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Abstract

The Design and Implementation of Motion Planning Problems Given Parameter

Uncertainty

by

Claire Walton

This dissertation explores the potential for utilizing direct methods in optimal control

to solve trajectory optimization problems with uncertain parameters. Parameter uncer-

tainty extends traditional optimal control problems by inserting constant but unknown

uncertainty into problem components such as the cost function or the state dynamics.

The objective in these problems becomes to minimize the cost function, subject to all

available information, such as a range of values or prior distribution for the uncertain

parameter. Research into this topic has historically been motivated by applications in

optimal search theory. However, the development of more general numerical methods

and optimality conditions creates the potential to address a greater variety of problems.

The goal of this dissertation is to facilitate the maturation of optimal control

problems with parameter uncertainty into a tool of wider applicability. This is ap-

proached by addressing three aspects of progressing prior research: the development of

more realistic and interactive kinematic and performance models for application in prob-

lems with parameter uncertainty, the development of a general mathematical framework

for parameter uncertainty problems, and a numerical algorithm for generating solutions.
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Chapter 1

Introduction

1.1 Motivating Problem: The Optimal Search Problem

An area of interest in robotics and autonomous vehicle research is the de-

velopment of trajectory optimization algorithms given uncertainty. In such situations,

autonomous agents are faced with the task of optimizing their behavior under a given

performance criterion while taking into consideration environmental or infrastructural

features which may have an amount of uncertainty. This problem can arise in many

situations, including search and rescue operations, robotic guidance, missile defense,

and combat situations.

A much-studied problem of trajectory optimization under uncertainty is The

Optimal Search Problem, developed in the 1940’s. The optimal search problem considers

the question of how to optimize the probability of detection of a non-evasive target with

certain uncertain features, given detection equipment capabilities and limitations on on

the allocation of search effort. The problem has been studied extensively in the fields of

1



Figure 1.1: Diagram of Components of the Classic Optimal Search Problem

applied mathematics and operations research and has applications in search and rescue

operations, robotic missions, missile defense, and tactical situations; a review is given

by [5].

In order to construct The Optimal Search Problem, three major components

must be modeled: a criteria for evaluating detection probabilities given some allocated

search effort, a model for allocating that search effort (this could be through the move-

ment of some ship, or through a more discrete process of allocating power to different

point in a sensor grid), and a model to capture what knowledge we have of target motion

and location (Figure 1.1).

The modeling decisions for each of these components determine the resulting

mathematical problem, and as with most scenarios, the resulting mathematical problems

can be diverse. One of the common frameworks, studied by for instance [6], [1], and [7],

configures the search problem as an optimal control problem influenced by parameter

uncertainty. This particular framework has served as the starting point for the models

2



in this thesis, so the following will briefly present its details.

1.1.1 Searcher and Detection Models

In this framework, first developed by B.O. Koopman in [8], search effort is

applied by autonomous searching agents characterized over time by a vector of states

x(t) ∈ Rnx . These states are determined by a dynamical system:

x(t) = f(x(t), u(t)), x(0) = x0

with a control input u(t) ∈ Rnu and known initial condition x0 ∈ Rnx . Each of these

agents is equipped with detection equipment, for instance radar or sonar. Establishing

a model to quantity the effectiveness of such equipment was one of the earliest contribu-

tions to The Optimal Search Problem, and the model derived during WWII in [9]–the

so-called ‘exponential detection model’–remains ubiquitous in the literature today. In

general, detection through visual input or through sensor input such as sonar and radar

is probabilistic in nature. There is a chance that an object’s presence can be missed,

even when it’s within sensor range, however intuitively this probability decreases as

attention is focused on it for a longer period of time.

The exponential detection model follows from the assumption that a feature

termed the instantaneous rate of detection can be effectively modeled. Given the position

of a searcher at x(t) and a target at y(t) ∈ Rny , this instantaneous rate of detection

is a function r(x(t), y(t)) : Rnx × Rny → R such that the probability of detection in

a sufficiently small interval [t, t + ∆t] is independent from previous time intervals and

3



Figure 1.2: Example Detection Rate Function: Poisson Scan Model

given by the quantity r(x(t), y(t))∆t. The rate function r(x(t), y(t)) is chosen to model

the qualities of sensor equipment such as acoustic and sonar sensors, which have rapid

enough sweep rates to be modeled as continuous processes (Figure 1.2). Proceeding

with these assumptions, a formula for the probability of target detection by a single

searcher can be derived. If we denote the probability of non-detection of a target with

the function P (t), the independence of the time intervals creates the following difference

equation:

P (t+ ∆t) = P (t) [1− r(x(t), y(t))∆t] .

Rearranging gives:

P (t+ ∆t)− P (t)

∆t
= −P (t)r(x(t), y(t))

which as ∆t→ 0 becomes:

Ṗ (t) = −P (t)r(x(t), y(t)).

4



This differential equation has the exponential solution:

P (t) = e−
∫ t
0 r(x(τ),y(τ))dτ .

1.1.2 Target Models

The values of y(t) in the above probability are considered to be uncertain

(otherwise the task of searching wouldn’t have much purpose!). This uncertainty can be

modeled in a variety of ways, including as a diffusion process with stochastic parameters,

[10], and Markovian motion, [11]. The model of conditionally deterministic motion

assumes that the motion of the targets is given entirely by a function of time and a

parameter ω. In other words, the target motion becomes conditional on ω:

y(t|ω) = h(t, ω)

in a fashion which can be specified by some function h(t, ω). This parameter ω is an

element of a bounded parameter space Ω ⊂ Rn and furthermore has a known probability

density function p : Ω→ R.

As an illustration of the kind of probabilistic parameters that can be chosen

in a search model we can consider the classic channel patrol problem, created by [8] in

1946, and subsequently studied analytically in 1982 by [12] and computationally in 2011

by [7]. In this problem a searcher is given the task of optimally patrolling a channel of

water of given width. Intruders into this channel are known to be moving in a straight

line through the channel at a constant velocity. Some of the specific features of their

5



motion, however, may be known only probabilistically, such as starting position, starting

time, or velocity. This creates a distribution of possible positions for each intruder at

each moment in time which is then incorporated into optimization decisions.

The model of conditionally deterministic motion can also be used to describe

more complicated processes. A particularly interesting example of this is that condi-

tionally deterministic motion can encompass numerical solutions to previously computed

optimization problems. This fact is utilized by [1] to create optimal search trajectories

against a swarm of attackers headed towards a high-valued unit (HVU) moving along a

pre-determined trajectory. Prior to the implementation of the optimal search algorithm,

the probability density function of parameter space is approximated through discretiza-

tion and a set of each attacker’s conditional trajectories over time is created. These

trajectories are computed as a solution to an optimal control problem which seeks to

minimize the time between attacker interception of the HVU given velocity, starting

time, and curvature constraints.

6



Figure 1.3: Example of a distribution of conditionally deterministic target trajectories
with two parameters made from the optimization of the optimal control problem de-
scribed in section II.C of [1]. The target trajectories are designed to minimize the time
between interception of a high valued unit (HVU) given velocity, starting time, and
curvature constraints. The position of the HVU is given by the diamond icon.

1.1.3 Optimal Control Formulation

The conditioning of y on ω leads to a probability of target detection which is

itself a conditional probability, i.e. P (t|ω), defined by:

P (t|ω) = e−
∫ t
0 r(x(τ),y(τ |ω))dτ .

A natural performance measure is to minimize the expectation of the probability of

non-detection over a time interval [0, T ]. This creates the objective:

min J = 1−
∫

Ω
e
∫ T
0 r(x(t),y(t|ω))dtp(ω)dω

in which the existence of uncertain parameters in the problem has presented itself

through a (potentially high dimensional) integration over a parameter space. If we

7



assume independence in the detection of each target by each searcher, we can also use

these principles to derive detection probabilities in the case of multiple searchers and

targets. For K searchers and L targets, let the searcher states be given by:

ẋk(t) = fk(xk(t), uk(t)), xk(0) = xk,0, k = 1, . . . ,K

the targets states by:

yl(t|ω) = hl(t, ω)

and each searcher’s detection rates by:

rk(xk(t), yl(t|ω)).

The probability of the k-th searcher not detecting the l-th target by time t+ ∆t is:

Pk,l(t+ ∆t|ω) = Pk,l(t) [1− rk(xk(t), yl(t|ω))∆t] .

The ‘worst-case’ probability of none of the searchers detecting any of the targets by time

t + ∆t is determined by the relation P (t|ω) =
∏L
l=1

∏K
k=1 Pk,l(t + ∆t|ω) which creates

the difference equation:

P (t+ ∆t|ω) = P (t)
L∏
l=1

K∏
k=1

[1− rk(xk(t), yl(t|ω))∆t]

= P (t)[1−
L∑
l=1

K∑
k=1

rk(xk(t), yl(t|ω))∆t+ (∆t)2(. . . ) + . . . ]

8



As ∆t→ 0 the higher order terms with respect to ∆t disappear and so we get:

Ṗ (t|ω) = P (t|ω)[1−
L∑
l=1

K∑
k=1

rk(xk(t), yl(t|ω))]

and

P (t|ω) = e−
∫ t
0

∑L
l=1

∑K
k=1 r(xk(τ),yl(τ |ω))dτ .

This creates the objective:

min J = 1−
∫

Ω
e
∫ T
0

∑L
l=1

∑K
k=1 r(xk(t),yl(t|ω))dtp(ω)dω

The added integration over parameter space as well as the exponential function en-

compassing the time integral distinguish this cost function from the standard types

encountered in optimal control. For a variety of derived cost functions, this framework

for The Optimal Search Problem creates the following class of optimal control problems:

The Optimal Search Problem: Given probability density function p : Ω → R,

determine the control u : [0, T ]→ U ∈ Rnu that minimizes the cost:

J =

∫
Ω

[
F (x(T ), ω) +G

(∫ T

0

r(x(t), u(t), t, ω)dt

)]
p(ω)dω

subject to the searcher dynamics:

ẋ(t) = f(x(t), u(t)), x(0) = x0

9



and control constraint

g(u(t)) ≤ 0, ∀t ∈ [0, T ].

This class of control problems allows for the influence of the uncertain parameter on a

broad range of possible cost functions while retaining deterministic state equations. As

a class of control problems, it has been studied by multiple researchers, including [13],

[6], [1], and [14].

1.2 Expanded Modeling Frameworks for Multi-Agent Mo-

tion Planning

In his 1989 review of the state of the subject, [5], Stone divides the study of

The Optimal Search Problem, referred to in generality as ‘Search Theory’, into four

historical periods:

·Classical 1942-1965 ·Algorithmic 1975-1985
·Mathematical 1965-1975 ·Dynamic 1985-1989

The ‘Classical Period’ provided several of the constructions which still define many

problems today, including the concept of search density and the exponential detection

model. The subsequent ‘Mathematical Period’ focused on providing analytical tools,

often in the form of necessary conditions on optimality derived using the calculus of

variations. In order to create analytical tractability, targets were usually assumed to be

either stationary or moving along a linear track at constant velocity. The ‘Algorithmic

Period’ saw the further development of algorithms for finding optimal or near optimal

10



numerical solutions for simplified systems. Heuristic algorithmic methods were explored

during this period, as well as the initial application of optimal control. The modern

‘Dynamic Period’ shifted the focus to dynamic feedback control solutions.

It is notable that, though written in 1989, until just the last few years Stone’s

survey has remained an accurate description of the state of much of modern research

into search theory, especially in the continuous time-and-space case. Though research

on numerical methods has progressed significantly since 1989, many older questions have

not been revisited. In particular, until 2011 [1], these concluding remarks from Stone’s

review were still the case:

“As I look over the list of accomplishments and developments arising from
search theory, I am struck by some missing elements. None of the stan-
dard optimization methods from nonlinear programming, control theory, or
dynamic programming have made much of a contribution to solving search
problems...These problems appear to occupy a small but special niche.” [5]

Thanks to the developments of [1] [7], [14], and [15], however, these remarks no longer

hold. Due to these developments, and the progress made in numerical optimal control in

general, we are now able to use more efficient numerical methods, such as pseudospectral

collocation, than have been previously implemented. We are furthermore able to flexibly

incorporate complicated objectives, state and control constraints, and nonlinear searcher

and target dynamics.

In fact, the flexibility of modern numerical methods to solve optimal control

problems with parameter uncertainty for a large class of objective functions and nonlin-

ear state dynamics is a new development both in search theory and in optimal control.

Many of these methods were originally developed for use on The Optimal Search Prob-

lem, however they have now created a foundation which can be leveraged to address a

11



Figure 1.4: Illustration from Chung et al. (2011) [2] of a general taxonomy of search
problems as outlined by Benkowski et al. (1991) [3]

greater variety of problems. One initial step in utilizing this potential is to expand the

framework provided by The Optimal Search Problem to address more general multi-

agent problems, with the goal of connecting the particular topic of optimal search with

the broader field of pursuit-evasion research.

The modeling of optimal search problems and of pursuit-evasion scenarios share

a common substrate: mobile autonomous agents with potentially incomplete knowledge

of each other are cooperating or competing with the aim of optimizing some objective.

Because of this similarity, the family of problems created by optimal search and pursuit-

evasion scenarios can be interpreted as a single area of study. This is the approach taken

by Benkowski et al. [3] and Chung et al. [2] who categorize pursuit-evasion problems

under the umbrella of ‘search theory,’ using the taxonomy replicated here in Figure

1.4. Within this rubric, ‘one-sided search’ refers to the optimization of motion planning

under the assumption of non-evasive target motion. ‘Search games’, also denoted as

‘adversarial search’, refers to the optimization of pursuit-evasion scenarios created by

granting the adversary a higher degree of intelligence or responsiveness.

12



Despite these commonalities, however, the differing demands of problems with

evasive targets versus those with non-evasive targets have so far divided the mathe-

matical techniques applied into disparate approaches. Some of these differing demands

can be seen to fundamentally require distinct approaches–for instance, in a pursuit-

evasion differential game where the goal is to simultaneously find optimal strategies for

both the pursuer and for the evader, the multi-objective optimization problem created

will require a different approach than a single-objective optimization problem. However,

there are many valuable problems with evasive targets which do result in single-objective

optimization problems.

In the case of these problems, we would like to identify the design aspects of

The Optimal Search Problem as derived above which may be open to elaboration or

translation to these types of problems, as well as identify any complications that may

arise numerically or theoretically by implementing expansions of the optimal search

framework.

A More General Structure

From a modeling perspective, The Optimal Search Problem deals with two

types of quantities. The first type is what Koopman refers to as the ‘kinematic bases’ of

the problem.[8] These are the physically moving agents–the searchers and the uncertain

targets. Attached to these bases is a set of performance measures–the probabilities of

detection between the agents. These performance measures are subsequently used to

create an objective function, J .

We now consider the task of modeling more “realistic scenarios,” using this
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Figure 1.5: Diagram of the Types of Quantities Involved in Optimal Search

framework of kinematic bases and performance measures. As can be seen in the diagram,

though The Optimal Search Problem has been challenging historically, as a model of

interacting agents it is quite simple. The performance measures in the classic optimal

search problem are created by merely two directions of influence–the influence of a

searcher’s state on performance, and the influence of the conditional attacker states

on performance. In reality, many scenarios require the modeling of more directions of

influence than this simple model incorporates.

For example, consider the challenge of optimizing the trajectory of a ship with

the mission of cleaning up an oil spill. The possible positions of the oil over time

given unknown starting location but know ocean currents could be pre-computed and

subsequently modeled as a conditionally deterministic function. If the goal of a clean-

up was merely to “find” all the oil, then this problem would be a good candidate for
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Figure 1.6: Diagram of Example Interactions Found in an Oil Cleanup

modeling as an optimal search problem. However, in many situations the objective

of maximizing oil discovery would often not be a sufficiently nuanced strategy. For

instance, the protection of a sensitive but valuable at-risk ecosystem may need to be

prioritized during the clean up. In order to do this another layer of interaction needs

to be modeled–that of the oil accumulating throughout the ecosystem, as influenced

both by searcher states and discovered oil. We could furthermore imagine another

layer of interaction–one in which the accumulated oil slows the ship, impacting searcher

dynamics.

Another example can be found in the optimization of tactical trajectories. An

area of interest in current Naval research is the development of guidance laws and op-

timal trajectories in situations with multiple defenders, multiple attackers, and a high-

valued unit (HVU) that requires protection. This situation arises in tactical operations

and in missile defense and guidance. Progress has been made both in creating heuristic
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Figure 1.7: Multiple Influences Wanted

algorithms to tackle this scenario and in extending the results of optimal control the-

ory to applicable formats. In [1], the problem was addressed using optimal search to

maximize the probability of detecting attackers. However applying optimal search only

indirectly optimizes HVU survival. A different approach would be to directly optimize

the probability of survival by modeling the influence of the attackers on the HVU as

well as the effectiveness of the defenders against the attackers.

The common theme is the need to expand the framework to include the possi-

bility of interaction between relevant kinematic bases or performance measures. A basic

challenge on this front is that, for the sort of multi-agent scenarios described above,

models of agent interaction and objective functions for assessing their behavior simply

haven’t been developed. The exponential detection model provides us with a perfor-

mance criterion which can be used as the objective function in the evaluation of optimal
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search problems, however the derivation of objectives for more interactive situations is

a more open question. Section 2 will develop several new models for interactive perfor-

mance measures and kinematic bases and derive possible objective functions for such

scenarios. Several new applications of optimal control with parameter uncertainty will

then be put forth.

1.2.1 Mathematical Properties

The individual features of the kinematic bases in turn affect the features of the

performance measures. For instance, conditioning the target motion y on an uncertain

parameter ω makes the performance measures attached to y conditional on ω as well.

The uncertainty is a transitive property which travels from the kinematic base to the

performance measure. Another property which can be viewed as having a transitive

effect–at least informally–is the differential constraint on x(t). Cumulative performance

measures by their nature depend on the entirety of the behavior of our state x from

t0 = 0 to t. This creates only two possibilities: either a performance measure, P (t, ω),

is defined in terms of a function of an integral over time, i.e.:

P (t, ω) = G

(∫ t

0
r(x(t), u(t), y(t, ω))dt

)
p(ω)

or it is defined as a differential constraint as well:

Ṗ (t, ω) = g(P (t, ω), x(t), u(t), t, ω).
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The third possibility, that the integral
∫ t

0 r(x(t), u(t), t, ω)dt could be solved for explicitly

as a function of t and ω, is precluded by the fact that ẋ(t) is subject to our control.

The classic optimal search problem, as derived above, in fact does end up with

its performance measure defined as a differential equation. For instance, as we saw in

the single search, single target case, the conditional probability P (t, ω) of not detecting

the target by time t is given by the differential equation:

Ṗ (t, ω) = −P (t, ω)r(x(t), y(t, ω)

The problem then benefits from its structure, which allows for the exponential solution

of this differential equation, i.e. a translation to the form:

G

(∫ t

0
r(x(t), u(t), y(t, ω))dt

)
p(ω).

