratio of (3M)2/3

2 (1 + o(1)) [73]. The greedy flow assignment

algorithm assigns an incoming flow f to the least loaded monitor within the subset of

monitors on its path. This simple algorithm has two advantages. First, it does not require

the estimation of flow weights to decide on the monitor to which the incoming flow is

assigned. Second, as shown later in § 6.5, the assignment update is processed very quickly

and thus, can potentially scale to WANs.

Since the number of flows traversing an ISP network is typically very large, making

assignment decisions on per-flow basis and as new flows arrive and terminate, is not prac-

tical. Instead, we observe that subsets of flows, based on routing, can be grouped together.

We call these constructs flow groups. In particular, a flow group is a set of flows that tra-

verse a given common set of monitors. For a given flow group, we define the corresponding

monitor group as the subset of monitors on the path of the flow group. Note that a monitor

can belong to multiple monitor groups. In Jaal, a new flow is greedily assigned to the least

79

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n = 1000, r = 12

(a) k = 100

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n =1000, r = 12

(b) k = 200

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n = 1000, r = 12

(c) k = 400

Figure 4.4: ROC curves for various attacks. Batch size = 1000, rank = 12, varying k, Trace
1.

loaded monitor in its corresponding monitor group. This setup allows us to implement a

very efficient assignment algorithm that collects monitor load updates periodically, and then

compute the assignment. Since flow arrivals and terminations events happen at arbitrary

times, the performance of our greedy algorithm will approach the above theoretical bound

of the greedy algorithm as the periodic update period P becomes smaller. In practice, we

show in § 6.5 that it is comparable to that of Robin Hood algorithm.

4.7 Implementation

Central Components: The flow assignment, and the inference modules, are

implemented at the central SDN controller using the open source Ryu SDN framework [55].

80

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n = 2000, k = 500

(a) r = 10

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n = 2000, k = 500

(b) r = 12

SYN Flood
Distributed SYN Flood
Sockstress
Port Scan (nmap)
Distributed SSH Brute Force

TP
R

0

0.2

0.4

0.6

0.8

1.0

FPR
0 0.2 0.4 0.6 0.8 1.0

n = 2000, k = 500

(c) r = 15

Figure 4.5: ROC curves for various attacks. Batch size = 2000, k = 500, varying rank,
Trace 1.

We employ shortest path routing; thus, flow groups are just based on common source and

destination prefixes.

As discussed in § 4.6, each incoming flow is assigned (based on load updates) to

the least loaded monitor. This is done via an OpenFlow forwarding rule installed in the

switch attached to the monitor. The entire module is written using Python’s event-driven

framework as a single threaded application. The module maintains a dedicated long lived

TCP connection with each monitor. The flow assignment module polls monitors for load

updates every P = 2 seconds (a larger value resulted in poor load balancing and a smaller

value did not yield any significant improvements).

In the inference module, the new IDS rules are created offline and stored. The

module executes a single threaded process that waits in an event loop for monitors to send

summaries. It also maintains a long-lived TCP connection with each monitor and peri-

81

odically asks monitors for summaries. Once the summaries are received, they are checked

against every locally stored question vector, and processed using the postprocessor, as de-

scribed in § 4.5 and alerts if any, are logged.

Monitors: Monitors are implemented as network functions (NFs) at the SDN

switches in Python, along with popular math and data mining libraries (NumPy, SciPy,

pandas). They are instantiated by activating pre-stored VM images and attaching them to

the chosen switches via a VLAN. The process is automated using an Ansible script. Each

monitor executes two processes. The first process tracks load and responds to load queries

when prompted. The second is responsible for the summarization tasks. Specifically, each

monitor stores packets in a local buffer (NumPy array) and computes summaries. The

centroids and their memberships are stored for one epoch (the periodicity with which the

inference engine requests summaries) as a newly created hash table where the key is the

centroid and the value is a list of actual packets associated with those centroids. If the

monitor receives a request for raw packet dumps belonging to a specific centroid, it retrieves

the list of packets using that centroid as the key and sends these to the inference engine. A

hash table that is thus created, is deleted after the relevant epoch (2 seconds).

4.8 Evaluation

Next, we present our evaluation of Jaal. We use two ISP backbone traces from

the MAWI group [52], Trace 1(2016/01) and Trace 2 (2016/02). to represent background

traffic. We inject attack traffic in conjunction. Specifically, we consider five different kinds

82

Communication overhead
True positive rate

Pe
rc

en
ta

ge

40

60

80

100

FPR
10 20 30 40 50 60 70 80 90 100

Increase in TPR and communication overhead

Figure 4.6: The increase in TPR and
communication overhead as the accept-
able FPR is increased.

Avg decrease in throughput
Worst decrease in throughput
Drop in accuracy

Pe
rc

en
ta

ge
 d

ec
re

as
e

0

50

100

Percentage of traffic replicated
0 10 20 30 40 50 60 70 80 90 100

Performance degradation as traffic replication increases

Figure 4.7: Performance degradation as
the percentage of traffic that is replicated
increases.

Unchecked infections
Remaining infected devices after Jaal

N
um

be
r o

f i
nf

ec
te

d
de

vi
ce

s

0

50

100

150

Time (s)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of Infected devices vs time

Figure 4.8: Mirai Attack: Unchecked in-
fections versus infected devices shut off
upon detected by Jaal.

Greedy
Robin Hood
Random

Lo
ad

 R
at

io
 (m

in
/m

ax
)

0

0.2

0.4

0.6

0.8

1.0

Groups
0 2 4 6 8 10 12 14

Load for different monitoring groups - Topology 1

Figure 4.9: The load across different mon-
itor groups for topology 1.

Reservoir Sampling Jaal
Distributed Syn Flood 54% 99%

Sock Stress 60% 98%
SSH Brute Force 42% 97%

Sockstress 56% 94%

Table 4.1: Comparing to reservoir sampling

of attacks: (i) SYN floods to represent DoS attacks, (ii) distributed SYN floods to represent

DDoS, (iii) distributed port scans, (iv) distributed SSH brute forcing, and (v) Sockstress.

DDoS, port scans, and brute forcing attacks are among the most common types of network-

level attacks today [48]. Hence, we choose one of each type. We choose the Sockstress

attack [32, 57] because it is more complex than other DoS attacks. It completes the TCP

handshake and sets the TCP window size to 0, forcing the server to keep the connection

alive for a long time. Finally, we also do a case study with the Mirai attack, and show Jaal’s

effectiveness in countering it.

83

Figure 4.10: The magnitude of the singu-
lar values for a packet matrix of n = 1000.

Figure 4.11: Percentage savings vs. the
batch size for fixed error rates.

We now describe how we construct the different attacks. We first note that, while

the MAWI traces might contain some malicious packets, it is very difficult to analyze the

traces to determine which packets are anomalous and which are not as they are not labeled.

In addition, running these traces through Jaal does not provide any intelligent information

because the ground truth is not available. Thus, we treat the traces as benign traffic and

explicitly inject malicious packets.

For each attack, we throttle the injected attack traffic to be at most 10% of the

overall traffic. We get the volume of benign traffic by parsing the MAWI traces and pre-

determining the total volume of traffic that will be replayed at each time instant. The attack

scripts then enforces the cap by stopping attack packets if the 10% quota has already been

met. Note that socktress is a stealthy DoS attack and as such, does not need a large number

of packets to succeed. Consequently, we did not have to enforce the 10% rule for it.

For distributed attacks we generate source IP addresses randomly from different

subnets. This ensures packets take different routes and traverse different monitors. The

total number of attacking IP addresses for each attack is approximately 200. For port scans,

84

we use the popular Nmap tool [53] to conduct scans. Nmap has a list of ports that it scans

and we simply use those defaults.

Testbed and configuration: We implement Jaal on an in house SDN testbed

that consists of 5 Dell PowerEdge 730 Servers (22 cores, 256GB memory, 12 ports) and two

HP 3800 series switches (SDN enabled each with 48 ports) and 2 Arista 7280E switches

(each with 72 ports). Note that we use SDN for the purposes of evaluating Jaal; it is not a

necessary platform for the deployment of Jaal.

To represent the network, we use two realistic RocketFuel topologies [191] in our

evaluations viz., Abovenet (which we call topology 1) and Exodus (which we call topology

2). Topology 1 has 367 routers and topology 2 has 338 routers. We create the topologies

by instantiating the desired number of open vSwitch instances and connecting them using

virtual links to match the configuration of the chosen topology. Our virtual topology can

handle Gigabit traffic effectively, where the underlying SDN switches have 10GBE ports.

4.8.1 Detection Accuracy and Overhead

Overall results: In a nutshell, our experiments show that for all the attacks

considered, Jaal achieves an average true positive rate (TPR) of ≈98% at about 9% false

positive rate (FPR) with a communication cost of only 35% of that incurred by conventional

IDS systems (i.e., copying raw packet headers and sending to a central engine for analysis).

To achieve these, we need to select parameters that dictate the granularity of summarization,

so as to yield good trade-offs between detection accuracy and cost. We use ROC (Receiver

Operating Characteristic) curves towards choosing the appropriate configuration parameters

(as discussed next).

85

ROC based analysis: Consider the case where τd1 = τd2 = τd, i.e., no feedback

loop is implemented. Two parameters influence Jaal’s tradeoffs between detection accuracy

and communication cost, viz., the rank r, and the number of centroids k. We examine how

accuracy changes for different values of r and k using ROC curves. ROC curves show the

TPR versus the FPR and are typically used for understanding the tradeoff between the

two metrics. Each combination of threshold values (i.e., τd, τc, τv) is a single point on the

graph, and the TPR/FPR values are computed relative to ground truth. Each point is an

average over 15 runs, each of which is 45 minutes long. Our experiments show that setting

n to 20% of the size of the batch provides good resource consumption-accuracy tradeoffs.

However, this might need to be re-evaluated by system admins in a real deployment. The

process would be the same as the one we undertake above.

Varying number of centroids k: First, we fix r = 12, n = 1000, nmin = 600 and

vary k and consider topology 1. In Fig. 4.4 the detection accuracy is shown for Trace 1

(similar results are observed for Trace 2 and are omitted in the interest of space). We

observe that a value of k = 200 (i.e., 20% of the reduced dimension packets are sent for

analysis and inference) yields very good detection accuracy for all attacks. Increasing k

further yields diminishing returns in accuracy while increasing the communication costs.

However, lowering k to 100 results in a significant detection penalty for all attacks except

for SYN flood attacks. This is because of the boolean nature of flags. In other words, a

packet is either as close as it can possibly be to a representative packet (centroid) with the

SYN flag set, or is far away, depending on its SYN flag value.

86

Varying retained rank r: The rank of a matrix of raw packet headers, X, is ≤ p =

18. We study the distribution of the singular values of X and conclude that it is possible

to retain 90% of the information in X by retaining only the top 16 values. To reduce the

rank, we consider values for r < 16, as shown in Fig. 4.5 (with Trace 1 and topology 1). As

apparent in Figs. 4.5b and 4.5c, r = 12 yields approximately similar performance to r = 15.

Dropping r to 10, however, results in a high accuracy penalty for all attacks, as shown in

Fig. 4.5a. We observe the similar results with Trace 2.

The Feedback Loop: From the ROC curves, we see that without the feedback

loop, with properly chosen values of k and r, Jaal achieves an average TPR of ≈92% at

about a 10% FPR, with a communication cost of only 30% of that incurred with raw packets.

At the same time, if the TPR is chosen to be 98%, the FPR increases to 20%. We choose

attack specific thresholds τd1 6= τd2 , that yield these TPR and FPRs.

In Fig. 4.6, we plot the communication overhead vs. the TPR with the feedback

loop. We also plot the average TPR for easy comparison. We see that with a value of

τd2 chosen such that the TPR improves to 98%, the communication overhead (with the

feedback loop implemented) only increases to 35% (from 30%) of that incurred with raw

packets. Beyond this, the gain in TPR diminishes while the communication overhead rises

sharply. Finally, we point out that with the feedback loop, the FPR is 9.1%, while the TPR

is 98%. The reason for not seeing a further increase in TPR (the FPR drops) is that, since

the traffic is already classified as attack traffic and only the data relevant to reducing false

positives is retrieved, an increase in TPR is not observed.

87

Communication overhead: The communication overhead savings achieved by

Jaal compared to sending raw packet headers as in conventional NIDS, is roughly propor-

tional to k/n (if we ignore the raw packet overheads from feedback). After processing 2GB

of traffic (in terms of headers only) system wide, Jaal only transmitted a total of ≈700MB.

This corresponds to a 65% reduction compared to a traditional NIDS that requires sending

all the 2GB. This is comparable to other specialized count-based sketches [148] but provides

significantly richer information.

Feasibility of the vanilla approach of sending raw packets for inference:

To test the feasibility of just copying and forwarding raw packets instead of generating sum-

maries, we set up a realistic ISP topology and replayed backbone traces mixed with attack

traffic (identical setup to the experiments above). The monitors (selected as previously)

copy packets and transfer them to the central inference engine. We randomly vary the selec-

tion of the location of the inference engine across the experiments (a total of 25) to simulate

different scenarios. The analysis engine runs Snort for the purposes of detection and we

consider all the 5 attacks discussed earlier. Fig. 4.7 depicts the results of this experiment.

We plot the percentage decrease in (a) the throughput and (b) accuracy on the Y-axis. The

X-axis represents the percentage of traffic that is replicated for analysis purposes (fraction

of packets that are copied and sent).

The network throughput reflects the average rate at which, normal traffic is pro-

cessed at each switch (this takes a hit when it processes the copied traffic). The accuracy

is measured as the percentage of attacks that the detection engine flags from among all

the attacks injected. The throughput overhead reflects the “loss in throughput” (compared

88

to the baseline case without replication – this is what is in existence today) due to the

introduction of the extra (copied) traffic. The results show that in the worst case (for one

particular choice of the central analysis engine), the throughput overhead is 90%; in the

average case the throughut overhead is 70%. Such high throughput hits will significantly

affect network performance for the ISP (and the users subscribing to that provider). With

Jaal, the replication level roughly corresponds to 35% which in turn corresponds to an

average loss in throughput of less than 10% and a worst case hit of <20%.

We also see a 75% decrease in accuracy when all raw packets are sent to the infer-

ence engine. This loss is a direct artifact of missing attacks because of packet losses (arising

both due to congestion and overloading of the inference engine). The loss in accuracy shown

does not directly reflect Jaal’s accuracy – it corresponds to the loss in accuracy due to sam-

pling (since 35% of the packets are replicated and transferred); as shown earlier Jaal does

dramatically better in terms of accuracy.

Computation Costs: Our tests indicate that each monitor can handle rates

of 300Mbps easily, indicating that the combination of SVD and k-means is not compute

intensive. We omit detailed results because of space.

Case study of the Mirai attack: To evaluate Jaal’s efficacy in countering the

Mirai attack, we emulate the attack on our testbed (using the published source code [41]).

A randomly chosen node in the network initiates the Mirai scan and infects vulnerable

devices. An infected device starts scanning for other devices and in turn infects them if

possible. We randomly selected 150 nodes in our network to be vulnerable.

89

We compare two scenarios. In the first, there is no detection and response in place;

we let the emulation run and track the total number of infections as time progresses. In the

second, we configured Jaal to detect the scan (high variation in destination IP for common

target ports, which are in our case 23 and 2323). We assume that the administrator shuts

down traffic from an infected node whenever the scan is detected. Jaal detects the scan

with an accuracy of 95% within 3s. Figure 4.8 shows the result of this experiment. We see

that due to the brute force nature of the scan, the number of infected devices rises almost

exponentially if left unchecked. With Jaal’s detection and the consequent response in place,

the total number of infected devices never rises above 50 (infected devices are detected

within 3s regardless). This means that in the worst case, there is a three-fold decrease in

the number of devices that could have launched the subsequent DDoS attack. If the DDoS

attack is triggered later, the number of devices could be significantly smaller (as seen in the

figure) since additional devices are detected and disabled.

Comparison to Reservoir Sampling: Next, we compare Jaal’s performance

with that of a system using a state of a art sampling technique, viz., reservoir sampling [200]

[103]. For fair comparison, we set up reservoir sampling with roughly the same communi-

cation overhead incurred when Jaal uses r = 12, k = 200, n = 1000. Specifically, we set the

size of the reservoir to 250 and then wait until the sampler has processed 1000 packets prior

to shipping the samples. Table 4.1 shows the comparison results. Since reservoir sampling

keeps a fixed-size running uniform sample of the entire stream, attack packets sent over

a short period of time will get “diluted” in the sample by a large number of non-attack

packets and thus will not be well represented. This results in poor detection accuracy. Note

90

that it is possible to bias the sampling in favor of specific header fields, but this would not

be a “general” approach towards detecting a large class of attacks.

4.8.2 Individual Module Performance

Next, we examine the performance of Jaal’s modules.

Greedy flow assignment: We compare Jaal’s greedy flow assignment to the

optimal online algorithm (i.e., Robin Hood). The weights for Robin Hood are given (we

know the ground truth) and the assignment is done on a per-flow basis; this is an ideal but

impractical scenario. We also consider an algorithm which randomly assigns flows to any

monitor in the corresponding monitor group. We consider Topology 1, and fix the number

of monitors to 25. We use a load update period P = 2s. In Fig. 4.9, we plot the time

averaged load for different monitor groups j. We see that the greedy assignment closely

mirrors the performance of the Robin Hood algorithm (with deviations of 10% on average

and 14% in the worst case). The random assignment performs poorly as expected. The

results are similar for topology 2 and are omitted in the interest of space.

Dimensionality reduction using SVD: Fig. 4.10 depicts the variation in the

magnitude of singular values (recall § 4.4.2) for n = 1000. The drastic drop in magnitude

beyond the top 14 values shows that the lower values are either zero or are very small and

can thus be ignored compared to the dominant singular values. In fact, as seen in Fig. 4.5,

r = 12 gives us the best trade off between accuracy and communication overhead.

Variance estimation: As discussed in § 4.5, variance in fields such as port

numbers, is used in Jaal’s postprocessor to detect distributed attacks. We examine how

good is Jaal’s estimate of the variance in the destination port header fields, as we vary k,

91

for different batch sizes n. We observe that the error in variance estimation is less than

5% when k/n > 0.2, i.e., when summaries cost only 20% compared to sending raw packet

headers, and n ≥ 1000. Next, we study the effect of batch size on the communication

costs. In Fig. 4.11, we plot the compression ratio η = 1 − k/n (which is proportional to

the communication cost saved) vs. the batch size n for two different maximum variance

estimation errors ε. As the batch size increases, Jaal attains better compression ratios

for a given maximum error ε. For example, for ε = 5%, and n = 2000, Jaal achieves a

compression ratio of about 85%. To ensure very low ε (alternatively very high accuracy)

when packet arrival rates are low, a monitor either needs to use a smaller η (which may be

acceptable given the lower load) or wait until a larger number of packets are accumulated

prior to summarization (thus delaying inference).