The multi-agent ‘worst-case’ problem also takes advantage of this. The key effect of

this is that the influence of uncertainty is never transmitted to the “state variables”–

which in optimal control consists of all the variables which are defined in terms of a

differential constraint. This is what allows The Optimal Search Problem to take the

form it has been studied in–an optimal control problem with a nonstandard cost function

but deterministic state variables. The reduction to this form, however, is a precarious

feature since in general the differential equations involved in the performance measures

may not yield a closed-form answer.
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1.3 Thesis Contributions

The goal of this thesis is to facilitate the maturation of optimal control prob-

lems with parameter uncertainty into a tool of wider applicability. This is approached

by assailing the three aspects identified as necessary for progressing the research de-

voted to The Optimal Search Problem: the design of useful interactive performance

models and kinematic models, the development of a general framework for dealing with

parameter uncertainty in both the cost and dynamics of optimal control problems, and

a numerical algorithm for generating solutions.

1.3.1 Multi-Agent Models

Section 2 provides several new models for both kinematic and performance

interaction in multi-agent systems. Several systems for herding–where the spatial tra-

jectory of a target is influenced, with the goal of guiding the target towards desirable

location–are developed. For performance interaction, a framework for modeling tactical

attrition between multiple targets and agents is developed, leading to the publication of

[15]. Additionally, models for a strategic search problem and a path coverage problem

are provided.

1.3.2 Necessary Conditions for Optimality

In standard control problems, the necessary conditions for optimality provided

by Pontryagin’s Minimum Principle, [16], provide tools for both theoretical and nu-

merical analysis of solutions. Necessary conditions for sub-cases of the mathematical

problem studied in this thesis were derived by [17] and [13]. Section 3 adds to this
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collection of conditions by deriving necessary conditions optimality for a more general

class of optimal control problems with parameter uncertainty in the case of open control

regions. Stationarity conditions on a Hamiltonian function distinct from that found in

standard control are provided both with respect to the control and with respect to time.

These conditions complement the conditions which arise later, in Section 4.1.4, in that

they apply even in the case of when the numerical algorithm fails to converge.

1.3.3 Computational Algorithm

Section 4 provides contributions to both the theoretical and practical sides of

the issue of computation. A computational algorithm is given along with consistency

results proving the optimality of convergent answers. As a joint work with Chris Phelps

and Qi Gong at UCSC and Johannes Royset and Isaac Kaminer at the Naval Postgrad-

uate School, the consistency of this algorithm when applied to optimal control problems

with parameter uncertainty influencing the cost function has been analyzed in [14]. The

consistency of these methods for problems with parameter uncertainty influencing both

cost and dynamics is briefly considered in [18] by interpolating states and costates over

the parameter domain and assuming the convergence of these interpolations. This the-

sis and the pending paper [19] further consider the consistency of this computational

algorithm by analyzing consistency in terms of the states and costates propagated by

control solutions rather than in terms of interpolations. The goal of the consistency

results derived in this thesis is to be applicable to engineering applications, in which

control solutions will be inputted and their effect propagated. Additional effort is also

made to clarify the relationship of these results with the Covector Mapping Theory,
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described in [20], which provides tools for numerical verification of solutions.

In addition to the theoretical results supporting the computational approach,

a series of implementations is provided, to demonstrate both the computation efficacy

of the algorithm and the behavior of problems of this type. These examples are im-

plemented using a software package designed by the author which uses the methods

described in Section 4. This software allows for a variety of options for discretization

methods, and also automates the creation of features which are crucial to the efficient

implementation such as gradient information and sparsity pattern. This software has

been used to provide the numerical examples published in [14], [21], [18], and [15] and

is used to provide further examples in Section 4.

1.4 Thesis Outline

The development of a family of interactive kinematic dynamics is the focus of

Section 2.1 and the development of a family of interactive performance measures is the

focus of Section 2.2.

Section 3 then puts forth a general mathematical framework for dealing with all

of these scenarios. This framework places the scenarios in a class of nonstandard optimal

control problems where dependence on an unknown parameter is a feature which can be

found in both the cost function and the dynamics. Necessary conditions for optimality

are derived using the method of the calculus of variations, for the case when controls

are in an open set. An additional condition guaranteeing constant Hamiltonian value

for optimal solutions is also derived. An example problem is then solved analytically
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using these conditions.

Section 4 then introduces a numerical algorithm for finding solutions to this

class of optimal control problems. Convergence properties of this method are proved for

both the primal and dual problems. Subsequently, in Section 4.2, a variety of examples

scenarios are implemented.

Lastly, Section 5 will discuss future directions of research.
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Chapter 2

Kinematic and Performance

Models

2.1 Kinematic Models

In addition to additional performance measures, to move towards modeling

more ‘realistic’ scenarios, we would like to incorporate models of kinematic influence,

where the agents under our control are able to physically influence the dynamics of the

uncertain targets. Of particular interest is a type of interaction which can be referred to

as ‘herding’–where the spatial trajectory of a target is influenced, with the goal of guiding

the target towards desirable locations. Herding can be thought of as one-sided pursuit-

evasion. The control inputs of the pursuer–i.e, the herder–are available for optimization

whereas the evaders–i.e. the targets–respond in a purely reactive manner. This section

will present several frameworks for modeling herding, with a focus on providing simple

but flexible schemes which enable the use of calibratable nonlinear, multi-agent inputs.
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Motivating Example: Radial Evasion System

A system for multi-agent herding is developed in the dissertation of [22]. In

this model, the framework of [23], which presents herding dynamics for fixed distances

between herder and target and constant velocities for both agents, is extended to en-

compass variable distances between agents and a distance-based velocity tactic. For a

single target, single herder, the heading of the target in this framework is set to be along

the path of sight to the herder, moving away from the herding. The heading angle, θ,

then satisfies the following:

tan θ =
x2 − y2

x1 − y1

and θ is determined by:

θ = tan−1

(
x2 − y2

x1 − y1

)
.

The velocity of the target speeds up as the herder approaches and is set as:

Figure 2.1: Geometry of Radial Evasion

v(r) =
1

r
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Figure 2.2: Geometry of the Derivative of a Trajectory in Relation to Heading Angle

where

r =

√
(x1 − y1)2 + (x2 − y2)2

Using the facts that tan θ is additionally constrained by tan θ = dy2
dy1

= ẏ2
ẏ1

(Figure 2.2)

and that ẏ2
1 + ẏ2

2 = v2(r), a solution to the differential equations for ẏ1 and ẏ2 can be

found by substitution:

ẏ2
1 + ẏ2

2 = ẏ2
1 +

(
tan2 θ

)
ẏ2

1 = ẏ2
1

(
1 +

sin2 θ

cos2 θ

)
=

1

r2

=⇒ ẏ2
1

(
cos2 θ + sin2 θ

)
= ẏ2

1 =
(
cos2 θ

) 1

r2

and similarly

ẏ2
2 =

(
sin2 θ

) 1

r2
.
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For target motion to be directed away from the herder, the solution is:


ẏ1 = −1

r cos θ

ẏ2 = −1
r sin θ

(2.1)

Several methods are proposed in [22] for extending this to the case of multiple herders

and targets. In the first method, herders and targets are identical in number and paired.

In the second method, one herder may effect multiple targets, all driven by the same

dynamics as described above. Finally, in the third method, the quantities −1
r cos θ and

−1
r sin θ are thought of not as specifying a velocity and a heading, but as specifying

the components of an individual herder’s ‘influence.’ These influences are then added

together, yielding the system:


ẏl,1 = −

∑K
k=1

1
rlk

cos θlk

ẏl,2 = −
∑K

k=1
1
rlk

sin θlk

(2.2)

where rlk and θlk are the relative radii and angles between the l-th target and the k-th

herder.

This previously established model provides several key structural elements one

might like to retain in subsequent models, such as the dependency on relative distance

and position and considering herding influence in terms of inputs into the target’s head-

ing and velocity. However, it also contains several features which might be considered

undesirable. One such feature is its use of tan θ as the quantity which receives head-

ing input. Since tan θ is only unique in value within an interval of size π, the use of
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Figure 2.3: Non-uniqueness of Tangent

tan−1
(
x2−y2
x1−y1

)
to specify θ is only valid when θ is restricted to such an interval. The

simulations in [22] did in fact remain in such a region, with targets always in front

of herders and maintaing relative angles of less than π
2 . However in large scale herd-

ing simulations, the possibility that the herder and target may switch orientations at

some point cannot be ignored. Another feature which may benefit from modification is

the method in which this herding model extends to multiple agents. Additive herding

components have a possible physical analogue in the application of force, however their

direct input into the velocity field as in this model has no straightforward interpreta-

tion. This makes limiting the modeled physical capabilities of the targets (as well as

the herders) more difficult. For instance, in the multi-agent model above, the origi-

nal relation to heading and velocity is complicated. The magnitudes of the ‘influence’

components, 1
rlk

, no longer cancel out to yield the heading,
dyl,2
dyl,1

, as they did in the sin-

gle target case, making the calculation of the heading laborious and constraints on its

values difficult. Similarly, the trigonometric terms no longer cancel out in the velocity

expression, ẏ2
l,1 + ẏ2

l,2, complicating velocity constraints.
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Figure 2.4: Relative Position Vector and Normalized Relative Position Vector

The next sections will address some of these opportunities for development.

First, we will reformulate this example model to avoid the restrictions tangent imposes

and in doing so introduce new notation to simplify discussion. Then we will provide

two flexible frameworks for modeling different systems of herding–one which allows for

multi-agent interactions while retaining a hold on velocity and heading, and another

which conceives of ‘influences’ as cumulative forces.

Relative Position Vectors

As mentioned above, the use of tan−1
(
x2−y2
x1−y1

)
to specify θ is problematic due

to the restricted interval in which tan θ is unique. This can of course be addressed in

a piecewise fashion, by choosing the appropriate solution of tan−1
(
x2−y2
x1−y1

)
depending

on the signs of (x1 − y1) and (x2 − y2). However, it would be preferable to have

system equations which don’t require this sort of piecemeal approach, both for the sake

of analytic evaluations and numerical efficiency. The obvious alternative to using the

polar system (r, θ) to describe the relative position between agents is to describe the

relative position in terms of vectors in Cartesian coordinates. Let the relative position
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vector, R, be defined by:

R =

R1

R2

 =

y1 − x1

y2 − x2

 .

When R is normalized to a unit vector by dividing by ‖R‖ =
√
R2

1 +R2
2, we have:

R1

‖R‖
= − cos θ,

R2

‖R‖
= − sin θ.

We can thus translate the equations from the model above into a new set of equations,

now in terms of the relative position vector.


ẏ1 = −1

r cos θ

ẏ2 = −1
r sin θ

→


ẏ1 = 1

‖R‖ ·
R1
‖R‖

ẏ2 = 1
‖R‖ ·

R2
‖R‖

(2.3)

In the multi-agent case, relative position vectors will be considered between each target

and herder. For targets yl, l = 1, . . . , L and herders xk, k = 1, . . . ,K we can designate

these as Rlk where

Rlk =

Rlk,1
Rlk,2

 =

yl,1 − xk,1
yl,2 − xk,2

 .
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Figure 2.5: Relative Position Vectors Between Multiple Agents

2.1.1 Heading and Velocity Driven Herding

In the system of Equation 2.3, the dynamics of the system have two key com-

ponents. The term 1
‖R‖ gives the total velocity of the system and the relative posi-

tion vector R determines the heading. We can generalize systems which specify these

features–heading and velocity–with dynamics of the form:


ẏ1 = H1(R)

‖H(R)‖v(R)

ẏ2 = H2(R)
‖H(R)‖v(R)

where

H(R) =

H1(R)

H2(R)

 , v(R) > 0
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Figure 2.6: Diagram of Heading Vector

and R is the relative position vector. The instantaneous total velocity of such a system

is given by:

√
ẏ1

2 + ẏ2
2 =

√(
H1(R)

‖H(R)‖

)2

v2(R) +

(
H2(R)

‖H(R)‖

)2

v2(R)

=

√
H2

1 (R) +H2
2 (R)

‖H(R)‖2
v2(R) =

√
v2(R) = v(R)

The slope of the tangent line, dy2
dy1

, is given by H2
H1

with, as Figure 2.6 shows, the vector

H then specifying the heading. The components H and v thus specify the heading and

velocity of the target’s trajectory. The radial evasion policy shown above, for example,

is one instance of this form, with:

H = R, v =
1

‖R‖
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For a K herders and L targets, this can be generalized as:


ẏl,1 =

Hl,1(Rl1,...,RlK)
‖Hl(Rl1,...,RlK)‖vl(Rl1, . . . , RlK)

ẏl,2 =
Hl,2(Rl1,...,RlK)
‖Hl(Rl1,...,RlK)‖vl(Rl1, . . . , RlK)

Hl(Rl1, . . . , RlK) =

Hl,1(Rl1, . . . , RlK)

Hl,2(Rl1, . . . , RlK)

 , vl(Rl1, . . . , RlK) > 0, l = 1, . . . , L

The next few sections will provide several examples of herding policies of this form.

Weighted Average Headings

One way to extend the radial evasion policy to multiple agents is to sum

in some fashion the heading vectors contributed by each herder. This is comparable

to the approach of Equation 2.2, which sums the contributions from each herder as

“influences,” however it differs in that the effect can be limited to heading–the evasive

velocity can be modeled separately.

As an example of heading summation, consider the situation diagrammed in

Figure 2.7. In this scenario, two herders are located symmetrically on either side of a

target at (yl,1, yl,2). Assuming both herders are considered of equal importance, then

the direction of travel which maximizes the average distance from the herders is given by

the sum of the two radial evasion heading vectors. In the scenario in Figure 2.7, the two

herders are equidistant from the target, so a direct sum of each radial evasion heading

vectors yields the optimal heading. However when the herders vary in distance, the

relative position vectors need to be normalized before summation–or else herders farther
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Figure 2.7: Example of Average Heading Policy with Two Herders

away would have more influence than closer herders due to their larger relative position

vectors, a feature which is clearly unrealistic. Additionally, in most circumstances,

greater emphasis might be placed on evading nearby herders. These two features can

be incorporated in the following summation format:

Hl = αl1
Rl1
‖Rl1‖

+ αl2
Rl2
‖Rl2‖

+ · · ·+ αlK
RlK
‖RlK‖

where αlk is some function of herder distance ‖RlK‖.

An alternate statement of this weighted average form can be made using po-

tential functions. Let Vlk (‖Rlk‖) be some function of radial distance. Then the gradient

of Vlk with respect to the components of Rlk, i.e. Rlk,1 and Rlk,2, is:

∇Vlk =

(
∂Vlk
∂Rlk,1

,
∂Vlk
∂Rlk,2

)
=

(
dVlk
d‖Rlk‖

· ∂‖Rlk‖
∂Rlk,1

,
dVlk
d‖Rlk‖

· ∂‖Rlk‖
∂Rlk,2

)
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=
dVlk
d‖Rlk‖

(
∂‖Rlk‖
∂Rlk,1

,
∂‖Rlk‖
∂Rlk,2

)
.

The partial derivative ∂‖Rlk‖
∂Rlk,1

is given by:

∂‖Rlk‖
∂Rlk,1

=
∂

∂Rlk,1

(√
R2
lk,1 +R2

lk,2

)
=

1

2
· 1√

R2
lk,1 +R2

lk,2

· 2Rlk,1 =
Rlk,1
‖Rlk‖

.

Similarly, ∂‖Rlk‖
∂Rlk,2

=
Rlk,2
‖Rlk‖ . Therefore

(∇Vlk)T =
dVlk
d‖Rlk‖

Rlk,1/‖Rlk‖
Rlk,2/‖Rlk‖

 =
dVlk
d‖Rlk‖

· Rlk
‖Rlk‖

.

Thus we can also express a weighted average heading in terms of potential functions:

Hl = (∇Vl1)T + (∇Vl2)T + · · ·+ (∇VlK)T

where the potential functions are chosen such that dVlk
d‖Rlk‖ provides a meaningful weight

for a herder’s relative effect at distance ‖Rlk‖.

Example: Radially Decaying Heading Influence 1

This system provides an example of a herding system where the influence on

a target’s heading decays with distance from herder. For k = 1, . . . ,K, l = 1, . . . , L, let

Hlk = αlk
Rlk
‖Rlk‖

, αlk =
clk

(dlk‖Rlk‖+ 1)2 (2.4)
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where clk and dlk are calibrated constants. The maximum heading influence of each

herder has a finite limit, clk, and monotonically decreases towards zero as radial dis-

tance increases. We may, as in the example above, also throw in an attractive herding

influence. For instance, as a contrast, let

Hl0 = − Rl0
‖Rl0‖

· cl0

where cl0 is a calibrated constant. This provides a tracking influence that doesn’t decay

with distance–i.e the target always reorients towards its mission to track the HVU. The

weighted average heading vector is given by:

Hl =
K∑
k=0

Hlk

This system can also be represented using potentials, with:

Vl0 (‖Rl0‖) = −cl0‖Rl0‖

and

Vlk (‖Rlk‖) =
−clk/dlk

(dlk‖Rlk‖+ 1)
, k = 1, . . . ,K

Example: Radially Decaying Heading Influence 2

This system, developed by Panos Lambrianides, uses potential functions to

model both the herding effects of K herders repelling L targets and, additionally, an

attractive herding influence–the impulse of the targets to also ‘track’ towards an HVU,
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with position given by x0 = (x0,1, x0,2). For k = 1, . . . ,K, let

Vlk (‖Rlk‖) = − 1

σD
e

(
−‖Rlk‖

2

σ2
D

)

and for the case of the tracked HVU let:

Vl0 (‖Rl0‖) =
1

σHV U
e

(
−‖Rl0‖

2

σ2
D

)

where Rl0 is the relative position vector between the l-th herder and the HVU at x0.

Then a weighted average heading vector incorporating both herding and tracking can

be given by:

Hl =

K∑
k=0

(∇Vlk)T

2.1.2 Force Driven Herding

Another approach to modeling herding is through the application of physical

force, directed from the herder at the target. For a single target moving in two-dimension

space with relative position to a herder given by R, the creates a system of the form:



ẏ1 = v1

ẏ2 = v2

v̇1 = F1(R)

v̇2 = F2(R)

(2.5)
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where the target is now modeled as a four dimensional system with both velocity and

acceleration components and the herding input is now an influence on target acceler-

ation. As mentioned in the previous section, though additive herding components are

questionable when inputed into the velocity field, they have a physical foundation when

it comes to the application of force. For K herders and L targets, additive herding

components can be generalized as:



ẏl,1 = vl,1

ẏl,2 = vl,2

v̇l,1 =
∑K

k=1 Flk(Rlk)

v̇l,2 =
∑K

k=1 Flk(Rlk)

(2.6)

For radially directed force, the force functions can be decomposed in the same

fashion as the velocity inputs in Section 2.1.1:

Flk(Rlk) = mlk(Rlk)
Rlk
‖Rlk‖

where mlk(Rlk) is the magnitude of force Flk and Rlk
‖Rlk‖ gives the normalized direction

vector. Section 5.3.1 discusses the implementation of herding models in a multi-agent

tactical scenario.
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2.2 Performance Models

To construct performance objectives for more ‘realistic’ multi-agent scenar-

ios, the development of frameworks for multiple, interacting performance measures is

needed. Given a set of kinematic bases with possible parameter uncertainty, x(t, ω) and

y(t, ω), and a set of performance measures:

Q(t, ω) =



Q1(t, ω)

Q2(t, ω)

...

QJ(t, ω)



in full generality this concept could of course lead to any nonlinear performance dynam-

ics:

Q̇(t, ω) = g(Q(t, ω), x(t, ω), y(t, ω), u(t), t, ω).