Discussion on TPR and FPR: Finally, we analyze why attacks are missed and

why there are false positives. We examine the centroids to which packets get assigned by

parsing the entire list of centroids and the packets that have been assigned to them and

determine which malicious packets are assigned to centroids representing normal traffic and

vice versa. We find that both kinds of errors occur when attack packets are similar to

background traffic and the clustering is not able to differentiate between them. However,

we point out that both the TPR of 98% and FPR of 9.1% that Jaal achieves, are well within

the reported acceptable performance levels of a NIDS such as Snort or Bro [34, 167, 84].

One could further request finer grained summaries or raw packets, when an alert

is to be raised to reduce false positives (with increased cost); conceivably, even random

92

retrieval of full traces when an attack is flagged, could reduce the FPR. However, we leave

these possibilities to future work.

4.9 Related Work

In this section, we discuss relevant related work.

NIDS: There have been attempts to address the scalability issues in centralized

NIDS [122, 188] but only to the extent of scaling to enterprise scale networks. These

solutions do not hold up to the ISP scale intrusion detection. For example, the approach in

[122] assumes that there will be a single entry and exit point into the network which is not

true for large WANs. The framework presented in [188] requires the transfer of raw packets

to clusters to make inferences, which as discussed, leads to both performance and inference

accuracy degradation.

Network Monitoring, Sampling, Sketching: Packet sampling has been pro-

posed for heavy hitter detection [135], packet length estimation [208] and flow size estima-

tion for small flows [125]. In [94], the authors provide an API for collecting flow statistics

at different aggregation levels. These approaches however, are tailored towards measuring

only a few pre-specified metrics of interest. In [182, 183] a more general sampling strategy

is developed; the strategy however, is only effective in measuring aggregate statistics over

streams (e.g. heavy hitter detection, entropy estimation). This is not conducive to general

intrusion detection where retaining the correlations across individual headers is necessary.

There has been progressive work on estimating various network related metrics via

sketching [148, 173]. While sketches, unlike sampling, offer cost and accuracy guarantees,

93

they suffer from the same fundamental problem of being restricted to measuring some

aggregate statistic over a specified dimension. Our solution can handle the generality of

NIDS rules by retaining finer grained information.

4.10 Discussion

In this section, we discuss a few avenues for future work as well as areas where

Jaal can be improved.

Payload-based Attacks: Jaal was not primarily designed to detect payload

based attacks. We believe that payload monitoring by ISP’s raises some important privacy

questions that deserve debate. However, Jaal can handle some rudimentary payload-based

attacks with a simple extension. Specifically, one approach to detect the presence and/or

count of certain keywords (e.g., a specific malicious website, or the term “.exe” which signifies

the presence of an executable) is to construct a term frequency matrix using a batch of

packets - a popular technique used in sentiment analysis and recommender systems [177].

This matrix can then be treated the same way as the headers-only batch is considered in

this chapter.

False Positives: One area of concern with deploying Jaal is the high FPR. We

argue that the TPR and FPR rates achieved by Jaal are significantly better than what is

possible today. In other words, there are no systems to perform effective intrusion detection

at these scales with these TPR/FPR rates. Future work will look into reducing this false

positive rate (e.g., we will examine if using multiple windows of packet summaries and

correlating the of inferences from those windows can help in this regard). Note that the

94

high FPR is a problem inherent to signature based systems and is not unique to Jaal. Since

a system such as Jaal has never been deployed at ISP-scale networks, it is unclear what

the implications are in terms of FPR at that scale. However, we expect analysts to parse

logs just as they would for an enterprise IDS. Establishing a dialogue with ISP’s about the

deployment of Jaal is left to future work.

Applicability: While we showcase Jaal’s performance with a specific set of at-

tacks, we expect Jaal to detect any attack that can be characterized by a Snort/Bro-style

packet signature. However, we acknowledge that attacks that only need a few malicious

packets to succeed might be more challenging. For example, the TCP reset attack needs

only one packet with the RST field set to induce malicious activity. Currently, Jaal cannot

handle such attacks because a single packet will likely get assigned to an existing centroid

that is not representative of it. Fixing this problem requires changes to the clustering

algorithm and we defer improvements along this direction to future work.

We also note that Jaal can be used alongside smaller-scale (e.g., enterprise) IDSs.

Jaal can also be used in conjunction with sketches. For example, sketches could be used for

simple heavy hitter detection while Jaal can be used to detect more complicated attacks

requiring correlation across multiple header fields.

Adaptive attackers: Finally, a last avenue of future work is evaluating how

robust Jaal is to an intelligent attacker that is aware of how Jaal works. Whether or not

an attacker can craft packets to explicitly bias the summarization process is something we

intend to explore in future work.

95

Chapter 5

Streaming Lower Quality Video

over LTE : How Much Energy Can

You Save ?

5.1 Introduction

Current reports indicate that video streaming to smartphones is experiencing an

unprecedented growth [9]. The emergence of LTE (Long Term Evolution standard) [186],

which offers significantly higher throughput compared to the previous generations of cellular

networks, has fostered this growth. Streaming video over a cellular network however impacts

the battery consumption of a client device. While User Equipment (UE) and specifically

smartphones, have grown in complexity with better displays and faster CPUs, the battery

technology has not been able to keep up. LTE, due to its ability to sustain significantly

96

Vi
de

o
Se

rv
er

 User Equipment

Our
Analytical

Framework U
se

r
In

te
rfa

ce

Video Metadata: Duration, Resolution, Slow Vs. Fast Video Characterization

Channel Quality Estimate (PER)

Provide Quality
Versus Energy
Trade-off

 Download Chosen Quality Video

CPU	
 Processing Energy

Figure 5.1: Applicability of our framework.

higher user throughput compared to 3G, exacerbates the battery problem during video

downloads, since the higher downlink/uplink data rate translates to higher energy con-

sumption [129]. It has been shown that the radio interface is a significant power consuming

resource [129].

Today, adaptive bit rate streaming has become a common practice for streaming

video [199]; by detecting the user’s bandwidth, the quality (resolution/bit rate) of the video

stream is adjusted so as to improve the user’s quality of experience. However, to the best

of our knowledge, changing the quality of the video to lower the energy consumption on

the user’s smartphone has not been previously studied. In particular, a user may choose a

lower quality video stream, even when bandwidth/CPU resources are adequate, to reduce

her battery drain. We seek to explore this dimension in this work.

As one might expect, a user can decrease the energy consumed on her smartphone

when downloading a video, by downloading a lower quality version of the same video.

In some cases (poor channel conditions), downloading a lowered quality video could even

97

improve user experience (prevent stalls); in fact, there has already recent work that advocate

the use of lowered video quality (albeit in a wireline setting) to enhance user experience

during downloads [66]. However, today there do not exist any tools that allow the user

to get an estimate of how much energy she can save by choosing a lower quality video

for downloads over cellular connectivity. Such an estimation is intricately hard because

of the following reasons: (i) The estimation has to be made without downloading any of

the versions of the video; in other words, it has to be based on a set of parameters that

characterize the video to be downloaded; (ii) The savings from downloading a lower quality

version would depend on how the UE state transitions (described later) [186] are affected by

the arriving video traffic. This in turn would depend on the channel conditions perceived

by the user at that time. These challenges essentially require that any framework must

be holistic and tie in the interactions between the video flow characterization, the LTE

scheduler and the energy transitions due to traffic arriving at the UE.

Goal and Vision: In this chapter, we seek to develop an analytical framework

which takes as inputs, factors that influence energy transitions at the UE (i.e., video charac-

teristics, channel conditions) and yields as output an estimate of the energy savings possible

with a lowered quality video download of a given stream. A pictorial representation of how

our framework can be applied is shown in Fig. 5.1. Either the UE or the video server can

perform a small set of calibration measurements to estimate the channel quality in terms

of PER. Alternatively, a model that maps the signal strength to PER could be used to

estimate the PER at the UE side. The video server would provide metadata [210] from

the video clip chosen for download in the form of resolution, a coarse characterization of

98

slow versus fast video (using tools such as AForge [4]) and the duration of the video. The

UE will also locally estimate the energy required to process the received video frames for

the different versions of the video. Our model yields as output an estimate of the energy

consumed on the network interface with the different resolutions of the video, the user seeks

to view. This combined with the the processing power provides the user with an estimate

of the total energy with the different versions. She can then make an educated decision on

the version of the video to download from the server.

Contributions: As our primary contribution we build a mathematical framework

to capture the interactions between video traffic, the LTE scheduler, and the energy state

machine at the UE. In addition to being useful for near real-time estimation of energy

savings from choosing lowered quality videos for downloads, it provides a fundamental

understanding of how and why different input factors influence energy consumption. In

essence, the framework considers a general model of video traffic, and characterizes the

arrival process of video packets at a client device (UE) after they traverse an LTE-based

wireless link. The arrival process in turn calibrates the transitions between the different

energy states in which the UE can reside, and the likelihood of being in each of those states.

We validate our framework via extensive simulations and through experiments on a real

smartphone in a variety of scenarios, thereby demonstrating its accuracy (the results are

within ≈ 5 % of the real measured values) as well as generality.

Some interesting insights arising from our work are:

• Choosing a lower quality video stream incurs a small penalty in terms of the video PSNR

(Peak Signal to Noise Ratio) but results in significant energy savings; specifically, a PSNR

99

reduction of 10.1% can fetch energy savings of the order of 375 J for a video of duration

15 minutes. When a user views videos over extended periods, the energy savings can

therefore be significant.

• While as expected, streaming higher resolution videos result in higher energy, the in-

crease depends on whether it is fast or slow motion video. For example, in good channel

conditions, moving to a lower resolution from a higher resolution results in a 480 mW (≈

26 %) reduction in power (energy consumed per unit time) for fast motion video, but a

418 mW increase (≈ 23 %) for slow motion video.

• In poor channel conditions, moving to a lower resolution results almost in identical power

savings for slow and fast motion video (≈ a 19.5 % decrease in power). However, the

savings in milliwatts is higher for fast motion video.

• For typical video transmissions, one observes that the time spent in some of the LTE

energy states is insignificant regardless of the resolution.

Scope: Our framework primarily accounts for the energy consumed by the net-

work interface on the UE. In addition, there is a processing energy consumed on a device

for processing/playing back the video frames; this energy is device dependent and we use

empirical results that are driven by experiments (this can be measured locally on any de-

vice).

For validation, we assume that videos are streamed using fixed bit rates. However,

our framework can be applied to adaptive bit rate streaming as discussed in Section 5.6.

We employ video resolution and PSNR as the metrics for quantifying video quality. It has

been shown that the perceived video quality on mobile devices is affected by the size of the

100

screen, user mobility, and ambient light [207]. Accounting for these factors is beyond the

scope of this work and will be considered in the future. For analytical tractability, we also

assume that the user is stationary during the course of video streaming.

While we validate our framework via simulations and experiments, we do not

implement the complete system shown in Fig. 5.1. To implement such a system, we will

need to make changes to the video server so as to deliver the appropriate metadata to the

client UE, and also have a dynamic PER estimation tool for the LTE link; these are beyond

the scope of this work and will be considered in future work.

5.2 Relevant Background

In this section, we describe aspects of LTE that we seek to capture in our analytical

framework.

The Radio Resource Control (RRC) State Machine: The LTE RRC state

machine captures the different energy states that a UE can be in and has two primary

states: rrc idle and rrc connected. The latter has three modes as shown on the right

side of Fig. 5.2. If the UE is in rrc idle, then any data exchange (even corrupted) triggers a

transition to the rrc connected state. The UE then enters the continuous reception mode

and monitors the physical downlink control channel (PDCCH), on which control information

is delivered from the base station (referred to as enB in LTE jargon [186]). At this time,

the UE also starts its continuous reception timer, Tc. If no packets are received before the

expiry of this timer i.e., in Tc, the UE enters the Short DRX mode. In this mode the UE

alternates between ON and OFF periods (called DRX cycles) to save energy. If during any

101

ON period, the UE receives data or has data to send, it returns to the continuous reception

mode.

Upon entering the Short DRX mode, a different timer, Ts, is set. If there is no

data transfer (received or sent) prior to the expiry of this timer, the UE enters the Long

DRX mode. The Long DRX mode is similar to the Short DRX except that it has longer

DRX cycles and a bigger timer value (Tl) associated with the time prior to exiting this state.

Thus, Ttail = Tc + Ts + Tl represents time for which no packets should be either received or

sent in order to return to the rrc idle state, and is referred to as the LTE tail period.

Packet transfers in LTE: The transitions between the states in the LTE RRC

state machine are dictated primarily by packet receptions during video streaming. This

in turn is handled at the MAC (and the PHY) layer of the LTE protocol stack. Our

focus in this work is on the MAC layer, and we abstract the PHY in terms of packet error

probabilities. Thus, we describe this layer in some detail below. A more detailed description

of all the layers of LTE can be found in [186].

MAC and Physical Layers: The MAC layer implements a Hybrid Automatic

Repeat reQuest (HARQ) protocol for reliable packet transfers. It also dynamically selects

the Modulation and Coding Scheme (MCS) to be used at the PHY, based on the channel

conditions. Transmissions in LTE are organized into frames that are 10 ms long. Each frame

is divided into ten 1 ms subframes. The LTE transmission time interval (TTI) specifies the

granularity at which packets are scheduled and this is done once every subframe (TTI = 1

ms).

102

P

Video Process

RRC State Machine

Module B

Continuos
Reception

Short
DRX

Long
DRX

IDLE

Tc

Ts
Tl

Q
ue

ue

1
2

3

Np
Hybrid - Arq processes

+
 Channel Conditions

Module A

Distributer

Figure 5.2: A depiction of the system considered in our framework. Module A represents
the LTE scheduler and Module B represents the UE RRC machine. The output of Module
A, which is the probability of a packet being sent in a TTI, p, is the input for Module B.

The HARQ process: The HARQ process is different from a regular ARQ process in

how it sends data and retransmissions. In LTE, incremental redundancy and chase combin-

ing are both supported. With these approaches retransmissions add required redundancies

and are combined with prior transmissions to increase the likelihood of packet success.

LTE uses multiple HARQ processes simultaneously. The number of these pro-

cesses, N , are chosen such that it is greater than the round trip time (RTT) of a single

HARQ process (in time slots). The multiple processes transmit packets one after the other

(round-robin), as a continuous stream without waiting for acknowledgments (ACKs) or

negative acknowledgments (NACKs). Each process will have received an ACK or a NACK

by the time it is its turn to transmit again. The number of HARQ processes for FDD

(frequency division duplexed) LTE is 8 (the RTT with LTE is typically < 8 ms [186]). The

number of transmission attempts that a single HARQ process makes before dropping the

packet is generally 5, i.e., it makes 1 transmission and 4 retransmission attempts.

103

5.3 Our Analytical Framework

In this section, we build our mathematical framework for understanding the trade-

offs between video quality and the battery consumption at the UE. As expected, the UE

energy consumed will decrease if one were to lower the quality of the video that is down-

loaded. However, the savings will depend both on the type of video (resolution, slow versus

fast video) as well as the channel conditions (poor versus good link quality).

To reiterate, we envision our framework to be used as depicted in Fig. 5.1. Prior

to sending a video stream, the sender characterizes the video in terms of its type (slow or

fast motion) and resolution. The sender and the receiver also perform a set of calibration

measurements to estimate the link quality in terms of the PER. These parameters are then

input to our framework, which then outputs the expected energy consumption at the UE

for a download of a particular duration.

We first model the video input process. Subsequently we characterize how these

video packets are processed by the LTE scheduler and thereby affect the transitions between

the energy states at the UE. The notation used is summarized in Table 5.1.

5.3.1 Video Input

The input process characterizes the arrival of video packets into the LTE buffer.

We assume that the video is composed of I, P and B frames 1. A segment corresponding

to an I frame is typically much larger than the MTU (maximum transmission unit) of the

network and must be fragmented into multiple packets. The I frames are also less frequent

than the much smaller P or B frames. The P and B frames are typically smaller than the
1For details on video representations please see [82].

104

MTU supported by the network. Since in terms of size, P and B frames are similar, we do

not distinguish them in our model. In essence, we seek to capture two different phases of

arrival which correspond to that of I frames and P/B frames, respectively. A natural choice

for such a setup is the Markov modulated Poisson process (MMPP), which represents a

doubly stochastic Poisson process [127]. The first state of the MMPP represents the arrival

of I frames and the second, the arrival of P/B frames. The rate of transition from state

1 to 2 is r1 and that from state 2 to 1 is r2. When the process is in state 1, packets that

are generated due to I frames arrive at a rate λ1; in state 2, packets generated due to P/B

frames arrive at a rate λ2. The process can be represented by the infinitesimal generator R

and the rate matrix Λ, given by:

R =

−r1 r1

r2 −r2

 , Λ =

λ1 0

0 λ2

 (5.1)

The steady state vector πmmpp (which represents the probability of being in state i, i ∈

{1, 2}) is given by

π = (π1, π2) = 1
r1 + r2

(r2, r1) (5.2)

The expected arrival rate of the 2-MMPP process, λavg, is given by πλ, where λ is the

column vector with the diagonal elements in Λ, i.e., λ = Λ.e, where, e = (1, 1)T .

Parameterizing video quality: In order to use the above representation we

need to map the given video quality to the parameter λavg (this parameter influences the

energy consumed as we will see later). Videos can be categorized as fast or slow motion

videos [4]. Fast motion video is characterized by successive video frames that have little in

105

Parameter Description
πmmpp Steady sate vector of the 2-MMPP video process
R Infinitesimal generator for the 2-MMPP video process
Λ Rate Matrix of the 2-MMPP process
p The probability of receiving something in a given TTI
Np The number of HARQ processes
r Maximum number of transmission attempts of a single HARQ process
πharq The steady vector of a single HARQ process
πrrc The Steady state vector of RRC state machine Markov Chain

Table 5.1: Key parameters in our mathematical framework

Figure 5.3: Pixel Density (Resolution) VS Bit rate

common while slow motion video is characterized by successive frames that have a lot in

common. Accordingly, fast-motion videos consume more bits in encoding than slow-motion

videos. If the effective bit rate is known (Bitrate), λavg ≈ Bitrate
E(Packet Size) .