This section will narrow the focus down from that generality to a family of performance

dynamics that arises from a broader application of the methods developed for The

Optimal Search Problem. In regards to its performance metric, the method used by the

The Optimal Search Problem is the exponential detection model, developed in [8]. In

this model, the relatively small intervals between ‘glimpses of detection’ of sonar and

radar sensors allow for the generalization to the use of a continuous rate of detection

function, which yields a difference equation of the form:

Qj(t+ ∆t, ω) = Qj(t, ω) [1− r(x(t, ω), yj(t, ω))∆t]
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where Qj(t, ω) is the probability of non-detection for the j-th target. As ∆t → 0

becomes:

Q̇j(t, ω) = −Qj(t, ω)r(x(t, ω), yj(t, ω)).

The product of these states is then solved in closed form as an exponential expression.

In The Optimal Search Problem, this last step, solving as an exponential, is possible

because the probabilities Qj are decoupled–the probability of one target remaining un-

detected doesn’t depend on the success of the others. If the rate of detection were not

decoupled, we would instead have performance dynamics of the following form:

Q̇j(t, ω) = −Qj(t, ω)r(Q(t, ω)x(t, ω), yj(t, ω)).

Outside of the application of search and the act detection, we can identify a more general

concept at play in this equation: attrition. Attrition is meant in the following sense:

attrition: the action or process of gradually reducing the strength or effec-
tiveness of someone or something through sustained attack or pressure

With this terminology, for example, the rate of detection function described in The

Optimal Search Problem would be interpreted as the rate of attrition of a target’s

probability of remaining undetected. When this concept is generalized, we find that

the design effort put into The Optimal Search Problem can be leveraged to address a

wide range of problems and that this method of modeling through attrition, calibrated

rate functions, and optimal control is applicable to many relevant gauges. The next

few sections will explore the application of this method to several areas: search, path

coverage problems, and tactical ‘shooting’ problems.
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2.2.1 Strategic Search

Target evasiveness is a reality of many real-life search problems. While search

can apply to passive or willing targets, oftentimes the reason the target has not been

found is because it doesn’t want to be. In such cases the plan of detection involves a

trade-off between proximity to the target and covertness of the act of detection.

An example of such a scenario can be found in the goal of detecting covert

operation bases, whose presence may be revealed through voluntary emissions, such as

heat signatures. For the sake of simplicity, let us imagine these emissions as binary

decisions on the part of the base: either the operation continues, or it abruptly shuts

down due to the detection of unwanted searching agents. Let us also assume that the

act of detecting these unwanted agents can be modeled using the principles of the classic

optimal search problem.

That is, given an uncertain but conditionally deterministic base location, y(ω),

and searcher states (position, for instance, and perhaps velocity) x(t), the base’s detec-

tion capabilities can be modeled using an instantaneous rate function, rbase(y(ω), x(t))

such that in a small time interval [t, t + ∆t] the probability of agent detection can be

modeled by rbase(y(ω), x(t))∆t. Then, the probability of base remaining unaware of the

searching agents, represented by Q(t, ω), as in the previous search derivation obeys the

following difference equation:

Q(t+ ∆t, ω) = Q(t, ω) [1− rbase(y(ω), x(t))∆t]
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which as ∆t goes to zero has again the exponential solution

Q(t, ω) = e−
∫ t
0 rbase(y(ω),x(τ))dτ

or alternately:

Q̇(t, ω) = −Q(t, ω)rbase(y(ω), x(τ)).

The probability that the base is still in operation is equivalent to Q(t, ω).

The act of the searcher’s detection of the base is now predicated on two things: its

innate capability of detecting an active base and the probability that the base is still

in operation. Thus if the innate rate of detection for the searching agents is given

by rsearcher(x(t), y(ω)), then the overall instantaneous rate of detection is given by

Q(t, ω)rbase(x(t), y(ω)). Letting P (t, ω) represent the probability that the searcher has

not detected the base by time t, we have:

P (t+ ∆t, ω) = P (t, ω) [1−Q(t, ω)rsearcher(x(t), y(ω))∆t]

which as ∆t goes to zero becomes:

P (t, ω) = e−
∫ t
0 Q(t,ω)rsearcher(y(ω),x(τ))dτ

or:

Ṗ (t, ω) = −P (t, ω)Q(t, ω)rsearcher(y(ω), x(τ)).

The final problem can be written in two forms:
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Problem B1: Given p : Ω → R, determine the control u : [0, T ] → U ∈ Rnu that

minimizes the cost:

J =

∫
Ω

[
1− e−

∫ t
0

(
e−

∫ τ
0 rbase(y(ω),x(s))ds

)
rsearcher(y(ω),x(τ))dτ

]
p(ω)dω

subject to:

ẋ(t) = f(x(t), u(t)), x(0) = x0

g(u(t)) ≤ 0, ∀t ∈ [0, T ]

Problem B2: Given p : Ω → R, determine the control u : [0, T ] → U ∈ Rnu that

minimizes the cost:

J =

∫
Ω

[1− P (x(T, ω), ω)] p(ω)dω
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subject to:

Q̇(t, ω) = −Q(t, ω)rbase(y(ω), x(τ)), Q(0, ω) = 0 ∀ω ∈ Ω

Ṗ (t, ω) = −P (t, ω)Q(t, ω)rbase(y(ω), x(τ)), P (0, ω) = 0 ∀ω ∈ Ω

ẋ(t) = f(x(t), u(t)), x(0) = x0

g(u(t)) ≤ 0, ∀t ∈ [0, T ]

2.2.2 Shooting Problems

A problem which arises in combat modeling is the optimization of strategies

given antagonistic weapons fire. Objectives in such scenarios could include optimizing

average agent survival numbers, for instance, or optimizing the survival of a specific

strategic unit. In either case, the quantity in need of modeling is the probability of

survival given weapon accuracy and damage magnitudes.

In [24], Washburn models this probabilistic survival using the concept of a

‘damage function’ D(x, y). The damage function returns the probability that a target

at y is destroyed by a shot fired from x. The value of the damage function is taken

to depend on radial distance. The concept of the damage function in [24] is developed

solely for the case of a single shot fired between two stationary agents, however its basic

idea can also be applied to rapid-fire situations with moving agents.

Consider the case of fire rapid enough to be modeled as a continuous barrage

of damage. The probability of destruction of given by the rate of damage and the time
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spent in its presence. As such, the probability of destruction in a time interval [t, t+∆t]

can be modeled in the form:

rD(x(t, ω), y(t, ω))∆t

where rD is a rate of damage function, i.e. an attrition rate, calibrated to depend on

factors like distance and relative location and orientation. For a target at location

y(t, ω), let P (t, ω) be the probability that the target has survived at time t. If there are

no other mitigating probabilities involved (such as the probability of shooter survival),

then P (t+ ∆t, ω) is given by:

P (t+ ∆t, ω) = P (t, ω) [1− rD(x(t, ω), y(t, ω))∆t]

which as ∆t→ 0 becomes:

Ṗ (t, ω) = −P (t, ω)rD(x(t, ω), y(t, ω)).

Compound probabilities, between for instance agents whose probability of survival is

coupled with the survival probabilities of other agents, can derived using these methods

as well. Elaborations are provided in the scenarios in Sections 2.2.2.1 and 2.2.2.2.

Designing Damage Rate Functions

To model shooting problems, a variety of the specific properties of the damage

rates between agents involved may be desirable to calibrate. For instance, if one is

modeling a hit-or-miss situation–where an agent hitting a target results in probable
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destruction but missing it causes little to no damage–then the range of effective fire

would be limited to a small space around the respective attacker, to simulate that the

attacker can only impart damage when it is very close to the target. On the other

hand, if attackers are vehicles or ships with long-range weapons capabilities, then the

distance from the HVU at which they become effective may be larger. Another relevant

feature is possible point-of-view (POV) constraints, which limit the angles of effective

fire. Finally, any model for shooting problems must be able to address the divided effort

available per target in situations where firing is constrained to be allotted only towards

single targets at any one moment.

Fortunately, large classes of continuous functions exist which can be calibrated

to model these features. For example, an available option is to follow the Poisson

Scan Model and use a cumulative normal distribution centered around agent position.

Parameters of the distribution can be modified to change the steepness of this function

to be simulate the decay of a firing rate function over distance. Benefits of this choice are

that the distribution is normalized and existing literature on radar and sonar detection

functions may be helpful in calibrating parameters. Another family of functions available

Figure 2.8: Beta functions can be used to
simulate a maximal firing effectiveness at
some distance from the firing agent

Figure 2.9: “Half Beta” functions can be
used to simulate decreasing firing effec-
tiveness over distance capped by a finite
range
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for use is the family of beta functions. A beta function with positive parameters α, β ≥ 2

can be connected smoothly (C1) as a piecewise function:

f(x) =


xα(1− x)β, 0 ≤ x ≤ 1

0, else

This can be modified to have arbitrary radius and magnitude and can then be centered

around an appropriate point.

The finite radius of the beta function and the ease of algebraically manip-

ulating aid modeling possibilities. For instance, the beta function extended through

radial symmetry creates a donut shape which can be used to model situations where

offense effectiveness is maximized at some distance from the agent. This distance can

be chosen as a parameter of the model. Beta functions can also be used to mimic the

cumulative normal distribution, but with the added advantage of having a finite radius

of effectiveness. This is created taking the “half beta” function:

f(x) =



(x+ c)α(1− (x+ c))β, c ≤ x ≤ 1

0, else

c = α
α+β

and extending it through radial symmetry. In addition to modeling different radii

and peaks of effectiveness, smooth attrition rate functions can be created which model

point-of-view (POV) constraints. This can be accomplished by including an angularly

decaying multiplier which decreases either with arc length or arc angle.
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Figure 2.10: Effect of an angularly decay-
ing multiplier on an example attrition rate
function

Figure 2.11: Resulting angularly decaying
function reflecting POV limitations

The issue of divided fire effort is more subtle, as smooth functions are desired

for optimal control implementation. This prevents the use of switching structures which

move an agent’s attention discretely from one target to another or which divide attention

between the number of targets within a bounded range. However, we can employ

methods to smoothly approximate divided attention. For example, using the notation

that xk(t) is the location of the k-th defender and yl(t) is the location of the l-th

attacker, we can divide a defender’s attrition function by the following sum of Gaussian

distributions:
L∑
l=1

Φ

(
ρ− ‖xk(t)− yl(t)‖

σ

)

where Φ is a cumulative normal distribution. With the standard deviation σ set to a

small number, this will closely approximate the number of attackers within a radius ρ

of defender xk at time t.
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2.2.2.1 The Kamikaze Swarm Scenario

We consider the scenario where a swarm of L attackers is headed towards a

moving high-valued unit (HVU). K defenders are dispatched to neutralize the attackers

before they destroy the HVU. The objective now is to minimize the probability of

destruction of the HVU over the time interval [0, T ]. Each defender’s state, xk, is

governed by the dynamics:

ẋk = fk(xk, uk), xk(0) = ξk (2.7)

These are referenced as the single vectors x = [x1, . . . , xK ]T ∈ RNx , u = [u1, . . . , uK ]T ∈

RNu , and f(x, u) = [f1(x1, u1), . . . , fK(xK , uK)]. The trajectory of the HVU is not

influenced by a control and is set by a function x0(t) ∈ RNx . Attacker trajectories are

influenced by parameters ω ∈ Ω with probability density function φ : Ω → R. Each

attacker has a conditionally deterministic trajectory given by yl(t, ω). The positions for

all L attackers are also combined into the single vector y = [y1, . . . , yL]T ∈ RNy .

Figure 2.12: Structure of Kamikaze Scenario

For this ‘kamikaze’ situation, we will assume a single-minded focus of respective

agents. The attackers have as their sole mission the destruction of the HVU, with no
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firepower to spare on other agents. They focus all their fire on the HVU, hoping to evade

the defenders long enough to succeed in its destruction. The defenders focus their fire

on the attackers with the goal of protecting the HVU. The HVU relies on the protection

of the others and is unable to fire on the attackers itself. We will assume that the

firing rates of the agents are rapid and as such can be modeled as continuous quantities.

Firing rates are interpreted such that if r(t) is the instantaneous rate of fire directed

against an agent at time t, then the probability of an agent’s destruction in a sufficiently

small time interval [t, t + ∆t] is given by the quantity r(t)∆t. Let rd,k(xk(t), yl(t, ω))

represent the rate of fire of the k-th defender against the l-th attacker for a parameter

value ω ∈ Ω. The probability that the l-th attacker survives at time t+ ∆t conditional

on ω is then given by

ql(t+ ∆t, ω) = ql(t, ω)

K∏
k=1

(1− rd,k(xk(t), yl(t, ω))∆t)

which becomes:

ql(t+ ∆t, ω) = ql(t, ω)

(
1−

K∑
l=1

rd,k(xk(t), yl(t, ω))∆t+ h.o.t.

)
.

We take the limit and find that this results in a proportional attrition rate:

q̇l(t, ω) = −ql(t, ω)
K∑
k=1

rd,k(xk(τ), yl(τ, ω))
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and yields the expression:

ql(t, ω) = e−
∫ t
0

∑K
k=1 rd,k(xk(τ),yl(τ,ω))dτ .

We now let ra,l(yl(t, ω), x0(t)) be the rate of fire of the l-th attacker, if it has survived,

against HVU. The probability of destruction of the HVU in a small time interval [t, t+∆t]

is determined by the rate of possible fire against it compounded with the probability

that the attackers have survived to emit that firepower. Thus the probability that the

HVU survives at time t+ ∆t is given by:

p(t+ ∆t, ω) = p(t, ω)

L∏
l=1

(1− ql(t, ω)ra,l(yl(t, ω), x0(t))∆t).

After similar manipulations to those above this yields:

p(t, ω) = e−
∫ t
0 (
∑L
l=1 ql(τ,ω)ra,l(yl(τ,ω),x0(τ)))dτ

= e
−
∫ t
0

(∑L
l=1 ra,l(yl(τ,ω),x0(τ))e

−
∫ τ
0

∑K
k=1 rd,k(xk(s),yl(s,ω))ds

)
dτ

Section 4.2.4 provides an implementation of this Kamikaze Swarm model.

Optimal Control Formulation

Optimizing the expectation of this probability over Ω creates a nonstandard

optimal control problem of the same form as that of problem P:

The Kamikaze Shooting Problem: Given the probability density function φ : Ω→

R and conditionally deterministic attacker trajectories y(t, ω), determine the control
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u : [0, T ]→ U ∈ Rnu that minimizes the expectation

J =

∫
Ω
G

(∫ T

0
r(x(τ), y(τ), ω)dτ

)
φ(ω)dω (2.8)

where

r(x(τ), y(τ), ω) =
L∑
l=1

ra,l(yl(τ, ω), x0(τ))e−
∫ τ
0

∑K
k=1 rd,k(xk(s),yl(s,ω))ds

and

G(z) = 1− e−z

subject to the searcher dynamics

ẋ(t) = f(x(t), u(t))

with initial condition x(0) = x0 and control constraint g(u(t)) ≤ 0, ∀t ∈ [0, T ].

A notable feature of this problem is that, as with The Optimal Search Problem,

it is still possible to transport the influence of the uncertain parameter entirely to the

cost function. This is convenient for numerical implementation, as uncertainty in the

state dynamics increases the number of decision variables created by the numerical

algorithm described in Section 4. The next section will look at mutual attrition, where

that capability is no longer the case.
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2.2.2.2 Mutual Attrition

We now consider again the case of L attackers, K defenders, and an HVU,

however with the increased symmetry that attackers are able to fire on both the HVU

or the defenders. As with Section 2.2.2.1, defender states xk(t) are deterministic and

governed by the dynamics of Equation 2.7, attacker trajectories are conditionally de-

terministic and given by yl(t, ω), and the objective is to minimize the probability of

destruction of the HVU over the time interval [0, T ].

Figure 2.13: Structure of Mutual Attrition Scenario

Let rd,k(xk(t), yl(t, ω)) again represent the rate of fire of the k-th defender

against the l-th attacker. In contrast to Section 2.2.2.1, the probability that the l-th

attacker survives at time t+ ∆t is now conditional on two quantities: the probabilities

of destruction caused by fire and the probability that the defender is still alive to emit

that fire. Let ql(t, ω) be the probability that the l-th attacker has survived at time t and

let pk(t, ω) be the probability that the k-th defender has survived. Then the probability
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that the l-th attacker has survived by time t+ ∆t is given by:

ql(t+ ∆t, ω) = ql(t, ω)
K∏
k=1

(1− pk(t, ω)rd,k(xk(t), yl(t, ω))∆t)

which becomes:

ql(t+ ∆t, ω) = ql(t, ω)

(
1−

K∑
l=1

pk(t, ω)rd,k(xk(t), yl(t, ω))∆t+ h.o.t.

)
.

and has the limit as ∆t→ 0 of:

q̇l(t, ω) = −ql(t, ω)

K∑
k=1

pk(t, ω)rd,k(xk(τ), yl(τ, ω)) (2.9)

Let ra,l(yl(t, ω), xk(t)) be the rate of fire of the l-th attacker against the k-the defender.

Just as with the attacker survival probability, the defender survival probability depends

both on the chance of damage by fire and the probability that the attacker survives to

emit damage. Thus the probability that the k-the defender has survived by time t+ ∆t

is given by:

pk(t+ ∆t, ω) = pk(t, ω)

L∏
l=1

(1− ql(t, ω)ra,l(yl(t, ω), xk(t))∆t).

which has the limit:

ṗk(t, ω) = −pk(t, ω)
L∑
l=1

ql(t, ω)ra,l(yl(t, ω), xk(t)). (2.10)

Finally, r0,l(yl(t, ω), x0(t)) be the rate of fire of the l-th attacker against the HVU and
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let p0(t, ω) be the probability that the HVU has survived at time t. Following the

arguments above, p0(t, ω) obeys the dynamics:

ṗ0(t, ω) = −p0(t, ω)
L∑
l=1

ql(t, ω)r0,l(yl(t, ω), x0(t)). (2.11)

Because Equations 2.9 and 2.10 are coupled, the explicit exponential solutions of Section

2.2.2.1 are no longer an option. Thus, the dynamics presented in Equations 2.9 - 2.11

must remain as part of the resulting problem’s state dynamics.

Mutual Attrition Scenario: Given the probability density function φ : Ω → R

and conditionally deterministic attacker trajectories y(t, ω), determine the controls

uk : [0, T ]→ U ∈ Rnu , k = 1, . . . ,K, that minimize:

J =

∫
Ω

[1− po(T, ω)] p(ω)dω

subject to:

ẋk(t) = f(xk(t), uk(t)), xk(0) = x0
k

ṗ0(t, ω) = −p0(t, ω)

L∑
l=1

ql(t, ω)r0,l(yl(t, ω), x0(t)), p0(0, ω) = 0

ṗk(t, ω) = −pk(t, ω)
L∑
l=1

ql(t, ω)ra,l(yl(t, ω), xk(t)), pk(0, ω) = 0

q̇l(t, ω) = −ql(t, ω)

K∑
k=1

pk(t, ω)rd,k(xk(τ), yl(τ, ω)), ql(0, ω) = 0

for all l = 1, . . . , L, k = 1, . . . ,K, and ω ∈ Ω with possible control constraint g(u(t)) ≤
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0, ∀t ∈ [0, T ]. Section 5.3.1 discusses the implementation of this mutual attrition model

in a multi-agent tactical scenario.

2.2.3 Path Coverage

Another type of problem amenable to modeling through attrition which has

arisen repeatedly modern robotics is that of ‘path coverage,’ where the goal of a robot

is to ‘cover’ in some fashion all points in a region. Applications of covering algorithms

include vacuuming, snow cleanup, lawn mowing, window cleaning, painting, and topo-

graphical mapping. Commercial products, such as the Roomba, incorporate a mix of

local and global planning in their design to attain satisfactory confidence in their perfor-

mance [25]. However, though global coverage plans have been developed which provide

assurances of complete or near-complete coverage (see [26] for a survey of results in this

area), the question of optimality is still largely unaddressed.

It is relevant to point out that the optimal search problem is, in essence, also

a path coverage problem. Given a region to be searched, the goal of the optimal search

problem is to ‘cover’ it with sensor readings in a fashion which minimizes un-missed

spots (targets). As such, the methods of the optimal search problem can be naturally

extended to cover other path coverage problems.

For instance, consider the example of an automated vacuum cleaner. To begin

with, we can consider a simplified model of a vacuum: A vacuum moving over a two-

dimensional surface Ω with a probabilistic rate of success determined solely by the

vacuum’s innate capabilities (such as airflow). In this simple model, the vacuum can be

characterized as having a certain chance for picking up any dust which lies below the
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vacuum’s active aperture, determined by the vacuum’s innate success rate, say r0, such

that if the vacuum’s aperture is over an region of dust, then the probability in a small

time interval [t, t+ ∆t] of picking up a particular mote of dust is r0∆t. For a dust mote

at location ω ∈ Ω ⊂ R2 and vacuum at position x, the rate of success is thus:

r(x,w) =


r0 if ω is in aperture determined by x

0 else

This rate of success function can be smoothed to provide a continuous rate function, as

demonstrated in Figure 2.14. If there is initially dust at ω, then the probability of an

Figure 2.14: Example: Smoothed Aperture-Based Rate Function

unclean spot at location ω and time t is given by:

P (t+ ∆t|initial dust at ω) = P (t|initial dust at ω) [1− r(x(t), ω)∆t]
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which as ∆t→ 0 has the solution:

P (t|initial dust at ω) = e−
∫ t
0 r(x(τ),ω)dτ .

The total probability of an unclean spot at location ω and time t is given by the joint

probability of there having been dust at ω to begin with and of dust there having

not been picked up. Letting φ(ω) be a density distribution for dust in Ω, then the

expectation for a clean room by time T is given by:

J = 1−
∫

Ω
e
∫ T
0 r(x(t),ω)dtφ(ω)dω

This provides a cost function for optimizing a global plan, given the dynamical con-

straints of the vacuum. Elaborations on this simplified model can be undertaken to

increase its realism. For instance, suppose dust is not in fact constrained to a two-

dimensional sheen but is present in varying levels throughout the room. A prior proba-

bility density distribution is constructed (using, for instance, the vacuum’s past history

in a room and the mapping methods of [25]) which provides a starting distribution

φ(ω1, ω2, ω3) over three components: two location variables, ω1 and ω2, and vertical

density range ω3. The rate of vacuum success is then modeled with vertical density as

a penalty. For example:

r(ω1, ω2, ω3) = r̃0(x, ω1, ω2)e−c0ω3
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with

r̃0(x, ω1, ω2) =


r0 if [ω1, ω2] is in aperture determined by x

0 else
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Chapter 3

Analytical Foundations

3.1 General Problem Statement

The Optimal Search Problem provides an initial template for optimal control

problems with parameter uncertainty. A feature we can identify as fundamental to

such problem is the inclusion of an extra layer of integration over parameter space–this

is necessary for the evaluation of useful statistics of the problem, such as expectation

and variance. On the other hand, as the previous examples of parameter uncertainty

demonstrate, dependence on the unknown parameter is a feature which can be found in

both the cost function and the dynamics. This thesis will focus on the following class

of generalized optimal control problem for parameter uncertainty, which incorporates

both of these features:

Problem P: Determine the control u : [0, T ]→ Rnu that minimizes the cost:
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J =

∫
Ω

[
F (x(T, ω), ω) +

∫ T

0
r(x(t, ω), u(t), t, ω)dt

]
dω (3.1)

subject to the dynamics:

ẋ(t, ω) = f(x(t, ω), u(t)), x(0, ω) = x0(ω) (3.2)

and control constraints

g(u(t)) ≤ 0, ∀t ∈ [0, T ] (3.3)

with x : [0, T ] × Ω → Rnx , F : Rnx × Ω → R, r : Rnx × Rnu × [0, T ] × Ω → R,

f : Rnx × Rnu → Rnx , and g(u(t)) : Rnu → RNð .

The format of the cost functional in this class of problems is that of the integral

over Ω of a Mayer-Bolza type cost with parameter ω, i.e. the integral over Ω of a cost

of the form:

F (x(1, ω), ω)+

∫ 1

0
r(x(t, ω), u(t), t, ω)dt.

This parameter can represent a range of values for a feature of the system or a time-

invariant stochastic parameter with a known probability density function. In the case of

a stochastic parameter, this format, of the integration over Ω of a Mayer-Bolza cost, is

one which can encompass expressions of quantities such as the expectation or variance

of costs which depend on a parameter θ. In such cases, the probability density function

becomes a component of F (·) and r(·).

Instances of this class of problems have arisen in multiple recent applications.

For example, the ensemble control problem [27, 28, 29], deals with the control of a family
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or continuum of systems x(t, ω) whose dynamics depend continuously on a parameter

ω. That is, ẋ(t, ω) = f(x(t, ω), u(t), ω). Optimizing the behavior of these systems over

all parameter values creates control problems in the form of Problem P. An additional

example can be found in chemical engineering, where instances of Problem P have been

utilized for the optimization of batch processes under uncertainty [30, 31].

Relation to The Optimal Search Problem

Problem P and The Optimal Search Problem differ in the inclusion of uncer-

tainty in the dynamics, but also, seemingly, in the form of their cost function. The

Optimal Search Problem’s cost function included the term:

G

(∫ T

0
r(x(t), u(t), t, ω)dt

)

with the time integral contained by an outer function, G(·), whereas Problem P con-

tains no such outer function. It is worth noting, however, that this latter difference

is superficial. When the additional flexibility of uncertain dynamics is allowed. and

problem with such a term in the cost function can be transformed to fit into problem P.

This can be accomplished by augmenting the state space with the following auxiliary

variable:

ż(t, ω) = r(x(t, ω), u(t), t, ω), z(0, ω) = 0, ∀ω ∈ Ω.

When written in terms of this variable, the optimal search cost function becomes:

J =

∫
Ω
{F (x(T, ω) +G(z(T, ω))} dω
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which is an end cost function that fits in the format of Problem P. From this trans-

formation, we see that The Optimal Search Problem is a sub-case of this more general

class of problems.

3.2 Necessary Conditions for Optimality

Variations of this problem were studied extensively in the 1970’s, with a focus

on deriving analytical conditions for optimality. These variations were almost exclusively

studied in reference to the optimal search problem, in which controlled agents were

deterministic and targets were affected in some fashion by uncertainty. In this pursuit,

two relevant results were derived which apply to cases which overlap with Problem P.

The first is that of Pursiheimo, [17], who developed necessary and sufficient

conditions for optimality for a search problem in which ‘search effort’ r(·, t) was available

for allocation. Unlike the optimal search problem described in the Introduction, this

search effort was not constrained by a searcher moving along a dynamical constraint.

Rather, the search effort was constrained over some target space Rn and time interval

[0, T ] by:

r(x, t) ≥ 0,∀x ∈ Rn, ∀t ∈ [0, T ]

and ∫
Rn
r(x, t)dx = 1, ∀t ∈ [0, T ]

For a target trajectory y(t, ω) ∈ Rn, the search effort yielded a probability of detection
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given by:

J =

∫
Ω
G

(∫ T

0
r(y(t, ω), t)dt

)
dω

The second result of note is that of Lukka, [13], who did look at the problem of searchers

moving along a dynamical constraint. Lukka developed necessary (but not sufficient)

conditions for the problem of minimizing

J =

∫
Ω
G

(∫ T

0
r(x(t), u(t), t, ω)dt

)
dω

subject to:

ẋ(t) = u(t), x(0) = x0, x(T ) = xT

with control constraint |u(t)| ≤ K and the additional requirements that u(t) ∈ L∞([0, T ])

and x(t) is absolutely continuous on [0, T ]. The next section will add to this collection

by proving necessary conditions for Problem P in the case when the control constraints

define an open region for feasible controls.

3.2.1 Necessary Conditions for Open Control Regions

In most of the applications discussed in this thesis, a state x(t, ω) evolves with

the independent variable t and is considered to be conditioned on a stochastic param-

eter ω. However, because ω has been construed as a constant unknown parameter, as

opposed to a stochastic process, an alternative interpretation is available to us: We can

equivalently interpret this problem as a problem with multiple independent variables:

t, and (the possibly vector-valued) variable ω. Though the interpretation of ω as an
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additional independent variable does not always have a physical analogue in recent engi-

neering applications, mathematically it reveals a large relevant area of previous research

which can be applied fruitfully to this problem.

Optimal control problems with multiple independent variables have been stud-

ied previously under the topic of distributed control, in the context of spatial problems

with p.d.e. constraints. The problem considered here is neither a subset nor an extension

of distributed control. In addition to the difference of p.d.e. constraints, in distributed

control problems, the control itself is a function of the additional variables–e.g. in com-

parable notation a control of the form u(t, ω). However, there are commonalities, such

as the extra layer of integration, and these commonalities make utilizable several of the

techniques developed for distributed control.

In the 1960’s, necessary conditions and a Pontryagin-like minimum principle

were established for the Mayer-Bolza problem with multiple integrals for distributed

controls and very general boundary conditions, control constraints, and systems of p.d.e

constraints [32], [33], [34]. This section applies several of the techniques found in those

proofs to this Problem P, yielding necessary conditions for optimality in the case of

open control regions. To apply these methods, the following regularity conditions are

imposed on the class of problems:

Assumption 1 Controls u(t) are arbitrary piecewise continuous functions whose values

are contained in some set U . Furthermore, the control region U is an open set.1 States

x(t, ω) take values in some set X ⊂ R.

1Note: Assumption 1 makes these results inapplicable to problems with an active control constraint
g(u) ≤ 0.
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Assumption 2 The functions φ(ω), F , r, and f are continuous and twice continuously

differentiable with respect to their arguments over their respective domains of Ω, X,

X × U × Ω, X × Ω.

We know define a dual problem to Problem P, referred to as Problem Pλ, as follows:

Problem Pλ: For feasible solution (x, u) to Problem P, find λ : [0, T ] × Ω → RNx

that satisfies the following conditions:

λ̇(t, ω) = −∂H(x, λ, u, t, ω)

∂x
(3.4)

λ(T, ω) =
∂F (x(T, ω), ω)

∂x

∣∣∣∣
Ω

(3.5)

where H : X ×X × U × [0, T ]× Ω→ R is defined as:

H(x, λ, u, t, ω) = λf(x(t, ω), u(t), ω) + r(x(t, ω), u(t), t, ω) (3.6)

Note, Equations 3.4 and 3.5 create a linear system with a unique solution ([16]).

Furthermore, the continuous differentiability of f and r with respect to x guarantees

the continuity of λ̇ and thus the continuous differentiability of λ. As a final note, the

partial derivatives ∂H
∂x and ∂F

∂x are taken to return row vectors, of dimension 1 × Nx.

Thus the dimensions of λ are a transposition of the dimensions of x and the dynamics

function f which are taken to be Nx × 1.

Theorem 1 Let u∗(t) be an optimal control to Problem P under Assumptions 1 and

2, let x∗(t, ω) be the corresponding optimal trajectory and let λ∗(t, ω) be the solution to
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Problem Pλ for (x∗, u∗). Then the following holds for all t ∈ [0, T ]:

(
∂

∂u

∫
Ω
H(x∗, λ∗, u, t, ω)dω

)∣∣∣∣
u=u∗(t)

= 0 (3.7)

Proof:

Inserting H(x, λ, u, t, ω) into J [x, u] we find:

J [x, u] =

∫
Ω

{
F (x(T, ω), ω) +

∫ T

0
[H(x, λ, u, t, ω)− λ(t, ω)ẋ]dt

}
dω.

We now add and subtract the quantity λ̇x to arrive at the following:

J [x, u] =

∫
Ω
F (x(T, ω), ω)dω −

∫
Ω

{∫ T

0
[λ̇x+ λẋ]dt

}
dω

+

∫
Ω

{∫ T

0
[H(x, λ, u, t, ω) + λ̇x]dt

}
dω

which can be split in to two pieces:

J1[x, u] =

∫
Ω
F (x(T, ω), ω)dω −

∫
Ω

{∫ T

0
[λ̇x+ λẋ]dt

}
dω (3.8)

J2[x, u] =

∫
Ω

{∫ T

0
[H(x, λ, u, t, ω) + λ̇x]dt

}
dω. (3.9)

We will proceed by examining the first variation of J [x, u] with respect to these two

pieces. We take the first variation in the sense used in the calculus of variations, and

described for example in [35] and [36]. A necessary condition of extremal trajectories

of Problem P is that the first variation of the functional along these extremals is zero.
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The approach of [33], which we follow here, is to demonstrate that the stationarity of

this first variation enforces Theorem 1.

Let u∗(t) be an extremal control of the functional J [x, u]. One can define a

single parameter family of functions as:

u(t, ε) = u∗(t) + εh(t)

for a continuously differentiable function h. Let h be further constrained to be zero-

valued at t = 0 and t = T . With no other restrictions on h, the openness of U guarantees

the existence of a sufficiently small ε such u(t, ε) is in the set of admissible controls. For

sufficiently small ε, this creates a unique solution x(t, ω, ε) to the system

ẋ(t, ω, ε) = f(x(t, ω, ε), u(t, ε), ω), x(0, ω, ε) = x0(ω),

which is continuously differentiable with respect to ε. (The derivative of u(t, ε) with

respect to ε is h(t), and thus u(t, ε) is also continuously differentiable with respect to ε.)

The functional J [u, x] for the controls and states u(t, ε) and x(t, ω, ε) is also a function

of ε and the first variation δJ is defined as the differential2:

δJ [x, u] =
d

dε
J [x(t, ω, ε), u∗(t) + εh(t)]

∣∣∣∣
ε=0

· ε (3.10)

2For a more elaborate treatment of taking the first variation of a functional with dynamical con-
straints, see [36], Chapter 3.
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As this is a simple derivative, we have that:

δJ [x, u] =
d

dε
(J1[x(t, ω, ε), u∗(t) + εh(t)] + J2[x(t, ω, ε), u∗(t) + εh(t)])

∣∣∣∣
ε=0

· ε

=
d

dε
J1[x(t, ω, ε), u∗(t) + εh(t)]

∣∣∣∣
ε=0

· ε+
d

dε
J2[x(t, ω, ε), u∗(t) + εh(t)]

∣∣∣∣
ε=0

· ε

δJ1[x, u] + δJ2[x, u].

We can thus examine the first variation of J in terms of the variations of J1 and J2.

We first observe that at ε = 0, we have u(t, 0) = u∗(t) and thus x(t, ω, 0) = x∗(t, ω),

the extremal state for J [x, u] corresponding to u∗(t). Let λ∗(t, ω) be the costate defined

by Equation 3.4 with respect to the values x∗, u∗. The continuous differentiability

of all relevant functions with respect to all relevant arguments allows us to move the

differentiation inside the integration, yielding the following:

δJ2[x, u] =

∫
Ω

∫ T

0
ε

{
d

dε
H(x(t, ω, ε), λ∗(t, ω), u∗(t) + εh(t), t, ω)

+λ̇∗(t, ω)x(t, ω, ε)
}∣∣∣
ε=0

dtdω

We define

δx = ε · ∂x
∂ε

∣∣∣∣
ε=0

, δu = ε · ∂u
∂ε

∣∣∣∣
ε=0

= εh(t)

and find that

δJ2[x, u] =

∫
Ω

∫ T

0

{
δx

(
∂H(x∗(t, ω), λ∗(t, ω), u, t, ω)

∂x

∣∣∣∣
u=u∗

+ λ̇∗(t, ω)

)
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+δu
∂H(x∗(t, ω), λ∗(t, ω), u, t, ω)

∂u

∣∣∣∣
u=u∗

}
dtdω

We invoke equation 3.4 and arrive at:

δJ2[x, u] = ε

∫
Ω

∫ T

0

∂H(x∗(t, ω), λ∗(t, ω), u, t, ω)

∂u

∣∣∣∣
u=u∗

h(t)dtdω. (3.11)

We next deal with the variation of J1 around u∗ and x∗. By observing that

∫ T

0
(λ̇x+ λẋ)dt =

∫ T

0

∂

∂t
(λx)dt = λ(T, ω)x(T, ω)− λ(0, ω)x(0, ω)

due to integration by parts, we can rewrite J1 as

J1[x, u] =

∫
Ω
{F (x(T, ω), ω)− (λ(T, ω)x(T, ω)− λ(0, ω)x(0, ω))} dω

The first variation is

δJ1[x∗, u∗] =

ε

∫
Ω

d

dε
{F (x(T, ω, ε), ω)− (λ∗(T, ω)x(T, ω, ε)− λ∗(0, ω)x(0, ω, ε))}

∣∣∣∣
ε=0

dω

We define

δx(T, ω, ε) = ε · ∂x(T, ω, ε)

∂ε

∣∣∣∣
ε=0

,

δx(0, ω, ε) = ε · ∂x(0, ω, ε)

∂ε

∣∣∣∣
ε=0

Due to our initial conditions, x(0, ω, ε) was defined as a constant with respect to ε, so
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δx(0, ω, ε) = 0. The variation is thus

δJ1[x∗, u∗] =

∫
Ω
δx(T, ω, ε)

{
∂F (x∗(T, ω), ω)

∂x
− λ∗(T, ω)

}
dω (3.12)

We now invoke equation 3.5. This sets the variation δJ1 equal to zero. Under these

conditions then δJ = δJ2 and so δJ2 is zero-valued over extremal trajectories. Removing

the non-zero quantity epsilon from equation 3.11, we have

∫
Ω

∫ T

0

∂H(x∗(t, ω), λ∗(t, ω), u, t, ω)

∂u
h(t)dtdω

∣∣∣∣
u=u∗

= 0.

Ideally, one would like to apply the Fundamental Lemma of the Calculus of Variations

to this quantity to yield the stationarity of a Hamiltonian with respect to u. However,

the restriction of the controls to be functions of t but not ω, which constrained our

choice of h, limits us in this step. To apply the lemma, h must be fixed along the

boundary of integration–in this case, h is only fixed along the boundary of [0, T ]. We

address this with the following maneuver, allowed to us by our continuity assumptions

and the dependence of h and u solely on t:

∫
Ω

∫ T

0

∂H(x∗(t, ω), λ∗(t, ω), u, t, ω)

∂u
h(t)dtdω

∣∣∣∣
u=u∗

=

∫ T

0
h(t)

(
∂

∂u

∫
Ω
H(x∗(t, ω), λ∗(t, ω), u, t, ω)dω

)
dt

∣∣∣∣
u=u∗

= 0
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The fundamental lemma of the calculus of variations now applies yielding

(
∂

∂u

∫
Ω
H(x∗, λ∗, u, t, ω)dω

)∣∣∣∣
u=u∗(t)

= 0

which proves the theorem. The new quantity

H(x∗, λ∗, u, t) =

∫
Ω
H(x∗, λ∗, u, t, ω)dω (3.13)

provides a stationary Hamiltonian for Problem P.