If the video server can provide information with regards to the bit rates associated

with different versions of the video clip as metadata, λavg can be readily computed. One

can also empirically compute λavg from the resolution and the category of the video (slow

or fast motion) if the bit rate is not readily available as follows.

The resolution of a video stream is essentially a function of the number of pixels

per frame; the higher this number, the higher the resolution. To map the resolution to the

bit rate, we perform measurements across 5 video streams for each type of video (fast or

106

slow). We find that the bit rate is directly proportional to the resolution of the stream as

shown in (shown in Fig. 5.3). The proportionality index depends only on whether the video

is of fast or slow motion. With such a characterization (fast versus slow), we find that the

prediction error is < 5%. Thus, given a certain video type and its resolution, the server

can determine the average arrival rate of packets to the MMPP process (using these offline

measurements). Stated otherwise, the quality of the video in terms of its resolution can be

used to characterize its arrival process to the LTE scheduler.

Fig. 5.3 demonstrates this relationship for each type of video. From the figure we

can directly infer the decrease in λavg when the resolution is changed.

5.3.2 Modeling LTE effects

Next, we characterize the behavior of the RRC state machine at the UE given (i)

the type of video being streamed and its resolution, and (ii) the state of the channel. The

system has two distinct parts as shown in Fig. 5.2. The first part (Module A) reflects

the process of transfer of the video traffic over LTE to a specific UE. The second part

(Module B) characterizes the RRC state machine at the UE. The overall objective here is

to determine the expected time spent in each of the RRC states. Module B essentially takes

as input p, which represents the probability of receiving a packet (either a decodable packet

or a corrupted packet) in a TTI. This probability essentially depends on the arrival process

of the video flow, the functionality of the LTE scheduler (Module A) and the channel quality

of the wireless link.

Assumptions: We make the following assumptions for analytical tractability.

First, we assume that the UE is relatively stationary and thus, the channel conditions do

107

not change (slow fading) for the duration of a transmission. However, we assume that they

can vary between transmissions due to fading, and thus the likelihood of a packet succeeding

in a transmission attempt is independent of what happens in other attempts. Second, we

ignore synchronization issues. Note that we are only interested in the average energy due

to the UE being in a state and not the transient energy behaviors while in a state (e.g., we

only account for the average energy because of being in the Short DRX state).

To begin with we assume that the UE in question is scheduled every TTI. We

relax this later to account for the possibility that it gets scheduled once every Np TTIs, on

average.

Packet processing at the LTE transmitter: The packet processing at the

LTE transmitter consists of two parts. First, we have an MMPP/G/1 queue to which the

video packets arrive. The server of this queue essentially acts as a distributor and places

the packets in one of Np HARQ processes. Note that in order for the distributor to place

a packet, at least one of the HARQ processes must be empty. Next, the HARQ process

delivers the packet to the UE. First, we determine the service time distribution for our

MMPP/G/1 queue and thereby compute its utilization. We later discuss how we map this

to the probability of Module B receiving a packet in a TTI.

Characterizing the service time: The service time is influenced by the func-

tions of the LTE HARQ processes. We denote it by S, which is essentially the time it takes

for a packet to be assigned to a HARQ process by the distributor. We first describe how

a single HARQ process functions and then discuss how we determine the distribution of S

considering the Np processes together.

108

1 2 3 r
p1 p2

p3 pr-1

1 - p2

1 - p3

1

1 - p1

Figure 5.4: Markov Chain representing a single process hybrid-arq. Each state i, i ∈
{1, 2...r} represents the transmission attempt and r is the maximum number of transmis-
sions allowed.

Model of a HARQ process: We model a single HARQ process as a finite state

discrete time Markov chain as shown in Fig. 5.4. The number of states, r, corresponds to

the maximum number of transmission attempts allowed (after which the packet is dropped).

The initial state (state 1) refers to a state wherein the HARQ process receives a new packet

from the distributor. pi is the probability of a packet being received by the UE in error,

while in state i. A successful transmission while in state i, occurs with probability 1 − pi,

and results in a transition to the initial state (state 1) and the process gets the next new

packet. Because of additional FEC or change to a lower MCS (this is how HARQ functions),

later re-transmissions have a greater chance of success, i.e., pi ≥ pi+1
2. It is easy to see

2In the NS3 LTE simulator we use [20], we see that all the pis are nearly equal although this relation
holds in general.

109

that the transition probability matrix for the Markov chain, P , is thus:

P =



1− p1 p1 0 · · · 0

1− p2 0 p2 · · · 0

...
...

... . . . 0

... 0 0 · · · pr−1

1 0 0 · · · 0


(5.3)

The steady state probability vector, πharq = (π1, π2, ..πr), is then computed by solving the

equations πharq.P = P and
∑
i π

harq
i = 1. Specifically,

πharq1 = 1
1 +

∑r
i=2

∏i−1
j=1 pi

, πharqk,∀k>1 = πharq1

k−1∏
i=1

pk (5.4)

Joint consideration of the HARQ processes: To derive the service time distribution,

we need to characterize how the Np HARQ processes function together as a whole. To recap,

the Np processes are served in a round robin fashion. In every TTI, there is only one HARQ

process that is scheduled for transmission. Since Np > the RTT of in terms of TTI’s, each

transmitting process will receive an ACK or NACK by the time it is its turn to transmit

again.

Deriving S: The distributor assigns the packet at the head of the queue to next

available HARQ process. The time taken for this assignment, S, is essentially the time it

takes for the distributor to find a free HARQ process.

110

(r-­‐1)	
 TTI	
 periods	

N
p	
 	

HA

RQ
	
 p
ro
ce
ss
es
	

Prior	

packet	

scheduled	

here	

Process	
 k,	

TTI	
 	
 j	

Latest	
 ;me	
 by	

which	
 tagged	

packet	
 is	

scheduled,	
 	

k=1,	
 j=0	

Figure 5.5: The state of the LTE HARQ processes

Consider a packet, k, that is to be next assigned to one of the HARQ processes. For

k to experience the “maximum assignment time”, Smax, all the HARQ processes must be

occupied for the maximum possible duration i.e., each process must perform the maximum

number of (re)transmission attempts after k reaches the distributor. Smax, is then, the sum

of (i) one TTI for the initial transmission of packet k − 1 and (2) the r − 1 transmission

attempts made by each of the Np processes subsequently (each of these processes must be

occupied by a packet and must have at least performed one unsuccessful attempt already;

else at least one would be empty and packet k can be assigned). It is easy to see that Smax

is thus given by: Smax = (r − 1)Np + 1.

To aid the discussion on the calculation of S, we refer to Fig. 5.5. The rows in the

figure correspond to the HARQ processes, while the columns correspond to time in terms

of TTIs. Without loss of generality, assume that the prior packet that was assigned by

the distributor, was assigned to the last HARQ process viz., process Np; in the figure this

111

P(S =jNp + k) =



(
∑r
l=j+2+1 πl)(k−1).(

∑r
l=j+2 πl)(Np−k−1).

∏j
m=1 pm).(

∑r−1
l=j+2 πl(1− pl) + πr) j > 0, k 6= Np

(
∑r
l=j+2+1 πl)(k−1).

∏j−1
l=1 pl(1− pj) j > 0, k = Np

((1− π1)(k−1).π1 j = 0, k < Np

(1− π1)(k−1)(1− p1) j = 0, k = Np

(5.5)

preceding packet (relative to a tagged packet that we consider) is assigned to the black TTI

(we refer to each block in the figure as a “slot” from here on). At this point, the tagged

packet enters the distributor.

Let us assume that the tagged packet is assigned to a HARQ process, jNp + k

slots later (j ∈ {0, r − 1}, k ∈ {1, Np}). This corresponds to the shaded slot in the figure.

For this to happen, the following must hold true: (i) The processes from 1 to k − 1, must

be occupied for j + 1 slots; (ii) The processes from k + 1 to N − p must be occupied for j

slots; and, (iii) The process k must be occupied for j slots and must be free in the (j+ 1)st

slot. The probability of the tagged packet assigned as above is given by Equation 5.5; in

the following, we elaborate on how we arrive at this result. For simplicity, we simply refer

to πharql (recall Equation 5.4) as πl.

Let us first consider the simple case wherein j = 0. If the process to which the

packet is assigned (process k) is one of the first (Np−1) processes (not the one to which the

previous packet was assigned to), the conditions that must be satisfied are (i) the preceding

k − 1 processes must have been occupied and the kth process is free. The likelihood of this

is (1 − π1)(k−1)π1. If the process in question is the last (N th
p) process, the requirement is

112

that all the previous processes were occupied and the previous packet (transmitted in the

black slot) was successful. The likelihood of this is (1− π1)(k−1).(1− p1).

Next, let us consider the case where j 6= 0. To begin with let k 6= Np. The probabil-

ity of the first condition in the aforementioned list holding true for each of these processes, is

essentially: π2.p2.p3 . . . pj+2+1+π3p3.p4 . . . pj+3+1+. . . · · ·+π(r−1)−(j+1).p(r−1)−(j+1) . . . pr−1.

Using Equation 5.4 it can be shown that this long expression is simply
∑r
l=j+2+1 πl. To-

gether, for the k − 1 processes (assuming that they are independent because of varying

channel conditions between transmissions from these processes, due to fading), the proba-

bility of the first event is (
∑r
l=j+2+1 πl)(k−1).

Similarly, (
∑r
l=j+2 πl)(Np−k−1)).

∏j
m=1 pm gives us the probability of the second

event. The last term corresponds to process Np to which the packet preceding the tagged

packet was assigned. For this packet, it is known that a transmission attempt was made in

the black slot, and the last term accounts for this.

Finally, let us consider the the last required event. Since, process k is one of the

first (Np − 1) processes, this event occurs with a probability
∑r−1
l=j+2 πl(1 − pl) + πr. This

essentially corresponds to failed attempts in the first j slots followed by either a packet

success or a packet drop for that process (k) in the jth slot.

If k = Np, things are slightly different since we know when the previous packet

was scheduled. Thus, the likelihood of this process being free for the first time at the jth

TTI is simply
∏j−1
l=1 pl(1− pj) for 0 < j ≤ r − 1.

Determining the likelihood of a packet reception in a TTI: Having char-

acterized the arrival and the service processes, we next determine the likelihood of a packet

113

reception (either decodable or corrupted) in a TTI at the UE. A reception either transitions

the UE to the active state or keeps it in one of the composite modes in that state.

The UE receives a packet in a TTI if the corresponding process has a packet to

send. If not, there is no reception. Here, we make the following approximations. If the

queue is non-empty it is unlikely that any of the Np processes is empty and thus, the UE

will receive a packet in each TTI. If the queue is empty and N of the Np processes are

occupied, the likelihood of the UE receiving a packet in a TTI is:

β =
Np∑
N=1

N

NP
P (No of Pkts in System = N). (5.6)

The probability of the MMPP/G/1 queue being non empty is simply given by:

ρ = λavgE(S) (5.7)

Thus, the probability of the UE receiving a packet in a TTI is given by:

p = ρ+ (1− ρ)β. (5.8)

If ρ is high, the second term in Equation 5.8 tends to zero. On the other hand, if

ρ is small, the value of N and thus, β is even smaller (meaning that if the queue is empty,

the likelihood that some of the processes are occupied is very small). Thus, we ignore the

second part and approximate p ≈ ρ. We later validate that this approximation is reasonable

via simulations (where we don’t make this assumption).

114

5.3.3 Impact on the LTE RRC State Machine

Next, we seek to capture the impact of p on the LTE RRC finite state ma-

chine (FSM). We model the state machine as a finite-state discrete-time Markov chain

parametrized by p, the probability of receiving a packet at a given TTI. The Markov chain

is shown in Fig. 5.6. Initially the chain is in the idle state. A packet reception (with prob-

ability p), results in a transition to the continuous reception state (consisting of states 1

through Tc). A state transition from a higher RRC power state to lower state occurs if no

packet is received (with probability 1−p) for Ti, where Ti reflects the timer value associated

with the currently occupied RRC state. Any packet reception triggers a timer reset and the

machine transitions to the continuous reception state if in any other occupied state. The

transition probability matrix for this FSM, P , is given by

P =



1− p p 0 · · · · · · 0

0 p 1− p 0 · · · 0

... p 0 1− p 0 0

...
...

...
... . . . 0

0 p 0 · · · · · · 1− p

1 p 0 · · · · · · 0



(5.9)

115

The steady state probabilities πrrc of being in each sub-state depicted in the figure

is then computed using:

πrrcP = P (5.10a)

∑
i

πrrci = 1 (5.10b)

To calculate the probability of each individual RRC state we can simply sum the probabil-

ities of being in any of the component sub-states of that state (i.e., πrrci ’s that correspond

to sub-states i within that state). From equations 5.10 one can compute the following:

πrrcIDLE = (1− p)Ttail (5.11a)

πrrcRRC Connected = 1− πrrcIDLE (5.11b)

πrrcContinousReception = 1− (1− p)Tc (5.11c)

πrrcShortDRX = −(1− p)Tc((1− p)Ts − 1) (5.11d)

πrrcLongDRX = (1− p)Tc+Ts − (1− p)Ttail (5.11e)

where Ttail = Tc + Ts + Tl. Given the expected energy consumed in each TTI

when being in each of the states of the RRC state machine, and the specifications of a video

stream (resolution, slow versus fast) and its duration, one can now compute the expected

energy consumed by network interface from the download.

116

IDLE
12Tc

Tc
+2

Tc +
Ts

Tc +
Ts +1

Tc +
Ts + 2

Tc
+1

Tc + Ts
+ Tl

Continuous Reception

Short DRX Long DRX

Figure 5.6: Markov chain representing the LTE RRC state machine. State 0 corresponds
to the Idle state. States 1 through Tc represent the continuous reception state. Dotted and
solid arrows represent transitions with probability p and 1− p, respectively.

Resolution Types EGA, CGA, HD, FHD
Streaming server Darwin
Encoding Protocol MPEG4
Wireless Device Samsung Galaxy s5

Table 5.2: Experi-
mental Setup

Type Protocol Resolution Fast Motion (Kb/s) Slow Motion (Kb/s)
CGA h.264 320x200 293 111
EGA h.264 640x350 802 236
HD h.264 1280x720 2433 619
FHD h.264 1920x1080 4656 1174

Table 5.3: Details of types of videos used

Energy due to packet receptions: We wish to point out that while being

in each of the RRC CONNECTED states results in a baseline energy expenditure, there

is additional energy consumed when packets are received [129]. This increase is directly

proportional to the rate at which packets are received while in that state. This is especially

important for the continuous state, since increased rate of packet receptions leads to this

state almost inevitably. In such conditions, since ρ linearly increases with rate, the increase

in energy is linearly proportional to ρ.

5.3.4 Impact of LTE Scheduling

Thus far, we assumed that the tagged UE is scheduled every TTI. However, de-

pending on the number of users and the provider’s policy, this may not be true. In between

117

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Bit Rate

P
o

w
er

 (
m

W
at

t)

HTC M7
HTC M7 Linear Regression
LG G Flex
LG G Flex Linear Regression
Galaxy S4
Galaxy S4 Linear Regression

Figure 5.7: Bit Rate Vs CPU power

0.1 0.2 0.3 0.4
1300

1350

1400

1450

1500

Packet Error Rate (p1)

P
o

w
er

 (
m

W
at

t)

Model
Simulation

Figure 5.8: Power consumption versus
PER for slow motion, low resolution video

transmission attempts, there maybe TTIs where the UE is not scheduled, and this results

in an additional service time component, viz., a waiting time wherein, no process is active

and the distributor is simply in a wait mode. If the UE is scheduled every W slots (W is a

random variable) and if we assume that this is independent of the service time rendered to

a packet3, the expected service time is scaled up by a factor E(W) due to this scheduling

policy. Thus, the probability that the queue is non-empty is now ρ̂ = ρE(W).

The likelihood of the UE receiving a packet in a TTI depends on whether or not

the UE was scheduled in that TTI; the probability of the UE being scheduled in a TTI is

q = 1
E(W) (we assume that in general E(W) is small; if not, the UE is not scheduled for

long durations and the queue may become unstable). If scheduled, a packet is received with

probability ρ̂. Thus, the probability of receiving a packet in any arbitrarily chosen TTI is

118

0.1 0.2 0.3 0.4
1000

1200

1400

1600

1800

Packet Error Rate (p1)

P
o

w
er

 (
m

W
at

t)

 Model
Simulation

Figure 5.9: Power consumption versus PER for slow motion, high Resolution video

ρ̂.q = ρ. Thus, in essence, our prior analysis applies in this more general case as well. We

have validated this via simulations.

5.3.5 Power consumption due to processing

The power consumed at the UE includes the power due to the processing of the

received frames (decoding and playing the video) in addition to the power consumed on

the (LTE) network interface. Our model only explicitly accounts for the latter. Higher

resolution videos are typically larger in size and thus require higher processing/computing

resources (and therefore power) at the UE.

The power consumed for processing is device dependent (i.e., it depends on the

CPU and battery of the device). If the bit rate of the video stream is known (can be

provided by the video server), the UE can locally estimate the processing power that will be
3This is reasonable since the external load is independent of what the UE is attempting to download.

119

0.1 0.2 0.3 0.4
1300

1350

1400

1450

1500

1550

1600

Packet Error Rate (p1)

P
o

w
er

 (
m

W
at

t)

Model
Simulation

Figure 5.10: Power consumption versus PER
for fast motion, low resolution video

0.1 0.2 0.3
1000

1200

1400

1600

1800

2000

Packet Error Rate (p1)

P
o

w
er

 (
m

W
at

t)

Model
Simulation

Figure 5.11: Power consumption versus PER
for fast motion, high resolution video

consumed in addition to the LTE interface power discussed thus far. To show the viability

of this approach, we experimentally profile the CPU power consumption for 3 different

smartphones (Samsung Galaxy S5, HTC One M7 and LG G Flex) for downloading videos

with different bit rates using the PowerTutor tool [212]. The results from our experiments

are plotted in Fig. 5.7. We see that, for each phone, the power consumed due to CPU

activities (processing/playback) increases (roughly) in a linear fashion with the bit rate;

thus, the local device can easily estimate this power for different bit rate video clips once it

does an initial calibration with a few video downloads.