The result of Theorem 1 also facilitates a second result, which is useful for the

numerical verification of optimal answers.

Theorem 2 Let u∗(t) be an optimal control to Problem P under Assumptions 1 and

2, let x∗(t, ω) be the corresponding optimal trajectory and let λ∗(t, ω) be the solution

to Problem Pλ for (x∗, u∗). Let H(x∗, λ∗, u, t) be the Hamiltonian defined by Equation

3.13. If the component functions, f and r, of Problem P are time-invariant, then:

dH(x∗, λ∗, u∗, t)

dt
= 0

Proof:

The total derivative of H with respect to time is given by:

dH(x∗, λ∗, u∗, t)

dt
=

d

dt

∫
Ω
H(x∗, λ∗, u∗, t, ω)dω
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The continuous differentiability of all relevant arguments allows for the time derivative

to be moved inside the integral, yielding:

dH(x∗, λ∗, u∗, t)

dt
=

∫
Ω

dH(x∗, λ∗, u∗, t, ω)

dt
dω

Since the component functions of H(x∗, λ∗, u∗, t, ω) do not depend explicitly on time,

the total derivative of H(x∗, λ∗, u∗, t, ω) with respect to time is given by:

dH(x∗, λ∗, u∗, t, ω)

dt
=
∂H(x∗, λ∗, u∗, t, ω)

∂x
ẋ∗(t, ω)+

∂H(x∗, λ∗, u∗, t, ω)

∂λ
λ̇∗T (t, ω) +

∂H(x∗, λ∗, u∗, t, ω)

∂u
u̇∗(t)

By Equation 3.4,

∂H(x∗, λ∗, u∗, t, ω)

∂x
= −λ∗(t, ω)

and by Equation 3.6,

∂H(x∗, λ∗, u∗, t, ω)

∂λ
= fT (x(t, ω), u(t), ω) = ẋ∗T (t, ω).

Thus:

∂H(x∗, λ∗, u∗, t, ω)

∂x
ẋ∗(t, ω) +

∂H(x∗, λ∗, u∗, t, ω)

∂λ
λ̇∗T (t, ω)

= −λ∗(t, ω)ẋ∗(t, ω) + ẋ∗T (t, ω)λ̇∗T (t, ω) = 0.
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This leaves the total derivative of H with the values:

dH(x∗, λ∗, u∗, t)

dt
=

∫
Ω

dH(x∗, λ∗, u∗, t, ω)

dt
dω =

∫
Ω

∂H(x∗, λ∗, u∗, t, ω)

∂u
u̇∗(t)dω

Since u̇∗(t) does not depend on ω, this becomes:

dH(x∗, λ∗, u∗, t)

dt
= u̇∗(t)

∫
Ω

∂H(x∗, λ∗, u∗, t, ω)

∂u
dω

which by Theorem 1 is zero-valued. Thus dH(x∗,λ∗,u∗,t)
dt = 0.

3.2.2 Example Analytic Solution Via Necessary Conditions

As is the case with many optimality conditions, the condition derived above is

realistically only a tool for providing analytic solutions to problems in limited, simple

cases. Its larger use is as a computational verification tool, as will be demonstrated

in the examples in the next chapter. However, this section will provide an example

of a solvable system, to demonstrate that, though the derived Hamiltonian differs in

form from the Hamiltonian found in standard control problems (incorporating, as does

Problem P, an extra layer of integration), the necessary conditions it provides are

specific enough to yield solutions.

To demonstrate this, we examine the following linear quadratic problem: Given

a continuous probability density function φ : Ω→ R, determine the control u : [0, T ]→

R that minimizes the expectation

J =

∫
Ω

∫ T

0

(
x2(t, ω) + u2(t)

)
dtφ(ω)dω (3.14)
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subject to the dynamics

ẋ(t, ω) = u(t) + ω, x(0, ω) = x0

This problem could be interpreted as the minimization of a robot’s distance from a

target translated to the origin, with a penalty function u2(t) to keep the control within

reasonable bounds and with an unknown additive noise influencing the robot’s motion.

Define the function H(x, λ, u, t, ω) by

H(x, λ, u, t, ω) = λ(u+ ω) + (x2 + u2)φ(ω) (3.15)

and let the costate variable λ(t, ω) be defined, as per Equation 3.4, as the solution to:

λ̇(t, ω) = −∂H(x, λ, u, t, ω)

∂x
= −2xφ(ω) (3.16)

λ(T, ω) = 0 (3.17)

From Theorem 1 we have

(
∂

∂u

∫
Ω
H(x∗, λ∗, u, t, ω)dω

)∣∣∣∣
u=u∗(t)

= 0 (3.18)

The integral inside this expression becomes:

∫
Ω
H(x∗, λ∗, u, t, ω)dω =

∫
Ω

(
λ∗(t, ω)(u(t) + ω) + [x∗(t, ω)]2 + [u∗(t, ω)]2

)
φ(ω)dω
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=

∫
Ω
λ∗(t, ω)u∗(t)φ(ω)dω +

∫
Ω
λ∗(t, ω)ωφ(ω)dω

+

∫
Ω

[x∗(t, ω)]2φ(ω)dω +

∫
Ω

[u∗(t)]2φ(ω)dω

= [u∗(t)]2 + u∗(t)

∫
Ω
λ∗(t, ω)φ(ω)dω +

∫
Ω
λ∗(t, ω)ωφ(ω)dω +

∫
Ω

[x∗(t, ω)]2φ(ω)dω.

Note that the last two terms do not depend on u. Thus:

∂

∂u

∫
Ω
H(x∗, λ∗, u, t, ω)dω =

∂

∂u

(
[u∗(t)]2 + u∗(t)

∫
Ω
λ∗(t, ω)φ(ω)dω

)

= 2u+

∫
Ω
λ(t, ω)φ(ω)dω = 0

From this we find:

u = −1

2

∫
Ω
λ(t, ω)φ(ω)dω

which, since ẋ = u+ ω, can be rewritten as:

ẋ− ω = −1

2

∫
Ω
λ(t, ω)φ(ω)dω.

This implies that:

ẋ = −1

2

∫
Ω
λ(t, ω)φ(ω)dω + ω. (3.19)

This equation along with Equation 3.16 creates a system of ODE’s. To solve this system,

we will utilize the following auxiliary variables:

λ̃(t) =

∫
Ω
λ(t, ω)φ(ω)dω
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x̃(t) =

∫
Ω
x(t, ω)φ(ω)dω.

From these, we have:

˙̃x =

∫
Ω
ẋ(t, ω)φ(ω)dω =

∫
Ω

[
−1

2

∫
Ω
λ(t, ω)φ(ω)dω + ω

]
φ(ω)dω

= −1

2

∫
Ω
λ(t, ω)φ(ω)dω + E[ω] = −1

2
λ̃+ E[ω]

where the redundant integral has integrated to one after the first layer of integrations

yields quantities which are no longer dependent on ω. Furthermore:

˙̃
λ =

∫
Ω
λ̇(t, ω)φ(ω)dω = −2

∫
Ω
x(t, ω)φ(ω)dω = −2x̃.

Thus in terms of the auxiliary variables we have the linear system:

 ˙̃x(t)

˙̃
λ(t)

 =

 0 −1
2

−2 0


x̃(t)

λ̃

+

E[ω]

0

 ,
 ˙̃x(0)

˙̃
λ(T )

 =

x0

0

 . (3.20)

Upon solving this we find that:

λ̃(t) = −2e−t(e− et − e2+t + e1+2t)

1 + e2
E[ω]

and utilizing that fact that u = −1
2 λ̃(t), we find the optimal control is:

u∗(t) =
e−t(e− et − e2+t + e1+2t)

1 + e2
E[ω].
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Chapter 4

Computational Approach

Recently, there has been much progress in developing numerical methods for

tackling optimization problems with parameter uncertainties. For instance, for nonlinear

finite-dimensional optimization problems, Robust Optimization (RO) frameworks have

been developed to address the minimization of mean performance given constraints

on variance or other risk metrics, such as in [37]. In optimal control, the method

of polynomial chaos has been applied to a variety of problems with amenable problem

structures, such as quadratic costs or linear dynamics, [38], [39]. More general nonlinear

control problems were approached in [40, 14], where a consistent numerical method was

provided for a class of problems with time-invariant parameter uncertainty effecting

only the cost function; and in [29], where a multi-dimensional pseudospectral collocation

scheme for discretizing both time and parameter space was developed for problems of

the form of Problem P.

Of these approaches, only [29] and [40, 14] address the convergence properties

of the proposed methods. This chapter will contribute to that list by presenting and
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algorithm along with convergence results, developed in collaboration with Chris Phelps.

These results extend the methods of [14] to a larger class of problems. The problems

tackled by the algorithm described in this chapter are comparable in scope to those

tackled in [29]. However, a key distinction is that, in this approach, the approximation

of parameter space has been entirely separated from the approximation of the time

domain. This separation enables a much wider variety of numerical methods than

just pseudospectral collocation to be applied as means of approximation, in both the

parameter domains and time domain.

4.1 Numerical Algorithm

The computational algorithm used to generate numerical solutions in this the-

sis is accomplished through two stages of approximation:

1. Approximate Problem P through discretizing parameter space. This approxi-

mation is carried out using M parameter ‘nodes’, in a manner described below

in Section 4.1.1. This yields an approximate problem, Problem PM, which is a

standard optimal control problem in the Mayer-Bolza form.

2. Approximate Problem PM through discretizing the time domain. This approxi-

mation is carried out using N time ‘nodes’, in a manner described below in Section

4.1.3. This yields another approximate problem, Problem PMN. This final prob-

lem is a finite-dimensional nonlinear programming problem, which is solved using

the SQP algorithm of the commercial solver SNOPT [41].
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4.1.1 Approximating Parameter Space

We first introduce an approximation of Problem P, referred to as Problem PM.

Problem PM is created by approximating the parameter space, Ω, with a numerical

integration scheme which satisfies the form and requirements of Assumption 3 below.

Assumption 3 For each M ∈ N, there is a set of nodes {ωMi }Mi=1 ⊂ Ω and an associated

set of weights {αMi }Mi=1 ⊂ R, such that for any continuous function h : Ω→ R,

∫
Θ
h(ω)dω = lim

M→∞

M∑
i=1

h(ωMi )αMi .

Remark 1 Note that if hM : Θ→ R is continuous for all M ∈ N and {hM} converges

uniformly to h, then

∫
Θ
h(θ)dθ = lim

M→∞

M∑
i=1

hM (θMi )αMi .

This property is used later in the proof of Theorem 3.

Many methods, for instance Gaussian quadrature and composite-Simpson, satisfy the

above assumption. This numerical integration scheme is defined in terms of a finite set

of M nodes {ωMi }Mi=1 and an associated set of M weights {αMi }Mi=1 ⊂ R. Throughout

what follows, M is used to denote the number of nodes used in this approximation of

parameter space.

After establishing the nodes of our chosen integration scheme, the state vector

x : [0, T ] × Ω 7→ Rnx is approximated by a set of state variables [x̄M1 , . . . , x̄MM ], where
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x̄Mi is the solution to the dynamical system:


˙̄xMi (t) = f(x̄Mi (t), u(t), ωMi )

x̄Mi (0) = x0(ωMi ),

i = 1, . . . ,M. (4.1)

The notation X̄M = [x̄M1 , . . . , x̄MM ] is used to denote the states of the approximate

problem where the dependence on the parameter ω has been discretized.

The numerical integration scheme for parameter space creates an approximate

objective functional for each M ∈ N, defined by:

J̄M [X̄M , u] =
M∑
i=1

[
F
(
x̄Mi (T ), ωMi

)
+

∫ T

0
r(x̄Mi (t), u(t), t, ωMi )dt

]
αMi . (4.2)

This discretization of parameter space thus leads to the following approximate problem:

Problem PM: Determine the function pair (X̄M , u) that minimizes the cost functional

(4.2) subject to the dynamics (4.1) and the control constraint of Problem P.

4.1.2 Convergence of Primal Variables

In this section the convergence properties of Problem PM as the number of

nodes M tends to infinity is addressed. The property which will be particularly ad-

dressed is that of ‘consistency’–the property that if optimal solutions to Problem PM

converge as the number of nodes M →∞, they converge to feasible, optimal solutions

of Problem P. Before addressing this property, it is necessary to impose the following

regularity assumptions on Problem P:

Assumption 4 Feasible controls u are those which satisfy all problem constraints and
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are in L∞([0, T ];Rnu). The function g : Rnu 7→ Rng is continuous and the set U = {ν ∈

Rnu |g(ν) ≤ 0} is compact.

Assumption 5 There exists a compact set X ⊂ Rnx such that for each feasible control

u ∈ U and ω ∈ Ω, t ∈ [0, T ], x(t, ω) ∈ X where x(t, ω) = x0(ω) +
∫ t

0 f(x(s, ω), u(s), ω)ds

for all t ∈ [0, T ].

Assumption 6 The functions f and r are C1. The set Ω is compact and x0 : Ω 7→ Rnx

is continuous. Moreover, for the compact sets X and U defined in Assumptions 4-5 and

for each t ∈ [0, T ], ω ∈ Ω, the Jacobians rx(·, ·, t, θ) and fx(·, ·, θ) are Lipschitz on the

set X ×U , and the corresponding Lipschitz constants Lr and Lf are uniformly bounded

in θ and t. The function F (·, θ) is C1 on X for all ω ∈ Ω; in addition, F and Fx are

continuous with respect to ω.

The concept of ‘convergent’ solutions of Problem PM that the concept of

consistency will be applied to is that of ‘uniform accumulation points.’ This concept is

defined as follows:

Definition 1 Uniform Accumulation Point - A function f is called a uniform

accumulation point of the sequence of functions {fn}∞n=0 if ∃ a subsequence of {fn}∞n=0

that uniformly converges to f . Similarly, a vector v ∈ RM is called a uniform accu-

mulation point of the sequence of vectors {vn}∞n=0 if ∃ a subsequence of {vn}∞n=0 that

converges to v.

Note that Definition 1 applies to limits of subsequences and not just the limits of the

sequence in entirety. The convergence assumptions placed on Problem PM will be of
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this form, so it is useful to introduce a notation that enables the convenient mention of

subsequence limits. Let V be an infinite subset of the index set {0, 1, 2, . . . }. If for a

sequence {xn}∞N=0, the subsequence {xi|i ∈ V } has a limit point x, we will refer to this

with the notation:

lim
n∈V

xn = x

This is in contrast to the usual limit notation, limn→∞ xn, which means that the se-

quence in entirety converges.

Because of the process used in the approximation, the state space for Problem

PM is of a different dimension than that of Problem P. States of Problem PM are

functions of time, i.e. the functions X̄M (t), whereas states of Problem P are functions of

time and ω. This aspect of the problem differs from the related work of [40, 14], in which

the state space was unaffected by the discretization of parameter space. Although the

states spaces of the two problem differ, however, their control space remains the same.

The following theorem utilizes this latter fact to demonstrate that the accumulation

points of optimal controls for Problem PM yield optimal controls for Problem P. The

theorem relies on the following two lemmas:

Lemma 1 Feasible controls for Problem PM are also feasible controls for Problem B,

and the set of feasible controls is closed in the topology of pointwise convergence.

Proof:

As problems P and PM share the same control constraint, the only concern in using

a feasible control uM from Problem PM would be that there exists a value of ω, not
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equal to a discretized value ωMi , such that the solution ẋ = f(x, uM , ω) does not exist

for some t in [0, T ]. However, since P and PM share the same control, uM is in the

set U , and thus this possibility is prevented by Assumption 5. Furthermore, since U

is compact, the set of feasible controls is trivially closed in the topology of pointwise

convergence.

Lemma 2 Let {uM} be a sequence of feasible controls for Problem PM with an ac-

cumulation point u∞ for the infinite set V ⊂ N. Let x∞(t, ω) be the solution to the

dynamical system:

ẋ∞(t, ω) = f(x∞(t, ω), u∞(t), ω), x∞(0, ω) = x0(ω)

and let {xM (t, ω)} be the sequence of solutions to the dynamical systems:

ẋM (t, ω) = f(xM (t, ω), uM (t), ω), xM (0, ω) = x0(ω), M ∈ V

The pairs (x∞(t, ω), u∞(t)) and {(xM (t, ω), uM (t))} are all feasible solutions to Prob-

lem P. Furthermore, the sequence {xM (t, ω)} converges pointwise to x∞(t, ω) and this

convergence is uniform in ω.
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Proof:

By Lemma 2, both u∞ and {uM} are feasible controls for Problem P, which guarantees

the feasibility of x∞(t, ω) and {xM (t, ω)}. From their definitions, we have:

‖xM (t, ω)− x∞(t, ω)‖ ≤
∫ t

0
‖f(xM (τ, ω), uM (τ), ω)− f(x∞(τ, ω), u(τ), ω)‖dt

Since f is C1 on a compact domain, the Lipschitz condition applies, yielding:

‖xM (t, ω)− x∞(t, ω)‖ ≤
∫ t

0
L

(
‖xM (τ, ω)− x∞(τ, ω)‖+ ‖uM (τ)− u(τ)‖

)
dt

Since uM and u∞ are in the compact set U , they are bounded. Thus the Dominated

Convergence Theorem applies and we have:

lim
M∈V

∫ t

0
‖uM (τ)− u(τ)‖dt = 0.

For any t and δu we can therefore pick an N such that for all M > N , M ∈ V :

∫ t

0
‖uM (τ)− u(τ)‖dt < δu.

This provides us with the inequality

‖xM (t, ω)− x(t, ω)‖ ≤ LTδu + L

∫ t

0
‖xM (τ, ω)− x(τ, ω)‖dt.
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By Gronwall’s Inequality,

‖xM (t, ω)− x(t, ω)‖ ≤ LTδueLT .

Since for each value of t and ω, this quantity can be made arbitrarily small, {xM (t, ω)}

converges pointwise to x∞(t, ω). Furthermore, since δu, thought it may depend on t,

does not depend on the value of ω, this convergence is uniform in ω.

Theorem 3 Let {u∗M}M∈V be a sequence of optimal controls for Problem PM with an

accumulation point u∞ for the infinite set V ⊂ N. Then u∞ is an optimal control for

Problem P.

Proof:

Let {u∗M}M∈V be a set of optimal controls for the Problem PM such that limM∈V {u∗M} =

u∞. Let x∞(t, ω) be the solution to the dynamical system:

ẋ∞(t, ω) = f(x∞(t, ω), u∞(t), ω), x∞(0, ω) = x0(ω)

and let {xM (t, ω)} be the sequence of solutions to the dynamical systems:

ẋM (t, ω) = f(xM (t, ω), u∗M (t), ω), xM (0, ω) = x0(ω), M ∈ V

Notice that this latter state is not a feasible state for Problem PM; it is the feasible

state for Problem P generated by the control u∗M (t). However, when ω = ωMi , then

xM (t, ωMi ) = x̄∗Mi (t), where x̄∗Mi is the optimal state for Problem PM generated by the
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optimal control u∗M . Thus:

J̄M [X̄∗M , u
∗
M ] =

M∑
i=1

[
F
(
x̄∗Mi (T ), ωMi

)
+

∫ T

0
r(x̄∗Mi (t), u∗M (t), t, ωMi )dt

]
αMi

=

M∑
i=1

[
F
(
xM (T, ωMi )

)
+

∫ T

0
r(xM (t, ωMi ), u∗M (t), t, ωMi )dt

]
αMi

The limit of the difference in values between J̄M [X̄∗M , u
∗
M ] and J [x∞, u∞] is thus:

lim
M∈V

∥∥J̄M [X̄∗M , u
∗
M ]− J [x∞, u∞]

∥∥ =

lim
M∈V

∥∥∥∥∥
M∑
i=1

[
F
(
xM (T, ωMi )

)
+

∫ T

0
r(xM (t, ωMi ), u∗M (t), t, ωMi )dt

]
αMi −

∫
Ω

[
F (x∞(T, ω)) +

∫ T

0
r(x∞(t, ω), u∞(t), t, ω)dt

]
dω

∥∥∥∥
≤

∥∥∥∥∥ lim
M∈V

M∑
i=1

F
(
xM (T, ωMi )

)
αMi −

∫
Ω
F (x∞(T, ω)) dω

∥∥∥∥∥
+

∥∥∥∥∥ lim
M∈V

M∑
i=1

∫ T

0
r(xM (t, ωMi ), u∗M (t), t, ωMi )dt−

∫
Ω

∫ T

0
r(x∞(t, ω), u∞(t), t, ω)dtdω

∥∥∥∥∥
On the other hand, we can examine the quantity:

lim
M∈V

∥∥∥∥∫ T

0
r(xM (t, ω), u∗M (t), ω)−

∫ T

0
r(x∞(t, ω), u∞(t), ω)

∥∥∥∥
≤ lim

M∈V

∫ T

0
‖r(xM (t, ω), u∗M (t), ω)− r(x∞(t, ω), u∞(t), ω)‖dt

86



From the continuity of r on a compact domain, we apply the Lipschitz condition to get:

∫ T

0
‖r(xM (t, ω), u∗M (t), ω)− r(x∞(t, ω), u∞(t), ω)‖dt

≤
∫ T

0
L
(
‖xM (t, ω)− x∞(t)‖+ ‖u∗M (t)− u∞(t)‖

)
dt

The results of Lemma 2 and the compactness of X and U enable us to apply the

Dominated Convergence Theorem. Thus:

lim
M∈V

∫ T

0
L
(
‖xM (t, ω)− x∞(t, ω)‖+ ‖u∗M (t)− u∞(t)‖

)
dt = 0

and this convergence must be uniform in ω due to the uniform convergence of xM (t, ω).

We can therefore conclude that:

lim
M∈V

∫ T

0
r(xM (t, ω), u∗M (t), ω) =

∫ T

0
r(x∞(t, ω), u∞(t), ω)

and that the convergence is uniform. This enables the use of Remark 1, which provides

with the fact that:

∥∥∥∥∥ lim
M∈V

M∑
i=1

∫ T

0

r(xM (t, ωM
i ), u∗M (t), t, ωM

i )dt−
∫

Ω

∫ T

0

r(x∞(t, ω), u∞(t), t, ω)dtdω

∥∥∥∥∥ = 0

Similar arguments show that:

∥∥∥∥∥ lim
M∈V

M∑
i=1

F
(
xM (T, ωMi )

)
αMi −

∫
Ω
F (x∞(T, ω)) dω

∥∥∥∥∥ = 0
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Thus we find that:

lim
M∈V

J̄M [X̄∗M , u
∗
M ] = J [(x∞, u∞)]

Following arguments identical to those in [40], we find that the convergence of this limit

shows u∞ to be an optimal control for Problem P.

4.1.3 Approximating the Time Domain

The next step after creating the standard control problem, Problem PM,

through discretization of parameter space, is to solve the resulting problem. To im-

plement problem PM, this thesis utilizes the method of ‘direct pseudospectral colloca-

tion.’ As described in [42] and [43], in direct collocation, both the state and control are

approximated over a discretized time grid πN = [t0, . . . , tN ] as:

x(t) ≈ xN (t) =
N∑
k=0

x̄Nkφk(t), u(t) ≈ uN (t) =
N∑
k=0

ūNkψk(t)

where {φk}Nk=0, {ψk}Nk=0 are sets of interpolating functions. In local collocation methods,

the degree of the interpolating functions {φk}Nk=0 is constant with respect to N , whereas

in global collocation methods, like the pseudospectral method, the degree increases with

N . The choice of interpolating functions also creates a differentiation scheme such that

if x̄N = [x̄N0, . . . , x̄NN ], differentiation can be approximated as the matrix multiplica-

tion DN x̄N , where DN is determined by the values of {φ̇k}. This in coordination with

a quadrature scheme with weights {bNk }Nk=0 for the grid πN creates the following problem:

Problem PMN: Determine the decision variables x̄Ni = [x̄N0
i , . . . , x̄NNi ], i = 1, . . . ,M
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and ūN = [ūN0, . . . , ūNN ] that minimize the sum:

JMN =
M∑
i=1

aMi

[
F (x̄NNi , ωMi ) +

N∑
k=0

bNk r(x̄
Nk
i , ūNk, tk, ω

M
i )

]

Subject to

DN x̄Ni − f(x̄Ni , ū
N ) = 0, x̄N0

i = x0(ωMi )

g(ūNk) ≤ 0 for all k = 0, . . . , N

This is a finite-dimensional nonlinear programming problem, which can be solved using

the SQP algorithm of the commercial solver SNOPT [41].

4.1.4 Convergence of Dual Problems

As mentioned, Problem PM is a standard optimal control, in the Bolza form.

It is therefore subject to the necessary conditions for optimality applicable to such prob-

lems. For Problem PM, the dual variables are proscribed by the following problem:

Problem PMλ: For feasible solution (X̄M , u) to Problem PM, find Λ̄(t) = [λ̄M1 (t), ] . . . λ̄MM ],

λ̄Mi : [0, T ]→ RNx , that satisfies the following conditions:

˙̄λMi (t) = −∂H̄
M (x̄Mi , λ̄

M
i , u, t)

∂xMi
(4.3)

λ̄Mi (T ) = αMi
∂F (x̄Mi , ω

M
i )

∂x̄Mi

∣∣∣∣
Ω

(4.4)

89



where H̄M is defined as:

H̄M (X̄M , Λ̄M , u, t) =
M∑
i=1

[
λ̄Mi f(x̄Mi (t), u(t), ωMi ) + αMi r(x̄

M
i (t), u(t), t, ωMi )

]
(4.5)

As with the necessary conditions of Section 3.2.1, the partial derivatives ∂H̄M

∂x

and ∂F
∂x are taken to return row vectors, of dimension 1 ×Nx. Thus the dimensions of

λ̄Mi are a transposition of the dimensions of x̄Mi which are taken to be Nx × 1.

An alternate approach to solving Problem P overall is to approximate the nec-

essary conditions of Section 3.2.1, i.e. Problem Pλ, directly rather than to approximate

Problem P. Discretizing Problem Pλ amounts to enforcing the values of the dynamics

in Equations 3.4 and 3.5, as well as the primary state dynamics, at the parameter collo-

cation nodes {ωMi } (just as the state dynamics of Problem P are collocated in Equation

4.1). This creates the system of equations:


λ̇(t, ωMi ) = −∂H(x,u,t,ωMi )

∂x

λ(T, ωMi ) =
∂F (x(T,ωMi ),ωMi )

∂x

i = 1, . . . ,M. (4.6)

where H is defined as per Equation 3.6 as:

H(x, λ, u, t, ω) = λf(x(t, ω), u(t), ω) + r(x(t, ω), u(t), t, ω)

This system of equations can actually be written compactly using the quadrature ap-
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proximation of the stationary Hamiltionian defined in Equation 3.13:

H(x, λ, u, t) =

∫
Ω
H(x(t, ω), λ(t, ω), , u(t), t, ω)dω

≈
M∑
i=1

αMi H(x(t, ωMi ), λ(t, ωMi ), u(t), t, ωMi ) = H̃M (x, λ, u, t).

Letting Λ̃(t) = [λ̃M1 (t), . . . λ̃MM (t)] = [λ(t, ωM1 ), . . . , λ(t, ωM1 )], and letting X̃M = [x̃M1 (t), . . . , x̃MM (t)]

denote the discretized states from Equation 4.1, Equation 4.6 can be written as.


˙̃
λMi (t) = − 1

αMi
· ∂H̃

M (X̃M ,Λ̃,u,t)

∂x̃Mi

λ̃Mi (T ) =
∂F (x̃Mi (T ),ωMi )

∂x̃Mi

, i = 1, . . . ,M. (4.7)

Thus we reach the following discretized dual problem:

Problem PλM: For feasible contols u and solutions X̃M to Equation 4.1, find Λ̃(t) =

[λ̃M1 (t), . . . λ̃MM ], λ̃Mi : [0, T ]→ RNx , that satisfies the following conditions:

˙̃
λMi (t) = − 1

αMi
· ∂H̃

M (X̃M , Λ̃, u, t)

∂x̃Mi
(4.8)

λ̃Mi (T ) =
∂F (x̃Mi , ω

M
i )

∂x̃Mi
(4.9)

where H̃M is defined as:

H̃M (X̃M , Λ̃M , u, t) =
M∑
i=1

[
αMi λ̃

M
i f(x̃Mi (t), u(t), ωMi ) + αMi r(x̃

M
i (t), u(t), t, ωMi )

]
(4.10)
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Figure 4.1: Diagram of Goals for Primal and Dual Relations for Parameter Uncertainty
Control. Red lines designate the remaining needed results.

In the spirit of the Covector Mapping Theorem for direct methods applied to

standard control problems, discussed for instance in references [20], [42], and [44], several

results are desirable for the relationship between these dual problems. The desired

results are diagrammed in Figure 4.1. In the case of this particular problem, unlike

standard control, the collocation of the relevant dynamics involves no approximation of

differentiation (since the discretization is in the parameter domain rather than the time

domain) and thus the mapping of covectors between Problem PMλ and Problem PλM

is straightforward.

Lemma 3 The mapping:

(x̄Mi , ū) 7→ (x̃Mi , ũ),
λ̄Mi
αMi
7→ λ̃Mi ,

for i = 1, . . . ,M is a bijective mapping from solutions of Problem PMλ to Problem

92



PλM.

Lemma 3 follows immediately through substitution. To pave the way for convergence,

we also have the following:

Lemma 4 Let {uM} be a sequence of optimal controls for Problem PM with an accu-

mulation point u∞ for the infinite set V ⊂ N. Let (x∞(t, ω), λ∞(t, ω)) be the solution

to the dynamical system:


ẋ∞(t, ω) = f(x∞(t, ω), u∞(t), ω), x∞(0, ω) = x0(ω)

λ̇∞(t, ω) = −∂H(x∞(t,ω),λ∞(t,ω),u∞(t),t,ω)
∂x , λ∞(T, ω) = ∂F (x∞(T,ω),ω)

∂x

(4.11)

where H is defined as per Equation 3.6, and let {(xM (t, ω), λM (t, ω))} for M ∈ V be

the sequence of solutions to the dynamical systems:


ẋM (t, ω) = f(xM (t, ω), uM (t), ω), xM (0, ω) = x0(ω)

λ̇M (t, ω) = −∂H(xM (t,ω),λM (t,ω),uM (t),t,ω)
∂x , λM (T, ω) = ∂F (xM (T,ω),ω)

∂x

(4.12)

Then, the sequence {(xM (t, ω), λM (t, ω))} converges pointwise to (x∞(t, ω), λ∞(t, ω))

and this convergence is uniform in ω.

The convergence of {xM (t, ω)} is given by Lemma 2. The convergence of the sequence

of solutions {λM (t, ω)} is guaranteed by the optimality of {uM}. The convergence

of {λM (t, ω)} then follows the same arguments given the convergence of {xM (t, ω)},

utilizing the regularity assumptions placed on the derivatives of F , r, and f with respect

to x to enable the use of Lipschitz conditions on the costate dynamics and transversality
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conditions.

Remark 2 Note that λM (t, ω) is not a costate of Problem PλM, since it is a function

of ω. However, when ω = ωMi , then λM (t, ωMi ) = λ̃Mi (t), where λ̃Mi is the costate of

Problem PλM generated by the pair of solutions to Problem PM, (x̃Mi , u
∗
M ) . In other

words, the function λM (t, ω) matches the costate values at all collocation nodes. Since

these values satisfy the dynamics equations of Problem PλM, a further implication of

this is that the values of λM (t, ωMi ) produce feasible solutions to Problem PλM.

Remark 3 Since the functions {(xM (t, ω), λM (t, ω))} obey the respective identities xM (t, ωMi ) =

x̃Mi (t) and λM (t, ωMi ) = λ̃Mi (t), their convergence to (x∞(t, ω), λ∞(t, ω)) also implies

the convergence of the sequence of discretized primals and duals, {X̃M} and {Λ̃M}, to

accumulation points given by the relations

lim
M∈V

x̃Mi (t) = x∞(t, ωMi ), lim
M∈V

λ̃Mi (t) = λ∞(t, ωMi )

Building on this lemma, we have the following theorem:

Theorem 4 Let {X̃M , Λ̃M , uM} be a sequence of solutions for Problem PλM with an

accumulation point {X̃∞, Λ̃∞, u∞} for the infinite set V ⊂ N. Let (x∞, λ∞, u∞) be the

solutions to Problem Pλ for the control u∞. Then

lim
M∈V

H̃M (X̃M , Λ̃M , uM , t) = H(x∞, λ∞, u∞, t)

where H̃M is the Hamiltonian of Problem PλM as defined by Equation 4.10 and H is

the Hamiltonian of Problem P as defined by Equation 3.13.
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Proof:

Let {(xM (t, ω), λM (t, ω))} for M ∈ V be the sequence of solutions defined by

Equation 4.12 and let (x∞(t, ω), λ∞(t, ω)) be the accumulation functions defined by

Equation 4.11. Incorporating Remarks 2 and 3, we have:

lim
M∈V

H̃M (X̃M , Λ̃M , uM , t) =

lim
M∈V

M∑
i=1

αMi

[
λ̃Mi (t)f(x̃Mi (t), u(t), ωMi ) + r(x̃Mi (t), u(t), t, ωMi )

]
=

lim
M∈V

M∑
i=1

αMi
[
λM (t, ωMi )f(xM (t, ωMi ), u(t), ωMi ) + r(xM (t, ωMi ), u(t), t, ωMi )

]
Due to the results of Lemma 4, and applying Remark 1 on the convergence of

the quadrature scheme for uniformly convergent sequences of continuous functions, we

find that:

lim
M∈V

H̃M (X̃M , Λ̃M , uM , t) =

∫
Ω

[λ∞(t, ω)f(x∞(t, ω), u∞(t), ω) + r(x∞(t, ω), u∞(t), t, ω)] dω

= H(x∞, λ∞, u∞, t)

Thus proving the theorem.

The relationship between these results and those derived for standard control

is diagrammed in Figure 4.2. The convergence of the dual problems after covector

mapping provides with the opportunity to extend the some of the features of the dual
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Figure 4.2: Diagram of Primal and Dual Relations for Standard Control Combined with
Parameter Uncertainty Control
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problem for standard control to the dual problem for Problem P.

Corollary 1 Hamiltonian Minimization Principle

Let {u∗M} be a sequence of optimal controls for Problem PM with an accumula-

tion point u∞ for the infinite set V ⊂ N. Let (x∞, λ∞) be the primal and dual variables

for Problem P created by the control u∞. Then

H(x∞, λ∞, u∞, t) ≤ H(x∞, λ∞, u, t)

for all feasible u.

Proof:

Let {(X̃∗M , Λ̃∗M )} be the sequence of solutions to Problem PλM created by

{u∗M}. The minimization principle holds for the Hamiltonian of the standard control

problem and thus

H̃M (X̃M , Λ̃M , uM , t) ≤ H̃M (X̃M , Λ̃M , u, t)

for all feasible u. By Theorem 4,

H(x∞, λ∞, u∞, t) = lim
M∈V

H̃M (X̃M , Λ̃M , uM , t)

The arguments of Theorem 4 also supply that

lim
M∈V

H̃M (X̃M , Λ̃M , u, t) = H(x∞, λ∞, u, t).
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Thus:

H(x∞, λ∞, u∞, t) = lim
M∈V

H̃M (X̃M , Λ̃M , uM , t)

≤ lim
M∈V

H̃M (X̃M , Λ̃M , u, t) = H(x∞, λ∞, u, t)

which supplies the desired relation.

4.1.5 Linear Quadratic System

The following provides an opportunity to gain insight into the behavior of this

algorithm, by supplying a problem in which both Problem P and Problem PM are

analytically solvable. Consider the following system:

Problem P:



Minimize J =
∫
Ω

(
1∫
0

K∑
k=1

[(xk − ωk)2 + u2
k]dt

)
p(ω)dω

Subject to ẋ(t) = u

x(0) = 0

(4.13)

where x = (x1, x2, . . . , xK) ∈ RK , u = (u1, u2, . . . , uK) ∈ RK . The parameters ω =

(ω1, ω2, . . . , ωK) ∈ Ω are independent random variables with joint probability density

function p(ω). This simple objective function can represent the K-dimensional distance

from a stationary target at position (ω1, ω2, . . . , ωK) with a penalty function
∑K

k=1 u
2
k

meant to keep each control uk within a reasonable range. Interchanging the order of
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integration allows this to be formulated as a standard control problem:



Minimize J =
1∫
0

(∫
Ω

K∑
k=1

[(xk − ωk)2 + u2
k]p(ω)dω

)
dt

Subject to ẋ(t) = u

x(0) = 0

and independence of the random variables allows for explicit integration over Ω, reducing

the objective function to

J =

∫ 1

0

K∑
k=1

(
x2
k + u2

k − 2xkE[ωk] + E[ω2
k]
)
dt.

The Hamiltonian of this system is then

H(x, u, λ) = λTu+
K∑
k=1

(
x2
k + u2

1 − 2xkE[ωk] + E[ω2
k]
)

with λ = (λ1, λ2, . . . , λK) and extremal solutions (x∗, u∗) satisfying the adjoint equations

and Transversality conditions

∂H
∂u

∣∣
u=u∗

= 0

∂H
∂x

∣∣
x=x∗

= −λ̇∗ λ∗(1) = 0

This creates a linear system which can be solved analytically, yielding expressions for

the extremal trajectories, adjoints, and optimal objective value:

x∗k = E[ωk]
(

1− et+e2−t

1+e2

)
, u∗k = −E[ωk]

(
et−e2−t

1+e2

)
, λ∗k = 2E[ωk]

(
et−e2−t

1+e2

)
,
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J(x∗, u∗) =
K∑
k=1

(
E[ωk]

2

(
e2 − 1

e2 + 1
− 1

)
+ E[(ωk)

2]

)
.

The same procedure can be used to provide an analytical solution to the approximated

problem, Problem PM , created by discretizing the parameter space. Let {ωMk,i}Mi=1 be

a set of nodes for Ωk and let {aMk,i}Mi=1 be a set of weights for a convergent quadrature

scheme as described in Section 4.1 (Note that this is a slight modification of previous

notation, as here M is the number of nodes used per dimension k, rather than the whole

space Ω.)