Combining this CPU power with the estimated power consumed on the network

interface (obtained using our model), we are able to get a estimate of the total power

consumed by different versions of a video stream.

120

5.4 Evaluations

In this section, we validate our analytical framework via simulations and exper-

iments. We consider different types of video, and vary channel conditions to understand

how video downloads affect the UE energy consumption. We first describe our simulation

and experimental setups, discuss how we compute energy with our model, and later discuss

our results.

5.4.1 Configurations

Simulation settings: We use NS3[29] in combination with the LTE module

developed by the LENA Project[20]. We use the default channel model used in this project.

Details can be found in [20]. Since we are only interested in the energy consumed at the

UE, we set up a simple LTE topology with one enB serving a single UE. We log all the

PHY packets that the radio processes (including packets that are in error). We vary the

channel conditions. We use 8 different video clips each of which is about 60 seconds long.

Videos are tagged and processed using the EvalVid [16] tool and then passed on to the enB

to be transmitted to the UE. For each experiment, we perform 20 simulation runs.

Experimental Setup: Our experiments are on a Samsung Galaxy S5 LTE phone

over the AT & T LTE Network (we did experiments with other models and T-Mobile and

the results were similar). We connect our LTE phone to a Monsoon Power Monitor [22]

and measure the power when different types of video (discussed next) are being downloaded

from a Darwin server. We collect power traces for each resolution of fast and slow motion

121

videos 10 times and estimate the average power. The details of our experimental set up are

in Table 5.2.

Video: We use four popularly used video resolutions listed in Table 5.3. For each

video, we translate the resolution into a bitrate, and estimate λavg as discussed in Section

5.3.

Parameters for our analytical framework: To compute the power consumed,

we use our analytical model in conjunction with the results in [129]. Specifically, from [129],

we use the following: (a) In the idle state a constant power of 594 mW is consumed (594

mJ of energy is consumed in 1 second). In the continuous state, power = αη + β. Where

α = 51.97 (power/Mbps), β is the baseline power in this state and is equal to 1288.04. η is

the rate of reception in Mbps (and can be computed from ρ). For the Short DRX and Long

DRX states, the power alternates between the power in the idle state and an active power;

this active power is approximately 1680mW (note that this is larger than the continuous

reception baseline power due to the power due to switching states). For the Short DRX

state the switch from idle to active periods happens every 20 ms and for the long DRX state

it happens every 40ms. We also use the results from [129] for the timer values that dictate

the RRC state machine transitions. Specifically, Tc = 100 ms, Ts = 20 ms, Tl = 11450 ms.

We also set the value of all the pis to be the same as p1 as we observed in our simulations

that these did not change by much from p1.

Processing power at UE: The power consumed at the UE includes the power

due to the processing of the received frames in addition to the power consumed on the

network interface. Our model only explicitly accounts for the latter i.e., the power consumed

122

due to the LTE interface. Higher resolution videos are typically larger in size and thus

require higher processing/computing resources (and therefore power) at the UE. To estimate

the energy consumption due to processing, instead of reinventing the wheel, we simply use

the powerTutor tool [212]. This allows us to profile and estimate the power consumed by the

CPU for the purposes and rendering the video. Combining this estimate with the estimated

power consumed on the network interface (obtained with our model), we are able to get a

estimate of the total power consumed by different versions of a video stream.

5.4.2 Results and Inferences

Slow motion video: In Figs. 5.8 and 5.9, we present both the analytical and

simulation results for slow motion videos of the lowest and highest resolutions. We see

that the analytical results match well with those from simulations. We notice that at low

packet error rates (PER), there is about a 280 mW (16.9 %) decrease in power when we

switch from the high resolution video to low resolution video4. As the PER increases, the

decrease is more pronounced (19.1 %, 340mW). This is because at high PERs, there are

increased retransmissions, which essentially increase the probability of being in one of the

active states. Furthermore, the increase in receptions trigger power increases even when in

the continuous mode due to packets in error.

Fast motion video: Figs. 5.10 and 5.11 present analogous results with fast

motion video. First, again, the analytical results match well with simulation results. We

notice that with fast motion video, transitioning to a lower resolution results in about a
4To lower the video resolution, we switch from FHD to EGA.

123

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Packet Error Rate (p1)

P
r.

 o
f R

x
a

pa
ck

et
 in

 a
 ti

m
es

lo
t

Slow Motion − Model
Slow Motion − Sim
Fast Motion − Model
Fast Motion − Sim

Figure 5.12: The probability of receiving a
packet in a TTI (decodable or corrupted)
for low resolution videos

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Packet Error Rate (p1)
P

r.
 o

f R
x

a
pa

ck
et

 in
 a

 ti
m

es
lo

t

Low Resolution − Model
Low Resolution − Sim
High Resolution − Model
High Resolution − Sim

Figure 5.13: The probability of receiving a
packet in a TTI (decodable or corrupted)
for high resolution videos

P
o

w
e

r
(m

W
a

tt
)

Slow Motion Fast Motion
0

50

100

150

200

250

300

350

400

450
Model

CPU

Experiments

Figure 5.14: Power reduction from lower-
ing resolution from highest to lowest level
under good channel conditions: Analyti-
cal and experimental results

P
o

w
e

r
(m

W
a

tt
)

Slow Motion Fast Motion
0

100

200

300

400

500

600

Model

CPU

Experiments

Figure 5.15: Power reduction from lower-
ing resolution from highest to lowest level
in bad channel conditions: Analytical and
experimental results

124

1 3 8
1300

1400

1500

1600

1700

1800

Average waiting time (W)

P
o

w
er

 (
m

W
at

t)

Model
Simulation

Figure 5.16: Power consumption with dif-
ferent expected waiting times (E(W)).

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Packet Error Rate (p1)

P
r.

 o
f R

x
a

pa
ck

et
 in

 a
 ti

m
es

lo
t

Slow Motion − Model
Slow Motion − Sim
Fast Motion − Model
Fast Motion − Sim

Figure 5.17: The probability of receiving a
packet in a TTI (decodable or corrupted)
for low resolution videos

318mW (17.8 %) reduction in the consumed power in good channel conditions. In bad

channel conditions we see a 384 mW (19.8 %) decrease in power consumption. This is

because, with this type of video at high resolutions the packet arrival rate is as is high;

the retransmissions further increase the energy consumed. We observe here that the UE is

mostly in the continuous state regardless of whether the channel condition is good or bad.

Note here that at p1 > 0.3, the queue became unstable and we could not gather meaningful

results with the simulations.

Probability of reception in a TTI with slow and fast motion videos: In

Figs. 5.17 and 5.13, we depict the probability of receiving a packet (decodable or corrupted)

at the UE, in a TTI. As one might expect, the probability increases as the PER increases

since there will be a higher number of retransmission attempts. Further, also as expected,

this probability is higher for fast motion video, and for higher resolution videos, since the

bit rates are higher. Most importantly, we see a close match between the simulation and

125

0.00 0.01 0.02 0.03 0.04 0.05 0.06

λavg

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
b
e
in

g
 i
n
 s

ta
te

 i idle

continous

Short Drx

Long Drx

Figure 5.18: The change in state occupancy with λavg

analytical results; this shows that the assumptions made for analytical tractability do not

influence the results by much.

Comparing analytical results with experimental results: In Fig. 5.14, we

compare the results obtained using our framework, with that from real experiments on

our Samsung Galaxy S5 LTE phone. First, we consider good channel conditions (4-5 bar

coverage). Since we do not have access to the LTE PHY interface, we simply map the

coverage level (5 bar) to a rough empirical characterization of the PER. Specifically, in

this case, we set the PER to be 0.1 as a conservative estimate. The total power with

our approach is the sum of the LTE interface power and the CPU processing power as

discussed in Section 5.3.5. We observe that the results derived from our approach are fairly

good estimates of the total energy consumed in reality (within 5 % of the measured energy

savings). We see that the power savings are significant with both fast and slow motion video

when the user chooses a lower quality version. The savings are higher with fast motion video

since, there is a bigger reduction in the video bit rate (≈ 405 mW) as compared to slow

motion video (≈ 335 mW).

126

Decrease in PSNR Bad Channel Good Channel
Slow-Motion 10.11% 376.2J 301.5J
Fast-Motion 14.5% 432J 364.5J

Table 5.4: The energy saved as resolution is changed from high to low with the corresponding
decrease in PSNR

In Fig. 5.15, we plot the results with bad channel conditions (1 bar coverage). Here

we empirically choose the highest PER that we could tolerate (in our simulations) without

the queue becoming unstable (0.39) when we use our model. The total power saved is the

sum of what is saved on the network interface and due to processing. We observe again that

our results once again match very well with the results from the experiments (within 5% of

the experimental results). We find that the savings increase to ≈ 480 mW and ≈ 418 mW

respectively, for fast and slow motion video, potentially due to a decrease in the number of

retransmissions.

Finally, in Table 5.4, we show the decrease in PSNR that comes with a corre-

sponding decrease in energy for 15 minute long videos. Interestingly, a small decrease in

PSNR (49.5 dB to 44.5 dB for slow motion and 48 dB to 41.5 dB for fast motion, which

corresponds to 10.11 % and 14.4 % in the two cases, respectively) results in considerable

energy savings (e.g., 376 J for slow motion video and 432 J for fast motion video in bad

channel conditions). The reason for only a slight reduction is that the PSNR decreases only

due to a reduction in resolution; due to TCP there are no losses that degrade quality on the

channel itself. Thus, by lowering the video quality slightly, the user can conceivably gain

significant energy savings.

127

Impact of LTE scheduling: In Fig. 5.16, we show the impact of scheduling the

UE once every W TTI on average. W is chosen as per a uniform distribution between 1 and

twice the average value. We observe that the power consumed does not change by much

with varying W . This validates our analysis in Section 5.3.4.

Times spent in each of the LTE states: In Fig. 5.18 we show the probability

of being in each LTE energy state. We see that if λavg increases beyond an extremely low

value, the UE is almost never in the IDLE state. As one might expect, as λavg increases

the likelihood of being in the continuous mode increases, while the likelihood of being in

the Long DRX state decreases. To begin, the likelihood of being in the short DRX state

increases; here the time is shared between this state and the continuous state. But after a

certain point, the probability of being in this state decreases and the UE is almost always

in the continuous state.

Power consumption decreases with resolution: For completeness, we present

a plot wherein we show the variations in the consumed power with fast and slow motion

video as we vary the quality in terms of resolution. We assume p1 = 0.1. The difference

in power consumption between FHD and CGA are as reported earlier. Interim resolutions

offer different trade-offs between power and video resolution.

5.5 Related Work

Almost all of the power models for LTE are empirically derived. In [129], the

authors empirically derive a power model based on an experimental study of LTE per-

formance. However, the work is mainly intended for developers and does not provide an

128

understanding of how the energy consumption varies with different types of downloads, or

in varying channel conditions. In [181], the authors experimentally characterize how vari-

ations in signal strength can affect UE power consumption. They develop an approach to

schedule communications during periods of strong signal strength. However, they do not

account for traffic characteristics (video) on RRC state transitions. The authors in [101]

study the impact of signal strength on battery drain and evaluate various energy saving

schemes for 3G networks; however, the impact of traffic patterns is not considered.

The authors in [131] present a model of the LTE radio interface. In [79], the

authors optimize the LTE timers to save energy. Zhou et al., [215] investigate the trade

off between saving power and wake up delay. In [139] the authors investigate the effects of

varying the LTE parameters on user experience. However, none of these efforts are focused

on video, nor do they capture the interactions between the video characteristics and the

LTE energy states. In [102], the authors model the LTE HARQ process as a Markov chain

to evaluate the energy implications of the HARQ process but the model does not capture

the characteristics of video traffic or how the LTE scheduler influences transmissions.

Some of the work that looks specifically at energy consumption due to video trans-

fers over LTE (e.g., [189]), target the optimization of the LTE timer values to reduce energy;

they cannot be directly applied to determine energy savings due to lowered video quality. In

[205], the authors study how YouTube traffic affects energy. He et. al. present a model for

saving energy for videos streamed over a wireless link in [120]; however, their work focuses

on video encoding and does not address radio power. Lu et.al [150] try to minimize trans-

mission power based on the state of the wireless channel. Mohapatra et. al.[159] identified

129

several architectural techniques which can be coupled with OS level approaches to save CPU

and memory energy while streaming video. In [76] the authors model the interdependence

between different video packets to determine the optimal retransmission scheme for HARQ

processes but do not consider the energy implications.

There is other work, where video delivery is optimized for quality (e.g., [165] and

citations therein). These efforts do not explicitly consider energy due to video streaming.

5.6 Discussion

Adaptive bit rate video: Current adaptive bit rate streaming technologies such

as Adobe and Silverlight (used by Youtube and Netflix, respectively) are relatively simple.

They work as follows. The server stores different bit rate versions of the same video. When

the client requests a video, the server sends the client a list of different bit rate videos it has

in its storage. The client then makes decisions on what bit rate video it wants to download

on a per chunk basis, where a chunk is simply a small portion of the video [161, 61, 193].

Chunk sizes (in terms of viewing time) can range anywhere from 2 seconds to 10 seconds.

The default bit rate is applied to the first chunk and usually corresponds to the maximum

available bandwidth. Clients select the highest bit rate that is supported by their bandwidth

[132]. This bandwidth is estimated by looking at the time it takes to download a chunk

and the size of that chunk [132]. Current adaptive bit rate clients try to maximize bit rate

given this single constraint on bandwidth. We argue that energy is a concern for clients

and our model allows this factor to be taken into perspective.

130

Our experiments show that transferring a high-resolution video over a channel

with high PER results in very high energy consumption. Bandwidth aware clients could

still request this video because it can still be transmitted over the channel (bandwidth

suffices). However, the user may not want to spend that much energy. Further, while PER

affects the bandwidth of the link, other factors such as load or how busy the enB is at

that time, could be arguably more important in determining the bandwidth available for a

session as shown in [88].

Our model applies to adaptive bit rate videos; the discussion was focused on fixed

bit rate videos for the purposes of clarity. Some of the experiments compute energy savings

assuming a fixed bit rate video, again for the purposes of making things clear. We point out

that our results, in particular Figs. 5.8 to 5.11, demonstrate the effectiveness of our model

in predicting power consumed at short time scales. The same experiments also demonstrate

the accuracy of our model across different bit rates. Recall that two primary inputs to our

model are PER and video bit rate. Power estimates can be made as often as necessary

whenever one of the inputs changes.

An energy aware adaptive bit-rate scheme would make similar chunk wise decisions

as its non-energy aware counterpart. The client now has an added constraint, namely power.

The UE can estimate the power consumption with any bit rate video given the state of the

channel using our model. The client would now estimate (a) the highest bit rate video given

its bandwidth constraints (say BitrateB and (b) the highest bit rate video given an energy

constraint (BitrateE). It would choose the bit rate that satisfies both these constraints i.e.,

min(BitrateB, BitrateE).

131

Impact of buffering: One can conceive a simple model which assumes that the

entire video is buffered at the server and then downloaded continuously. It is then displayed

to the user. In such a case, there will be no RRC state transitions (as discussed later, it

will be in a continuous reception state). Now, one might argue that one can calculate the

time for which the interface is active provides an indicator of the energy spent. One could

proportionally increase this time based on the perceived packet error rate.

In practice however, this model is insufficient because of two important charac-

teristics. First, studies have shown that major video streaming services (e.g., Youtube and

Netflix) do not buffer too much. The buffering is often limited to a couple of seconds [161].

Since clients often terminate videos prematurely, the service providers are concerned with

wasted bandwidth and for this reason never buffer more than what is necessary. Netflix

clients sometimes buffer up to 2 minutes because Netflix hosts videos that are often hours

long and some extra buffering is supported in case clients want to skip ahead.

Because of the above reason, it is quite possible that as network conditions change,

the server side buffer becomes temporarily empty (and thus, the video is not continuously

downloaded) which could trigger RRC state transitions. Our model is generic enough to

take care of such cases; it is also applicable to the case where the server has a steady stream

of video packets for a client for continuous downloads.

Second, We also point out here that the video stream is not necessarily transferred

at the bit rate specified at the server. If that was the case, one could simply use a linear

model to determine how the energy would vary with bit rate. The video traffic is shaped not

only because the server may have varying loads (and thus transfers video at the specified bit

132

rate on average, but in a bursty manner), but also because of retransmissions on the wireless

channel due to varying channel characteristics. Thus, it is inevitable that the packets will

experience some form of queuing at the LTE server.

In summary, our model applies in cases where there is no buffering, any level of

buffering or in the extreme case where a client buffers the entire video prior to playback.

The video in question will still have to be transferred over an error prone wireless channel

(which will result in queuing and retransmissions). If a client is allowed to buffer the entire

video clip, all packets from the clip are inserted into the server buffer i.e., that buffer does

not become empty until the entire video is transferred). This simply translates to very

high values for λ1 and λ2. Our model can be still applied and the power consumption for

different qualities can be calculated accordingly.

Motion in a video: Our framework accounts the type of dynamics in a video

stream (slow or fast motion). For ease of discussion, we have assumed that the video

is homogeneous in this regard. However, a video may transition between periods of fast

motion to slow motion and vice versa. Tools such as AForge [4] can estimate the expected

durations of fast and slow motion in such cases; with these estimates (done over chunks of

buffered video at the server side), the expected energy savings can be easily computed with

our framework.

Mobility If a UE is moving about a lot, this will cause the state of the channel to

change (PER will change). In such cases, our model can simply recalculate power consump-

tion with the new PER (can be potentially measured as videos are downloaded). However

133

when a UE moves out of the coverage area of an enB an LTE handover will be necessary.

Our model does not capture this characteristic.

134

Chapter 6

Efficient Transport of Data

Summaries over Named Data

Networks

6.1 Introduction

With the emergence of Internet of Things (IoT) and dissemination of online social

content, sources of various kinds continuously generate streams of data. The number of such

sources is growing continuously, leading to an exponential growth in the available data for a

consumer [96, 93]. In fact, consumers may experience a data deluge leading to information

overload if they get all the data pertaining to a subject of interest [155]. One way to cope

with this data deluge, is via data summarization services which enable clients (whether

humans or computer systems) to retrieve samples with user-specified granularity. These

135

representative samples, or summaries, can then be used in analysis and decision making

processes.

To exemplify the above, consider a smart city scenario [81] wherein sensors con-

tinuously gather data about traffic conditions. On their path to the destination, smart

cars contact road infrastructure hot-spots for updates. In this scenario, collected data may

have significant redundancy, local data at different repositories have semantic overlap, and

network conditions are diverse. Consumers are likely to be interested in receiving content

with varying granularity of detail as quickly as possible. As a second example, consumers

interested in getting a sample of top stories from a variety of news media may be interested

in quickly retrieving only an overview, based on which they may then choose to get more

details only on certain stories. Data summarization can be an effective solution in delivering

the right level of detail to consumers.

There are a set of challenges that will need to be addressed in order to deliver

summaries from a set of producers to consumers. First, retrieving summaries from differ-

ent producers independently will create redundant content, thus wasting communication

resources and defying the purpose of summarization. Solving this problem requires the

efficient creation of a global representation of the content available at the different pro-

ducers. Furthermore, the network must be able to match a consumer’s request with what

is available at the various producers and retrieve the proper representative samples. In

many applications, consumers are not interested in the source of the content or where it is,

but rather the content itself and how fast it can be retrieved. Finally, since the network

conditions between the consumer and the plurality of producers can be diverse (varying

136

bandwidth and link delay), the transport framework has to be intelligent to retrieve the

content from the “best” producer, i.e., the content that fulfills the consumer’s requirement

with the best performance (e.g., minimum latency).

In this chapter, we develop NEST, a transport framework which efficiently re-

trieves an extractive summary of a dataset distributed across multiple connected producers

to requesting consumers, with low latency. Our framework is developed on top of the

Named Data Networks (NDN) infrastructure, an implementation of the Information Cen-

tric Networks (ICN) paradigm. NDN is a pull-based network architecture which supports

the forwarding of content from producers to consumers using hierarchical names. It of-

fers a way to seamlessly map content to interests and thus, we argue that it is natural to

leverage its abilities towards achieving the efficient transport of content summaries from a

diverse set of producers to consumers. Using NDN, NEST allows producers to converge to

a common namespace, wherein objects that are very similar are named similarly, linking

the summarization problem to NDN’s name-based forwarding. NEST is designed as an

end-to-end protocol that runs at the hosts and does not require changes to the underlying

NDN infrastructure.

NEST first creates a global hierarchical representation of the dataset by synchro-

nizing the producers’ local datasets with minimal overhead. Subsequently, this represen-

tation is used to generate an ordered list of names that is sent to interested consumers to

guide them in retrieving content summaries of varying granularity. In this list, object names

are “constructed” such that, from a set of similar objects at different producers, an object is

seamlessly returned from the producer with the most favorable network conditions for each

137

request based on the ordered list, thereby achieving minimum latency. In building NEST

we make the following key contributions:

• We develop a distributed synchronization algorithm that capitalizes on recent ad-

vances in distributed clustering to create a global view of the shared dataset, towards

realizing summaries of varying granularity.

• We develop interest-name design rules that automatically and opportunistically adapt

to varying network conditions to minimize latency in delivering summaries to con-

sumers over the underlying NDN.

• We implement NEST on Mini-NDN, a network emulator for NDN. We then perform

extensive evaluations using datasets collected from Twitter. Our results show that

NEST exploits producer diversity to reduce latency by up to 100% compared to base-

line summary transport strategies that retrieve specific data objects.

6.2 Background

ICN has become popular recently for presenting an alternative and future architec-

ture for the Internet as it becomes more content-centric rather than host-centric, and NDN

[213] is one typical implementation. In NDN, consumers send interest messages requesting

specific content using hierarchical names, where one data message is returned for each inter-

est message. The interest is generated by a consumer to indicate that she seeks to retrieve

a matching object. Partial prefix matching is used when checking whether a named object

matches an interest name. In addition, intermediate routers employ multi-path forwarding

138

rules to pass interest messages to the next hop until it reaches producers of the named

content. Producers then return data messages where the payload is the data object with

a matching name. Data messages are forwarded along the reverse paths corresponding to

that taken by the interest message. Whenever a router receives a data message, the entry

for the corresponding interest is removed from its Pending Interest Table (PIT) after it is

forwarded. Any subsequent data messages for the satisfied interest are suppressed, i.e., not

forwarded. If caching is enabled, intermediate routers keep a copy of the data messages

for a specified period of time, and returns it for subsequent matching interests from any

consumer. A key feature of the interest message format is the exclusion option; consumers

use this optional field to specify object name suffixes that they do not want to retrieve for

a given name prefix in the interest message.

Recently, [145] was proposed as a summary transport protocol for NDN in which

an ordered names list is created from a hierarchical tree representation of a dataset. The

structure of the tree is such that objects sharing a longer name prefix have more semantic

overlap. Thus, when a sample (i.e., summary) of the content under the tree is requested,

returning objects in a shortest-shared-prefix-first order minimizes information loss (relative

to retrieving all data) over all different orders of a given sample size by reducing semantic

redundancy. As more data objects are transported according to this order, finer granularity

details about the topic are retrieved. However, only one producer was considered. In data

summarization applications in which clients are interested in a sample of the dataset dis-

tributed across multiple repositories, dynamic network conditions cause clients to experience

very different network delays relative to the different producers who generate the samples.

139

In addition, retrieving redundant content from different producers creates summaries with

poor quality. Thus, when multiple data producers share similar data objects, opportunities

to improve latency performance by retrieving any of a set of similar objects are created.

However, to do so, a flexible and adaptive data transport scheme is needed. The novelty

of NEST is that it allows consumers to realize the advantage of producer diversity to re-

trieve summaries with minimum latency while requiring no changes to the underlying NDN

architecture.

6.3 System Design

NEST comprises two main functional components viz., (a) Producer Synchroniza-

tion (ProdSync) and (b) Producer Diversity Summary Transport (PDST) protocol. The first

component creates a hierarchical representation of the dataset shared by multiple produc-

ers, while the second component manages the transport of data objects between producers

and consumers on the NDN. In the following, we discuss the design details of each of the

two components.

6.3.1 Producer Synchronization

In many applications, data is collected from sensors and cached at a connected

set of repositories (i.e., producers) for further processing and dissemination to consumers.

Since, transporting objects from individual producers to consumers independently can re-

sult in performance penalties and wasteful transfers, summarization inherently requires

synchronization between producers. Thus, the first challenge in efficiently delivering sum-

140

maries from the set of producers, which can of the order of tens, to consumers is to derive a

global view of the available data. However, for large datasets, it is not practical to transmit

local datasets or large samples thereof to a centralized location for processing.

To overcome this challenge, we develop ProdSync, an iterative distributed cluster-

ing algorithm in which producers exchange meta-data of clustering solutions and samples

from their local subsets of the dataset while incurring minimal communication overhead.

This enables the construction of a tree representation in which each producer maintains

information about the position of their local data points in the tree. This representation

also enables the producers to construct an ordered List of Object Names (LON) which is

then used to guide the delivery of summaries to consumers.

Notation: In the following, we introduce notation that will help in the description

of ProdSync. Suppose we have a set of connected producers N , of size N . Let the global

dataset be denoted by P, where Pi ⊂ P is the local subset corresponding to producer i.

Suppose L is the set of tree node labels on T , and let r ∈ L be the root node. Each

node l ∈ L will hold a subset of P, denoted as P l. We also define P li = Pi ∩ P l and

N l = {i ∈ N : P li 6= φ}. In each iteration l, each producer i solves an instance of k-means

clustering and sends local information S li (to be made precise) to a designated coordinator

nl, where the coordinator for tree node r, i.e., nr, is called the root coordinator. Finally,

let the distance measure between a pair of data points p and q be given by d(p, q).1

Algorithm details: In Alg. 3, we outline the ProdSync algorithm. The algorithm

solves a distributed clustering problem over the datasets Pi, i ∈ N to generate a hierarchical
1Vector space representation of data as well as similarity measures vary depending on application and

data type. While we use specific representation in Section 6.5, the effect of these on the clustering quality
is of separate interest and is beyond the scope of this work.

141

Algorithm 3 ProdSync
Input: Similarity threshold τ , set of producers N
1: Initialize: L = r,N r = N repeat

P
until

2: ;
ick a tree node l ∈ L

3: Select coordinator nl ∈ N l

4: Solve local clustering problem on P l
i

5: Exchange local clustering costs cl
i

6: Coordinator collects samples Sl
i from all producer i ∈ N l

7: Coordinator solves global clustering on ∪iSl
i

8: Coordinator delivers solutions Gl to all producers in N l

9: Producers send coordinator local tree info ul
i

10: Add new nodes Update T ,N l,L: L ← g ∀g ∈ Gl

11: maxp,q∈Pl d(p, q) < τ
Output: Hierarchical tree representation T

representation T for the shared dataset P, capturing similarities between data points in a

hierarchical form. For each node l in the tree T , a coordinator is first selected, 2 which

collects information about local clustering solutions from all producers in N l. The coordi-

nator then solves a global clustering problem on the samples collected in S li ∀i ∈ N l and

then shares the solution with other producers. Each producer then updates the coordinator

with meta-data uli that helps in creating the tree representation of the dataset and names

for objects. Specifically, each producer sends cluster membership counts based on the global

solution. Iterative clustering stops when distances between all points in a tree node are less

than a given similarity threshold τ .

To optimize the amount of data exchanged between producers, we consider a re-

cently developed distributed clustering algorithm [77] based on the construction of ε-coresets

[119]. It guarantees a bounded clustering cost relative to the centralized solution, at the

minimum communication cost, where the clustering cost is the sum of squared distances
2We defer a discussion of how we implement coordinator selection to Section 6.4.

142

between each point in the dataset and its corresponding cluster center. This protocol

was later shown to be communication-optimal by the authors in [92]. We note that the

communication-optimality metric used in [92] is the number of data points exchanged be-

tween the producers in the network. However, this metric is also correlated to the conver-

gence time of the ProdSync algorithm; the more messages are exchanged between producers,

the more time it takes for ProdSync to converge. In the following, we briefly discuss the

details of this algorithm.

Optimal distributed clustering: For every node on the tree l ∈ L, given the set of

producers Nl, and a designated coordinator nl, the optimal clustering algorithm constructs

a set of cluster centers Gl at the coordinator, representing all data subsets P li∀i ∈ Nl.

Specifically, the algorithm distributes the construction of an ε-coreset of the shared dataset

P l where each producer first solves a k-means clustering problem on the local dataset

P li and then non-uniformly samples P li based on the clustering costs cli collected from all

other producers i ∈ N l. In this sampling, a point with higher cost is sampled with higher

probability. Each producer constructs its local portion of the ε-coreset, S li , which consists

of the samples and their corresponding weights. The samples S li are then collected at the

coordinator and the global clustering problem is solved on the weighted samples ∪iS li .

Complexity analysis: At each iteration l ∈ L, the optimal distributed clustering

requires two rounds of message exchanges between the coordinator and other producers,

where first the costs of local clustering solutions are collected by the coordinator and then

the sum cost is shared with all producers. The communication overhead is O(Nm), where

m is the number of edges on the graph connecting the set of producers N .

143

To process a node l ∈ L, each producer i solves an instance of k-means clustering

problem on the local dataset Pi (Steps 4 and 7). This problem is an NP-hard problem [64].

However, there exist efficient approximations such as the Lloyd’s algorithm [149], with time

complexity O(|Pi|ksw), where s is the dimensionality of vectors representing the data points

and w is the number of iterations needed for convergence. It was shown that, in practice,

k-means converges in linear time with respect to the number of data points [69]. . The

number of nodes on the tree, i.e., L, can vary between O(logk |P|) to O(|P|). In practice,

we pipeline the processing of tree nodes such that communication delay does not contribute

a purely additive component to the total processing time. We study this in detail in Section

6.5.

6.3.2 Producer Diversity Summary Transport

In this section, we develop an efficient transport protocol, called Producer Diversity

Summary Transport (PDST) that takes the output tree T from ProdSync, transforms it to

an ordered LON that is delivered to interested consumers. Consumers request representative

objects based on the LON, and PDST delivers data objects from producers to consumers

with minimum latency, where latency is defined as follows.

Definition 1 The transport latency T (i) corresponding to a given interest message i is total

time delay between sending the interest message and the reception of the corresponding data

message.

Fix an interest-name i and let N (i) ⊂ N be the set of producers with data objects similar to

i. Let Tj(i) be the transport latency when data is returned from producer j. The objective

144

of PDST is to minimize the latency in retrieving data objects, whenever similar objects are

available at multiple producers, i.e., achieve T ∗(i) = minj∈N (i) Tj(i). While doing so, the

protocol must adapt to dynamic network conditions, and specifically varying link delays.

Satisfying the minimum transport latency and adaptability to dynamic network

conditions, are challenging problems for multiple reasons. First, it is undesirable that

consumers maintain state information for all available producers based on the history of

received data. Moreover, explicitly and continuously measuring transport latency for objects

from different producers will incur non-negligible communication overhead. The novelty of

PDST is that it achieves the aforementioned goals by crafting interest messages in a format

that capitalizes on the features of NDN. Specifically, PDST exploits NDN’s forwarding

characteristics viz., multi-path and partial prefix match forwarding. It also leverages the

fact that intermediate routers suppress multiple data messages retrieved in response to

a single interest message and only forward the first match. PDST does not require any

modifications to NDN and is only run at the producers and consumers as an application.

PDST achieves minimum transport latency and adapt to varying network condi-

tions using three different processing steps at the different participating network entities.

Below, we discuss the different steps of PDST in detail before we formalize the result.

Root-coordinator-side PDST

First, names of all data objects at the leaves of the tree are automatically created.

In particular, during clustering, tree nodes are given labels (e.g., ’0’ for the left branch and

’1’ for the right branch in 2-means clustering), and data objects at the leaves are named by

concatenating label names from the tree root node to the leaf, similar to [144]. However,

145

unlike [144], the root coordinator does not have actual data points from all other producers,

but rather the counts of data objects under each leaf from each producer. This information

is collected in Step 9 of Alg. 3. Thus, the root coordinator can now create a representative

tree using the counts of data points at each branch from each producer, as described in the

following example.

Suppose producer a and producer b have two and three data items, respectively,

under a tree leaf with the prefix v = /r/0/0/1/0/1. Now, the root coordinator can sim-

ply add items under this leaf as /r/0/0/1/0/1/a0, /r/0/0/1/0/1/a1, /r/0/0/1/0/1/b0,

/r/0/0/1/0/1/b1, /r/0/0/1/0/1/b2. Based on the user-specified and application-dependent

similarity measure, items under v are deemed similar. At the same time, each of the produc-

ers a and b, will fix some order for their local data objects, based on user-specified weights

corresponding to each data object (e.g., content popularity, freshness, etc). Note that while

the local ordering of data objects at each producer can be used to send higher-weighted ob-

jects first, the relative ordering between data objects at different producers is not needed at

the root coordinator. This is because our design gives more priority to improving transport

latency by retrieving the next data object (based on local weight-based ranking) from the

producer with the best network conditions.

The next step for the root coordinator is to process the data object names such

that a special symbol (˜) is concatenated at the end of all object names under any tree

leaf where data objects belonging to multiple producers exist. Thus, for leaf v, the object

names will be processed to be /r/0/0/1/0/1/a0˜, /r/0/0/1/0/1/a1˜, /r/0/0/1/0/1/b0˜,

/r/0/0/1/0/1/b1˜, /r/0/0/1/0/1/b2˜. This symbol will later be used by the consumer to

146

construct interest messages that allows retrieval of data objects from the producer with the

minimum transport latency.

Given the hierarchical tree representation T created using ProdSync as described

in Section 6.3.1, the root coordinator can transform T into an LON by traversing T from

the root to the leaves and returning the name of the object at the leaf. During traversal

the branches are selected such that an object with the shortest-shared-prefix, with respect

to previously returned object names, is returned.

Finally, this processed list is sent to the consumers upon request. In particular,

when a consumer requests a summary of a dataset under the prefix /r, the root coordinator

will send a data message with the LON for data objects under the corresponding tree. Note

that the LON is generally of much smaller size compared to data objects (e.g., in social

media, a tweet could have an image or video object embedded in it).

Consumer-side PDST

Denote any last level subtree of T with objects from multiple producers, as an

opportunity subtree. Each consumer running the NEST application will first request the

LON under some tree root /r. The consumer sends interests for items in the LON in the

given order. However, the interest names used will vary depending on whether the object

belongs to an opportunity subtree (which is marked by the special symbol ˜). For such

objects, a producer diversity opportunity exists and thus the consumer can take advantage

of it. In particular, for any object name in the LON ending in ˜, the consumer sends the

interest message with the partial name up to the label of the corresponding parent node of

147

the object in T . For example, if the next data object name in the LON is /r/0/0/1/0/1/b0˜,

the consumer sends the interest message /r/0/0/1/0/1/, instead.

It is easy to see that this interest will be forwarded by the underlying NDN to

all producers with data objects under the corresponding opportunity subtree. Thus, all

producers will respond with data objects from the opportunity subtree, and only one data

message will be forwarded to the requesting consumer while other messages will not be

forwarded. To avoid retrieving duplicate objects that were retrieved previously using the

same partial name, the consumer employs the exclude option in the interest message. In

particular, it includes the last component in the name of the objects retrieved previously.

For example, when an interest message is sent with the partial name /r/0/0/1/0/1/ and

data object /r/0/0/1/0/1/b0 is retrieved, the next interest message for an object belonging

to the same opportunity tree will be /r/0/0/1/0/1/(−b0).

One of the main advantages of crafting the interest messages as described above

is that the framework automatically adapts to changing link delays. Thus, two consumers

sending the same interest message will get potentially different (but semantically similar)

data objects from different producers. Furthermore, as network conditions change over

time, a consumer may get data objects from other producers because of latency advantages.

Since PDST capitalizes on NDN forwarding rules, it also works when caching at intermediate

routers is enabled without the need to modify software running on them. Specifically, caches

will also use partial prefix matching and return objects with matching names unless the last

name component is included in the exclude field of the interest message. If no matches are

found in the cache, the interest will be further forwarded.

148

b
b

b
b b b
b

b b

r

0
1

0 1

a5

a4c1
c0

a3

a2b0
a1

a0

NDN

a

b

c

consumer

Figure 6.1: Example network and tree with three producers (a,b,c) and a consumer.