Because ωk are independent random variables, we can separate p(ω) into com-

ponent probability distributions pk(ωk). Introducing the following useful constants

cMk =
M∑
i=1

pk(ω
M
k,i)a

M
k,i, cM−k =

∏
j 6=k

cMj , cM =
∏
j

cMj

Ẽ[ωk] =
M∑
i=1

ωMk,ipk(ω
M
k,i)a

M
k,i Ẽ[(ωk)

2] =
M∑
i=1

(ωMk,i)
2pk(ω

M
k,i)a

M
k,i

we can write Problem PM as



Minimize JM =
K∑
k=1

cM−k

M∑
i=1

[∫ 1
0 ((x2

k − ωMk,i)2 + u2
k)dt

]
pk(ω

M
k,i)a

M
k,i

Subject to ẋ(t) = u

x(0) = 0.

Notice that cMk is the quadrature approximation of
∫
ωk
pk(ωk)dωk, Ẽ[ωk] is the approx-
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imation of E[ωk], and Ẽ[(ωk)
2] is the approximation of E[(ωk)

2]. Thus

lim
M→∞

cMk = 1 lim
M→∞

Ẽ[ωk] = E[ωk] lim
M→∞

Ẽ[(ωk)
2] = E[(ωk)

2].

The Hamiltonian for PM is

H(x, u, λ) = λTu+
K∑
k=1

cM−k

M∑
i=1

[
(x2
k − ωMk,i)2 + u2

k

]
pk(ω

M
k,i)a

M
k,i

= λTu+
K∑
k=1

cM−k

(
cMk (x2

k + u2
k)− 2xkẼ[ωk] + Ẽ[(ωk)

2]

)

and extremal solutions (x∗M , u
∗
M ) satisfy the adjoint equations

∂H
∂uk

∣∣∣
uk=u∗k,M

= λ∗k,M + 2cMu∗k,M = 0

∂H
∂xk

∣∣∣
xk=x∗k,M

= 2cMu∗k,M − 2Ẽ[ωk] = −λ̇∗k,M .

Solving the system yields the following expressions for the extremal trajectories, ad-

joints, and optimal objective value:

x∗k,M =
Ẽ[ωk]

cM

(
1− et + e2−t

1 + e2

)
, u∗k,M = −Ẽ[ωk]

(
et − e2−t

1 + e2

)
,

λ∗k,M = 2Ẽ[ωk]

(
et − e2−t

1 + e2

)
,

JM (x∗M , u
∗
M ) =

K∑
k=1

(
Ẽ[ωk]

2

(
e2 − 1

e2 + 1
− 1

)
+ Ẽ[(ωk)

2]

)

Comparison of the solutions to Problem P and Problem PM reveals that in this case the

convergence of states, controls, costates, and cost are all determined by the convergence
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Figure 4.3: Convergence of analytical solutions for J(x∗, u∗) and JM (x∗M , u
∗
M ) using

Euler’s method vs Legendre pseudospectral. The dimension of the problem has been
set at K = 2, and a Beta(10,10) distribution over the domain [0,1] has been given to
each parameter.

of the quadrature schemes when applied to the expectation and variance of the uncertain

parameter. Figure 4.3 shows the convergence rates of the cost function using Euler’s

method versus Legendre pseudospectral to discretize the parameter domain.

4.2 Implementations

To implement the following problems, the method of approximating parame-

ter space described in Section 4.1.1 is used, as well as direct collocation for the time

domain, as described in Section 4.1.3. This method creates a large finite-dimensional

nonlinear programming problem (NLP), which can be solved using a variety of avail-

able software packages. For the numerical solutions in this paper we use the commercial
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solver SNOPT, which runs on the SQP algorithm detailed in [41].

4.2.1 Ensemble Control of Nonholonomic Unicycles

Another studied ensemble system is the no-slip nonholonomic unicycle. This

system models the movement of a single wheel across a two-dimensional surface, using

the states x = [x1, x2, x3]T , where [x1, x2] is the two-dimensional location of a wheel

and x3 is the heading angle. When no error is present this system has the following

equations of motion:



ẋ1(t) = u1(t) cosx3(t)

ẋ2(t) = u1(t) sinx3(t)

ẋ3(t) = u2(t)

, x(0) = x0

When uncertainty is introduced which scales the turning rate and velocity, this creates

the following ensemble system, which has been studied in [28] and [45]:



ẋ1(t, ω) = ω · u1(t) cosx3(t, ω)

ẋ2(t, ω) = ω · u1(t) sinx3(t, ω)

ẋ3(t, ω) = ω · u2(t)

, x(0, ω) = x0(ω)

In [28] it was shown that while this overall system is not controllable, the final positions

x1(T, ω) and x2(T, ω) are controllable (again in the sense that in a finite time interval

[0, T ] the system can be steered to within a ball of radius ε around a desired point).
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A control was then analytically derived to drive a group of robots to the origin, given

various starting positions and a spectrum of values for ω. Here, numerical solutions to

this problem are obtained by applying direct methods to the general parameter uncer-

tainty problem created by minimizing the average final time distance, over all parameter

values, from a desired point (α1, α2).

Unicycle Ensemble Problem: Determine the control u : [0, T ] → U ∈ Rnu that

minimizes the objective

J =
1

2

∫
Ω

[
(x1(T, ω)− α1)2 + (x2(T, ω)− α2)2

]
dω (4.14)

subject to the dynamics



ẋ1(t, ω) = ω · u1(t) cosx3(t, ω)

ẋ2(t, ω) = ω · u1(t) sinx3(t, ω)

ẋ3(t, ω) = ω · u2(t)

, x(0, ω) = x0(ω)

and control constraint |ui(t)| ≤ Ki for all t ∈ [0, T ], i = 1, 2, 3..

Figures 4.4 and 4.5 show an implementation of this problem for the values

Ω = [1.0, 1.5], x0(ω) = 0, Ki = 10, and T = 10. In the time domain, 200 time nodes have

been utilized, chosen using Euler’s method, and 10 parameter nodes have been utilized,

chosen using Legendre pseudospectral. Figure 4.4 shows the control solutions for this

implementation and Figure 4.5 shows the trajectories. The final value of the objective,

104



0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

t

u
1

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

t

u
2

Figure 4.4: Optimal Controls for Unicycle Ensemble Problem

i.e. the average end time distance from the goal point, is J = 3.950704157621467 ·10−05.

As a numerical verification method, we can examine these results in terms of

the dual variables returned by the final NLP problem. Using the mappings provided by

Covector Mapping Theorem for direct methods applied to standard control problems,

[20], and the additional mapping provided by Lemma 3, then by Lemma 4 the discrete

duals returned by the NLP solver should approximate the costates provided by Equa-

tions 3.4, 3.5, and 3.6 at the nodes of collocation. Equations 3.4, 3.5, and 3.6 provide

the conditions:

H(x, λ, u, t, ω) = λf(x(t, ω), u(t), ω) + r(x(t, ω), u(t), t, ω)

= λ1ωu1 cosx3 + λ2ωu1 sinx3 + λ3ωu2
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Figure 4.5: Optimal Trajectories for Unicycle Ensemble Problem
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and 
λ̇1(t, ω)

λ̇2(t, ω)

λ̇3(t, ω)

 =


−∂H(x,λ,u,t,ω)

∂x1

−∂H(x,λ,u,t,ω)
∂x2

−∂H(x,λ,u,t,ω)
∂x3

 =


0

0

ωu1 (λ1 sinx3 − λ2 cosx3)

 ,


λ1(T, ω)

λ2(T, ω)

λ3(T, ω)

 =


∂F (x(T,ω),ω)

∂x1

∂F (x(T,ω),ω)
∂x2

∂F (x(T,ω),ω)
∂x3

 =


x1(T, ω)− α1

x2(T, ω)− α2

0


Thus we find that λ1(t, ω) and λ2(t, ω) are constant, with values given by the–in this case

extremely small–final distances from the goal point. If the NLP solution has yielded a

close approximation to the true optimal, the dual variables it returns should reflect this

behavior. Figure 4.6 shows the values of the mapped duals corresponding to λ1(t, ω)

and λ2(t, ω) returned by the NLP solver, plotted over all values of parameter nodes.

Indeed, for all parameter node values, these dual variables return values near zero.
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Figure 4.6: Values of the mapped duals corresponding to λ1(t, ω) and λ2(t, ω) returned
by the NLP solver, plotted over all values of parameter nodes

4.2.2 Ensemble Control of Harmonic Oscillators

An area of research relevant to optimal trajectory design with parameter un-

certainty is that of ensemble control, studied for instance in [28], [27], and [46]. In

ensemble control, the goal is to control, with a single unified control, an ‘ensemble’ of

agents which depend continuously on some parameter value. In other words, to steer a

dynamical system of the form:

ẋ(t, ω) = f(x(t, ω), u(t), ω)

with a control u(t) which does not change relative to the parameter.

This problem has been studied in the context of applied quantum mechanics
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applications, such as medical imaging, where a single electromagnetic pulse is the avail-

able input into a system with a spectrum of values (see [29]), and also in the context of

robotics, where a minor part uncertainty may provide a range of possible systems to be

instantiated by an autonomous robot (see [45]). A studied example application of the

problem is a family of two-dimensional harmonic oscillators with states x = [x1, x2]T

and state dynamics:


ẋ1(t, ω) = −ωx2(t, ω) + u1(t)

ẋ2(t, ω) = ωx1(t, ω) + u2(t)

, x(0, ω) = x0(ω)

where the frequency, ω, may lie in some range [ω1, ω2].

In [27], this system is proved controllable in the sense that in a finite time

interval [0, T ] the system can be steered to within a ball of radius ε around a desired

point. Optimal control strategies are then derived for, first, steering to with in a ball

of radius ε around a final state (x1(T, ω), x2(T, ω)) through constraining the final states

while minimizing the expended control through the objective:

J =

∫ T

0
u(t)Tu(t)dt

and, secondly, for minimizing the average final distance from the origin, with a magni-

tude constraint on u(t)Tu(t), through the objective:

J =

∫
Ω
x(T, ω)Tx(T, ω)dω
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These results were derived analytically, for each of these specific cases. As a contrast,

this section applies our numerical algorithm directly, to a quadratic cost function which

averages the cumulative distance over time as well as the expended control.

Harmonic Oscillators with Frequency Uncertainty Determine the control u :

[0, T ]→ Rnu that minimizes the cost:

J [x, u] =
1

2

∫
Ω

∫ T

0

(
x(t, ω)Tx(t, ω) + u(t)Tu(t)

)
dtdω (4.15)

subject to the dynamics:


ẋ1(t, ω) = −ω · x2(t, ω) + u1(t)

ẋ2(t, ω) = ω · x1(t, ω) + u2(t)

, x(0, ω) = x0(ω)

and control constraint |ui(t)| ≤ 1 for all t ∈ [0, T ], i = 1, 2.

Before solving this general system, it is illustrative to examine the behavior of this

problem when dealt with in more traditional ways. This provides an opportunity to

observe what implications of parameter uncertainty in such a system are. One classic

numerical strategy for such a problem would be to solve the problem as a standard

control problem, using a nominal value as an estimate for ω. For nominal value ω̂ of

the parameter this reduces the problem to the standard control problem:

Standard Harmonic Oscillators Determine the control u : [0, T ] → Rnu that mini-
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mizes the cost:

J [x, u] =
1

2

∫ T

0

(
x(t)Tx(t) + u(t)Tu(t)

)
dt (4.16)

subject to the dynamics:


ẋ1(t) = −ω̂ · x2(t) + u1(t)

ẋ2(t) = ω̂ · x1(t) + u2(t)

, x(0) = x0(ω̂)

and control constraint |ui(t)| ≤ 1 for all t ∈ [0, T ], i = 1, 2.

This second problem can be solved using the necessary conditions provided by Pon-

tryagin’s Minimum Principle and has the optimal solution:

u∗(t) =
e−t
(
e2t − e2T

)
1 + e2T

x0,1 cos(ω̂t)− x0,2 sin(ω̂t)

x0,2 cos(ω̂t) + x0,1 sin(ω̂t)


and

x∗(t) =
e−t
(
e2t + e2T

)
1 + e2T

x0,1 cos(ω̂t)− x0,2 sin(ω̂t)

x0,2 cos(ω̂t) + x0,1 sin(ω̂t)


Figures 4.7 and 4.8 demonstrate the behavior of this solution for values of T = 100 and

ω̂ = 2. Both the trajectories and the control are rapidly driven to zero.

Though the optimal solution to the standard control problem drives the system

quickly near the origin for the nominal parameter value, using this control input on

systems with moderate differences in parameter values will not replicate that behavior.
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Figure 4.7: Optimal Control Values,
u∗(t), for Nominal Oscillator System
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Figure 4.8: Optimal State Values, x∗1(t),
x∗1(t), for Nominal Oscillator System

Figure 4.9 show the trajectories generated by the control input u∗(t) for parameter

values ω in the interval [2, 2.5]. Color is determined by |ω − ω̂|.

In contrast, solving the general parameter uncertainty problem on the other

hand creates a noticeably more robust solution, which drives the system near the origin

for the entire range of parameter values. Figure 4.10 demonstrates the solution of

the parameter uncertainty problem for T = 100 and Ω = [1.5, 2.5]. This solution

was computed using 200 time discretization nodes and 10 nodes for each parameter

dimension. The discretization scheme in the time domain is Euler’s method and the

scheme in the parameter dimensions is Legendre pseudospectral.

Since the control constraints become inactive after the first few time steps, the

conditions derived in Section 3 can provide a tool for numerical verification, to assess

the viability of these numerical solutions as optimal solutions to the general problem

by showing that the control satisfies the necessary conditions for optimality. Equations
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3.4, 3.5, and 3.6 provide the conditions:

H(x, λ, u, t, ω) = λf(x(t, ω), u(t), ω) + r(x(t, ω), u(t), t, ω)

= λ1 (−ωx2 + u1) + λ2 (ωx1 + u2) +
1

2

[
x2

1 + x2
2 + u2

1 + u2
2

]
and λ̇1(t, ω)

λ̇2(t, ω)

 =

−
∂H(x,λ,u,t,ω)

∂x1

−∂H(x,λ,u,t,ω)
∂x2

 =

−ωλ2(t, ω)− x1

ωλ1(t, ω)− x2

 ,

λ1(T, ω)

λ2(T, ω)

 =


∂F (x(T,ω),ω)

∂x1

∂F (x(T,ω),ω)
∂x2

 =

0

0


With these values, after the control constraints become inactive, the time invariant

Hamiltonian results of Theorem 2 apply. These conditions state that if we define:

H(x∗, λ∗, u, t) =

∫
Ω
H(x∗, λ∗, u, t, ω)dω

then

dH(x∗, λ∗, u∗, t)

dt
= 0

Figure 4.13 shows that indeed the Hamiltonian H(x∗, λ∗, u∗, t) for this solution is ap-

proximately constant. Furthermore, Theorem 1 states that when control constraints are

inactive: (
∂

∂u

∫
Ω
H(x∗, λ∗, u, t, ω)dω

)∣∣∣∣
u=u∗(t)

= 0
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which gives us the switching structure:

u1(t) = −
∫

Ω
λ1(t, ω)dω

u2(t) = −
∫

Ω
λ2(t, ω)dω.

Figures 4.11 and 4.12 shows the switching behaviors of the controls and the costates for

this solution..
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Figure 4.9: Perturbed state values,
x∗1(t, ω), x∗1(t, ω), created by the optimal
control to the nominal system. Color is
determined by |ω − ω̂|.
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Figure 4.10: State values created by the
optimal control to the general parameter
uncertainty problem. Color is determined
by |ω − ω̂|.
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Figure 4.11: Values for u1 and∫
Ω λ1(t, ω)dω
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Figure 4.12: Values for u2 and∫
Ω λ2(t, ω)dω
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Figure 4.13: Hamiltonian values for general parameter uncertainty problem.
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4.2.3 Channel Search

As another numerical example, we consider an instance of the classic channel

search problem, created by [8], and studied by [12] and [7]. In this scenario, K = 4

searchers are tasked with surveying a channel of water of dimension [0, 55]× [0, 15] (the

units for these values will remain unspecified). A target is floating down the surface of

the channel from right to left in a straight line with a constant known velocity va = .25.

Though there are four searchers and a single target, the channel of water is significantly

larger than the sensor ranges of the searchers, which increases the difficulty of the

search. The target’s location in time is conditional on its unknown starting position,

ω = [ω1, ω2], and is given by the function:

y(t, ω) =

y1

y2

 =

ω1 − vat

ω2

 .

The searchers are constrained to the two-dimensional surface of the water. Their objec-

tive is to minimize the probability of not detecting the target in the given time interval

[0, 100]. Each defender’s state, xk, is modeled as a Dubin’s vehicle, with dynamics given

by:

ẋk =


ẋk,1

ẋk,2

ẋk,3

 =


v sinxk,3

v cosxk,3

uk

 = fk(xk, uk), k = 1, . . . , 4

and initial conditions xk(0) = xk,0 = [0, 3k, 0]T . The searchers’ velocities are set as

v = 1 and the searchers’ turning rates, uk, are constrained by |uk| ≤ .5. Parameter
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space Ω is the entire rectangular region of the channel, [0, 55] × [0, 15], with a uniform

probability density function.

A rate of detection model is provided by the Poisson Scan Model, descriptions

of which can be found in [47] or [1]. The Poisson Scan Model designates that the rate

of detection is given by:

rk(xk(t), y(t, ω), t) = λΦ

(
F − a‖xk(t)− y(t, ω)‖2

σ

)

where Φ is the cumulative normal distribution. The values of λ, F , a, and σ are

equipment specific constants which are set in this scenario to: F = 0, a = 1, λ = 2, σ =

2.5.

Applying the same methods as those used to derive the exponential detection

probability for one searcher, the worst-case scenario probability, conditioned on ω, of

none of the searchers detecting the target can be derived as:

P (t, ω) = e−
∫ t
0

∑K
k=1 rk(xk(τ),y(τ,ω))dτ .

Optimizing the expectation of this probability over domain of ω creates the following

optimal control problem, in the form of problem P:

Channel Search Problem: Determine the control u : [0, T ] → R4 that

minimizes the expectation

J =

∫
Ω

(
e−
∫ T
0

∑K
k=1 rk(xk(τ),y(τ,ω))dτ

)
p(ω)dω
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Table 4.1: Parameter Values for Channel Search Problem

K T Ω p(ω) xk,0

4 100 [0, 15]× [0, 55] 1
15 ·

1
55

(
0, 3k, 0

)T
subject to the searcher dynamics ẋk(t) = fk(xk, uk), k = 1, . . . ,K, with initial conditions

xk(0) = xk,0, control constraint |uk(t)| ≤ 0.5, ∀t ∈ [0, T ], and the following values:

An illustration of a numerical solution to this problem is demonstrated in

Figure 4.14. This solution was computed using 200 time discretization nodes and 25

nodes for each parameter dimension. The quadrature scheme in the time domain is

Euler’s method and the scheme in the parameter dimensions is Legendre pseudospec-

tral. To examine the effectiveness of the optimal control solution, we compare its final

search probability with the probabilities generated by feasible trajectories created with

heuristic methods. These trajectories are illustrated in Figure 4.15.

The first comparison trajectory is created by launching the searchers on hori-

zontal search paths with constant velocities. When the searchers reach the end of param-

eter space in the x1 direction, they reverse their direction while maintaining curvature

constraints and continue back towards the left. The second comparison is a looping

patrol pattern created by the parameterized curve x1 = 15 sin(s(t)), x2 = 3 cos(3s(t)).