Producer-side PDST

On the producer side, each producer will maintain an ordering of the local data

points based on user-specified and application-dependent weights. For example, in a social

media application, the popularity of the content could be used as the weight. In a sensor

network application, more recent events or measurements could be weighted highly if fresh-

ness is desired. Whenever the producer receives an interest message with a partial name,

it responds with a data object from the subtree specified by the name prefix, returning the

first object in order after the excluded objects. For example, if the interest message received

by producer b is /r/0/0/1/0/1/(−b0), then it returns object /r/0/0/1/0/1/b1. Note that

the object name b1 might not be the actual object name at producer b, but rather a pointer

to a data object under the given prefix which is second in order based on the weights. This

order is maintained locally by each producer.

In Table 6.1, an example LON is shown. The corresponding network with one

consumer and three producers, as well as the hierarchical data representation T are shown

in Fig. 6.1. In the example network, the transport latency to producer c is the lowest, then

149

NEST’s LON Interest name sent Data name received
1 /r/0/a0˜ /r/0/ /r/0/b0
2 /r/1/0/a0˜ /r/1/0/ /r/1/0/c0
3 /r/0/a1˜ /r/0/(−b0) /r/0/a0
4 /r/1/1/a4 /r/1/1/a4 /r/1/1/a4
5 /r/0/b0˜ /r/0/(−b0,−a0) /r/0/a1
6 /r/1/0/a3˜ /r/1/0/(−c0) /r/1/0/c1
7 /r/1/1/a5 /r1/1/a5/ /r/1/1/a5
8 /r/1/0/c0˜ /r/1/0/(−c1) /r/1/0/a2
9 /r/1/0/c1˜ /r/1/0/(−c1,−a1) /r/1/0/a3

Table 6.1: Example of PDST operation.

producer b, and then producer a. The second column is processed by the root coordinator

in NEST and represents the LON delivered to consumers requesting a summary of content

under the prefix /r. In the third column, the interest names that the consumer sends are

shown. The names of the data objects received by the consumer in response, are shown in

the last column. Note that the interest names in the third column are adapted based on

names of data objects received so far (i.e., from previous rows), as listed in the last column.

For example, consider row number 6. Here, the interest sent is for a data object that is

under the prefix /r/1/0/. Since the consumer previously received the object /r/1/0/c0 (in

row 2), it now includes c0 in the exclude field of the interest message. The NDN forwarding

will pass the interest message /r/1/0/(−c0) to all producers, but it will reach producer c

first since it has the best network conditions with respect to the consumer. Now, producer

c will check its local dataset for data objects under prefix /r/1/0/ and with rank order

subsequent to object c0, returning object /r/1/0/c1. Data objects returned from other

producers will then be suppressed by intermediate routers since the interest message would

have been already satisfied by object /r/1/0/c1.

150

We formalize our main result in the following.

Proposition 2 Fix an interest-name i. PDST achieves minimum latency T ∗(i).

Proof. We only consider |N (i)| = 2, zero processing delays and no caching. Extending the

proof to other scenarios is straightforward but cumbersome. Suppose pj is the minimum-

delay forward path to producer j, which is composed of mj links, with instantaneous link

delays xe(tef), e ∈ {0, 1, · · · ,mj}. Here, tef is the time instant the interest message is

transmitted on link e in the forward direction. Suppose paths p1, p2 coincide in the first v

links. Thus, we have Tj(i) =
∑v−1
e=0 xe(tef)pj +

∑mj
e=v xe(tef) +

∑v−1
e=0 xe(teb) +

∑mj
e=v xe(teb),

for v ∈ {0, 1, · · · ,min (m1,m2)}. Note that backward path is identical to the forward one

since data messages are routed to the consumer on the reverse path of the correspond-

ing interest message. It can be seen that T1(i) − T2(i) =
∑m1
e=v xe(tef) +

∑m1
e=v xe(teb) −

(
∑m2
e=v xe(tef) +

∑m2
e=v xe(teb)), which is the difference between the round trip delay from

the vertex (router) v∗ at which paths split to producers. Now, when T1(i)− T2(i) > 0, the

data message from producer 2 arrives first at v∗ and is the only message forwarded to the

consumer, implying that T (i) = T2(i), concluding the proof.

We note that Proposition 2 implies that PDST minimizes latency even if the link

delay varies while the interest or data message has not been received at the destination.

Pipelining interests: PDST uses an adaptive pipelining window, which controls

how many pending interests are allowed at any given time. In addition to being limited to

a maximum size W , the window size is adapted based on the LON and the progress made

thus far in processing the list. In particular, the consumer can send interests from the LON

until a new entry requires sending a partial name which is already used in a pending interest,

151

or until the maximum window size is reached, whichever is smaller. This design prevents

retrieval of duplicate objects, since names of previously retrieved objects are added to the

exclude field of subsequent interests, with the same partial names. We evaluate the choice

of W in Section 6.5.

Caching: Before we conclude this section, we discuss how caching affects the per-

formance of our system. As the number of consumers increase, it is expected that caches

at intermediate routers will return data objects more often, improving latency performance

with respect to a scenario wherein caching is disabled. This in turn could reduce the pro-

ducer diversity opportunities that NEST tries to exploit to improve performance; the data

is already cached en route. However, as will be shown in Section 6.5, the marginal gain in

latency reduction even when caching is enabled is large. In addition, the combined gain of

NEST and caching can be substantial.

6.4 Implementation

We implement NEST on Mini-NDN [23], an NDN network emulator based on the

popular Mininet[21] virtual network environment. In Mini-NDN, a network topology is

specified in which nodes are connected via links parameterized by link delay, bandwidth

as well as loss percentage. Each node in the network is capable of running NDN applica-

tions, forwarding NDN packets according to the specified routing policy, as well as caching

forwarded content.

Mini-NDN accomplishes these NDN functionalities by running an instance of

Named Data Link State Routing Protocol (NLSR) [28] and NDN Forwarding Daemon

152

(NFD) [27] on each instantiated node in the network. NLSR is a routing protocol respon-

sible for populating NDN’s Forwarding Information Base (FIB) while NFD is a network

forwarder that is fully capable of forwarding NDN packets according to a diverse set of

routing strategies.

Since Mini-NDN emulates the actual operations of NDN networks, one primary

advantage is that the applications developed and tested on Mini-NDN can be readily oper-

ational on the NDN testbed [24] or other actual NDN networks.

A depiction of NEST’s different components is shown in Fig. 6.2. Each producer

in the network runs the two functional components of NEST (ProdSync and PDST) si-

multaneously while the consumer runs PDST. First, producers in NEST run the “NEST

Sync” application, which is responsible for implementing ProdSync and creating “NEST

tree”. Here, we use k-means clustering with k = 2. The NEST tree is then passed to the

“NEST Prod” application. In this application, the tree is transformed to an LON which is

then used to guide the transport of data items. Finally, the third application is the “NEST

Consum” application running at each consumer. This component is responsible for sending

specially crafted interest messages. These interest messages are responded to by the NEST

Prod application running at each producer.

We implemented all the applications in Python. In the NEST Sync application,

clustering information of every tree node is kept in a data structure that holds the state of the

computations and data exchange between the coordinator and non-coordinator producers.

State and data are encoded into control messages, where an interest control message requests

the start of computation or delivers the notification that a computation is completed, while

153

NDN

NEST Sync NEST Prod
NEST
tree

Prod. a

NEST Sync NEST Prod
NEST
tree

Prod. b

NEST Sync NEST Prod
NEST
tree

Prod. c
NEST Consum

Consumer

data data

data

control messages

control messages

control messagesdata messages

data messages

data messages

data messages

Figure 6.2: A Network with three producers and a consumer running NEST. Each box
represents an application running on producers or consumers.

the corresponding data control message delivers an acknowledgment or the requested data.

On the other hand, in the NEST Consum application, the consumer implements a pipelining

window of pending interests and a method to transform the LON to interest messages with

partial names. NEST Prod implements a partial interest name match function to select

messages to be sent to the consumers.

154

6.5 Evaluation Results

Setup: Our evaluations are based on a dataset collected from Twitter. Over a

period of time from Dec 2016 to Mar 2017, tweets were collected using Twitter’s streaming

API and a set of search keywords for trending topics in politics, sports, and entertainment.

Overall, we use a dataset of about 80K tweets in our evaluations.

In each experiment, we randomly distribute a sample of the dataset uniformly

across the set of producers. We first pre-process the collected tweets to remove stop words,

special characters, links and attachments, producing tokens. These tokens are then trans-

formed to a high dimensional vector representation by computing the product of term

frequency and inverse document frequency (tf-idf) [174], a popular method for text vector-

ization. We use the sklearn library [169] vectorizer to achieve this task.

In Mini-Net, links connecting the producers and consumers are characterized by

the link delay, the bandwidth, and the message loss rate. In our experiments, we fix the

bandwidth and loss rates, and vary the link delays. We note that in Mini-Net, each host

in the network runs the NDN stack and thus can be used as a producer, a consumer, and

a forwarding switch, simultaneously. In addition, hosts have content stores and thus can

cache data objects. In our experiments, we use a network topology similar to the NDN

testbed [24] and we have two consumers and a varying number of producers for different

experiments as will be discussed in the following subsections.

In the following, we define terms that we use in our evaluations. Let the summary

block with size B be the number of data objects the consumer has to fetch in order to

have a satisfactory summary. The block latency tB is the delay from sending the interest

155

Table 6.2: ProdSync convergence time.

N 3 5 7 9
Time(s) 34 38 83 122

message for the first data object in the block, until the successful reception of the data

message corresponding to the last data object in the summary block. This quantity is

directly proportional to the per interest latency defined in Section 6.3.2.

We divide the evaluation results into two parts. In the first, we evaluate the per-

formance of the ProdSync algorithm and quantify performance in terms of the convergence

time and the clustering quality. In the second, we focus on the latency performance of

PDST and compare it to a baseline summary transport protocol with no producer diversity,

i.e., a system in which the LON is used to retrieve data objects from specific producers,

similar to the protocol in [145].

6.5.1 Producer Sync

We consider networks with different numbers of producers and distribute a dataset

of 4000N tweets uniformly at random over the N producers. We use Euclidean distance

to measure similarity between different vectors representing tweets, and use a similarity

threshold τ = 0.9 as the stopping criterion for ProdSync. For the coordinator selection, in

each iteration, we let the producer with the smallest ID perform the coordination tasks for

the corresponding tree node. Producers are connected with link delays of 10milliseconds.

We first evaluate ProdSync’s convergence time. For scenarios with N = 3, 5, 7 and

9 producers, we repeat the experiment 10 times and report the average convergence time in

each case. Table 6.2 outlines the results. It can be seen that ProdSync’s convergence time is

156

Figure 6.3: Latency performance for dif-
ferent link delay variance.

Figure 6.4: Latency performance for dif-
ferent number of producers.

approximately linear in the number of producers and the dataset size. In many applications

(such as traffic monitoring, news stories updates), major dataset changes happen on the

order of hours. Thus, ProdSync provides a practical means for constructing the global

representation of the distributed dataset as it can be run periodically at a rate that is

faster than the rate of data evolution. For completeness, we also report the average value

for clustering costs for an example scenario with five producers. In this experiment, the

average number of tree nodes was 13.3 and the average clustering cost per data point is

0.47.

6.5.2 Latency Performance

In this section, we evaluate the latency performance of PDST after LON has been

delivered to the consumers. We compare the performance to the baseline protocol.

Link delay variance

First, we vary the link delay variance and measure the incurred latency. We fix the

maximum pipelining window size to W = 10. To change variance, we vary the link delays

157

Figure 6.5: Per message latency. Figure 6.6: Latency performance for dif-
ferent pipelining window sizes.

from the producers to the consumer in the range 5 − 200 milliseconds, while maintaining

a fixed average. Here, we consider a topology with five producers and one consumer, and

we consider two different summary block sizes B = {20, 100}. As shown in Fig. 6.3,

the block latency improves as the link delay variance increases. This is because NEST

effectively checks if similar objects exist at producers with better network conditions and

fetches objects from those producers first. Essentially, objects with slow retrieval times are

pushed to the end of retrieval order. Compared to the baseline system, NEST improves the

block latency performance by more than 40% when the link delay standard deviation is 50

milliseconds.

In Fig. 6.4, we plot the block latency tB for a varying B. We also show the

performance for topologies with different number of producers. First, we observe that

while the baseline system performance does not change when number of producers change,

NEST fully utilizes producer diversity. In particular, as the number of producers increases,

diversity improves and block latency decreases.

We also study the per message latency when N = 5, where W and link delays are

chosen as in previous experiments. In Fig. 6.5, we plot the average per message latency

158

vs. different B. The figure shows that by taking advantage of producer diversity, the

latency improvements can be as high as 100%. Note that as the block size increases for a

fixed dataset size, this gain is expected to decrease. We study the effect of the ratio B
|P| in

Section 6.5.2.

Pipelining

Next, we study the effect of the maximum pipelining window size W on the block

latency. In Fig. 6.6, there are five producers with link delays similar to those in the

previous experiments. Note that PDST’s adaptive pipelining does not send new interest

messages while pending interests with the same partial name exist to avoid duplicate object

retrievals. It is seen that pipelining improves block latency compared to a simple stop and

wait approach (W = 1). In addition, consumers will experience more packet losses as W

increases and thus more bandwidth wastage. The figure shows that diminishing gains are

attained with increasing W . We find that W = 10 allows NEST to achieve the best latency

performance.

Impact of dataset size

Next, we study the effect of the dataset size on the block latency. It is expected

that as the ratio B
|P| decreases, the latency gain of NEST increases. In other words, when

the requested summary block size B is comparable to the dataset size, consumers may not

avoid fetching objects from producers with unfavorable network conditions. We fix five

producers with link delays similar to previous experiments. Fig. 6.7 shows that, for a given

159

Figure 6.7: Latency performance for dif-
ferent sample size |P|.

Figure 6.8: Effect of caching on latency
performance.

block size B, the latency reduction gain is only slightly reduced when the sample size is

halved. When |P| = 2000, NEST can achieve a positive gain for a summary block sizes

as large as 20% of the dataset, which is reasonable for applications with large datasets in

which consumers are interested only in data summaries.

Caching

Finally, we study the performance of NEST when caching is enabled in the under-

lying NDN. In this experiment, the topology has two consumers and five producers with

similar link delays as in previous experiments. Both consumers are using the same LON.

We introduce a delay between the time each consumer starts fetching items to see the ef-

fect of caching. Caching allows intermediate nodes to temporarily store content that was

previously forwarded to other hosts in the network. As seen in Fig. 6.8, NEST yields

latency performance improvement of about 50%. Compared to the baseline performance

with caching disabled, the combined latency reduction gain is more than 70%.

160

6.6 Related Work

There has been prior work on selectively sending a representative subset of data

instead of the entire dataset [114, 151]. However, unlike our work, these efforts are appli-

cation specific. Moreover, these approaches try to optimize for energy efficiency in contrast

to our goal of minimizing latency in retrieving the summary. Achieving our goal requires

an approach that is much different from those proposed in these efforts.

More recently, optimizing latency in NDN has been considered in [63, 99, 156].

In [63], architectural changes to NDN are proposed to improve the support for low latency

applications such video conferencing. In [99] and [156], multi-path routing as well as network

coding are employed to improve performance of video streaming. Unlike these approaches,

NEST does not require changes to the underlying NDN infrastructure and operates as an

end-host application. Thus, we argue that it is much more general and easy to deploy.

Distributed dataset synchronization was recently addressed in [216]. The goal

is to efficiently synchronize the state of a group of hosts for applications such as group

text messaging. This is different than the problem we consider when we address producer

synchronization since we do not require all hosts to have the full dataset.

The closest works to ours are [144] and [145]. The former creates a tree repre-

sentation and object names from a given dataset for creating summaries, while the latter

transforms the tree into an ordered list for transport. However, their model considers only

a single producer. While we use a similar approach towards summarization, we address

a different set of challenges wherein the dataset is distributed across multiple producers.

161

In particular, transport performance becomes a primary issue which was not addressed in

these works.

162

Chapter 7

Conclusions

In this thesis, we propose a variety of frameworks to tackle security and perfor-

mance problems in modern networks. We begin in chapter 2 by evaluating the limitations

of IDS systems. We demonstrate that by intelligently combining a plurality of low intensity

TCP-based DoS attacks, an attacker can evade traditional single scalar threshold based

intrusion detection systems. We argue that multiple features need to be considered for

efficiently detecting such stealthy attacks. Via extensive experiments, we identify such a set

of features, and jointly examine them in a new simple, yet effective detection framework.

We demonstrate, via extensive experiments, that our approach can detect stealthy attacks

effectively unlike traditional approaches.

In lieu of manually choosing features as done traditionally, In chapter 3, we de-

velop a framework that automates and sequentializes the process of feature selection for

highly accurate intrusion detection. In building our framework, we design and implement

a comprehensive evidence collection framework, and undertake an in-depth study to gain

163

an understanding of which search algorithms to use for feature reduction. Our approach is

agnostic to the engine that uses these features to perform inference. We demonstrate the

efficacy of our framework with DoS and SQL injection attacks. We demonstrate that the

features (which are automatically chosen) work very well in terms of providing high detec-

tion accuracy with respect to the true states (attack and normal scenarios) the networked

system is in

In chapter 4, we tackle the problem of ISP scale intrusion detection. Challenges

of scale, flexibility and complexity have hindered the realization of a NIDS that can be

deployed on an ISP scale network. We propose a framework NEST that addresses this long-

standing challenge by exploiting in-network processing to generate fine grained, yet concise

packet summaries, which can be analyzed centrally to deliver highly accurate inferences

with regards to a wide range of attacks. NEST reduces overheads by over 65% compared

to sending raw packets (state of the art today) while achieving a detection accuracy of over

98%. This detection accuracy, we believe, is the highest reported for intrusion detection at

ISP scale.

In chapter 5 we turn our focus to performance issues. We build an analytical

framework to capture the energy consumption due to video downloads over LTE. Our

framework takes as input, the type of video (fast vs slow motion and resolution), the link

qualities experienced (in terms of PER) and the power consumed in each LTE state. It

provides a quick and effective means of determining the power consumption with various

types of videos under different network conditions. We validate our framework via extensive

simulations and real experiments

164

Finally in chapter 6, we target the problem of delivering a summary of a large

dataset to consumers from a set of producers with low latency. Retrieval of such a summary

which is essentially a set of representative samples of the dataset, is becoming popular in

many emerging applications. We propose NEST, an efficient data transport framework

which leverages the NDN architecture towards achieving this goal. Our novel framework

opportunistically fetches data from the producers with good network conditions relative to

consumers after constructing a global view of the dataset shared between producers and

establishing similarity relations between data points. Our experimental results show that

large latency reduction gains can be achieved compared to baseline strategies that do not

exploit producer diversity. The gains are especially noteworthy (up to 100%) when the

number of producers and link delay variations are large.

165

Bibliography

[1] https://www.arbornetworks.com.

[2] 3GPP LTE. http://www.3gpp.org/LTE.

[3] Adobe: Smartphone Video Streaming Rises 86% in one year. http://www.telecompe
titor.com/adobe-smartphone-video-streaming-rises-86-in-one-year.

[4] AForge.NET. http://www.aforgenet.com/framework/features/motion detection
2.0.html.

[5] Akamai releases q2 2015 state of the internet - security report.
http://akamai.me/1qN434s.

[6] Apache, http server project. https://httpd.apache.org/.

[7] The bro network security monitor. https://www.bro.org/.

[8] Centos. https://www.centos.org.

[9] Cisco Visual Networking Index: Forecast and Methodology. http://bit.ly/LVhmuL.

[10] Cyber attacks likely to increase. http://pewrsr.ch/1qN4agg.

[11] D-WARD: DDoS network attack recognition and defense.
http://www.lasr.cs.ucla.edu/ddos/.

[12] DARPA intrusion detection evaluation. http://bit.ly/1NtBr50.

[13] The DETER project. http://deter-project.org.

[14] DoS attacks get more complexâĂŞare networks pre-
pared? http://defensesystems.com/articles/2013/12/19/dosattacks-
complexity.aspx?admgarea=DS.

[15] emulab. http://www.emulab.net.

[16] EvalVid. http://bit.ly/UOPQ6v.

166

https://www.arbornetworks.com
http://www.telecompetitor.com/adobe-smartphone-video-streaming-rises-86-in-one-year
http://www.telecompetitor.com/adobe-smartphone-video-streaming-rises-86-in-one-year
http://www.aforgenet.com/framework/features/motion_detection_2.0.html
http://www.aforgenet.com/framework/features/motion_detection_2.0.html
http://bit.ly/LVhmuL
http://bit.ly/UOPQ6v

[17] First annual msu mpeg-4 avc/h.264 video codec comparison.
http://compression.ru/video/codec comparison/mpeg4 avc h264 2004/mpeg4 avc h264 2004 part2.htm.

[18] Intrusion detection FAQ: Statistical based approach to intrusion detection.
https://www.sans.org/securityresources/idfaq/statistic ids.php.

[19] Kali linux. https://www.kali.org/.

[20] LENA. http://bit.ly/UEleow.

[21] Mininet. http://mininet.org/.

[22] Monsoon Power Monitor. http://bit.ly/1lh8JX1.

[23] named-data/mini-ndn. https://github.com/named-data/mini-ndn.

[24] NDN testbed. https://named-data.net/ndn-testbed/.

[25] Netflix. http://www.techtimes.com/articles/7009/20140515/netflix-account
s-for-34-21-percent-of-downstream-traffic-in-u-s-report.htm.

[26] Netflix Now The Largest Single Source of Internet Traffic In North America. http:
//bit.ly/1xHkxHA.

[27] NFD - named data networking forwarding daemon. https://named-data.net/doc/N
FD/current.

[28] NLSR - named data link state routing protocol. http://named-data.net/doc/NLS
R/current.

[29] NS3. http://www.nsnam.org/.

[30] Slowloris HTTP DoS. http://ha.ckers.org/slowloris/.

[31] Snort. https://www.snort.org.

[32] Sockstress tools & source code. http://bit.ly/1SgI9Qd.

[33] What we learned from anonymous: DDoS is now 3DoS.
https://devcentral.f5.com/articles/whatwelearnedfromanonymousddosisnow3dos.

[34] Strategies to reduce false positives and false negatives in nids. https:
//www.symantec.com/connect/articles/strategies-reduce-false-positiv
es-and-false-negatives-nids, 2001.

[35] Snort faq. https://www.snort.org/faq/readme-sfportscan, 2004.

[36] The ddos that knocked spamhaus offline. http://blog.cloudflare.com/the-ddos-t
hat-knocked-spamhaus-offline-and-ho, 2013.

167

http://bit.ly/UEleow
http://mininet.org/
http://bit.ly/1lh8JX1
https://github.com/named-data/mini-ndn
https://named-data.net/ndn-testbed/
http://www.techtimes.com/articles/7009/20140515/netflix-accounts-for-34-21-percent-of-downstream-traffic-in-u-s-report.htm
http://www.techtimes.com/articles/7009/20140515/netflix-accounts-for-34-21-percent-of-downstream-traffic-in-u-s-report.htm
http://bit.ly/1xHkxHA
http://bit.ly/1xHkxHA
https://named-data.net/doc/NFD/current
https://named-data.net/doc/NFD/current
http://named-data.net/doc/NLSR/current
http://named-data.net/doc/NLSR/current
https://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-negatives-nids
https://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-negatives-nids
https://www.symantec.com/connect/articles/strategies-reduce-false-positives-and-false-negatives-nids
https://www.snort.org/faq/readme-sfportscan
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho

[37] The expanding role of service providers in DDoS mitigation. https:
//resources.arbornetworks.com/i/481939-the-expanding-role-of-service
-providers-in-ddos-mitigation?hubItemID=55526068, 2015. [Online; accessed
23-Jan-2017].

[38] IBM reat Intelligence QuX-Force Tharterly, 1Q 2015, 2015.

[39] The biggest data breaches in 2016, so far. https://www.identityforce.com/blog/
2016-data-breaches, 2016. [Online; accessed 10-Jan-2017].

[40] How the dyn ddos attack unfolded. http://www.networkworld.com/article
/3134057/security/how-the-dyn-ddos-attack-unfolded.html, 2016.

[41] jgamblin/mirai-source-code. https://github.com/jgamblin/Mirai-Source-Code,
2016.

[42] Krebsonsecurity hit with record ddos. https://krebsonsecurity.com/2016/09/kr
ebsonsecurity-hit-with-record-ddos/, 2016.

[43] Large DDoS attacks cause outages at twitter, spotify, and other sites.
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and
-spotify-suffering-outage/, 2016.

[44] Lessons from the dyn ddos attack. https://www.schneier.com/blog/archives
/2016/11/lessons from th 5.html, 2016.

[45] Mirai iot botnet description and ddos attack mitigation. https://www.arbornetworks
.com/blog/asert/mirai-iot-botnet-description-ddos-attack-mitigation/,
2016.

[46] Mirai: what you need to know about the botnet behind recent major ddos at-
tacks. https://www.symantec.com/connect/blogs/mirai-what-you-need-know-a
bout-botnet-behind-recent-major-ddos-attacks, 2016.

[47] Someone is learning how to take down the internet. https://www.schneier.com/blo
g/archives/2016/09/someone is lear.html, 2016.

[48] Top 7 types of network attacks. http://www.calyptix.com/top-threats/top-7-n
etwork-attack-types-2016/, 2016.

[49] White paper: Cisco VNI forecast and methodology, 2015-2020. White paper, Cisco,
July 2016.

[50] Cyber-hunting at scale (chase). https://www.fbo.gov/index?s=opportunity&mode=
form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core& cview=1, 2017.

[51] Ddos attack types: Glossary of terms. https://www.corero.com/resources/gloss
ary.html, 2017.

[52] MAWI working group traffic archive. http://mawi.wide.ad.jp/mawi/, 2017.

168

https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://resources.arbornetworks.com/i/481939-the-expanding-role-of-service-providers-in-ddos-mitigation?hubItemID=55526068
https://www.identityforce.com/blog/2016-data-breaches
https://www.identityforce.com/blog/2016-data-breaches
http://www.networkworld.com/article/3134057/security/how-the-dyn-ddos-attack-unfolded.html
http://www.networkworld.com/article/3134057/security/how-the-dyn-ddos-attack-unfolded.html
https://github.com/jgamblin/Mirai-Source-Code
 https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
 https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suffering-outage/
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.arbornetworks.com/blog/asert/mirai-iot-botnet-description-ddos-attack-mitigation/
https://www.arbornetworks.com/blog/asert/mirai-iot-botnet-description-ddos-attack-mitigation/
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.symantec.com/connect/blogs/mirai-what-you-need-know-about-botnet-behind-recent-major-ddos-attacks
https://www.schneier.com/blog/archives/2016/09/someone_is_lear.html
https://www.schneier.com/blog/archives/2016/09/someone_is_lear.html
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
http://www.calyptix.com/top-threats/top-7-network-attack-types-2016/
https://www.fbo.gov/index?s=opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&_cview=1
https://www.fbo.gov/index?s=opportunity&mode=form&id=a6b09e0661902c71a9c3205db0fff55d&tab=core&_cview=1
https://www.corero.com/resources/glossary.html
https://www.corero.com/resources/glossary.html
http://mawi.wide.ad.jp/mawi/

[53] Nmap: the network mapper. https://nmap.org, 2017.

[54] Rule doc search. https://snort.org/rule-docs, 2017.

[55] Ryu SDN framework. https://osrg.github.io/ryu/, 2017.

[56] Sid 1-19559. https://www.snort.org/rule docs/1-19559, 2017.

[57] Sid 3-16294. https://www.snort.org/rule docs/3-16294, 2017.

[58] Snort users manual. https://www.snort.org/documents/snort-users-manual,
2017.

[59] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. 1993.

[60] Monis Akhlaq, Faeiz Alserhani, Ahsan Subhan, Irfan Ullah Awan, John Mellor, and
Pravin Mirchandani. High speed NIDS using dynamic cluster and comparator logic.
In Computer and Information Technology (CIT), 2010 IEEE 10th International Con-
ference on, pages 575–581. IEEE, 2010.

[61] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental evalu-
ation of rate-adaptation algorithms in adaptive streaming over http. In Proceedings
of the Second Annual ACM Conference on Multimedia Systems, MMSys ’11. ACM,
2011.

[62] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-2):3–
26, 2003.

[63] Mishari Almishari, Paolo Gasti, Naveen Nathan, and Gene Tsudik. Optimizing bi-
directional low-latency communication in Named Data Networking. SIGCOMM Com-
put. Commun. Rev., 44(1):13–19, December 2013.

[64] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[65] Faeiz Alserhani, Monis Akhlaq, Irfan U Awan, John Mellor, Andrea J Cullen, and
Pravin Mirchandani. Evaluating intrusion detection systems in high speed networks.
In Information Assurance and Security, 2009. IAS’09. Fifth International Conference
on, volume 2, pages 454–459. IEEE, 2009.

[66] Ashok Anand, Athula Balachandran, Aditya Akella, Vyas Sekar, and Srinivasan Se-
shan. Enhancing video accessibility and availability using information-bound refer-
ences. In ACM CoNEXT, 2013.

[67] Ghassane Aniba and Sonia Aissa. Packet delay modeling of truncated multi-process
ARQ protocols for parallel communications. In IEEE ICT, 2010.

[68] Azeem Aqil, Ahmed OF Atya, Trent Jaeger, Srikanth V Krishnamurthy, Karl Levitt,
Patrick D McDaniel, Jeff Rowe, and Ananthram Swami. Detection of stealthy tcp-
based dos attacks. In MILCOM. IEEE, 2015.

169

https://nmap.org
https://snort.org/rule-docs
https://osrg.github.io/ryu/
https://www.snort.org/rule_docs/1-19559
https://www.snort.org/rule_docs/3-16294
https://www.snort.org/documents/snort-users-manual

[69] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means
method. J. ACM, 58(5):19:1–19:31, October 2011.

[70] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[71] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Technical
report, Technical report Chalmers University of Technology, Goteborg, Sweden, 2000.

[72] Yossi Azar. On-line load balancing. In Online Algorithms, pages 178–195. Springer,
1998.

[73] Yossi Azar, Andrei Z Broder, and Anna R Karlin. On-line load balancing. Theoretical
Computer Science, 130(1):73–84, 1994.

[74] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk R Pruhs, and Orli Waarts.
On-line load balancing of temporary tasks. Journal of Algorithms, 22(1):93–110, 1997.

[75] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. OUP, 1996.

[76] L. Badia and A.V. Guglielmi. A markov analysis of automatic repeat request for
video traffic transmission. In A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2014 IEEE 15th International Symposium on, 2014.

[77] Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means
and k-median clustering on general topologies. In Advances in Neural Information
Processing Systems, pages 1995–2003, 2013.

[78] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Network
anomaly detection: methods, systems and tools. IEEE Communications Surveys &
Tutorials, 16(1):303–336, 2014.

[79] C.S. Bontu and E. Illidge. DRX mechanism for power saving in LTE. IEEE Comm.
Magazine, 2009.

[80] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, October 1992.

[81] Safdar Hussain Bouk, Syed Hassan Ahmed, Dongkyun Kim, and Houbing Song.
Named-data-networking-based its for smart cities. IEEE Communications Magazine,
55(1):105–111, 2017.

[82] A. C. Bovik. The Essential Guide to Video Processing. Academic Press, 2009.

[83] Lothar Braun, Cornelius Diekmann, Nils Kammenhuber, and Georg Carle. Adaptive
load-aware sampling for network monitoring on multicore commodity hardware. In
IFIP Networking Conference, 2013, pages 1–9. IEEE, 2013.

170

[84] S Terry Brugger and Jedidiah Chow. An assessment of the darpa ids evaluation
dataset using snort. UCDAVIS department of Computer Science, 1(2007):22, 2007.

[85] Waleed Bulajoul, Anne James, and Mandeep Pannu. Network intrusion detection sys-
tems in high-speed traffic in computer networks. In e-Business Engineering (ICEBE),
2013 IEEE 10th International Conference on, pages 168–175. IEEE, 2013.

[86] Michael Buratowski. The DNC server breach: who did it and what does it mean?
Network Security, 2016(10):5–7, 2016.

[87] G. Cermak, M. Pinson, and S. Wolf. The relationship among video quality, screen
resolution, and bit rate. Broadcasting, IEEE Transactions on, 2011.

[88] Abhijnan Chakraborty, Vishnu Navda, Venkata N. Padmanabhan, and Ramachan-
dran Ramjee. Coordinating cellular background transfers using loadsense. In Proceed-
ings of the 19th Annual International Conference on Mobile Computing & Networking,
MobiCom ’13. ACM, 2013.

[89] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[90] Chia-Wei Chang, Guanyao Huang, Bill Lin, and Chen-Nee Chuah. LEISURE: Load-
balanced network-wide traffic measurement and monitor placement. IEEE Transac-
tions on Parallel and Distributed Systems, 26(4):1059–1070, 2015.

[91] Srilatha Chebrolu, Ajith Abraham, and Johnson P Thomas. Feature deduction and
ensemble design of intrusion detection systems. Computers & Security, 24(4):295–307,
2005.

[92] Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal
distributed clustering. In Advances in Neural Information Processing Systems, pages
3727–3735, 2016.

[93] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks and
Applications, 19(2):171–209, 2014.

[94] Shihabur Rahman Chowdhury, Md Faizul Bari, Reaz Ahmed, and Raouf Boutaba.
PayLess: A low cost network monitoring framework for software defined networks.
In 2014 IEEE Network Operations and Management Symposium (NOMS), pages 1–9.
IEEE, 2014.

[95] Richard G Clegg, Stuart Clayman, George Pavlou, Lefteris Mamatas, and Alex Galis.
On the selection of management/monitoring nodes in highly dynamic networks. IEEE
Transactions on Computers, 62(6):1207–1220, 2013.

[96] Louis Columbus. Roundup of internet of things forecasts and market estimates, 2016.
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-inter
net-of-things-forecasts-and-market-estimates-2016/#1b7ea093292d, 2016.

171

https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1b7ea093292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1b7ea093292d

[97] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[98] Pilu Crescenzi, Giorgio Gambosi, Gaia Nicosia, Paolo Penna, and Walter Unger. On-
line load balancing made simple: Greedy strikes back. Journal of Discrete Algorithms,
5(1):162–175, 2007.

[99] Saltarin de Arco, Jonnahtan Eduardo, Eirina Bourtsoulatze, Nikolaos Thomos, and
Torsten Braun. Adaptive video streaming with network coding enabled named data
networking. IEEE Trans. on Multimedia, 2017.

[100] Reinhard Diestel, Daniel Král, and Paul Seymour. Graph theory. Oberwolfach Reports,
13(1):51–86, 2016.

[101] Ning Ding, Daniel Wagner, Xiaomeng Chen, Abhinav Pathak, Y. Charlie Hu, and
Andrew Rice. Characterizing and modeling the impact of wireless signal strength on
smartphone battery drain. In ACM SIGMETRICS, 2013.

[102] J. Dohl and G. Fettweis. Energy aware evaluation of lte hybrid-arq and modula-
tion/coding schemes. In Communications (ICC), 2011 IEEE International Confer-
ence on, pages 1–5, 2011.

[103] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of
arbitrary subset sums. Journal of the ACM (JACM), 54(6):32, 2007.

[104] William Dumouchel and Matthias Schonlau. A comparison of test statistics for com-
puter intrusion detection based on principal components regression of transition prob-
abilities. In 30th Symposium on the Interface: Computing Science and Statistics, 1998.

[105] V. Durcekova, L. Schwartz, and N. Shahmehri. Sophisticated denial of service attacks
aimed at application layer. In Proc. ELEKTRO, 2012, 2012.

[106] Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936.

[107] W. Eddy. TCP SYN flooding attacks and common mitigations. In RFC 4987, Aug
2007.

[108] Mohammadreza Ektefa, Sara Memar, Fatimah Sidi, and Lilly Suriani Affendey. Intru-
sion detection using data mining techniques. In Information Retrieval & Knowledge
Management,(CAMP), 2010. IEEE.

[109] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a better
netflow. In ACM SIGCOMM Computer Communication Review, volume 34, pages
245–256. ACM, 2004.

[110] W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process (MMPP)
cookbook. Performance Evaluation. 18 (1992) 149âĂŞ171.

172

[111] Thomer M. Gil and Massimiliano Poletto. Multops: A data-structure for bandwidth
attack detection. In Proceedings of the 10th Conference on USENIX Security Sympo-
sium - Volume 10, SSYM’01, 2001.

[112] Luis Campo Giralte, Cristina Conde, Isaac Martin de Diego, and Enrique Cabello.
Detecting denial of service by modelling web-server behaviour. Computers & Electrical
Engineering, 39(7):2252 – 2262, 2013.

[113] DavidE. Goldberg and JohnH. Holland. Genetic algorithms and machine learning.
Machine Learning, 3:95–99, 1988.