The parameterization by s(t) maintains the constant searcher velocity v = 1 through

satisfying the equation:

ds

dt

√(
dx1

ds

)2

+

(
dx2

ds

)2

= 1.

Each patrol curve is furthermore translated to align with the initial positions of each

searcher. The final comparison, meant to establish a base for poor-performing methods,

is a sample of random walks created by sampling random headings from a uniform
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Figure 4.14: Snapshots of numerical solution to ‘Channel Search Problem’. Colors
represent the log probability density value of an undetected target at a point at time t,
i.e. the evolution over time of the probability density of target location given parameter
value compounded with the probability of target non-detection for given parameter
value . ‘Low’ = 4.14 ∗ 10−6, ‘High’ = 2.9317 ∗ 10−4.119



Figure 4.15: Searching trajectories. Image (a) illustrates optimal control solutions,
image (b) straight line patrols, and image (c) looping patrols.

Figure 4.16: Comparison of the performance of the optimal control solution vs heuristic
methods.

distribution over [−π
2 ,

π
2 ]. Performance results for these trajectories and the optimal

control solution are compared in Figure 4.16.

A major issue in the numerical implementation of search problems has been

the length of the computation time. Direct comparison of run times to previously

published times is not possible in detail, due to computing platform differences and a

paucity of published times. In [7] computation times are referred to in terms of days;

in [1], algorithm times for single searchers searching over a two-dimensional parameter

space range from 5, 000 seconds to 20, 000 seconds. The ability to now implement more
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Table 4.2: Run Times Vs Nodes for Channel Search Problem

Time Nodes Parameter Nodes Run Time (seconds)

75 10× 10 85.17

150 15× 15 131.27

200 25× 25 672.70

efficient methods (pseudospectral direct collocation with encoded sparsity and linearity)

has reduced these times by an order of magnitude. Representative times are given in

Table 4.2, as computed on a 2.3 GHz Intel Core i5 Macbook.

4.2.4 Kamikaze Swarm Scenario

We implement a kamikaze shooting problem as described in Section 2.2.2.1.

An attacker is floating down the surface of a channel of dimension [−20, 10] × [0, 20]

from right to left in a straight line with a constant known velocity va = .25. The at-

tacker’s location in time is conditional on its unknown starting position, ω = [ω1, ω2]

with probability density function given by joint normalized beta distributions with pa-

rameters α = β = 3 and the parameter space [0, 10] × [0, 20]. There is one defender,

moving as a Dubin’s vehicle, with velocity set as v = 1 and turning rate, u, constrained

by |u| ≤ .5. The defender’s initial state is [−10, 15, 0]. The firing rates of the defender

and the attacker are modeled using the Poisson Scan Model, with identical calibration

constants, given by: F = 20, a = 1, λ = 2, σ = 10. The objective is optimized over the

time interval [0, 75].

An illustration of a numerical solution to this problem is demonstrated in

Figure 4.17. This solution was computed using 150 time discretization nodes and 25

nodes for each parameter dimension. The quadrature scheme in the time domain is
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Figure 4.17: Snapshots of numerical solution to ‘Kamikaze Shooting Problem’. The
magenta icon indicates the position of the HVU and the green icon is defender. Colors
represent the log probability density value of a surviving attacker at a point at time t.
‘Low’ = 4.14 ∗ 10−6, ‘High’ = 2.9317 ∗ 10−4.

Euler’s method and the scheme in the parameter dimensions is Legendre pseudospectral.

The final probability of HVU destruction in this implementation is 9.32%. This low

percentage is achieved despite the fact that the probability of destroying the attacker

in this case is only 7.69%. To gauge the efficacy of this trajectory, this result can be

contrasted with the performance of a trajectory generated with the same numerical

methods but using the objective of merely maximizing the probability of destruction of

the attacker. In this case, the probability of destroying the attacker can be increased,

to 15.31%. However, due to the dispersed attention, the resulting probability of HVU

destruction comes out to 79.65%.
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Chapter 5

Conclusions and Future Work

In the beginning of this thesis, three aspects were identified as necessary for

progressing the research devoted to The Optimal Search Problem: the design of useful

interactive performance models and kinematic models, the development of a general

framework for dealing with parameter uncertainty in both the cost and dynamics of

optimal control problems, and a numerical algorithm for generating solutions. Each of

these aspects have now been addressed. Section 2 provides several new models for both

kinematic and performance interaction in multi-agent systems. Section 3 puts forth a

general mathematical framework along with useful necessary conditions for optimality.

And finally, refComputational Approach Section provides a numerical algorithm for

finding solutions to this class of optimal control problems. The following sections discuss

future areas of research.
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5.1 Increasing Computational Speed

One of the foremost challenges with this type of problem is the curse of di-

mensionality. Since the computational scheme described in Section 4 is based on a

discretization of the parameter space Ω, the dimension of that space impacts the size

of Problem PM. Both the number of operations necessary for a single evaluation of the

cost function:

J̄M [X̄M , u] =

M∑
i=1

[
F
(
x̄Mi (T ), ωMi

)
+

∫ T

0
r(x̄Mi (t), u(t), t, ωMi )dt

]
αMi

and the number of state variables present in Problem PM:


˙̄xMi (t) = f(x̄Mi (t), u(t), ωMi )

x̄Mi (0) = x0(ωMi ),

i = 1, . . . ,M. (5.1)

grow proportionally to M , the number of nodes utilized in the approximation scheme.

And for quadrature schemes which are formed using the full tensor product of the

parameter space, the number of nodes, M , increases exponentially with refinement of

the discretization grid. For a d-dimensional parameter space, M grows proportionally to

md, where m is the number of nodes used in each dimension. This exponential growth

makes computation using these types of quadrature methods infeasible for problems

with parameter spaces with high (or sometimes even moderate) dimension. The issue

of exponential growth in quadrature schemes is not unique to this problem, and many

methods have been developed which may be fruitful for application.
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5.1.1 Monte Carlo Methods

Monte Carlo methods approximate integrals of high dimension by sampling M

random points from the domain Ω and approximating the integral as the average:

∫
Ω
h(ω)dω ≈ 1

M

M∑
i=1

h(ωi)

[48] The convergence rate of Monte Carlo integration is proportional to the quantity

1√
M

.[48] Although this is a relatively slow convergence rate, it is notable for being

independent of the dimension of Ω. Furthermore, the increasing refinement of the

discretization grid is no longer subject to exponential growth. In application to Problem

P, the M sample points also designate the collocation points for the state variables,

in the style of Equation 4.1. Figure 5.1 shows an implementation of the Kamikaze

Swarm Scenario of Section 2.2.2.1 using Monte Carlo methods and a sample size of

M = 200 to approximate a swarm of ten attackers with an overall parameter domain

of dimension d = 20. The consistency of applying these methods to Problem P under

various regularity assumptions is analyzed in [49]. What are still needed, however, are

methods for estimating the proximity of numerical answers to the true optimal solution.

Since the convergence rate of Monte Carlo methods is slow, these tools are crucial as

the order of magnitude of the requited number of nodes can vary drastically.

5.1.2 Quasi-Monte Carlo Methods

The square root convergence rate of Monte Carlo methods is not a necessity,

as demonstrated by the existence of much more rapidly converging quadrature meth-
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Figure 5.1: High Dimensional Kamikaze Scenario Implemented with Monte Carlo; d =
20, M = 200

ods. One approach to bridging the gap between the convergence rates of random (but

dimensionally independent) and the convergence rates of deterministic (but dimension-

ally dependent) methods is to construct a sampling scheme which is still independent

of the domain dimension but which utilizes structurally deterministic features to con-

struct sampling points. Sequences of sampling points which in which refinement is still

independent of dimension but which more efficiently span domains can, it turns out,

be constructed. These sequences are generated using number theoretic approaches and

their use is referred to under the umbrella term ‘quasi-Monte Carlo methods.’ As an

example of the convergence properties of quasi-Monte Carlo methods, one can consider

the family of Sobol sequences. Sobol sequences are generated by considering the roots

of a chosen polynomial in relation to the field of integers modulo two. It can be shown

that their rate of convergence of proportional to (lnM)d

M , or in other words asymptotically
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approaching 1
M .[48]

5.1.3 Sparse Grid Methods

Sparse grid methods, first developed by Smolyak in 1963 [50] are an alternate

method for constructing refinement sequences which, in contrast to Monte Carlo related

methods, originate from full tensor products of discretization grids and work to reduce

them to sequences which grow with less than strictly exponential rates. For a space Ω of

dimension d, polynomial approximation schemes such as the pseudospectral collocation

scheme described in Section 4.1.3 rely on a number of basis functions equal to the full

product of M =
∏d
l=1ml total nodes, where ml is the number of nodes taken in each

dimension. Sparse grid methods construct sequences of subsets of these basis functions,

which grow in number at a slower rate as the grid is refined but at the cost of a reduced

convergence rate. The tradeoff, however, is often beneficial.

For instance, [4] describes a scheme based interpolation with a hierarchical ba-

sis of piecewise linear basis functions for functions with mixed bounded second deriva-

tives. For an initial full grid created with m nodes in each dimension the full tensor

product of the basis functions in each dimension would yield M = md basis func-

tions overall with an error of order O(m−2). However, applying sparse grid methods

provides a subset sequence in which the number of basis functions grows with order

O(m(logm)d−1) with error on the order of O(m−2(logm)d−1) in the L2-norm. Figure

5.2 demonstrated the cost and error rates for this approach versus using a full grid. As

[51] describes, this approach can also be generalized to basis sets built with piecewise

polynomials of order p, in which error becomes on the order of O(m−p(logm)d−1).
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Figure 5.2: Cost and Error for Sparse Grid vs Full Grid System of [4] with d = 4

Since sparse grids are constructed by utilizing the underlying structure of the

product space of interpolating functions in each dimension, one major possibility in the

application of this method to the problems discussed in this thesis is the specification of

a sparse grid which caters to specific properties of the problem. For instance, cost sensi-

tivity in relation to the cost function of the optimal control problem may be robust with

respect to certain parameter dimensions and robust with respect to others, as can the

uncertain state dynamics. Were this to be quantified, a sparse grid scheme can be con-

structed with a varyingly refined grid in the relative dimensions. A dimension-adaptive

generalization of basic sparse grid schemes for numerical integration was developed in

[52]

An area of future research would be to develop tools for quantitatively assessing

the importance of different dimensions in this problem–where both the integration in

the cost function and the progression of the ODE’s of the state variables are effected.

Another area which holds possibility for the future is to examine the utilization of a

sparse grid approach for intertwining the discretization of the parameter domain with
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the time domain. Currently, the algorithm in Section 4, is using the full product of

time nodes by parameter nodes, leading to an algorithm with grows in size with order

O(MN) where M is the number of parameter nodes and N is the number of time

nodes. Considering the time domain as an additional dimension from the start, rather

than separating the problem into the two distinct steps denoted by Problem PM and

Problem PMN, then applying sparse grid methods may yield further savings.

5.1.4 Parallelization

In addition to seeking schemes which decrease the size of the numerical prob-

lem, there are also many avenues for increasing the speed of computation for given sizes.

One such avenue is that of parallelization of processing of various problem components

during the course of running the iterative NLP optimization algorithm.

For instance, the discretization of parameter space using M nodes creates M

differential equations:


˙̄xMi (t) = f(x̄Mi (t), u(t), ωMi )

x̄Mi (0) = x0(ωMi ),

i = 1, . . . ,M. (5.2)

which, notably, are uncoupled for the different values of ωMi . During each iteration

of the NLP optimization algorithm which provides a guess control u(t), each of these

differential equations can be processed simultaneously.

In addition to this fundamental feature, many of the multi-agent models de-

veloped in Section 2 lend themselves to further decomposition. For instance, one can
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consider the mutual attrition scenario of Section 2.2.2.2 in the case where the distri-

butions for the uncertain parameter influencing each attacker are independent of each

other. For L attackers, the cost function is:

J =

∫
Ω

[1− po(T, ω)] p(ω)dω

where

ṗ0(t, ω) = −p0(t, ω)

L∑
l=1

ql(t, ω)r0,l(yl(t, ω), x0(t))

and with each l-th attacker dependent on parameter wl with p.d.f. pl(wl) over domain

Ωl, this can be decomposed as:

J =

∫
Ω

[1− po(T, ω)] p(ω)dω

=

∫
Ω1

∫
Ω2

. . .

∫
ΩL

[1− po(T, ω1, . . . , ωL)] p1(ω)p2(ω) . . . pL(ω)dω1dω2 . . . dωL

= 1−
∫

Ω1

. . .

∫
ΩL

[
e−

∫ T
0

∑L
l=1 ql(t,ωl)r0,l(yl(t,ωl),x0(t))dt

]
p1(ω) . . . pL(ω)dω1 . . . dωL

= 1−
∫

Ω1

. . .

∫
ΩL

[
L∏

l=1

e−
∫ T
0

ql(t,ωl)r0,l(yl(t,ωl),x0(t))dt

]
p1(ω) . . . pL(ω)dω1 . . . dωL

= 1−
L∏
l=1

∫
Ωl

e−
∫ T
0 ql(t,ωl)r0,l(yl(t,ωl),x0(t))dtpl(ω)dωl

Each component,
∫

Ωl
e−
∫ T
0 ql(t,ωl)r0,l(yl(t,ωl),x0(t))dt can be calculated independently, and

thus implemented in parallel. Similar decomposition possibilities for independent agents

are available in The Optimal Search Problem for multiple agents and The Kamikaze

Swarm Scenario of Section 2.2.2.1.
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5.2 Expanding Mathematical Framework

5.2.1 Feedback Control

The current design of Problem P is as an open-loop control problem. An

obvious engineering desire, however, is to incorporate an aspect of feedback control to

increase the robustness of solutions. While the case of feedback driven by information

is obviously preferable, the question remains of how to incorporate that information

optimally in cases where, unlike this academic example, the feedback solution is not

available a priori, and also in cases where such information may only be gathered at

discrete time points. One direction is to utilize repeated measurements to gradually

tighten the estimated p.d.f. of the parameter. For instance, if we define the map

I(ω) : Ω→ X by:

I(ω) =

∫ t

0
f(x(τ, ω)), u(t), ω)dt+ x(0, ω)

then for an unknown parameter ω with p.d.f. p0(ω), each measurement x(ti, ω) ∈ X

constrains the possibilities for the values of ω to lie in ω ∈ I−1(x(t, ω)), a fact from

which an updated p.d.f. p1(ω) can be calculated.

5.2.2 End Time State Constraints

Many engineering applications necessitate the use of end time state or mixed

state/control constraints, including minimum time problems, which minimize the time

it takes to satisfy some state/control constraint. In this case, however, where the state

dynamics are subject to uncertainty, the design of what particular kind of end time

constraints constraints should be enforced is an open question. In ensemble control, a
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notion of ‘ensemble controllability’ has been established for some systems, in the sense

that the final states of a system can be steered to within an ε ball of agoal.[27] However,

this threshold of controllability has only been shown to be possible for a limited number

of simple systems. It may be the more standard case that steering to within an ε ball of a

goal for the entire distributuion of end time values is infeasible, in which case other types

of constraints need to be considered. A possible alternate condition is a combination of

constraints on the expectation and variance of the end time distributions.

5.3 Furthering Applications

5.3.1 Protective Herding

Currently, in collaboration with Panos Lambrianides, the decomposition tech-

niques and parallelization observations of Section 5.1 are in the process of being im-

plemented in a manner which takes advantage of GPU computing with an end goal

of solidifying a software architecture for parallelization in such problems. The current

application for this methodology is a scenario which combines the performance metric

of Section 2.2.2.2 with the herding dynamics of Section 2.1.1. In the scenario, the objec-

tive is to defend an HVU but with two inputs at a defender’s disposal: firing power and

the non-destructive force of herding. The goal in implementing this scenario is to aid

the development of tactical simulations which explore the tradeoff between destructive

force (firing power) and non-destructive force (herding).

Protective Herding Scenario: Given the probability density function φ : Ω → R
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determine the controls uk : [0, T ]→ U ∈ Rnu , k = 1, . . . ,K, that minimize:

J =

∫
Ω

[1− po(T, ω)] p(ω)dω

subject to:

ẋk(t) = f(x(t), u(t)), xk(0) = x0
k

ẏl,1(t, ω) =
Hl,1(yl(t, ω), x1(t), . . . , xk(t))

‖Hl(yl(t, ω), x1(t), . . . , xk(t))‖
vl, yl,1(0, ω) = y0

l,1

ẏl,2(t, ω) =
Hl,2(yl(t, ω), x1(t), . . . , xk(t))

‖Hl(yl(t, ω), x1(t), . . . , xk(t))‖
vl, yl,2(0, ω) = y0

l,2

ṗ0(t, ω) = −p0(t, ω)

L∑
l=1

ql(t, ω)r0,l(yl(t, ω), x0(t)), p0(0, ω) = 0

ṗk(t, ω) = −pk(t, ω)
L∑
l=1

ql(t, ω)ra,l(yl(t, ω), xk(t)), pk(0, ω) = 0

q̇l(t, ω) = −ql(t, ω)

K∑
k=1

pk(t, ω)rd,k(xk(τ), yl(τ, ω)), ql(0, ω) = 0

for all l = 1, . . . , L, k = 1, . . . ,K, and ω ∈ Ω with possible control constraint g(u(t)) ≤

0, ∀t ∈ [0, T ]. Let Hl be defined as per Section 2.4.

Figure 5.3 shows the behavior of this model for a case with 2 defenders and two

‘swarms’ of attackers defined by a range of uncertain distance around a deterministically

reacting centroid. Future work will focus on numerical validation, model refinement,

and strategy analyses such as the tradedoff between raising firing power versus utilizing

more herders. Additionally, the goal is to be able to implement this scenario for large

scale multi-agent situations with independent attackers swarms.
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Figure 5.3: Snapshots of Protective Herding Scenario with 2 Defenders and 2 Dependent
Attacker Swarms with 50 Members Each
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5.3.2 Longterm Autonomous Flight with Solar-Powered Thermaling

Gliders

Currently in nature, longterm flight capabilities are observed in birds which

modern aeronautics has not replicated. Large birds can fly for days at a time, expending

little energy in the process. [53] These birds utilize so-called “dynamic soaring” [54],

a technique which gains kinetic energy by exploiting thermal updrafts, the columns of

rising area created by temperature gradients.

The ability to implement low energy, longterm flight in autonomous vehicles

has numerous applications, including weather and earth surface monitoring and com-

munication coverage. Recent work at the Naval Postgraduate School has progressed

on developing routines for implementing dynamic soaring techniques on a selection of

autonomous, solar-powered gliders.[55] These routines combine automated detection of

thermal updrafts once encountered and the subsequent behavior needed to latch into

them and utilize their kinetic energy.

The detection of thermal updrafts is a feature which requires both global and

local planning. On the local level, recognition of the initial entry into an updraft is

needed. On the global level, the design of flight paths which optimize in some fashion

both the probability of encountering a updrafts as well as the accomplishment of some

flight goal (for example, moving from point A to point B). Current global updraft

search plans in [55] utilize a Traveling Salesman Approach, identifying mission objective

locations and additionally ‘points of interest’, which are spots deemed likely to have

updrafts to to prior information such as elevation maps, infrared imagery, land use
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maps, and meteorological data. A goal of future work on this project is to develop more

optimal strategies for designing global flight plans using this type of data and the prior

probability estimates it provides for the location of updrafts.
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