[114] Himanshu Gupta, Vishnu Navda, Samir Das, and Vishal Chowdhary. Efficient gath-
ering of correlated data in sensor networks. ACM Transactions on Sensor Networks
(TOSN), 4(1):4, 2008.

[115] Martin Gütlein, Eibe Frank, Mark Hall, and Andreas Karwath. Large-scale attribute
selection using wrappers. In IEEE CIDM, 2009.

[116] Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato, 1999.

[117] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE Communications
Magazine, 53(2):90–97, 2015.

[118] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques:
concepts and techniques. Elsevier, 2011.

[119] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clus-
tering. In Proceedings of the thirty-sixth annual ACM symposium on Theory of Com-
puting, pages 291–300. ACM, 2004.

[120] Zhihai He, Yongfang Liang, Lulin Chen, I Ahmad, and Dapeng Wu. Power-rate-
distortion analysis for wireless video communication under energy constraints. IEEE
Transactions on Circuits and Systems for Video Technology, 2005.

[121] H. Heffes and D. Lucantoni. A markov modulated characterization of packetized
voice and data traffic and related statistical multiplexer performance. IEEE J.Sel. A.
Commun., 4(6):856–868, September 2006.

[122] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. New opportunities for load
balancing in network-wide intrusion detection systems. In Proceedings of the 8th
international conference on Emerging networking experiments and technologies, pages
361–372. ACM, 2012.

[123] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. Simplifying software-defined
network optimization using sol. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 223–237. USENIX Association, 2016.

173

[124] M.A Hoque, M. Siekkinen, J.K. Nurminen, and M. Aalto. Dissecting mobile video
services: An energy consumption perspective. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2013.

[125] Chengchen Hu, Sheng Wang, Jia Tian, Bin Liu, Yu Cheng, and Yan Chen. Accurate
and efficient traffic monitoring using adaptive non-linear sampling method. In INFO-
COM 2008. The 27th Conference on Computer Communications. IEEE, pages 26–30.
IEEE, 2008.

[126] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High performance and flexi-
ble networking using virtualization on commodity platforms. IEEE Transactions on
Network and Service Management, March 2015.

[127] O.C. Ibe. Markov Process for Stochastic Modelling. Academic Press, 2008.

[128] Félix Iglesias and Tanja Zseby. Analysis of network traffic features for anomaly de-
tection. Machine Learning, 2015.

[129] F. Qian J. Huang, A. Gerber, S. Sen Z. M. Mao, and O. Spatscheck. A close exami-
nation of performance and power characteristics of 4G LTE networks. ACM MobiSys
2012.

[130] Ramaprabhu Janakiraman, Marcel Waldvogel, and Qi Zhang. Indra: A peer-to-peer
approach to network intrusion detection and prevention. In Enabling Technologies: In-
frastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on, pages 226–231. IEEE, 2003.

[131] AR. Jensen, M. Lauridsen, P. Mogensen, T.B. SÃÿrensen, and P. Jensen. LTE UE
power consumption model: For system level energy and performance optimization. In
IEEE VTC, 2012.

[132] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and sta-
bility in http-based adaptive video streaming with festive. In Proceedings of the
8th International Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’12. ACM, 2012.

[133] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[134] Audun Josang, Javier Diaz, and Maria Rifqi. Cumulative and averaging fusion of
beliefs. Inf. Fusion, 11(2):192–200, 2010.

[135] N Kamiyama and T Mori. Simple and accurate identification of high-rate flows by
packet sampling. In Proceedings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications.

[136] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Abhashku-
mar, and Aditya Akella. Paving the way for NFV: Simplifying middlebox modifica-
tions using StateAlyzr. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 239–253. USENIX Association, 2016.

174

[137] George Khalil. Open source ids high performance shootout. White paper, SANS
Institute, February 2015.

[138] Marius Kloft, Ulf Brefeld, Patrick Düessel, Christian Gehl, and Pavel Laskov. Auto-
matic feature selection for anomaly detection. In Proceedings of the 1st ACM Work-
shop on AISec. ACM, 2008.

[139] T. Kolding, J. Wigard, and Lars Dalsgaard. Balancing power saving and single user
experience with discontinuous reception in LTE. In IEEE ISWCS, 2008.

[140] Alexander Kott, Ananthram Swami, and Bruce J West. The internet of battle things.
Computer, 49(12):70–75, 2016.

[141] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-
based change detection: methods, evaluation, and applications. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet measurement, pages 234–247. ACM,
2003.

[142] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embed-
dings to document distances. In International Conference on Machine Learning, pages
957–966, 2015.

[143] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide
traffic anomalies. In ACM SIGCOMM Computer Communication Review, volume 34,
pages 219–230. ACM, 2004.

[144] Jongdeog Lee, Md Tanvir Al Amin, and Tarek Abdelzaher. Espresso: A data naming
service for self-summarizing transport. In 2017 14th Annual IEEE Int. Conf. on
Sensing, Commun., and Networking (SECON), pages 1–9, 2017.

[145] Jongdeog Lee, Akash Kapoor, Md Tanvir Al Amin, Zhehao Wang, Zeyuan Zhang,
Radhika Goyal, and Tarek Abdelzaher. InfoMax: An information maximizing trans-
port layer protocol for named data networks. In IEEE 2015 24th Int. Conf. on Com-
puter Commun. and Networks (ICCCN), pages 1–10, 2015.

[146] Ye Li, Martin Reisslein, and Chaitali Chakrabarti. Energy-efficient video transmission
over a wireless link. Vehicular Technology, IEEE Transactions on, 58(3):1229–1244,
2009.

[147] Chong Liu, Kui Wu, and Jian Pei. An energy-efficient data collection framework for
wireless sensor networks by exploiting spatiotemporal correlation. IEEE transactions
on parallel and distributed systems, 18(7), 2007.

[148] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braver-
man. One sketch to rule them all: Rethinking network flow monitoring with UnivMon.
In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference, pages
101–114. ACM, 2016.

175

[149] Stuart Lloyd. Least squares quantization in PCM. IEEE Trans. on Inf. Theory,
28(2):129–137, 1982.

[150] Xiaoan Lu, Yao Wang, and E. Erkip. Power efficient h.263 video transmission over
wireless channels. In International Conference on Image Processing, 2002.

[151] Yajie Ma, Yike Guo, Xiangchuan Tian, and Moustafa Ghanem. Distributed clustering-
based aggregation algorithm for spatial correlated sensor networks. IEEE Sensors
Journal, 11(3):641–648, 2011.

[152] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is sampled
data sufficient for anomaly detection? In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pages 165–176. ACM, 2006.

[153] B. Makki, T. Svensson, and M. Zorzi. Finite block-length analysis of the incremental
redundancy harq. Wireless Communications Letters, IEEE, 3(5):529–532, 2014.

[154] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah McK-
une, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. An analysis of
chinaâĂŹs âĂĲgreat cannonâĂİ. In 5th USENIX Workshop on Free and Open Com-
munications on the Internet (FOCI 15), 2015.

[155] Bernard Marr. Big data overload: Why most companies can’t deal with the data ex-
plosion. https://www.forbes.com/sites/bernardmarr/2016/04/28/big-data-ove
rload-most-companies-cant-deal-with-the-data-explosion/#33cde7b06b0d,
2016.

[156] Kazuhisa Matsuzono, Hitoshi Asaeda, and Thierry Turletti. Low latency low loss
streaming using in-network coding and caching. In IEEE INFOCOM, 2017.

[157] Nimrod Megiddo. Optimal flows in networks with multiple sources and sinks. Math-
ematical Programming, 7(1):97–107, 1974.

[158] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the source. In In Proc. 10th
IEEE International Conference on Network Protocols, 2002.

[159] Shivajit Mohapatra, Radu Cornea, Nikil Dutt, Alex Nicolau, and Nalini Venkata-
subramanian. Integrated power management for video streaming to mobile handheld
devices. In ACM Multimedia, 2003.

[160] Srinivas Mukkamala and Andrew Sung. Feature selection for intrusion detection
with neural networks and support vector machines. Transportation Research Record:
Journal of the Transportation Research Board, (1822):33–39, 2003.

[161] Christopher Müller, Stefan Lederer, and Christian Timmerer. An evaluation of dy-
namic adaptive streaming over http in vehicular environments. In Proceedings of the
4th Workshop on Mobile Video, MoVid ’12. ACM, 2012.

[162] Gerhard Münz, Sa Li, and Georg Carle. Traffic anomaly detection using k-means
clustering. In GI/ITG Workshop MMBnet, 2007.

176

https://www.forbes.com/sites/bernardmarr/2016/04/28/big-data-overload-most-companies-cant-deal-with-the-data-explosion/#33cde7b06b0d
https://www.forbes.com/sites/bernardmarr/2016/04/28/big-data-overload-most-companies-cant-deal-with-the-data-explosion/#33cde7b06b0d

[163] Gerhard MÃĳnz, Nico Weber, and Georg Carle. Signature detection in sampled pack-
ets. In in Proc. of IEEE Workshop on Monitoring, Attack Detection and Mitigation
(MonAM 2007), 2007.

[164] W.W.Y. Ng, R.K.C. Chang, and D.S. Yeung. Dimensionality reduction for denial of
service detection problems using rbfnn output sensitivity. In Int’l Conf on Machine
Learning and Cybernetics,, 2003.

[165] A Pande, V. Ramamurthi, and P. Mohapatra. Quality-oriented video delivery over
lte using adaptive modulation and coding. In IEEE GLOBECOM, 2011.

[166] Nicholas Pappas. Network IDS & IPS deployment strategies. White paper, SANS
Institute, April 2008.

[167] Samuel Patton, William Yurcik, and David Doss. An achillesâĂŹ heel in signature-
based ids: Squealing false positives in snort. In Proceedings of RAID, volume 2001,
2001.

[168] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23):2435–2463, 1999.

[169] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research, 12(Oct):2825–2830, 2011.

[170] John Platt et al. Sequential minimal optimization: A fast algorithm for training
support vector machines. 1998.

[171] Alex Poylisher, Yitzchak M Gottlieb, Constantin Serban, Jeyull Lee, Farooq Sultan,
Ritu Chadha, C Jason Chiang, Keith Whittaker, John Nguyen, and Chris Scilla.
Building an operation support system for a fast reconfigurable network experimenta-
tion testbed. In MILCOM. IEEE, 2012.

[172] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. Simple-fying middlebox policy enforcement using sdn. ACM SIGCOMM computer
communication review, 43(4):27–38, 2013.

[173] Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay Vazirani.
Fast monitoring of traffic subpopulations. In Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement, pages 257–270. ACM, 2008.

[174] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In
Proceedings of the first Instructional Conf. on Machine Learning, volume 242, pages
133–142, 2003.

[175] Martin Roesch. Snort-lightweight intrusion detection for networks. In Proceedings
of the 13th USENIX conference on System administration, pages 229–238. USENIX
Association, 1999.

177

[176] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge
discovery handbook, pages 321–352. Springer, 2005.

[177] Lior Rokach and Oded Maimon. Web mining. In Data mining and knowledge discovery
handbook, pages 321–352. Springer, 2005.

[178] K Salah and A Kahtani. Performance evaluation comparison of snort NIDS under
linux and windows server. Journal of Network and Computer Applications, 33(1):6–15,
2010.

[179] T. Schierl, T. Stockhammer, and T. Wiegand. Mobile video transmission using scal-
able video coding. IEEE Transactions on Circuits and Systems for Video Technology,
2007.

[180] Tobias Schnabel, Igor Labutov, David M Mimno, and Thorsten Joachims. Evaluation
methods for unsupervised word embeddings. In EMNLP, pages 298–307, 2015.

[181] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Desh-
pande, Calvin Grunewald, Venkata N. Padmanabhan, and Kamal Jain. Bartendr: A
practical approach to energy-aware cellular data scheduling. In ACM Mobicom, 2010.

[182] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kompella,
and David G Andersen. CSAMP: A system for network-wide flow monitoring. In
NSDI, volume 8, pages 233–246, 2008.

[183] Vyas Sekar, Michael K Reiter, and Hui Zhang. Revisiting the case for a minimalist
approach for network flow monitoring. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 328–341. ACM, 2010.

[184] Vyas Sekar, Michael K. Reiter, and Hui Zhang. Revisiting the case for a minimalist
approach for network flow monitoring. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, pages 328–341, New York, NY, USA,
2010. ACM.

[185] Kari Sentz and Scott Ferson. Combination of evidence in Dempster-Shafer theory.
Sandia National Laboratories, 2002.

[186] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE - The UMTS Long Term
Evolution: From Theory to Practice. Wiley, 2 edition, September 2011.

[187] Glenn Shafer et al. A mathematical theory of evidence. Princeton University Press,
1976.

[188] Praveen Kumar Shanmugam, Naveen Dasa Subramanyam, Joe Breen, Corey Roach,
and Jacobus Van der Merwe. DEIDtect: towards distributed elastic intrusion de-
tection. In Proceedings of the 2014 ACM SIGCOMM workshop on Distributed cloud
computing, pages 17–24. ACM, 2014.

178

[189] Matti Siekkinen, Mohammad Ashraful Hoque, Jukka K. Nurminen, and Mika Aalto.
Streaming over 3G and LTE: How to save smartphone energy in radio access network-
friendly way. In Proceedings of the 5th Workshop on Mobile Video, 2013.

[190] C. Singhal, S. De, R. Trestian, and G.-M. Muntean. Joint optimization of user-
experience and energy-efficiency in wireless multimedia broadcast. Mobile Computing,
IEEE Transactions on, 2014.

[191] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with
rocketfuel. ACM SIGCOMM Computer Communication Review, 32(4):133–145, 2002.

[192] Gary Stein, Bing Chen, Annie S Wu, and Kien A Hua. Decision tree classifier for
network intrusion detection with ga-based feature selection. In Proceedings of the 43rd
annual Southeast regional conference-Volume 2, pages 136–141. ACM, 2005.

[193] Thomas Stockhammer. Dynamic adaptive streaming over http –: Standards and de-
sign principles. In Proceedings of the Second Annual ACM Conference on Multimedia
Systems, MMSys ’11. ACM, 2011.

[194] Kyoungwon Suh, Yang Guo, Jim Kurose, and Don Towsley. Locating network moni-
tors: complexity, heuristics, and coverage. Computer Communications, 29(10):1564–
1577, 2006.

[195] Andrew H Sung and Srinivas Mukkamala. The feature selection and intrusion detec-
tion problems. In Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making, pages 468–482. Springer, 2005.

[196] Nirupama Talele, Jason Teutsch, Robert Erbacher, and Trent Jaeger. Monitor place-
ment for large-scale systems. In Proceedings of the 19th ACM symposium on Access
control models and technologies, pages 29–40. ACM, 2014.

[197] Chi-Ho Tsang, Sam Kwong, and Hanli Wang. Genetic-fuzzy rule mining approach and
evaluation of feature selection techniques for anomaly intrusion detection. Pattern
Recognition, 40(9):2373–2391, 2007.

[198] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. The NIDS cluster: Scalable, stateful network intrusion detection on commod-
ity hardware. In International Workshop on Recent Advances in Intrusion Detection,
pages 107–126. Springer, 2007.

[199] Bobby Vandalore, Wu chi Feng, Raj Jain, and Sonia Fahmy. A survey of application
layer techniques for adaptive streaming of multimedia. Real-Time Imaging, 7(3):221
– 235, 2001.

[200] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-
matical Software (TOMS), 11(1):37–57, 1985.

[201] Haining Wang, Danlu Zhang, and K.G. Shin. Detecting SYN flooding attacks. In In
Proc. IEEE INFOCOM 2002., 2002.

179

[202] Haining Wang, Danlu Zhang, and K.G. Shin. Change-point monitoring for the de-
tection of DoS attacks. IEEE Transactions on Dependable and Secure Computing,
1(4):193–208, Oct 2004.

[203] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,
1994.

[204] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[205] Yu Xiao, R.S. Kalyanaraman, and A Yla-Jaaski. Energy consumption of mobile
YouTube: Quantitative measurement and analysis. In NGMAST, 2008.

[206] Georgios Xilouris, E Trouva, F Lobillo, JM Soares, J Carapinha, Michael J McGrath,
George Gardikis, P Paglierani, Evangelos Pallis, L Zuccaro, et al. T-nova: A market-
place for virtualized network functions. In Networks and Communications (EuCNC),
2014 European Conference on, pages 1–5. IEEE, 2014.

[207] Jingteng Xue and Chang Wen Chen. Mobile video perception: New insights and adap-
tation strategies. Selected Topics in Signal Processing, IEEE Journal of, 8(3):390–401,
2014.

[208] Lili Yang and George Michailidis. Sampled based estimation of network traffic flow
characteristics. In INFOCOM 2007. 26th IEEE International Conference on Com-
puter Communications. IEEE, pages 1775–1783. IEEE, 2007.

[209] T. Yatagai, T. Isohara, and Iwao Sasase. Detection of http-get flood attack based on
analysis of page access behavior. In Proc. IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processing. PacRim 2007, 2007.

[210] Sun Yi, Seyed Kaveh Fayazbakhsh, Yang Guo, Vyas Sekar, Yun Jin, Dali Kaafar, and
Steve Uhlig. Trace-Driven Analysis of ICN Caching Algorithms on Video-on-Demand
Workloads. In ACM CoNEXT, December 2014.

[211] Ya-Ju Yu, Pi-Cheng Hsiu, and Ai-Chun Pang. Energy-efficient video multicast in 4g
wireless systems. Mobile Computing, IEEE Transactions on, Oct 2012.

[212] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In CODES/ISSS,
2010.

[213] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. Named data networking.
ACM SIGCOMM Computer Communication Review, 44(3):66–73, 2014.

[214] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Tode-
schi, K.K. Ramakrishnan, and Timothy Wood. OpenNetVM: A platform for high
performance network service chains. In Proceedings of the 2016 Workshop on Hot

180

Topics in Middleboxes and Network Function Virtualization, HotMIddlebox ’16, pages
26–31, New York, NY, USA, 2016. ACM.

[215] Lei Zhou, Haibo Xu, Hui Tian, Youjun Gao, Lei Du, and Lan Chen. Performance
analysis of power saving mechanism with adjustable DRX cycles in 3GPP LTE. In
IEEE VTC 2008 (Fall), 2008.

[216] Zhenkai Zhu and Alexander Afanasyev. Let’s Chronosync: Decentralized dataset
state synchronization in named data networking. In 2013 21st IEEE Int. Conf. on
Network Protocols (ICNP), pages 1–10, 2013.

181

